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Abstract. This tutorial review gives an elementary and self-contained derivation of the standard identities (ψη(x) ∼
Fηe

−iφη(x), etc.) for abelian bosonization in 1 dimension in a system of finite size L, following and simplifying
Haldane’s constructive approach. As a non-trivial application, we rigorously resolve (following Furusaki) a recent
controversy regarding the tunneling density of states, ρdos(ω), at the site of an impurity in a Tomonaga-Luttinger
liquid: we use finite-size refermionization to show exactly that for g = 1

2
its asymptotic low-energy behavior is

ρdos(ω) ∼ ω. This agrees with the results of Fabrizio & Gogolin and of Furusaki, but not with those of Oreg and
Finkel’stein (probably because we capture effects not included in their mean-field treatment of the Coulomb gas
that they obtained by an exact mapping; their treatment of anti-commutation relations in this mapping is correct,
however, contrary to recent suggestions in the literature). — The tutorial is addressed to readers with little or no
prior knowledge of bosonization, who are interested in seeing “all the details” explicitly; it is written at the level
of beginning graduate students, requiring only knowledge of second quantization, but not of field theory (which is
not needed here). At the same time, we hope that experts too might find useful our explicit treatment of certain
subtleties that can often be swept under the rug, but are crucial for some applications, such as the calculation
of ρdos(ω) – these include the proper treatment of the so-called Klein factors that act as fermion-number ladder
operators (and also ensure the anti-commutation of different species of fermion fields), the retention of terms of
order 1/L, and a novel, rigorous formulation of finite-size refermionization of both Fe−iΦ(x) and the boson field
Φ(x) itself.

Changes relative to first version of cond-mat/9805275: We have substantially revised our discussion of the
controversy regarding the tunneling density of states ρdos at the site of an impurity in a Luttinger liquid, with regard
to the following points: (1) In a new Appendix K, we confirm explicitly that Oreg and Finkel’stein’s treatment of
fermionic anti-commutation relations is correct , contrary to recent suggestions (including our own). (2) To try to
understand why their result for ρdos differs from that of Fabrizio & Gogolin, Furusaki and (for g=1/2) ourselves, we
make a new suggestion in Sections 1.B and 10.D: this is probably because of effects not captured by their mean-field

treatment of their Coulomb gas. (3) In Sections 10.C and 10.D we have replaced the first version of our calculation
of ρdos by a more explicit one (the result is unchanged), in which we refermionize not only the exponential eiΦ but,
for the first time, also the field Φ itself (Section 10.C.4); this allows us to calculate various correlation functions
involving Φ explicitly in terms of fermion operators (a new Appendix J contains several detailed examples, and a
new Figure 4 showing the corresponding Feynman diagrams).

Keywords: Bosonization; Refermionization; Tomonaga-Luttinger liquids

cond-mat/9805275; Annalen der Physik, Vol. 4, 225-305 (1998).

http://arXiv.org/abs/cond-mat/9805275v3
http://arXiv.org/abs/cond-mat/9805275
http://arXiv.org/abs/cond-mat/9805275


2 Ann. Physik 4 (1998)

Contents

1 Introduction 4

1.A Field-theoretical versus constructive bosonization . . . . . . . . . . . . . . . . . . . . . . . . 4
1.B Application to Tomonaga-Luttinger liquid with impurity . . . . . . . . . . . . . . . . . . . . 6
1.C Outline and bosonization dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Bosonization prerequisites 9

3 Fermion fields – definition and properties 10

4 Bosonic reorganization of Fock space 10

4.A Vacuum state |~0〉0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.B ~N -particle ground states | ~N〉0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.C Bosonic particle-hole operators b†qη and bqη . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.D Bosonic ground states | ~N〉0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.E Completeness of states in bosonic representation . . . . . . . . . . . . . . . . . . . . . . . . 14
4.F Klein factors F †

η and Fη . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Boson fields – definition and properties 16

6 Derivation of the bosonization identity 19

6.A ψη| ~N〉0 is a boson coherent state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6.B Action of ψη(x) on an arbitrary state | ~N〉 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

7 Hamiltonian with linear dispersion 21

8 Relation between fermion and boson Green’s functions 23

8.A The limit L→ ∞ for T 6= 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8.B The limit T = 0 for L 6= ∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

9 Vertex operators – some general properties 24

9.A Definition of vertex operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

9.B Two-point correlator 〈V (η)
λ V

(η′)
λ′ 〉 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

9.C OPEs involving vertex operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
9.D Fermions as vertex operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
9.E General expectation values of vertex operators . . . . . . . . . . . . . . . . . . . . . . . . . 26

10 Impurity in a Tomonaga-Luttinger liquid 27

10.A 1-Dimensional wire with free left- and right-moving electrons: . . . . . . . . . . . . . . . . . 28
10.A.1 Definition of ckη operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

10.A.2 Defining L- and R-moving fermion fields ψ̃L/R . . . . . . . . . . . . . . . . . . . . . 29

10.A.3 Defining L- and R-moving boson fields φ̃L/R . . . . . . . . . . . . . . . . . . . . . . 30
10.A.4 Relation between our notation and that of Haldane . . . . . . . . . . . . . . . . . . . 30

10.B Diagonalizing an electron-electron interaction by bosonizing . . . . . . . . . . . . . . . . . . 31
10.B.1 Turning on an electron-electron interaction . . . . . . . . . . . . . . . . . . . . . . . 31
10.B.2 Diagonalizing H0 in the boson basis . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
10.B.3 Relation between our notation and that of Kane and Fisher . . . . . . . . . . . . . . 32



J. von Delft, H. Schoeller, Bosonization for beginners — refermionization for experts 3

10.C Adding an impurity to a Tomonaga-Luttinger liquid . . . . . . . . . . . . . . . . . . . . . . 33
10.C.1 Adding an impurity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
10.C.2 Finite-size refermionization of H+ at g = 1

2 . . . . . . . . . . . . . . . . . . . . . . . 34
10.C.3 Finite-size diagonalization of H ′

+ at g = 1
2 . . . . . . . . . . . . . . . . . . . . . . . . 36

10.C.4 Bosonic correlation functions at g = 1/2 . . . . . . . . . . . . . . . . . . . . . . . . . 38
10.D Tunneling density of states at the impurity site . . . . . . . . . . . . . . . . . . . . . . . . . 39

10.D.1 Free tunneling density of states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
10.D.2 Effect of an impurity on ρdos(ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
10.D.3 Discussion of the controversy regarding ρdos(ω). . . . . . . . . . . . . . . . . . . . . . 43

A Relation between field-theoretical and constructive bosonization 44

A.1 Definition of boson fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
A.2 Bosonization postulate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
A.3 Relation between our notation and that of Shankar . . . . . . . . . . . . . . . . . . . . . . . 45

B Completeness of boson representation 46

C Useful identities 47

D More on Klein factors 49

D.1 Why Klein factors are often ignored . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

D.2 The Notation F †
η = eiθ̂η . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

D.3 Fermionic representation of F †
η . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

E Remarkable cancellations involving bosonization 52

F Checking anti-commutators 53

G Point-splitting 54

G.1 Operator product expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
G.2 Point splitting versus normal ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
G.3 Evaluating point-split products of Fermion Fields using Bosonization . . . . . . . . . . . . . 55

H Free Green’s functions 57

H.1 The limit T = 0 for L 6= ∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
H.1.a Fermion correlation function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
H.1.b Boson correlation function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

H.2 The limit L→ ∞ for T 6= 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
H.2.a Fermion correlation function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
H.2.b Boson correlation function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

I Finite-size diagonalization of backscattering Hamiltonian H ′
+ 60

J Asymptotic analysis of various correlators 62

J.1 The “total current” correlator 〈N̂+(t)N̂+(0)〉′ . . . . . . . . . . . . . . . . . . . . . . . . . . 62
J.2 Checking that DαdV−1(t) ∼ (it)−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

J.3 Leading connected contributions to 〈αd(t)Φn+(t)Φn
′

+ (0)αd(0)〉′ . . . . . . . . . . . . . . . . . 66
J.4 Leading contributions to DLR(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



4 Ann. Physik 4 (1998)

K Coulomb gas representation for DB 69

1 Introduction

1-Dimensional abelian1 bosonization is a technique for representing 1-D fermion fields ψη(x), where η is a
species (e.g. spin) index, in terms of bosonic fields φη(x) through a relation of the form2 ψη ∼ Fη e

−iφη ,
where Fη is a so-called Klein factor which lowers the number of η-fermions by one. Over the years, it
has become a rather popular tool for treating certain strongly-correlated electron systems in 1 dimension.
The reason for its popularity is that some problems which appear intractable when formulated in terms
of fermions turn out to become easy, even trivial, when formulated in terms of boson fields – successful
applications include Tomonaga-Luttinger liquid theory (dealing with a quantum wire of interacting 1-D
electrons), quantum Hall edge states and quantum impurity problems such as the Kondo problem.

Once one has learnt the “bosonization rules”, the formalism is very user-friendly – one seldom needs to
know more than how to work with free boson fields. However, as often happens, actually proving the validity
of the bosonization formalism in explicit detail and ironing out all the subtleties is substantially harder
than simply applying it. The successive efforts of quite a number of pioneers was required to piece together
the puzzle, of which we mention just a few milestones (brief overviews of historical developments are also
given in Refs. [3] and [4]). Tomonaga [5] was the first to identify boson-like behavior of certain elementary
excitations in a 1-D theory of interacting fermions. A precise definition of these bosonic excitations in
terms of bare fermions was given by Mattis and Lieb [6], who took the first step towards a correct solution
of a model of interacting 1-D fermions earlier proposed by Luttinger [7]. A bosonic representation of a
fermion field at a single point, essentially of the form ψη(x = 0) ∼ e−iφη(x=0), was first introduced by
Schotte and Schotte [8] to calculate x-ray edge transition rates. The extension of their relation to arbitrary
x, ψη(x) ∼ e−iφη(x), was discovered simultaneously by Mattis [9] and by Luther and Peschel [10], which
made the systematic calculation of general correlation functions very simple. However, their expressions
for ψη(x) were not operator identities in Fock space, since they did not discuss the number-lowering Klein
factors Fη. The first completely precise bosonization relation in the solid-state literature (though from a
field-theoretical viewpoint) was given by Heidenreich [11] when discussing the model of [10] (there was an
entirely parallel development in the field-theoretical literature on the the related “massless Thirring model”
[12, 13], a review of which lies beyound our scope). The first explicit construction of the Klein factors Fη
in terms of bare fermionic operators was given by Haldane [14], whose detailed discussion in [4] essentially
completed the development of the bosonization formalism.

These advances resulted in two somewhat different and not entirely equivalent approaches, which we
shall call “field-theoretical” and “constructive”, respectively.

1.A Field-theoretical versus constructive bosonization

We recapitulate the differences between field-theoretical and constructive bosonization, and explain why we
strongly prefer the latter, which is more rigorous and, we believe, more user-friendly.

The field-theoretical approach, examples of which are summarized in Appendix A (following Shankar
[15]) or in Section 10.B.3 (following Kane and Fisher [16]), has a somewhat formal character: typically
one starts by defining bosonic fields φη(x) with a set of prescribed properties, usually in a system of
infinite size, and then uses field-theoretical machinery to calculate the commutation relations and Green’s
functions of e−iφη(x) and eiφη(x). These turn out to be the same as those of fermion fields ψη(x) and

1We discuss only abelian bosonization. For a review of non-abelian bosonization, see [1] or [2].
2Alternative notations are discussed in Sections 10.A.4, 10.B.3, A.3 and D.2.
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ψ†
η(x), suggesting their formal correspondence, so that one writes ψη(x) ∼ Fηe

−iφη(x). The so-called Klein

factors Fη (often denoted by e−iθη , or viewed as Majorana fermions) are included formally to guarantee

appropriate anti-commutation relations ({ψη, ψ†
η′} = 0 if η 6= η′). Some treatments also get by completely

without Klein factors, using instead appropriately contrived definitions of the φη(x) fields (see Appendix A
for an example).

Such field-theoretical approaches are completely adequate to prove that bosonization works; however,
they do not really clarify why it works. Moreover, φη(x) and Fη do not appear naturally from first principles,
but instead seem to have the status of mere auxiliary quantities that are introduced somewhat artificially,
with properties that must be fine-tuned to make things work. Newcomers may be left with the sense
that ψη(x) ∼ Fηe

−iφη(x), though demonstrably true, is a somewhat arbitrary coincidence, without clearly
understanding its origin and how it could possibly have been discovered.

These issues are clarified in the more rigorous “constructive” approach, used e.g. by Mattis and Lieb [6],
Luther and Peschel [10] and Emery [3], and nurtured to maturity by Haldane, whose 1981 paper [4] is the
standard reference. This approach refrains from using any formal field-theoretical machinery. Instead, it

takes as starting point a fermion field ψη(x) =
(

2π
L

)1/2∑
k e

−ikxckη in a system of finite size L (this quantizes
the momenta, yielding a Hilbert space with a countable set of states, which is crucial), and constructs (hence
“constructive”) all further operators and fields explicitly and naturally in terms of the initially given ckη-
operators (these constructions are summarized in Table 1 on p. 8). The entire bosonization formalism
can then be derived deductively at a most elementary level as a set of operator identities in Fock space,
simply by judiciously employing standard operator identities like the Baker-Hausdorff lemma to manipulate
functions of the electron operators ckη.

At present, the field-theoretical approach seems to be in much wider use than the constructive one
(perhaps because Haldane’s discussion of his construction of Klein factors [4] can appear complicated
and hard to follow, though unneccessarily so). For example, it is used extensively in the path-breaking
work of Kane and Fisher on impurities in Tomonaga-Luttinger liquids [16] (we review their notation in
Section 10.B.3). Nevertheless, this tutorial reviews and strongly advocates the constructive approach, since
in our opinion it is significantly superior, for a number of reasons (admittedly the last three are subjective):

1. Constructive bosonization is more rigorous: ψη ∼ Fηe
−iφη has the status of an operator identity in

Fock space, and since its ingredients are constructed explicitly from the ckη’s, their physical meaning
becomes explicit: ∂xφη(x) represents local density fluctuations (at fixed total fermion number) of the
Fermi sea, and the Klein factor Fη lowers the total number of η-fermions by one. In contrast, in the
field-theoretical approach the Fock space of states is not explicitly defined, and ψη ∼ Fηe

−iφη merely
has the status of a formal correspondence. Though ∂φη(x) can also be related to density fluctuations,
the Klein factors Fη usually are viewed merely as formal tools ensuring proper anti-commutation
relations, and the fact that they lower the number of η-electrons is ignored. This is particularly
evident in papers in which Fη are viewed as a Majorana fermions, which is imprecise: in fact F 2

η 6= 1,
since removing two η-electrons is not equivalent to unity.

2. In the constructive approach, refermionization is more rigorous too: the refermionization identity, in
which the bosonization identity is “read backwards”, so to speak, also has the status of an operator
identity in Fock space.

3. The constructive approach is more “user-friendly” (because of, not in spite of, its higher rigor): since
all needed operators arise naturally and have a physical interpretation, the formalism is easier to learn
and to work with. In contrast, field-theoretical bosonization is, due to its formal nature, littered with
formal pitfalls. Of course it also yields correct results when used with sufficient care – however,
regarding Klein factors it is quite easy to make mistakes (Ref. [27] discusses an example).
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4. Constructive bosonization offers a very simple answer to the question: “Why is it possible at all
to represent a fermionic field as the exponential of a bosonic field?” The essence of the answer is
that the state ψη(x)|~0〉0, where |~0〉0 is the Fermi ground state, turns out to be an eigenstate of the

bosonic operators bqη from which the boson field φη(x) = −∑q>0

(
2π
qL

)1/2

(e−q(ix+a/2)bqη + h.c.). is

constructed. Therefore it must have a coherent state representation in terms of the b†qη’s, which turns

out to be precisely ∼ Fηe
−iφη(x)|~0〉0. Thus, one discovers that the trick that makes bosonization work,

its raison d’etre, so to speak, is that it cleverly exploits some very convenient properties of bosonic
coherent states!

5. In constructive bosonization, regularizing infinities is easier: one simply consistently normal-orders all
ck’s and bq’s. Instead, field-theoretical treatments customarily employ a point-splitting prescription
that becomes rather cumbersome when terms of order 1/L are to be retained, as here (or [17, 18]). Of
course, normal-ordering and point-splitting are equivalent regularization schemes, see Appendix G.

In this tutorial we give a (at times very) detailed account of the constructive approach to bosonization,
at a level accessible to beginning graduate students with a knowledge of second quantization, but not of
field theory. Our development of the formalism is a simplified version of that given by Haldane [4] (the
relation between his and our notation is given in Section 10.A.4). Ours differs from Haldane’s mainly
in that we use only left-moving fields (it is easy to rewrite some of them as right-movers, if required,
see Section 10.A), and in that we exploit to the full the above-mentioned connection to the properties of
boson coherent states. (Another discussion of constructive bosonization similar in spirit to ours was recently
written by Schönhammer and Meden [19, 20].)

1.B Application to Tomonaga-Luttinger liquid with impurity

To give a non-trivial example of how the formalism is used, we discuss impurity scattering in a Tomonaga-
Luttinger liquid; this requires not only bosonization but also refermionization, a rigorous, novel treatment
of which allows us to resolve a recent controversy.

In Section 10 we consider the tunneling density of states, ρdos(ω), at the site of an impurity in a
Tomonaga-Luttinger liquid [5, 7], i.e. a quantum wire of interacting 1-D electrons characterized by the
dimensionless electron-electron interaction parameter g > 0 (for free electrons g = 1). The exponent ν
governing the low-energy behavior of ρdos(ω) ∼ ων−1 as ω → 0, was the subject of a recent controversy:
Without impurities, it is known that νfree = (g + 1/g)/2. In the presence of an impurity, Oreg and
Finkel’stein (OF) [21] found ν = 1/(2g), using an exact mapping to a Coulomb gas problem, which they
treated in a mean-field approximation; this would imply that ν < νfree, i.e. ρdos(ω) is enhanced, and
actually diverges for ω → 0 if g > 1/2. In contrast, Fabrizio and Gogolin (FG) [23] and Furusaki [22]
found ν = 1/g, which would imply that for repulsive interactions (g < 1) one has ν > νfree, i.e. ρdos(ω)
is suppressed, with ρdos(0) = 0 (reminiscent of the classical RG conclusion of Kane and Fisher [16] that
the conductance accross a backscattering impurity vanishes at zero temperature if g < 1). Furusaki [22]
checked his result for the exactly solvable case g = 1/2 (using refermionization, the inverse, so to speak,
of bosonization), and indeed found ν = 2. To explain why OF had obtained a different result, FG [23]
suggested that OF had neglected the effects of Klein factors. OF disputed this [24] and in turn alledged
that FG had incorrectly replaced the impurity by “open boundary conditions”, although the two are in
general not equivalent: a “cut wire” suppresses both current and density fluctuations, whereas an impurity
suppresses only current fluctuations.

Our opinion of these matters is explained in detail in Section 10.D.3 and Appendix J.1. In brief, we
believe (i) that FG’s analysis of the role Klein factors is correct, but not their criticism of OF; (ii) that
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OF did treat Klein factors correctly (see our Appendix K), showing that they produce a Coulomb gas
with a certain “sign problem”, but that OF’s mean-field treatment of the latter is not sufficiently accurate;
(iii) that OF’s assertion about the inequivalence of an impurity and a “cut wire” is correct, but that their
criticism of FG is misguided nevertheless, since FG do incorporate density fluctuations and use the cut
wire only to find the effects of current fluctuations; (iv) that the relevant issues become much clearer when
reformulated using constructive instead of the field-theoretic bosonization used by FG, OF and Furusaki.
Using the former, we give an appealingly simple yet more rigorous version of Furusaki’s g = 1/2 calculation
(he nonrigorously treats Klein factors as Majorana fermions), which resolves the controversy in favor of FG
and Furusaki.

To set the stage for this calculation, we discuss refermionization in pedagogical detail in Section 10.C.2.
We refermionize at finite L, since then the requisite Klein factors can be introduced as naturally and
rigorously as during bosonization. Moreover, we refermionize not only the usual combination Fe−iΦ(x), but,
for the first time, also the bosonic field Φ(x) itself; this enables us to calculate general bosonic correlation
functions in terms of fermionic ones. Since refermionization is usually implemented less rigorously, our
treatment of this topic might be of interest to experts too, hence the second part of the review’s title.

1.C Outline and bosonization dictionary

The outline of the review is as follows: The main ingredients of the constructive approach to bosonization are
summarized in Table 1 below, for ease of reference and to survey what is to be proven in subsequent sections.
In Section 2 we state the properties required to make a 1-D fermion theory amenable to bosonization, and
in Section 3 define the standard fermion fields ψη(x) as Fourier sums over a given set of ckη’s. In Section 4
we show that the fermionic Fock space spanned by the ckη’s can also be reorganized in terms of the electron

number operators N̂η, their raising and lowering operators Fη, F
†
η and bosonic particle-hole operators bqη,

b†qη, and construct from the latter the boson fields φη(x) in Section 5. The heart of this review is Section 6,
where we give a very simple yet rigorous and detailed derivation of the bosonization identity. In Section 7
we consider fermions with linear dispersion and bosonize the Hamiltonian, in Section 8 derive a remarkable
relation between free fermion and boson Green’s functions, and in Section 9 derive some general properties

of the so-called vertex operators V
(η)
λ ∼ eiλφη . In Section 10 we illustrate the formalism by calculating the

tunneling density of states ρdos(ω) at an impurity site in a g = 1
2 Tomonaga-Luttinger liquid.

In Appendix A we make explicit the connection between the constructive and field-theoretical ap-
proaches to bosonization (as described by Shankar [15]), by showing how the operators used in the latter
can be constructed in terms of the former. The remaining appendices contain details somewhat too arduous
to appear in the main text.
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starting point: {ckη, c†k′η′} = δηη′δkk′ (η = 1, . . . ,M) (1)

k-quantization: k = 2π
L (nk − 1

2δb) (δb ∈ [0, 2), nk ∈ Z) (2)

vacuum state: ckη|~0〉0 ≡ 0 for k > 0, c†kη|~0〉0 ≡ 0 for k ≤ 0 (10)

number operator: N̂η ≡∑k
∗
∗c

†
kηckη

∗
∗ =

∑
k

[
c†kηckη − 0〈~0|c†kηckη|~0〉0

]
(13)

boson creator: b†qη ≡ i√
nq

∑
k c

†
k+q ηckη (q = 2π

L nq > 0, nq ∈ Z
+) (16)

boson commutator: [bqη, b
†
q′η′ ] = δηη′δqq′ (18)

~N -part. ground st.: N̂η| ~N〉0 = Nη| ~N〉0 , bqη| ~N〉0 = 0 (15, 20)

def. of Klein factor: F †
ηf(b†)| ~N〉0 ≡ f(b†)c†Nη+1| ~N〉0 (25) [or (D15)]

F commutators: [F, b] = 0, {F †
η , Fη′} = 2δηη′ , [N̂η, Fη′ ] = −δηη′Fη (24, 30, 32)

fermion field: ψη(x) ≡
(

2π
L

)1/2∑
k e

−ikxckη (3)

ψη commutator: {ψη(x), ψ†
η(x

′)} = δηη′ 2π δ(x− x′) (for |x− x′| < L) (8)

boson field: φη(x) ≡ −∑q>0
1√
nq

(
e−iqxbqη + eiqxb†qη

)
e−aq/2 (34)

φη, ∂xφη commutator: [φη(x), ∂x′φη′(x
′)] = δηη′ 2πi

(
δ(x− x′) − 1

L

)
(50)

bosonization identity: ψη(x) = Fη a
−1/2e−i

2π
L (N̂η− 1

2 δb)xe−iφη(x) (63)

(2π) density: ρη(x) ≡ ∗
∗ψ

†
η(x)ψη(x)

∗
∗ = ∂xφη(x) + 2π

L N̂η (35)

free ferm. Hamilton: H0η ≡∑k k
∗
∗c

†
kηckη

∗
∗ =

∫ L/2
−L/2

dx
2π

∗
∗ψ

†
η(x)i∂xψη(x)

∗
∗ (65, 66)

bosonized Hamilton: =
∑
q>0 q b

†
qηbqη + 2π

L
1
2N̂η(N̂η + 1 − δb) (69)

=
∫ L/2
−L/2

dx
2π

1
2
∗
∗(∂xφη(x))

2 ∗
∗ + (2π

L )1
2N̂η(N̂η + 1 − δb) (70)

Green’s functions: 〈T ψη(z)ψ†
η′(0)〉 = δηη′ a

−1 sign(τ) e〈T φη(z)φη(0)−φη(0)φη(0)〉 (78)

(z ≡ τ + ix) = δηη′
(
β
π sin[πβ (z + a sign(τ))]

)−1 T=0−→ 1
z+a sign(τ) (73)

vertex operator: V
(η)
λ (z) ≡

(
L
2π

)−λ2/2 ∗
∗e
iλφη(z)∗

∗ = a−λ
2/2eiλφη(z) (85)

V
(η)
λ Green’s funct.: 〈V (η)

λ (z)V
(η′)
λ′ (0)〉 =

δηη′ (L/2π)−(λ+λ′)2/2

(
β
π sin[πβ (z + a)]

)−λλ′
L=β=∞−→ δηη′ δ−λ,λ′

(z+a)λ2 (87)

Table 1: Bosonization Dictionary: A survey of the main ingredients and results of the constructive bosonization

formalism (with the equation numbers used below), listed here for ease of reference.
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2 Bosonization prerequisites

It is possible to constructively bosonize a theory involving M species of fermions whenever the following
prerequisites are met: The theory can be formulated in terms of a set of fermion creation and annihilation
operators with canonical anti-commutation relations

{ckη, c†k′η′} = δηη′δkk′ , k ∈ [−∞,∞], η = 1, . . . ,M, (1)

which are labelled by a species index η = 1, . . . ,M distinguishing the M different species from each other,
and a discrete, unbounded momentum (or wave-number) index k of the form

k = 2π
L (nk − 1

2δb) , with nk ∈ Z and δb ∈ [0, 2) . (2)

Here the nk are integers, L is a length to be associated with the system size, and δb is a parameter that
will determine the boundary conditions of the fermion fields defined below [see Eq. (5)].

For example, η can denote electron spin: η = (↑, ↓), M = 2; or it can distinguish left-moving from
right-moving spinless electrons, e.g. in a one-dimensional wire: η = (L,R), M = 2, see Section 10; or both:
η = (L↑, R↑, L↓, R↓), M = 4, etc. The momentum index k typically labels the eigenergies εk of the free,
non-interacting system (with ε0 corresponding to the Fermi-energy εF ), and hence could equally well have
been called an “energy” index. That k be discrete and unbounded is an essential prerequisite of a detailed
and systematic derivation of the bosonization identities. Its discreteness is needed to allow systematic book
keeping of states, its unboundedness to allow the definition of proper bosonic operators, see Eq. (16) to
(18) below.

The manipulations required to cast a given problem in a form that meets the above prerequisites
depends, of course, on the details of the problem. However, they are a prelude to bosonization, not part
of the technique itself. Therefore, we do not discuss them here, but refer the reader to Section 10.A for an
example, a 1-D quantum wire containing spinless left- and right-moving electrons (for another example, the
Kondo problem, see Refs. [17, 18]). Suffice it here to state the main ideas: To ensure that k is discrete, one
considers a system of finite size L and definite boundary conditions, thus quantizing the momenta k and
energies εk. If the continuum limit L → ∞ is required, it is taken only at the end, after the bosonization
rules have been established. If the dispersion relation does not automatically imply that k is unbounded,
one can make it so by adding a set of (unphysical) negative-energy “positron” states (see Section 10.A).

For definiteness, the reader may think in terms of a linear dispersion relation, εk = ~vF (k − kF )
(i.e. energies and momenta are measured relative to εF and kF ), with an infinite bandwidth, so that
k ∈ [−∞,∞]. However, we emphasize that the bosonization identity ψη = Fηe

−iφη can be derived without
specifying the dispersion relation (though the nomenclature to be used, like “ground state” and “particle-
hole excitations” only makes sense when the dispersion is monotonic, i.e. |k| > |k′| ⇒ εk > εk′). This is
possible because the bosonization identity is an operator identity, i.e. valid when acting on any state in the
full Fock space. Hence it is independent of the Hamiltonian, whose detailed form only becomes relevant
when one calculates correlation functions. Therefore, we shall refrain from specifying a Hamiltonian until
Section 7, after all bosonization formalities have been dealt with.
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3 Fermion fields – definition and properties

Starting from given a set of electron annihilation operators ckη with the properties (1) and (2) specified in
Section 2, a set of M fermion fields ψη(x) can be defined as follows:3

ψη(x) ≡
(

2π
L

)1/2 ∞∑

k=−∞
e−ikxckη , (3)

with inverse ckη = (2πL)−1/2

∫ L/2

−L/2
dx eikx ψη(x) . (4)

Though in applications one usually takes x ∈ [−L/2, L/2] (and often L → ∞), the formalism developed
below holds for arbitrary x ∈ [−∞,∞]. The physical meaning of the ψη(x)-fields and the variable x depends
on the manipulations required to formulate a given model in terms of the ckη’s. For present purposes, the
ψη(x)’s are to be regarded simply as mathematical constructs that have the useful property, to be proven
below, of being expressable in terms of bosonic fields.

Given a set of discrete k’s of the form (2), the ψη obey the following periodicity condition [the simplest
cases are δb = 0 (or 1) for complete periodicity (or anti-periodicity)]:

ψη(x+ L/2) = eiπδb ψη(x− L/2) . (5)

(Alternatively, one can view Eq. (5) as a boundary condition that is purposefully imposed on the ψη in
order to obtain discrete k’s satisfying Eq. (2).) Furthermore, Eqs. (1) and (2) and the identity [26]

∑

n∈Z

einy = 2π
∑

n̄∈Z

δ(y − 2πn̄) (6)

immediately imply the anti-commutation relations

{ψη(x), ψ†
η′ (x

′)} = δηη′
2π
L

∑

n∈Z

e−i(x−x
′)(n−δb/2)2π/L (7)

= δηη′ 2π
∑

n̄∈Z
δ(x− x′ − n̄L)eiπn̄δb ; (8)

{ψη(x), ψη′ (x′)} = 0 . (9)

For x, x′ ∈ [−L/2, L/2], these are just the standard4 relations obeyed by fermion fields. For unrestricted
values of x, x′, one obtains a more general δ-function with appropriate periodicity.

