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We present an algorithm for the explicit numerical calculation of SU(N) and SL(N,C) Clebsch-Gordan
coefficients, based on the Gelfand-Tsetlin pattern calculus. Our algorithm is well suited for numerical imple-
mentation; we include a computer code in an appendix. Our exposition presumes only familiarity with the
representation theory of SU(2).

I. INTRODUCTION

Clebsch-Gordan coefficients (CGCs) arise when decomposing the tensor product VS ⊗ VS′ of the representation

spaces of two irreducible representations (irreps) S and S′ of some group into a direct sum VS′′1 ⊕ · · · ⊕ VS′′r of
irreducible representation spaces. They describe the corresponding basis transformation from a tensor product basis
{|M ⊗M ′〉} to a basis {|M ′′〉} which explicitly accomplishes this decomposition.

CGCs are familiar to physicists in the context of angular momentum coupling, in which the direct product of
two irreducible representations (irreps) of the SU(2) group is decomposed into a direct sum of irreps. SU(3) Clebsch-
Gordan coefficients arise, for example, in the context of quantum chromodynamics, while SU(N) CGCs, for general N ,
appear in the construction of unifying theories whose symmetries contain the SU(3)×SU(2)×U(1) standard model as a
subgroup1. SU(N) CGCs are also useful for the numerical treatment of models with SU(N) symmetry, where they arise
when exploiting the Wigner-Eckart theorem to simplify the calculation of matrix elements of the Hamiltonian. Such
a situation arises, for example, in the numerical treatment of SU(N)-symmetric quantum impurity models using the
numerical renormalization group2. Such models can be mapped onto SU(N)-symmetric, half-infinite quantum chains,
with hopping strengths that decrease exponentially along the chain. The Hamiltonian is diagonalized numerically in
an iterative fashion, requiring the explicit calculation of matrix elements of the Hamiltonian of subchains of increasing
length. The efficiency of this process can be increased dramatically by exploiting the Wigner-Eckart theorem, which
requires knowledge of the relevant Clebsch-Gordan coefficients. (Details of how to implement SU(N) symmetries
within the context of the numerical renormalization group will be published elsewhere.) Similarly, tremendous gains
in efficiency would result from developing SU(N)-symmetric implementations of the density matrix renormalization
group for treating generic quantum chain models3,4, or generalizations of this approach for treating two-dimensional
tensor network models5.

For explicit calculations with models having SU(N) symmetry, explicit tables of SU(N) Clebsch-Gordan coefficients
are needed. Their calculation is a problem of applied representation theory of Lie groups that has been solved, in
principle, long ago6–10. For example, for SU(2) Racah11 has found an explicit formula that gives the CGCs for the
direct product decomposition of two arbitrary irreps S and S′. For SU(N), explicit CGC formulas exist for certain
special cases, e.g. where S′ is the defining representation12–14. Moreover, symbolic packages such as the program
“Lie”15 also allow the computation of certain CGCs, but rather have been conceived as a general-purpose software
for manipulating Lie algebras than a high-speed implementation for calculating CGCs. However, for the general case
no explicit CGC formulas are known that would constitute a generalization of Racah’s results to arbitrary N , S and
S′.

The present paper describes a numerical solution to this problem, by presenting an elementary but efficient algo-
rithm (and a computer implementation thereof) for producing explicit tables of CGCs arising in the direct product
decomposition of two arbitrary SU(N) irreps, for arbitrary N . (Since SU(N) and SL(N,C) have the same CGCs,
our algorithm also applies to the latter, but for definiteness we shall usually refer only to the former.) Our work is
addressed at a readership of physicists. Our algorithm uses only elementary facts from SU(N) representation theory,
which we introduce and summarize as needed, presuming only knowledge of SU(2) representation theory at a level
conveyed in standard quantum mechanics textbooks. Previous attempts at formulating an algorithm for calculating
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SU(N) CGCs are either not sufficiently general for our purposes16,17, or require mathematical methods18 much more
advanced than ours, far beyond the scope of a standard physics education.

We begin in Sec. II by formulating the problem to be solved in rather general terms. To set the scene for its solution,
sections III to VII summarize the various elements of SU(N) representation theory (without proofs, since this is all
textbook material). First, in Sec. III we review the calculation of SU(2) CGCs using a strategy that can readily be
generalized to the case of SU(N). Then we proceed to SU(N) representation theory and review in sections IV to VII
a scheme, due to Gelfand and Tsetlin (GT)19, for labeling the generators of the corresponding Lie algebra su(N),
its irreps and the states in each irrep. The GT-scheme is convenient for our purposes since it yields explicit matrix
representations for any SU(N) irrep (Eqs. (28) and (29) below). With these in hand, we are finally in a position to
formulate, in sections VIII to XII, our novel algorithm for computing SU(N) CGCs: it is simply a suitably generalized
version of the SU(2) strategy of Sec. III.

The main text is supplemented by several technical appendices. App. A reviews the relation between the GT-
patterns used in the text and Young tableaux, with which physicists are perhaps somewhat more familiar. App. B
deals with the Littlewood-Richardson rule for determining which irreps VS′′ occur in the decomposition VS ⊗ VS′ .
App. C describes two algorithms, needed for indexing purposes, which map the labels of irreps and of carrier states,
respectively, onto natural numbers. Finally, App. D, which is available in electronic form20, gives the source code for
our computer implementation, written in C++. As a service to potential users, we have set up a web site21 containing
an interactive “CGC-generator”. It allows visitors to perform a number of tasks on input data of their own choice,
such as finding all irreps S′′ occuring in the decomposition of S ⊗ S′, or finding the complete set of CGCs arising in
the decomposition of S ⊗ S′.

II. STATEMENT OF THE PROBLEM

To fix notation, let us state the problem we wish to solve for a general matrix Lie group G. (In subsequent sections,
we restrict attention to G = SU(N) or SL(N,C).) Let S be an irrep label that distinguishes different irreps of G of
SU(N), and dS the dimension of irrep S. Let VS = span{|M〉} denote the carrier space for S, spanned by dS carrier
states |M〉, where the label M will be understood to specify both the irrep S and a particular state in its carrier
space. (This will be made explicit in subsequent sections.) Note that, throughout this paper, we adopt the viewpoint
of quantum mechanics, where we consider only representations on complex vector spaces. Besides, a state is to be
understood as a one-dimensional subspace, not a vector. However, we pick a representative vector |M〉 of each such
subspace and subsequently treat a state as a vector. We assume the inner product of two such normalized vectors
|M〉 and |M ′〉 to be given by 〈M |M ′〉 = δM,M ′ unless noted otherwise.

The action of a group element g ∈ G can be represented on VS as a linear transformation

g : |M〉 →
∑
M ′

(USg )MM ′ |M ′〉 , (1)

where the USg are dS × dS dimensional unitary matrices respecting the group structure USg1U
S
g2 = USg1g2 .

Now consider the direct product of two carrier spaces, V ⊗ V′ = span{|M ⊗M ′〉}, of dimension dS · dS′ . We are

interested in its decomposition into a direct sum of carrier spaces VS′′ of irreps S′′,

VS ⊗ VS
′

=
⊕
S′′

NS
′′

SS′⊕
α=1

VS
′′,α ≡

⊕
S′′

NS′′

SS′VS
′′
. (2)

Here the integer NS′′

SS′ ≥ 0, called the outer multiplicity of S′′, specifies the number of times the irrep S′′ occurs in this

decomposition, and for a given S′′, the outer multiplicity index α = 1, . . . , NS′′

SS′ distinguishes multiple occurrences of

S′′. Correspondingly, let {|M ′′, α〉} be a basis for the direct sum decomposition, i.e. VS′′,α = span{|M ′′, α〉}. Carrier

space dimensions add up according to dS · dS′ =
∑
S′′ N

S′′

SS′dS′′ .
The decomposition (2) implies that a basis transformation C can be found from the direct product basis to the

direct sum basis which block-diagonalizes the matrix representations of all group elements (Ref. 22, p. 100):

C(USg ⊗ US
′

g )C† =


U S̃1
g

U S̃2
g

U S̃3
g

. . .

 , (3a)
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where each S̃j is a shorthand for a certain (S′′, α).
Since G is a matrix Lie group (SU(N) or SL(N,C)), it is convenient to work with its associated Lie algebra g (su(N)

or sl(N,C)). It is obtained by considering the infinitesimal action of G on VS , i.e. by taking derivatives of the group
at the identity. This derivative acts on the direct product of two group representations according to the product rule,
so that the basis transformation C could equally be defined by the property that it block-diagonalizes the algebra
representation:

C(USA ⊗ IS
′
+ IS ⊗ US

′

A )C† =


U S̃1

A

U S̃2

A

U S̃3

A
. . .

 . (3b)

When projected to the subspace VS′′,α (denote the corresponding projector by PS
′′,α), the action of the algebra in

the direct product representation can thus be written as

C(USA ⊗ IS
′
+ IS ⊗ US

′

A )C†
PS
′′,α

−→ US
′′,α

A . (4)

Concretely, the basis transformation C can be expressed in the form

|M ′′, α〉 =
∑
M,M ′

CM
′′,α

M,M ′ |M ⊗M
′〉 , (5)

where the CM
′′,α

M,M ′ are the Clebsch-Gordan-coefficients of present interest. They are understood to be defined only

for NS′′

S,S′ 6= 0, and express the carrier states of VS′′,α in terms of linear combinations of product basis states from

VS ⊗ VS′ . The CGCs encode so-called selection rules, in that CM
′′,α

MM ′ 6= 0 only for a limited number of combinations
of M , M ′ and M ′′.

Since the CGCs are the entries of the unitary matrix C, they satisfy the following orthonormality conditions:∑
M,M ′

CM
′′,α

M,M ′ (C
M̃ ′′,α̃
M,M ′ )

∗ = δM ′′,M̃ ′′δα,α̃ , (6a)

∑
M ′′,α

CM
′′,α

M,M ′ (C
M ′′,α

M̃,M̃ ′
)∗ = δM,M̃δM ′,M̃ ′ . (6b)

Actually, the CM
′′,α

M,M ′ can always be chosen to be real, and we shall do so throughout.

The goal of the present work is to present (and implement on a computer) an efficient algorithm for G = SU(N)
or SL(N,C) which, for any specified N and any specified irrep labels S and S′, produces explicit tables of all CGCs
arising in the direct product decomposition (2).

III. REVIEW OF SU(2) CLEBSCH-GORDAN COEFFICIENTS

Before considering the general SU(N) case, we first review a method for calculating SU(2) CGCs. While there are
various ways to accomplish this task, the particular approach presented below illustrates the general strategy to be
used for SU(N) in later sections. The discussion is structured as follows: First, we recall the Lie algebra associated
with SU(2), then its irreducible representations, then move on to product representation decompositions, and finally
set up equations specifying the CGCs.

The Lie algebra associated with SU(2), denoted by su(2), consists of all real linear combinations of three basis
elements, Jx, Jy, and Jz, obeying the commutation relation [Jx, Jy] = iJz (plus cyclic permutations of the indices).
However, it will be more convenient to deal with complex linear combinations of these, which constitute the algebra
sl(2,C). As a basis for the latter, it is common to choose three elements, J+ = Jx + iJy, J− = Jx − iJy, and Jz,
obeying the following commutation relations:

[Jz, J±] = ±J±, (7a)

[J+, J−] = 2Jz. (7b)
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FIG. 1. SU(2) weight diagram for S = 2. Arrows show the action of J± on the state |S = 2,m = 1〉.

Each su(2) irrep, and correspondingly, each SU(2) irrep, can be uniquely (up to an isomorphism) identified by a
nonnegative half-integer, S = 0, 1/2, 1, . . .. The carrier space VS of such an irrep has an orthonormal basis where the
states, denoted by |S,m〉, are labeled by a half-integer, m = S, S − 1, . . . ,−S, such that the action of Jz and J± is
given by

Jz |S,m〉 = m |S,m〉 , (8a)

J± |S,m〉 =
√

(S ±m+ 1)(S ∓m) |S,m± 1〉 . (8b)

The Jz-eigenvalue m will be called the z-weight of the state |S,m〉 (in anticipation of similar nomenclature to be used
for SU(N) below). The action of J± can be visualized in a so-called weight diagram, which represents each carrier
state |S,m〉 by a mark on an axis at the corresponding m-value. For example, the carrier space of S = 2 is shown
in Fig. 1. In anticipation of the generalization to SU(N), we label basis states from now on by a composite index
M = (S,m), which includes both the irrep label S and the basis index m.

Each carrier space VS contains a unique (up to normalization) highest-weight state, |H ′′〉, defined by the property
that

J+ |H〉 = 0 . (9)

For su(2), it carries the labels |H〉 = |S,m = S〉.
In the direct product decomposition of two su(2) irreps S and S′, the outer multiplicity NS′′

S,S′ in the notation of

Eq. (2) is given by:

NS′′

S,S′ =

{
1 for |S − S′| ≤ S′′ ≤ S + S′,

0 otherwise.
(10)

Since NS′′

S,S′ ≤ 1 for su(2), we shall, throughout this section, omit the index α appearing in Eq. (5). In particular,

Eq. (5) now takes the form

|M ′′〉 =
∑
M,M ′

CM
′′

M,M ′ |M ⊗M ′〉 , (11)

where the CGCs CM
′′

M,M ′ satisfy the selection rule:

m′′ 6= m+m′ =⇒ CM
′′

M,M ′ = 0 . (12)

It reflects the fact that |M ′′〉, |M〉 and |M ′〉 are eigenstates of JS
′′

z , JSz and JS
′

z , respectively, where the superscripts
on Jz indicate which carrier space the respective operators act on.

To obtain the CGCs for given S and S′ explicitly, we consider each S′′ for which NS′′

S,S′ > 0 separately. Let us make

the following ansatz for the expansion of |H ′′〉 in terms of product basis states:

|H ′′〉 =
∑
M,M ′

CH
′′

M,M ′ |M ⊗M ′〉 , (13)

where CH
′′

M,M ′ are the CGCs of |H ′′〉, and the sum runs only over values of m and m′ that satisfy the selection rule

(12). Inserting (13) into (9), we obtain∑
M,M ′

CH
′′

M,M ′(J
S
+ ⊗ IS

′
+ IS ⊗ JS

′

+ ) |M ⊗M ′〉 = 0 . (14)



5

After evaluating the action of the raising operators on |M ⊗M ′〉 using Eq. (8b) and requiring the coefficients in front
of each state |M ⊗M ′〉 to vanish independently, we obtain a homogeneous linear system of equations. We solve for

CH
′′

M,M ′ and fix a solution by the normalization condition (6a) and by requiring CHM,M ′ to be real and positive for the

largest value of m for which CHM,M ′ is nonzero.

