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Angular-dependent spin tunneling in mesoscopic biaxial antiferromagnets
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An imaginary-time path integral study is presented for spin tunneling in the biaxial antiferromagnetic grain
with noncompensated sublattices placed in a magnetic field with an arbitrary direction in the plane of easy and
medium axes. Different structures of the tunneling barriers can be generated by the magnitude and the orien-
tation of the magnetic field. By calculating the nonvacuum instantons or bounces, we analytically obtain the
dependence of decay rates from excited levels as well as ground-state levels and the temperature of the
crossover from the thermal to quantum regime on the direction and strength of the field in a wide range of
angles of the applied magnetic field. It is found that the WKB exponent and the crossover temperature strongly
depend on the orientation of the field, which can be tested with the use of existing experimental techniques. In
the large noncompensation limit, our results reduce to spin tunneling in ferromagnetic particles.
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I. INTRODUCTION

Quantum tunneling at mesoscopic or macroscopic sca
one of the most fascinating phenomena in condensed m
physics. During the last decade, the problem of quan
tunneling of magnetization in nanometer-scale magnets
attracted a great deal of theoretical and experime
interest.1,2 In addition to the importance of the tunneling ph
nomena in magnets from a fundamental point of view, th
are potentially important for the future magnetic devic
working at a nanoscale and the designing of quant
computer.3

In discussing macroscopic quantum phenomena, it is
sential to distinguish between two types of processes: m
roscopic quantum coherence~MQC, i.e., coherent tunneling!
and macroscopic quantum tunneling~MQT, i.e., incoherent
tunneling!. In the case of MQC, the system performs coh
ent NH3-type oscillations between two degenerate we
separated by a classically impenetrable barrier. The tunne
removes the degeneracy of the original ground states
leads to a level splitting. For the case of MQT, the syst
escapes from a metastable potential well into a continuum
quantum tunneling, and the tunneling results in an imagin
part of the energy. As emphasized by Leggett, the two p
nomena of MQC and MQT are physically very differen
particularly from the viewpoint of experimental feasibility4

MQC is a far more delicate phenomenon than MQT, as i
much more easily destroyed by an environment,5 or by very
small c-number symmetry breaking fields that spoil the d
generacy. Even though some of the dissipative coupling
an unsuspected effect on the quantum tunneling depen
on the situation, it has been reported that they are not str
enough to make the phenomena of MQT and MQC un
servable.

More recently, much attention was attracted to the s
tunneling in the single-domain ferromagnetic~FM! nanopar-
ticles in the presence of a magnetic field applied at an a
trary angle. The MQT problem for a uniaxial FM model w
first studied by Zaslavskii with the help of mapping the sp
system onto a one-dimensional particle system.6 For the
same model, Miguel and Chudnovsky7 calculated the tunnel
0163-1829/2003/67~10!/104425~12!/$20.00 67 1044
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ing rate by applying the imaginary-time path integral, a
demonstrated that the angular and field dependences o
tunneling exponent obtained by Zaslavskii’s method and
the path-integral method coincide precisely. Kim and Hwa
performed a calculation based on the instanton technique
biaxial and tetragonal FM particles.8 Kim extended the tun-
neling rate for biaxial FM particles to a finite temperatur
and presented the numerical results for the WKB expon
below the crossover temperature and their approximate
mulas around the crossover temperature.9 The quantum-
classical transition of the escape rate for uniaxial FM p
ticles in an arbitrarily directed field was studied by Garan
Hidalgo and Chudnovsky by mapping onto a particle mov
in a double-well potential.10 Wernsdorferet al. made the
switching field measurement on single-domain FM nanop
ticles of Barium ferrite ~BaFeCoTiO! containing about
105–106 spins.11 The measured angular dependance of
crossover temperature was found to be in excellent ag
ment with the theoretical prediction,7 which strongly sug-
gests the magnetic quantum tunneling in the BaFeCo
nanoparticles.

The phenomenon of quantum tunneling was also found
nanaometer-scale antiferromagnetic~AFM! particles, where
the Néel vector is the tunneling entity.12–19It was shown that
quantum tunneling shall show up at higher temperatures
higher frequencies in AFM particles than in FM particles
similar size. Moreover, most FM systems are actually fe
magnetic or AFM particles. All these make nanometer-sc
antiferromagnets more interesting from experimental a
theoretical aspects. Recently, the temperature dependen
spin tunneling has been studied in the biaxial AF
particles.20

Up to now theoretical studies on AFM systems have be
focused on quantum tunneling at ground-state level. Mo
over, most previous works12–19 have been confined to th
condition that the magnetic field be applied along the ea
medium or hard anisotropy axis, separately. However,
generic quantum tunneling problem, and the easiest to im
ment in practice, is that of AFM particle in a magnetic fie
applied at some arbitrary angleuH to the anisotropy axis.
The problem does not possess any symmetry and for
©2003 The American Physical Society25-1
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reason is more difficult mathematically. However, it is wor
pursuing because of its significance for experiments. T
purpose of this paper is to present an theoretical investiga
of the quantum tunneling at excited levels in the biax
AFM particles with an arbitrarily directed field, based on t
spin-coherent-state path-integral method. We will show t
MQC and MQT can be consecutively observed by chang
the direction of magnetic field, and discuss their depende
on the direction and the magnitude of field. Both the non
cuum~or thermal! instanton and bounce solutions, the WK
exponents and the preexponential factors are evaluated
actly for different angle ranges of the magnetic field@uH

