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We generalize Emery and Kivelson’s (EK) bosonization-refermionization treatment of the 2-channel
Kondo model to finite system size and on the EK line analytically construct its exact eigenstates and
finite-size spectrum. The latter crosses over to conformal field theory’s (CFT) universal non-Fermi-
liquid spectrum (and yields the most-relevant operators’ dimensions), and further to a Fermi-liquid
spectrum in a finite magnetic field. Our approach elucidates the relation between bosonization, scaling
techniques, the numerical renormalization group (NRG), and CFT. All CFT Green’s functions are
recovered with remarkable ease from the model’s scattering states. [S0031-9007(98)06260-7]
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A dynamical quantum impurity interacting with
metallic electrons can cause strong correlations and
sometimes lead to non-Fermi-liquid (NFL) physics. A
prototypical example is the 2-channel Kondo (2CK)
model, in which a spin-1y2 impurity is “overscreened”
by conduction electrons, leaving a nontrivial residual spin
object even in the strong-coupling limit. Many theoretical
treatments of this model have been developed [1], in-
cluding Wilson’s numerical renormalization group (NRG)
[2,3] for the crossover from the free to the NFL regime,
Affleck and Ludwig’s (AL) conformal field theory (CFT)
[3,4] for exact thermodynamic and transport quantities,
valid only near the NFL fixed point, and Emery and
Kivelson’s (EK) bosonization-refermionization mapping
onto a resonant-level model [5], valid on a line in param-
eter space that connects [6] the free and NFL fixed points.
In this Letter we elucidate the well-known yet remarkable
fact that these three approaches, despite tremendous
differences in style and technical detail, yield mutually
consistent results: We show that EK bosonization in a

system of finite size L yields NRG-like finite-size spectra,
and reproduces all known CFT results.

Our method requires no knowledge of CFT, only that
we bosonize and refermionize with care: Firstly, we
construct the boson fields f and Klein factors F in the
bosonization relation c , Fe2if explicitly in terms of
the model’s original fermion operators hckajj. Secondly,
we clarify how the Klein factors for EK’s refermionized
operators act on the original Fock space. Thirdly, we keep
track of the gluing conditions on all allowed states. This
enables us (i) to explicitly contruct the model’s finite-
size eigenstates; (ii) to analytically obtain NRG-like finite-
size spectra that cross over from free to CFT universal
NFL spectra; (iii) to describe magnetic-field-induced cross
overs exactly; (iv) to recover with remarkable ease all AL
CFT results [4] for L ! ` [7].

The model.—We consider the standard anisotropic
2CK model with a linearized energy spectrum [3–5],

defined by H ­ H0 1 Hz 1 Hh sh̄ ­ yF ­ 1d:

H0 ­

X

kaj

k :c
y
kajckaj :, Hh ­ hiSz 1 heN̂s ,

Hz 1 H' ­ DL

X

kk0aa0ja

la :c
y
kaj

1

2
sa

aa0Sack0a0j: .

Here c
y
kaj creates a free-electron state jkajl with spin

a ­ s", #d, flavor j ­ s1, 2d ­ s1, 2d, radial momen-
tum k ; j $pj 2 pF , and normalization hckaj , c

0
k0a0j0 j ­

dkk0daa0djj0 . We let the large-jkj cutoff go to infinity,
and quantize k by defining 1D fields with, for simplicity,
antiperiodic boundary conditions at x ­ 6Ly2 [4],

cajsxd ;
p

DL

X

k

e2ikxckaj , (1)

where k ­ DLsnk 2 1y2d and DL ; 2pyL is the mean
level spacing. By : : we denote normal ordering relative

to the Fermi ground state j$0l0. Hz 1 H' is the Kondo
coupling (with dimensionless lz fi l' ; lx ; ly) to a
local spin-1y2 impurity Sa (with Sz eigenstates j*l, j+l),
and Hh describes magnetic fields hi and he coupled to the

impurity spin and the total electron spin N̂s.
Conserved quantum numbers.—Diagonalizing H re-

quires choosing a suitable basis. Let any (nonunique) si-

multaneous eigenstate of N̂aj ;
P

k :c
y
kajckaj :, counting

the number of sajd electrons relative to j$0l0, be denoted

by j $Nl ; jN"1l ≠ jN#1l ≠ jN"2l ≠ jN#2l, with $N [ Z
4.