The CGCs of lower-weight states (i.e. states other than the highest-weight state) are found by noting that

|M ′′〉 = |S′′,m′′〉 = N (J−)S
′′−m′′ |H ′′〉

= N
∑
M,M ′

CH
′′

M,M ′(J
S
− ⊗ IS

′
+ IS ⊗ JS

′

− )S
′′−m′′ |M ⊗M ′〉 . (15)

(N =
√

(S′′ +m′′)!/(S′′ −m′′)!(2S′′)! is a normalization constant.) The right-hand side of this equation is fully

known from Eq. (8b). By rewriting it into the form of Eq. (11), the desired CM
′′

M,M ′ can readily be identified.

For given S′′, S and S′ it is possible to write Eq. (15) as a recursion relation relating CGCs with different m′′23.

Moreover, for su(2), there exists a closed formula for CM
′′

M,M ′
11. Nevertheless, for present purposes, the approach

presented here is the most convenient as its key steps can readily be generalized to calculate su(N) Clebsch-Gordan
coefficients. The differences in comparison to su(2) will lie in (i) the more complex structure of raising and lowering
operators, (ii) the labeling schemes for irreps and states, and (iii) the method for finding the irreps occurring in a
product representation decomposition, all of which we tackle in the following sections.

IV. THE LIE ALGEBRA ASSOCIATED WITH SU(N)

Instead of working with the group SU(N) itself, it will be more convenient for our purposes to consider its associated
Lie algebra, su(N)24 (ch. 13). The latter consists of all traceless anti-Hermitian n × n matrices, while the ordinary
commutator serves as its Lie bracket. Most results obtained for representations of su(N) carry over to SU(N) one-to-
one, with the elements of the Lie algebra representing the generators of the Lie group. Notably, the Clebsch-Gordan
coefficients of their representations are identical.

We begin by specifying a basis for the su(N) algebra, in order to illustrate its structure. Let Ep,q be the single-entry
matrices, i.e. Ep,qr,s = δp,rδq,s. A possible choice of basis is given by the matrices i(Ek,l + El,k) and Ek,l − El,k for

1 ≤ k < l ≤ N , and i(El,l − El+1,l+1) for 1 ≤ l ≤ N − 1. su(N) is spanned by real linear combinations of these
matrices. Just as for su(2) and sl(2,C), however, it will be convenient to work with a basis for sl(N,C). To this end,
define for 1 ≤ l ≤ N − 1 the complex linear combinations,

J (l)
z =

1

2
(El,l − El+1,l+1), (16a)

J
(l)
+ = El,l+1, (16b)

J
(l)
− = El+1,l, (16c)

which satisfy, for each l, the familiar su(2) commutation relations of Eq. (7):[
J (l)
z , J

(l)
±

]
= ±J (l)

± , (17a)[
J
(l)
+ , J

(l)
−

]
= 2J (l)

z . (17b)

The N −1 matrices J
(l)
z form a maximal set of mutually commuting matrices, [J

(l)
z , J

(l′)
z ] = 0 (thus, the iJ

(l)
z span the

Cartan subalgebra of su(N)). Thus, none of the J
(l)
± commutes with all elements of this set, or with all other J

(l′)
±

operators.

The matrices J
(l)
z and J

(l)
± are not anti-Hermitian and thus do not belong to su(N), but rather to sl(N,C). However,

it is sufficient to restrict our attention to J
(l)
± because, from these, we can recover an anti-Hermitian basis using

Ep,q = [J
(p−1)
− , [J

(p−2)
− , . . . [J

(q+1)
− , J

(q)
− ]] . . .] for p > q , (18a)

Ep,q = [J
(p)
+ , [J

(p+1)
+ , . . . [J

(q−2)
+ , J

(q−1)
+ ]] . . .] for p < q . (18b)

In other words, once we know representations for all J
(l)
± on a given carrier space, the representations of all other

elements of both the algebras sl(N,C) and su(N) are also known. For definiteness, we shall refer to su(N) below,
although the constructions apply equally to sl(N,C).
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V. LABELING OF IRREPS AND STATES

The su(N) basis defined in the preceding section has a feature that makes it particularly convenient for our purposes:
if one also adopts a specific labeling scheme, devised by Gelfand and Tsetlin (GT)19, for labeling su(N) irreps and the

basis states of their carrier spaces, these basis states are simultaneous eigenstates of all the matrices J
(l)
z , and explicit

formulas exist for the matrix elements of the J
(l)
± with respect to these basis states. The next three sections are

devoted to summarizing the GT labeling scheme without dwelling on its mathematical roots – the mere knowledge of
its rules is sufficient for our purposes. (The relation of the GT-scheme labeling scheme to a frequently-used alternative
but equivalent labeling scheme, employing Young diagrams and Young tableaux, is summarized, for convenience, in
Appendix A.)

Up to equivalent representations, each su(N) irrep can be identified uniquely by a sequence of N integers25,

S = (m1,N , . . . ,mN,N ), (19)

or S = (mk,N ) in short, fulfilling mk,N ≥ mk+1,N for 1 ≤ k ≤ N − 1. We shall call such a sequence an irrep weight or
i-weight, in short. The second index, N , identifies the algebra, su(N); the reasons for displaying this index explicitly
will become clear below. Two i-weights S and S′ for which all components differ only by a k-independent constant,
i.e. m′k,N = mk,N + c with c ∈ Z, designate the same su(N) irrep. This fact can be used to bring any i-weight into a
“normalized” form having mN,N = 0, which will be assumed below, unless otherwise specified.

GT exploited the fact that the carrier space of any su(N) irrep splits into disjoint carrier spaces of su(N − 1) irreps
to devise a labelling scheme with a very convenient property: It yields a remarkably simple rule for enumerating which
su(N − 1) irreps occur in the decomposition of S = (mk,N ), namely all those with i-weights (m1,N−1, . . . ,mN−1,N−1)
that satisfy the condition mk,N ≥ mk,N−1 ≥ mk+1,N for 1 ≤ k ≤ N − 1. Note that, here, it is crucial not to set
mN−1,N−1 = 0 so that we can distinguish between multiple occurrences of the same su(N − 1) irrep.

Recursively, the carrier spaces of su(N − 1) irreps give rise to su(N − 2) irreps and so on, down to su(1), the carrier
spaces of which are one-dimensional. This sequence of decompositions can be exploited to label the basis states |M〉
of a given su(N) irrep S = (mk,N ) using so-called Gelfand-Tsetlin patterns (GT-patterns). These are triangular
arrangements of integers, to be denoted by M = (mk,l), with the structure

M =


m1,N m2,N . . . mN,N

m1,N−1 . . . mN−1,N−1
. . .

...
m1,2 m2,2

m1,1

 , (20)

i.e. the first index labels diagonals from left to right, and the second index labels rows from bottom to top. The top
row contains the i-weight (mk,N ) that specifies the irrep, and the entries of lower rows are subject to the so-called
betweenness condition,

mk,l ≥ mk,l−1 ≥ mk+1,l (1 ≤ k < l ≤ N). (21)

The dimension of an irrep S = (mk,N ) is equal to the number of valid GT-patterns having S as their top row. There
exists a convenient formula for this number:

dim(S) =
∏

1≤k<k′≤N

(
1 +

mk,N −mk′,N

k′ − k

)
. (22)

Note that the SU(2) basis state conventionally labeled as |j,m〉 corresponds to the GT-pattern
(
2j 0
j −m

)
, and the

above formula reduces to dim(j) = 2j + 1.
To obtain a complete description of SU(N) irreps, we need to specify how the Lie algebra su(N) acts on states

labeled by Gelfand-Tsetlin patterns. The following two sections are devoted to this task, section VI with J
(l)
z and

section VII dealing with J
(l)
± .

VI. WEIGHTS AND WEIGHT DIAGRAMS

A very convenient property of the GT-labeling scheme is that every state |M〉 is a simultaneous eigenstate of all

J
(l)
z generators,

J (l)
z |M〉 = λMl |M〉 , (1 ≤ l ≤ N − 1), (23)
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with eigenvalues

λMl = σMl −
1

2
(σMl+1 + σMl−1) (1 ≤ l ≤ N − 1), (24)

where the row sum σMl =
∑l
k=1mk,l denotes the sum over all entries of row l of GT-pattern M (σM0 = 0 by

convention). We shall call the sequence of N − 1 J
(l)
z eigenvalues the z-weight of the state |M〉, and denote it by

Wz(M) = (λM1 , . . . , λ
M
N−1). The z-weight of |M〉 is a straightforward generalization of the quantum number m in

quantum angular momentum.
As will be elaborated below, the notion of weights of states is useful for elucidating the structure of carrier spaces

of su(N) irreps, and in particular for visualizing the action of raising and lowering operators. The above way of
introducing weights is, however, not unique. We shall often find it convenient to employ an alternative definition of
the weight of states, which has the convenient property that it always yields nonnegative integer elements (in contrast
to Wz(M)). This alternative weight, to be called pattern weight or p-weight, and denoted by W (M), is defined to be
a sequence of N integers, W (M) = (wM1 , . . . , wMN ), where

wMl = σMl − σMl−1 (1 ≤ l ≤ N) (25)

is the difference between summing up rows l and l − 1 of the GT-pattern M . Note that the number of independent

elements of W (M) is the same as that of Wz(M), namely N − 1, since the wMl satisfy the relation
∑N
l=1 w

M
l = σMN .

The two types of weights are directly related to each other: via Eq. (24), we obtain λMl = (wMl − wMl+1)/2. For
definiteness, we will mostly refer to p-weights below (noting here that most statements involving p-weights can be
translated into equivalent statements involving z-weights).

At this point, the first of several fundamental differences between su(2) and su(N) with N ≥ 3 appears. While for
su(2), there always exists exactly one state with a given p-weight, this is not the case for su(N) in general; for N ≥ 3,
several linearly independent states in the carrier space can have the same p-weight. Indeed, two states have the same
p-weight, W (M) = W (M ′), if and only if they have the same set of row sums (σMl = σM

′

l for 1 ≤ l ≤ N − 1) (i.e.
they differ only in the way in which the “weight” of the row sums is distributed among the entries of each row). For
a given p-weight W , the number of states |M〉 having the same p-weight, W (M) = W , is called the inner multiplicity
of that p-weight, to be denoted by I(W ). Consequently, p-weights or z-weights are not suited for uniquely labeling
states of a carrier space (which is why GT-patterns are used for this purpose).
z-weights nevertheless do provide a convenient way to visualize the carrier space of an su(N) irrep. To this end,

consider Wz(M) = (λM1 , . . . , λ
M
N−1) as a vector in (N − 1)-dimensional space and, for each state, mark the endpoint

of its weight vector in an (N −1)-dimensional lattice. The resulting diagram is called a weight diagram. For the su(2)
irrep j, weight diagrams consist of a coordinate axis with markings at −j,−j + 1, . . . , j (see Fig. 1); for su(3), weight
diagrams are two-dimensional (see Fig. 2); for N ≥ 4, weight diagrams cannot be readily drawn on paper because the
corresponding lattices have more than two dimensions.

Note that, in Fig. 2, the z-weight Wz = (0, 0) has inner multiplicity two, since the two states
 2 1 0

2 0
1

 and
 2 1 0

1 1
1


have the same row sums.

VII. RAISING AND LOWERING OPERATORS

Weight diagrams are also very convenient for visualizing the action of the raising and lowering operators J
(l)
± . The

action of J
(l)
± on a given state |M〉 produces a linear combination of all states of the form |M ±Mk,l〉 with arbitrary

k, where this notation implies element-wise addition and subtraction of the single-entry pattern Mk,l having 1 at
position k, l and zeros elsewhere,

Mk,l =


0 0 . . . 0

0 . . . 0
. . . 1k,l

...

0 0
0

 . (26)

(Note that Mk,l on its own is not a valid GT-pattern.) Thus the resulting patterns differ from M only in row l. All
states |M ±Mk,l〉 that are generated in this fashion have the same row sums, z-weights, and p-weights (independent
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FIG. 2. Weight diagram of the su(3) irrep (2, 1, 0). Each dot represents a z-weight; we also indicate the GT-patterns of the
corresponding states. The double circle around (0, 0) indicates that there are two states with this weight. The solid and dashed

arrows represent the action of J
(1)
− and J

(2)
− , respectively. (J

(l)
+ could be represented by arrows pointing in directions opposite

to those of J
(l)
− .) Note that both J

(1)
− acting on

 2 1 0
2 0

2

 and J
(2)
− acting on

 2 1 0
2 1

1

 produce linear combinations of
 2 1 0

2 0
1


and

 2 1 0
1 1

1

, albeit different ones. (In the literature it is not uncommon to choose a different su(3) basis that renders this

weight diagram more symmetric.)

of k),

Wz(M ±Mk,l) = (λM1 , . . . , λ
M
l−2, λ

M
l−1 ∓ 1/2, λMl ± 1, λMl+1 ∓ 1/2, λMl+2, . . . , λ

M
N−1), (27a)

W (M ±Mk,l) = (wM1 , . . . , wMl−1, w
M
l ± 1, wMl+1 ∓ 1, wMl+2, . . . , w

M
N ), (27b)

unless states with this weight do not exist, in which case the result vanishes.
The weight-shifting action of lowering operators is illustrated in Fig. 2 for the weight diagram of the su(3) irrep

S = (2, 1, 0). Since the weight diagram is two-dimensional, there are two lowering operators, J
(1)
− and J

(2)
− , which shift

in different directions (indicated by different colors). (J
(l)
+ produces a shift in the opposite direction of J

(l)
− .) Note

that there are two different “paths” to reach the z-weight (0,0) from the z-weight ( 1
2 ,

1
2 ), namely via either J

(1)
− J

(2)
−

or J
(2)
− J

(1)
− . Since J

(1)
− and J

(2)
− do not commute, these paths are inequivalent; indeed, they produce two different

linear combinations of the two states with z-weight (0, 0). More generally, the fact that inner multiplicities larger
than 1 arise for su(N) representations with N > 2 is a direct consequence of the fact that there are, in general, several
different ways of reaching one state from another via a chain of raising and lowering operators, and that these ways

are not equivalent, because J
(l)
± and J

(l′)
± do not commute for l 6= l′.