4 Bosonic reorganization of Fock space

“Bosonizing” a fermionic theory means rewriting it in terms of bosonic degrees of freedom. The “deep
reason” why this is possible for 1-D fermion theories is that the Fock space F of states spanned by the
ckη operators can be reorganized as a direct sum, F =

∑
⊕ ~N H ~N over Hilbert spaces H ~N characterized

3There is no particular reason for the choice of phase in Eq. (3), namely e−ikx instead of eikx; the former defines so-called
left-moving fields, the latter right-moving fields (this nomenclature is explained in footnote 10), and the two are related simply
by x↔ −x. In Section 10.A we shall use both kinds of fields.

4Note though, that many authors use normalization (1/L)1/2 instead of our (2π/L)1/2 in Eq. (3), so that in Eq. (8) their
fields are normalized to 1 instead of our 2π. The advantage of our normalization (used e.g. in conformal field theory), is that
correlation functions are normalized to unity, 〈ψ(x)ψ†(0)〉 = 1/(ix), see Eq. (73).
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by a fixed particle number ~N , within each of which all excitations are are particle-hole-like and hence
have bosonic character. In this section, we define the concepts and operators needed to accomplish this
reorganization.

4.A Vacuum state |~0〉0
Let |~0〉0 be the state defined by the properties

ckη|~0〉0 ≡ 0 for k > 0, (i.e. nk > 0) , (10)

c†kη|~0〉0 ≡ 0 for k ≤ 0, (i.e. nk ≤ 0) . (11)

and illustrated for M = 1 in Fig. 1(a). In other words, for all η, the highest filled level of |~0〉0 is by definition
labeled by nk = 0 and the lowest empty level by nk = 1 (irrespective of δb ∈ [0, 2)). We shall call |~0〉0 the
vacuum state (Fermi sea would be equally appropriate) and use it as reference state relative to which the
occupations of all other states in F are specified. In particular, we define the operation of fermion-normal-
ordering, to be denoted by ∗

∗
∗
∗, with respect to this vacuum state: to fermion-normal-order a function

of c and c†’s, all ckη with k > 0 and all c†kη with k ≤ are to be moved to the right of all other operators

(namely all c†kη with k > 0 and ckη with k ≤ 0) , so that

∗
∗ABC . . .

∗
∗ = ABC . . . − 0〈~0|ABC . . . |~0〉0 for A,B,C, . . . ∈ {ckη; c†kη} . (12)

4.B ~N-particle ground states | ~N〉0
Let N̂η be the operator that counts the number of η-electrons relative to |~0〉0:

N̂η ≡
∞∑

k=−∞

∗
∗c

†
kηckη

∗
∗ =

∞∑

k=−∞

[
c†kηckη − 0〈~0|c†kηckη|~0〉0

]
. (13)

The set of all states with the same N̂η-eigenvalues ~N = (N1, . . . , NM ) ∈ Z
M will be called the ~N -particle

Hilbert space H ~N . It contains infinitely many states, corresponding to different configurations of particle-

hole excitations, all of which will generically be denoted by | ~N〉.
Furthermore, for given ~N , let | ~N〉0 be that particular ~N -particle state which has no particle-hole

excitations; since it is the lowest-energy state in H ~N , we shall call it the ~N -particle ground state. To resolve
ambiguities in its phase, we define it by specifying a particular ordering of operators (for ease of notation,
we here use nk instead of k as index):

| ~Nη〉0 ≡ (C1)
N1(C2)

N2 . . . (CM )NM |~0〉0 , (14)

(Cη)
Nη ≡






c†Nη η
c†(Nη−1) η . . . c

†
1 η for Nη > 0 ,

1 for Nη = 0 ,
c(Nη+1) ηc(Nη+2) η . . . c0 η for Nη < 0 .

(15)

4.C Bosonic particle-hole operators b†qη and bqη

Since all excited states within a given ~N -particle Hilbert space have the same ~N , they can all be regarded as
particle-hole excitations built on the ground state | ~N〉0. We shall see below that for a systematic treatment
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Figure 1: For the case M = 1 (i.e. the index η suppressed) we depict (a) the vacuum state |0〉0 (the
wiggly line indicates the “Fermi surface”), the action of F on the −2-particle ground state |−2〉0, which

yields |−3〉0, and the action of F † on the 0-particle excited state ic†1c0|0〉0 = b†1|0〉0, which yields b†1|1〉0 [see

Eqs. (25-26)]; (b) the action of b†3 on |0〉0 [see Eq. (16)]; (c) the action of b1 on c†2c
†
0c

†
−2|−3〉0 [see Eq. (16)].
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of all such operators it suffices to consider only the following bosonic creation and annihilation operators
(both defined only for q > 0):

b†qη ≡ i√
nq

∞∑

k=−∞
c†k+q ηckη , bqη ≡ −i√

nq

∞∑

k=−∞
c†k−q ηckη , (16)

with q ≡ 2π
L nq > 0, where nq ∈ Z

+ is a positive integer. For any | ~N〉, the state b†qη| ~N〉 (or bqη| ~N〉)
consists of a linear combination of particle-hole excitations relative to | ~N〉, each term having q units of

momentum more (or less) than | ~N〉, as illustrated in Fig. 1(b-c). In this sense, b†qη and bqη can be viewed as
momentum-raising or -lowering operators [they can also be identified with the Fourier-components of the
electron density, see Eq. (36)]. Their normalization is purposefully chosen to produce harmonic oscillator
commutation relations:

[bqη, bq′η′ ] = [b†qη, b
†
q′η′ ] = 0 , [Nqη, bq′η′ ] = [Nqη, b

†
q′η′ ] = 0 , for all q, q′, η, η′ ; (17)

[bqη, b
†
q′η′ ] = δηη′

∞∑

k=−∞

1
nq

(
c†k+q−q′ηckη − c†k+qηck+q′η

)

= δηη′δqq′
∑

k

1
nq

{[
∗
∗c

†
kηckη

∗
∗ − ∗

∗c
†
k+qηck+qη

∗
∗
]

+
(

0〈~0|c†kηckη|~0〉0 − 0〈~0|c†k+qηck+qη|~0〉0
)}

= δηη′δqq′ . (18)

Eqs. (17) are easily checked, but the derivation of (18) requires some care, as first pointed out by Mattis and
Lieb [6]: For q 6= q′ the two terms in the first line are both normal-ordered, and hence no subtleties can arise
when subtracting them from each other to get zero (by shifting k → k − q′ in the second term). However,
for q = q′, before subtracting we first have to construct in the second line normal-ordered expressions (else
we would be subtracting infinite expressions in an uncontrolled way). The normal-ordered terms in the
second line cancel, as can be seen by writing k + q = k′ in the second term (this is allowed, since they are
normal ordered, hence relabellings cannot produce problems). The definition of |~0〉0 in Eqs. (10) and (11)
implies that the remaining difference in expectation values in the second line gives

1

nq

(
0∑

nk=−∞
−

−nq∑

nk=−∞

)
=

1

nq
nq = 1 . (19)

Note that the construction (16) of bqη and the derivation of its commutators (18) heavily rely on the set of
k’s being unbounded from below, which is why this property was stipulated in Section 2 to be a prerequisite
for bosonization.

4.D Bosonic ground states | ~N〉0
Using Eq. (15), it is easy to verify that in each ~N -particle Hilbert space H ~N , | ~N〉0 serves as vacuum state
for the bosonic excitations:

bqη| ~N〉0 = 0 , for all q, η . (20)

Intuitively, the reason is clear: Since | ~N〉0 is the ~N -particle ground state, it does not contain any particle-
hole excitations.
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With respect to these boson vacuum states, one can define the operation of boson-normal-ordering, as
follows: by definition, to boson-normal-order a function of b and b†’s, all bqη’s are to be moved to the right
of all b†qη’s, so that

∗
∗ABC . . .

∗
∗ = ABC . . . − 0〈 ~N |ABC . . . | ~N〉0 ; , for A,B,C, . . . ∈ {bqη; b†qη} . (21)

We use the same notation ∗
∗

∗
∗ for boson as for fermion normal ordering, because a boson normal-ordered

expression is automatically fermion normal ordered, as follows by taking ~N = ~0 in Eq. (21). Conversely, if a
product purely of boson operators is fermion normal-ordered, i.e. if 0〈~0|ABC . . . |~0〉0 = 0, then automatically

0〈 ~N |ABC . . . | ~N〉0 = 0 will hold for any ~N , i.e. the product is also boson normal-ordered.

4.E Completeness of states in bosonic representation

It is obvious that every state | ~N〉 in the ~N -particle Hilbert space H ~N can be obtained by acting on

the corresponding ground state | ~N〉0 with some function of bilinear combinations of fermion operators:

| ~N〉 = f(c†kηck′η)| ~N〉0. Remarkably, a much less obvious representation in terms of b†qη’s also exists, namely:

For every | ~N〉, there exists a function f(b†) of b†s such that | ~N〉 = f(b†)| ~N〉0. (22)

i.e. the b†’s, acting on | ~N〉0, span the complete ~N -particle Hilbert space H ~N .

(It is clearly not necessary to consider functions f(b†, b) of b too, since b| ~N〉0 = 0.) This is a highly non-
trivial statement, since the b†’s, being infinite sums, create complicated linear combinations of particle-hole
excitations. For example, it is not at all obvious that even a state as simple as c†kck′ | ~N〉0 can be written in
the form of Eq. (22).

To make plausible the validity of assertion (22), we offer here a (logically non-rigorous) “circular argu-
ment”: By Eq. (4), we have

c†kηck′η =
1

2πL

∫ L/2

−L/2
dx

∫ L/2

−L/2
dx′ ei(k

′x′−kx) ψ†
η(x)ψη(x

′) . (23)

Now, if one assumes that assertion (22) holds, the validity of the bosonization rules can readily be established
(as shown below). As we shall see, they imply that ψ†

η(x)ψη(x
′) can be expressed purely in terms of the b†qη

and bqηs. Therefore f(c†kηck′η)| ~N〉0 has the form (22) [using Eq. (23), rearranging its right-hand-side into
boson-normal-ordered form and exploiting Eq. (20)], so that we have “proven our starting assumption”.

Readers that find circular arguments unconvincing are referred to Appendix B for a rigorous proof of
assertion (22).

4.F Klein factors F †
η and Fη

As final bosonization ingredient, one has to define “ladder operators” that connect the various ~N -particle
Hilbert spaces, i.e. raise or lower the total fermion number by one, which no combination of bosonic
operators can ever do. As a bonus, they also ensure that fermion fields of different species anticommute.
Following the notation of Kotliar and Si [27], we shall call these ladder operators Klein factors and denote
them by F †

η and Fη. (In Haldane’s paper, they are denoted by U and U−1, see p. 2593 of Ref. [4]; for
earlier discussions of such operators, see also [28, 29, 30].)

We define the Klein factors F †
η and Fη to be operators with the following properties: Firstly, they

commute with all bosonic operators:

[bqη, F
†
η′ ] = [b†qη, F

†
η′ ] = [bqη, Fη′ ] = [b†qη, Fη′ ] = 0 for all q, η, η′ . (24)
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Secondly, their action on a general ~N -particle state | ~N〉, which can always be “factorized” as in (22) into a

set of particle-hole excitations f(b†) acting on the corresponding ~N -particle ground state, | ~N〉 = f(b†)| ~N〉0,
is thus defined:

F †
η | ~N〉 ≡ f(b†)c†Nη+1|N1, . . . , Nη, . . . NM 〉0 ≡ f(b†)T̂η|N1, . . . , Nη + 1, . . .NM 〉0 ; (25)

Fη| ~N〉 ≡ f(b†)cNη |N1, . . . , Nη, . . . NM 〉0 ≡ f(b†)T̂η|N1, . . . , Nη − 1, . . .NM 〉0 . (26)

This is illustrated in Fig. 1(a) and can be visualized as follows: F †
η (or Fη) commutes past f(b†) and then

adds (or removes) an η-electron to the lowest empty (from the highest occupied) η-level of | ~N〉0; this results

in a new ground state, namely c†Nη+1| ~N〉0 (or cNη | ~N〉0), on which the set of particle-hole excitations f(b†)

is then recreated. Thus the state F †
η | ~N〉 (or Fη| ~N〉) has the same set of bosonic excitations as the state

| ~N〉, but created on a ground state with one more (or less) η-electron.

The operator T̂η occuring in the last equalities in Eqs. (25) and (26), to be called the phase-counting
operator , is defined by

T̂η ≡ (−)
∑η−1

η̄=1 N̂η̄ . (27)

T̂η keeps track of the number of signs picked up when acting with a fermion operator ckη on | ~N〉0 to obtain

a different | ~N ′〉0:

ckη(C1)
N1 . . . (Cη)

Nη . . . (CM )NM |~0〉0 = T̂η(C1)
N1 . . . (Cη−1)

Nη−1ckη(Cη)
Nη . . . (CM )NM |~0〉0 . (28)

The properties (24) to (26) completely specify F †
η and Fη, and it is in principle not necessary to give a

“more explicit” construction of operators with these properties. Nevertheless, such a construction is in fact
easy to achieve: in Appendix D.3 we verify that, roughly speaking, the inverse of the bosonization identity,
F †
η ≃ a1/2e−iφη(0)ψ†

η(0), does the job [see Eq. (D15)]. The most straightforward explicit representation of
F , however, is in the bosonic representation [as first emphasized by Schönhammer[20], see his Eq.(B17)]:
since the Fock space of all states is spanned by a set of orthornormal basis states of the form |N ; {mq}〉 =
∏∞
q>0

b
†mq
q

(mq !)1/2 |N〉0 [compare Eq. (B5)], the properties (24) to (26) immediately imply

Fη =
∑

~N

∑

{mq}
|N1, . . . , Nη − 1, . . . NM ; {mq}〉〈N1, . . . , Nη, . . .NM ; {mq}| T̂η . (29)

In fact, this equation can be viewed as a self-sufficient definition of Fη, alternative but equivalent to (24)
to (26).

The defining properties (24) to (26) have the following consequences5: Firstly, since the spectrum of

N̂η is unbounded from above or below, Fη is unitary: F−1
η = F †

η . For this reason, it is often written as

F †
η ≡ eiθη , with θ = θ†. We prefer not to use this notation, customary in the “field-theoretic” approach to

bosonization, since it involves some (insufficiently well-known) subtleties and can lead to mistakes if used
incorrectly, as discussed in Appendix D.2.

5 Above, we took Eqs. (24) to (26) as the defining relations for Fη and F †
η , and derived (30) to (32) from them. Note that

if instead Eqs. (24) and (30) to (32) were used as definitions, the action of Fη and F †
η would be defined only up to a phase,

since Eq. (32) implies that F †
η | ~N〉0 is equal to | . . . , Nη + 1, . . .〉0 modulo a phase. To fix this phase, additional definitions

such as F †
η | ~N〉0 ≡ T̂η | . . . , Nη + 1, . . .〉0 are needed. Therefore, the approach chosen above is not only more explicit, but also

more economical.



16 Ann. Physik 4 (1998)

Secondly, the Klein factors can be checked to obey the following commution relations:

{F †
η , Fη′} = 2δηη′ for all η, η′ (with FηF

†
η = F †

ηFη = 1) ; (30)

{F †
η , F

†
η′} = {Fη, Fη′} = 0 , for η 6= η′ ; (31)

[N̂η, F
†
η′ ] = δηη′F

†
η , [N̂η, Fη′ ] = −δηη′Fη . (32)

5 Boson fields – definition and properties

We define the boson fields φη(x) as Fourier sums over the bqη and b†qη’s and derive some of their commonly-
used properties, treating factors of 1/L with uncommon care.

When bosonizing ψη(x) below, we shall find it useful to introduce the boson fields

ϕη(x) ≡ −
∑

q>0

1√
nq
e−iqxbqηe

−aq/2 , ϕ†
η(x) ≡ −

∑

q>0

1√
nq
eiqxb†qηe

−aq/2, (33)

and their Hermitian combination

φη(x) ≡ ϕη(x) + ϕ†
η(x) = −

∑

q>0

1√
nq

(
e−iqxbqη + eiqxb†qη

)
e−aq/2 . (34)

Here a > 0 is an infinitessimal mathematical regularization parameter needed to regularize ultraviolet
(q → ∞) divergent momentum sums that arise in certain non-normal-ordered expressions and commutators.
Although a is often taken to be on the order of a lattice spacing, i.e. a ≃ 1/kF , it was emphasized by
Haldane [4] that it “in no way plays the role of a ‘cut-off’ length”. Nevertheless, 1/a can be interpreted as a
kind of “effective band-width” (cf. the end of Section 10.C.2), in the sense that it represents the “maximum

momentum difference” for the c†k±qck-combinations occuring in φ. By construction, ϕη(x) and φη(x) are
periodic in x with period L. All properties of these fields follow directly from those [Eqs. (16) to (18)] of
the bqη, b

†
qη operators. Below we list some useful ones.

The normal-ordered electron density can be expressed in terms of the derivative field ∂xφη(x), as follows:

ρη(x) ≡ ∗
∗ψ

†
η(x)ψη(x)

∗
∗ = 2π

L

∑

q

e−iqx
∑

k

∗
∗c

†
k−q,ηckη

∗
∗ (35)

= 2π
L

∑

q>0

i
√
nq
(
e−iqxbqη − eiqxb†qη

)
+ 2π

L

∑

k

∗
∗c

†
kηckη

∗
∗ (36)

= ∂xφη(x) + 2π
L N̂η (for a→ 0) . (37)

Eq. (36) shows that the bqη and b†qη are simply proportional to the Fourier-components of the electron
density. (Note that the actual electron density is ρη/(2π), since we normalized our ψη-fields to 2π instead
of 1 in Eq. (8).)

The following commutators are often needed:

[ϕη(x), ϕη′ (x
′)] = [ϕ†

η(x), ϕ
†
η′ (x

′)] = 0 , (38)

[ϕη(x), ϕ
†
η′ (x

′)] = δηη′
∑

q>0

1
nq
e−q[i(x−x

′)+a] (39)

= − δηη′ ln
[
1 − e−i

2π
L (x−x′−ia)

]
(40)

L→∞−→ − δηη′ ln
[
i 2πL (x− x′ − ia)

]
. (41)
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Eq. (40) was obtained using ln(1 − y) = −∑∞
n=1 y

n/n. Note that a cuts off the ultraviolet divergence at
x = x′ that is typical of 1-D boson fields. The commutator (39) occurs, for example, when combining
exponentials of boson fields as follows, using identity (C4) of Appendix C:

eiϕ
†
η(x)eiϕη(x) = ei(ϕ

†
η+ϕη)(x)e[iϕ

†
η(x),iϕη(x)]/2 =

(
L

2πa

)1/2
eiφη(x) , (42)

e−iϕη(x)e−iϕ
†
η(x) = e−i(ϕη+ϕ†

η)(x)e[−iϕη(x),−iϕ†
η(x)]/2 =

(
2πa
L

)1/2
e−iφη(x) . (43)

Note that the left-hand side of Eq. (42) is boson-normal-ordered, whereas the right-hand side is not. This
is reflected in its prefactor factor a−1/2, which would diverge in the limit a→ 0.

The commutator of φη(x) with its derivative6 can be evaluated in two ways, depending on the order of
limits for L → ∞, a → 0. If one takes the limit L → ∞ first (but keeps terms of order 1/L), one obtains,
using Eq. (40):

[φη(x), ∂x′φη′(x
′)] = δηη′ i

2π
L

[
1

ei
2π
L (x−x′−ia) − 1

+
1

e−i
2π
L (x−x′+ia) − 1

]
(44)

L→∞−→ δηη′2πi

[
a/π

(x− x′)2 + a2
− 1

L

]
a→0−→ 2πi

[
δ(x− x′) − 1

L

]
. (45)

Alternatively, if for some reason one wants to recover the periodic δ-function, the limit L→ ∞ can not be
taken and instead one has to the limit a→ 0 first; using Eqs. (38), (39) and (6), one obtains

[φη(x), ∂x′φη′(x
′)] = δηη′ i

2π
L

∑

q>0

e−qa
(
e−iq(x−x

′) + eiq(x−x
′)
)

(46)

a→0−→ δηη′ 2πi

(
∑

n̄∈Z

δ(x− x′ − n̄L) − 1
L

)
, (47)

where the 1/L term in Eq. (47) is caused by the absence of a q = 0 term in Eq. (46). Note that retaining
the leading 1/L term in Eqs. (45) and (47) ensures their consistency with

∫ L/2

−L/2
dx′[φη(x), ∂x′φη′(x

′)] = 0 , (48)

which must hold since
∫ L/2
−L/2 dx

′∂x′φη′ (x
′) = φη′(L/2)− φη′(−L/2) = 0.

Finally, the commutator of φη(x) with itself can be found by integrating Eq. (45) over x′ over a region
near x, and fixing the integration constant by requiring that the commutator be zero for x = x′:

[φη(x), φη′ (x
′)]

L→∞−→ −δηη′ 2i

[
arctan [(x− x′)/a] − π(x − x′)/L

]
(49)

L=∞,a→0−→ −δηη′ iπ ǫ(x− x′) where ǫ(x) ≡
{

±1 for x
>
< 0 ,

0 for x = 0 .
(50)

Eq. (50) is the form cited most often, but Eq. (49) shows that the step-function is actually smeared over a
range a, and that there is a term of order 1/L.

6 In field-theoretical treatments, one often encounters the canonically conjugate field to φη(t, x), defined (in the Heisenberg
picture) by Πη(t, x) ≡ ∂tφη(t, x). If (as is usual) a linear dispersion is assumed, with vF = 1, then φη(t, x) = φη(t + x) and
Πη(t + x) = ∂xφη(t + x), so that Eq. (45) or (47) is the usual canonical commutation relation for boson fields.
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Figure 2: For the case M = 1 (i.e. the index η suppressed) we depict the action of ψ(x) on |0〉0 in two ways,
using either (a) the Fourier expansion of Eq. (3), ψ(x)|0〉0 ∼ ∑∞

n=0 y
nc−n|0〉0, where y = ei2πx/L; or (b)

the coherent state representation of Eq. (54), ψη(x)|0〉0 ∼ e−iϕ
†(x)F |0〉0. Although the second expansion

appears to contain many more excited states than the first, remarkable cancellations of prefactors (some
of which are investigated explicitly in Appendix E) guarantee that they are identical.
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6 Derivation of the bosonization identity

We use the definitions of the preceding sections to give a novel derivation of the famous bosonization
identities [(62) to (64)]. It is really quite straightforward, since we exploit some elementary properties of
boson coherent states, which follow from standard operator identities stated and derived in Appendix C.

6.A ψη| ~N〉0 is a boson coherent state

We show that ψη| ~N〉0 is an eigenstate of bqη and hence has a coherent-state representation.

The definitions (3) of ψη(x) and (16) of bqη imply that

[bqη′ , ψη(x)] = δηη′αq(x)ψη(x) , (51)

[b†qη′ , ψη(x)] = δηη′α
∗
q(x)ψη(x) , (52)

where αq(x) = i√
nq
eiqx. Now, since bqη| ~N〉0 = 0 [see Eq. (20)], Eq. (51) shows that ψη(x)| ~N 〉0 is an

eigenstate of the boson annihilation operator bqη, with eigenvalue αq(x):

bqη′ψη(x)| ~N 〉0 = δηη′αq(x)ψη(x)| ~N 〉0 . (53)

Hence this state must have a coherent-state representation of the form (see e.g. [31])

ψη(x)| ~N 〉0 = exp

[
∑

q>0

αq(x)b
†
qη

]
Fηλ̂η(x)| ~N 〉0 = e−iϕ

†
η(x)Fηλ̂η(x)| ~N〉0 , (54)

where Eq. (33) was used for the second equality.7 Here λ̂η is a phase operator to be derived below, and Fη is
needed because ψη removes exactly one η-particle, which the boson field ϕ†

η(x) of course cannot accomplish.
The representation (54) guarantees that Eq. (53) is satisfied, as can be seen by using identity (C3), with
A = bqη′ , B = −iϕ†

η(x), C = δηη′αq(x).
Eq. (54) is a rather remarkable relation, since it shows that the action of ψη(x) on |Nη〉 can be visualized

in two different ways, illustrated in Fig. 2 (and discussed in more detail in Appendix E): when ψη(x) is
represented by its standard Fourier expansion (3), it creates an infinite linear combination of single-hole

states,
(

2π
L

)1/2∑
k e

−ikxcnkη| ~N〉0. The right-hand side of Eq. (54) states that the same result can be

obtained in a different way: first Fη removes the highest η-electron in the ~N -particle ground state | ~N〉0 to

obtain a different ground state cNηη| ~N〉0, and then e−iϕ
†
η(x) creates on this a linear combination of hole states

through the action of the raising operators b†qη which it contains. Eq. (54) states that both ways produce the
same combination of single-hole states. This is a highly non-trivial statement, since intuitively one might

have expected that e−iϕ
†
η(x), which is after all an exponential of an infinite sum of particle-hole operators of

arbitrarly large momenta q, could produce much more complicated particle-hole excitations than the simple
linear combination of single-hole states produced by ψη(x). However, exploiting the remarkable properties
of coherent states, Eq. (54) guarantees that of all the multitude of combinations of particle-hole excitations

contained in e−iϕ
†
η(x), only those terms contribute, when acting on cNηη| ~N〉0, that fill its empty Nη-level

7 In Eq. (54), strictly speaking
∑

q>0 αq(x)b†qη = −iϕ†
η(x) holds only if the regularization parameter in definition (33) of

ϕ†
η(x) equals zero, a = 0. Thus, all the manipulations below, up to and including Eq. (62), hold even if one strictly takes

a = 0 (and regards −iϕ†
η(x) as shorthand for

∑
q>0 αq(x)b†qη). However, a a 6= 0 regularization parameter is required if one

wants to un-normal-order the final result (62) to obtain (63) — but un-normal-ordering is usually done merely for notational
convenience, and is never essential.
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by moving to the latter a single η-electron from some lower filled state, leaving behind a single lower-lying
hole; remarkably, all other particle-hole contributions (all of which would produce η-electrons above Nη)
cancel out to zero. [In Appendix E we perform the instructive but cumbersome exercise of verifying this

explicitly, for the highest few hole states, by expanding the exponential e−iϕ
†
η(x).]

To evaluate the operator λ̂η(x), we calculate the following expectation value in two different ways: On
the one hand,

0〈 ~N |F †
ηψη(x)| ~N 〉0 = λη(x) , (55)

where we used Eq. (54) for ψη(x), commuted e−iϕ
†
η(x) to the left past F †

η [using Eq. (24)], and used

0〈 ~N |e−iϕ†
η(x) = 0〈 ~N | [by Eq. (20)]. On the other hand, inserting the Fourier series (3) for ψη(x) into

Eq. (55), we note that since | ~N〉0 and 0〈 ~N |F †
η don’t contain any particle-hole pairs, only the term in the

sum with nk = Nη [i.e. k = 2π
L (Nη − 1

2δb)] can contribute:

0〈 ~N |F †
ηψη(x)| ~N 〉0 =

(
2π
L

)1/2
e−i

2π
L (Nη− 1

2 δb)x . (56)

Thus, we conclude that the operator λ̂η(x) is given by:

λ̂η(x) =
(

2π
L

)1/2
e−i

2π
L (N̂η− 1

2 δb)x . (57)

6.B Action of ψη(x) on an arbitrary state | ~N〉
We derive the bosonization identity by studying the action of ψη(x) on an arbitrary state | ~N〉.

Next we examine how ψη(x) acts on an arbitrary state | ~N〉 in Fock space, which by Eq. (22) we write

as | ~N〉 = f({b†qη′})| ~N〉0. To this end, two identities are extremely useful:

ψη(x)f({b†qη′}) = f({b†qη′ − δηη′α
∗
q(x)})ψη(x) , (58)

f({b†qη′ − δηη′α
∗
q(x)}) = e−iϕη(x) f({b†qη′}) eiϕη(x). (59)

The first follows from Eqs. (3) and (C8), with A = b†qη′ − δηη′α
∗
q(x), B = ψη(x) and D = δηη′α

∗
q(x); the

second from Eqs. (33) and (C5), with A = b†qη′ , B = iϕη(x) and C = −δηη′α∗
q(x).

Now evaluate ψη| ~N〉 by commuting ψη past f({b†qη′}), then inserting Eq. (54) for ψη| ~N〉0, and finally
rearranging:

ψη(x)| ~N 〉 = ψη(x) f({b†qη′})| ~N〉0
= f({b†qη′ − δηη′α

∗
q(x)})ψη(x)| ~N〉0 [by Eq. (58)]

= f({b†qη′ − δηη′α
∗
q(x)}) e−iϕ

†
η(x) Fηλ̂η(x)| ~N〉0 [by Eq. (54)]

= Fηλ̂η(x) e
−iϕ†

η(x) f({b†qη′ − δηη′α
∗
q(x)})| ~N〉0 [by Eq. (24)]

= Fηλ̂η(x) e
−iϕ†

η(x)

[
e−iϕη(x)f({b†qη′})eiϕη(x)

]
| ~N〉0 [by Eq. (59)]

= Fηλ̂η(x)e
−iϕ†

η(x) e−iϕη(x) f({b†qη′})| ~N〉0 [by Eq. (20)]

= Fηλ̂η(x) e
−iϕ†

η(x)e−iϕη(x)| ~N〉 . [by Eq. (22)]

(60)
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Since | ~N〉 is an arbitrary state in the Fock space F , (and all states in F have the form (22), see Section 4.E
and appendix B), we conclude that the following so-called bosonization formulas for ψη(x) hold as operator
identities in Fock space,8 valid for all L (i.e. all orders in an 1/L expansion):

ψη(x) = Fηλ̂η(x)e
−iϕ†

η(x)e−iϕη(x) (61)

= Fη
(

2π
L

)1/2
e−i

2π
L (N̂η− 1

2 δb)xe−iϕ
†
η(x)e−iϕη(x) [by Eq. (57)] (62)

= Fη a
−1/2e−i

2π
L (N̂η− 1

2 δb)xe−iφη(x) [by Eq. (42)] (63)

= Fη a
−1/2 e−iΦη(x) with Φη(x) ≡ φη(x) + 2π

L (N̂η − 1
2δb)x . (64)

These forms are all equivalent. (Alternative notations used by Haldane [4], Kane & Fisher [16], Shankar
[15] and others are discussed in Sections 10.A.4, 10.B.3, A.3 and D.2, respectively.) Eq. (62) is the “most
rigorous”, since it is normal ordered and hence valid even for a = 0 (compare footnote 7). Eq. (63) is the
un-normal-ordered version of Eq. (62), obtained using (43), and evidently requires a 6= 0 [which is needed
when unnormalordering to evaluate [ϕ,ϕ†] in (43)]. The most common form is Eq. (64), which absorbs

the factor e−i
2π
L (N̂η− 1

2 δb)x into the definition of a new Boson field Φη(x), following Haldane [4]. However,
we prefer not to use this notation, for two reasons: firstly, φη(x) conveniently commutes with all Klein

factors, whereas [Φη(x), F
†
η′ ] = δηη′

2π
L xF

†
η (by Eq. (32)); and secondly, the Klein factor Fη usually has a

time-dependence e−
2π
L (N̂η−δb/2)τ (see Eq. (72)), so it is natural to view e−i

2π
L (N̂η− 1

2 δb)x as its x-dependence.