5p/2, p/21O(Ae),uH,p2O(Ae), and uH5p]. Both
variables are expressed as a function of parameters w
can be changed experimentally, such as the number of
spins, the effective anisotropy and the exchange interac
constants, and the strength and orientation of applied m
netic field. Our results show that the distinct angular dep
dence, together with the dependence of the WKB tunne
rate on the strength of the external magnetic field, may p
vide an independent experimental test for the spin tunne
at excited levels in nanoscale antiferromagnets. The de
dence of the crossover temperatureTc and the magnetic vis
cosity ~which is the inverse of WKB exponent at th
quantum-tunneling-dominated regimeT!Tc) on the direc-
tion and the magnitude of the field, and the magne
anisotropies is expected to be observed in future experim
on individual single-domain AFM particles with an arb
trarily directed magnetic field. Furthermore, since the mo
considered here is a general AFM model with noncomp
sated sublattices, we can easily obtain the results of
tunneling in FM particles by taking a relatively large no
compensation of sublattices.

This paper is structured in the following way. In Sec.
we introduce the general formulation for quantum tunnel
in AFM particles based on the two-sublattice model a
spin-coherent-state path-integral method. And we discuss
fundamentals concerning the computation of level splittin
and tunneling rates of excited states in a double-well-l
potential. In Secs. III, we study the spin tunneling at exci
levels for biaxial AFM particles in the presence of a ma
netic field applied in theZX plane with a range of angle
p/2<uH<p. The conclusions and discussions are presen
in Sec. V.

II. PHYSICAL MODEL

The system of interest is an nanometer-scale sin
domain AFM particle at a temperature well below its anis
ropy gap. According to the two-sublattice model,12,13 there is
a strong exchange energym1•m2 /x' between two sublat-
tices, wherem1 andm2 are the magnetization vectors of th
two sublattices with large, fixed and unequal magnitud
andx' is the transverse susceptibility. Under the assump
that the exchange energy between two sublattices is m
larger than the magnetocrystalline anisotropy energy, the
clidean action for the AFM particle~neglecting dissipation
with the environment! is expressed in the spin-coherent-sta
representation12–15,17,18
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SE@u~x,t!,f~x,t!#

5
1

\E dtE d3xH i
m11m2

g S df

dt D1
m

g S df

dt D cosu

1
x'

2g2 F S du

dt D 2

1S df

dt D 2

sin2uG
1

1

2
a@~¹u!21~¹f!2 sin2u#1E~u,f!J , ~1!

whereg is the gyromagnetic ratio,a is the exchange con
stant ~which is also referred to as the stiffness constant,
the Bloch wall coefficient21!, andt5 i t is the imaginary-time
variable.m5m12m25\gs/V, wheres is the excess spin
due to the noncompensation of two sublattices. TheE(u,f)
term includes the magnetocrystalline anisotropy and the Z
man energies. The polar coordinateu and the azimuthal co-
ordinate f in the spherical coordinate system withl• ẑ

5cosu, l is the Néel vector of unit length andẑ is a unit
vector along thez axis.

As pointed out in Ref. 13, for a nanometer-scale sing
domain AFM particle, the Ne´el vector may depend on th
imaginary time but not on coordinates because the spa
derivatives in Eq.~1! are suppressed by the strong exchan
interaction between two sublattices. So all the calculatio
performed in the present work are for the homogeneous N´el
vector. Therefore, Eq.~1! reduces to

SE~u,f!5
V

\E dtH i
m11m2

g S df

dt D1
m

g S df

dt D cosu

1
x'

2g2 F S du

dt D 2

1S df

dt D 2

sin2uG1E~u,f!J ,

~2!

whereV is the volume of the single-domain AFM nanopa
ticle. The first term in Eq.~2! is a total imaginary-time de-
rivative, which has no effect on the classical equations
motion, but it is crucial for the spin-phase-interferen
effects.5,13,14,17,18,22–25However, for the closed instanton tra
jectory described in this paper~as shown in the following!,
this time derivative gives a zero contribution to the pa
integral, and therefore can be omitted.

The transition amplitude from an initial stateuu i ,f i& to a
final state uu f ,f f& can be expressed as the followin
imaginary-time path integral in the spin-coherent-state rep
sentation

KE5^u f ,f f ue2HTuu i ,f i&5E D$u%D$f%exp@2SE~u,f!#,

~3!

where the Euclidean actionSE(u,f) has been defined in Eq
~2!. In the semiclassical limit, the dominant contribution
the transition amplitude comes from finite action solutions
the classical equations of motion~instantons!. According to
the standard instanton technique, the tunneling rateG for
5-2
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MQT or the tunnel splittingD for MQC is given byG ~or
D)5Ae2Scl,26 whereScl is the WKB exponent or the class
cal action which minimizes the Euclidean action of Eq.~2!.
The preexponential factorA originates from the quantum
fluctuations about the classical path, which can be evalu
by expanding the Euclidean action to the second orde
small fluctuations.26,19 It is noted that the above result
based on tunneling at the ground state, and the tempera
dependence of the tunneling frequency~i.e., tunneling at ex-
cited states! is not taken into account. The instanton tec
nique is suitable only for the evaluation of the tunneling r
at the vacuum level, since the usual~vacuum! instantons sat-
isfy the vacuum boundary conditions. Different types
pseudoparticle configurations were developed which sat
periodic boundary condition~i.e., periodic instantons or non
vacuum instantons!.27

For a particle moving in a double-well-like potenti
U(x), the WKB method gives the tunnel splitting of dege
erate excited levels or the imaginary parts of the metast
levels at an energyE.0 as10,28,29

DE~or ImE!5
v~E!