Since H conserves charge, flavor, and total spin, it is natu-

ral to define new counting operators, N̂y s y ­ c, s, f, xd,
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which give half the total electron number, the electron
spin, flavor, and spin difference between channels, re-

spectively. Equation (2) implies that the eigenvalues $N
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are either all integers or all half-integers (i.e., $N [

sZ 1 Py2d4, with P ­ s0, 1d for even/odd total electron
number), and that they obey the free gluing condition

Nc 6 Nf ­ sNs 6 Nxdmod 2 . (3)

All nonzero matrix elements of H' have the form kNc,

ST 2
1

2 ,Nf ,Nx; * jH'jNc, ST 1
1

2 ,Nf ,Nx 6 1; +l,

and since the total spin ST ­ N̂S 1 Sz , is conserved,

the N̂s eigenvalue flips only between ST 7
1

2 , i.e., it

fluctuates only “mildly.” In contrast, the N̂x eigenvalue

fluctuates “wildly” [an appropriate succession of spin
flips can produce any Nx satisfying (3)]; this will
be seen below to be at the root of the 2CK model’s
NFL behavior (in revealing contrast to the 1CK model,
which has no wildly fluctuating quantum number, and
lacks NFL behavior). For a given sNc, ST ,Nfd it
thus suffices to solve the problem in the corresponding

invariant subspace
P

©0Nx
jNc, ST 2

1

2 ,Nf ,Nx; *l ©
jNc, ST 1

1

2 ,Nf ,Nx 1 1; +l, to be denoted by S ,
where the prime on the sum indicates its restriction to Nx

values respecting (3).
Bosonization.—To bosonize [5] the model in terms of

the original ckaj’s [8,9], we define bosonic fields through

b
y
qaj ;

i
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nq

X

nk[Z

c
y
k1qajckaj , sq ; DLnq . 0d ,

fajsxd ;
X

0,nq[Z1

21
p

nq

se2iqxbqaj 1 eiqxb
y
qajde2aqy2,

which account for particle-hole excitations (the b’s by

construction satisfy fbqaj, b
y
q0a0j0g ­ dqq0daa0djj0 and

fbqaj , N̂a0j0g ­ 0). Then the usual bosonization relation,

cajsxd ­ Faje
2isN̂aj21y2d2pxyLe2ifajsxd, (4)

holds as operator identity, where the Klein factors [8]
Faj ;

p
a cajs0deifajs0d (see [9]) satisfy fFaj , N̂a0j0g ­

daa0djj0Faj , fF, fg ­ 0, and hFaj , F
y
a0j0 j ­ 2daa0djj0 .

Thus Faj , F
y
aj ladder between the Naj , Naj 7 1 Hilbert

spaces without creating particle-hole excitations, and
ensure proper c , cy anticommutation relations.

To exploit the conserved quantities in the Ny basis, we
now use the transformation (2) to define new Bose fields
bqaj ! bqy and faj ! wy . Writing H in terms of these
[via (4)], only wx and ws couple to the impurity [5]:

H0 ­ DL

X

y

1

2
N̂ 2

y 1
X

y,nq.0

qby
qybqy , (5)

Hz ­ lzDLSzN̂s 1 lzDLSx

X

nq.0

p
nq isbqs 2 by

qsd ,

(6)

H' ­
l'

2a
eiwss0dS2

X

j­6

F
y
"jF#je

ijwxs0d 1 H.c . (7)

To eliminate Hz , make the EK [5] unitary transformation
H 0 ­ UHUy, with Uslzd ; eilzSzwss0d. This yields

H
0
h ­ Hh, sH0 1 Hzd0 ­ H0 1 lzDLN̂sSz 1 const,

S0
6 ­ e6ilzwss0dS6, and ws incurs a phase shift:

UwssxdUy
­ wssxd 2 lzpSzsgnsxd ; w̃ssxd . (8)

We henceforth focus on the EK line of fixed lz ­ 1.
Here ws decouples from S6, and by (4) and (8) the
caj’s have phase shifts 6py4. Since this is just the
value known for the NFL fixed point [3,10], the l'-
induced crossover between the free and NFL fixed points
can be studied on the EK line [6] by solving H 0 by
refermionizing.

Refermionization.—We first have to define Klein fac-
tors for the Ny basis. Since an “off-diagonal” product

F
y
ajFa0j0 acting on any state j $Nl just changes some of its

Naj (and hence Ny) quantum numbers, we write

F y
x F y

s ; F
y
"1F#1, FxF y

s ; F
y
"2F#2,

F y
x F y

f ; F
y
"1F"2 , (9)

thereby defining new Klein factors Fy , F y
y satisfying

fFy ,Ny0g ­ dyy0Fy , fF , wg ­ 0, and hFy ,F y
y0 j ­ 2dyy0.