If one is only interested in the limit L→ ∞, the factor e−i
2π
L (N̂η− 1

2 δb)x can be neglected.
This completes our derivation of the bosonization formulas. Since we deduced them explicitly and step

by step from first principles, using only elementary operator identities, there is no need to “check” their
validity by using them to calculate, for example, the anti-commutator {ψη, ψ†

η′} or the correlator 〈ψηψ†
η′〉,

although these are instructive excercises, performed in Appendix F and Section 8, respectively [further such
checks are performed in Appendix G.3, where the density ρη and free Hamilton of (66) below are bosonized
using (62)]. This is one of the differences between the constructive approach to bosonization and the more
formal field-theoretical one. In the latter, after fields ψη(x) and φη(x) have been defined, the bosonization
formula (63) is simply written down as a gift from the gods, whereupon its validity has to be established
by calculating the anti-commutators and Green’s functions of e−iφη(x).

7 Hamiltonian with linear dispersion

We consider fermions with linear dispersion and bosonize the Hamiltonian in both the position and the
momentum representation.

So far, no assumptions have been made about the Hamiltonian. Now assume a linear dispersion,
ε(k) = vF~k, and measure all energies in units of vF~, i.e. set vF ~ = 1:

H0 ≡
∑

η

H0η, with H0η ≡
∞∑

k=−∞
k ∗

∗c
†
kηckη

∗
∗ (65)

=

∫ L/2

−L/2
dx
2π

∗
∗ψ

†
η(x)i∂xψη(x)

∗
∗ . (66)

8 It can readily be checked that Eq. (62) satisfies Eqs. (51) [and (52)], using identity (C3), with A = bqη′ , B = −iϕ†
η(x),

C = δηη′αq(x) [or with A = b†
qη′ , B = −iϕη(x), C = δηη′α∗

q(x)]. In fact, Emery uses this observation [3, Eq. (52)] to infer

directly from Eqs. (51) and (52) that ψη(x) ∼ e−iφη (see also [10]). However, in order to also obtain the Klein factor Fη in
Eq. (61) (which Emery did not), the more elaborate derivation given above is needed.
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The second form is equivalent to the first, since inserting the Fourier expansions (3) for ψη(x) into Eq. (66)
reproduces (65).

Since [H0η, N̂η′ ] = 0 for all η, η′, any ~N -particle ground state is an eigenstate of H0η, i.e. H0η| ~N〉0 =

E
~N
0η| ~N〉0. By inspection, its eigenvalue is

E
~N
0η = 0〈 ~N |H0η| ~N〉0 = 2π

L






Nη∑

n=1

(n− δb/2) = 1
2N

2
η + 1

2Nη(1 − δb) if Nη ≥ 0 ,

0∑

n=Nη+1

− (n− δb/2) = 1
2N

2
η + 1

2 |Nη|(1 − δb) if Nη < 0 ,

= 2π
L

1
2Nη(Nη + 1 − δb). (67)

Furthermore, b†qη raises the energy of any eigenstate |E〉 by q units, as expected intuitively from b†qη’s
fermionic definition (16), which yields

[H0η, b
†
qη′ ] = q b†qη δηη′ , implying H0b

†
qη|E〉 = (E + q)b†qη|E〉 . (68)

Now, the fact that the b†’s, acting on | ~N〉0, span the complete ~N -particle Hilbert space H ~N [recall Eq. (22)]
implies that H0η must also have a representation purely in terms of bosonic variables. The only form that
reproduces Eqs. (67) and (68) is:

H0η =
∑

q>0

q b†qηbqη + 2π
L

1
2N̂η(N̂η + 1 − δb) (69)

=

∫ L/2

−L/2
dx
2π

1
2
∗
∗(∂xφη(x))

2 ∗
∗ + (2π

L )1
2N̂η(N̂η + 1 − δb). (70)

The second form is equivalent to the first, since inserting (34) for φη(x) into (70) reproduces (69). Both
contain no Fη’s, since H0η conserves particle number.

In field-theoretical treatments Eqs. (66) and (70) are often written using a so-called point-splitting
prescription (denoted by : :) instead of the above normal-ordering prescription. Point-splitting, discussed
in some detail in Appendix G, is another method of regularizing the product of fields at the same point in
position space. It is in most cases equivalent to normal-ordering, in that it subtracts off diverging constants.
In Appendix G we show that the point-split version of (70) can be obtained from the point-split version of
(66) using the bosonization formula (63) [provided that regularization parameter used for point-splitting is
the same a as that of the bosonic momentum cut-off e−aq/2 in Eq. (33)].

For future reference, note that H0η transforms as follows under the unitary transformation U ≡ eicφη(x)

[use Eq. (C5), with [bqη, φη(x)] = − 1√
nq
eiqx−aq/2, in Eq. (69)]:

UH0ηU
−1 =

∑

q>0

q
[
b†qη − ic 1√

nq
e−iqx−aq/2

][
bqη + ic 1√

nq
eiqx−aq/2

]

+ 2π
L

1
2N̂η(N̂η + 1 − δb)

= H0η − c∂xφη(x) + c2(1/a− π/L) +O(a/L2) . (71)

The first two terms of (71) can also easily be derived from the position representation (70) for H0η, using
Eqs. (C5) and (45), which (for L → ∞) imply U∂x′φη(x

′)U−1 = ∂x′φη(x
′) − 2πc δ(x − x′); however, this

method is too crude to correctly reproduce the constants in Eq. (71), which is why we used the momentum
representation here.
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Also for future reference, note that the N̂η-dependent terms in H0η imply that the Klein factors pick up
an explicit time-dependence in the imaginary-time Heisenberg picture (with τ ∈ (−β, β] as time parameter):

Fη(τ) ≡ eH0ητFηe
−H0ητ = e−

2π
L (N̂η−δb/2)τFη , F †

η (τ) = e
2π
L (N̂η−δb/2)τF †

η . (72)

Of course, 2π
L (N̂η − δb/2) is just the energy of the particle removed by Fη from the topmost occupied level

of | ~N〉0. In the limit L → ∞ in which this energy can be neglected, the time-ordered expectation value of

Klein factors is simply 0〈 ~N |T Fη(τ)F †
η′ (0)| ~N〉0 = δηη′ sgn(τ).

8 Relation between fermion and boson Green’s functions

We show that the two-point Green’s function for free fermions can be expressed in terms of that of free
bosons [Eq. (78)], a fact which is sometimes used as the starting point for field-theoretical bosonization.

When discussing Green’s functions, we shall always work in the imaginary-time Heisenberg picture
(except in Section 10). Given the above Hamiltonian with linear dispersion, the free fields ψη(τ, x) and
φη(τ, x) only depend on the combination z ≡ τ+ix (and not on z̄ ≡ τ−ix) (since ckη(τ) = e−kτ ckη, etc., see
Appendix H). Such fields are often called “chiral fields” (or “chiral left-movers”, since after rotating back
to real time, they depend only t+ x). Therefore, we shall henceforth adopt the notation ψη(z) ≡ ψη(τ, x)
and φη(z) ≡ φη(τ, x), i∂zφη(z) = ∂xφη(τ, x). [This use of notation is somewhat sloppy: up to now we had
used ψη(0, x) = ψη(x), whereas in the new notation ψη(0, x) = ψη(ix), but this should not cause confusion
— if it does, the reader should imagine changing the old notation by replacing all preceding ψη(x) by
ψη(ix), etc.] Real-time functions can obtained from imaginary-time ones by simply analytically continuing
τ → it. It should remembered, though, that this works only for free fields: in the presence of interactions,
the operators’ time-development is more complicated, i.e. ckη(τ) 6= e−kτ ckη.

8.A The limit L→ ∞ for T 6= 0

In the limit L→ ∞, the free imaginary-time ordered fermion and boson Green’s functions (derived explicitly
in Appendix H.2) have the following forms for T 6= 0:

〈T ψη(z)ψ†
η′(0)〉 =

δηη′
β
π sin[πβ (z + σa)]

(73)

〈T φη(z)φη′(0)〉 = − δηη′ ln
(

2β
L sin[πβ (σz + a)]

)
. (74)

〈 〉 is a thermal expectation value, T is the time-ordering operator for τ and σ = sign(τ).

By observing that (up to a constant) Eq. (74) is the logarithm of Eq. (73), one might, even withouth
prior knowledge of the bosonization formula, be led to conjecture that ψη must somehow be the exponential
of φη; indeed, this is a common starting point for the field-theoretical treatment of bosonization. In the
constructive approach to bosonization, however, the bosonization formula has already been established as
an operator identity; hence, showing that fermion Green’s functions can be calculated in terms of boson
Green’s functions merely has the status of a consistency check.

To perform this check, one exploits a remarkably identity [3] [see (C10), or more simply, (J6)], valid for
any function B̂ =

∑
q>0(λqb

†
q + λ̃qbq) that is a linear combination of free boson operators governed by the

boson Hamiltonian Eq. (69):

〈eλB̂〉 = e〈B̂
2〉λ2/2 . (75)
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When combined with Eq. (C4), this implies:

〈eλ1B̂1eλ2B̂2〉 = e〈λ1B̂1λ2B̂2+
1
2 (λ2

1B̂
2
1+λ2

2B̂
2
2)〉 (76)

Using the bosonization formula (63) [and (72) for the time-dependence of Fη(τ)] we therefore have

〈T ψη(z)ψ†
η′(0)〉 = a−1

[
θ(τ)〈Fηe−

2π
L (N̂η− 1

2 δb)ze−iφη(z)eiφη′ (0)F †
η′〉

−θ(−τ)〈eiφη′ (0)F †
η′Fηe

− 2π
L (N̂η− 1

2 δb)ze−iφη(z)〉
]

(77)

= δηη′ σa
−1e〈T φη(z)φη(0)−φη(0)φη(0)〉 . (78)

Eq. (78) was obtained using (76) (and taking e−
2π
L (N̂η− 1

2 δb)z ≃ 1 for L → ∞); inserting Eq. (74) into
Eq. (78) then readily reproduces Eq. (73).

8.B The limit T = 0 for L 6= ∞
For the case T = 0 but L 6= ∞, the fermion and boson Green’s functions (derived explicitly in Appendix H.1)
have the following forms:

〈T ψη(z)ψ†
η′(0)〉T=0 =

δηη′e
π
L (δb+σ)z

L
π sinh[ πL(z + σa)]

(79)

〈T φη(z)φη′(0)〉T=0 = − δηη′ ln
(
1 − e−

2π
L (σz+a)

)
(80)

Here, too, Eq. (79) can be recovered from (80), by inserting the latter into the T = 0, L 6= ∞ version of
(77-78) [with 〈T φη(0)φη′ (0)〉T=0 = δηη′ ln(L/2πa)], namely

〈T ψη(z)ψ†
η′(0)〉T=0 = δηη′ σa

−1e
π
L δbze〈T φη(z)φη(0)−φη(0)φη(0)〉T=0 . (81)

9 Vertex operators – some general properties

Exponentials of boson fields, V
(η)
λ (τ, x) ∼ eiλφη(τ,x), are called vertex operators in the field theory literature

and are the natural generalizations to λ 6= ±1 of the combinations e±iφη(τ,x) encountered so far. They occur
in many applications of bosonization, e.g. Luttinger liquids (see Section 10) or the Kondo problem [17, 18].
Here we derive some of their general properties.

Since along the imaginary time axis all fields only depend on the combination z ≡ τ + ix (as is evident
from Section 8), we henceforth use z as argument for all fields, writing e.g. φη(z). Moreover, all non-
equal-time products of field-operators below will implicitly be assumed to be time-ordered (i.e. when we
write Ô1(z1)Ô2(z2) . . ., it is to be understood that τ1 > τ2 . . .). This is important, since non-time-ordered
products are ill-defined along the imaginary-time axis [31, p. 245].

9.A Definition of vertex operator

The boson normal-ordered form of the exponential eiλφη(z) is defined as follows:

∗
∗e
iλφη(z)∗

∗ ≡ eiλϕ
†
η(z)eiλϕη(z) =

(
L

2πa

)λ2/2
eiλφη(z) =

eiλφη(z)

〈eiλφη(x)〉 (82)
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The second equality is analogous to (42); the third follows from (75) and (74), and implies that normal-
ordered exponentials indeed satisfy 〈∗∗eiλφη(z)∗

∗〉 = 1, as they should.
To normal order the product of two normal-ordered exponentials like (82), proceed as follows:

∗
∗e
iλφη(z)∗

∗
∗
∗e
iλ′φη′ (z′)∗

∗ = e
i(λϕ†

η(z)+λ′ϕ†
η′(z

′))
ei(λϕη(z)+λ′ϕη′ (z′)) e−λλ

′[ϕη(z),ϕη′(z′)] (83)

= ∗
∗e
i(λφη(z)+λ′φη′ (z′))∗

∗
[

2π
L (z − z′ + a)

]λλ′
(84)

We used Eq. (C6) to commute e
iλ′ϕ†

η′(z
′)

to the left past eiλϕη(z), and used Eq. (41) to evaluate [ϕη, ϕ
†
η′ ]

to leading order in L−1. In this section we neglect finite-size corrections and hence always drop subleading
order L−2 terms relative to L−1 terms. However, the former have to be kept if one is interested in finite-size
corrections, see Appendix G.3.

A vertex operator is a normal-ordered exponential, characterized by a real number λ,

V
(η)
λ (z) ≡

(
L
2π

)−λ2/2 ∗
∗e
iλφη(z)∗

∗ = a−λ
2/2eiλφη(z) . (85)

Its normalization (motivated below) is a generalization to the case λ 6= 1 of that of Eqs. (62) and (63).

Evidently 〈V (η)
λ (z)〉 = δλ,0 in the limit L→ ∞.

9.B Two-point correlator 〈V (η)
λ V

(η′)
λ′ 〉

The correlation function of two vertex operators can be derived precisely as in Section 8, using Eqs. (76)
and (74) with the result [here σ ≡ sgn(τ − τ ′)]:

〈T V (η)
λ (z)V

(η′)
λ′ (z′)〉 = δηη′

(
a−

1
2 (λ2

1+λ2
2)
)(
eλλ

′ ln[ 2β
L sin[ π

β (σz−σz′+a)]]
)(
e

1
2 (λ2

1+λ2
2) ln( 2πa

L )
)

(86)

=
δηη′ (L/2π)−(λ+λ′)2/2

(
β
π sin[πβ (σz − σz′ + a)]

)−λλ′
L→∞,T→0−→ δ−λ,λ′

(σz − σz′ + a)λ2 . (87)

The reason for including the factor
(
L
2π

)−λ2/2
in definition (85) now becomes apparent: by producing the

numerator in Eq. (87), it ensures that the above correlator is non-zero in the limit L→ ∞ only if λ+λ′ = 0.
This latter property is required on general grounds: since the boson Hamiltonian (70) is invariant under a
shift φη(z) → φη(z)+const, the same is expected for correlators of two properly normalized normal-ordered

exponentials of boson fields. But for a correlator containing 〈eiλφ(z)eiλ
′φ(z′)〉 this can clearly be true only

if λ+ λ′ = 0, implying that such correlators must vanish otherwise.

The T → 0 limit of Eq. (87) gives 〈T V (η)
λ (z)V

(η)
−λ (0)〉T=0 = (σz)−λ

2

. Thus, the scaling dimension (as

defined in Appendix G.1) of V
(η)
λ and V

(η)†
λ = V

(η)
−λ is λ2/2.

9.C OPEs involving vertex operators

The short-distance behavior of a product V
(η)
λ V

(η′)
λ′ of vertex operators is summarized in its operator product

expansion (OPE) (a concept reviewed in Appendix G.1). To derive its OPE, we simply have to normal

order V
(η)
λ V

(η′)
λ′ . Since it is already normal-ordered if η 6= η′ (since then [V

(η)
λ , V

(η′)
λ′ ] = 0), it suffices to

consider η = η′:

V
(η)
λ (z) V

(η)
λ′ (z′) =

(
L
2π

)−(λ2+λ′2)/2 [2π
L (z−z′+a)

]λλ′ (
1 + λ(z − z′)i∂z′ϕ

†
η(z

′)
)

(88)
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× ∗
∗e
i(λφη(z)+λ′φη′ (z′))∗

∗
(
1 + λ(z − z′)i∂z′ϕη(z

′)
)

+ . . .

=
V

(η)
λ+λ′ (z′)

(z−z′+ a)−λλ′ +
λ ∗

∗V
(η)
λ+λ′ (z′) i∂z′φη(z′)∗∗

(z−z′+ a)−λλ′−1
+ . . . (89)

We used Eq. (84) to bring the left-hand side of Eq. (88) into normal-ordered form, and then took the limit
z → z′. Since all expressions within a normal-ordering symbol are well-defined (i.e. non-diverging), we
Taylor-expanded inside the exponential, ϕη(z) = ϕη(z

′) + (z−z′)∂z′ϕη(z′), but took care to maintain the
normal order (which is why ∂z′ϕ

†
η and ∂z′ϕη are right-most and left-most in Eq. (88), and why the second

term of Eq. (89) explicitly needs the normal-ordering symbol).

Note that taking the expectation value of the OPE (89), namely 〈V (η)
λ (z)V

(η)
λ′ (z′)〉 = (L/2π)−(λ+λ′)2/2(z−

z′+ a)−λ
2

, reproduces the z/β → 0 limit of Eq. (86), i.e. its T = 0 limit. This illustrates a rule of thumb,
which can be proven quite generally:9 T 6= 0 correlators of free (massless) fields can be obtained from T = 0
ones by replacing (z−z′) by β

π sin[πβ (z−z′)].
Another important OPE,

i∂zφη(z) V
(η′)
λ′ (z′) =

δηη′ λ
′

z−z′+a V
(η′)
λ′ (z′) + ∗

∗V
(η′)
λ′ (z′) i∂z′φη(z

′)∗∗ , (90)

is obtained by commuting the ∂zϕη(z) part of ∂zφη past V
(η′)
λ′ using Eq. (C3), and evaluating [∂zϕη, ϕ

†
η′ ]

using Eq. (41).

9.D Fermions as vertex operators

Comparing expressions (63) and (85), we see that fermion operators can be expressed in terms of vertex
operators with λ = ±1/2:

ψη(z) = Fηe
− 2π

L (N̂η− 1
2 δb)zV η−1/2(z) (91)

The factor e−
2π
L (N̂η− 1

2 δb)z is a combination of the phase factor in Eq. (62) for ψη(x) and the time dependence
(72) of Fη(τ). Using Eq. (89), we thus find the following OPE for two fermion fields of the same species:

ψ†
η(z)ψη(z

′)
z→z′−→ 1

(z−z′+a) + i∂z′φ(z′) + Order( 1
L , a) (92)

9.E General expectation values of vertex operators

It is possible to give the expectation value of a general time-ordered product of vertex operators in closed
form [Eq. (96)]. To derive this result, we need some identities: Let B̂i be linear in free boson variables, so
that [B̂i, B̂j ] = c-number. Then repeated application of Eq. (C4) gives:

eB̂1eB̂2 . . . eB̂n = e
∑n

j=1 B̂je
1
2

∑
i<j [B̂i,B̂j ] . (93)

By Eq. (75), we thus have:

〈eB̂1eB̂2 . . . eB̂n〉 = e
1
2 〈(

∑n
j=1 B̂j)

2〉e
1
2

∑
i<j [B̂i,B̂j ] = e

1
2

∑n
j=1〈B̂2

j 〉e
∑

i<j〈B̂iB̂j〉 . (94)

9The general proof of this rule exploits conformal invariance of correlation functions, by using a conformal mapping of the
complex plane onto a cylinder with radius β (see e.g. Eq. (3.9) of Ref. [32]).
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Now apply this identity to a product of vertex operators V
(η)
λj

(zj) ≡ a−λ
2/2eiλjφη(zj), with j = 1, . . . , n.

Using Eqs. (94) and (74) we readily obtain the following generalization of Eq. (87):

〈T V (η)
λ1

(z1) . . . V
(η)
λn

(zn)〉 =
[
a−

1
2

∑
j λ

2
j

][
e
∑

i<j λiλj ln[ 2π
L s(zi,zj)]

][
e

1
2

∑
j λ

2
j ln( 2πa

L )
]

(95)

=
(

2π
L

) 1
2 (
∑n

j=1 λj)
2 ∏

i<j

[s(zi, zj)]
λiλj , (96)

where s(zi, zj) ≡ β
π sin(πβ [(zi − zj)sgn(τi − τj) + a]). Taking the limit L→ ∞, we see that this expectation

value is non-zero only if
∑n

j=1 λj = 0 . This is an important generalization of the corresponding result
for two-point functions, discussed after (86), and again reflects invariance of the correlator under φη(z) →
φη(z) + const.

Suppose that all the λj are equal to ±λ, with
∑n

j=1 λj = 0, and denote the corresponding arguments by

z(±), i.e. use vertex operators V
(η)
+λ (z

(+)
i ) and V

(η)
−λ (z

(−)
j ). Then it can be shown by simple combinatorical

algebra that the product in Eq. (96) can be rewritten as a sum:

〈V (η)
+λ (z

(+)
1 )V

(η)
−λ (z

(−)
1 )V

(η)
+λ (z

(+)
2 )V

(η)
−λ (z

(−)
2 ) . . .〉 (97)

=




∑

{z(+)
i ,z

(−)
j }

1

s(z
(+)
1 , z

(−)
1 ) s(z

(+)
2 , z

(−)
2 ) . . .

+
1

s(z
(+)
1 , z

(−)
2 ) s(z

(−)
1 , z

(+)
2 ) . . .

+ . . .





λ2

(98)

where the sum goes over all combination of pairs {z(+)
i , z

(−)
j }, with i < j. Actually, the algebra can be

sidestepped via the following observation: Set λ = 1, so that (97) is an expectation value of free fermion

fields. Then it has, on the one hand, a Wick-expansion in terms of two-point correlators 〈ψ†(z(+)
i )ψ(z

(−)
i )〉 =

1/s(z
(+)
i , z

(−)
j ), which is simply (98) with λ2 = 1; but on the other hand (97) is also equal to (96), with

λiλj = ±1. Thus the product
∏

in (96) must equal the Wick-sum
∑

in (98), implying that also for λ 6= 1

one must have (
∏

)λ
2

= (
∑

)λ
2

. Hence (98) is, remarkably, a generalization of Wick’s theorem to λ 6= 1!

10 Impurity in a Tomonaga-Luttinger liquid

To illustrate bosonization “in practice”, we calculate the tunneling density of states, ρdos(ω), at the site of
an impurity in a Tomonaga-Luttinger liquid. We resolve the recent controversy regarding ρdos(ω) by using
a rigorous treatment of finite-size refermionization.

Though treating some elements of the theory of Tomonaga-Luttinger liquids [5, 7] in great detail, this
section is by no means intended as a complete review of this subject (for such a review, see [20]); instead,
it aims merely to illustrate at a detailed introductory level (and with more attention to subtleties than
usual) the application of bosonization to a specific, non-trivial problem, namely the calculation of ρdos(ω).
So non-trivial, in fact, that the exponent ν governing the low-energy behavior of the tunneling density of
states, namely ρdos(ω) ∼ ων−1 as ω → 0, has recently been subject to quite some controversy (summarized
in Section 1.B of the introduction).

We begin in Section 10.A with a quantum wire of free, spinless L- and R-moving 1-D electrons and
discuss the manipulations required to make the problem amenable to bosonization. In Section 10.B we
switch on an electron-electron interaction (of dimensionless strength g) and diagonalize it in the boson
basis. In Section 10.C we add a single impurity to the wire and, at a special value of the coupling constant
(g = 1/2), refermionize and diagonalize the Hamiltonian and calculate a number of useful correlation
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functions. Section 10.D contains the culmination of the preceding developments: following a strategy due
to Furusaki but implementing it more rigorously, we calculate ρdos(ω) at g = 1/2 and show that ν = 2,
confirming Fabrizio and Gogolin’s [23] result and contradicting that of Oreg and Finkel’stein [21]. The
calculation is appealingly straightforward — if it appears lengthy, this is only because for pedagogical
reasons we show all details in full.

F

p
F

p
F

= εL(k) = εR(k)

ε

F

p > 0p < 0

k < 0 k < 0 k = 0 k > 0

c

k > 0

(p < 0)ε ε(p > 0)

k = 0

= c =c c c
k,L k,Rp > 0p < 0

c
k <    p ,R k <    p ,L

F

Figure 3: Schematic depiction of the dispersion relation ε(p) of a 1-D wire containing R- and L-moving
electrons with p > 0 and p < 0, respectively. From the original electron creation operators cp, we construct
ck,L/R ≡ c∓(k+kF ) for k ∈ [−kF ,∞], with corresponding dispersion εk,L/R ≡ ε(∓(k + kF )), see Eq. (100).
Then we extend the Hilbert space by hand, by taking k ∈ [−∞,∞], i.e. by adding “positron states” with
k < −kF , whose dispersion we took as εk,ν ≡ ε(0) + vF (k + kF ).

10.A 1-Dimensional wire with free left- and right-moving electrons:

We introduce a quantum wire of free, spinless L- and R-moving 1-D electrons, discuss the manipulations
required to make the problem amenable to bosonization, and bosonize.

10.A.1 Definition of ckη operators

Consider a 1-D conductor of length L containing free spinless left- and right-moving electrons, labelled by a
momentum index p ∈ (−∞,∞), with dispersion ε(p) that is bounded from below, e.g. ε(p) = (p2−p2

F )/2m.
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The standard definition for the physical fermion field is

Ψphys(x) ≡
(

2π
L

)1/2 ∞∑

p=−∞
eipxcp =

(
2π
L

)1/2 ∞∑

k=−kF

(
e−i(kF +k)xc−kF −k + ei(kF +k)xckF +k

)
. (99)

Here we wrote p = ∓(k+kF ) with k ∈ [−kF ,∞), where p
<
> 0 corresponds to L andR-moving electrons. They

can be viewed as two separate, independent “species”, which we shall distinguish by an index ν = (L,R)
(analogous to the η used hitherto), writing

ckν ≡ ck,L/R ≡ c∓(k+kF ) with εk,L/R ≡ ε(∓(k + kF )) . (100)

Our definition of k purposefully ensures that εk,ν
>
< 0 if k

>
< 0 for both L- and R-movers.

10.A.2 Defining L- and R-moving fermion fields ψ̃L/R

We now have to cast the problem in a form that meets the prerequisites for bosonization specified in
Section 2. This is not yet the case, since k ∈ [−kF ,∞) is bounded from below, and not discrete. To remedy
this, we proceed below in three steps: firstly, we extend the range of k to be unbounded, secondly introduce
L- and R-moving fermion fields ψ̃L/R and thirdly impose boundary conditions on these to quantize k.

We begin by extending the single-particle Hilbert space by introducing (following Haldane [4]) additional
unphysical “positron states” at the bottom of the Fermi sea: we simply extend the range of k to be
unbounded by taking k ∈ (−∞,∞), and define the corresponding energies in such a way that they all
lie below ε(p = 0), e.g. εk,ν ≡ ε(0) + vF (k + kF ) for k < −kF . The introduction of extra “unphysical”
states does not change the low-energy physics of the system, since by construction they require very high
energies (> εF ) for their excitation. (However, they would be excited if a perturbation such as an electric
field or impurity potential were sufficiently strong, so that strong perturbations cannot be dealt with using
bosonization.)

Next, we factor out the rapidly fluctuating e∓ikFx phase factors and express Ψphys(x) in terms of two

fields ψ̃ν(x) that vary slowly on the scale of 1/kF :

Ψphys(x) “=” e−ikF xψ̃L(x) + e+ikFxψ̃R(x), (101)

ψ̃ν(x) ≡ ψ̃L/R(x) ≡
(

2π
L

)1/2 ∞∑

k=−∞
e∓ikxck,L/R . (102)

The “=” indicates that the r.h.s. of Eq. (102) differs from that of Eq. (99) by the inclusion of positron
states. But since these do not change the low-energy physics, this difference does not matter and “for low-
energy purposes” the first of Eq. (102) can effectively be regarded as a true equality. Our notation of using
the index ν (instead of η) and putting a ˜ on ψ̃ν serves as a reminder that ψ̃L and ψ̃R are “mathematical
L- and R-movers”,10 respectively, in contrast to the ψη’s of earlier sections, which were all mathematical
L-movers. (If one prefers to work purely with the latter, as is sometimes convenient, one can simply define
purely L-moving fields by ψ1,2(x) ≡ ψ̃L,R(±x), and similarly φ1,2(x) ≡ φ̃L,R(±x) for the boson fields of
Eq. (103) below.)

10 A field is called a “mathematical L- or R- mover” if in the Heisenberg picture it depends on (real) time t and position
x only via the combination (t + x) or (t − x), respectively. For example, the fields ψ̃L/R(t, x) defined in Eq. (102) are

mathematical L- or R-movers if ck,±(t) = e−iktck,±, which holds if (i) εk± = vF ~k (with vF ~ = 1) and (ii) no interactions
are present. However, even if these two conditions do not hold, it is customary to refer to fields constructed as in Eq. (102)
as L- or R-movers.
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Finally, to quantize the allowed electron momenta k in units of 2π
L , we impose boundary conditions on

the fermion fields, choosing (for definiteness) anti-periodic ones: ψ̃ν(L/2) = −ψ̃ν(−L/2) (i.e. δb = 1 in
Eqs. (2) and (5) — the specific choice of boundary condition becomes unimportant in the continuum limit
L→ ∞).