Very conveniently, closed expressions have been found by Gelfand and Tsetlin19 for the matrix elements of all raising

and lowering operators with respect to the basis of GT-patterns. Explicitly, the only nonzero matrix elements of J
(l)
−

are given, for any 1 ≤ k ≤ l ≤ N − 1, by26 (p. 280):

〈M −Mk,l|J (l)
− |M〉 =

−
l+1∏
k′=1

(mk′,l+1 −mk,l + k − k′ + 1)
l−1∏
k′=1

(mk′,l−1 −mk,l + k − k′)

l∏
k′=1
k′ 6=k

(mk′,l −mk,l + k − k′ + 1)(mk′,l −mk,l + k − k′)



1
2

. (28)
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These matrix elements are real, and the right-hand side vanishes if M − Mk,l is not a valid pattern. As J
(l)
+ is

the Hermitian transpose of J
(l)
− , we can obtain its nonzero matrix elements by taking the complex conjugate of the

preceding formula and replacing |M〉 by |M +Mk,l〉:

〈M +Mk,l|J (l)
+ |M〉 =

−
l+1∏
k′=1

(mk′,l+1 −mk,l + k − k′)
l−1∏
k′=1

(mk′,l−1 −mk,l + k − k′ − 1)

l∏
k′=1
k′ 6=k

(mk′,l −mk,l + k − k′)(mk′,l −mk,l + k − k′ − 1)



1
2

. (29)

These formulae generalize Eq. (8b) to su(N).
Each irrep has a unique state |H〉, called its highest-weight state, that is annihilated by all N − 1 raising operators

J
(l)
+ |H〉 = 0 (1 ≤ l ≤ N − 1). (30)

Since |H〉 is a unique state, the inner multiplicity of its p-weight W (H) is one, and the irrep can be identified by
specifying W (H). Our labeling scheme indeed exploits this fact: the i-weight of an irrep is equal to the p-weight of its
highest-weight state |H〉, i.e. S = W (H). Conveniently, the GT-pattern H = (hk,l) has the highest possible entries
fulfilling Eq. (21), i.e. hk,l = hk,N for 1 ≤ k ≤ l ≤ N − 1 (all entries on the k-th diagonal are equal to mk,N ).

This concludes our exposition of those elements of SU(N) representation theory in the GT-scheme that are needed in
this work. In the following sections we discuss the decomposition of direct product representations and the calculation
of the associated CGCs. The specific details of the strategy described below are, to the best of our knowledge, original.

VIII. PRODUCT REPRESENTATION DECOMPOSITIONS

The product of two irreps, say S ⊗ S′, is, in general, reducible to a sum of irreps (Eq. (2)). While it is well-known
for su(2) which irreps occur in such a decomposition (see Eq. (10)), the corresponding result for su(N) relies on a
relatively simple but hard to prove method based on the Littlewood-Richardson rule27. This method involves writing
down all possible GT-patterns for the irrep S and using each of these to construct, starting from S′, a new irrep S′′.
As the outcome of this method is the same when interchanging S and S′, it is preferable to take the irrep with the
smaller dimension of the two as S.

For given irreps S = (mk,N ) and S′ = (m′k,N ), and a particular GT-pattern M = (mk,l) associated with S, let us

introduce some auxiliary notation. For l = 1, . . . , N and k = 1, . . . , l, we set bk,l = mk,l −mk,l−1 (where mk,l ≡ 0 if

k > l, for ease of notation) and Bk,l = m′l,N +
∑k
k′=1 bk,l (note that here, m′k,l carries a prime, while bk,l does not).

Then, the irrep S′′ = (m′′k,N ) ≡ (Bk,k) occurs in the decomposition of S ⊗ S′ if and only if

Bk−1,1 ≥ Bk−1,2 ≥ · · · ≥ Bk−1,l−1 ≥ Bk,l ≥ Bk,l+1 ≥ · · · ≥ Bk,N for all 1 ≤ k ≤ l ≤ N . (31)

(We emphasize that this condition must hold for each value of k and l.) By checking whether (31) holds for all
GT-patterns associated with S, all S′′ in the decomposition of S ⊗ S′ can be identified.

There exists a more efficient way to validate Eq. (31) than to check each value of k and l independently. For a given
GT-pattern M = (mk,l) associated with S, proceed as follows:

1. Initialize (t1, . . . , tN ) = (m′1,N , . . . ,m
′
N,N ) by the i-weight of S′.

2. Step through the pattern M along the diagonals from top to bottom and from left to right, i.e. in the order
m1,N , m1,N−1, . . ., m1,1, m2,N , m2,N−1, . . ., m2,2, . . ., mN,N .

3. At each position, say mk,l, replace tl by tl + bk,l.

4. If l > 1, check whether tl−1 ≥ tl. If this condition is violated, discard this GT-pattern, construct the next one,
and commence again from step 1.

5. If we reach the end of the pattern M , the current value of (t1, . . . , tN ) specifies the weight of an irrep S′′ that
occurs in the decomposition of S ⊗ S′.
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For N > 2, this procedure in general can produce several occurrences of the same irrep S′′. The number of such
occurrences, denoted by NS′′

SS′ in Eq. (2), is the outer multiplicity of S′′. (For SU(2), the outer multiplicity is either
0 or 1.)

Let us illustrate this procudure by an example (individual steps are shown in Table I):

(2, 1, 0)⊗ (2, 1, 0) = (4, 2, 0)⊕ (3, 3, 0)⊕ (4, 1, 1)⊕ (3, 2, 1)⊕ (3, 2, 1)⊕ (2, 2, 2) (32a)

= (4, 2, 0)⊕ (3, 3, 0)⊕ (3, 0, 0)⊕ (2, 1, 0)⊕ (2, 1, 0)⊕ (0, 0, 0) (32b)

(For the second line, we adopted ”normalized” i-weights with mN,N = 0.) To check that the dimensions are correct,

use Eq.(22) to verify the dimensions of the irreps in this equation are 8× 8 = 27 + 10 + 10 + 8 + 8 + 1, respectively.
Note that the irrep (2, 1, 0) occurs twice in the decomposition, in other words, its outer multiplicity is 2.

IX. SELECTION RULE FOR SU(N) CLEBSCH-GORDAN COEFFICIENTS

The fact that all states labeled by GT-patterns are eigenstates of J
(l)
z operators implies a selection rule for SU(N)

CGCs. Explicitly, let us consider a state |M ′′〉 occurring in a decomposition of a product representation. On the one
hand, we have

J (l)
z |M ′′, α〉 = λM

′′,α
l |M ′′, α〉 , (33a)

and on the other hand, by Eqs. (4) and (5),

J (l)
z |M ′′, α〉 =

∑
M,M ′

CM
′′,α

M,M ′ (J
(l),S
z ⊗ IS

′
+ IS ⊗ J (l),S′

z ) |M ⊗M ′〉 =
∑
M,M ′

CM
′′,α

M,M ′ (λ
M
l + λM

′

l ) |M ⊗M ′〉 . (33b)

These equations can only be fulfilled if CM
′′,α

M,M ′ vanishes whenever λM
′′,α

l 6= λMl + λM
′

l for any l. Defining an element-
wise addition on weights, we write, in short:

Wz(M
′′) 6= Wz(M) +Wz(M

′) =⇒ CM
′′,α

M,M ′ = 0. (34)

This equation (or a transcription thereof involving p-weights) represents the generalization of Eq. (12) to su(N).

X. CLEBSCH-GORDAN COEFFICIENTS OF HIGHEST-WEIGHT STATES

After determining which kinds of irreps S′′ appear in the decomposition of a product representation, we are ready
to construct their Clebsch-Gordan coefficients. For each S′′, we start by finding the CGCs of its highest-weight state,
|H ′′, α〉, as defined in Eq. (30). The index α = 1, . . . , NS′′

S,S′ distinguishes between the instances of irreps with outer

multiplicity. Nevertheless, we determine the CGCs of |H ′′, α〉 with given S′′ for all values of α in a single run.
For this purpose, we make an ansatz of the form (5) for the highest-weight state (compare Eq. (13)),

|H ′′, α〉 =
∑
M,M ′

W (M)+W (M ′)=W (H′′,α)

CH
′′,α

M,M ′ |M ⊗M
′〉 , (35)

with CGCs CH
′′,α

M,M ′ , where the sum is restricted to those combinations of states |M ⊗M ′〉 that respect the selection

rule (34). Now insert Eq. (35) into Eq.(30) to obtain (compare Eq. (14)),∑
M,M ′

W (M)+W (M ′)=W (H′′,α)

CH
′′,α

M,M ′(J
(l),S
+ ⊗ IS

′
+ IS ⊗ J (l),S′

+ ) |M ⊗M ′〉 = 0, (1 ≤ l ≤ N − 1). (36)

After evaluating the action of the raising operators on the product basis states via Eq. (29), we obtain a homogeneous

linear system of equations in the CGCs CH
′′,α

M,M ′ . It has NS′′

S,S′ linearly independent solutions, one for each value of
α. Thus, an outer multiplicity larger than 1 leads to an ambiguity among the CGCs of the highest-weight states
of all irreps of the same kind S′′: a unitary transformation |H,α〉 →

∑
α′ Uα,α′ |H,α′〉 among the highest-weight
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TABLE I. Application of the Littlewood-Richardson rule according to the steps of Section VIII, for the decomposition of
S ⊗ S′ = (2, 1, 0)⊗ (2, 1, 0).
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states will produce different, but equally acceptable highest-weight CGCs CH
′′,α

M,M ′ . The full set of CGCs of the irreps

S′′ will change accordingly, too. For some applications, there is no need to uniquely resolve this ambiguity. For
applications where it must be resolved, we will adopt the following convention, suggested by G. Zaránd28: Write down

the independent solutions in the form of a matrix with elements CH
′′,α

MM ′ , where α = 1, . . . , NS′′

S,S′ serves as row index

and (M,M ′) = 1, . . . , I(H) as composite column index (where I(H) is the inner multiplicity of W (H) in the product
representation). Then use Gaussian elimination to bring this matrix into a normal form, namely the reduced row
echelon form,

· · · · ·
... CH

′′,α
M,M ′

...

· · · · ·

 →



0 · · · 0 + 0 · · · 0 0 0 · · · 0 0 ∗ · · · ∗
0 · · · 0 0 0 · · · 0 + 0 · · · 0 0 ∗ · · · ∗
0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 ∗ · · · ∗
...

. . .
...

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 ∗ · · · ∗
0 · · · 0 0 0 · · · 0 0 0 · · · 0 + ∗ · · · ∗


, (37)

where + and ∗ denote positive and arbitrary matrix elements, respectively. This normal form is the same for all
equivalent matrices. To obtain orthonormal highest-weight states, we then do a Gram-Schmidt orthonormalization of
the rows of the resulting matrix from top to bottom. This procedure uniquely specifies the CGCs for the highest-weight
states.

As an aside, we note that the abovementioned ambiguity does not arise for the case of S′ = (1, 0, . . . , 0) (the
defining representation of su(N)) and arbitrary S, since then all outer multiplicites are either zero or one, i.e. then

NS′′

S,S′ = 0 or 1. (However, there would still be a sign ambiguity for the CGCs, and the above procedure constitutes

one way of fixing it.) We note that for this case, explicit formulas for SU(N) CGCs can be found14.

XI. CLEBSCH-GORDAN COEFFICIENTS OF LOWER-WEIGHT STATES

Let us now turn to the CGCs of states of S′′ other than its highest-weight state. These are obtained by acting on

both sides of Eq. (35) with lowering operators, using Eq. (28) for the matrix representations of J
(l)
− for the carrier

space VS′′,α on the left-hand side, and for the direct product carrier space VS ⊗VS′ on the right-hand side. However,

according to Eq. (28), the action of J
(l)
− in general produces not a unique basis state, but a linear combination of

basis states of VS′′,α. We shall therefore calculate, in parallel, the CGCs of all basis states with a given α and given
p-weight W = (wl), i.e. of all |M ′′, α〉 having W (M ′′) = W .

To this end, assume that we have already determined all “parent states” of the desired p-weight W within VS′′,α.

By parent states we mean those which, when acted upon by a single J
(l)
− , yield (linear combinations of) states of

weight W . For a given J
(l)
− (with 1 ≤ l ≤ N−1), the relevant parent states have p-weight (w1, . . . , wl−1, wl+1, wl+1−

1, wl+2, . . . , wN ) and consist of all states of the form |M ′′ +Mk,l, α〉 with W (M ′′) = W and 1 ≤ k ≤ l, for which
M ′′ +Mk,l is a valid GT-pattern. Each parent state can be expressed as

|M ′′ +Mk,l, α〉 =
∑
M,M ′

CM
′′+Mk,l,α

M,M ′ |M ⊗M ′〉 , (38)

where the CGCs are, by assumption, already known. Now, the action of J
(l)
− on any parent state can be written as a

linear combination of all states |M ′′′, α〉 with W (M ′′′) = W ,

J
(l),S′′

− |M ′′ +Mk,l, α〉 =
∑
M ′′′

bM
′′′

M ′′,k,l |M ′′′, α〉 , (39)

where the coefficients bM
′′′

M ′′,k,l are determined by the matrix representation of J
(l)
− within VS′′,α, as given by Eq. (28).

Combining Eqs. (38) and (39) and using the direct product representation of J
(l)
− on VS ⊗ VS′ , we obtain a linear

system of equations of the form (compare Eq. (15)):∑
M ′′′

bM
′′′

M ′′,k,l |M ′′′, α〉 =
∑
M,M ′

CM
′′+Mk,l,α

M,M ′ (J
(l),S
− ⊗ IS

′
+ IS ⊗ J (l),S′

− ) |M ⊗M ′〉 . (40)
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Each combination of indices M ′′, k, and l specifies a separate equation, where M ′′ runs over all GT-patterns such
that W (M ′′) = W , l runs from 1 to N − 1, and k runs from 1 to l, provided that M ′′ +Mk,l is a valid GT-pattern.
Actually, only I(W ) of these equations are linearly independent; as we do not know in advance which ones these are,

we include them all, i.e. the system of equations (40) is, in general, overdetermined. Since the action of the J
(l)
− s on

the right-hand side is known from Eq. (28), the sought-after CGCs CM
′′,α

M,M ′ can now be readily obtained by inverting

the matrix of the coeffcients bM
′′′

M ′′,k,l in order to bring Eq. (40) into the familiar form of Eq. (5).

XII. ALGORITHM FOR COMPUTER IMPLEMENTATION

Having gathered in the preceding sections all necessary ingredients, we are now ready to formulate the sought-after
algorithm for calculating SU(N) CGCs. Given two SU(N) irreps S and S′, perform the following steps:

1. Find the irreps S′′ appearing in the decomposition of S ⊗ S′, as described in Sec. VIII.

2. For each irrep S′′, find the Clebsch-Gordan coefficients of the NS′′

S,S′ highest-weight states |H ′′, α〉. Resolve outer
multiplicity ambiguities, as described in Sec. X.

3. From each highest-weight state |H ′′, α〉, construct the lower-weight states by repeated application of J
(l)
− oper-

ators, treating each weight of S′′ separately, as described in Sec. XI.

An explicit computer implementation of this strategy is presented in App. D. To check that our algorithm works
correctly, we have verified that it satisfies the following consistency checks:

• For SU(2) and SU(3), the results coincide with known formulas and tables, up to sign conventions.

• The selection rule (34) is fulfilled.

• The matrix C of Clebsch-Gordan coefficients (see Sec. II) is unitary (see Sec. II).

• The matrix C block-diagonalizes the representation matrices (Eqs. (3)).