Formally, these operators act on an extended Fock space

[11] of states with arbitrary $N [ sZ 1 Py2d4. Its
physical subspace contains only those states that obey
(3), and by (9) it is closed under the pairwise action of
Fy’s. This simple construction for keeping track of Ny

quantum numbers is the main innovation of this Letter.
Next we define a pseudofermion field cxsxd [5] by

cxsxd ; a21y2Fze2isÑs21y2d2pxyLe2iwxsxd, (10)

and expand it as
p

DL

P

k e2ikxckx , by analogy with (4)

and (1), which imply hckx, c
y
k
0
x
j ­ dk k

0 . In the ckaj ba-
sis, the ckx’s create highly nonlinear combinations of
electron-hole excitations, as in clear from their explicit

definition, via wx and Fx , in terms of the ckaj’s. Since

Nx [ Z 1
P

2 , we note that cx has a P-dependent bound-

ary condition, implying k ­ DLsnk 2
12P

2 d, and fur-

ther that DL sN̂ 2
x y2 1

P

q.0 nqby
qxbqxd ­ H0x 1 Py8,

where H0x ;
P

k k : c
y
kx

ckx : and : : means normal order-

ing of ckx’s, with
P

k : c
y
kx

ckx : ; N̂x 2 Py2. We fur-

ther define the “local pseudofermion” cd ; F y
s S2, im-

plying c
y
d cd ­ Sz 1

1

2 . Eliminating N̂s in the subspace

S using N̂s ­ ST 1
1

2 2 c
y
d cd , we can rewrite H 0 as

Hcsf sbc, bf , bs,Nc,Nfd 1 Hx 1 EG , where Hcsf has a
trivial spectrum and Hx is quadratic:

Hx ­ ´dc
y
d cd 1 H0x 1

p

DLG
X

k

sc
y
kx

1 ckxd scd 2 c
y
d d ,

EG ­ DLf
1

2 sS2
T 2

1

4 d 1 Py8g 2
1

2 hi 1 hesST 2
1

2 d .

Here G ; l
2
'y4a and ´d ; hi 2 he is the spin flip

energy cost. As first noted by EK [5], who derived H 0

for L ! `, impurity properties show NFL behavior since

“half the pseudofermion,” scd 1 c
y
d d, decouples.

Diagonalizing Hx .—To study the NFL behavior of
electron properties, caused by the nonconservation of Nx ,
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we diagonalize Hx . First, define further pseudofermions

having all non-negative energies: ak ;
1p
2

sckx 1 c
y
2kx

d

and bk ;
1

i
p

2
sckx 1 c

y
2kx

d for k . 0; if P ­ 1 then

a0 ; c
y
0x , and ad ; cd (or c

y
d ) for ´d . 0 (or #0).

Then the bk’s decouple in Hx , and a Bogoliubov transfor-
mation ãy

´ ­
P

n­d,k

P

n­6 B´nnsay
n 1 nand yields [11]

Hx ­
´d

2
1

X

´$0

´

µ

ãy
´ ã´ 2

1

2

∂

1
X

k.0

k

µ

b
y
k
bk 1

1

2

∂

,

4pG´ys´2 2 ´2
dd ­ 2 cot ps´yDL 2 Py2d . (11)

Equation (11) for the pseudofermion eigenenergies ´
implies that each k smoothly evolves into a corresponding

´skd as G is turned on. Since ´skd . k 1
DL

2 (or .k) for

k ø sor ¿d G, we see very nicely that the spectrum’s
low- and high-energy parts are strongly and weakly
perturbed, respectively, with crossover scale TK . G [5].

As mentioned above, the pseudofermions act on an
extended Fock space. To identify which eigenstates jẼl
of H 0 are physical, note that each has to adiabatically
develop, as G increases from 0, from some state obeying
the free gluing condition (3). The latter can be shown
[11] to develop into the general gluing condition (GGC)

[12] that kẼj f
P

´$0 ãy
´ ã´ 1

P

k.0 b
y
k
bkg mod2 jẼl must

be equal to fNc 1 Nf 2 sST 1
1

2 1
P

2 2 Pddg mod2,

where Pd ­ 0s1d for ´d . 0 s#0d. The GGC and
Eqs. (11) together constitute an exact analytical solution
of the 2CK model at the EK line for arbitrary l', hi ,
and he.