10.A.3 Defining L- and R-moving boson fields φ̃L/R

The inclusion of “positron states” in the single-particle Hilbert space and the imposition of definite boundary
conditions in the previous subsection should be viewed merely as formal tricks that make the problem
amenable to bosonization. Now that the prerequisites of Section 2 are met, we can rigorously define
number operators N̂L/R, Klein factors FL/R, and boson operators bqL/R in terms of the ckL/R’s as in

Sections 4.B, 4.F and 5, and procede to bosonize. Since the fields ψ̃L and ψ̃R formally differ from each
other only by the factor e∓ikx in Eq. (102), the only change needed for ψ̃R relative to ψ̃L is to replace x by
−x [and ∂x by −∂x and ǫ(x) by −ǫ(x)), cf. Eqs. (33-34), (63), (37) and (50)]:

φ̃L/R(x) ≡ −
∑

nq∈Z+

1√
nq
e−aq/2

[
e∓iqxbqL/R + e±iqxb†qL/R

]
(q = 2π

L nq > 0) , (103)

ψ̃L/R(x) = a−1/2FL/R e
∓i 2π

L (N̂L/R− 1
2 δb)xe−iφ̃L/R(x) , (104)

ρ̃L/R(x) ≡ ∗
∗ψ̃

†
L/R(x)ψ̃L/R(x) ∗

∗ = ±∂xφ̃L/R(x) + 2π
L N̂L/R . (105)

Note that q = 2π
L nq implies that the boson fields and densities are periodic: φ̃ν(L/2) = φ̃ν(−L/2) and

ρ̃ν(L/2) = ρ̃ν(−L/2).
The case of linear dispersion, ε(p) = vF (|p| − pF ), implying εkL/R = vF~k for all k, is particularly

simple. Then, in the imaginary-time Heisenberg picture used in Section 8 (with vF ~ = 1), the free L- (and
R-) fields depend only on z = τ + ix (and z̄ = τ − ix). Thus, we have (the comments just before Eq. (73)
regarding the notation ψ(z) apply here, too):

ψ̃L(z) ≡ ψ̃L(τ, x) [=ψ1(τ, x)], ψ̃R(z̄) ≡ ψ̃R(τ, x) [=ψ2(τ,−x)],
φ̃L(z) ≡ φ̃L(τ, x) [=φ1(τ, x)], φ̃R(z̄) ≡ φ̃R(τ, x) [=φ2(τ,−x)], (106)

i∂zφ̃L(z) ≡ ∂xφ̃L(τ, x) [=∂xφ1(τ, x)], i∂z̄φ̃R(z̄) ≡ −∂xφ̃L(τ, x) [=−∂xφ2(τ,−x)].

These relations, given here for the sake of completeness, show that formulas involving relations between
free R-movers can be obtained from ones involving relations between free L-movers by simply replacing L
by R and z by z̄ (and ∂z by ∂z̄). This notation is used extensively, for example, by Affleck and Ludwig [32]
in their confromal field theory solution of the Kondo problem.

10.A.4 Relation between our notation and that of Haldane

Readers interested in comparing our definitions with those used by Haldane in Ref. [4] (denoted by the
subscript Hal below) should note that the normalization and particularly the phase factor in his definition
(3.3), namely ψHal(x) ≡ L−1/2

∑∞
p=−∞ e−ipxcpHal, differ from ours in Eq. (99). Therefore he calls R/L-

movers what we call L/R-movers. By identifying his index p = (+,−) = (R,L) with our ν = (L,R)
and making the identification c±(k+kF )Hal =ck,L/R, one finds that his and our definitions are related as

follows: for the fermion fields ψ±Hal(x) = e∓ikF x(2π)−1/2ψ̃L/R(x), for the Klein factors U± = F †
L/R and

U−1
± = FL/R, for the boson operators (which he defines for both q > 0 and< 0) one has a†qHal = −i[θ(q)b†q,L+

θ(−q)b†|q|,R], and for the boson fields φ±Hal(x) = ±πx
L N̂L/R + ϕ̃L/R(x).
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10.B Diagonalizing an electron-electron interaction by bosonizing

We consider a simple model with linear free-electron dispersion and a local electron-electron interaction.
Diagonalizing it explicitly in the boson basis, we arrive at the “standard” bosonic form of the Tomonaga-
Luttinger model, with dimensionless coupling g.

10.B.1 Turning on an electron-electron interaction

To illustrate the basic physics of a Tomonaga-Luttinger liquid, i.e. a system of interacting 1-D fermions,
we shall consider the following simple model Hamiltonian:

Hkin =

∫ L/2

−L/2
dx
2π

∗
∗
[
ψ†
L(x)i∂xψL(x) + ψ†

R(x)(−i∂x)ψR(x)
]
∗
∗ , (107)

Hint =

∫ L/2

−L/2
dx
2π

∗
∗
[
g2 ρ̃L(x)ρ̃R(x) + 1

2g4
(
ρ̃2
L(x) + ρ̃2

R(x)
)] ∗

∗ . (108)

The kinetic term assumes a linear dispersion, ε(p) ≡ ~vF |p − pF |, i.e. εk,L/R = ~vFk, with ~vF = 1, cf.
Eq. (66). Hkin describes a simple local (or point-like) electron-electron interaction,11 parametrized by the
dimensionless coupling strengths g2 and g4.

It is convenient to write the Hamiltonian as follows in terms of the densities ρ̃ν :

Hkin =
∑

ν=L,R

[
2π
L

1
2N̂

2
ν +

∫ L/2

−L/2
dx
2π

∗
∗

1
2 (∂xφν(x))

2 ∗
∗

]
=

∫ L/2

−L/2
dx
2π

∗
∗

1
2

[
ρ̃2
L + ρ̃2

R

]
(x) ∗

∗ (109)

H0 = Hkin +Hint = v
4

∫ L/2

−L/2
dx
2π

∗
∗
[

1
g (ρ̃L + ρ̃R)

2
+ g

(
ρ̃L − ρ̃R

)2]
(x)∗∗ , (110)

where v ≡
[
(1 + g4)

2 − g2
2

]1/2
, g ≡

[
1+g4−g2
1+g4+g2

]1/2
. (111)

Eq. (109) follows from (107) via (70) and (37) (the N̂ν∂xφν cross-terms in ρ̃2
ν vanish when integrated, since

φ̃ν is periodic); simple algebra then produces (110) for Hkin +Hint.

10.B.2 Diagonalizing H0 in the boson basis

Now, the tremendous advantage of the bosonic representation is that ρ̃ν , though quadratic in the fermion
field ψ̃ν , is linear in the boson field φ̃ν (see Eq. (105)). Thus H0 is quadratic in bosonic variables and can
be diagonalized straightforwardly by a Bogoljubov transformation of the bqν ’s:

H0 = 2π
L
v
2






(
1
g+g

) ∑

ν=L,R

[
1
2N̂

2
ν +
∑

q

nqb
†
qνbqν

]
+
(

1
g−g

)[
N̂LN̂R −

∑

q

nq(bqRbqL + b†qRb
†
qL)

]



11 A more general local interaction such as ∗
∗[Ψ†

phys(x)Ψphys(x)]
2 ∗
∗ also contains so-called Umklapp processes that do not

conserve the number of L- or R-movers, e.g. ei2kF xψ̃†
Lψ̃Rρ̃ν or ei4kF xψ̃†

Lψ̃
†
Lψ̃Rψ̃R. However, for the present spinless case they

are zero, since Fermi statistics ensures that ψν(x)ψν(x) = 0. Note also that using a point-like interaction in conjunction with
bosonization is strictly speaking somewhat sloppy: as emphasized in Section 10.A.2, the extention of Fock space to include
infinitely many negative-energy “positron states” is strictly speaking justified only if these are not excited by a perturbation;
however, a point-like interaction in position space is a constant in momentum space, i.e. it includes processes that couples
states of arbitrarily large momentum differences, including physical with unphysical states (though their contribution to the
low-energy physics is still negligible, because of the very large energy cost involved in exciting a positron state). A cleaner
approach would thus be to explicitly use an interaction with a finite range, say ã, corresponding to a finite cut-off 1/ã in
momentum space. For a more detailed discussion of such and other cut-off-related matters, see Ref. [20].
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= v 2π
L

∑

ν=±

[
gνN̂ 2

ν +
∑

q

nqB
†
qνBqν

]
(112)

= v
∑

ν=±

[
2π
L g

νN̂2
ν +

∫ L/2

−L/2
dx
2π

∗
∗

1
2 (∂xΦν(x))

2 ∗
∗

]
≡ H0+ +H0− , (113)

where we have defined the following quantities:

Bq± = 1√
8

{(
1√
g+

√
g
)

(bqL ∓ bqR) ±
(

1√
g−

√
g
)(

b†qL ∓ b†qR

)}
, (114)

N̂+ = 1
2 (N̂L − N̂R) , N̂− = 1

2 (N̂L + N̂R) , (115)

Φ±(x) ≡ −
∑

q>0

1√
nq
e−aq/2

[
e−iqxBq± + e+iqxB†

q±
]

(116)

= 1√
8

{(
1√
g+

√
g
)[
φ̃L(x) ∓ φ̃R(−x)

]
±
(

1√
g−

√
g
)[
φ̃L(−x) ∓ φ̃R(x)

]}
, (117)

ρ±(x) ≡ ∂xΦ±(x) + 2π
L

√
2g±1/2N̂± (118)

= 1√
8

{(
1√
g+

√
g
)

[ρ̃L(x) ∓ ρ̃R(−x)] ∓
(

1√
g−

√
g
)

[ρ̃L(−x) ∓ ρ̃R(x)]
}
. (119)

The first line for H0 follows by inserting (103) into (110). The diagonal form (112) was obtained by
making the Bogoljubov transformation 12 (114) to a new set of orthonormal boson operators Bq± (with

[Bqν , B
†
q′ν′ ] = δνν′δqq′) and number operators N±. From these we constructed in Eqs. (116) and (118) two

new boson fields Φ±(x) and densities ρ±(x) [by analogy to Eqs. (103) and (105)]. By construction they both
are manifestly L-moving (since Bq±(t) = e−ivqtBq±) and hence obey all the boson-field identies derived in
Section 5 [we could equally well have defined Φ± to be L/R-moving by replacing x by ±x in (116-119)].
Finally, (113) follows from (112) just as (70) follows from (69).

10.B.3 Relation between our notation and that of Kane and Fisher

For the sake of completeness, we briefly explain the notation used in the path-breaking papers of Kane and
Fisher [16], denoting it by a subscript kf . They use field-theoretic bosonization (another example of which
is summarized in Appendix A) and write

Ψphys(x) ∼
∑

n=odd

e−i
√
πφkf (x)e−in[

√
πθkf (x)+kFx] , (120)

where θkf and φkf are so-called “dual fields” that by definition satisfy

[φkf (x), θkf (x
′)] = − 1

2 iǫ(x− x′). (121)

Kane and Fisher state that “the sum on n enforces the constraint that the particle density be discrete”
[16]. Although this n-sum is also used in an early paper by Haldane [33], the present authors see no

12 A simple way to derive the Bogoljubov transformation is to insert the general Ansatz Bqν ≡
∑

q′ν′ (Aνν′
qq′ bq′ν′ +Āνν′

qq′ b
†
q′ν′ )

into the equation of motion implied by (112), namely [Bqν ,H] = vqBqν , and solve this for the A’s, under the condition that

[Bqν , B
†
q′ν′ ] = δνν′ δqq′ . Actually, the alternative combinations Bq1 and Bq2 ≡ 1√

2
(Bq+ ± Bq−) are more commonly used in

the literature, since the corresponding fields Φ1 and Φ2, constructed as in (116), do not contain “non-local” combinations such
as the φ̃L(x)∓ φ̃R(−x) of (117). However, for the purpose of discussing scattering from a point-like impurity, as we do below,
our “non-local” combinations cause no problems, and in fact are more convenient, since forward and backward scattering turn
out to depend only on Φ− and Φ+, respectively, at x = 0.
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need for it: using only n = ±1 and comparing Eq. (120) with our (101) and (104-105), we can make
contact with the rigorous constructive approach (in the continuum limit L = ∞) through the identifications
φ̃L/R,here :=

√
π(φkf ± θkf ) i.e.

θkf (x) := 1
2
√
π

[
φ̃L(x) − φ̃R(x)

]

here
, thus ∂xθkf (x) := 1

2
√
π

[ρ̃L(x) + ρ̃R(x)]here , (122)

φkf (x) := 1
2
√
π

[
φ̃L(x) + φ̃R(x)

]

here
, thus ∂xφkf (x) := 1

2
√
π

[ρ̃L(x) − ρ̃R(x)]here . (123)

Eq. (121) is then consistent with our (50) (in which one must set ǫ(x) → −ǫ(x) for φ̃R,here). Since
φL/R,here = φL/R,here(x ± t), it follows that ∂xφkf = ∂tθkf , thus ∂xφkf is the canonically conjugate field
to θkf . Translating our Hamiltonian H0 as given by (110) into Kane and Fisher’s notation, it takes a form
often encountered in the literature, namely

H0 =
v

2

∫ L/2

−L/2
dx ∗

∗

[
1

g
(∂xθkf (x))

2
+ g(∂xφkf (x))

2

]
∗
∗ . (124)

10.C Adding an impurity to a Tomonaga-Luttinger liquid

We add to the wire a single impurity at x = 0 that causes both forward and backward scattering and bosonize
the Hamiltonian H0 +HF +HB. We diagonalize HF exactly for arbitrary g by a unitary transformation.
We diagonalize HB exactly for g = 1

2 using refermionization, which we introduce in pedagogical detail, and
calculate some useful correlation functions.

10.C.1 Adding an impurity

We turn on the impurity scattering term HF +HB, bosonize, show that HF/B depends only on Φ∓, and
diagonalize H0− +HF for arbitrary g by a unitary transformation U− = eic−Φ− .

Assuming an impurity at x = 0 acts like a point scatterer causing both forward (L-L, R-R) and
backward scattering (L-R, R-L), we consider the following perturbations (λF , λB and the phase θB are
real, dimensionless constants, with λB > 0):

HF =
∑

ν=L,R

vλF

2π
∗
∗ψ̃

†
ν(0)ψ̃ν(0) ∗

∗ = vλF

2π (ρ̃L(0) + ρ̃R(0)) = vλF

2π

√
2g ρ− , (125)

HB = vλB

2π

[
eiθB ψ̃†

L(0)ψ̃R(0) + e−iθB ψ̃†
R(0)ψ̃L(0)

]
(126)

= vλB

2πa

[
F †
LFRe

i(φ̃L(0)−φ̃R(0)+θB) + F †
RFLe

i(φ̃R(0)−φ̃L(0)−θB)
]

(127)

= vλB

2πa

[
F †
LFRe

i(
√

2gΦ++θB) + F †
RFLe

−i(√2gΦ++θB)
]
, (128)

We bosonized these using Eqs. (104-105) for the old and (117), (119) for the new boson fields, with

Φ± ≡ Φ±(0) = 1√
2
g∓

1
2

(
φ̃L(0) ∓ φ̃R(0)

)
, ρ± ≡ ρ±(0) = 1√

2
g±

1
2 (ρ̃L(0) ∓ ρ̃R(0)) . (129)

Note that [Φ+,Φ−] = [ρ+, ρ−] = 0, since [Bq−, B
†
q′+] = 0. The full Hamiltonian,

H ≡ H0 +HF +HB = (H0+ +HB) + (H0− +HF ) ≡ H+(Φ+) +H−(Φ−) , (130)
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falls apart into two commuting parts, depending only on Φ+(x) and Φ−(x), respectively. The second of
these can be written as

H− = H0− +HF = v

[∫ L/2

−L/2
dx
2π

1
2
∗
∗(∂xΦ−(x))2 ∗

∗ + (2π
L ) 1

g N̂
2
− + c−

(
∂xΦ− + 2π

L

√
2
g N̂−

)]
, (131)

with c− = λF

2π (2g)
1
2 , see Eqs. (113) and (125). It can be diagonalized using the unitary transformation

U− = eic−Φ− , which maps it onto a Hamiltonian H ′
− which is essentially free [we evaluate U−H0−U

−1
−

using (71) and U−HFU
−1
− using (45)]:

H ′
− ≡ U−H−U

−1
− = v

[∫ L/2

−L/2
dx
2π

1
2
∗
∗(∂xΦ−(x))2 ∗

∗ + 2π
L

1
g N̂

2
− + c− 2π

L

√
2
g N̂− − c2−

(
1
a − π

L

)
]
. (132)

10.C.2 Finite-size refermionization of H+ at g = 1
2

We give a rigorous introduction to the technique of finite-size refermionization, the “inverse” of bosoniza-

tion. Then we refermionize H+ = H0+ +HB for g = 1
2 and make a unitary transformation U+ ∼ ei

π
2 N̂ 2

such that H ′
+ = U+H+U

−1
+ is quadratic in refermionized operators.

The problem posed by the second term in Eq. (130), H+ = H0+ + HB, is not exactly solvable for
general values of the coupling constant g, since HB also involves Klein factors, i.e. is not expressed purely
in bosonic language. However, H+ can be diagonalized exactly for g = 1

2 , to which we henceforth restrict
our attention.

g = 1
2 is special, since then Φ+ occurs in the backscattering term HB only in the combination e±iΦ+ ,

which is precisely what occurs on the right-hand side of a bosonization identity!13 This can be exploited
by refermionizing: we invert the line of reasoning of Section 4 to 6, where bosons and Klein factors
were constructed from fermions, and here construct new fermions from bosons and Klein factors. We
shall refermionize at finite L, since this allows us to discuss refermionization at the same level of rigor as
bosonization, namely as an operator identity in Fock space. (Our treatment is an adaption of that invented
by Zaránd for the 2-channel Kondo model [17, 18]; our way of defining the requisite new Klein factor F+

is considerably more precise and natural than previous treatments in the literature.)

Besides the boson field Φ+ and number operator N̂+ occuring in H+, we need new Klein factors F+,

F †
+ as ladder operators for N̂+. Since Eq. (115) gives N̂+ = 1

2 (N̂L − N̂R), it is natural to simply define

F+ ≡ F †
RFL, implying {F+, F

†
+} = 2, [N̂+, F

†
+] = F †

+, [N̂−, F
†
+] = [Φ±(x), F †

+] = 0. (133)

Thus F+, F †
+ and N̂+ satisfy the requisite standard relations (30) and (32). Next we define a new fermion

field Ψ+(x) and its Fourier coefficients ck̄ via the “refermionization identity”

√
2π
L

∑
k̄e

−ik̄xck̄ ≡ Ψ+(x) ≡ F+
1√
a
e−i(N̂+− 1

2 ) 2πx
L e−iΦ+(x), (134)

which should be read as follows: the combination F+
1√
a
e−i(N̂+− 1

2 ) 2πx
L e−iΦ+(x) is denoted by the short-hand

notation Ψ+(x), since it is known (from Sections 6, 8 and Appendix F) to behave precisely like a standard
fermion field. When Fourier-expanded, its Fourier coefficients ck̄ will thus be standard, easy-to-work-with

13 In the language of Section 9.D, e−iΦ+ is a vertex operator with scaling dimension 1
2
, which can be refermionized because

a free fermion field has also has scaling dimension 1
2
.
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fermion operators satisfying {ck̄, c†k̄′} = δk̄k̄′ . Formally, they can be defined by inverting the Fourier sum
of Eq. (134) (cf. Eq. (4)):

ck̄ ≡
∫ L/2

−L/2
dx

(2πL)1/2 e
ikx Ψ+(x) =

∫ L/2

−L/2
dx

(2πL)1/2 e
ikx F+

1√
a
e−i(N̂+− 1

2 ) 2πx
L e−iΦ+(x). (135)

Since all operators on the right-hand side were explicitly definded in terms of the original fermionic ck±
operators, Eq. (135) constitutes an extremely non-linear yet explicit and well-defined construction of the
new ck̄’s in terms of the old ck±’s. That such a direct, explicit construction is possible is one of the main
advantages of constructive over field-theoretical bosonization.

What is the nature of the Fock space in which N̂+, F+ and the ck̄’s act? Since NL, NR ∈ Z, we
have N+ ∈ Z + P/2, where P = 0 or 1 if (NL − NR) is even or odd. Since HB contains only the

combinations F †
+ and F+, which leave P = (2N̂+)mod 2 invariant, the Fock space of states separates into

two decoupled subspaces, labelled by P = 0, 1, with N+ integer or half-integer in the P = 0 or 1 subspaces,
respectively. The latter fact implies via Eq. (134) that the boundary condition on Ψ+ is P -dependent,
Ψ+(L/2) = eiπ(1−P )Ψ+(−L/2), so that the k̄-quantization must be too, with k̄ = 2π

L

(
nk̄ − 1−P

2

)
, nk̄ ∈ Z

(cf. Eqs. (5) and (2), now with δb = 1 − P )

The definition of a number operator N̂η and electron-hole operators bqη in Section 4 of course have
analogues in the refermionized Fock space of ck̄’s. Firstly, we note that the following relation holds:

N̂ ≡
∑

k̄

∗
∗c

†
k̄
ck̄

∗
∗ = N̂+ − P/2 , (with eigenvalues N ∈ Z). (136)

The left-hand side defines the number operator N̂ of the new fermions, where now ∗
∗

∗
∗ denotes normal

ordering of the ck̄’s with respect to a reference state, say |0+〉, defined by ck̄|0+〉 ≡ 0 for k̄ > 0 and

c†
k̄
|0+〉 ≡ 0 for k̄ ≤ 0 [cf. Eqs. (10-11)]. The right-hand side of (136) is an identity which can be proven

by verifying that lima→0

∫ L/2
−L/2

dx
2π

(
Ψ†

+(x + a)Ψ+(x) − 1
a

)
yields the left- or right-hand sides of Eq. (136)

when evaluated (to O(a, 1/L)) using either the left- or the right-hand sides of Eq. (134) [see Eqs. (G3) or
(G10) for details], respectively. More intuitively, since Ψ+ ∼ F+ ∼ ck̄ [by Eq. (134)], the action of Ψ+ (or

Ψ†
+) on any state decreases (or increases) both N+ and N by one. These can thus differ only by a constant,

which must be chosen such that N always is integer. Our definition of |0+〉 above sets this constant equal
to P/2, by setting N = 0 for N+ = P/2.

Secondly, the Bq+’s in terms of which Φ+(x) was defined in Eq. (116) in fact can be expressed as particle-
hole operators built from ck̄’s. To see this, we exploit the analogy between the refermionization identity
(134) and the original bosonization identity (63) combined with its Fourier expansion (3), to conclude that

B†
q+ = i√

nq

∑

k̄

c†
k̄+q

ck̄ , Bq+ = −i√
nq

∑

k̄

c†
k̄−qck̄ , (q = 2π

L nq > 0), (137)

in analogy to Eq. (16) for the bqη in the φη(x)-fields of Eqs. (33-34).
We are now ready to refermionize H+ by expressing it in terms of the ck̄’s:

H0+ = v

[
2π
L

(
1
2N̂ (N̂ +P ) + P

8

)
+

∫ L/2

−L/2
dx
2π

1
2
∗
∗(∂xΦ+(x))2 ∗

∗

]
(138)

=
∑

k̄

εk̄
∗
∗c

†
k̄
ck̄

∗
∗ + ∆L

P
8 , where ∆L ≡ v 2π

L , εk̄ ≡ vk̄ = ∆L

(
nk̄ − 1−P

2

)
; (139)

HB =
vλB
2πa

(
F †

+e
i(Φ++θB) + F+e

−i(Φ++θB)
)

=
vλB

2π
√
a

[
Ψ†

+(0)eiθB + Ψ+(0)e−iθB

]
(140)
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=
√

∆LΓ
∑

k̄

(
c†
k̄
eiθB + ck̄e

−iθB

)
, where Γ ≡ vλ2

B

a(4π)2 . (141)

For H0+ in (138) we started from Eq. (113) and wrote 1
2N̂

2
+ = 1

2N̂ (N̂ +P )+ P
8 [using Eq. (136)]; to obtain

(139) we inverted the line of reasoning that lead from Eq. (65) to (70) [or from (G12) to (G16)]. For HB

we simply inserted (134) into (128). Eq. (141) manifestly shows that N̂+ is not conserved, as expected for
a back-scattering term that converts L- into R-movers and vice versa. (In contrast, the total number of

fermions, 2N̂− = N̂L + N̂R, obviously is conserved, since by Eq. (133) [F+, N̂−] = 0.)
It is easiest to diagonalize H+ if it is nominally quadratic in fermionic operators. It can be made so

(and the phase eiθB absorbed) by a trivial unitary phase transformation:

U+ ≡ ei(
π
2 N̂ 2−θBN̂ ) gives U+

(
F †

+e
iθB

)
U−1

+ = F †
+ e

iπ(N̂+
1
2 ) = F †

+(i
√

2αd) . (142)

Here αd ≡ 1√
2
eiπN̂ is a “local Majorana fermion”, since its definition implies the following properties [the

first two follow from the fact that N ∈ Z, the last four from Eq. (133)]:

{αd, αd} = 1 , α†
d = αd , {F+, αd} = {F †

+, αd} = {ck̄, αd} = {c†
k̄
, αd} = 0 . (143)

Since Eqs. (142) and (135) imply U+

(
c†
k̄
eiθB

)
U−1

+ = c†
k̄
(i
√

2αd), the transformed version ofH+ is quadratic

in fermions, as desired:

H ′
+ ≡ U+H+U

−1
+ = ∆L

P
8 +

∑

k̄

[
εk̄

∗
∗c

†
k̄
ck̄

∗
∗ +

√
∆LΓ

(
c†
k̄

+ ck̄

)(
i
√

2αd

)]
. (144)

The trick of converting a term linear in fermions to a quadratic form using a Majorana fermion was also
used by Matveev [34]. In contrast to his work, however, our use of constructive bosonization, in which

electron counting operators such as N̂ play a fundamental role, allows us to precisely formulate the unitary
transformation that causes this Majorana fermion to appear naturally.

The fact that Γ ∝ 1/a is consistent with the well-known fact that for g < 1, an impurity in a Tomonoga-
Luttinger liquid “scales into the strong-coupling regime”. By this statement one means that under a
renormalization group transformation designed to focus on the low-energy regime of the model, the effective
strength of the impurity scattering increases. To see this explicitly, one can adopt for example Anderson’s
poor man’s scaling approach, in which the RG is generated by reducing (at fixed L, usually = ∞) the
bandwidth while adjusting the couplings to keep the dynamical properties invariant. Since the cut-off used
when bosonizing is 1/a (∼ pF ), reducing the bandwidth means changing a to a larger value a′, which must
be accompanied by a change in coupling constant from its initial value λB(a) to a new value λ′B(a′). Since

a occurs in H ′
+ only through Γ, one immediately concludes that λ′B(a′) = λB

√
a′/a, which implies that

λB grows under rescaling. (This is completely analogous to what happens for the 2-channel Kondo model
[17, 18].)

10.C.3 Finite-size diagonalization of H ′
+ at g = 1

2

We give the linear transformation (derived in Appendix I) that diagonalizes the refermionized H ′
+ (for finite

L) by expressing the ck̄’s in terms of new fermions α̃ε and βk̄.

As pointed out by Oreg and Finkel’stein [25] and Furusaki [22], the form (144) for H ′
+ is related to that

arising after bosonizing and refermionizing the 2-channel Kondo model. Following the latter’s solution in
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Refs. [17, 18], this fact can be exploited to explicitly diagonalize H ′
+ for finite L in the P = 0 sector14 [i.e.

with k̄ = 2π
L (nk̄ − 1

2 )]. This elementary excercise is performed in Appendix I, with the following results:

ck̄(t) = 1√
2

(αk̄(t) + iβk̄(t)) , (145)

α−k̄ ≡ α†
k̄
, β−k̄ ≡ β†

k̄
, {αk̄, α†

k̄′
} = {βk̄, β†

k̄′
} = δk̄k̄′ , {α, β} = 0 ; (146)

αk̄(t) =
∑

ε

Ak̄,εe
−iεtα̃ε , αd(t) =

∑

ε

Ad,εe
−iεtα̃ε , βk̄(t) = e−iεk̄tβk̄ , (147)

α̃−ε = α̃†
ε , {α̃ε, α̃†

ε′} = δεε′ , {α̃, β} = 0 ; (148)

Ak̄,ε =
i2
√

∆LΓAd,ε
ε− εk̄

, Ad,ε = −i sign(ε)

[
4∆LΓ

4∆LΓ + ε2 + (4πΓ)2

]1/2
, [sign(0) ≡ i] (149)

H ′
+ =

∑

ε>0

ε
(
α̃†
εα̃ε − 1

2

)
+
∑

k̄>0

εk̄

(
β†
k̄
βk̄ + 1

2

)
; (150)

ε

4Γ
= ∆L

∞∑

k̄=−∞

1

ε− εk̄
; (151)

〈G′
B |βk̄β†

k̄′
|G′

B〉 = δk̄k̄′θ(εk̄), 〈G′
B|α̃εα̃†

ε′ |G′
B〉 = δεε′θ(ε), (with θ(0) ≡ 1

2 ) . (152)

Eqs. (145) and (147) express ck̄ and αd in terms of two sets of fermions, {βk̄} and {α̃ε}, that diagonalizeH ′
+

[cf. (150)]. The sums
∑
ε in (147) run over all real solutions ε of the eigenvalue equation (151). Analyzing

(151) graphically (cf. [18]) shows that each ε lies within ∆L/2 of some εk̄, to which it reduces as Γ → 0,
with the exception of one solution, namely ε = 0. The latter is associated with the Majorana fermion
α̃0 = α̃†

0, which reduces to αd as Γ → 0 (and whose contribution to ck̄ is negligible for L → ∞). For each

ε > 0 that solves (151), −ε does too; however, by (146) and (148) the negative-energy operators β†
−|k̄| and

α̃†
−|ε| are not independent, but should be viewed as shorthand (making some equations more compact) for

β|k̄| and α̃|ε|. The latter annihilate the ground state |G′
+〉 of H ′

+ [cf. (152)].
Correlation functions with respect to H ′

+ and |G′
B〉, which we denote by 〈 〉′, i.e.

〈O1(t)O2(0)〉′ ≡ 〈G′
B |eiH

′
+tO1e

−iH′
+tO2|G′

B〉 , (153)

are straightforward to calculate using the above results, provided that O1 and O2 can be expressed in terms
of the ck̄’s and αd. In the process it is often convenient to take the continuum limit L→ ∞, in which the
spectrum of ε’s and εk̄’s becomes continuous:

∆L

∑

k̄

L→∞−→
∫
dεk̄, ∆L

∑

ε

L→∞−→
∫
dε,

1

ε− εk̄

L→∞−→ P
1

ε− εk̄
+

ε

4Γ
δ(ε− εk̄) . (154)

In the third relation, P denotes principle value and the δ-function is needed to ensure consistency with
Eq. (151). Where necessary, divergent integrals will be regularized by inserting a factor e−|k̄|a = e−|εk̄|a/v or
e−|ε|a/v [just as one does for free Green’s functions, cf. Appendix H.1.a]. For example (see also Appendix J)

Dβ(t) ≡ ∆L

∑

k̄k̄′

〈βk̄(t)β†
k̄′

(0)〉′ L→∞−→
∫ ∞

0

dεk̄ e
−k̄(it+a/v) =

1

it+ a/v
; (155)

Dαd
(t) ≡ 〈αd(t)αd(0)〉′ =

∑

εε′

e−iεtAd,εA
∗
d,ε′〈αεα†

ε′〉′ (156)

14The differences between the P = 0 and 1 sectors disappear in the continuum limit L → 0 that we are ultimately interested
in.
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L→∞−→
∫ ∞

0

dε
e−iεt 4Γ

ε2 + (4πΓ)2
=

{
1
2 (t = 0),

1
4π2Γit

[
1 + O

(
1
Γt

)]
(Γt ≫ 1).