2p
exp@2S~E!#, ~4!

with the imaginary-time action

S~E!5A2mE
x1(E)

x2(E)

dxAU~x!2E, ~5!

wherex1,2(E) are the turning points for the particle oscilla
ing in the inverted potential2U(x). v(E)52p/t(E) is the
energy-dependent frequency, andt(E) is the period of the
real-time oscillation in the potential wellU(x),

t~E!5A2mE
x3(E)

x4(E) dx

AE2U~x!
, ~6!

wherex3,4(E) are the classical turning points for the partic
oscillating insideU(x). The functional-integral in the one
loop approximation, the correct WKB method, and t
method of Scho¨dinger equation showed that for the pote
tials parabolic near the bottom the result Eq.~4! should be
multiplied byAp/e@(2n11)n11/2/2nenn! #.27,29,30The split-
ting of excited state for a generic double-well potential w
obtained in Ref. 31 by using the Rayleigh-Schro¨dinger per-
turbation expansion of the eignfunctions, which agrees w
with the result based on the one-loop path-integral. This c
rection factor is very close to 1 for alln: 1.075 for n50,
1.028 forn51, 1.017 forn52, etc. Stirling’s formula forn!
shows that this factor trends to 1 asn→`. Therefore, this
correction factor, however, does not change much in fron
the exponentially small action term in Eq.~4! for the spin
tunneling problem considered in this work.

III. MQC AND MQT IN BIAXIAL AFM PARTICLES

In this section, we study the quantum tunneling in AF
particle which has the biaxial crystal symmetry, with6 ẑ
being the easy axes in the absence of an external mag
field. The magnetic field is applied in theZX plane, at an
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angle in the range ofp/2<uH<p. Then the magnetocrys
talline anisotropy energyE(u,f) can be written as

E~u,f!5K1 sin2u1K2 sin2u sin2f2mHx sinu cosf

2mHz cosu1E0 , ~7!

where K1 and K2 are the longitudinal and the transver
anisotropy coefficients, respectively, andE0 is a constant
which makesE(u,f) zero at the initial orientation. As the
external magnetic field is applied in theZX plane, Hx
5H sinuH andHz5H cosuH , whereH is the magnitude of
the field anduH is the angle between the magnetic field a
the ẑ axis.

By introducing the dimensionless parameters as

K̄25K2/2K1 ,H̄x5Hx /H0 ,H̄z5Hz /H0 , ~8!

the E(u,f) term of Eq.~7! can be rewritten as

Ē~u,f!5
1

2
sin2u1K̄2 sin2u sin2f2H̄x sinu cosf

2H̄z cosu1Ē0 , ~9!

where E(u,f)52K1Ē(u,f) and H052K1 /m. At finite
magnetic field, the plane given byf50 is the easy plane, on
which Ē(u,f) reduces to

Ē~u,f50!5
1

2
sin2u2H̄ cos~u2uH!1Ē0 . ~10!

We denoteu0 to be the initial angle anduc the critical
angle at which the energy barrier vanishes when the exte
magnetic field is close to the critical valueH̄c(uH) ~to be
calculated in the following!. Then, u0 satisfies @dĒ(u,f
50)/du#u5u0

50, uc and H̄c satisfy both @dĒ(u,f

50)/du#u5uc ,H̄5H̄c
50 and @d2Ē(u,f50)/du2#u5uc ,H̄5H̄c

50, which leads to

1

2
sin~2u0!1H̄ sin~u02uH!50, ~11a!

1

2
sin~2uc!1H̄c sin~uc2uH!50, ~11b!

cos~2uc!1H̄c cos~uc2uH!50. ~11c!

After some algebra, the dimensionless critical fieldH̄c(uH)
and the critical angleuc are found to be

H̄c5@~sinuH!2/31ucosuHu2/3#23/2, ~12a!

sin~2uc!5
2ucotuHu1/3

11ucotuHu2/3
. ~12b!

Now we consider the limiting case that the external ma
netic field is slightly lower than the critical field, i.e.,e51
2H̄/H̄c!1. At this practically interesting situation, the ba
5-3
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rier height is low and the width is narrow, and therefore t
tunneling rate in MQT or the tunnel splitting in MQC i
large. Introducing h[uc2u0 (uhu!1 in the limit of e

!1), expanding@dĒ(u,f50)/du#u5u0
50 aboutuc , and

using the relations@dĒ(u,f50)/du#u5uc ,H̄5H̄c
50 and

@d2Ē(u,f50)/du2#u5uc ,H̄5H̄c
50, Eq. ~11a! becomes

sin~2uc!S e2
3

2
h2D2h cos~2uc!~2e2h2!50. ~13!

Simple calculations show thath is of the order ofAe. Thus
the order of magnitude of the second term in Eq.~13! is
smaller than that of the first term byAe and the value ofh is
determined by the first term, which leads toh.A2e/3.
However, whenuH is very closed top/2 or p, sin(2uc) be-
comes almost zero, and the first term is much smaller t
the second term in Eq.~13!. Then h is determined by the
second term whenuH.p/2 or p, which leads toh.A2e for
uH.p/2 andh.0 whenuH.p. Since the first term in Eq
~13! is dorminant in the range of values,uc , which satisfies
tan(2uc).O(Ae), h.A2e/3 is valid for p/21O(Ae),uH

,p2O(Ae) by using Eq.~12b!. Therefore,h.A2e, 0, and
A2e/3 for uH.p/2, p, and p/21O(Ae),uH,p
2O(Ae), respectively. In this situation the potential ener
Ē(u,f) reduces to the following equation in the limit o
small e:

Ē~d,f!5K̄2 sin2f sin2~u01d!