Relation to RG methods.—Our exact solution allows
us to implement Anderson “poor man’s scaling” and Wil-
son’s NRG treatments of the Kondo problem analytically,
thus illustrating the main idea behind both, namely, to

try to uncover the low-energy physics via an RG trans-

formation. In the first, the RG is generated by reducing
(at fixed L, usually ­ `) the bandwidth while adjusting
the couplings to keep the dynamical properties invariant.
Since the cutoff used when bosonizing is 1yas,pFd and
a occurs in H 0 only through G, the scaling equations [6]
d ln lz

d ln a ­ 0,
d ln l'

d ln a ­ 1y2, which imply that l' grows un-
der rescaling [13], are exact along the EK line. Renor-
malizing the spin flip vertex, possible only approximately
in the original ckaj basis by summing selected diagrams,
thus becomes trivial after bosonizing and refermionizing,
which in effect resums all diagrams into a quadratic form.

Wilson’s NRG [2,3] is, in effect, a finite-size scaling
method which increases (at fixed bandwidth and cou-
plings) the system size, thus decreasing the mean level
spacing and pushing ever more eigenenergies down into
the spectrum’s strongly perturbed regime below TK . Each
RG step enlarges the system by order L . 1 by includ-
ing an extra “onion-skin shell” of electrons, then rescales
H ! LH to measure energy in units of the new re-
duced level spacing. We can mimick this by transforming
L ! L0 ­ LL (thus GyDL ! LGyDL) and plotting the

spectrum in units of D
0
L ­

2p
L0 .

Figure 1 displays sẼ 2 ẼmindyD̃L for the lowest few
jẼl that satisfy the GGC. Figure 1(a) shows the evolution
of the spectrum toward the EK line for lz [ f0, 1g
at G ­ ´d ­ 0 [i.e., free fermions, phase shifted by
6lzpy2 in the spin sector, see (8)]. Figure 1(b) shows
its further evolution on the EK line for GyDL [ f0, `g
at lz ­ 1, ´d ­ 0. Decreasing DL at fixed G yields
an NRG-like crossover spectrum that for DL ! 0 indeed
reproduces the NRG’s universal NFL fixed point spectrum
[2,3] (irrespective of the specific G value, illustrating the
irrelevance of spin anisotropy [3]). This NFL spectrum
also agrees with that found by AL using a so-called fusion

hypothesis [4], which our GGC thus proves simply and
directly (in contrast to the CFT proof of Ref. [14(b)]).
Note that the ground state (with degeneracy 2) has entropy
ln 2, as it must for finite L [15] (in contrast, the celebrated
result

1

2 ln 2 requires taking L ! ` before T ! 0).
Next we illustrate Wilson’s program of extracting the

most relevant operator’s dimensions from the L depen-
dence of the finite-size corrections, dẼsLd ; ẼsGyDLd 2
Ẽs`d, to the universal NFL spectrum: For ´d ­ 0,

Eq. (11) gives
dẼ

DL
,

1

GL , thus on the EK line the least
irrelevant operator has dimension 1, but perturbative cor-

rections in lz 2 1 yield
dẼ

DL
,

lz21

sGLd1y2 , thus the general
leading irrelevant operators (absent on the EK line) have

dimension
1

2 [4,11,14]. Next, turning on a local field

´d ­ hi , we find from (11) that for hi ø hc ;
p

GyL

the NFL spectrum is only slightly affected, while for
hc ø hi ø G the spectrum has three distinct regions: It
is Fermi-liquid-like [3] (with uniform level spacing) for

´ ø hK ;
h

2
i

G and ´ ¿ G, and NFL-like (nonuniform
level spacings) for hK ø ´ ø G. Both the L depen-
dence of hc and the hi dependence of the crossover scale
hK show that the local magnetic field is relevant, with di-

mension 2
1

2 ; it causes a crossover, shown in Fig. 1(c), to
a Fermi-liquid spectrum for all states with ´ ø hK .

For GyDL ! `, h ! 0, we find logarithmic diver-

gences for the susceptibility x ø
1

4p2G lnsGLd and the

N̂x fluctuations kN̂ 2
x l ø

1

p2 lnsGLd (with kN̂xl ­ 0).
Both are clear signs of 2CK NFL physics: The first shows

FIG. 1. All eigenenergies DẼ ­ sẼ 2 ẼmindyDL # 1 (de-
generacies in parentheses) of the full H 0 as functions of (a)
lz [ f0, 1g at G ­ ´d ­ 0; (b) GyDL [ f0, `g at lz ­ 1,
´d ­ 0; (c) j´d jyG [ f0, 3.5g at fixed GyDL ¿ 1, lz ­ 1.
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that no spin singlet is formed due to “overscreening,” the
second how strongly this perturbs the electron sea.