(157)

We used (147) and (149) for αd in (156), and (154) when taking the limit L→ ∞. The asymptotic Γt≫ 1
behavior of (157) was obtained using the general result

∫ ∞

0

dε
e−ε(it+a) εn

(ε2 + c2)m(ε+ c̄)m̄
∼ n!

c2m c̄m̄ (it)1+n
for ct, c̄t≫ 1, (158)

(with n,m, m̄ ≥ 0 integer, c, c̄ > 0 real), which follows by noting that for ct, c̄t ≫ 1 the integrals are
dominated by the regime ε≪ c, c̄, in which (ε2 + c2)m(ε+ c̄)m̄ ≃ c2mc̄m̄.

10.C.4 Bosonic correlation functions at g = 1/2

We express Φ+(t, x) in terms of the fermions βk̄ and α̃ε, which enables us to express arbitrary bosonic cor-
relation functions in terms of fermionic ones. We then show explicitly that for Γt≫ 1, 〈Φ+(t, 0)Φ+(0, 0)〉′ ∼
t−2 and 〈eiλΦ+(t,0)e−iλΦ+(0,0)〉′ ∼ const.

The key to this endeavour is that the Fourier coefficients Bq+ of Φ+(t, x) in (116) have a refermionized
representation, namely (137), a fact that has to our knowledge not been exploited before. Using (145) and
(146), Bq+ can be rewritten as

Bq+ = −i√
nq

∑

k̄

(α−k̄+q − iβ−k̄+q)(αk̄ + iβk̄) = − 1√
nq

∑

k̄

βk̄α−k̄+q . (159)

(Since
∑

k̄ =
∑

k̄−q, we have
∑

k̄ α−k̄+qαk̄ = 1
2

∑
k̄{α−k̄+q, αk̄} = 0, etc.) Inserting (159) into (116) for

Φ+(t, x), (147) for α−k̄+q, and (149) for A−k̄+q,ε yields

Φ+(t, x) =
∑

q 6=0

e−a|q|/2e−iqx

nq

∑

k̄

βk̄(t)α−k̄+q(t) =
∑

k̄ε

Φk̄,ε(x)βk̄(t)α̃ε(t) , (160)

Φk̄,ε(x) ≡
∑

q 6=0

e−a|q|/2e−iqx

nq
A−k̄+q,ε =

sgn(ε) 4∆LΓ

[4∆LΓ + ε2 + (4πΓ)2]1/2

∑

q 6=0

e−a|q|/2e−iqx

nq(ε+ εk̄ − εq)
. (161)

Here εq = ∆Lnq, and
∑

q 6=0 means a sum over all nq ∈ Z (positive and negative) except q = 0. Using (154)
to perform this sum in the continuum limit, we obtain for x = 0:

∑

q 6=0

e−a|q|/2

nq(ε+ εk̄ − εq)
=

∆L

ε+ εk̄

∑

q 6=0

[ e−a|εq|/2v

ε+ εk̄ − εq
− e−a|εq|/2v

εq

]
L→∞−→ ε e−|ε+εk̄|a/2v

4Γ(ε+ εk̄)
(162)

(we kept only terms that do not vanish when a→ 0). Thus (161) yields [again using (154)]:

Φk̄,ε ≡ Φk̄,ε(0)
L→∞−→ ∆L|ε|

[ε2 + (4πΓ)2]1/2

[
e−|ε+εk̄|a/2v P

ε+ εk̄
+

ε

4Γ
δ(ε+ εk̄)

]
. (163)

Eqs. (160) and (163) for Φ+(t, 0) and Φk̄ε(0) instructively show that the infrared divergence inherent in a

free boson field (due to the 1/q in Φ+(0) =
∑
q 6=0

i
q

∑
k c

†
k̄−qck̄) is cut off by backscattering at a scale Γ.
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This has dramatic consequences for the 2-point correlator:

DΦ+(t) ≡ 〈Φ+(t, 0)Φ+(0, 0)〉′ (164)

=
∑

k̄k̄′εε′

Φk̄,εΦ
∗
k̄′,ε′〈βk̄(t)α̃ε(t)α̃

†
ε′ (0)β†

k̄′
(0)〉′ =

∑

k̄>0

∑

ε≥0

e−i(εk̄+ε)tθ(ε)|Φk̄,ε|2 (165)

= P

∫ ∞

0

dε dεk̄
e−(εk̄+ε)(it+a/v) ε2

[ε2 + (4πΓ)2](ε+ εk̄)
2

=

{
− ln (eγ4πΓa/v) for t = 0, Γa≪ 1;

1
(4πΓit)2

[
1 + O

(
1
Γt

)]
for Γt≫ 1 .

(166)

[The Γt ≫ 1 result was obtained by doing first the εk̄, then the ε integral, using Eq. (158).] Compare
the results (166) with (80) for a free boson correlator, namely − ln[2πL (it + a)]: For t = 0, the infrared
divergence is now cut off by Γ instead of 1/L (γ = 0.577 . . . is Euler’s constant); and for Γt ≫ 1 the
t−2 decay of the correlator is much faster than the free logarithmic behavior. This strong suppression
of the long-time fluctuations of Φ+(t, x = 0) has been paraphrased [21, 23] by saying that at x = 0 the
backscattering impurity “pins” the field Φ+(t, 0) to its average value 〈Φ+(t, 0)〉′, the fluctuations around
which are “massive”15. In more physical terms, the current fluctuations at the impurity site, which are
governed by ∂xΦ+(x)|x=0, are suppressed by the backscattering impurity. This eminently plausible result
was first found by Kane and Fisher [16], who showed via an RG analysis that the conductance past such an
impurity is 0 at T = 0 whenever g < 1. Note, however, that density fluctuations, governed by ∂xΦ−(x)|x=0,
are not suppressed by backscattering (since [HB,Φ−] = 0).

The pinning of Φ+ has important consequences; for example, it immediately implies that the correlator
of two vertex functions is asymptotically constant:

DVλ
(t) ≡ a−λ

2〈eiλΦ+(t,0)e−iλΦ+(0,0)〉′ (167)

= a−λ
2

∞∑

n=0

∞∑

n′=0

(iλ)n(−iλ)n′

n!n′!
〈Φn+(t, 0)Φn

′
+ (0, 0)〉′ (168)

= a−λ
2〈eiλΦ+(t,0)〉′〈e−iλΦ+(0,0)〉′ + O(Γt)−2 for Γt≫ 1 . (169)

To obtain (169), we invoked the fermionic expression (160) for Φ+ and Wick’s theorem for fermions to en-
visage each correlator in (168) as a sum of products of contractions of the kind 〈α̃α̃†〉′ and 〈ββ†〉′. All terms
involving no contractions at all between an operator at time t and one at 0, to be called “disconnected”,
can be reorganized to yield the first term of (169), a t-independent constant; all other, “connected”, terms
decay at least as t−2, since DΦ+(t) of (164) is the leading such term. Note that the value of the leading

constant in (169) is not simply equal to a−λ
2

e−λ
2〈Φ+(0,0)2〉′ = (eγ4πΓ/v)λ

2

[by (166)], since the identity
(75) which would yield this result holds only for free boson fields (cf. the end of Appendix J.1).

10.D Tunneling density of states at the impurity site

For g = 1
2 , we calculate the low-energy (ω → 0) asymptotic behavior of the tunneling density of states at

the impurity site, ρdos(ω) ∼ ων−1, following Furusaki. Our result ν = 2 resolves the controversy between

15 By Eq. (160), this average value is 〈Φ+(t, 0)〉′ = 0, but in general it depends on one’s choice of gauge: if we had not
“gauged away” the phase factor eiθB in H+ of (128) by including the factor e−iθBN+ in the unitary transformation U+

of (142), we would have obtained 〈Φ+〉′ = θB here [23]. The fluctuations are called “massive” because similar behavior
(〈Φ+(t)Φ+(0)〉 ∼ t−2) occurs in models involving only bosonic fields, but with a mass term, e.g. with Hamiltonian HM =∫ L/2
−L/2

dx
2π

1
2

∗
∗(∂xΦ+(x))2 ∗

∗ + 1
2
M [Φ+(x = 0)]2. In fact, such effective models can be used to approximately treat the general

case g 6= 1
2
, which cannot be refermionized [35, 22].
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Fabrizio & Gogolin and Furusaki vs. and Oreg & Finkel’stein in favor of the former authors.

The tunneling electron density of states at the impurity site, ρdos(ω), is defined by

ρdos(ω) ≡
∫ ∞

−∞
dt
2π e

iωt〈G|Ψphys(t)Ψ
†
phys(0) + Ψ†

phys(0)Ψphys(t)|G〉 , (170)

where Ψphys(t) ≡ eiHtΨphys(x = 0)e−iHt and |G〉 is the ground state of H = H0 +HF +HB. Both terms

in (170) are real, and ρdos(ω) = ρdos(−ω) by particle-hole symmetry (ck,L/R → c†−k,L/R maps H(λB) to

H(−λB), both of which have the same spectrum). Since at T = 0 the second term in (170) does not
contribute to the ω > 0 part of ρdos(ω), its asymptotic ω → 0+ behavior is determined by the asymptotic
t→ ∞ behavior of

Dphys(t) ≡ 〈G|Ψphys(t)Ψ
†
phys(0)|G〉 ∼ (it)−ν for t→ ∞ , (171)

which implies ρdos(ω) ∼ ων−1 for ω → 0+. We shall throughout take the continuum limit L → ∞ and
neglect all 1/L terms. The reason why Dphys(t) asymptotically does not contain a fluctuating factor e−i∆t

for t→ ∞ is that H has gapless excitations, implying that ∆ must be zero [22]. Our goal is to calculate the
exponent ν, which has recently been subject to quite some controversy, as mentioned in the introduction
to Section 10.

We start by bosonizing the physical fermion field Ψphys occuring in (171), using (101), (104) and (129):

Ψphys(x = 0) = ψ̃L(x = 0) + ψ̃R(x = 0) = a−1
(
FLe

−iφ̃L +FRe
−iφ̃R

)

= a−1e
− i√

2g
Φ−
(
FLe

−i
√

g
2 Φ+ +FRe

i
√

g
2 Φ+

)
. (172)

SinceH = H++H− and [H−, H+] = 0 [see Eq. (130)],Dphys(t) can be factorized asDphys(t) ≡ DF (t)DB(t),
where

DF (t) ≡ 〈GF |eiH−t
(
e
− i√

2g
Φ−
)
e−iH−t

(
e

i√
2g

Φ−
)
eiÊt|GF 〉 , (173)

DB(t) ≡ a−1〈GB |eiH+t
(
FLe

−i
√

g
2 Φ+ + FRe

i
√

g
2 Φ+

)
e−iH+t

(
F †
Le

i
√

g
2 Φ+ + F †

Re
−i
√

g
2 Φ+

)
|GB〉

≡ DLL(t) +DRR(t) +DLR(t) +DRL(t) . (174)

Here |GF 〉 and |GB〉 are the ground states of H− and H+, respectively; Ê is defined by eiH−tFL/Re
−iH−t ≡

eiÊt and, being of order 2π
L , will be neglected henceforth.

10.D.1 Free tunneling density of states

In the absence of an impurity the calculation of DF (t) and DB(t) is straightforward, since H0± are free
boson Hamiltonians, so that the free-boson relations (74) and (76) [or equivalently Eq. (87)] can be used:

DF (t) = 〈GF |eiH−t
(
e
− i√

2g
Φ−(0)

)
e−iH−t

(
e

i√
2g

Φ−(0)
)
|GF 〉 (175)

≃ e
1
2g 〈GF |Φ−(t)Φ−(0)−Φ−(0)Φ−(0)|GF 〉 = (1 + ivt/a)−

1
2g (176)

DB(t) = a−1〈GB |eiH+t
(
e−i

√
g
2 Φ+(0)

)
e−iH+t

(
ei
√

g
2 Φ+(0)

)
|GB〉 + h.c. (177)

≃ a−1e
g
2 〈GB |Φ+(t)Φ+(0)−Φ+(0)Φ+(0)|GB〉 + c.c. = a−1(1 + ivt/a)−

g
2 + c.c. (178)
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It follows that ν = 1
2 (g + 1

g ). For the free-fermion case g = 1 we have ν = 1, i.e. for ω → 0 we recover

the standard “Fermi-liquid” property ρdos(ω = 0) 6= 0. However, for any g 6= 1 we have ν > 1, i.e.
ρdos(ω) → 0 for ω → 0. Thus, the interactions in 1-D cause the density of states to vanish at the Fermi
energy. This property is one of the most spectacular differences between a Tomonaga-Luttinger liquid
(without impurities) and a Fermi liquid.

10.D.2 Effect of an impurity on ρdos(ω)

Let us now consider the effect of turning on HF and HB. The calculation of DF (t) is again simple, since
we can use the unitary transformation U− = e−ic−Φ− of Section 10.C.1 to map H− onto a free Hamiltonian
H ′

− ≡ U−H−U
−1
− , see Eq. (132). Denoting the corresponding ground state by |G′

F 〉 = U−|GF 〉, the function
DF (t) can be evaluated by first making this transformation in Eq. (175), and proceeding as before:

DF (t) = 〈G′
F |eiH

′
−t
(
e
− i√

2g
Φ−(0)

)
e−iH

′
−t
(
e

i√
2g

Φ−(0)
)
|G′

F 〉 (179)

≃ e
1
2g 〈G′

F |Φ−(t)Φ−(0)−Φ−(0)Φ−(0)|G′
F 〉 = (1 + ivt/a)−

1
2g (180)

Now Φ−(t) ≡ Φ−(t, x = 0) denotes time-development w.r.t. H ′
−.

To calculate DB(t), we restrict ourselves to the case g = 1
2 for which we have refermionized H+ above.

First, using a trick due to Furusaki16 [22] and Fabrizio and Gogolin [23], we note that the following relations
hold:

2αdH
′
+(λB)αd = H ′

+(−λB) ≡ H̄ ′
+(λB) , (181)

F+H
′
+(λB)F †

+ = H̄ ′
+(λB) + v 2π

L (N̂ + 1
2P + 1

2 ) , (182)

FL/RH+(λB)F †
L/R = H+(−λB) +O(2π

L ) ≡ H̄+(λ), (183)

The first two follow from (144) for H ′
B and (143), and the third from using {FL, FR} = 0, etc., in (128)

for HB. Thus, commuting αd or F+ past H ′
+(λB) yields a similar Hamiltonian with backscattering term

of opposite sign, H̄ ′
+(λB) ≡ H ′

+(−λB), and similarly for commuting FL/R past H+(λB). The extra O(2π
L )

term in (182) results from the 1
2N̂ (N̂ +P ) in H ′

0+ = H0+ [see (138)] and can be neglected in the continuum
limit, and similarly for that in (183).

To calculate the LL and RR contributions in Eq. (174), we now proceed as follows:

DLL/RR(t) ≡ a−1〈GB |eiH+t
(
FL/Re

∓ i
2Φ+

)
e−iH+t

(
F †
L/Re

± i
2 Φ+

)
|GB〉 (184)

= a−1〈G′
B |eiH

′
+te∓

i
2Φ+e−iH̄

′
+te±

i
2Φ+ |G′

B〉 (185)

∼ 2a−1〈eiH′
+tαde

∓ i
2Φ+e−iH

′
+te±

i
2Φ+αd〉′ ≡ 2a−3/4DαdV∓1/2

(t) . (186)
16 Since Furusaki uses field-theoretical bosonization, he somewhat nonrigorously treats Klein factors (which he denotes by η)

as though they were Majorana fermions (which they are not, since F 2 6= 1), and hence uses the same η for what here are three

distinct operators, F+, F †
+ and αd. Moreover, he uses a different argument [when discussing his Eqs. (25-28)] to evaluate

DLL/RR(t) than our Eqs. (184-190): He points out that in Eq. (185) one can use (71) to write e±
i
2
Φ+e−iH̄′

+te∓
i
2
Φ+ =

e−i(H̄′
+∓ v

2
∂xΦ++ v

4a
)t, then argues that ∂xΦ+ ≡ ∂xΦ+(x = 0) is an irrelevant operator (since, as can be readily confirmed

using our methods, 〈∂xΦ+(t)∂xΦ+(0)〉 ∼ t−4), which hence does not affect the asymptotic behavior of DLL/RR. This

argument leads to DLL/RR(t) ∼ 〈G′
B |eiH′

+te−i(H̄′
++ v

4a
)t|G′

+〉 ∼ t−1e−i∆t, which produces the desired asymptotic t−1 decay.
However, it also produces an oscillatory factor ∆ = v

4a
, which Furusaki seems to have overlooked but which cannot be correct:

since H is gapless, we know that ∆ must be zero, as Furusaki points out himself earlier in his paper [after his Eq. (11)]. Thus,
his argumentation subtly contradicts itself — the resolution is probably [37] that infinite-order perturbation theory in the
irrelevant operator ∂xΦ+ will produce an oscillatory factor ei∆t that exactly cancels the above e−i∆t (without affecting the
asymptotic t−1 decay), but showing this explicitly seems like a rather non-trivial task.
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To obtain (185), we first commuted F †
L/R to the front (changing H+ into H̄+), where it drops out via

FL/RF
†
L/R = 1, and then performed the unitary transformation U+ = ei(

π
2 N̂ 2−θBN̂ ) of Eq. (142) to change

H+(±λB) to H ′
+(±λB) and |GB〉 to |G′

B〉. To obtain (186), we used (181) to change H̄ ′
+ back to H ′

+. The
resulting correlator, or its generalization to arbitrary λ, can be asymptotically evaluated in a way analogous
to DVλ

of (167):

DαdVλ
(t) ≡ a−λ

2〈αd(t)eiλΦ+(t)e−iλΦ+(0)αd(0)〉′ (187)

= a−λ
2

∞∑

n=0

∞∑

n′=0

(iλ)n(−iλ)n′

n!n′!
〈αd(t)Φn+(t)Φn

′
+ (0)αd(0)〉′ (188)

= a−λ
2〈αd(t)αd(0)〉′〈eiλΦ+(t)e−iλΦ+(0)〉′ + connected terms (189)

=
Cλ
(it)

[
1 + O

(
1

Γt

)]
for Γt≫ 1 . (190)

First note that the factors of αd in DαdVλ
(t) guarantee that it can not approach a non-zero constant for

Γt→ ∞; if it did, then 〈αdeiλΦ+〉′ would itself have to be non-zero, which it trivially is not (since 〈αd〉′ = 0
and [αd,Φ+] = 0). That DαdVλ

(t) ∼ t−1 follows from the observation that each correlator in (188), when
expressed [via (160)] in terms of α̃’s and β’s and evaluated using Wick’s theorem, contains at least one

contraction of the kind ∆L

∑
k̄ Ck̄〈βk̄(t)β

†
k̄
(0)〉′ or ∆L

∑
εCε〈α̃ε(t)α̃†

ε(0)〉′, i.e. between fermions at times t

and 0. This necessarily gives rise to a factor of at least t−1, as illustrated by (155) for Dβ(t) ∼ t−1 [where
Ck̄ = 1] or (157) for Dαd

(t) ∼ t−1 [where Cε = 4Γ/(ε2+(4πΓ)2)], or (164) for DΦ+(t) ∼ t−2 [which features
a product of two such contractions, with Ck̄Cε = ε2([ε2 + (4πΓ)2][ε+ εk̄]

2)−1]. (In general, the coefficients
Ck̄ and Cε that occur in the Wick expansion are of the form occuring under the integral in (158), and hence
cause a t−(1+n) decay, with n ≥ 0, see Appendix J.3 for examples.)

In (189), we gathered in the first term all “disconnected” terms in which αd(t) and αd(0) are contracted
only with each other (and not with any α̃’s from Φ+’s); that this contribution goes like (it)−1 (as first
pointed out by Fabrizio and Gogolin [23]) follows from (157) and (169). The remaining “connected” terms
are all those in which αd(t) and αd(0) are contracted with some α̃’s arising from the Φ+’s; of these terms,
the prefactors of those going like ∼ t−1 contribute to the constant Cλ in (190), though most contain more
than one t-to-0 contractions and hence decay faster. In Appendix J.3 this is illustrated explicitly for several
such connected terms. In Appendix J.2 we also check the result DαdVλ

(t) ∼ t−1 explicitly for the case

λ = −1, for which DαdV−1(t) can be related to the correlator DΨ(t) ≡ 〈Ψ+(t)Ψ†
+(0)〉′ ∼ (2vit)−1, which we

calculate exactly there.
From the result DαdVλ

(t) ∼ t−1 we conclude from (186) that also DLL/RR ∼ t−1.
The DLR(t) = D∗

RL(−t) contributions to (174) for DB(t) can be evaluated analogously:

DLR(t) ≡ a−1〈GB |eiH+t
(
FLe

− i
2Φ+

)
e−iH+t

(
F †
Re

− i
2Φ+

)
|GB〉 (191)

= a−1〈G′
B |eiH

′
+t
(
−F+i

√
2αde

iθBe−
i
2Φ+

)
e−iH̄

′
+te−

i
2Φ+ |G′

B〉 (192)

= −
√

2/a eiθB 〈eiH′
+tΨ+e

i
2Φ+e−iH

′
+te−

i
2 Φ+iαd〉′ ∼ (it)−1. (193)

For (192), we first commuted F †
R to the front (changing H+ to H̄+), where it combines with FL to give

FLF
†
R = −F+, and then made the unitary transformation U+, which changes F+ to F+i

√
2αde

iθB , see (142);

for (193) we factorized F+e
− i

2 Φ+ as
√
aΨ+e

i
2 Φ+ , and commuted iαd to the right using (181). The resulting

correlator (193) decays as t−1 for the same reasons as DαdVλ
of (187); the leading term, 〈Ψ+(t)[Φ(t) −

Φ+(0)]αd(0)〉 ∼ t−1 is calculated explicitly in Appendix J.4.
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Putting everything together, we conclude that for g = 1
2 , DB(t) ∼ t−1 and henceDphys(t) = DF (t)DB(t) ∼

t−2. Thus, the sought-after exponent in (171) is ν = 2, hence (170) implies ρdos(ω) ∼ ω.

10.D.3 Discussion of the controversy regarding ρdos(ω).

Our result ν = 2 agrees with that of Fabrizio and Gogolin (FG) [23] and Furusaki [22], who found ν = 1
g

[21] for general g, but not with that of Oreg and Finkel’stein (OF) [21], who found ν = 1
2g , using an exact

mapping to a Coulomb gas problem. In this mapping, the correlation function DB(t) of (174) is represented
as DB(t) = Ze(t) − Zo(t), where Ze and Zo are two Coulomb gas partition functions whose asymptotic
t→ ∞ behavior, Ze,o(t) ∼ Ce,o+De,o/t

µe,o , needs to be determined (Ce,o , De,o and µe,o > 0 are constants).
Using a seemingly rather natural mean-field approximation, OF concluded that Ce > Co, implying that
Ze(t) − Zo(t) asymptotically approaches a constant ∼ (Ce − Co) 6= 0]. This disagrees, however, with our
exact result that for g = 1/2, DB(t) asymptotically decays as 1/t [see (186), (190)]. Now, Fabrizio and
Gogolin (FG) were the first to point out explicitly, in a Comment [23] on OF’s work, that this decay stems
from a correlator of Klein factors namely

〈eiH+tFL/Re
−iH+tF †

L/R〉 = 〈eiH′
+te−iH̄

′
+t〉′ = 2〈eiH′

+tαde
−iH′

+tαd〉′ = 2Dαd
(t) (194)

[by (183), (181)]. This correlator occurs in (189) (in which FG somewhat cavalierly ignored the connected
terms), and is at the heart of the dispute — FG concluded that for general g it decays as t−1/2g (their
argument is explained in Appendix J.1), in agreement with our g = 1/2 result (157), Dαd

∼ (it)−1. Hence
FG concluded that “the neglect of Klein factors is the likely origin” of the missing 1/tµe,o in OF’s result.

In our opinion, however, this conclusion of FG is somewhat premature and the matter is more subtle:
OF did treat Klein factors correctly – they lead to the minus sign in Ze−Zo, as emphasized by OF in their
Reply [24] to FG’s Comment, and as we confirm explicitly in Appendix K. On the other hand, our exact
g = 1/2 result that DB(t) = Ze(t)−Zo(t) ∼ 1/t unambiguously implies that Ce = Co, i.e. that for g = 1/2
the leading constants in fact cancel precisely. We must therefore conclude that a “sign problem”, i.e. the
cancellation of two large quantities, occurs in OF’s Coulomb gas, and that the mean field approximation
which they used is not sufficiently accurate to correctly deal with this sign problem. Since the latter arose
because of Klein factors, Fabrizio and Gogolin evidently were correct in emphasizing their importance.

In replying to FG’s Comment, OF rejected their result for Dαd
, arguing that the effect of density

fluctuations, which, as OF correctly point out, are not suppressed by a backscattering impurity, were not
properly taken into account by FG. We disagree with this criticism and believe that FG’s calculation is
sound. The technical details of FG’s calculation and OF’s objection to it are described in Appendix J.1.
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Appendices
A Relation between field-theoretical and constructive bosoniza-

tion

We make explicit the connection between the constructive and field-theoretical approaches to bosonization,
by showing how the operators used in the latter can be constructed in terms of the former. To be specific,
we shall transcribe into the L/R-language of Section 10.A the excellent treatment of Shankar [15] (which
we summarize here without giving details, since these are well explained in Ref. [15]), denoting his notation
by the subscript Sha.

A.1 Definition of boson fields

Shankar starts from a set of boson operators φSha(p) satisfying [φSha(p), φ
†
Sha(p

′)] = 2πδ(p − p′), where
p ∈ (−∞,∞) is a 1-D continuous momentum index. His Hamiltonian is

H ≡
∫ ∞

−∞
dp
2π |p|φ†Sha(t, p)φSha(t, p) = 1

2

∫ ∞

−∞
dx
[
(∂xφSha(t, x))

2
+ Π2

Sha(t, x)
]
, (A1)

where the 1-D boson field φSha(t, x) is defined for x ∈ (−∞,∞) as

φSha(t, x) ≡
∫ ∞

−∞
dp

2π
√

2|p|

[
φSha(p)e

ipx + φ†
Sha

(p)e−ipx
]
e−a|p|/2 (A2)

(a > 0 being an infinitessimal regularization parameter), and ΠSha(t, x) ≡ ∂tφSha(t, x) is the canonically
conjugate field. One can check that [φSha(t, x),ΠSha(t, x

′)] = iδ(x − x′) in the limit a → 0. From these
fields, the combinations

φ±Sha(t, x) ≡ lim
x0→−∞

1
2

[
φSha(t, x) ∓

∫ x

x0

dx′ ΠSha(t, x
′)

]
(A3)

are constructed, whose commutations relations can be checked to be

[φ±Sha(t, x), φ±Sha(t, x
′)] = ± i

4 ǫ(x− x′) , where ǫ(x) ≡
{

±1 for x >
< 0

0 for x = 0
; (A4)

[φ+Sha(t, x), φ−Sha(t, x
′)] = ± i

4 . (A5)

(The absence in Shankar’s Eq. (3.12) of the factor ±i occuring in Eq. (A4) is a typo.) The fields φ±Sha(t, x)
can be checked to depend only on (t∓ x) and hence are called R- and L-moving.

A.2 Bosonization postulate

The bosonization formula for R- and L-moving fermion fields is postulated to be

ψ±Sha(t, x) = (2πa)−1/2e±i
√

4πφ±Sha(t,x) , (A6)

and its correctness is verified by checking explicitly that the correlation functions and anti-commutators of
ψ±Sha(x) are correctly reproduced.

Note that Eq. (A6) lacks Klein factors FR/L that lower the number of R- or L-moving electrons by
one. Therefore (A6) does not have the status of an operator identity in Fock space, but has meaning only
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within expectation values containing precisely one ψ†
+Sha

(or ψ†
−Sha

) for every ψ+Sha (or ψ−Sha), i.e. in
which the product of all Klein factors would equal one anyway. Note furthermore that in the absence of
(anti-commuting) Klein factors, which in the constructive approach guarantee that {ψ̃R(x), ψ̃†

L(x′)} = 0,
“special tricks” are required to ensure that this relation is correctly reproduced. In the above construction,
the trick is that φ+Sha and φ−Sha do not commute, so that {ψ+Sha(x), ψ

†
−Sha

(x′)} = 0 follows from Eqs. (A5)
and (C6).