1H̄x sin~u01d!~12cosf!1Ē1~d!, ~14!

whered[u2u0 (udu!1 in the limit of e!1), andĒ1(d) is
a function of onlyd given by

Ē1~d!5
1

4
sin~2uc!~3d2h2d3!

1
1

2
cos~2uc!Fd2S e2

3

2
h2D1d3h2

1

4
d4G .

~15!

In the following, we will study the quantum tunneling a
excited levels in biaxial AFM particles at three differe
angle ranges of the external magnetic field asuH5p/2,
p/21O(Ae),uH,p2O(Ae), anduH5p, respectively.

A. uHÄpÕ2

For uH5p/2, we haveuc5p/2 from Eq. ~12b! and h
5A2e from Eq.~13!. Equations~14! and~15! show thatf is
very small for the full range of anglesp/2<uH<p for AFM
particles with biaxial crystal symmetry. Performing th
Gaussian integration overf, we can map the spin system
onto a particle moving problem in the one-dimensional p
tential well. Now the imaginary-time transition amplitud
Eq. ~3! becomes
10442
e

n

-

KE5E dd exp~2SE@d#!

5E dd expH 2E dtF1

2
MS dd

dt D 2

1U~d!G J , ~16!

with the effective mass

M5MAFM1MFM ,

MAFM5
x'V

\g2
, MFM5

m2V

2\g2@K21K1~12e!#
,

and the effective potential

U~d!5
K1V

4\
d2~d22A2e!2. ~17!

The problem is one of MQC~as shown in Fig. 1!, where the
Néel vector resonates coherently between the energetic
degenerate easy directions atd50 andd52A2e separated
by a classically impenetrable barrier atd5A2e.

The nonvacuum~or thermal! instanton configurationdp
which minimizes the Euclidean action in Eq.~16! satisfies
the equation of motion

1

2
MS ddp

dt D 2

2U~dp!52E, ~18!

whereE.0 is a constant of integration, which can be viewe
as the classical energy of the pseudoparticle configurat
Then the kink-solution is found to be

dp5A2e1A2e2asn~v1t,k1!, ~19a!

wherea52A\E/K1V and

v15gAK1

x'
S e1

a

2 D F11
m2

2x'@K21K1~12e!#G
21/2

.

~19b!

FIG. 1. Thed(5u2u0) dependence of the effective potentia
\U/K1Ve2 for uH5p/2 ~the phenomenon of MQC!.
5-4
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sn(v1t,k) is the Jacobian elliptic sine function of modulu
k15A(2e2a)/(2e1a). The Euclidean action of the non
vacuum instanton configuration Eq.~19! over the domain
(2b,b) is found to be

Sp5E
2b

b

dtF1

2
MS ddp

dt D 2

1U~dp!G5W12Eb, ~20a!

with

W5
2

3
e3/2

AK1x'V

\g F11
m2

2x'@K21K1~12e!#G
1/2

3
1

A12k81
2/2

FE~k1!2
k8

12

22k8
12

K~k1!G , ~20b!

wherek18
2512k1

2. K(k1) andE(k1) are the complete ellip-
tic integral of the first and second kind, respectively. T
general formula Eq.~4! gives the tunnel splittings of excite
levels as

DE5gAK1

x'
S e1

a

2 D F11
m2

2x'@K21K1~12e!#G
21/2

3
1

2K~k18!
exp~2W!, ~21!

whereW is shown in Eq.~20b!.
Now we discuss the low energy limit whereE is much

less than the barrier height. In this case,k18
454\E/K1Ve2

!1, so we can perform the expansions ofK(k1) andE(k1)
in Eq. ~20b! to include terms such ask18

4 andk18
4 ln(4/k18),

E~k1!511
1

2 F lnS 4

k18
D 2

1

2Gk18
2

1
3

16F lnS 4

k18
D 2

13

12Gk18
41•••,

K~k1!5 lnS 4

k18
D 1

1

4 F lnS 4

k18
D 21Gk18

2

1
9

64F lnS 4

k18
D 2

7

6Gk18
41•••. ~22!

With the help of small oscillator approximation for energ
near the bottom of the potential wellEn5(n11/2)V1

V15AU9~d5A2e!/M

52gAK1e

x'
F11

m2

2x'@K21K1~12e!#
G21/2

,

Eq. ~20b! is expanded as
10442
W5W02S n1
1

2D1S n1
1

2D lnF \g

32e3/2AK1x'V

3F11
m2

2x'@K21K1~12e!#G
21/2S n1

1

2D G ,

~23a!

where

W05
8

3

AK1x'V

\g
e3/2F11

m2

2x'@K21K1~12e!#G
1/2

.

~23b!

Then the low-lying energy shift ofnth excited states for
biaxial AFM particles in the presence of a magnetic fie
applied perpendicular to the anisotropy axis (uH5p/2) as

\DEn5
32A2

n!Ap
~K1V!e2S 32e3/2AK1x'V

\g

3F11
m2

2x'@K21K1~12e!#G
1/2D n21/2

exp~2W0!.

~24!