The speed of the algorithm depends polynomially on the dimensions of the irreps S and S′. On a modern computer
(2 GHz CPU clock speed), smaller su(3) cases (e.g. dimS = 6,dimS′ = 15) run instantly, while medium-sized su(5)
cases (e.g. dimS = 35,dimS′ = 224) take a few minutes, and larger su(5) cases (e.g. dimS = 280,dimS′ = 420)
require several hours computing time.

As an outlook, we note that it should be possible to greatly speed up our algorithm by exploiting the fact that
the weight diagrams are symmetric under the Weyl group, which in this context can be thought of as the group of
all permutations of the elements of the p-weights, (wM1 , . . . , wMN ) → (wMσ(1), . . . , w

M
σ(N)). Exploiting this symmetry is

a nontrivial task, since the Gelfand-Tsetlin basis is not stable unter the operation of the Weyl group. Nevertheless,
we expect that it should be possible to do within the general framework of our algorithm, by adopting a suitably
modified state labeling scheme that exploits the Weyl symmetry. Work along these lines is currently in progress.
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Appendix A: Correspondence between Gelfand-Tsetlin patterns and Young tableaux

There exists a one-to-one correspondence between i-weights and Young diagrams, and between GT-patterns and
semi-standard Young tableaux. Thus, our algorithm could equally well have been formulated in terms of Young
diagrams and Young tableaux. Since the latter are easy to visualize and are perhaps more widely known in the
physics community than the GT-scheme, this appendix summarizes the relation between the two schemes. Our
reason for preferring GT-patterns to Young tableaux lies in the complexity of the computer implementation: GT-
patterns can be stored in a simpler data structure and allow for a simpler evaluation of the matrix elements (28)
and (29).

Note that Young tableaux can also be used to label bases that differ from the GT basis used in this work, notably
the one constructed via Young symmetrizers29 (ch. 7). Thus, the correspondence between GT-patterns and Young
tableaux set forth below is purely of combinatorial nature.
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(a) (b) 1 1
2

1 1
3

1 2
2

1 2
3

1 3
2

1 3
3

2 2
3

2 3
3

FIG. 3. (a) Examples of Young diagrams of su(3) irreps. Since columns with 3 boxes can be deleted, the last example is
effectively equal to the first one. (b) Set of all of valid su(3) Young tableaux of shape .

(a)

Row 1 Row 2 Row 3 Row 4
2



 3 2

2




3 2 1

3 2

2




4 3 1 0

3 2 1

3 2

2



1 1
1 1 2
2 2

1 1 2
2 2
3

1 1 2 4
2 2 4
3

(b)

Diagonal 1 Diagonal 2 Diagonal 3 Diagonal 4
4

3

3

2




4 3

3 2

3 2

2




4 3 1

3 2 1

3 2

2




4 3 1 0

3 2 1

3 2

2



1 1 2 4
1 1 2 4
2 2 4

1 1 2 4
2 2 4
3

1 1 2 4
2 2 4
3

TABLE II. Conversion of a GT-pattern to a Young tableau, stepping (a) along rows, and (b) along diagonals.

1. Definition of Young diagrams and Young tableaux

A Young diagram is an arrangement of boxes in rows and columns conforming to the following rules: (YD.1) there
is a single, contiguous cluster of boxes; (YD.2) the left borders of all rows are aligned; and (YD.3) each row is not
longer than the one above.

Note that the empty Young diagram consisting of no boxes is a valid Young diagram. For the purpose of describing
an su(N) irrep, we additionally require that (YD.4) there are at most N rows; and (YD.5) columns with N boxes are
dropped, i.e. diagrams which differ only by such columns are identified with each other.

Every Young diagram D satisfying rules (YD.1) to (YD.5) uniquely labels an su(N) irrep (or sl(N,C) irrep), i.e.
the label S used in the main text can be associated with a Young diagram D. Some su(3) examples are shown in
Fig. 3a. A further example is given by the Young diagrams specifying su(2) irreps: The irrep S = j (describing total
angular momentum j) corresponds to a Young diagram with 2j boxes in a single row.

A (semi-standard) Young tableau is a Young diagram, of which the boxes are filled according to the following rules:
(YT.1) Each box contains a single integer between 1 and N , inclusive; (YT.2) the numbers in each row of boxes
weakly increase from left to right (i.e. each number is equal to or larger than the one to its left); and (YT.3) the
numbers in each column strictly increase from top to bottom (i.e. each number is strictly larger than the one above
it).

The basis states of an su(N) representation identified by a given Young diagram D can be uniquely labeled by the
set of all associated valid semi-standard Young tableaux (satisfying rules YT.1 to YT.3), i.e. the label M used in
the main text can be associated with a valid Young tableau T . We shall denote the corresponding state by |T 〉. For
example, all eight Young tableaux for the diagram with respect to su(3) are shown in Fig. 3b. As another example,

let us give the correspondence between states |S,m〉 of an su(2) irrep and Young tableaux: |S,m〉 corresponds to a
Young tableau with 2S boxes in a single row, containing 1 in the leftmost S +m boxes and 2 in the remaining S −m
boxes.

The dimension of a carrier space labeled by a Young diagram is given by the number of valid Young tableaux with
the same shape as the Young diagram.

2. Translating GT-patterns to Young tableaux

Each GT-pattern M = (mk,l) uniquely specifies a corresponding Young tableau (p. 526 of Ref. 30), which can be
constructed as follows. Start with an empty Young tableau (no boxes at all), and step through the entries of the
pattern using either of the following two stepping orders, illustrated in Table IIa and IIb, respectively:

(a) Proceed from the bottom to top, one row at a time (increasing l from 1 to n), and within each row from left to
right (increasing k from 1 to l); or

(b) Proceed from left to right, one diagonal at a time (increasing k from 1 to n), and within each diagonal from
bottom to top (increasing l from k to n).
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For each step to a new entry in the pattern, say mk,l located in diagonal k and row l, extend the length of the k-th
tableau row to a total of mk,l boxes, by adding to its right boxes containing the number l.

According to the above procedure, the topmost row of the GT-pattern specifies the number of boxes in the rows of
the corresponding Young diagram: for the latter, row k of the latter contains mk,N boxes. In this way, the information
specifying the irrep S, which for a GT-pattern resides in its topmost row, specifies the shape of the corresponding
Young diagram. Moreover, the number of l-boxes (i.e. boxes containing the number l) in tableau row k, say dk,l, is
given by

dk,l = mk,l −mk,l−1 , (where mk,l ≡ 0 if k > l). (A1)

Since both stepping orders ensure that pattern entries in the same diagonal k are visited in order of increasing l,
they yield the same final Young tableau. Order (b) has the feature that an entire tableaux row is completed before the
next row is begun. As a result, (b) is more convenient for transcribing the Littlewood-Richardson rule for decomposing
a product representation from the language of Young tableaux to that of GT-patterns.

The converse process of transcribing a Young tableau to a GT-pattern can be achieved by using the tableau’s k-th
row, read from left to right, to fill in the pattern’s k-th diagonal, from bottom to top, in such way as to respect the
above rules.

3. Remarks about Young tableaux

In order to aid our intuition for the su(N) representation theory presented in the main text, this section restates
some of the properties discussed there in terms of Young tableaux.

The p-weight W (M) of a GT-pattern M , as introduced in Sec. VI, has an illustrative interpretation; wMl is the
number of l-boxes (i.e. boxes containing l) in the tableau corresponding to M . Thus, for the highest-weight Young
tableau (the GT-pattern of the corresponding state |H〉 is specified at the end of Sec. VII), row l from the top

contains only l-boxes (i.e. wMl = ml,N ), e.g.
1 1 1 1
2 2
3 3

. Furthermore, if the states |T 〉 and |T ′〉 have the same p-weight,

the tableaux T and T ′ contain the same set of entries (i.e. the same number of l-boxes), but arranged in different
ways. For example, for su(3) 1 2

3
and 1 3

2
have the same p-weight W = (1, 1, 1).

The action of the raising and lowering operators J
(l)
± on p-weights is given by Eq. (27). The corresponding action of

J
(l)
+ on a state labeled by a Young tableau T produces a linear combination of states labeled by tableaux containing

one more l-box and one less (l + 1)-box. Analogously, J
(l)
− has the reverse effect on Young tableaux: it produces a

linear combination of tableaux containing one less l-box and one more (l + 1)-box.

Appendix B: Derivation of our formulation of the Littlewood-Richardson rule

Our formulation of the Littlewood-Richardson rule in Section VIII is based on a version by van Leeuwen27, formu-
lated in terms of Young tableaux, which we outline here. We then rephrase this in the language of Gelfand-Tsetlin
patterns to derive the method presented in Sec. VIII, in particular Eq. (31).

Given two Young diagrams D and D′, write down all possible semistandard Young tableaux for D, and for each
such tableau (to be called the current tableau below), construct a corresponding Young diagram (to be called the trial
diagram below) in the following manner:

1. Start the trial diagram as a fresh copy of D′.

2. Step through the boxes of the current tableau from right to left, from top to bottom.

3. If the box encountered at a given step is an l-box, add a box at the right end of row l of the trial diagram.

4. If this produces a trial diagram that is no longer a valid Young diagram (having a row longer than the one
above), discard it and start anew with the next tableau.

5. If, however, a valid Young diagram is constructed during each step, the final Young diagram obtained after the
last step represents an irrep occurring in the decomposition of D ⊗D′.

Let us now translate the above steps into the GT-scheme, thus deriving the rules set forth in Section VIII. There,
we assume two i-weights S and S′ to be given instead of two Young diagrams. Naturally, taking a fresh copy of D′

corresponds to initializing (t1, . . . , tN ) = (m′1,N , . . . ,m
′
N,N ), and stepping through the current tableau in the reading
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(a)

P (S) S = (m1,4,m2,4,m3,4,m4,4)

0 (0, 0, 0, 0)

1 (1, 0, 0, 0)

2 (1, 1, 0, 0)

3 (1, 1, 1, 0)

4 (2, 0, 0, 0)

5 (2, 1, 0, 0)

6 (2, 1, 1, 0)

7 (2, 2, 0, 0)

8 (2, 2, 1, 0)

9 (2, 2, 2, 0)

(b)

(c)

FIG. 4. Enumeration scheme of i-weights. (a) The first few i-weights of su(4) (excluding weights with m4,4 6= 0), arranged in
increasing order. (b) Illustration of the combinatorics underlying Pk(S). (c) Striking out items such that each m̃k̃,Ñ takes on
the largest possible value.

order of step 2 corresponds to stepping through the GT-pattern M associated with S along the diagonals from top
to bottom and from left to right. (This follows from the rules for translating GT-patterns to Young tableaux given
in Sec. A 2; recall that the k-th diagonal of a GT-pattern specifies the content of the k-th row of the corresponding
Young tableau.)

Instead of processing one box of the current tableau at a time, we treat all identical boxes of a given row at once
when stepping through the corresponding GT-pattern. Recalling that bk,l of Eq. (A1) gives the number of l-boxes in

row k of the current tableau, it follows that Bk,l ≡ m′l,N +
∑k
k′=1 bk then gives the number of boxes in row l of the

trial diagram after having processed all boxes of type l in row k of the current tableau.
The condition (31), which must be fulfilled for all 1 ≤ k ≤ l ≤ N , finally assures that the trial diagram is a valid

Young diagram after each step.

Appendix C: Identifying irreps and states by a single integer

For numerical codes dealing with i-weights, it is useful to identify each i-weight by a unique number. To this end,
we need a one-to-one mapping between the set of all su(N) i-weights (for given N) and the set of nonnegative integers.
We shall construct such a mapping by devising an ordering rule for i-weights, using this rule to arrange all possible
diagrams in a list of increasing order, and labeling each i-weight by its position in this list.

Similarly, we would like to map GT-patterns to matrix indices, so we also need a one-to-one mapping between the
set of all GT-patterns belonging to a given irrep and the integers from 1 to the dimension of that irrep. Therefore,
we also define an order on GT-patterns of a given irrep and proceed analogously.

1. Identifying i-weights with a single number

We adopt throughout the convention for an i-weight S = (mk,N ) that mN,N = 0 (Sec. V).
For i-weights we choose the following ordering rule: the “smaller” of two i-weights is taken to be the one with the

smaller first element; in case of a tie, compare the second element, and so on. Formally, given two i-weights S and
S′, we assign the order

S < S′ if and only if, for the smallest index (say k) for which mk,N 6= m′k,N , we have mk,N < m′k,N . (C1)

Fig. 4a shows the first few i-weights of SU(4), arranged in increasing order.



17

Using this ordering rule, all possible su(N) i-weights can be arranged in a list of increasing order and uniquely
labeled by a nonnegative integer, say P (S), giving its position in this list,

P (S) = #{S′|S′ < S}. (C2)

To determine P (S) for a given i-weight S, we simply count the number of smaller weights S′: this number is given
by the number (say P1(S)) of all weights S′ with m′1,N < m1,N , plus the number of all S′ with m′1,N = m1,N but

m′2,N < m2,N (say P2(S)), etc. Thus,

P (S) =

N−1∑
k=1

Pk(S) , (C3)

where Pk(S) is the number of weights S′ whose first k − 1 entries are the same as those of S (m′k′,N = mk′,N for

all k′ < k), while the k-th entry is arbitrary but smaller than that of S (m′k,N < mk,N ), and the remaining entries

arbitrary (but subject to S′ being a valid i-weight, with m′N,N = 0). The nontrivial ”free” (though constrained)

entries of S′, namely (m′k,N ,m
′
k+1,N , . . . ,m

′
N−1,N ), can be viewed as an i-weight S̃ = (m̃k̃,Ñ ) of length Ñ = N − k,

whose entries m̃k̃,Ñ = m′
k−1+k̃,N (for 1 ≤ k̃ ≤ Ñ) satisfy

mk,N − 1 ≥ m̃1,Ñ ≥ m̃2,Ñ ≥ · · · ≥ m̃Ñ,Ñ ≥ 0 . (C4)

Pk(S) thus is the number of allowed weights S̃ that satisfy (C4).
To calculate Pk(S), we note that it is equal to the number of ways to draw or “strike out”, from the set of integers

{1, . . . ,mk,N − 1 + Ñ}, an ordered subset {dk̃} of Ñ integers, d1, < d2 < · · · < dÑ (see Fig. 4b), since there is a

one-to-one correspondence between the set of all possible such strike-outs and the set of all i-weights S̃ satisfying (C4):

for a given struck-out set {dk̃}, with 1 ≤ k̃ ≤ Ñ , set m̃k̃,Ñ equal to the number of non-struck-out integers smaller

than dÑ+1−k̃ (i.e. m̃k̃,Ñ = dÑ+1−k̃ − (Ñ + 1 − k̃)). For example, the weight S̃ that is largest (w.r.t. to the ordering

rule (C1)), namely having all elements equal to mk,N − 1, is obtained by choosing the struck-out integers dk̃ to be as
large as possible (see Fig. 4c). Thus, we have

Pk(S) =

(
mk,N − 1 + Ñ

Ñ

)
=

(
N − k +mk,N − 1

N − k

)
, (C5)

and, consequently,

P (S) =

N−1∑
k=1

(
N − k +mk,N − 1

N − k

)
. (C6)

2. Mapping of Gelfand-Tsetlin patterns to matrix indices

In analogy to the ordering we have defined on i-weights, we introduce an ordering on the set of Gelfand-Tsetlin
patterns of a given irrep (i.e. given top row of the pattern). Let M = (mk,l) and M ′ = (m′k,l) (where 1 ≤ k ≤ l ≤ N)

denote two patterns with mk,N = m′k,N for k = 1, . . . , N . We define a row-by-row ordering of indices (see Fig. 5a),

increasing from left to right within a row, and from top row to bottom row, i.e. (k, l) < (k′, l′) if l = l′ and k < k′, or
if l > l′. We then define M ′ < M if and only if for the smallest index for which m′k,l 6= mk,l, we have m′k,l < mk,l.
An example of this ordering is given in Fig. 5b.