A.3 Relation between our notation and that of Shankar

Let us now transcribe the above field-theoretical approach into our notation, as used in Section 10.A.
Because the lack of Klein factors in the former, such a transcription can never be completely one-to-one.
Our aim is therefore merely to find the relation between Shankar’s φ±Sha(x) and our φ̃R/L(x) fields. There
is some freedom in choice of signs, etc., which we shall exploit to ensure that Shankar’s bosonization formula
Eq. (A6) for ψ±Sha is consistent with our Eq. (104) for ψ̃R/L. To this end, we identify Shankar’s φSha(p)-
operators (defined for positive and negative p) with our two species of boson operators bq,L/R (defined only
for positive q), as follows:

φSha(p) := L1/2
(
θ(−p)b|p|,L − θ(p)bp,R

)
(A7)

The above Hamiltonian (A1) then equals our Hkin of (107), in the limit L→ ∞. The φ±Sha(x) of Eq. (A3)
can be expressed in terms of the φ̃R/L(x) fields defined in Eq. (103) by using Eq. (A7) to translate φSha(p)’s
into b|p|L/R’s:

φ±Sha(t, x) := ∓ 1
2
√
π

(
φ̃R/L(t, x) − φ̃0(t)

)
, (A8)

φ̃0(t) = 1
2

[
φ̃L(t, x0) + φ̃R(t, x0)

]
, (A9)

ψ±Sha(t, x) = (2πa)−1/2e−i(φ̃R/L(t,x)−φ̃0(t)) := (2π)−1/2ψ̃R/L(t, x)] , (A10)

:ψ†
±Sha(t, x)ψ±Sha(t, x) : = 1√

π
∂xφ̃±Sha(t, x) := ∓ 1

2π∂xφ̃R/L(t, x) = 1
2π :ψ†

R/L(t, x)ψR/L(t, x) :

Eqs. (A8) and (A9) (in the limit x0 → −∞) allow one to readily reproduce the commutators of Eqs. (A4)
and (A5), and in doing so to pin-point the reason why the latter is non-zero: it is the presence of the
“zero-mode term” φ̃0(t) in Eq. (A8) [which corresponds to the terms that Shankar calls “oscillating pieces
at spatial infinity” after his Eq. (3.11)]. Thus the ability of Eq. (A6) to represent two different species of
anti-commuting fermion fields ψ±Sha purely in terms of bosonic operators and without using Klein factors
comes at a price: in Eq. (A8) one effectively adds to the φ̃R/L, which are built purely from operators of the

same R/L species (b|p|,R/L, b†|p|,R/L), a zero mode term φ̃0, which contains a mixture of operators of opposite

species (both b|p|,R/L, b†|p|,R/L and b|p|,L/R, b†|p|,L/R). This price is rather high from a conceptual point of

view, because as soon as ψ±Sha contains such mixtures, it no longer makes sense to try to construct, as in
Eq. (16), the bqR/L in terms of the “original” fermion operators ckR/L in terms of which the fermion fields
were “originally” defined: each ψ∓Sha would then depend on both ckL and ckR, which clearly does not make
sense. Thus, in the above way of formulating the field-theoretic approach the φSha(p) are introduced for
purely formal reasons, and the very concrete relation between boson and fermion operators bqR/L and ckR/L
that is the hallmark of the constructive approach to bosonization is lost. Nevertheless, the field-theoretical
approach is perfectly well-defined and produces correct answers if used with sufficient care (though this is
sometimes easier said than done, and several consequential mistakes have been made in the past (Ref. [27]
discusses an example).
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B Completeness of boson representation

We prove, following Haldane [4], the following theorem for a single species of 1-D fermions (i.e. M = 1,
hence the fixed index η is not shown explicitly below):

Theorem: The Fock space (Fc) spanned by arbitrary combinations of the fermion operators ck and c†k’s
acting on the “vacuum state” |N = 0〉0, is identical to the Fock space (Fb) spanned by arbitrary combinations
of the bosonic operators b†q’s acting on the set of all N -particle ground states {|N〉0, N ∈ Z}.

This is equivalent to proving Eq. (22): Fc = Fb implies that any |N〉 ∈ Fc can be written as |N〉 =∑
N ′∈Z

fN ′(b†q)|N ′〉0, where fN ′(b†q) is some function, labelled by N ′, of b†q’s; but since [b†q, N̂ ] = 0, only
the N ′ = N term can be non-zero. Since the generalization to several species is trivial (all operators with
η 6= η′ commute), Eq. (22) immediatly follows.

Proof: It is evident that Fb is a subspace of Fc, since the b†’s are functions of the c† and c’s. To
prove that in fact Fb = Fc, we are thus confronted by the state-counting problem of showing that every
state in Fc also occurs in Fb. This can be done elegantly by calculating the corresponding grand-canonical
partition functions: since both are sums over positive definite quantities, one would find Fc > Fb if Fc had
more states than Fb; conversely, if one found Zc = Zb, this would imply Fc = Fb. Since this argument is
independent of the form of the Hamiltonian, we are free to choose H such that the calculation of partition
functions becomes tractable. To this end, we choose the linear dispersion εk = k of Eq. (65), with δb = 1,
so that

H0 ≡ 2π
L

∑

k

(nk − 1
2 ) ∗

∗c
†
kck

∗
∗ . (B1)

The calculation of Zc is an elementary text-book excercise: Summing over all nk ∈ Z, with the corresponding
fermion state c†k|N = 0〉 either empty or occupied, yields

Zc = Tr[e−β(H0−µN̂)] (B2)

=

∞∏

nk=1

(1 + e−β2π/L(nk−1/2)eβµnk)

−1∏

nk=−∞
(1 + e−β2π/L|nk−1/2|eβµnk) (B3)

=
∞∏

n=1

(1 + w2n−1vn)(1 + w2n−1v−n) where w = e−βπ/L and v = eβµ. (B4)

Next we calculate Zb: We note that Fb is spanned by the set of all states of the form

|N ; {mq}〉 =

∞∏

q>0

b
†mq
q

(mq!)1/2
|N〉0 (B5)

where N ∈ Z, and for each q = 2π
L nq > 0 (with nq ∈ Z

+) the mq ≥ 0 are integers specifying how many
bosonic quanta of momentum q have been excited. By Eqs. (67) and (68), each |N ; {mq}〉 is an eigenstate
of H0, with eigenvalue 2π

L
1
2N

2 +
∑
q>0 q mq. Therefore

Zb =

∞∑

N=−∞

∑

{mq}
〈N ; {mq}|e−β(H0−µN̂)|N ; {mq}〉 (B6)

=

∞∑

N=−∞

∑

{mq}
e−β2π/L(N2/2+

∑
q>0 nqmq)eµβN (B7)

vondelft
Bleistift

vondelft
Bleistift

vondelft
Bleistift

vondelft
Bleistift

vondelft
Bleistift

vondelft
Bleistift
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=

( ∞∑

N=−∞
wN

2

vN

)( ∞∑

M=0

P (M)w2M

)
=

∑∞
N=−∞wN

2

vN
∏∞
n=1(1 − w2n)

= Zc . (B8)

In the first of (B8), we denoted by P (M) the number of states |N ; {mq}〉 (for fixedN) satisfying
∑∞

nq=1 nqmq =

M , and, since this number is independent of N , factorized the sum. For the second of (B8), we noted that
P (M) is just the number of partitions of M , and hence (by simple combinatorics) also occurs in the series
expansion of the function

1∏∞
n=1(1 − yn)

=
∞∏

n=1

[ ∞∑

m=0

(yn)m
]

=
∞∑

M=0

P (M)yM . (B9)

Finally, the last of (B8) follows by inserting Jacobi’ triple product identity,17

∞∑

N=−∞
wN

2

vN =

∞∏

n=1

(1 + w2n−1v)(1 + w2n−1v−1)(1 − w2n) , (B10)

and comparing with Eq. (B4) for Zc. The rather remarkable result Zb = Zc immediately implies Eq. (22),
as argued above, which completes the proof.

Incidentally, Eq. (22) can also proven more formally: Since Eq. (B2) has the form Zc =
∑

N∈Z
ZcNv

N ,
where ZcN is the canonical N -particle partition function, and since Zc = Zb, Eq. (B7) shows that

ZcN =
∑

{mq}
〈N ; {mq}|e−βH0|N ; {mq}〉 . (B11)

This proves that the bosonic representation of fermion states is complete also within any of the fixed -N
Hilbert spaces HN .

C Useful identities

We derive the operator identities needed for bosonization, all of which are standard [39, 3].

Below, A and B are operators; we define an operator-valued function f(A) through its Taylor expansion,
i.e. f(A) ≡∑∞

n=0
1
n!f

(n)(0)An.

Theorem 1 (Baker-Hausdorff): Define [A,B]n+1 ≡ [[A,B]n, B] and [A,B]0 ≡ A. Then

e−BAeB =
∞∑

n=0

1

n!
[A,B]n = A+ [A,B] + 1

2! [[A,B], B] + . . . . (C1)

Proof: Consider the operator-valued function A(s) ≡ e−sBAesB, where s ∈ R. Since dnA(s)
dsn = e−sB[A,B]n e

sB,
as can be shown inductively, the Taylor series about s = 0 gives

A(s) =

∞∑

n=0

sn

n!

(
dnA(s)

dsn

)

s=0

=

∞∑

n=0

sn

n!
[A,B]n . (C2)

17 Jacobi’s triple product identity can be proven using both the series and product representations of the elliptic theta
function θ(v;w): equating Gradshteyn and Ryzhik’s [38] Eqs. (8.192.3) and (8.181.2) for θ(−iv/2;w) yields (B10).
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Taking s = 1 in Eq. (C2) yields the Baker-Hausdorff theorem (C1). 2

Theorem 2: If C ≡ [A,B] satisfies [A,C] = [B,C] = 0, then

(i) e−BAeB = A+ C or [A, eB] = CeB ; (C3)

(ii) eAeB = eA+BeC/2 = eA+B+C/2 ; (C4)

(iii) e−Bf(A)eB = f(A+ C) ; (C5)

(iv) eAeB = eBeAeC . (C6)

Proof: (i) Inserting the stated condition into the Baker-Hausdorff theorem (C1) yields (C3).
(ii) The operator-valued function T (s) ≡ esAesB (s ∈ R) satisfies the differential equation

dT (s)
ds = esAAesB + esAesBB = T (s)(A+ sC +B) (C7)

[the second equality follows from (C3)], with boundary condition T (0) = 1. Since [A + B,C] = 0, its

solution by inspection is T (s) = es(A+B)es
2C/2. Thus T (1) yields (C4).

(iii) By induction, (C3) implies e−BAneB = (A + C)n, which yields (C5) when inserted into the Taylor
expansion for f(A). (iv) is a special cases of (iii), with f(A) = eA. 2

Theorem 3: If [A,B] = DB and [A,D] = [B,D] = 0, then f(A)B = Bf(A+D). (C8)

Proof: Use AB = B(A +D) to show inductively that AnB = B(A+D)n. This yields (C8) when inserted
into the Taylor expansion for f(A). 2 — Using (C8), one readily finds:

eAB = BeA+D , eABn = BneA+nD = (BeD)neA , eAeB = eBe
D

eA . (C9)

Theorem 4 (free bosons): For a free boson Hamilton H =
∑
j ~ωj(b

†
jbj + 1

2 ) with [bj , b
†
j′ ] = δjj′ , the thermal

average of eB̂, where B̂ =
∑
j(λjb

†
j + λ̃jbj) is linear in bosons, is

〈eB̂〉 = e
1
2 〈B̂2〉, where 〈Ô〉 = Tr

(
e−βHÔ

)
/Tre−βH . (C10)

Proof [3] (see also (J6) for a simpler proof): Since the bosons are independent, the thermal averages

separate into independent parts, 〈eB̂〉 =
∏
j Cj and 〈B̂2〉/2 =

∑
j λj λ̃j〈b

†
jbj + 1/2〉, thus it suffices to show

that
Cj ≡ 〈eλjb

†
j+λ̃jbj 〉 = eλj λ̃j〈b†jbj+1/2〉 . (C11)

We denote the j-th mode partition function by Zj and drop the index j henceforth. Then

Z =

∞∑

m=0

〈m|e−β~ω(b†b+1/2)|m〉 =

∞∑

m=0

xm+1/2 =
x1/2

1 − x
, where x ≡ e−β~ω; (C12)

〈b†b〉 = Z−1
∞∑

m=0

〈m|e−β~ω(b†b+1/2)b†b|m〉 = Z−1
∞∑

m=0

xm+1/2m = (x−1 − 1)−1 ; (C13)

C = Z−1
∞∑

m=0

〈m|e−β~ω(b†b+1/2)eλλ̃/2eλb
†
eλ̃b|m〉 (C14)

= Z−1eλλ̃/2
∞∑

m=0

xm+1/2
m∑

r=0

λrλ̃r

(r!)2
m!

(m−r)! (C15)



J. von Delft, H. Schoeller, Bosonization for beginners — refermionization for experts 49

= Z−1eλλ̃/2
∞∑

r=0

(λλ̃)r

r!
Sr , (C16)

where Sr ≡
∞∑

m=r

xm+1/2

(
m

r

)
= xr+1/2

∞∑

m̄=0

xm̄
(
r + m̄

r

)
=

xr+1/2

(1 − x)r+1
= Z〈b†b〉r. (C17)

(C12) and (C13) are standard. In (C14) we normal-ordered the eλjb
†
j+λ̃jbj of (C11) using (C4). For (C15)

we expanded the last two exponentials of (C14) and evaluated the matrix elements 〈m|b†rbr′ |m〉 using
br|m〉 =

√
mbr−1|m−1〉 = [m(m− 1) . . . (m− r + 1)]1/2|m−r〉 for r ≥ m, and 0 for r < m. For (C16) we

reordered the double sum, using
∑∞

m=0

∑m
r=0 =

∑∞
r=0

∑∞
m=r. To evaluate the sum Sr defined in (C17),

we wrote m̄ = m − r in the second equality, for the third evaluated the sum
∑∞

m̄=0 using the identity(
r+m̄
r

)
= (−1)m̄

(−r−1
m̄

)
and the binomial theorem, and for the fourth simplified using (C12) and (C13).

Inserting the last of (C17) into (C16) yields (C11). 2

D More on Klein factors

We explain why Klein factors are often ignored, discuss the pitfalls behind the notation Fη = e−iθ̂η , and

give an explicit construction of Fη in terms of c†kη and ckη operators.

D.1 Why Klein factors are often ignored

In very many papers, the Klein factors are tacitly assumed but not written explicitly, or simply ignored.
This is usually OK if one calculates correlation functions of the form

G = 〈ψ1ψ2 . . . ψnψ
†
nψ

†
n−1 . . . ψ

†
1〉 (D1)

for a Hamiltonian that conserves each separate N̂η, because such functions are only non-zero if they contain
an equal number of ψ†

η and ψη and thus of F †
η and Fη, so that the latter can be commuted past each other

and all bosonic operators and combined to give 1. Of course, one has to be careful to keep track of the minus
signs that arise in this procedure, but various authors have their own way of doing this (some of which are
discussed in the next subsection, e.g. using a set of anti-commuting Majorana fermions, or adding so-called
“zero modes” with appropriate properties to the boson fields). Moreover, for free bosons the bosonic fields
themselves see to it that only correlation functions containing an equal number of ψη ∝ e−iφη and ψ†

η ∝ eiφη

are non-zero, because invariance of the bosonic Hamiltonian (70) under φη(x) → φη(x)+ const implies that
〈ei(λ1φη(x1)+...+λnφη(xn))〉 = 0 unless

∑
n λn = 0 [see Eq. (86) for details, and Appendix K for an example].

However, if the Hamiltonian does not conserve each separate N̂η, the above arguments are no longer
applicable. Neglecting Klein factors is then very dangerous and has been known to lead to mistakes, as
discussed, for example, in Refs. [27].

D.2 The Notation F †
η = eiθ̂η

In the literature, the Klein factors are often written as F †
η ≡ eiθ̂η and Fη ≡ e−iθ̂η , complemented by the

mnemonical relation
[N̂η, iθ̂η′ ] ≡ δηη′ , (D2)

which suggests that the “phase operator” θ̂ is conjugate to N̂ . (For an explicit construction of θ̂ and an

enlightening discussion thereof, see Eq. (B.20) of Ref. [20], where it is denoted by k̂) The motivation for this
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notation is that these relations can be used to “derive” the crucial relation [N̂η, F
†
η ] = δηη′F

†
η [see Eq. (32)]

using identity (C3), which states that [A, eB] = CeB if C = [A,B] commutes with A and B.
Furthermore, to ensure that the Fη’s anti-commute18 for different η’s [Eqs. (30) and (31)] one takes, for

example [again as mnemonic only, to be used with (C6)]

[θ̂η, θ̂η′ ] ≡






iπ if η > η′

−iπ if η < η′

0 if η = η′
, thus {eiθ̂η , e±iθ̂η′ } = 2δηη′e

i(θ̂η±θ̂η′) . (D3)

However, the reader should be warned that Eq. (D2) merely has the status of a mnemonic, to be used only

in conjunction with [A, eB] = ceB in order to evaluate [N̂η, F
†
η ], as described above. The reason for this

warning is the following: If Eq. (D2) is viewed as an operator identity and N̂η is treated as an Hermitian
operator, a contradiction arises (which unfortunately is not always appreciated, although this is discussed at
length by Carruthers and Nieto in Ref. [40]). To see this, take the diagonal expectation value of Eq. (D2):

on the one hand, Eq. (D2) gives 〈Nη|[N̂η, iθ̂η]|Nη〉 = 〈Nη|1|Nη〉 = 1 , and on the other

〈Nη|N̂η iθ̂η − iθ̂ηN̂η|Nη〉 = (Nη −Nη)〈Nη|iθ̂η|Nη〉 = 0. (D4)

To understand the origin of this contradiction, recall the following general result from quantum mechanics:
If X̂ and Ŷ are conjugate operators (i.e. [X̂, iŶ ] = 1) and the spectrum of X̂ are the discrete integers,
then X̂ is Hermitian only in the space of states “periodic in Ŷ ”, i.e. obtained by acting on a reference

state (say |0〉) with periodic functions of Ŷ , i.e. functions depending only on the exponentials e±iŶ . In

the present case where X̂ = N̂η and Ŷ = θ̂η, the above contradiction thus arose since in Eq. (D4) in fact

〈Nη|N̂ηθ̂η 6= Nη〈Nη|θ̂η. (A formal way of keeping track of the non-Hermiticity of N̂η is discussed in the
appendix of Ref. [41].)

To avoid contradictions, θ̂ should be defined not through Eq. (D2), but by writing

[N̂η, e
±iθ̂η′ ] = ±δηη′e±iθ̂η′ , (D5)

[which is just Eq. (32)], which evidently identifies the exponentials e±iθ̂η as raising and lowering opera-
tors. Since these do not have any diagonal matrix elements, no contradiction occurs: one the one hand

〈Nη|[N̂η, e±iθ̂η ]|Nη〉 = (Nη −Nη)〈Nη|e±iθ̂η |Nη〉 = 0, and on the other, using Eq. (D5), 〈Nη| ± e±iθη |Nη〉 =
±〈Nη|Nη ± 1〉 = 0.

Note that the above discussion also implies that all non-integer powers of raising or lowering operators,

i.e. expressions of the form
(
e±iθ̂η

)g
with g 6∈ Z, are ill-defined, since they would be plagued by the

same kind of inconsistencies as Eq. (D2). Unfortunately, many authors unwittingly do use such objects:

it is quite common to “absorb” θ̂η (often called a “zero mode” in this context) into the boson field Φη(s)

of (64) by writing Φ̃η(x) ≡ θ̂η + Φη(x), and to write the bosonization relation (64) simply as ψη(x) =

a−1/2e−iΦ̃η(x). This procedure is formally perfectly valid. However, it is also quite common to subsequently

use expressions like e−igΦ̃η(x) with g 6∈ Z, which arise, e.g., when making a linear transformation of the form
Φ̃′
η(x) = Aηη′Φ̃η(x) [as one does for the Kondo problem[17, 18] or a Tomonaga-Luttinger, see Section 10.C,

Eq. (117)]. Strictly speaking, this procedure is formally meaningless, since the factors e±igθ̂η contained in
such expressions are ill-defined.

18Some authors (e.g. Fabrizio and Gogolin [35]) instead ensure this by writing Fη = χ̂ηe−iθ̂η with [θ̂η , θ̂η′ ] = 0, where the

χ̂η are a set of Majorana fermions satisfying {χ̂η , χ̂η′} = 2δηη′ .
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D.3 Fermionic representation of F †
η

In this section we give an explicit construction for F †
η in terms of nothing but fermionic c†kη and ckη ’s,

and check explicitly that it satisfies the defining properties Eqs. (24) to (26). Though in principle such
a construction is not necessary, since Eqs. (24) to (26) fully define F †

η , its existence serves as a useful
consistency check for the formalism.

The construction is in fact almost trivial: by inverting Eq. (62), F †
η is immediately expressed in terms

of ψη and φη, both of which are functions only of c†kη’s:

F †
η =

(
L
2π

)1/2
e−i

2π
L (N̂η− 1

2 δb)xe−iϕη(x)e−iϕ
†
η(x)ψ†

η(x) . (D6)

Upon inserting Eq. (3) for ψ†
η(x) and Eqs. (33) and (33) for ϕ†

η(x) and ϕη(x), this equation expresses F †
η

purely in terms of electron operators. This expression seems to be x-dependent, but is not, since all its
matrix-elements between (x-independent) states are x-independent, as we shall see below.

Eq. (D6) can be used to check whether F †
η does have all required properties (see Section 4.F): E.g., to

check that [F †, b] = 0, note that bqη commutes with all operators in Eq. (D6) except ϕ†
η′(x) and ψ†

η′(x),
but that the two contributions from

[bqη, e
−iϕ†

η′ (x)] = δηη′αq(x)e
−iϕ†

η′ (x) (D7)

[bqη, ψ
†
η′(x)] = −δηη′αq(x)ψ†

η′ (x) (D8)

exactly cancel (an observation due to Haldane [4]). The other commutators of Eq. (24) can be similarly
verified.

Next, one has to verify that

0〈 ~N ′|T̂ηF †
η | ~N〉0 = δN ′

1,N1
. . . δN ′

η,Nη+1 . . . δN ′
M ,NM

, (D9)

where T̂η is the phase-counting operator of Eq. (27). Insert Eq. (D6) into the left-hand side of Eq. (D9),
and use the identities

e−iϕη(x)e−iϕ
†
η(x) = e−iϕ

†
η(x)e−iϕη(x)e

−[
∑

q>0
1

nq
e−qa ]

[using Eq. (C6) and (39)] (D10)

e−iϕη(x)ψ†
η(x) = ψ†

η(x)e
−iϕη(x)e

[
∑

q>0
1

nq
e−qa]

[using Eq. (C9)] (D11)

to commute e−iϕ
†
η(x) to the very left and e−iϕη(x) to the very right, where they are equal to unity

when acting on 0〈 ~N ′| and | ~N〉0 respectively. Since the two c-number exponentials thus produced can-

cel (e
(−1+1)[

∑
q>0

1
nq
e−qa ]

= 1), we get

0〈 ~N ′|T̂ηF †
η | ~N〉0 = 0〈 ~N ′|T̂η

(
L
2π

)1/2
e−i

2π
L (N̂η− 1

2 δb)xe−iϕη(x)e−iϕ
†
η(x)ψ†

η(x)| ~N 〉0 (D12)

= 0〈 ~N ′|T̂η
(
L
2π

)1/2
e−i

2π
L (N̂η− 1

2 δb)x

[
(

2π
L

)1/2∑

k

eikxc†kη

]
| ~N〉0 , (D13)

where we have inserted Eq. (3) for ψ†
η(x). Now the argument is just like that given in the determination of

λ̂η in Section 7: Commuting c†kη past |N1〉 ⊗ . . . ⊗ |Nη−1〉 produces a factor Tη which exactly cancels the

phase contributed by T̂η. Since neither 0〈 ~N ′| nor | ~N〉0 contain any particle-hole-excitations, Eq. (D13) is

non-zero only if c†kη adds the (Nη + 1)-th particle [which has momentum k = 2π
L (Nη + 1− 1

2δb)] to |Nη〉 to
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produce |Nη + 1〉, and if at the same time N ′
η = Nη + 1. Hence all c-number-exponentials cancel, showing

that indeed Eq. (D13) is equal to Eq. (D9).
Finally, it immediately follows from [F †, b] = 0 that F †

η creates no particle-hole excitations, i.e. that

0〈 ~N ′|f({bqη̄})F †
η | ~N〉0 = 0 for all f({bqη̄}), ~N and ~N ′. (D14)

Thus, we conclude that all matrix elements (between x-independent states) of F †
η are indeed x-independent,

as stated earlier. Hence the x-independence of F †
η in Eq. (D6) can be made explicit by either setting x = 0,

or by including a dummy integration L−1
∫ L/2
−L/2 dx (we also unnormal-ordering the exponentials):

F †
η = a1/2e−iφη(0)ψ†

η(0) =
a1/2

L

∫ L/2

−L/2
dx e−i

2π
L (N̂η− 1

2 δb)xe−iφη(x)ψ†
η(x) . (D15)

E Remarkable cancellations involving bosonization

To gain intuition into the remarkable way in which the bosonization identity works, we compare the expan-
sions of ψ(x)|0〉0 and a−1/2Fe−iφ(x)|0〉0.

Consider the state ψ(x)|0〉0 for a single species of fermions (i.e. M = 1, and we drop the index η). As
illustrated in Fig. 2, we can obtain two equivalent representations for this state by either Fourier-expanding
ψ using (3), or bosonizing it using (62):

(
2π
L

)1/2∑

n∈Z

e−i(n−
1
2 δb)2πx/Lcn|0〉0 = Fη

(
2π
L

)1/2
e−i(N̂η− 1

2 δb)2πx/Le−iϕ
†
η(x)e−iϕη(x)|0〉0 (E1)

∞∑

n=0

ync−n|0〉0 = e−(
∑∞

n=1
1
n y

nρn)c0|0〉0 , where y ≡ ei2πx/L, ρn ≡
∑

n̄∈Z

c†n̄+ncn̄, (E2)

=
[
1 − yρ1 + y2(− 1

2ρ2 + 1
2ρ

2
1) + y3(1

3ρ3 + 1
2ρ1ρ2 − 1

6ρ
3
1) + . . .

]
c0|0〉0 (E3)

=

∞∑

n=0

[
Any

nc−n +Bny
n+2(c†n+1c−1)c0 + Cny

n+3(c†n+1c−2)c0 + . . .
]
|0〉0. (E4)

Eqs. (26), (33), (16) and (20) were used to obtain from the right-hand side of (E1) that of (E2), and some of
the terms arising in the latter’s expansion are indicated in (E3-E4), where the dots represent infinitely many
further contributions. Eq. (E4) implies that the only non-zero coefficients in (E4) are An = 1, whereas all

others are zero, Bn = Cn = . . . = 0. This is quite astonishing, since it implies that when e−iϕ
†(x) acts on

c0|0〉0, all the many ways in which excited states such as c†nc−1c0|0〉0 can arise must somehow cancel each
other, with only terms of the form ync−n|0〉0 surviving. To get a feeling for how this can possibly be, we
consider the lowest few terms in (E3) (by inserting the sums from ρn) that contribute to the An and Bn
series explicitly (more general terms become intractable):

∞∑

n=0

Any
nc−n|0〉0 =

{
1 − y(c†0c−1) + y2

[
− 1

2 (c†0c−2) + 1
2 (c†−1c−2)(c

†
0c−1)

]
(E5)

+y3
[
− 1

3 (c†0c−3) + 1
2 (c†−2c−3)(c

†
0c−2) − 1

6 (c†−2c−3)(c
†
−1c−2)(c

†
0c−1)

]
+ . . .

}
c0|0〉0

=

{
1 + yc−1 + y2

[
1
2 + 1

2

]
c−2 + y3

[
1
3 + 1

2 + 1
6

]
c−3 + . . .

}
|0〉0 (E6)
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∞∑

n=0

Bny
n+2(c†nc−1)c0|0〉0 =

{
y2
[
− 1

2 (c†1c−1) + 1
2 (c†1c0)(c

†
0c−1)

]
(E7)

+y3
[
− 1

3 (c†2c−1) + 1
2 (c†2c1)(c

†
1c−1) − 1

6 (c†2c1)(c
†
1c0)(c

†
0c−1)

]
+ . . .

}
c0|0〉0

=

{
y2
[
− 1

2 + 1
2

]
(c†1c−1) + y3

[
− 1

3 + 1
2 − 1

6

]
(c†2c−1) + . . .

}
c0|0〉0 (E8)

This shows that the first few terms of these series (illustrated in Fig. 2) do give An = 1 and Bn = 0, and
illustrates how the remarkable cancellations of excited states occur. To confirm that this happens for all
n ≥ 0, we note that the systematics according to which (E6) and (E8) arose imply that the An and Bn
can be found by summing the following two series, corresponding to taking ρn = −1 or 1 in (E2) (the sign

difference arises because c0 is commuted past the c−n in the factor (c†0c−n) in the A series, but not in the
B series):

∞∑

n=0

Any
n ≡ e−(

∑∞
n=1

−1
n yn) = e− ln(1−y) = (1 − y)−1 =

∞∑

n=0

yn , implying An = 1; (E9)

∞∑

n=−2

Bny
n+2 ≡ e−(

∑∞
n=1

1
ny

n) = eln(1−y) = 1 − y , implying Bn≥0 = 0 . (E10)

The B−2 and B−1 terms correspond to the same terms as A0 and −A1, namely c0|0〉0 and c−1|−〉0.
Doing such checks explicitly for more general terms than the An and Bn series becomes intractably

complicated. But we know that the seemingly miraculous cancellations needed to make them vanish will
indeed occur and are not really miraculous at all, since the remarkable properties of coherent states allowed
us to rigorously derive the bosonization identity as an operator identity in Section 6.

F Checking anti-commutators

We check explicitly (following Haldane [4]) that the bosonized versions of ψη(x) correctly reproduce the
anti-commutation relations (8).

Note first that the anti-commutation relations of the Klein factors [Eq. (31)] trivially guarantee {ψη, ψη′} =

{ψη, ψ†
η′} = 0 for η 6= η′. That this works is of course no miracle, since Eq. (31) is a consequence of the

anti-commutation relations of the original cηk-operators.
For η = η′, start from Eq. (62), and use Eqs. (C6) and (32) to commute the exponentials into the order

that occurs in the operators O1 and O2 defined below. One finds:

ψη(x)ψη(x
′) = O1(x, x

′) ei
2π
L x e[−iϕη(x),−iϕ†

η(x′)] (F1)

= O1(x, x
′) ei

2π
L x
(
1 − ye−2πa/L

)
; (F2)

ψη(x)ψ
†
η(x

′) = O2(x, x
′) e−i

2π
L (x−x′) e[−iϕη(x),iϕ†

η(x′)] (F3)

= O2(x, x
′) y
(
1 − ye−2πa/L

)−1

; (F4)

ψ†
η(x

′)ψη(x) = O2(x, x
′) e[iϕη(x′),−iϕ†

η(x)] (F5)

= O2(x, x
′)
(
1 − y−1e−2πa/L

)−1

. (F6)
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Here we have defined y ≡ e−i
2π
L (x−x′) , and the operators O1 and O2 are given by

O1(x, x
′) = 2π

L FηFηe
−i 2π

L (N̂η− 1
2 δb)(x+x

′)e−i(ϕ
†
η(x)+ϕ†

η(x′))e−i(ϕη(x)+ϕη(x′)) (F7)

O2(x, x
′) = 2π

L e
−i 2π

L (N̂η− 1
2 δb)(x−x′)e−i(ϕ

†
η(x)−ϕ†

η(x′))e−i(ϕη(x)−ϕη(x′)) . (F8)

It follows immediately that

{ψη(x), ψη(x′)} = O1(x, x
′) ei

π
L (x+x′)

[
y−

1
2 (1 − ye−2πa/L) + y

1
2 (1 − y−1e−2πa/L)

]
(F9)

a→0−→ 0 ; (F10)

{ψη(x), ψ†
η(x

′)} = O2(x, x
′) y

1
2

[
y

1
2 (1 − ye−2πa/L)−1 + y−

1
2 (1 − y−1e−2πa/L)−1

]
(F11)

a→0−→ O2(x, x
′)
∑

n̄∈Z

yn̄ = O2(x, x
′)L

∑

n̄∈Z

δ(x− x′ − n̄L) (F12)

= 2π
∑

n̄∈Z

δ(x− x′ − n̄L)eiπn̄δb . (F13)

The last line follows because ϕη(x) = ϕη(x+L) so that O2(x, x+n̄L) = 1
Le

iπn̄δb . Thus, we have reproduced
the anti-commutation relations Eq. (8).