Comparing with the formula~290! of Ref. 31 by taking the
effective mass and effective potential shown in Eq.~17!, Eqs.
~23b! and ~24! give the same result for the WKB exponen
while the preexponential factor differs by a factor of 22n.
Since the level splitting Eq.~24! is derived with the low-
energy expansion up to the lowest nonzero order of Eq.~22!,
one can expert agreement only for the ground-state leve
high energies the formula~21! applies. It is noted that the
purpose of this paper is to study the AFM spin tunneling a
function of strength and orientation of the applied magne
field, which is largely determined by the exponential term
the tunnel splitting, this correction preexponential fac
does not change much of the whole physics of spin quan
tunneling. And in most physical applications, this prefactor
best estimated as an ‘‘attempt frequency.’’

For the case of large noncompensation (m@Ax'K1), Eq.
~24! reduces to the result for quantum tunneling in biax
FM particles

\DE n
FM5

~q1
FM!n

n!
\DE 0

FM, ~25a!

where

q1
FM516A2e3/2A K1

K21K1~12e!
S8, ~25b!

andS8 is the total spin of FM particles.\DE 0
FM is the tunnel

splitting of ground-state level for FM particles

\DE 0
FM5

213/4

Ap
~K1V!e5/4A12e1K2 /K1

3S821/2exp~2W 0
FM!, ~26a!

where
5-5
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W 0
FM5

4A2

3

1

A12e1K2 /K1

S8e3/2. ~26b!

The WKB exponent in the tunnel splitting,W 0
FM for uH

5p/2, fully agrees with the result of ground-state tunneli
in biaxial FM particles.8 It is noted that we have extended th
results in Ref. 8 to spin tunneling at ground state as wel
low-lying excited state in a general AFM system with u
compensated moments in an arbitrarily directed magn
field.

For the case of small noncompensation (m!Ax'K1), Eq.
~24! reduces to the result of AFM spin tunneling

\DE n
AFM5

~q1
AFM!n

n!
\DE 0

AFM , ~27a!

where

q1
AFM532Se3/2AK1

J
. ~27b!

Note thatx'5m1
2/J and m15\gS/V, where J is the ex-

change interaction between two sublattices andS is the sub-
lattice spin.12–14\DE 0

AFM is the ground-state tunnel splittin
of AFM particles

\DE 0
AFM5

8

Ap
~JV!S K1

J D 3/4

e5/4S21/2exp~2W 0
AFM!,

~28a!

where

W 0
AFM5

8

3
AK1

J
Se3/2. ~28b!

B. pÕ2¿O„Ae…ËuHËpÀO„Ae…

For p/21O(Ae),uH,p2O(Ae), the critical angleuc

is in the range of O(Ae),uc,p/22O(Ae), and h
'A2e/3. Now the problem can be mapped onto a probl
of one-dimensional motion by integrating outf, and for this
case the effective massM and the effective potentialU(d)
in the Euclidean action of Eq.~16! are found to be

M5MAFM1MFM5
x'V

\g2 S 11
m2

2K1Ax'
D ~29a!

and

U~d!5
K1V

2\
sin 2uc~A6ed22d3!53U0q2S 12

2

3
qD ,

~29b!

where q53d/2A6e, and U05(25/2/33/2)(K1Ve3/2/\)
3sin 2uc . The prefactorA in Eq. ~29a! is

A5
12e

11ucotuHu2/3
1

K2

K1
.

The problem becomes one of MQT~as shown in Fig. 2!,
10442
s

ic

where the Ne´el vector escapes from the metastable state
d50, f50 through the barrier by quantum tunneling.

Now the nonvacuum bounce configuration with an ener
E.0 is found to be

dp5
2

3
A6e@a2~a2b!sn2~v2t,k2!#, ~30a!

where

v25
1

21/4331/4
gAK1

x'
S 11

m2

2K1Ax'
D 21/2

3Asin 2uce
1/4Aa2c. ~30b!

a(E).b(E).c(E) denote three roots of the cubic equatio

q32
3

2
q21

E
2U0

50. ~31!

sn(v2t,k2) is the Jacobian elliptic sine function of modulu
k25A(a2b)/(a2c). The classical action of the non
vacuum bounce configuration Eq.~30a! is

Sp5E
2b

b

dtF1

2
MS ddp

dt D 2

1U~dp!G5W12Eb, ~32a!

with

W5
223/4

5339/4

AK1x'V

\g
e5/4Asin 2ucS 11

m2

2K1Ax'
D 1/2

3~a2c!5/2@2~k2
42k2

211!E~k2!

2~12k2
2!~22k2

2!K~k2!#. ~32b!

Then the general formula Eq.~4! gives the imaginary parts o
the metastable energy levels as

FIG. 2. Thed(5u2u0) dependence of the effective potentia
\U/K1Ve3/2 for uH53p/4 ~the phenomenon of MQT!.
5-6
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Im E5
1

25/4331/4
e1/4gAK1

x'

Asin 2ucS 11
m2

2K1Ax'
D 21/2

3
Aa2c

K~k28!
exp~2W!. ~33!

Here we discuss the low energy limit of the imagina
part of the metastable energy levels. For this case,En5(n
11/2)V2,

V25AU9~d50!/M531/4321/4e1/4gAK1

x'

Asin 2uc

3S 11
m2

2K1Ax'
D 21/2

,

a'(3/2)(12k82/4), b'(3k82/4)(113k82/4),
c'2(3k82/4)(11k82/4), and k28

4516E/27U0!1.
Therefore, Eqs.~32b! reduces to

W5W02S n1
1

2D1S n1
1

2D lnF 225/4335/4

S n1
1

2D
AK1x'V

\g
e5/4

3Asin 2ucS 11
m2

2K1Ax'
D 1/2G , ~34a!

where

W05
219/4331/4

5
e5/4

AK1x'V

\g

ucotuHu1/6

A11ucotuHu2/3

3A11
m2

2x'K1S 12e

111ucotuHu2/3
1

K2

K1
D .