Relation to CFT.—Recent CFT [7] and scaling [6]
arguments showed that the NFL regime can be described
by free boson fields. This can be confirmed very easily

by finding the scattering state operators c̃
y
kx

[and field

c̃y
x sxd] into which the free c

y
kx

’s fcy
x sxdg develop when

G is turned on adiabatically as ehtG (at ´d ­ 0), and
deducing from these the behavior of the w̃y fields.
In the continuum limit [L ! `, then sDLød h ! 01],

the c̃
y
kx

’s obey [16] the Lippmann-Schwinger equation

fHx , c̃
y
kx

g ­ kc̃
y
kx

1 ihsc̃
y
kx

2 c
y
kx

d, which gives [16]

c̃
y
kx

­ c
y
kx

1
Z

dk
0

3
2Gksc

y
k
0
x

1 c2k
0
xd

fsk 1 ihd sk 1 i4pGd 2 ´2
dg sk 2 k

0
1 ihd

.

To find the asymptotic behavior sjxj ! `d of c̃y
x sxd ;p

DL

R

dkeikx c̃
y
kx

, we may take kyG ! 0; this gives

c̃y
x sxd , 1y

p

DL

Z

dk
0
eik

0
xf c

y
k
0
x
usxd 2 c2k

0
xus2xdg .

Adopting AL’s notation of L and R movers, c̃y
x sxd ;

usxdc̃
y
xLsxd 1 us2xdc̃

y
xRsxd, then gives 2c̃

y
xR , c̃

y
xL ,

cy
x . To translate this into “boundary conditions” on the

w̃y boson fields, we write c̃xLyR ; F̃xLyRa21y2e2iw̃xLyR

and note that w̃c, w̃f decouple and w̃s is phase shifted
as in (8). Thus the free and scattering boson fields are
asymptotically related (with hc, hs, hf ­ 1 ­ 2hx) by

shyw̃yR 2 pSzdysd , sw̃yL 1 pSzdysd , wy , (12)

while hysF̃yRdhy ­ F̃yL ­ Fy for y ­ s, f, x. This
central result, first found in Ref. [7] (with different phases
since Klein factors were neglected), shows that the NFL

regime can be described by boson fields w̃yLyR that are,

asymptotically, free (with only a trivial Sz dependence).
Next we consider the 16 bilinear fermion cur-

rents J̃aA
y ; :c̃

y
ajsTaA

y daa0,jj0 c̃a0j0 : (with T00
c ­

1

2dd,

Ta0
s ­

1

2sad, T
0A
f ­

1

2dsA, TaA
x ­

1

2sasA), for which

(12) yields [11] the boundary conditions J̃
aA
yR , hy J̃

aA
yL .

For y ­ c, s, f, these express the reemergence at the
NFL fixed point of the full Us1d 3 SUs2d2 3 SUs2d2

Kac-Moody symmetry assumed by AL; for y ­ x they
are just what AL derived using their fusion hypothe-
sis. Since these boundary conditions fully determine
all AL’s CFT Green’s functions [4], the boson ap-
proach will identically reproduce them also, if one

proceeds as follows: To evaluate kc̃ajs1d . . . c̃
y
a0j0 s1

0dl,
simply insert (4), rewrite the result in terms of w̃yLyR and

F̃yLyR , and combine (12) with standard free-boson results
such as

ke2ilw̃yR sxdeil0w̃y0Lsx0dl

asl21l02dy2
,

dyy0L21y2shyl2l0d2

six 2 ix0dhyll0 . (13)

All asymptotic NFL behavior of electron Green’s func-

tions arises from the fact that hx ­ 21, combined with

relations such as (13); it directly yields, e.g., the so-called

“unitarity paradox” [7] kc̃ajRsxdc̃
y
a0j0Lsx0dl , 0 (for

L ! `, then jx0 2 xj ! `). Note, though, that proba-
bility is not lost during scattering: c̃y

x sxd shows that each

pseudoparticle c
y
k
0
x

incident from x . 0 is “Andreev-

scattered,” emerging at x , 0 as pseudohole c2k
0
x ,

orthogonal to what was incident; this very NFL-like

behavior dramatically illustrates the effects of N̂x

nonconservation.
To find AL’s boundary operators in terms of the w̃y’s

[6,11], one calculates the operator product expansion of

c̃Rajc̃
y
La0j0 . Since hx ­ 21, all terms contain a factor

e6iwy (y ­ s, f or x) with dimension
1

2 ; this ultimately

causes the famous T1y2 in the resistivity [4,6,7].
In conclusion, finite-size bosonization allows one (i) to

mimick, in an exact way, the strategy of standard RG
approaches and (ii) to recover with remarkable ease all
exact results known from CFT for the NFL fixed point. It
thus constitutes a bridge between these theories.
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