We map each Gelfand-Tsetlin pattern M to a nonnegative integer Q(M) by counting the number of smaller Gelfand-
Tsetlin patterns, i.e.

Q(M) = #{M ′|M ′ ≤M} . (C7)

This number can be determined by generating the pattern (say M̃({m̃k,l})) located directly preceding M in the

ordered list of patterns, then the pattern preceding M̃ , and so on, until we arrive at the beginning of this list. To
construct the predecessor of the pattern M , we start by finding the largest index (k̃, l̃) whose entry mk̃,l̃ can be

decreased without violating the betweenness condition (21), rewritten here as

mk,l+1 ≥ mk,l ≥ mk+1,l+1 (1 ≤ k < l + 1 ≤ N), (C8)
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(a)


1 2 3

4 5

6

 (b)


2 1 0

1 0

0

 <


2 1 0

1 0

1

 <


2 1 0

1 1

1

 <


2 1 0

2 0

0

 <


2 1 0

2 0

1

 <


2 1 0

2 0

2

 <


2 1 0

2 1

1

 <


2 1 0

2 1

2


Q(M) : 1 2 3 4 5 6 7 8

FIG. 5. (a) Illustrating the row-by-row rule chosen in App. C 2 to define an ordering scheme for the indices of GT-patterns:
(k, l) < (k′, l′) if l = l′ and k < k′, or if l > l′. (b) Ordering of all GT-patterns belonging to the SU(3) irrep (2, 1, 0), together
with the corresponding pattern indices Q(M).

with respect to smaller indices while disregarding it with respect to larger indices (i.e. without violating the second

inequality, but disregarding the first). Thus, (k̃, l̃) is the index for which mk,l = mk+1,l+1 for all (k, l) > (k̃, l̃) but
mk̃,l̃ > mk̃+1,l̃+1. We then decrease mk̃,l̃ by one and reset the entries of all larger indices to the maximal values that
satisfy the new betweenness condition. Concretely:

m̃k,l =


mk,l for (k, l) < (k̃, l̃) (keep entries with smaller indices unchanged)

mk,l − 1 for (k, l) = (k̃, l̃) (decrease by 1 the entry with largest index for which this is possible)

m̃k,l+1 for (k, l) > (k̃, l̃) (give entries with larger indices their largest possible value).

(C9)

The number Q(M) is, of course, the number of times we can repeat the process of constructing a preceding pat-
tern. This procedure maps the lowest-weight and highest-weight states of an irrep S to the numbers 1 and dim(S),
respectively.

Appendix D: Source code

Below, we provide a C++ implementation of our algorithm, consisting of four fundamental classes: 1. weight is
a data structure for irrep and pattern weights, 2. pattern stores GT patterns, 3. decomposition implements the
Littlewood-Richardson rule, and 4. coefficients computes and stores the actual CGCs. The end of the source code
contains examples of typical applications. For example, to calculate CGCs, perfom the following steps:

1. Create two objects clebsch::weight S and clebsch::weight Sprime, representing the irreps S and S′.

2. Create the object decomp as clebsch::decomposition decomp(S, Sprime); this generates the irreps S′′ that
occur in the decomposition of S ⊗S′ according to the Littlewood-Richardson rule. (Its output can be read out,
if desired, as follows: Read out the total number of irreps S′′ by calling decomp.size(). Read out the j-th one
of these (with 1 ≤ j ≤ decomp.size()) by creating an object clebsch::weight Sdoubleprime(decomp(j)).
Read out its outer multiplicity by calling decomp.multiplicity(Sdoubleprime).)

3. Pick one of these irreps Sdoubleprime and create the object C as clebsch::coefficients C(Sdoubleprime,

S, Sprime); this generates all CGCs CM
′′,α

MM ′ needed for constructing the irrep S′′, with multiplicity index α,
from S and S′.

4. The Clebsch-Gordan coefficient CM
′′,α

MM ′ is then read out as C(alpha, Qdoubleprime, Q, Qprime), where alpha
indexes the outer multiplicity of S′′, and Q, Qprime, and Qdoubleprime are the pattern indices of M , M ′ and
M ′′.

Other common applications involve the translation between an i-weight S and its index P (S), or between a GT-pattern
M and its index Q(M). To obtain the i-weight index P (S) from the object clebsch::weight S, call S.index(), and
to obtain the pattern index Q(M) from the object clebsch::pattern M, call M.index(). Conversely, to construct
an i-weight S = (mk,N ) from a given irrep index P , create the object clebsch::weight S(N,P), and read out the
elements mk,N as S(k). Similarly, to construct a pattern M = (mk,l) in irrep S from a given pattern index Q, create
the object clebsch::pattern M(S,Q), and read out the elements mk,l as M(k,l). Finally, to find the dimension dS
of the irrep S, create the object clebsch::weight S and call S.dimension().

All of these applications are elaborated in the sample routine main at the end of the source code (starting around
line 1000). They are also implemented in the interactive CGC-generator available at http://homepages.physik.
uni-muenchen.de/~vondelft/Papers/ClebschGordan/.

To locate the implementation of key equations of the algorithm in the source code, search for the following equation
numbers: i-weights S: Eq. (19); GT-patterns M : Eq. (20); irrep dimension dim(S): Eq. (22); p-weights W (M):

http://homepages.physik.uni-muenchen.de/~vondelft/Papers/ClebschGordan/
http://homepages.physik.uni-muenchen.de/~vondelft/Papers/ClebschGordan/
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Eq. (25); raising and lowering operators J
(l)
± : Eqs. (28) and (29); Littlewood-Richardson rule: Eq. (31); highest-

weight CGCs CH
′′,α

M,M ′ : Eq. (36); normal form of highest-weight CGCs: Eq. (37); lower-weight CGCs CM
′′,α

M,M ′ : Eq. (40);

irrep index P (S): Eq. (C2); pattern index Q(M): Eq. (C7).
To compile, type g++ clebsch.cpp -llapack -lblas on Linux, or g++ clebsch.cpp -framework vecLib on

Mac OS X. On other operating systems, make sure that LAPACK is included in the linking process. To achieve that,
you may have to modify the declaration of the funtions dgesvd and dgels.

1 #include <ca s s e r t>
#include <cmath>
#include <c s td io>
#include <c s td l i b>
#include <c s t r i ng>

6 #include <f unc t i ona l>
#include <fstream>
#include <iostream>
#include <map>
#include <numeric>

11 #include <vector>

// Declaration of LAPACK subrout ines
// Make sure the data types match your vers ion of LAPACK

16 extern ”C” void dgesvd ( char const∗ JOBU,
char const∗ JOBVT,
int const∗ M,
int const∗ N,
double∗ A,

21 int const∗ LDA,
double∗ S ,
double∗ U,
int const∗ LDU,
double∗ VT,

26 int const∗ LDVT,
double∗ WORK,
int const∗ LWORK,
int ∗INFO) ;

31 extern ”C” void dg e l s ( char const∗ TRANS,
int const∗ M,
int const∗ N,
int const∗ NRHS,
double∗ A,

36 int const∗ LDA,
double∗ B,
int const∗ LDB,
double∗ WORK,
int const∗ LWORK,

41 int ∗INFO) ;

namespace c l eb s ch {
const double EPS = 1e−12;

46 // binomial c o e f f i c i e n t s
class b inomia l t {

std : : vector<int> cache ;
int N;

51 public :
int operator ( ) ( int n , int k ) ;

} binomial ;

// Eq . (19) and (25)
56 class weight {

std : : vector<int> elem ;

public :
// the N in ”SU(N)”

61 const int N;

// create a non−i n i t i a l i z e d weight
weight ( int N) ;

66 // create i r rep weight of given index
// Eq . (C2)
weight ( int N, int index ) ;

// ass ign from another instance
71 c l eb s ch : : weight &operator=(const c l eb s ch : : weight &w) ;

// access elements of t h i s weight ( k = 1 , . . . , N)
int &operator ( ) ( int k ) ;
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const int &operator ( ) ( int k ) const ;
76

// compare weights
// Eq . (C1)
bool operator<(const weight &w) const ;
bool operator==(const weight &w) const ;

81

// element−wise sum of weights
c l eb s ch : : weight operator+(const weight &w) const ;

// returns the index of t h i s i r rep weight ( index = 0 , 1 , . . . )
86 // Eq . (C2)

int index ( ) const ;

// returns the dimension of t h i s i r rep weight
// Eq . (22)

91 long long dimension ( ) const ;
} ;

// Eq . (20)
class pattern {

96 std : : vector<int> elem ;

public :
// the N in ”SU(N)”
const int N;

101

// copy constructor
pattern ( const pattern &pat ) ;

// create pat tern of given index from irrep weight
106 // Eq . (C7)

pattern ( const weight &i r r ep , int index = 0 ) ;

// access elements of t h i s pat tern ( l = 1 , . . . , N; k = 1 , . . . , l )
int &operator ( ) ( int k , int l ) ;

111 const int &operator ( ) ( int k , int l ) const ;

// f ind succeeding/preceding pattern , return f a l s e i f not po s s i b l e
// Eq . (C9)
bool operator++();

116 bool operator−−();

// returns the pat tern index ( index = 0 , . . . , dimension − 1)
// Eq . (C7)
int index ( ) const ;

121

// returns the pat tern weight
// Eq . (25)
c l eb s ch : : weight ge t we ight ( ) const ;

126 // returns matrix element of lowering operator Jˆ( l ) −
// between t h i s pat tern minus Mˆ(k , l ) and t h i s pat tern
// ( l = 1 , . . . , N; k = 1 , . . . , l )
// Eq . (28)
double l ow e r i n g c o e f f ( int k , int l ) const ;

131

// returns matrix element of ra i s ing operator Jˆ( l ) +
// between t h i s pat tern p lus Mˆ(k , l ) and t h i s pat tern
// ( l = 1 , . . . , N; k = 1 , . . . , l )
// Eq . (29)

136 double r a i s i n g c o e f f ( int k , int l ) const ;
} ;

class decomposit ion {
std : : vector<c l eb s ch : : weight> weights ;

141 std : : vector<int> mu l t i p l i c i t i e s ;

public :
// the N in ”SU(N)”
const int N;

146

// save given i r r eps for l a t e r use
const weight fac to r1 , f a c t o r 2 ;

// construct the decomposition of fac tor1 times fac tor2 into i r r ep s
151 // Eq . (31)

decomposit ion ( const weight &fac to r1 , const weight &f a c t o r 2 ) ;

// return the number of occurring i r r ep s
int s i z e ( ) const ;

156

// access the occurring i r r eps
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// j = 0 , . . . , s i z e () − 1
const c l eb s ch : : weight &operator ( ) ( int j ) const ;

161 // return the outer mu l t i p l i c i t y of i r rep in t h i s decomposition
int mu l t i p l i c i t y ( const weight &i r r e p ) const ;

} ;

class index adapter {
166 std : : vector<int> i n d i c e s ;

std : : vector<int> mu l t i p l i c i t i e s ;

public :
// the N in ”SU(N)”

171 const int N;

// save given i r r eps for l a t e r use
const int f a c to r1 , f a c t o r 2 ;

176 // construct t h i s index adapter from a given decomposition
index adapter ( const c l eb s ch : : decomposit ion &decomp ) ;

// return the number of occurring i r r ep s
int s i z e ( ) const ;

181

// access the occurring i r r eps
int operator ( ) ( int j ) const ;

// return the outer mu l t i p l i c i t y of i r rep in t h i s decomposition
186 int mu l t i p l i c i t y ( int i r r e p ) const ;

} ;

class c o e f f i c i e n t s {
std : : map<std : : vector<int>, double> c l zx ;

191

// access Clebsch−Gordan c o e f f i c i e n t s in convenient manner
void s e t ( int f a c t o r 1 s t a t e ,

int f a c t o r 2 s t a t e ,
int mu l t i p l i c i t y i nd ex ,

196 int i r r e p s t a t e ,
double value ) ;

// in t e rna l funct ions , doing most of the work
void h ighes t we ight normal fo rm ( ) ; // Eq . (37)

201 void compute h i ghe s t we i gh t co e f f s ( ) ; // Eq . (36)
void compute l ower we igh t coe f f s ( int mult ip index , int s tate , std : : vector<char> &done ) ; // Eq . (40)

public :
// the N in ”SU(N)”

206 const int N;

// save i r r ep s and t h e i r dimensions for l a t e r use
const weight fac to r1 , f ac to r2 , i r r e p ;
const int f ac tor1 d imens ion , fac tor2 d imens ion , i r r ep d imens i on ;

211

// outer mu l t i p l i c i t y of i r rep in t h i s decomposition
const int mu l t i p l i c i t y ;

// construct a l l Clebsch−Gordan c o e f f i c i e n t s of t h i s decomposition
216 c o e f f i c i e n t s ( const weight &i r r ep , const weight &fac to r1 , const weight &f a c t o r 2 ) ;

// access Clebsch−Gordan c o e f f i c i e n t s ( read−only )
// mu l t i p l i c i t y i n d e x = 0 , . . . , mu l t i p l i c i t y − 1
// f a c t o r 1 s t a t e = 0 , . . . , factor1 dimension − 1

221 // f a c t o r 2 s t a t e = 0 , . . . , factor2 dimension − 1
// i r r e p s t a t e = 0 , . . . , irrep dimension
double operator ( ) ( int f a c t o r 1 s t a t e ,

int f a c t o r 2 s t a t e ,
int mu l t i p l i c i t y i nd ex ,

226 int i r r e p s t a t e ) const ;
} ;

} ;

// implementation of ” b inomia l t ” s t a r t s here
231

int c l eb s ch : : b inomia l t : : operator ( ) ( int n , int k ) {
i f (N <= n) {

for ( cache . r e s i z e ( ( n + 1) ∗ (n + 2) / 2 ) ; N <= n ; ++N) {
cache [N ∗ (N + 1) / 2 ] = cache [N ∗ (N + 1) / 2 + N] = 1 ;