~34b!

The imaginary part ofn-the excited level is found to be

\ Im En

5
33/2327

n!Ap
e3/2~K1V!

ucotuHu1/3

11ucotuHu2/3

3F227/4335/4e5/4
AK1x'V

\g

ucotuHu1/6

A11ucotuHu2/3

3A11
m2

2x'K1S 12e

111ucotuHu2/3
1

K2

K1
D

n21/2

3exp~2W0!. ~35!
10442
For the case of large noncompensation (m@Ax'K1), Eq.
~35! reduces to the result for quantum tunneling in FM p
ticles

\ Im E n
FM5

~q2
FM!n

n!
\ Im E 0

FM, ~36a!

where

q2
FM5

35/43225/4e5/4ucotuHu1/6S8

A12e1
K2

K1
~11ucotuHu2/3!

, ~36b!

andS8 is the total spin of FM particles. ImE 0
FM is the imagi-

nary part of ground-state level for FM particles

\DE 0
FM5

37/83231/8

Ap
~K1V!e7/8S821/2

ucotuHu1/4

11ucotuHu2/3

3F12e1
K2

K1
~11ucotuHu2/3!G1/4

exp~2W 0
FM!,

~37a!

where

W 0
FM5

217/4331/4

5
S8e5/4

ucotuHu1/6

A12e1
K2

K1
~11ucotuHu2/3!

.

~37b!

The WKB exponent in the imaginary part of ground-sta
level, W 0

FM for p/21O(Ae),uH,p2O(Ae), fully agrees
with the result of the ground-state spin tunneling in biax
FM particles.8

For the case of small noncompensation (m!Ax'K1), Eq.
~35! reduces to the result of AFM spin tunneling

\ Im E n
AFM5

~q2
AFM!n

n!
\ Im E 0

AFM , ~38a!

where

q2
AFM5

35/43227/4ucotuHu1/6

A11ucotuHu2/3
Se5/4AK1

J
. ~38b!

\ Im E 0
AFM is the imaginary part of the ground-state level f

AFM particles

\ Im E 0
AFM5

37/83229/8

Ap
~JV!S K1

J D 3/4

e7/8S21/2

3
ucotuHu1/4

~11ucotuHu2/3!3/4
exp~2W 0

AFM!,

~39a!

where
5-7
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W 0
AFM5

219/4331/4

5
AK1

J
Se5/4

ucotuHu1/6

A11ucotuHu2/3
, ~39b!

andS is the sublattice spin of AFM particles.
At finite temperatureT the decay rateG52 ImE can be

easily found by averaging over the Boltzmann distribution

G~T!5
2

Z0
(

n
Im E n

AFM exp~2E n
AFMb!, ~40!

whereZ05(n exp(2\E n
AFMb) is the partition function with

the harmonic oscillator approximated eigenvaluesE n
AFM

5(n11/2)V2. Then the decay rate at a finite temperatureT
is found to be

G~T!52 ImE 0
AFM~12e2\V2b!exp~q2

AFMe2\V2b!,
~41!

where ImE 0
AFM andq2

AFM are shown in Eqs.~38b! and~39a!.
In Fig. 3 we plot the temperature dependence of the t

neling rate for the typical values of parameters f
nanometer-scale single-domain antiferromagnetsS5104, e

512H̄/H̄c5531023, K15107 erg/cm3, J51010 erg/cm3,
anduH53p/4. From Fig. 3 one can easily see the crosso
from purely quantum tunneling to thermally assisted qua
tum tunneling. The temperatureTc characterizing the cross
over from quantum to thermal regimes can be estimated
kBTc5DU/W0, whereDU is the barrier height, andW0 is
the WKB exponent of the ground-state tunneling. For t
case, one can easily show that the height of barrier is

\DU5
27/2

33/2
~K1V!e3/2

ucotuHu1/6

11ucotuHu2/3
,

and then the crossover temperature is

FIG. 3. The temperature dependence of the relative decay
G(T)/G(T50 K) for AFM particles in a magnetic field with a
range of angles p/21O(Ae),uH,p2O(Ae). Here, K1

5107 erg/cm3, J51010 erg/cm3, S5104, e5531023, and uH

53p/4.
10442
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kBTc5
5

25/4337/4

AK1JV

S
e1/4

ucotuHu1/6

A11ucotuHu2/3
.

In Fig. 4, we plot theuH dependence of the crossove
temperatureTc for AFM particles in magnetic field with a
wide range of anglesp/2,uH,p. Figure 4 shows that the
maximal value ofTc is about 6.94 K atuH52.35, which is
one or two orders of magnitude higher than that for ferr
magnets with a similar size.7,8 Note that, even fore as small
as 1023, the angle corresponding to an appreciable chang
the orientation of the Ne´el vector by quantum tunneling is
d25A6e rad.4°. The maximal value ofTc as well asG is
expected to be observed in experiment.