G Point-splitting

We discuss the regularization technique of “point-splitting”. We introduce the general concept of operator
product expansions to explain why point-splitting an operator product regularizes it, then explain why this
is usually equivalent to normal-ordering, and finally illustrate the care needed when using bosonization to
evaluate point-split products of fermion fields.

G.1 Operator product expansions

Consider the product ψ†
η(z + a)ψη(z) of two fermion fields, with z = τ + ix and a > 0 a real constant.

When a → 0, the result diverges, because the product is not normal-ordered. To calculate the divergence,
one simply has to normal order it explicitly:

ψ†
η(z + a)ψη(z) =

∑

k 6=0

e−k(z+a) 2π
L

∑

k′

ek
′(z+a)c†k′−kηe

−k′zck′η + 2π
L

∑

k′

ek
′ac†k′ηck′η (G1)

a→0−→
∑

q>0

(
2πq
L

)1/2 (
e−qzibqη − eqzib†qη

)
+ 2π

L N̂η + 2π
L

∑

k′≤0

ek
′a (G2)

= i∂zφη(z) + 2π
L N̂η +

[
1
a + π

L (1 − δb) + Order( a
L2 )
]

(G3)

Since the first (k 6= 0) term in Eq. (G1) is normal-ordered, it is possible to set a = 0 there. However, in
the second (k = 0) term we first have to normal order, producing the

∑
k′ in Eq. (G2), which diverges for

a → 0. The bracketed terms in Eq. (G3) are its order a−1 and a0 contributions. Eq. (G3) agrees with
Eq. (92), but, since we included terms of order 1/L, includes finite-size corrections that were neglected in
the latter.

Eq. (G3) is an example of a so-called operator product expansion (OPE). In general, when the product
Oi(z)Oj(z

′) of two quantum fields is evaluated at points z and z′ that are very close to each other, the
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result diverges if the product is not normal-ordered, typically as some power (z − z′)−ν . By bringing the
product Oi(z)Oj(z

′) into normal-ordered form, one can generally express it as a linear combination of
other (normal-ordered) fields in the theory, the coefficients being functions of z − z′. In the limit z → z′, a
Laurent-expansion of these functions in powers of (z−z′) yields an OPE of the general form

Oi(z)Oj(z
′)
z→z′−→

∑

k

Cijk Ok(z
′)

(z − z′)∆i+∆j−∆k
. (G4)

The exponents ∆j are known as the scaling dimensions of the fields Oj(z), and the Cijk are c-number
coefficients. An OPE succinctly summarizes the short-distance behavior of a theory. For example, the
leading ultraviolet behavior of correlation functions can directly be read off from Eq. (G4): 〈Oi(z)Oj(z′)〉 →
Cij1(z − z′)−(∆i+∆j), since 〈Ok(z′)〉 = δk1 is only non-zero if Ok = 1, the unit operator, for which ∆1 = 0.
It follows that the fermion fields ψ and ψ†, for which 〈ψ(z)ψ†(0)〉 = z−1, have scaling dimension ∆ψ =
∆ψ† = 1/2.

G.2 Point splitting versus normal ordering

In field theory, it is popular to regularize divergent products of two fields at the same point by adopting
the so-called point-splitting prescription, denoted by : :, which evaluates the product at points a short
distance apart, and then subtracts the divergence:

:Oi(z)Oj(z) : ≡ Oi(z + a)Oj(z) − 0〈~0|Oi(z + a)Oj(z)|~0〉0 . (G5)

Note that we chose to use here the same regularization parameter a as the one introduced for boson fields
in Eq. (33); this is necessary if one wants to reproduce point-split products of fermion fields by using the
bosonization formula, as shown in Section G.3.

From Eqs. (G3) and (37), we find

:ψ†
η(z)ψη(z) : = i∂zφη(z) + 2π

L N̂η = ∗
∗ψ

†
η(z)ψη(z)

∗
∗ = ρη(z) , (G6)

showing that the point-split and normal-ordered versions of the electron density agree. This illustrates the
fact that point-splitting simply subtracts a constant that would not have arisen at all had we started with
a normal-ordered expression. Therefore, in most cases point-splitting and normal ordering are equivalent
ways of regularizing. There are, however, exceptions: if the term that diverges as a→ 0 is not a c-number
but an operator, such as Ok(z

′) in the general OPE (G4), and if the expectation value of this operator is
zero, then the point-splitting prescription does not succeed in subtracting this divergence.

Point-splitting is a popular regularization scheme in field-theoretical texts, because field theorists typ-
ically “know” from experience the various standard OPEs of a given theory, so that it is a simple matter
to subtract out the appropriate divergences. However, if one is less familiar with standard OPEs than a
an experienced field-theorist, one would have to derive them first by normal-ordering all products of fields.
But then one might as well simply adopt the prescription that from the beginning only normal-ordered
products of fields at the same point are to be used, thereby eliminating the need to point-split. For the
purposes of this tutorial, written for “non-field-theorists”, we always adopt the latter procedure.

G.3 Evaluating point-split products of Fermion Fields using Bosonization

As a consistency check on the bosonization rules, we now check that point-split products of fermion fields
can also be calculated using their bosonized versions (62) or (91).

vondelft
Schreibmaschinentext
This is incorrect: see footnote [69] of Zarand & von Delft.Instead, firstset a=0, then take x0 -> 0.

vondelft
Schreibmaschinentext

vondelft
Bleistift
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Density:— Eq. (G3) can be rederived as follows [we abbreviate Ñη ≡ 2π
L (N̂η − 1

2δb)]:

ψ†
η(z + a)ψη(z) = 2π

L e
Ñη(z+a)eiϕ

†
η(z+a)eiϕη(z+a)e−Ñηze−iϕ

†
η(z)e−iϕη(z) (G7)

= 2π
L e

Ñηaei(ϕ
†
η(z+a)−ϕ†

η(z))ei(ϕη(z+a)−ϕη(z))e[ϕη(z+a),ϕ†
η(z)] (G8)

= 2π
L

[
1 + ia∂z(ϕ

†
η(z) + ϕη(z)) + aÑη

] (
L

2πa + 1
2

)
(G9)

= i∂zφη(z) + 2π
L (N̂η − 1

2δb) + 1
a + π

L + Order( a
L2 ) . (G10)

To get Eq. (G8), we normal-ordered Eq. (G7), using Eq. (C6). For Eq. (G9), we Taylor-expanded the
normal-ordered expressions in a, and evaluated the boson commutator using Eq. (40). Note that the latter
had to be expanded to next-to-leading order in a, giving

(
L

2πa + 1
2

)
, in order to correctly reproduce the

subleading (non-diverging) terms of Eq. (G3). Note also that in (G9) the cancellation of the 1/a arising
from the boson commutator and the linear a factors arising from expanding functions of z + a only occurs
if we use the same short-distance regularization parameter a when point-splitting as the one used for the
boson fields.
Hamiltonian:— Next we consider the Hamiltonian H0η. In analogy to Eq. (G1), we have

− ψ†
η(z + a)∂zψη(z) =

∑

k 6=0

e−k(z+a) 2π
L

∑

k′

k′ek
′(z+a)c†k′−kηe

−k′zck′η + 2π
L

∑

k′

ek
′ak′c†k′ηck′η . (G11)

It follows immediately that

−
∫ L/2

−L/2
dx
2π :ψ†

η(z)∂zψη(z) : =
∑

k

k ∗
∗c

†
kηckη

∗
∗ = H0η , (G12)

since
∫ L/2
−L/2

dx
2πe

−ikx = 0 for k 6= 0, and the point-splitting subtraction eliminates the non-normal-ordered

contributions in the second term. Comparison with Eq. (66) shows that the normal-ordered and point-split
fermionic versions of H0η are equal.

Next we show that the point-split bosonic version (70) of H0η can be obtained from Eq. (G12) by
diligent use of the bosonization formula. Proceeding as in Eq. (G7), we find

−ψ†
η(z + a)∂zψη(z)

= 2π
L e

Ñη(z+a)eiϕ
†
η(z+a)eiϕη(z+a)e−Ñηze−iϕ

†
η(z)e−iϕη(z)

{
Ñη + i∂zφη(z) + [∂zϕ

†
η(z), ϕη(z)]

}
(G13)

= 2π
L e

Ñηaei(ϕ
†
η(z+a)−ϕ†

η(z))ei(ϕη(z+a)−ϕη(z))
(
L

2πa + 1
2

){
Ñη + i∂zφη(z) −

(
1
a − π

L

)}
(G14)

=
[
1 + a

(
Ñη + i∂zφη(z)

)
+ 1

2a
2
(
Ñ 2
η + 2Ñη i∂zφη(z) + ∗

∗(i∂zφη(z))
2 ∗
∗ + i∂2

zφη(z)
)]

×
{

(Ñη + i∂zφη(z))
(

1
a + π

L

)
−
(

1
a2 + π2

L2

)}
. (G15)

The commutator in Eq. (G13) arises from commuting the i∂zϕ
†
η(z), produced by differentiating an exponent,

to the left past e−iϕη(z) using Eq. (C3). Using Eq. (40) it is evaluated to subleading order in 1/a, giving
−
(

1
a − π

L

)
. The factor

(
L

2πa + 1
2

)
in Eq. (G14) comes from normal-ordering the exponentials of Eq. (G13),

as in Eq. (G9). Since the leading divergence is 1/a2, we had to Taylor-expand all exponentials to order a2.
It is now merely a matter of algebra to verify that

−
∫ L/2

−L/2
dx
2π :ψ†

η(z)∂zψη(z) : =

∫ L/2

−L/2
dx
2π

1
2 : (i∂zφη(z))

2 : + 2π
L

1
2N̂η(N̂η + 1 − δb) = H0η, (G16)
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which is the point-split version of the boson Hamiltonian (70). To this end, note that the
∫
dx integral

gives zero for all expressions linear in ∂zφ and ∂2
zφ, because φ is periodic in x. Furthermore, we used the

fact, easily verified, that : (i∂zφη(z))
2 := ∗

∗(i∂zφη(z))
2 ∗
∗ (which sometimes is also written as 1

2 : Π2(z) +
(i∂zφ(z))2 :, compare footnote 6).

The above way of deriving the bosonic form (G16) of H0η is often used in the field-theoretical approach
to bosonization. Note that it is considerably more arduous than the derivation given in Section 7. We
included it here for two reasons: Firstly, to illustrate how careful one needs to be if one wants to correctly
produce 1/L terms using point splitting methods; and secondly, because when performed in reverse order
it forms the rigorous basis for refermionizing a bosonic Hamiltonian, as in Eqs. (138-139).

H Free Green’s functions

We calculate the free fermion and boson Green’s functions 〈T ψηψ†
η〉 and 〈T φηφη〉, for L 6= ∞ at T = 0,

and also for L→ ∞ at T 6= 0.

We shall calculate the desired time-ordered Green’s functions in the imaginary-time Heisenberg picture,
in which they depend on the imaginary-time variable τ ∈ (−β, β]. Real time-ordered Green’s functions can
obtained from these by simply analytically continuing τ → it (or, for vF~ 6= 1, τ → ivF~t and β → vF ~β).

The linear dispersion of the Hamiltonian of Eqs.(65) and (69) implies the following thermal expectation
values and imaginary-time development of the fermion and boson operators:

〈c†kηck′η′〉 =
δηη′δkk′

eβk + 1
, ckη(τ) = e−kτ ckη , c†kη(τ) = ekτ c†kη , (H1)

〈b†qηbq′η′〉 =
δηη′δqq′

eβq − 1
, bqη(τ) = e−qτ bqη , b†qη(τ) = eqτ b†qη . (H2)

H.1 The limit T = 0 for L 6= ∞
For T = 0, the factors in (H1-H2) reduce to (eβk + 1)−1 = θ(−k) and (eβq − 1)−1 = −θ(−q), hence
correlation functions are easy to evaluate.

H.1.a Fermion correlation function

For fermions fields, −G>ηη′(τ, x) ≡ 〈ψη(τ, x)ψ†
η′ (0, 0)〉 and G<ηη′(τ, x) ≡ 〈ψ†

η′(0, 0)ψη(τ, x)〉 (defined only for

τ
>
< 0, respectively) are two distinct functions, that must be calculated independently. The time-ordered

Green’s function Gηη′(τ, x) is a convenient combination of both, which can be evaluated as follows (with

σ ≡ sgn(τ) and y ≡ e−
2π
L (στ+σix+a)):

−Gηη′ (τ, x) ≡ θ(τ)G<ηη′ (τ, x) + θ(−τ)G<ηη′ (τ, x) (H3)

= δηη′
[
θ(τ)2π

L

∑

k>0

e−k(τ+ix+σa) − θ(−τ)2π
L

∑

k<0

e−k(τ+ix+σa)
]

(H4)

= δηη′
2π
L σy

−σδb/2
∞∑

n=1

yn = δηη′
2π
L σ

y−(σδb+1)/2

y−1/2 − y1/2
(H5)

=
δηη′e

π
L (δb+σ)(τ+ix)

L
π sinh[ πL (τ + ix+ σa)]

L→∞−→ δηη′

τ + ix+ σa
. (H6)

vondelft
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For (H4) we inserted the definition (3) of ψη, simplified using (H1) and inserted a factor e−kσa to ensure
convergence19 when τ → 0. In the k sums, we took k = 2π

L (nk − δb/2), see (2).

H.1.b Boson correlation function

For boson fields, −G>ηη′(τ, x) ≡ 〈φη(τ, x)φη′ (0, 0)〉 and −G<ηη′(τ, x) ≡ 〈φη′(0, 0)φη(τ, x)〉 (defined only for

τ
>
< 0, respectively) are in fact not independent, since G<ηη′ (τ, x) = G>η′η(−τ,−x). Hence, the time-ordered

Green’s function can be evaluated as follows:

−Gηη′(τ, x) ≡ θ(τ)G>ηη′ (τ, x) + θ(−τ)G<ηη′ (τ, x) = G>ηη′ (στ, σx) (H7)

= δηη′
∞∑

q>0

1

nq
e−q(στ+σix+a) = δηη′

∞∑

nq=1

1

nq
ynq = −δηη′ ln(1 − y) (H8)

= −δηη′ ln
(
1 − e−

2π
L (στ+σix+a)

)
L→∞−→ −δηη′ ln

[
2π
L (στ + σix+ a)

]
. (H9)

For (H8) we inserted the definition (34) of φη and simplified using (H2).

H.2 The limit L→ ∞ for T 6= 0

We next consider the continuum limit L → ∞ for T 6= 0, in which the 1/L terms in Eq. (69) can be
neglected, and discrete sums can be treated as integrals, 2π

L

∑
nk

→
∫
dk. (In particular, if also T → 0, the

order of limits considered here is L/β → ∞.) Calculating the free fermion and boson Green’s functions is
again straightforward, though for T 6= 0 the integrals we shall encounter are non-trivial (readers that do
not enjoy doing contour integrals can look them up in [42]).

H.2.a Fermion correlation function

Starting from (H3), simplifying using (H1) and again inserting the convergence19 factor e−kσa, we proceed
as follows (with σ ≡ sgn(τ) and ȳ ≡ e−2πi(στ+σix+a)/β):

−Gηη′(τ, x) = δηη′

∫ ∞

−∞
dk

e−k(τ+ix+σa)

σ(1 + e−σβk)
(H10)

= δηη′ (2πi/β)

[
−θ(x)

0∑

n̄=−∞
ȳ(n̄−1/2)σ + θ(−x)

∞∑

n̄=0

ȳ(n̄+1/2)σ

]
(H11)

=
δηη′

β
π sin[πβ (τ + ix+ σa)]

T→0−→ δηη′

τ + ix+ σa
(H12)

The integral was done using contour methods, by closing it along a semi-circle in the lower (upper) half
of the complex k plane for x > 0 (x < 0). The poles at k = 2πi(n̄ + 1/2)/β have residues ȳ(n̄+1/2)σ/β;
summing their contributions readily yields the 1/ sin behavior.

19 It is not a priori clear that the regularization parameter a to be used in the cut-off factor e−kσa in Eqs. (H4) or (H10) for
the fermion correlator must be precisely the same a as the one occuring in the cut-off factor e−qa/2 introduced for the boson
fields in Eq. (33). In Section 8 we checked that it must indeed be the same, else the results (H6) or (H12) for the fermion
correlator would not be consistent with those obtained by evaluating these correlators via bosonization [see (81) and (80) or
(78) and (74)].
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H.2.b Boson correlation function

Starting from (H7) and simplifying using (H2), we obtain

− Gηη′ (τ, x) = δηη′

∫ ∞

2π
L

dq
e−qa

q

[
e−q(στ+σix)

(1 − e−βq)
+
eq(στ+σix)

(eβq − 1)

]
. (H13)

Since the original discrete sum
∑

q>0 does not include q = 0, we took the lower integration limit in
Eq. (H13) at q = 2π/L to regularize the infrared-divergence at q = 0. When L→ ∞, the integral diverges
as ln(L/a) (as is particularly obvious for τ = x = 0 and T = 0). To be able to perform the integral
by contour methods and nevertheless correctly keep track of this divergent constant, we shall proceed as
follows: We take the lower integration limit in Eq. (H13) at q = 0 and regularize the divergence using the
principle-value prescription, which gives a finite (L-independent) function of (τ + ix)/β. To this we add a
(diverging) L-dependent constant C, whose value we shall find at the end by requiring that the final result

agree with −G(T=0,L 6=∞)
ηη′ (0, 0). The integral (H13) can then be evaluated as follows:

−Gηη′(τ, x) = δηη′
[∫ ∞

−∞
P dq

e−q(στ+iσx+a)

q(1 − e−βq)
+ C

]
(H14)

= δηη′
[
−θ(σx)

(
1
2 ln ȳ +

−1∑

n̄=−∞

ȳn̄

n̄

)
+ θ(−σx)

(
1
2 ln ȳ +

∞∑

n̄=1

ȳn̄

n̄

)
+ C

]
(H15)

= δηη′
[
−θ(σx)

(
ln ȳ1/2 + ln(1 − ȳ−1)

)
− θ(−σx)

(
ln ȳ−1/2 + ln(1 − ȳ)

)
+ C

]
(H16)

= δηη′
[
− ln

[
sgn(σx)

(
ȳ1/2 − ȳ−1/2

)]
+ C

]
(H17)

= − δηη′ ln
(

2β
L sin[πβ (στ + σix+ a)]

)
. (H18)

Since in (H13) the convergence factor e−qa is needed only in the first term (and there only when τ = 0),
we replaced it in the second term by eqa (which causes errors of at most a/β ≃ 0), since both terms can
then be combined into the single

∫∞
−∞ dq integral of (H14). The

∫
dq integral of (H14) can be done by

contour methods, closing the contour along a semi-circle in the lower (upper) half of the complex q plane
for σx > 0 (σx < 0). The poles of order one at q = 2πin̄/β (with n̄ 6= 0) have residues ȳn̄/(2πin̄), where
again ȳ = e−i2π(στ+σix+a)/β . The pole of order two at q = 0 has residue −(στ + iσx+ a)/β = (ln ȳ)/(2πi),
which is multiplied by 1

2 in (H15) due to the principle-value prescription. The sums
∑
n̄ directly yield the

ln(1 − ȳ∓1) terms of (H16). We find the constant C by requiring that (H17) be compatable with (H9) for

τ = x = 0, namely −G(T=0,L 6=∞)
ηη′ (0, 0) = δηη′ ln(L/2πa) ; this readily yields C = ln[−iL sgn(σx)/β], and

hence also (H18).
That Gηη′(τ, x) diverges as L → ∞ is in itself no cause for concern, since it turns out that only those

combinations of Green’s functions are needed in which the divergence is subtracted out. For the combination
most often encountered, namely

− [Gηη′(τ, x) − Gηη′ (0, 0)] = δηη′ ln

(
πa/β

sin[πβ (στ + σix+ a)]

)
(H19)

T→0−→ δηη′ ln

(
a

στ + σix+ a

)
, (H20)

it would not have been necessary to worry about the divergent term − ln(2β/L) term in (H18) at all.
However, there are cases for which it is needed explicitly, e.g. when obtaining Eq. (95) from Eq. (94),
where it yields the important L-dependent prefactor of Eq. (96).
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As a final consistency check, note that using Eq. (H20), we can readily reproduce Eq. (45):

∂x′〈φη(0+, x)φη(0, x
′)〉 =

2ai

a2 + (x− x′)2
a→0−→ 2πi δ(x − x′) . (H21)

I Finite-size diagonalization of backscattering Hamiltonian H ′
+

We diagonalize the refermionized impurity backscattering term in a g = 1
2 Tomonaga-Luttinger liquid of

finite size L, exploiting its similarity to the 2-channel Kondo problem.

The refermionized H ′
+ of Eq. (144), Section 10.C.2, which describes backscattering off an impurity in a

Tomonaga-Luttinger liquid with coupling constant g = 1
2 , has the form

H ′
+ ≡ U+H+U

−1
+ = ∆L

P
8 +

∑

k̄

[
εk̄

∗
∗c

†
k̄
ck̄

∗
∗ +

√
∆LΓ

(
c†
k̄

+ ck̄

)(
i
√

2αd

)]
, (I1)

with {αd, αd} = 1, α†
d = αd and {ck̄, c†k̄′} = δk̄k̄′ . As pointed out by Furusaki [22], its form is related to

that arising after bosonizing and refermionizing the 2-channel Kondo model, whose solution in Ref. [18]
inspired that presented below.

Perhaps the cleanest and most instructive way to diagonalize H ′
+ is to do so for finite L with20 k̄ =

2π
L (nk̄ − 1

2 ) (i.e. in the P = 0 subspace of Section 10.C.2) and take the continuum limit L→ ∞ at the end.
Determining the unitary transformation from the ck̄’s and αd to the “eigenoperators” α̃ε that diagonalize
H ′

+ (and inverting this transformation) is easier for finite L than in the continuum limit, since the discrete
state αd can easier be kept track of if all states are discrete than if the k̄’s form a continuum. Moreover,
one sees explicitly how each exact eigenvalue ε develops from its unperturbed value εk̄ as the scattering
interaction is turned on (the energy shift being of order ∆L). This is useful and instructive, but not possible
if L→ ∞ is taken from the outset, since then the spectrum is dense and shifts of order ∆L are negligible.

We begin by making a further transformation to a new set of fermions αk̄ and βk̄,

(
αk̄
βk̄

)
=

1√
2

(
1 1

−i i

)(
ck̄
c†−k̄

)
,

(
ck̄
c†−k̄

)
≡ 1√

2

(
1 i
1 −i

)(
αk̄
βk̄

)
, (I2)

which have the following properties (the index n takes the values k̄ and d, with −d ≡ d):

α†
n = α−n, β†

k̄
= β−k̄, {αn, α−n′} = δnn′ , {βk̄, β−k̄′} = δk̄k̄′ , {αn, βk̄′} = 0 . (I3)

These have the advantage that the βk̄ decouple completely, since Eq. (I1) becomes:

H ′
+ = ∆L

P
8 +

∑

k̄>0

εk̄

(
α†
k̄
αk̄ + β†

k̄
βk̄

)
+ i 2

√
∆LΓ

∑

k̄>0

(
α†
k̄

+ αk̄

)
αd; . (I4)

We seek a set of orthonormal fermions, {α̃ε, α̃†
ε′} = δεε′ , that diagonalize H ′

+, i.e. for which

H ′
+ ≡

∑

ε>0

ε α̃†
εα̃ε +

∑

k̄>0

εk̄ β
†
k̄
βk̄ + E′

G, (I5)

20The case k̄ = 2π
L
nk̄ (i.e. the P = 1 subspace) can be treated analogously, but requires a bit more care due to the presence

of a k̄ = 0 state that does not arise for P = 0, see [17, 18].
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where the constant E′
G represents a shift in ground state energy due to the interaction. Now, when

diagonalizing, it is convenient to use as independent operators not the set21 {αd; αk̄, α†
k̄
, ∀k̄ > 0} but the

set {αd; αk̄, ∀k̄ >
< 0} ≡ {αn} (which by the first of Eqs. (I3) is equivalent to the former), since then the

scattering term in Eq. (I6) looks simpler:

H ′
+ = ∆L

P
8 +

∑

k̄

[
1
2εk̄

(
α−k̄αk̄ − θ(−k̄)

)
+ i 2sB

√
∆LΓαk̄ αd

]
+
∑

k̄>0

εk̄ β
†
k̄
βk̄ . (I6)

Analogously, we define
α̃−ε ≡ α̃†

ε , with {α̃ε, α̃−ε′} ≡ δεε′ (I7)

(α̃0 will turn out to be the Majorana fermion that αd develops into when the interaction is turned on), and
use not the set {α̃0; α̃ε, α̃

†
ε, ∀ε > 0}, but instead the set {α̃0; α̃ε, ∀ε >

< 0} ≡ {α̃ε} (and below
∑

ε sums over
all these ε). Then the desired diagonal form of H ′

+ is:

H ′
+ ≡

∑

ε

1
2 ε (α̃−εα̃ε − θ(−ε)) + E′

G +
∑

k̄>0

εk̄ β
†
k̄
βk̄ . (I8)

Since H ′
+ is quadratic, the α’s and α̃’s are linearly related, hence we make the Ansatz (A is a matrix, with

A†
εn ≡ A∗

nε)

α̃ε =
∑

n=d,k̄

A†
εn αn , with (A†

εn)∗ = A†
−ε−n = A∗

−n−ε, to ensure α̃†
ε ≡ α̃−ε . (I9)

Inserting the first of Eq. (I9) into Eq. (I7) shows that
∑

n

A†
εnAnε′ = δεε′

(
i.e. A†

εn = (A−1)εn
)
, thus αn =

∑

ε

Anε α̃ε (I10)

is the inverse transformation of Eq. (I9). To determine the coefficients A†
εn, insert Ansatz (I9) into the

Heisenberg equation εα̃ε = [α̃ε, H
′
+] [which follows from (I8)]. This yields

εA†
εd = i 2

√
∆LΓ

∑

k̄

A†
εk̄
, A†

εk̄
= − i2

√
∆LΓA†

εd

ε− εk̄
, implying (I11)

ε

4Γ
= S1(ε) , where S1(ε) ≡ ∆L

∞∑

k̄=−∞

1

ε− εk̄
= −π tan(πε/∆L) (I12)

(the latter equality is a standard identity for εk̄ = ∆L(nk̄ − 1
2 ), nk̄ ∈ Z). The first of Eq. (I12) is an

eigenvalue equation determining the allowed ε’s as functions of Γ. Analyzing it (e.g. graphically, cf. [[18]])
shows that (apart from one ε = 0 solution) each εk is shifted to a corresponding ε(k̄) ≡ εk̄ + sgn(ε)δk̄∆L,
where the shift δk̄ ≃ 1

2 if |εk̄| ≪ Γ, and δk̄ ≃ 0 if |εk̄| ≫ Γ. This identifies Γ as the cross-over scale below
or above which the spectrum is strongly or weakly shifted, respectively.

A†
εd can be determined as follows from the first of Eq. (I10), with ε = ε′:

1 =
∑

n

A†
εnAnε = |A†

εd|2 [1 + 4ΓS2(ε)] , where (I13)

S2(ε) ≡ ∆L

∑

k̄

1

(ε− εk̄)
2

= −∂S1(ε)

∂ε
=

π2

∆L

[
1 + tan2(πε/∆L)

]
=

1

∆L

[
π2 +

ε2

16Γ2

]
. (I14)

21 Working only with αk̄ ’s having k̄ > 0 would have required instead of Eq. (I9) the more cumbersome Bogoljubov-like

Ansatz α̃ε ≡ A†
εdαd +

∑
k̄>0(A

†
εk̄
αk̄ + Ā†

εk̄
α†

k̄
).
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The second and third equalities follow from the first and second for S1(ε) in Eq. (I12), the fourth from the
first of Eq. (I12).22 Combining Eqs. (I14), (I13) and the second of (I11), gives

Adε = (A†
εd)

∗ = −i sgn(ε)

[
4∆LΓ

4∆LΓ + ε2 + (4πΓ)2

]1/2
, (with sgn(ε = 0) ≡ i) , (I15)

Ak̄ε = (A†
εk̄

)∗ =
i2
√

∆LΓAdε
ε− εk̄

. (I16)

The phases in Eqs. (I15) and (I16) where chosen such that A∗
nε = A−n−ε [as required by Eq. (I9)] and

that Ak̄ε is real [the latter somewhat arbitrary choice ensures consistency with Ref. [18], with (αk̄)here =
1√
2
(γk̄+ + iγk̄−)there and (αd)here = (γd−)there].

With Eq. (I15), the desired unitary transformation that maps the refermionized H ′
+ of Eq. (I1) into the

diagonal form (I5) is complete.23 That it indeed diagonalizes H ′
+ can be checked explicitly by inserting

the last of Eqs. (I10) for αn into Eq. (I6). After some rearrangement and use of Eqs. (I12) and (I14) to
do the k̄ sums, one readily recovers Eq. (I8), and in the process finds that the ground state energy shift is
E′
G =

∑
k̄>0 εk̄ −

∑
ε>0 ε (for details, see Ref. [18]).

To calculate (T = 0) expectation values with respect to the ground state |G′
B〉 of H ′

+, denoted by 〈 〉′,
of expressions involving the original operators ck̄ and αd, one uses the inverse transformations [obtained
from the last of Eq. (I10) and the second of Eq. (I2)]:

ck̄ = 1√
2
(αk̄ + iβk̄) = 1√

2

(
iβk̄ +

∑

ε

Ak̄εα̃ε

)
, αd =

∑

ε

Adεα̃ε , (I17)

〈βk̄β−k̄′〉′ = 〈βk̄β†
k̄′
〉′ = δk̄k̄′θ(εk̄′ ) , 〈α̃εα̃−ε′〉′ = 〈α̃εα̃†

ε′〉′ = δεε′θ(ε
′) , [θ(ε′ = 0) ≡ 1

2 ]. (I18)

J Asymptotic analysis of various correlators

We evaluate explicitly the asymptotic t→ ∞ behavior of a number of correlators occuring in the refermion-
ized theory of scattering off a Luttinger liquid of Sections 10.C and 10.D. Since they can all be expressed
in terms of the fermionic operators β and α̃, this is possible using Wick’s theorem. The corresponding
Feynman diagrams are shown in Fig. 4. Throughout this Appendix, we use the shorthand c ≡ 4πΓ.