236 for ( int k = 1 ; k < N; ++k) {
cache [N ∗ (N + 1) / 2 + k ] = cache [ (N − 1) ∗ N / 2 + k ]

+ cache [ (N − 1) ∗ N / 2 + k − 1 ] ;
}

}
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241 }

return cache [ n ∗ (n + 1) / 2 + k ] ;
}

246 // implementation of ”weight ” s t a r t s here

c l eb s ch : : weight : : weight ( int N) : N(N) , elem (N) {}

c l eb s ch : : weight : : weight ( int N, int index ) : N(N) , elem (N, 0) {
251 for ( int i = 0 ; index > 0 && i < N; ++i ) {

for ( int j = 1 ; binomial (N − i − 1 + j , N − i − 1) <= index ; j <<= 1) {
elem [ i ] = j ;

}

256 for ( int j = elem [ i ] >> 1 ; j > 0 ; j >>= 1) {
i f ( binomial (N − i − 1 + ( elem [ i ] | j ) , N − i − 1) <= index ) {

elem [ i ] |= j ;
}

}
261

index −= binomial (N − i − 1 + elem [ i ]++, N − i − 1 ) ;
}

}

266 c l eb s ch : : weight &c l eb s ch : : weight : : operator=(const c l eb s ch : : weight &w) {
int &n = const cast<int &>(N) ;
elem = w. elem ;
n = w.N;
return ∗ this ;

271 }

int &c lebsch : : weight : : operator ( ) ( int k ) {
a s s e r t (1 <= k && k <= N) ;
return elem [ k − 1 ] ;

276 }

const int &c lebsch : : weight : : operator ( ) ( int k ) const {
a s s e r t (1 <= k && k <= N) ;
return elem [ k − 1 ] ;

281 }

bool c l eb s ch : : weight : : operator<(const weight &w) const {
a s s e r t (w.N == N) ;
for ( int i = 0 ; i < N; ++i ) {

286 i f ( elem [ i ] − elem [N − 1 ] != w. elem [ i ] − w. elem [N − 1 ] ) {
return elem [ i ] − elem [N − 1 ] < w. elem [ i ] − w. elem [N − 1 ] ;

}
}
return fa l se ;

291 }

bool c l eb s ch : : weight : : operator==(const weight &w) const {
a s s e r t (w.N == N) ;

296 for ( int i = 1 ; i < N; ++i ) {
i f (w. elem [ i ] − w. elem [ i − 1 ] != elem [ i ] − elem [ i − 1 ] ) {

return fa l se ;
}

}
301

return true ;
}

c l eb s ch : : weight c l eb s ch : : weight : : operator+(const weight &w) const {
306 weight r e s u l t (N) ;

trans form ( elem . begin ( ) , elem . end ( ) , w. elem . begin ( ) , r e s u l t . elem . begin ( ) , std : : plus<int > ( ) ) ;

return r e s u l t ;
311 }

int c l eb s ch : : weight : : index ( ) const {
int r e s u l t = 0 ;

316 for ( int i = 0 ; elem [ i ] > elem [N − 1 ] ; ++i ) {
r e s u l t += binomial (N − i − 1 + elem [ i ] − elem [N − 1 ] − 1 , N − i − 1 ) ;

}

return r e s u l t ;
321 }

long long c l eb s ch : : weight : : dimension ( ) const {
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long long numerator = 1 , denominator = 1 ;

326 for ( int i = 1 ; i < N; ++i ) {
for ( int j = 0 ; i + j < N; ++j ) {

numerator ∗= elem [ j ] − elem [ i + j ] + i ;
denominator ∗= i ;

}
331 }

return numerator / denominator ;
}

336 // implementation of ” pat tern” s t a r t s here

c l eb s ch : : pattern : : pattern ( const pattern &p) : N(p .N) , elem (p . elem ) {}

c l eb s ch : : pattern : : pattern ( const weight &i r r ep , int index ) :
341 N( i r r e p .N) , elem ( ( i r r e p .N ∗ ( i r r e p .N + 1)) / 2) {

for ( int i = 1 ; i <= N; ++i ) {
(∗ this ) ( i , N) = i r r e p ( i ) ;

}

346 for ( int l = N − 1 ; l >= 1 ; −−l ) {
for ( int k = 1 ; k <= l ; ++k) {

(∗ this ) ( k , l ) = (∗ this ) ( k + 1 , l + 1 ) ;
}

}
351

while ( index−− > 0) {
bool b = ++(∗this ) ;

a s s e r t (b ) ;
356 }

}

int &c lebsch : : pattern : : operator ( ) ( int k , int l ) {
return elem [ (N ∗ (N + 1) − l ∗ ( l + 1) ) / 2 + k − 1 ] ;

361 }

const int &c lebsch : : pattern : : operator ( ) ( int k , int l ) const {
return elem [ (N ∗ (N + 1) − l ∗ ( l + 1) ) / 2 + k − 1 ] ;

}
366

bool c l eb s ch : : pattern : : operator++() {
int k = 1 , l = 1 ;

while ( l < N && (∗ this ) ( k , l ) == (∗ this ) ( k , l + 1) ) {
371 i f (−−k == 0) {

k = ++l ;
}

}

376 i f ( l == N) {
return fa l se ;

}

++(∗this ) ( k , l ) ;
381

while ( k != 1 | | l != 1) {
i f (++k > l ) {

k = 1 ;
−−l ;

386 }

(∗ this ) ( k , l ) = (∗ this ) ( k + 1 , l + 1 ) ;
}

391 return true ;
}

bool c l eb s ch : : pattern : : operator−−() {
int k = 1 , l = 1 ;

396

while ( l < N && (∗ this ) ( k , l ) == (∗ this ) ( k + 1 , l + 1) ) {
i f (−−k == 0) {

k = ++l ;
}

401 }

i f ( l == N) {
return fa l se ;

}
406
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−−(∗this ) ( k , l ) ;

while ( k != 1 | | l != 1) {
i f (++k > l ) {

411 k = 1 ;
−−l ;

}

(∗ this ) ( k , l ) = (∗ this ) ( k , l + 1 ) ;
416 }

return true ;
}

421 int c l eb s ch : : pattern : : index ( ) const {
int r e s u l t = 0 ;

for ( pattern p(∗ this ) ; −−p ; ++r e s u l t ) {}

426 return r e s u l t ;
}

c l eb s ch : : weight c l eb s ch : : pattern : : ge t we ight ( ) const {
c l eb s ch : : weight r e s u l t (N) ;

431

for ( int prev = 0 , l = 1 ; l <= N; ++l ) {
int now = 0 ;

for ( int k = 1 ; k <= l ; ++k) {
436 now += (∗ this ) ( k , l ) ;

}

r e s u l t ( l ) = now − prev ;
prev = now ;

441 }

return r e s u l t ;
}

446 double c l eb s ch : : pattern : : l ow e r i n g c o e f f ( int k , int l ) const {
double r e s u l t = 1 . 0 ;

for ( int i = 1 ; i <= l + 1 ; ++i ) {
r e s u l t ∗= (∗ this ) ( i , l + 1) − (∗ this ) ( k , l ) + k − i + 1 ;

451 }

for ( int i = 1 ; i <= l − 1 ; ++i ) {
r e s u l t ∗= (∗ this ) ( i , l − 1) − (∗ this ) ( k , l ) + k − i ;

}
456

for ( int i = 1 ; i <= l ; ++i ) {
i f ( i == k) continue ;
r e s u l t /= (∗ this ) ( i , l ) − (∗ this ) ( k , l ) + k − i + 1 ;
r e s u l t /= (∗ this ) ( i , l ) − (∗ this ) ( k , l ) + k − i ;

461 }

return std : : s q r t (− r e s u l t ) ;
}

466 double c l eb s ch : : pattern : : r a i s i n g c o e f f ( int k , int l ) const {
double r e s u l t = 1 . 0 ;

for ( int i = 1 ; i <= l + 1 ; ++i ) {
r e s u l t ∗= (∗ this ) ( i , l + 1) − (∗ this ) ( k , l ) + k − i ;

471 }

for ( int i = 1 ; i <= l − 1 ; ++i ) {
r e s u l t ∗= (∗ this ) ( i , l − 1) − (∗ this ) ( k , l ) + k − i − 1 ;

}
476

for ( int i = 1 ; i <= l ; ++i ) {
i f ( i == k) continue ;
r e s u l t /= (∗ this ) ( i , l ) − (∗ this ) ( k , l ) + k − i ;
r e s u l t /= (∗ this ) ( i , l ) − (∗ this ) ( k , l ) + k − i − 1 ;

481 }

return std : : s q r t (− r e s u l t ) ;
}

486 // implementation of ”decomposition” s t a r t s here

c l eb s ch : : decomposit ion : : decomposit ion ( const weight &fac to r1 , const weight &f a c t o r 2 ) :
N( f a c t o r 1 .N) , f a c t o r 1 ( f a c t o r 1 ) , f a c t o r 2 ( f a c t o r 2 ) {
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a s s e r t ( f a c t o r 1 .N == fa c t o r 2 .N) ;
491 std : : vector<c l eb s ch : : weight> r e s u l t ;

pattern low ( f a c t o r 1 ) , high ( f a c t o r 1 ) ;
weight t r i a l ( f a c t o r 2 ) ;
int k = 1 , l = N;

496 do {
while ( k <= N) {

−−l ;
i f ( k <= l ) {

low (k , l ) = std : : max( high (k + N − l , N) , high (k , l + 1) + t r i a l ( l + 1) − t r i a l ( l ) ) ;
501 high (k , l ) = high (k , l + 1 ) ;

i f ( k > 1 && high (k , l ) > high (k − 1 , l − 1) ) {
high (k , l ) = high (k − 1 , l − 1 ) ;

}
i f ( l > 1 && k == l && high (k , l ) > t r i a l ( l − 1) − t r i a l ( l ) ) {

506 high (k , l ) = t r i a l ( l − 1) − t r i a l ( l ) ;
}
i f ( low (k , l ) > high (k , l ) ) {

break ;
}

511 t r i a l ( l + 1) += high (k , l + 1) − high (k , l ) ;
} else {

t r i a l ( l + 1) += high (k , l + 1 ) ;
++k ;
l = N;

516 }
}

i f ( k > N) {
r e s u l t . push back ( t r i a l ) ;

521 for ( int i = 1 ; i <= N; ++i ) {
r e s u l t . back ( ) ( i ) −= r e s u l t . back ( ) (N) ;

}
} else {

++l ;
526 }

while ( k != 1 | | l != N) {
i f ( l == N) {

l = −−k − 1 ;
531 t r i a l ( l + 1) −= high (k , l + 1 ) ;

} else i f ( low (k , l ) < high (k , l ) ) {
−−high (k , l ) ;
++t r i a l ( l + 1 ) ;
break ;

536 } else {
t r i a l ( l + 1) −= high (k , l + 1) − high (k , l ) ;

}
++l ;

}
541 } while ( k != 1 | | l != N) ;

s o r t ( r e s u l t . begin ( ) , r e s u l t . end ( ) ) ;
for ( std : : vector<c l eb s ch : : weight > : : i t e r a t o r i t = r e s u l t . begin ( ) ; i t != r e s u l t . end ( ) ; ++i t ) {

i f ( i t != r e s u l t . begin ( ) && ∗ i t == weights . back ( ) ) {
546 ++mu l t i p l i c i t i e s . back ( ) ;

} else {
weights . push back (∗ i t ) ;
m u l t i p l i c i t i e s . push back ( 1 ) ;

}
551 }

}

int c l eb s ch : : decomposit ion : : s i z e ( ) const {
return weights . s i z e ( ) ;

556 }

const c l eb s ch : : weight &c l eb s ch : : decomposit ion : : operator ( ) ( int j ) const {
return weights [ j ] ;

}
561

int c l eb s ch : : decomposit ion : : mu l t i p l i c i t y ( const weight &i r r e p ) const {
a s s e r t ( i r r e p .N == N) ;
std : : vector<c l eb s ch : : weight > : : c o n s t i t e r a t o r i t

= std : : lower bound ( weights . begin ( ) , weights . end ( ) , i r r e p ) ;
566

return i t != weights . end ( ) && ∗ i t == i r r e p ? mu l t i p l i c i t i e s [ i t − weights . begin ( ) ] : 0 ;
}

// implementation of ” index adapter ” s t a r t s here
571

c l eb s ch : : index adapter : : index adapter ( const c l eb s ch : : decomposit ion &decomp) :
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N(decomp .N) ,
f a c t o r 1 (decomp . f a c t o r 1 . index ( ) ) ,
f a c t o r 2 (decomp . f a c t o r 2 . index ( ) ) {

576 for ( int i = 0 , s = decomp . s i z e ( ) ; i < s ; ++i ) {
i n d i c e s . push back (decomp( i ) . index ( ) ) ;
m u l t i p l i c i t i e s . push back (decomp . mu l t i p l i c i t y (decomp( i ) ) ) ;

}
}

581

int c l eb s ch : : index adapter : : s i z e ( ) const {
return i n d i c e s . s i z e ( ) ;

}

586 int c l eb s ch : : index adapter : : operator ( ) ( int j ) const {
return i n d i c e s [ j ] ;

}

int c l eb s ch : : index adapter : : mu l t i p l i c i t y ( int i r r e p ) const {
591 std : : vector<int > : : c o n s t i t e r a t o r i t = std : : lower bound ( i n d i c e s . begin ( ) , i n d i c e s . end ( ) , i r r e p ) ;

return i t != i nd i c e s . end ( ) && ∗ i t == i r r e p ? mu l t i p l i c i t i e s [ i t − i n d i c e s . begin ( ) ] : 0 ;
}

596 // implementation of ” c l ebsch ” s t a r t s here

void c l eb s ch : : c o e f f i c i e n t s : : s e t ( int f a c t o r 1 s t a t e ,
int f a c t o r 2 s t a t e ,
int mu l t i p l i c i t y i nd ex ,

601 int i r r e p s t a t e ,
double value ) {

a s s e r t (0 <= f a c t o r 1 s t a t e && f a c t o r 1 s t a t e < f a c to r1 d imens i on ) ;
a s s e r t (0 <= f a c t o r 2 s t a t e && f a c t o r 2 s t a t e < f a c to r2 d imens i on ) ;
a s s e r t (0 <= mu l t i p l i c i t y i n d e x && mu l t i p l i c i t y i n d e x < mu l t i p l i c i t y ) ;

606 a s s e r t (0 <= i r r e p s t a t e && i r r e p s t a t e < i r r ep d imens i on ) ;

int c o e f f i c i e n t l a b e l [ ] = { f a c t o r 1 s t a t e ,
f a c t o r 2 s t a t e ,
mu l t i p l i c i t y i nd ex ,