C. uHÄp

In case ofuH5p, we haveuc50 andh50. Working out
the integration overf, the spin tunneling problem is mappe

FIG. 5. Thed(5u2u0) dependence of the effective potentia
\U/K1Ve2 for uH5p ~the phenomenon of MQT!.

te
FIG. 4. TheuH dependence of the crossover temperatureTc for

p/2,uH,p. Here, K15107 erg/cm3, J51010 erg/cm3, S5104,
the radius of the particle is 5 nm, ande5531023.
5-8
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onto the problem of a particle with effective massM
5MAFM1MFM5x'V/\g21m2/2K2\g2 moving in the
one-dimensional potential well U(d)5(K1V/\)(ed2

2d4/4). Now the problem is one of MQT~as shown in Fig.
5!, and the nonvacuum bounce at a given energyE.0 is
found to be

dp5A2eS 11A12
\E

K1Ve2D 1/2

dn~v3t,k3!, ~42a!

where

v35gAK1

x'

e1/2

A11
m2

2K2x'

S 11A12
\E

K1Ve2
D 1/2

,

k3
2512S 12A12

\E
K1Ve2

11A12
\E

K1Ve2

D . ~42b!

The classical action of the nonvacuum bounce Eq.~42b!
is

Sp5E
2b

b

dtF1

2
mS ddp

dt D 2

1U~dp!G5W12Eb, ~43a!

with

W5
4

3
e3/2

AK1x'V

\g
A11

m2

2K2x'
S 11A12

\E
K1Ve2D 3/2

3@~22k3
2!E~k3!22k38

2K~k3!#, ~43b!

where k38
2512k3

2. Then the imaginary parts of the met
stable energy levels are

Im E5
v3

4K~k38!
exp~2W!. ~44!

Now we consider the low energy limit of the imagina
part of the metastable energy level. For this case,En5(n
11/2)V3,

V35AU9~d50!/M5gA2K1

x'

e1/2

A11
m2

2K2x'

,

k38
25(1/23/2e3/2)A\/K1VM(n11/2)!1, then
10442
W5W02S n1
1

2D2S n1
1

2D

3 lnS 32A2e3/2
AK1x'V

\g
A11

m2

2K2x'

n11/2
D , ~45a!

W05
27/2

3
e3/2

AK1x'V

\g
A11

m2

2K2x'

, ~45b!

and

Im En5
1

n!Ap
gAK1

x'

e1/2
1

A11
m2

2K2x'

3S 32A2e3/2
AK1x'V

\g
A11

m2

2K2x'

D n11/2

3exp~2W0!. ~45c!

In the case of large non-compensation (m@Ax'K1), Eq.
~45c! reduces to the result for quantum tunneling in FM p
ticles

\ Im E n
FM5

~q3
FM!n

n!
\ Im E 0

FM, ~46a!

where

q3
FM532e3/2AK1

K2
S8. ~46b!

\DE 0
FM is the imaginary part of ground-state level for F

particles

\DE 0
FM5

8

Ap
~K1V!S821/2e5/4S K2

K1
D 1/4

exp~2W 0
FM!,

~47a!

where

W 0
FM5

8

3
S8e3/2AK1

K2
, ~47b!

andS8 is the total spin of FM particles. The WKB expone
in the imaginary part of ground-state level,W 0

FM for uH

5p, fully agrees with the result of the ground-state sp
tunneling in biaxial FM particles.8

For the case of small noncompensation (m!Ax'K1), Eq.
~45c! reduces to the result of AFM spin tunneling

\ Im E n
AFM5

~q3
AFM!n

n!
\ Im E 0

AFM , ~48a!

where

q3
AFM532A2Se3/2AK1

J
. ~48b!
5-9
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RONG LÜ AND JAN von DELFT PHYSICAL REVIEW B67, 104425 ~2003!
\ Im E 0
AFM is the imaginary part of the ground state for AFM

particles,

\ Im E 0
AFM5

211/4

Ap
~JV!S K1

J D 3/4

e5/4S21/2exp~2W0
AFM!,

~49a!

where

W 0
AFM5

27/2

3
AK1

J
Se3/2, ~49b!

and S is the sublattice spin of AFM particles. And the fina
result of the decay rate at finite temperatureT is found to be

G~T!52 ImE0~12e2\V3b!exp~q3
AFMe2\V3b!. ~50!

The temperature dependence of the decay rate is show
Fig. 6. For this case, the position of the energy barrier
db5A2e, the height of barrier is\DU5(K1V)e2. There-
fore, the crossover temperature iskBTc5(3/8A2)
3(AK1JV)e1/2S21.

IV. CONCLUSIONS

In summary we have investigated the quantum tunnel
between excited levels in a general AFM model with no
compensated sublattices in the presence of an external m
netic field at arbitrarily directed angle. By calculating th
nonvacuum instantons exactly in the spin-coherent-s
path-integral representation, we obtain the analytic formu
for the tunnel splitting between degenerate excited levels
MQC and the imaginary parts of the metastable energy lev
in MQT of the Néel vector in the low barrier limit for the
external magnetic field perpendicular to the easy axis (uH
5p/2), for the field antiparallel to the initial easy axis (uH
5p), and for the field at an angle between these two ori

FIG. 6. The temperature dependence of the relative decay
G(T)/G(T50 K) for AFM particles in a magnetic field withuH

5p. Here,K15107 erg/cm3, J51010 erg/cm3, S51.53104, and
e50.1.
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tations @p/21O(Ae),uH,p2O(Ae)#. The temperature
dependences of the decay rate are clearly shown for e
case. For the case of large noncompensation, the WKB
ponents in the tunnel splitting and the tunneling rate fu
agree with the results of ground-state spin tunneling in bi
ial FM particles.8 In the comparison with other more accu
rate methods~e.g., Ref. 31!, our result gives the exact sam
expression of the exponential term in the tunneling ra
while could differ by a factor in the preexponential term
Since our major interest in this work is the angula
dependent spin tunneling in AFM particles, which is large
determined by the exponential term in the tunnel splitting
the tunneling rate, this correction factor does not chan
much in front of the exponentially small action term.