J.1 The “total current” correlator 〈N̂+(t)N̂+(0)〉′
We describe the dispute between Fabrizio & Gogolin and Oreg & Finkelstein, mentioned in Section 10.D.3,
regarding the calculation of the correlator Dαd

(t) in terms of the “total current” correlator 〈N̂+(t)N̂+(0)〉′.
We believe that OF’s critique of FG is unfounded; to illustrate our view, we confirm FG’s calculation
explicitly for g = 1/2.

To evaluate Dαd
(t) for general g, FG [23] exploited the fact that αd = eiπN̂ /

√
2 depends on the “total

current” operator 2N̂ = (N̂L− N̂R), which they call J . They concluded that Dαd
(t) ∼ t−1/2g (as explained

22 As consistency check, we verify that the first of Eq. (I10), divided by A†
εdAdε′ , also holds for ε 6= ε′ [the last equality

follows from the first of Eq. (I12)]:

[A†
εdAdε′ ]

−1∑
nA

†
εnAnε′ = 1 + 4Γ∆L

∑
k̄

1
(ε−εk̄)(ε′−εk̄)

= 1 + 4Γ∆L
∑

k̄
1

ε′−ε

(
1

ε−εk̄
− 1

ε′−εk̄

)
= 0 .

23 It is straightforward and instructive to verify directly that inserting the last of Eq. (I10) for α̃n into the original form
(I1) for H′

+ indeed yields the diagonal form (I8).
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Figure 4: Feynman diagrams indicating the contractions that give the asymptotically leading contributions
to the following correlators: (a) Dαd

of (156), the subleading term of DΨ of (J10), and also DΨαd
of (J28);

(b) Dβ of (155) and the leading term of DΨ of (J10); (c) DΦ+ of (164) and DN+ of (J2); (d) D11 of (J16);

(e) D20 of (J23); (f) D22 of (J26); (g) DΨΦ+αd
of (J31); and (h) 〈B̂4〉 of (J7).
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below) by citing the result DN+(t) ≡ 〈N̂+(t)N̂+(0)〉′ ∼ −(ln t)/(2gπ2) from previous papers [35, 43]. In
Ref. [35] FG had arrived at the latter result by assuming, following the RG results of Kane and Fisher [16],
that as far as current fluctuations are concerned (which is of course all that matters forDN+), the effect of a
backscattering impurity can be mimicked by using “open boundary conditions”, Ψphys(x = 0) = Ψphys(x =
L) = 0, since both suppress current fluctuations. [Recall that current and density fluctuations are governed

by Φ+, N̂+ and Φ−, N̂−, respectively, since ρ̃L(0) ∓ ρ̃R(0) =
√

2g∓/2∂xΦ±(x)|x=0 + 2 2π
L N̂±, see (129)]. In

their Reply [24], OF objected to this assumption of [35] (without commenting on [43]), pointing out that
“cutting the wire” (i.e. open boundary conditions) is not fully equivalent to a backscattering impurity, since
the latter affects only current but not the density fluctuations at the impurity site. As a general statement,
this assertion is certainly correct: the density at x = 0 is clearly unaffected by backscattering, since
[HB,Φ−] = 0. [Free density fluctuations, in fact, are responsible for the decay of DF (t) ∼ t−1/2g of (180).]
Nevertheless, in our opinion OF’s critique is misguided, simply because Dαd

depends solely on current

fluctuations (i.e. solely on Φ+ and N̂+ — though in the field-theoretical bosonziation formalism employed
by FG and OF, this fact is perhaps not as obvious as here); but for the calculation of current fluctuations
it is irrelevant whether density fluctuations are present or not, since the two types of fluctuations are
completely decoupled ([Φ+,Φ−] = 0 and [N̂+,Φ−] = 0). Therefore, FG’s strategy in Ref. [35] for finding

〈N̂+(t)N̂+(0)〉′ is sound.
To illustrate our view and confirm FG’s results, we now calculated DN+ explicitly for g = 1/2. Using

(145) and (147), the number operator N̂+ of (136) (with P = 0) can be written as

N̂+ =
∑

k̄>0

i(α†
k̄
βk̄ − β†

k̄
αk̄) =

∑

k̄

i(α−k̄β
†
k̄
) =

∑

k̄ε

iA−k̄,εα̃εβk̄ . (J1)

Its correlator DN+(t) [Fig. 4(c)] can thus be evaluated as follows:

DN+(t) ≡ 〈N̂+(t)N̂+(0)〉′ =
∑

k̄k̄′εε′

A−k̄,εA
∗
−k̄′,ε′〈α̃ε(t)βk̄(t)β̃

†
k̄′

(0)α†
ε′(0)〉′ (J2)

=
∑

ε,k̄≥0

θ(ε)|A−k̄,ε|2e−i(ε+εk̄)t L→∞−→ c2

π2
P

∫ ∞

∆L

dε P

∫ ∞

0

dεk̄
e−i(ε+εk̄)t

(ε2 + c2)(ε+ εk̄)
2

(J3)

=

{
− 1
π2 ln(∆L/c) (t = 0);

− 1
π2 ln(r∆Lit) (ct≫ 1,∆Lt≪ 1).

(J4)

When taking the limit L → ∞ using (154), we cut off the low-energy divergence in the double integral of

(J3) by ∆L = v2π/L, the level spacing for finite L. For t = 0, the logarithmic divergence of 〈N̂2
+〉′ with

system size when L→ ∞ reflects the fact that due to backscattering N̂+ is not conserved. The divergence

is sufficiently slow, however, that factors of order N̂+/L can be safely neglected when taking the continuum
limit (as done in Section 10.D). The simplest way to find the asymptotic ct ≫ 1 result is to first show
that ∂t2DN+(t) ∼ (it)−2 using (158), then integrating twice w.r.t. t. This yields − ln(r∆Lit), where r
is a constant of order unity, (and not, for example, − ln(rcit)), since it is ∆L (not c) which cuts off the
low-energy divergence of (ε+ εk̄)

−2 as long as ∆Lt ≪ 1, just as for the case t = 0. The numerical value of
r depends on the precise way in which this infra-red cut-off is introduced.

These g = 1/2 results confirm those for general g of Gogolin and Prokof’ev [43], who found 〈N̂2
+〉′ ∼

ln(Lc), and those of Fabrizio and Gogolin [35] forDN+(t) mentioned above. FG usedDN+ in their Comment
[23] on Oreg and Finkel’stein’s work to calculate the correlator Dαd

for general g, by essentially proceeding
as follows:

Dαd
(t) ≡ 〈αd(t)αd(0)〉′ = 1

2 〈eiπN̂+(t)e−iπN̂+(0)〉′ “=” 1
2e
π2[DN+

(t)−DN+
(0)] ∼ 1

2 (rcit)−1/2g . (J5)
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For g = 1/2 this yields (ict)−1 behavior, in agreement with our result Dαd
(t) ∼ (πcit)−1 of (157), but the

numerical value of the prefactor (which FG did not specify) is 1/2r instead of 1/π, i.e. it depends on the
way the infrared cut-off in (J3) was performed. Actually, since the identity (76), which would make the “=”
in (J5) a true equality, holds only for free bosonic operators (cf. the end of Appendix J.2), the prefactor

in (J5) will be further renormalized by additional contributions, not contained in eπ
2[DN+

(t)−DN+
(0)]; these

will depend on r but not on t and must evidently conspire to change the prefactor from 1/2r to 1/π.

It is instructive to identify the nature of these additional contributions. For a free bosonic operator B̂,
the relation (75) can be proven as follows:

〈eB̂0〉 =
∞∑

n=0

1

2n!
〈B̂2n

0 〉 =
∞∑

n=0

1

2n!

(2n− 1)!

2n−1(n− 1)!
〈B̂2

0〉n =
∞∑

n=0

1

2nn!
〈B̂2

0〉n = e〈B̂
2
0〉/2. (J6)

For the first equality we used 〈B̂2n+1
0 〉 = 0, and for the second evoked Wick’s theorem to reduce 〈B̂2n

0 〉 to

a sum of (2n− 1)(2n− 3) . . . identical terms, each equal to 〈B̂2
0〉n. Relation (76) can be similarly proven,

though the combinatorics is more involved.

Now, the bosonic operators N̂+ and Φ+ are not free, but both of the general form B̂ =
∑

εk̄ Bεk̄α̃εβk̄,

with non-trivial coefficients Bεk̄. When evaluating 〈B̂2n〉 using Wick’s theorem for free fermions, one thus
obtains two types of contributions: firstly, those containing only “pairwise” contractions, in which both
operators from one pair (α̃β) are contracted with both operators from another pair; this yields (2n−1)(2n−3)
times 〈B̂2〉n = [

∑
ε,k̄≥0 |Bεk̄|2]n, just as for free bosons. Secondly, there are “non-pairwise” contractions,

in which (α̃β) is contracted with the α̃ of one pair and the β of another, which has no analogue for free
bosons. For example, in

〈B̂4〉 = 3

{[ ∑

ε,k̄≥0

|Bεk̄|2
]2

+
∑

ε,k̄,ε′,k̄′≥0

[
Bεk̄B−εk̄′B

∗
−ε′k̄′B

∗
ε′k̄ +Bεk̄B−εk̄′B

∗
−ε′k̄B

∗
ε′k̄′

]}
(J7)

the first term arises from pairwise contractions, the second and third from non-pairwise contractions [see
Fig. 4(h)]. It follows that in general

〈eB̂〉 = e〈B̂
2〉/2 + . . . , 〈eB̂eB̂′〉 = e〈B̂B̂

′+(B̂2+B̂′2)/2〉 + . . . , (J8)

where on the right-hand sides the exponentials and dots arise from pairwise and non-pairwise contractions,
respectively. The latter will change the numerical value of the prefactor (J5), but not the leading asymptotic
behavior t−1. (It is straightforward but cumbersome to check this, by evaluating, for example, the non-

pairwise contracted terms for 〈N̂2
+(t)N̂2

+(0)〉.)

J.2 Checking that DαdV−1(t) ∼ (it)−1

We check the result DαdVλ
(t) ∼ (it)−1 for λ = −1, by relating DαdV−1 to DΨ ≡ 〈Ψ+(t)Ψ†

+(0)〉′ and
calculating the latter explicitly.

DαdV−1(t) =
1

a
〈eiH′

+tαde
−iΦ+e−iH

′
+teiΦ+αd〉′

=
1

2a
〈eiH′

+tF+e
−iΦ+e−iH

′
+teiΦ+F †

+〉′ = 1
2DΨ(t) . (J9)
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We used (181) and (182) to trade αdH
′
+αd for 1

2F+H
′
+F

†
+, then used (134) to identify

a−1/2F+e
−iΦ+ as Ψ+. The correlator DΨ [Fig. 4(a,b)] can be evaluated as follows:

DΨ(t) ≡ 〈Ψ+(t)Ψ†
+(0)〉′ = 2π

L

∑

k̄k̄′

1
2 〈(αk̄(t) + iβk̄(t))

(
α†
k̄′

(0) − iβ†
k̄′

(0)
)
〉′ (J10)

=
∆L

2v

[
Dβ(t) +

∑

ε≥0

e−ε(it+a/v)θ(ε)
∑

k̄k̄′

Ak̄,εA
∗
k̄′,ε

]
(J11)

=
1

2v

[
Dβ(t) +

∫ ∞

0

dε
e−ε(it+a/v)ε2

ε2 + c2

]
=

{
1
a (1 − πac/4) (t = 0, ca≪ 1);

1
2ivt

[
1 + O

(
1
c2t2

)]
(Γt≫ 1).

(J12)

To obtain Eq. (J10), (J11) and (J12) we used, respectively, the first of Eqs. (134) and (145) for Ψ+, (155)
for Dβ , (147) and (149) for αk̄(t) [with c ≡ 4πΓ], (151) to do the

∑
k̄ sums in (J11), then (154) to take the

continuum limit, and (158) for the asymptotic integral.
Eqs. (J9) and (J12) together evidently confirm that DαdV−1(t) ∼ (it)−1. Moreover, they also yield

the leading prefactor of DαdV−1 in (190), namely C−1 = 1/4. This implies, via (189) and (157) that

a−1〈eiλΦ+(t)e−iλΦ+(0)〉′ is proportional to Γ, which is consistent with what we would get from a−1e−〈Φ+(0,0)2〉′ =

(eγ4πΓ/v) [by (166)]. That the numerical prefactors obtained from a−1e−〈Φ+(0,0)2〉′ and a−1〈eiλΦ+(t)e−iλΦ+(0)〉′
differ is of course no surprise, since according to the discussion preceding Eq. (J8) these two quantities are
identically equal only for free boson fields.

Incidentally, it is straightforward to check that the result DαdV1 ∼ (it)−1 can also be derived by writing

αde
−iΦ+ = e−i(πN̂+Φ+) and using (J8), with B̂ = πN̂ + Φ+.

J.3 Leading connected contributions to 〈αd(t)Φn
+(t)Φn′

+ (0)αd(0)〉′
The result DαdVλ

∼ (it)−1 of (190) rests on the fact that each “connected” contribution to the correlator

Dnn′(t) ≡ in−n′

n!n′! 〈αd(t)Φn+(t)Φn
′

+ (0)αd(0)〉′ occuring in (188) asymptotically decays at least as fast as 1/t
(most decay much faster), since it contains at least one contraction between two operators at times t and
0, which yields at least one factor of 1/t. Here we illustrate this by considering the leading connected
contributions to D11, D20 and D22 explicitly.

Apart from (158), the following integrals will be found useful in the asymptotic evaluation of Dnn′ :

I1 = P

∫ ∞

0

dε
ε

(ε+ ε′)(ε2 + c2)
=

c

ε′2 + c2

[
π

2
+
ε′

c
ln

( |ε′|
c

)]
, (J13)

I2 = P

∫ ∞

0

dε
c

(ε+ ε′)(ε2 + c2)
=

c

ε′2 + c2

[
− ln

( |ε′|
c

)
+
πε′

2c

]
, (J14)

I3 = P

∫ ∞

0

dε
εn[ln(ε/c̄)]n̄e−ε(it+a)

(ε2 + c2)m
∼ n![− ln |c̄t|]n̄

c2m(it)n+1
, (J15)

where I3 assumes n, n̄,m ≥ 0 and integer, and t/a, tc≫ 1.
The leading connected contributions to D11 [Fig. 4(d)] are evaluated as follows:

D11(t) ≡ 〈αd(t)Φ+(t)Φ+(0)αd(0)〉′ (J16)

∼
∑

k̄k̄′εε′ε̄ε̄′

AdεΦk̄,ε̄Φ
∗
k̄′,ε̄′A

∗
dε′〈
(
α̃εβk̄α̃ε̄

)
(t)
(
α̃†
ε̄′β

†
k̄′
α̃†
ε′

)
(0)〉 (J17)

=
∑

k̄,ε,ε′>0

e−ik̄tAdε
[
Φk̄,−εΦ

∗
k̄,−ε′ − e−i(ε+ε

′)tΦk̄,ε′Φ
∗
k̄,ε

]
A∗
dε′ . (J18)
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Among the contractions that produced the first or second terms of (J18), there were one or three t-to-0
contractions (i.e. connecting operators at t and 0), respectively, yielding one or three oscillatory factors,
respectively. Thus the first term is the one that decays slower when t→ ∞; to determine its asymptotics,
we first do the sums on ε and ε′ for a slightly more general expression (which occurs in the leading terms
of all Dnn′):

Fk̄,k̄′ ≡
∑

ε,ε′>0

AdεΦk̄,−εΦ
∗
k̄′,−ε′A

∗
dε′ (J19)

= P

∫ ∞

0

dε dε′
∆L c ε ε

′

π[ε2 + c2][ε′2 + c2]

[
1

εk̄ − ε
− πε

c
δ(εk̄ − ε)

] [
1

εk̄′ − ε′
− πε′

c
δ(εk̄′ − ε′)

]

∼ π∆Lc
3

4 [ε2
k̄

+ c2][ε2
k̄′

+ c2]

[
1 + O

(εk̄
c

)
+ O

(εk̄′
c

)]
. (J20)

After using I1 of (J13) twice to perform the double integral, we retained only the term with the lowest
powers of εk̄/c and εk̄′/c, since [by (158)] it is the one giving the leading asymptotic behavior for D11:

D11(t) ∼
∑

k̄

Fk̄,k̄e
−iεk̄t ∼

∫ ∞

0

dεk̄ e
−iεk̄t

πc3

4 [ε2
k̄

+ c2]2
∼ π

4cit
. (J21)

Thus leading term in D11(t) decays just as fast as the disconnected terms proportional to D00 = Dαd
(t) ∼

1/(cit), and hence its prefactor contributes to the prefactor Cλ in (190) for DαdVλ
. For the second term of

(J18), we do the εk̄ before the ε, ε′ integrals (using (158) for all three integrals), obtaining

P

∫ ∞

0

dε dε′ dεk̄
c e−i(εk̄+ε+ε′)t

π [ε2 + c2][ε′2 + c2]

(
ε′

εk̄ + ε′

)(
ε

εk̄ + ε

)
∼ 1

π(ict)3
. (J22)

This illustrates that the more contractions there are between times t and 0, the more powers of 1/(ct) are
produced.

Next we consider D20 [Fig. 4(e)] , whose leading connected term differs from that of D11 only in the
oscillatory factor (the 1/2! is cancelled by a combinatorical factor 2!):

D20(t) ≡ 1

2!
〈αd(t)Φ2

+(t)αd(0)〉′ ∼ 2!

2!

∑

k̄,ε,ε′>0

AdεΦk̄,−εΦ
∗
k̄,−ε′A

∗
dε′ e

−iε′t (J23)

∼ P

∫ ∞

0

dε′ dεk̄ dε
c∆L ε ε

′ e−iε
′t

π [ε2 + c2][ε′2 + c2][εk̄ − ε][εk̄ − ε′]
(J24)

∼ P

∫ ∞

0

dε′
c2 ε′ ln |ε′/c|e−iε′t

2 [ε′2 + c2]2
∼ − ln |ct|

2(cit)2
. (J25)

To obtain (J25) we did, in that order, the ε, εk̄ and ε′ integrals, using I1, I2 and I3 of (J13), (J14) and
(J15), respectively, keeping at each step only the asymptotically leading term. Evidently, D20 decays faster
than D00 = Dαd

by a factor ln |ct|/(cit).
Finally, we consider the leading contribution to D22 [Fig. 4(f)], namely

D22(t) ≡ 1

(2!)2
〈αd(t)Φ2

+(t)Φ2
+(0)αd(0)〉′ ∼ (2!)2

(2!)2

∑

k̄,k̄′,ε>0

Fk̄k̄′Φ−k̄,εΦ
∗
−k̄′,ε e

−iεt (J26)

∼ P

∫ ∞

0

dε
π c3 ε2 (ln |ε/c|)2e−iεt

4 [ε2 + c2]3
∼ π(ln |ct|)2

4 (cit)3
. (J27)
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The Fk̄k̄′ in (J26) arises in the same way as in (J18); the εk̄, εk̄′ integrals and the ε integral can be done
with I2 and I3 of (J14) and (J15), respectively.

These examples illustrate that the integrals that have to be done rapidly become very complicated when
n, n′ increase, so that it would be a daunting task to give a general formula for the leading asymptotic
behavior of Dnn′ . However, it also is evident that the leading term will always decay as least as fast as
∼ (it)−1, simply because it always contains at least one t-to-0 contraction.24

J.4 Leading contributions to DLR(t)

We asymptotically evaluate the leading terms arising when DLR(t) of (192) is expanded in powers of Φ+,
namely 〈Ψ+(t)αd(0)〉′ ∼ (it)−2 and 〈Ψ+(t)[Φ+(0) − Φ+(t)]αd(0)〉′ ∼ (it)−1.

The calculation of the first of these [Fig. 4(a)] is analogous to that of DΨ(t) of (J10):

DΨαd
(t) ≡

√
2/a 〈Ψ+(t)iαd(0)〉′ =

√
2π/aL

∑

k̄

〈[αk̄(t) + iβk̄(t)] iαd(0)〉′ (J28)

= i
√

∆L/va
∑

ε

e−ε(it+a/v)θ(ε)
∑

k̄

Ak̄,εA
∗
d,ε〈α̃εα̃†

ε〉′ (J29)

= −
√

c

πav

∫ ∞

0

dε
e−ε(it+a/v) ε
ε2 + c2

=

{ √
c
πav ln (eγca/v) (t = 0, ca≪ 1);

√
c
πav

1
(ct)2

[
1 + O

(
1
ct

)]
(ct ≫ 1).

(J30)

Here γ = 0.577 . . . is Euler’s constant, and the last line’s asymptotic ct≫ 1 result follows from (158). Note
that the non-zero result for DΨα(t = 0) implies by (144) that 〈H ′

B〉′ 6= 0, as expected.
Next we consider the correlator DΨΦ+αd

(t), which is linear in Φ+ [Fig. 4(g)]; it is non-zero, since the β
in Φ+ can be contracted with that in Ψ+:

DΨΦ+αd
(t) ≡

√
2/a 〈Ψ+(t) [Φ+(0) − Φ+(t)]αd(0)〉′ (J31)

∼
√

∆L/va
∑

k̄k̄′εε′

iΦ−k̄′,ε′A
∗
d,ε〈βk̄(t)

[
(β†
k̄′
α̃ε′)(0) − (β†

k̄′
α̃ε′)(t)

]
α†
ε(0)〉′ (J32)

∼ −
√

c

πav
P

∫ ∞

0

dε dεk̄
(
e−iεk̄t − e−iεt

) ε

ε2 + c2

[
e−|ε−εk̄|a/2v

ε− εk̄
+
πε

c
δ(ε− εk̄)

]
(J33)

∼ −
√

c

πav

{
P

∫ ∞

0

dεk̄
e−iεk̄t c

ε2
k̄

+ c2

[π
2
− εk̄

c
ln
∣∣∣
εk̄
c

∣∣∣
]
− P

∫ ∞

0

dε
e−iεt ε ln |εa/2v|

ε2 + c2

}
(J34)

∼ −
√

π

cav

1

(2it)

[
1 +

2 ln(2cvt2/a)

πcit

]
(ct≫ 1). (J35)

The first term of (J34) was obtained from the e−iεkt term of (J33) by doing the ε integral using I1 of
(J13), the second term of (J34) was obtained from the e−iεt term of (J33) by doing the εk̄ integral using∫∞
0 dεe−aε/(ε−c) = − ln |ac| for ac≪ 1. Eq. (J35) follows from (J34) by using (158) for the leading term and
I3 of (J15) for the logarithmic terms. – Remarkably, the (it)−1 decay of DΨΦ+αd

is slower than the (it)−2

of DΨαd
. The reason is that the coefficients Ck̄ in its

∑
k̄ Ck̄〈βk̄(t)β

†
k̄
(0)〉′ contraction contain less powers

of εk̄ than the powers of ε contained in the coefficient Cε arising in the contraction
∑

εCε〈α̃ε(t)α̃†
ε(0)〉′ in

(J29) for DΨαd
. [A similar observation applies for the β and α̃ contributions to DΨ of (J10).]

24 The only exception to this rule occurs for DN+ of (J2), for which two t-to-0 contractions yield ln t; the reason why
DN+

is special is that it contains a factor |A−k̄,ε|
2 ∼ (ε + k̄)−2, which produces an infrared divergence leading to ln t. In

contrast, however, the coefficients occuring when 〈αd(t) . . . ...αd(0)〉 is involved are less infrared divergent (since Ad,ε → const
for ε→ 0).
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K Coulomb gas representation for DB

We rederive Oreg and Finkel’stein’s [21] exact mapping of the correlator DB of (174) onto a difference
of Coulomb gas partition functions, DB = Ze − Zo, and confirm that their treatment of fermionic anti-
commutation relations was correct, contrary to recent suggestions in the literature [23].

In this Appendix we write F± ≡ FL/R ≡ Fν , where ν = (L,R) = (+,−) (in contrast to our refermion-

ization notation F+ ≡ F †
RFL of Section 10.C.3). The backscattering term HB of (128), with θB = 0 for

simplicity, and the T = 0, imaginary-time version of the correlator DB of (174), with τ = it and τ ∈ [0,∞],
then read

HB =
vλB
2πa

∑

ν=±
F †
νF−νe

iνcΦ+ , with c ≡
√

2g , (K1)

DB(τ) =
1

a

∑

ν0,ντ=±
〈GB|e(H0++HB)τF−ντ e

i
2ντ cΦ+e−(H0++HB)τF †

ν0e
i
2 ν0cΦ+ |GB〉 (K2)

=

∑
ν0,ντ =±〈0+|T

{
e−

∫ ∞
0
dτ ′HB(τ ′)F−ντ (τ)e

i
2ντcΦ+(τ)F †

ν0(0)e
i
2ν0cΦ+(0)

}
|0+〉

a 〈0+|T e−
∫ ∞
0
dτ ′HB(τ ′)|0+〉

. (K3)

In (K3) we wrote DB in the T = 0, imaginary-time interaction representation [31], in which Φ+(τ) =
eH0τΦ+e

−H0τ and Fν(τ) = Fν (from (72), with 1/L terms neglected), and |0+〉 is the ground state of H0+.
Expanding DB in powers of HB and keeping only connected terms (since disconnected ones are cancelled
by the denominator), we readily obtain

DB(τ) =
1

a

∞∑

n=0

(
vλB
2πa

)n∫ ∞

0

dτ1

∫ τ1

0

dτ2 . . .

∫ τn−1

0

dτn
∑

ν1...νn,ντν0=±
Dτ1...τn,τ
ν1...νn,ντν0S

τ1...τn,τ
ν1...νn,ντν0 (K4)

Dτ1...τn,τ
ν1...νn,ντν0 ≡ 〈0+|T

{
eiν1cΦ+(τ1) . . . eiνncΦ+(τn) e

i
2ντcΦ+(τ)e

i
2 ν0cΦ+(0)

}
|0+〉 (K5)

=

(
2πa

L

) 1
2Q

2

exp c2
{

1
4ντν0 ln (|τ |/a+ 1) +

n∑

i=1

1
2ν0νi ln (|τj |/a+ 1)

+

n∑

i=1

1
2ντνi ln (|τ − τj |/a+ 1) +

n∑

i<j

νiνj ln (|τi − τj |/a+ 1)

}
(K6)

Q ≡
n∑

j=1

νj + 1
2ντ + 1

2ν0 (K7)

Sτ1...τn,τ
ν1...νn,ντν0 ≡ (−1)n〈0+|T

{(
F †
ν1F−ν1

)
(τ1) . . .

(
F †
νn
F−νn

)
(τn)F−ντ (τ)F †

ν0 (0)
}
|0+〉 (K8)

= (−1)Nτ δQ,0 (K9)

In (K4) we exploited the fact that all boson fields commute with all Klein factors to factorize each term
into two factors, D and S, that depend only on Φ+’s and F ’s, respectively. D of (K5) is a time-ordered
expectation value of exponentials of free boson fields, which gives (K6) when evaluated using (94) [analogous
to our derivation of (96)]. The argument of the exponential in (K6) can be interpreted as the potential
energy of a “1-D Coulomb gas of charged particles”, interacting with a logarithmic inter-particle potential
c2ν1ν2 ln(|τ1 − τ2|/a + 1), which has two charges 1

2ν0 and 1
2ντ placed at positions 0 and τ , and n further

charges ν1, . . . , νn at positions τj ∈ (0,∞), where all ν ∈ ±. The total charge of the configuration is Q of
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(K7), and since the Q-dependent prefactor in (K9) is non-zero in the limit a/L → 0 only if Q = 0, only
“neutral” configurations of the Coulomb gas contribute.

This also follows from the Klein factor correlator S of (K8), which by inspection is non-zero only if it

contains as many F †
± as F± operators, which implies Q = 0 (illustrating our comments of Appendix D.1).

For all neutral configurations, S = 1 or −1 if Nτ is even or odd, respectively, where Nτ is the number of
charges νi occuring between 0 and τ , i.e. for which τi ∈ (0, τ). To see this, one simply has to rearrange
the F ’s under the time-ordering symbol in (K8) until they all “disappear” via F †

νFν = 1, and count the

number of minus signs produced by anticommuting an F+ or F †
+ past an F− or F †

−, as illustrated by the
following simple examples:

Nτ = 0 : Sτ1>τ+,−− = (−1)1〈
[
F †

+(τ1)F−(τ1)
]
F+(τ)F †

−(0)〉 = 1

Nτ = 1 : Sτ>τ1+,−− = (−1)1〈F+(τ)
[
F †

+(τ1)F−(τ1)
]
F †
−(0)〉 = −1

Nτ = 0 : Sτ1>τ2>τ+−,−+ = (−1)2〈
[
F †

+(τ1)F−(τ1)
] [
F †
−(τ2)F+(τ2)

]
F+(τ)F †

+(0)〉 = 1

Nτ = 1 : Sτ1>τ>τ2+−,−+ = (−1)2〈
[
F †

+(τ1)F−(τ1)
]
F+(τ)

[
F †
−(τ2)F+(τ2)

]
F †

+(0)〉 = −1

It follows that DB(τ) = Ze(τ) − Zo(τ), where Ze and Zo contain only configurations with Nτ = 1
and −1, respectively. Thus Ze and Zo can be interpreted as the grand-canconical partition functions of a
neutral Coulomb gas with fugacity vλB

2πa , two charges ±1/2 at positions 0 and τ , and either an even or an
odd number of charges ±1 between them, respectively (and arbitrarily many charges ± beyond τ).

This completes the exact mapping of DB into a Coulomb gas representation derived by Oreg and
Finkel’stein [21]. Evidently the minus sign in Ze − Zo arose from the anti-commutativity of fermion
operators, as emphasized by Oreg and Finkel’stein. Note that their derivation of it using field-theoretic
bosonization [21, 25] is rather more involved than ours using constructive bosonization, which illustrates
the benefits of using Klein factors. Their conclusions [21] about the asymptotic behavior of Ze − Zo for
τ → ∞, and our criticism thereof, are discussed in Section 10.D.3.
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