611 i r r e p s t a t e } ;
c l z x [ std : : vector<int>( c o e f f i c i e n t l a b e l , c o e f f i c i e n t l a b e l

+ s izeof c o e f f i c i e n t l a b e l / s izeof c o e f f i c i e n t l a b e l [ 0 ] ) ] = value ;
}

616 void c l eb s ch : : c o e f f i c i e n t s : : h ighes t we ight normal fo rm ( ) {
int hws = i r r ep d imens i on − 1 ;

// bring CGCs into reduced row echelon form
for ( int h = 0 , i = 0 ; h < mu l t i p l i c i t y − 1 && i < f a c to r1 d imens i on ; ++i ) {

621 for ( int j = 0 ; h < mu l t i p l i c i t y − 1 && j < f a c to r2 d imens i on ; ++j ) {
int k0 = h ;

for ( int k = h + 1 ; k < mu l t i p l i c i t y ; ++k) {
i f ( fabs ( (∗ this ) ( i , j , k , hws ) ) > f abs ( (∗ this ) ( i , j , k0 , hws ) ) ) {

626 k0 = k ;
}

}

i f ( fabs ( (∗ this ) ( i , j , k0 , hws ) ) < EPS) {
631 continue ;

}

i f ( k0 != h) {
for ( int i 2 = i ; i 2 < f a c to r1 d imens i on ; ++i2 ) {

636 for ( int j 2 = i2 == i ? j : 0 ; j 2 < f a c to r2 d imens i on ; ++j2 ) {
double x = (∗ this ) ( i2 , j2 , k0 , hws ) ;
s e t ( i2 , j2 , k0 , hws , (∗ this ) ( i2 , j2 , h , hws ) ) ;
s e t ( i2 , j2 , h , hws , x ) ;

}
641 }

}

for ( int k = h + 1 ; k < mu l t i p l i c i t y ; ++k) {
for ( int i 2 = i ; i 2 < f a c to r1 d imens i on ; ++i2 ) {

646 for ( int j 2 = i2 == i ? j : 0 ; j 2 < f a c to r2 d imens i on ; ++j2 ) {
s e t ( i2 , j2 , k , hws , (∗ this ) ( i2 , j2 , k , hws ) − (∗ this ) ( i2 , j2 , k0 , hws )

∗ (∗ this ) ( i , j , k , hws ) / (∗ this ) ( i , j , k0 , hws ) ) ;
}

}
651 }

// next 3 l i n e s not s t r i c t l y necessary , improve numerical s t a b i l i t y
for ( int k = h + 1 ; k < mu l t i p l i c i t y ; ++k) {

s e t ( i , j , k , hws , 0 . 0 ) ;
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656 }

++h ;
}

}
661

// Gram−Schmidt orthonormal izat ion
for ( int h = 0 ; h < mu l t i p l i c i t y ; ++h) {

for ( int k = 0 ; k < h ; ++k) {
double over lap = 0 . 0 ;

666 for ( int i = 0 ; i < f a c to r1 d imens i on ; ++i ) {
for ( int j = 0 ; j < f a c to r2 d imens i on ; ++j ) {

over lap += (∗ this ) ( i , j , h , hws ) ∗ (∗ this ) ( i , j , k , hws ) ;
}

}
671

for ( int i = 0 ; i < f a c to r1 d imens i on ; ++i ) {
for ( int j = 0 ; j < f a c to r2 d imens i on ; ++j ) {

s e t ( i , j , h , hws , (∗ this ) ( i , j , h , hws ) − over lap ∗ (∗ this ) ( i , j , k , hws ) ) ;
}

676 }
}

double norm = 0 . 0 ;
for ( int i = 0 ; i < f a c to r1 d imens i on ; ++i ) {

681 for ( int j = 0 ; j < f a c to r2 d imens i on ; ++j ) {
norm += (∗ this ) ( i , j , h , hws ) ∗ (∗ this ) ( i , j , h , hws ) ;

}
}
norm = std : : s q r t (norm ) ;

686

for ( int i = 0 ; i < f a c to r1 d imens i on ; ++i ) {
for ( int j = 0 ; j < f a c to r2 d imens i on ; ++j ) {

s e t ( i , j , h , hws , (∗ this ) ( i , j , h , hws ) / norm ) ;
}

691 }
}

}

void c l eb s ch : : c o e f f i c i e n t s : : c omput e h i ghe s t we i gh t co e f f s ( ) {
696 i f ( mu l t i p l i c i t y == 0) {

return ;
}

std : : vector<std : : vector<int> > map coef f ( f ac tor1 d imens ion ,
701 std : : vector<int>( fac tor2 d imens ion , −1));

std : : vector<std : : vector<int> > map states ( fac tor1 d imens ion ,
std : : vector<int>( fac tor2 d imens ion , −1));

int n c o e f f = 0 , n s t a t e s = 0 ;
pattern p( fac to r1 , 0 ) ;

706

for ( int i = 0 ; i < f a c to r1 d imens i on ; ++i , ++p) {
weight pw(p . ge t we ight ( ) ) ;
pattern q ( fac to r2 , 0 ) ;
for ( int j = 0 ; j < f a c to r2 d imens i on ; ++j , ++q) {

711 i f (pw + q . ge t we ight ( ) == i r r e p ) {
map coef f [ i ] [ j ] = n c o e f f++;

}
}

}
716

i f ( n c o e f f == 1) {
for ( int i = 0 ; i < f a c to r1 d imens i on ; ++i ) {

for ( int j = 0 ; j < f a c to r2 d imens i on ; ++j ) {
i f ( map coef f [ i ] [ j ] >= 0) {

721 s e t ( i , j , 0 , i r r ep d imens i on − 1 , 1 . 0 ) ;
return ;

}
}

}
726 }

double ∗hw system = new double [ n c o e f f ∗ ( f a c to r1 d imens i on ∗ f a c to r2 d imens i on ) ] ;
a s s e r t ( hw system != NULL) ;
memset ( hw system , 0 , n c o e f f ∗ ( f a c to r1 d imens i on ∗ f a c to r2 d imens i on ) ∗ s izeof (double ) ) ;

731

pattern r ( fac to r1 , 0 ) ;
for ( int i = 0 ; i < f a c to r1 d imens i on ; ++i , ++r ) {

pattern q ( fac to r2 , 0 ) ;

736 for ( int j = 0 ; j < f a c to r2 d imens i on ; ++j , ++q) {
i f ( map coef f [ i ] [ j ] >= 0) {

for ( int l = 1 ; l <= N − 1 ; ++l ) {
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for ( int k = 1 ; k <= l ; ++k) {
i f ( ( k == 1 | | r (k , l ) + 1 <= r (k − 1 , l − 1) ) && r (k , l ) + 1 <= r (k , l + 1) ) {

741 ++r (k , l ) ;
int h = r . index ( ) ;
−−r (k , l ) ;

i f ( map states [ h ] [ j ] < 0) {
746 map states [ h ] [ j ] = n s t a t e s++;

}

hw system [ n c o e f f ∗ map states [ h ] [ j ] + map coef f [ i ] [ j ] ]
+= r . r a i s i n g c o e f f (k , l ) ;

751 }

i f ( ( k == 1 | | q (k , l ) + 1 <= q(k − 1 , l − 1) ) && q(k , l ) + 1 <= q(k , l + 1) ) {
++q(k , l ) ;
int h = q . index ( ) ;

756 −−q (k , l ) ;

i f ( map states [ i ] [ h ] < 0) {
map states [ i ] [ h ] = n s t a t e s++;

}
761

hw system [ n c o e f f ∗ map states [ i ] [ h ] + map coef f [ i ] [ j ] ]
+= q . r a i s i n g c o e f f (k , l ) ;

}
766 }

}
}

}
}

771

int lwork = −1, i n f o ;
double works ize ;

double ∗ s i n gva l = new double [ s td : : min ( n co e f f , n s t a t e s ) ] ;
776 a s s e r t ( s i n gva l != NULL) ;

double ∗ s ingvec = new double [ n c o e f f ∗ n c o e f f ] ;
a s s e r t ( s ingvec != NULL) ;

dgesvd ( ”A” ,
781 ”N” ,

&n coe f f ,
&n s ta t e s ,
hw system ,
&n coe f f ,

786 s ingva l ,
s ingvec ,
&n coe f f ,
NULL,
&n s ta t e s ,

791 &worksize ,
&lwork ,
&i n f o ) ;

a s s e r t ( i n f o == 0 ) ;

796 lwork = works ize ;
double ∗work = new double [ lwork ] ;
a s s e r t (work != NULL) ;

dgesvd ( ”A” ,
801 ”N” ,

&n coe f f ,
&n s ta t e s ,
hw system ,
&n coe f f ,

806 s ingva l ,
s ingvec ,
&n coe f f ,
NULL,
&n s ta t e s ,

811 work ,
&lwork ,
&i n f o ) ;

a s s e r t ( i n f o == 0 ) ;

816 for ( int i = 0 ; i < mu l t i p l i c i t y ; ++i ) {
for ( int j = 0 ; j < f a c to r1 d imens i on ; ++j ) {

for ( int k = 0 ; k < f a c to r2 d imens i on ; ++k) {
i f ( map coef f [ j ] [ k ] >= 0) {

double x = s ingvec [ n c o e f f ∗ ( n c o e f f − 1 − i ) + map coef f [ j ] [ k ] ] ;
821
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i f ( fabs (x ) > EPS) {
s e t ( j , k , i , i r r ep d imens i on − 1 , x ) ;

}
}

826 }
}

}

// uncomment next l i n e to bring highest−weight c o e f f i c i e n t s into ”normal form”
831 // highest weight normal form ( ) ;

delete [ ] work ;
delete [ ] s i ngvec ;
delete [ ] s i n gva l ;

836 delete [ ] hw system ;
}

void c l eb s ch : : c o e f f i c i e n t s : : c ompute l ower we igh t coe f f s ( int mult ip index ,
int s tate ,

841 std : : vector<char> &done ) {
weight statew ( pattern ( i r r ep , s t a t e ) . ge t we ight ( ) ) ;
pattern p( i r r ep , 0 ) ;
std : : vector<int> map parent ( i r r ep d imens ion , −1) ,

map multi ( i r r ep d imens ion , −1) ,
846 which l ( i r r ep d imens ion , −1);

int n parent = 0 , n mult i = 0 ;

for ( int i = 0 ; i < i r r ep d imens i on ; ++i , ++p) {
weight v (p . ge t we ight ( ) ) ;

851

i f ( v == statew ) {
map multi [ i ] = n mult i++;

} else for ( int l = 1 ; l < N; ++l ) {
−−v ( l ) ;

856 ++v( l + 1 ) ;
i f ( v == statew ) {

map parent [ i ] = n parent++;
which l [ i ] = l ;
i f ( ! done [ i ] ) {

861 compute l ower we igh t coe f f s ( mult ip index , i , done ) ;
}
break ;

}
−−v ( l + 1 ) ;

866 ++v( l ) ;
}

}

double ∗ i r r e p c o e f f s = new double [ n parent ∗ n mult i ] ;
871 a s s e r t ( i r r e p c o e f f s != NULL) ;

memset ( i r r e p c o e f f s , 0 , n parent ∗ n mult i ∗ s izeof (double ) ) ;

double ∗ p r od c o e f f s = new double [ n parent ∗ f a c to r1 d imens i on ∗ f a c to r2 d imens i on ] ;
a s s e r t ( p r od c o e f f s != NULL) ;

876 memset ( p rod co e f f s , 0 , n parent ∗ f a c to r1 d imens i on ∗ f a c to r2 d imens i on ∗ s izeof (double ) ) ;

s td : : vector<std : : vector<int> > map prodstat ( fac tor1 d imens ion ,
std : : vector<int>( fac tor2 d imens ion , −1));

int n prodstat = 0 ;
881

pattern r ( i r r ep , 0 ) ;
for ( int i = 0 ; i < i r r ep d imens i on ; ++i , ++r ) {

i f ( map parent [ i ] >= 0) {
for ( int k = 1 , l = which l [ i ] ; k <= l ; ++k) {

886 i f ( r (k , l ) > r ( k + 1 , l + 1) && (k == l | | r (k , l ) > r (k , l − 1 ) ) ) {
−−r (k , l ) ;
int h = r . index ( ) ;
++r (k , l ) ;

891 i r r e p c o e f f s [ n parent ∗ map multi [ h ] + map parent [ i ] ] += r . l ow e r i n g c o e f f (k , l ) ;
}

}

pattern q1 ( fac to r1 , 0 ) ;
896 for ( int j 1 = 0 ; j 1 < f a c to r1 d imens i on ; ++j1 , ++q1 ) {

pattern q2 ( fac to r2 , 0 ) ;

for ( int j 2 = 0 ; j 2 < f a c to r2 d imens i on ; ++j2 , ++q2 ) {
i f ( std : : f abs ( (∗ this ) ( j1 , j2 , mult ip index , i ) ) > EPS) {

901 for ( int k = 1 , l = which l [ i ] ; k <= l ; ++k) {
i f ( q1 (k , l ) > q1 (k + 1 , l + 1) && (k == l | | q1 (k , l ) > q1 (k , l − 1 ) ) ) {

−−q1 (k , l ) ;
int h = q1 . index ( ) ;
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++q1 (k , l ) ;
906

i f ( map prodstat [ h ] [ j 2 ] < 0) {
map prodstat [ h ] [ j 2 ] = n prodstat++;

}

911 p r od c o e f f s [ n parent ∗ map prodstat [ h ] [ j 2 ] + map parent [ i ] ] +=
(∗ this ) ( j1 , j2 , mult ip index , i ) ∗ q1 . l ow e r i n g c o e f f (k , l ) ;

}

i f ( q2 (k , l ) > q2 (k + 1 , l + 1) && (k == l | | q2 (k , l ) > q2 (k , l − 1 ) ) ) {
916 −−q2 (k , l ) ;

int h = q2 . index ( ) ;
++q2 (k , l ) ;

i f ( map prodstat [ j 1 ] [ h ] < 0) {
921 map prodstat [ j 1 ] [ h ] = n prodstat++;

}

p r od c o e f f s [ n parent ∗ map prodstat [ j 1 ] [ h ] + map parent [ i ] ] +=
(∗ this ) ( j1 , j2 , mult ip index , i ) ∗ q2 . l ow e r i n g c o e f f (k , l ) ;

926 }
}

}
}

}
931 }

}

double works ize ;
int lwork = −1, i n f o ;

936

dg e l s ( ”N” ,
&n parent ,
&n multi ,
&n prodstat ,

941 i r r e p c o e f f s ,
&n parent ,
p r od co e f f s ,
&n parent ,
&worksize ,

946 &lwork ,
&i n f o ) ;

a s s e r t ( i n f o == 0 ) ;

lwork = works ize ;
951 double ∗work = new double [ lwork ] ;

a s s e r t (work != NULL) ;

d g e l s ( ”N” ,
&n parent ,

956 &n multi ,
&n prodstat ,
i r r e p c o e f f s ,
&n parent ,
p r od co e f f s ,