One important conclusion is that the tunneling rate a
the tunnel splitting at excited levels depend on the orien
tion of the external magnetic field distinctly. Even a sm
misalignment of the field withuH5p/2 andp orientations
can completely change the results of the tunneling rates.
wide range of angles theuH dependence of the WKB expo
nent mainly comes from the behavior of the functio
ucotuHu1/6/A11ucotuHu2/3. Another interesting conclusion
concerns the field strength dependence of the WKB expon
in the tunnel splitting or the tunneling rate. It is found that
a wide range of angles, thee(512H̄/H̄c) dependence of the
WKB exponent is given bye5/4, not e3/2 for uH5p/2, and
uH5p. As a result, we conclude that both the orientati
and the strength of the external magnetic field are the c
trollable parameters for the experimental test of the phen
ena of macroscopic quantum tunneling and coherence of
Néel vector between excited levels in single-domain AF
nanoparticles at sufficiently low temperatures. If the expe
ment is to be performed, there are three control parame
for comparison with theory: the angle of the external ma
netic fielduH , the strength of the field in terms ofe, and the
temperatureT.

A detailed comparison between the theory and experim
on quantum tunneling of magnetization remains a challe
ing task. In order to avoid the complications due to distrib
tions of particle size and shape, some groups have trie
study the temperature and field dependence of magnetiza
reversal of individual magnets. Wernsdorfer and co-work
have performed the switching field measurements on in
vidual ferrimagnetic and insulating BaFeCoTiO nanop
ticles containing about 105–106 spins at very low tempera
tures ~0.1–6 K!.11 They found that above 0.4 K, th
magnetization reversal of these particles is unambiguou
described by the Ne´el-Brown theory of thermal activated ro
tation of the particle’s moment over a well defined anis
ropy energy barrier. Below 0.4 K, strong deviations from th
model are evidenced which are quantitatively in agreem
with the predictions of the MQT theory without dissipation7

The BaFeCoTiO nanoparticles have a strong uniaxial m
netocrystalline anisotropy.11 However, the theoretical result
presented here may be useful for checking the general th
in a general AFM systems, in which the magnitude of u
compensation ranges from large~FM case! to small ~AFM
case!. The experimental procedures on single-domain F

te
5-10
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nanoparticles of Barium ferrite with uniaxial symmetry11

may be applied to the general AFM systems. Note that
inverse of the WKB exponent in the tunneling rateB21 is the
magnetic viscositySat the quantum-tunneling-dominated r
gimeT!Tc studied by magnetic relaxation measurements1,2

Therefore, the spin tunneling phenomena should be chec
at any uH by magnetic relaxation measurements. Over
past years a lot of experimental and theoretical works w
performed on the spin tunneling in molecular Mn12-Ac
~Refs. 1,32! and Fe8 ~Refs. 2,33! clusters having a collective
spin stateS510 ~in this paperS5103–105). These measure
ments on molecular clusters withS510 suggest that quan
tum phenomena might be observed at larger system s
with S@1. Further experiments should focus on the le
quantization of collective spin states ofS5102–104.

Finally we discuss briefly the dissipation effect on sp
tunneling. For a spin tunneling problem, it is important
consider the discrete level structure. It was quantitativ
shown that the phenomenon of MQC depends crucially
the width of the excited levels in the right well.34 Including
the effects of dissipation, the decay rate, in particular,
given by34,35,2

Gn5
1

2
~DEn!2(

n8

Vnn8

~En2En8!
21Vnn8

2 , ~51!

whereDEn is the level splitting,n8 are the levels in the othe
well and Vnn8 is the sum of the linewidths of thenth and
n8th levels caused by the coupling of the system to the
vironment. For the exact resonance conditions, the temp
ture dependence of the decay rate is

G~T!5(
n

~DEn!2

2Vn
exp~2\Enb!, ~52!
f
e,

cu
B

A
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where the level broadeningVn contains all the details of the
coupling between the magnet and its environment. If
width caused by the dissipative coupling sufficiently larg
the levels overlap, so that the problem is more or less equ
lent to the tunneling into the structureless continuum. In t
case, the results obtained in this paper should be change
including the dissipation. It is noted that the purpose of t
paper is to study the spin tunneling at excited levels
single-domain AFM particles in an arbitrarily directed ma
netic field at sufficiently low temperatures. Strong dissip
tion is hardly the case for single-domain magne
particles,36 and thereby our results are expected to hold
has been argued that the decay rate should oscillate on
applied magnetic field depending on the relative magnitu
between the width and the level spacing.2,5,24,34,37However,
it is not clear, to our knowledge, what should be the effect
finite temperature in the problem of spin tunneling. The f
analysis of spin tunneling onto the precession levels rem
an open problem.

The theoretical calculations performed in this paper c
be extended to the AFM particles with a much more comp
structure of magnetocrystalline anisotropy energy, such
trigonal, tetragonal, and hexagonal crystal symmetries. W
along this line is still in progress. We hope that the theor
ical results presented in this paper may stimulate more
periments whose aim is observing macroscopic quantum
neling and coherence in nanometer-scale single-dom
antiferromagnets.
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