961 &n parent ,
work ,
&lwork ,
&i n f o ) ;

a s s e r t ( i n f o == 0 ) ;
966

for ( int i = 0 ; i < i r r ep d imens i on ; ++i ) {
i f ( map multi [ i ] >= 0) {

for ( int j = 0 ; j < f a c to r1 d imens i on ; ++j ) {
for ( int k = 0 ; k < f a c to r2 d imens i on ; ++k) {

971 i f ( map prodstat [ j ] [ k ] >= 0) {
double x = p r od c o e f f s [ n parent ∗ map prodstat [ j ] [ k ] + map multi [ i ] ] ;

i f ( fabs (x ) > EPS) {
s e t ( j , k , mult ip index , i , x ) ;

976 }
}

}
}

981 done [ i ] = true ;
}

}

delete [ ] work ;
986 delete [ ] p r o d c o e f f s ;

delete [ ] i r r e p c o e f f s ;
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}

c l eb s ch : : c o e f f i c i e n t s : : c o e f f i c i e n t s ( const weight &i r r ep , const weight &fac to r1 , const weight &f a c t o r 2 ) :
991 N( i r r e p .N) ,

i r r ep d imens i on ( i r r e p . dimension ( ) ) ,
f a c to r1 d imens i on ( f a c t o r 1 . dimension ( ) ) ,
f a c to r2 d imens i on ( f a c t o r 2 . dimension ( ) ) ,
i r r e p ( i r r e p ) ,

996 f a c t o r 1 ( f a c t o r 1 ) ,
f a c t o r 2 ( f a c t o r 2 ) ,
mu l t i p l i c i t y ( decomposit ion ( fac to r1 , f a c t o r 2 ) . mu l t i p l i c i t y ( i r r e p ) ) {

a s s e r t ( f a c t o r 1 .N == i r r e p .N) ;
a s s e r t ( f a c t o r 2 .N == i r r e p .N) ;

1001

compute h i ghe s t we i gh t co e f f s ( ) ;

for ( int i = 0 ; i < mu l t i p l i c i t y ; ++i ) {
std : : vector<char> done ( i r r ep d imens ion , 0 ) ;

1006 done [ i r r ep d imens i on − 1 ] = true ;
for ( int j = i r r ep d imens i on − 1 ; j >= 0 ; −−j ) {

i f ( ! done [ j ] ) {
compute l ower we igh t coe f f s ( i , j , done ) ;

}
1011 }

}
}

double c l eb s ch : : c o e f f i c i e n t s : : operator ( ) ( int f a c t o r 1 s t a t e ,
1016 int f a c t o r 2 s t a t e ,

int mu l t i p l i c i t y i nd ex ,
int i r r e p s t a t e ) const {

a s s e r t (0 <= f a c t o r 1 s t a t e && f a c t o r 1 s t a t e < f a c to r1 d imens i on ) ;
a s s e r t (0 <= f a c t o r 2 s t a t e && f a c t o r 2 s t a t e < f a c to r2 d imens i on ) ;

1021 a s s e r t (0 <= mu l t i p l i c i t y i n d e x && mu l t i p l i c i t y i n d e x < mu l t i p l i c i t y ) ;
a s s e r t (0 <= i r r e p s t a t e && i r r e p s t a t e < i r r ep d imens i on ) ;

int c o e f f i c i e n t l a b e l [ ] = { f a c t o r 1 s t a t e ,
f a c t o r 2 s t a t e ,

1026 mu l t i p l i c i t y i nd ex ,
i r r e p s t a t e } ;

s td : : map<std : : vector<int>, double> : : c o n s t i t e r a t o r i t (
c l z x . f i nd ( std : : vector<int>( c o e f f i c i e n t l a b e l , c o e f f i c i e n t l a b e l

+ s izeof c o e f f i c i e n t l a b e l / s izeof c o e f f i c i e n t l a b e l [ 0 ] ) ) ) ;
1031

return i t != c l zx . end ( ) ? i t−>second : 0 . 0 ;
}

// sample dr iver rout ine
1036

using namespace std ;

int main ( ) {
int choice , N;

1041

cout << ”What would you l i k e to do?” << endl ;
cout << ” 1) Trans late an i−weight S to i t s index P(S) ” << endl ;
cout << ” 2) Recover an i−weight S from i t s index P(S) ” << endl ;
cout << ” 3) Trans late a pattern M to i t s index Q(M)” << endl ;

1046 cout << ” 4) Recover a pattern M from i t s index Q(M)” << endl ;
cout << ” 5) Ca lcu la te Clebsch−Gordan c o e f f i c i e n t s f o r S x S ’ −> S ’ ’ ” << endl ;
cout << ” 6) Ca lcu la te a l l Glebsch−Gordan c o e f f i c i e n t s f o r S x S ’ ” << endl ;

do {
1051 c in >> cho i c e ;

} while ( cho i c e < 1 | | cho i c e > 6 ) ;

cout << ”N ( e . g . 3 ) : ” ;
c in >> N;

1056

switch ( cho i c e ) {
case 1 : {

c l eb s ch : : weight S(N) ;
cout << ” I r r ep S : ” ;

1061 for ( int k = 1 ; k <= N; ++k) {
c in >> S(k ) ;

}
cout << S . index ( ) << endl ;
break ;

1066 }
case 2 : {

int P;
cout << ” Index : ” ;
c in >> P;
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1071 c l eb s ch : : weight S(N, P) ;
cout << ”I−weight : ” ;
for ( int k = 1 ; k <= N; ++k) {

cout << ’ ’ << S(k ) ;
}

1076 cout << endl ;
break ;

}
case 3 : {

c l eb s ch : : pattern M(N) ;
1081 for ( int l = N; l >= 1 ; −−l ) {

cout << ”Row l = ” << l << ” : ” ;
for ( int k = 1 ; k <= l ; ++k) {

c in >> M(k , l ) ;
}

1086 }
cout << ” Index : ” << M. index ( ) + 1 << endl ;
break ;

}
case 4 : {

1091 c l eb s ch : : weight S(N) ;
cout << ” I r r ep S : ” ;
for ( int i = 1 ; i <= N; ++i ) {

c in >> S( i ) ;
}

1096

int Q;
cout << ” Index ( 1 . . dim(S ) ) : ” ;
c in >> Q;
c l eb s ch : : pattern M(S , Q − 1 ) ;

1101 for ( int l = N; l >= 1 ; −−l ) {
for ( int k = 1 ; k <= l ; ++k) {

cout << M(k , l ) << ’\ t ’ ;
}
cout << endl ;

1106 }
break ;

}
case 5 : {

c l eb s ch : : weight S(N) ;
1111 cout << ” I r r ep S ( e . g . ” ;

for ( int k = N − 1 ; k >= 0 ; −−k ) {
cout << ’ ’ << k ;

}
cout << ” ) : ” ;

1116 for ( int k = 1 ; k <= N; ++k) {
c in >> S(k ) ;

}

c l eb s ch : : weight Sprime (N) ;
1121 cout << ” I r r ep S ’ ( e . g . ” ;

for ( int k = N − 1 ; k >= 0 ; −−k ) {
cout << ’ ’ << k ;

}
cout << ” ) : ” ;

1126 for ( int k = 1 ; k <= N; ++k) {
c in >> Sprime (k ) ;

}

c l eb s ch : : decomposit ion decomp(S , Sprime ) ;
1131 cout << ”Litt lewood−Richardson decomposit ion S \\ otimes S ’ = \\ oplus S ’ ’ : ” << endl ;

cout << ” [ i r r e p index ] S ’ ’ ( outer mu l t i p l i c i t y ) {dimension d S}” << endl ;
for ( int i = 0 ; i < decomp . s i z e ( ) ; ++i ) {

cout << ” [ ” << decomp( i ) . index ( ) << ” ] ” ;
for ( int k = 1 ; k <= N; ++k) {

1136 cout << decomp( i ) ( k ) << ’ ’ ;
}
cout << ’ ( ’ << decomp . mu l t i p l i c i t y (decomp( i ) ) << ” ) {”

<< decomp( i ) . dimension ( ) << ”}” << endl ; ;
}

1141

c l eb s ch : : weight Sdoubleprime (N) ;
for (bool b = true ; b ; ) {

cout << ” I r r ep S ’ ’ : ” ;
for ( int k = 1 ; k <= N; ++k) {

1146 c in >> Sdoubleprime (k ) ;
}
for ( int i = 0 ; i < decomp . s i z e ( ) ; ++i ) {

i f ( decomp( i ) == Sdoubleprime ) {
b = fa l se ;

1151 break ;
}

}
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i f (b) {
cout << ”S ’ ’ does not occur in the decomposit ion ” << endl ;

1156 }
}

int alpha ;
while ( true ) {

1161 cout << ”Outer mu l t i p l i c i t y index : ” ;
c in >> alpha ;
i f (1 <= alpha && alpha <= decomp . mu l t i p l i c i t y ( Sdoubleprime ) ) {

break ;
}

1166 cout << ”S ’ ’ does not have t h i s mu l t i p l i c i t y ” << endl ;
}

s t r i n g f i l e name ;
cout << ”Enter f i l e name to wr i t e to f i l e ( l eave blank f o r s c r e en output ) : ” ;

1171 c in . i gnore (1234 , ’\n ’ ) ;
g e t l i n e ( cin , f i l e name ) ;

const c l eb s ch : : c o e f f i c i e n t s C( Sdoubleprime , S , Sprime ) ;
int dimS = S . dimension ( ) ,

1176 dimSprime = Sprime . dimension ( ) ,
dimSdoubleprime = Sdoubleprime . dimension ( ) ;

o f stream os ( f i l e name . c s t r ( ) ) ;
( f i l e name . empty ( ) ? cout : os ) . s e t f ( i o s : : f i x ed ) ;

1181 ( f i l e name . empty ( ) ? cout : os ) . p r e c i s i o n ( 1 5 ) ;
( f i l e name . empty ( ) ? cout : os ) << ” L i s t o f nonzero CGCs f o r S x S ’ => S ’ ’ , alpha ” << endl ;
( f i l e name . empty ( ) ? cout : os ) << ”Q(M)\tQ(M’)\ tQ(M’ ’ )\tCGC” << endl ;
for ( int i = 0 ; i < dimSdoubleprime ; ++i ) {

for ( int j = 0 ; j < dimS ; ++j ) {
1186 for ( int k = 0 ; k < dimSprime ; ++k) {

double x = double (C( j , k , alpha − 1 , i ) ) ;

i f ( fabs (x ) > c l eb s ch : : EPS) {
( f i l e name . empty ( ) ? cout : os ) << j + 1 << ’\ t ’

1191 << k + 1 << ’\ t ’ << i + 1 << ’\ t ’ << x << endl ;
}

}
}

}
1196

break ;
}
case 6 : {

c l eb s ch : : weight S(N) ;
1201 cout << ” I r r ep S ( e . g . ” ;

for ( int k = N − 1 ; k >= 0 ; −−k ) {
cout << ’ ’ << k ;

}
cout << ” ) : ” ;

1206 for ( int k = 1 ; k <= N; ++k) {
c in >> S(k ) ;

}

c l eb s ch : : weight Sprime (N) ;
1211 cout << ” I r r ep S ’ ( e . g . ” ;

for ( int k = N − 1 ; k >= 0 ; −−k ) {
cout << ’ ’ << k ;

}
cout << ” ) : ” ;

1216 for ( int k = 1 ; k <= N; ++k) {
c in >> Sprime (k ) ;

}

s t r i n g f i l e name ;
1221 cout << ”Enter f i l e name to wr i t e to f i l e ( l eave blank f o r s c r e en output ) : ” ;

c in . i gnore (1234 , ’\n ’ ) ;
g e t l i n e ( cin , f i l e name ) ;

o f stream os ( f i l e name . c s t r ( ) ) ;
1226 ( f i l e name . empty ( ) ? cout : os ) . s e t f ( i o s : : f i x ed ) ;

( f i l e name . empty ( ) ? cout : os ) . p r e c i s i o n ( 1 5 ) ;

c l eb s ch : : decomposit ion decomp(S , Sprime ) ;
( f i l e name . empty ( ) ? cout : os ) <<

1231 ”Litt lewood−Richardson decomposit ion S \\ otimes S ’ = \\ oplus S ’ ’ : ” << endl ;
( f i l e name . empty ( ) ? cout : os ) <<

” [ i r r e p index ] S ’ ’ ( outer mu l t i p l i c i t y ) {dimension d S}” << endl ;
for ( int i = 0 ; i < decomp . s i z e ( ) ; ++i ) {

( f i l e name . empty ( ) ? cout : os ) << ” [ ” << decomp( i ) . index ( ) << ” ] ” ;
1236 for ( int k = 1 ; k <= N; ++k) {
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( f i l e name . empty ( ) ? cout : os ) << decomp( i ) ( k ) << ’ ’ ;
}
( f i l e name . empty ( ) ? cout : os ) << ’ ( ’ << decomp . mu l t i p l i c i t y (decomp( i ) ) << ” ) {”

<< decomp( i ) . dimension ( ) << ”}” << endl ; ;
1241 }

for ( int i = 0 ; i < decomp . s i z e ( ) ; ++i ) {
const c l eb s ch : : c o e f f i c i e n t s C(decomp( i ) , S , Sprime ) ;
int dimS = S . dimension ( ) ,

1246 dimSprime = Sprime . dimension ( ) ,
dimSdoubleprime = decomp( i ) . dimension ( ) ;

for ( int m = 0; m < C. mu l t i p l i c i t y ; ++m) {
( f i l e name . empty ( ) ? cout : os ) << ” L i s t o f nonzero CGCs f o r S x S ’ => S ’ ’ = ( ” ;

1251 for ( int j = 1 ; j <= N; ++j ) cout << decomp( i ) ( j ) << ( j < N ? ’ ’ : ’ ) ’ ) ;
( f i l e name . empty ( ) ? cout : os ) << ” , alpha = ” << m + 1 << endl ;
( f i l e name . empty ( ) ? cout : os ) << ”Q(M)\tQ(M’)\ tQ(M’ ’ )\tCGC” << endl ;
for ( int i = 0 ; i < dimSdoubleprime ; ++i ) {

for ( int j = 0 ; j < dimS ; ++j ) {
1256 for ( int k = 0 ; k < dimSprime ; ++k) {

double x = double (C( j , k , m, i ) ) ;

i f ( fabs (x ) > c l eb s ch : : EPS) {
( f i l e name . empty ( ) ? cout : os ) << j + 1<< ’\ t ’

1261 << k + 1 << ’\ t ’ << i + 1 << ’\ t ’ << x << endl ;
}

}
}

}
1266

( f i l e name . empty ( ) ? cout : os ) << endl ;
}

}

1271 break ;
}

}

return 0 ;
1276 }
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