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This is the second in a series of two papers �Papers I and II� on the problem of decoherence in weak
localization. In Paper I, we discussed how the Pauli principle could be incorporated into an influence functional
approach for calculating the cooperon propagator and the magnetoconductivity. In the present paper, we check
and confirm the results so obtained by diagrammatically setting up a Bethe-Salpeter equation for the cooperon,
which includes self-energy and vertex terms on an equal footing and is free from both infrared and ultraviolet

divergences. We then approximately solve this Bethe-Salpeter equation by the ansatz C̃�t�= C̃0�t�e−F�t�, where
the decay function F�t� determines the decoherence rate. We show that in order to obtain a divergence-free

expression for the decay function F�t�, it is sufficient to calculate C̃1�t�, the cooperon in the position-time
representation to first order in the interaction. Paper II is independent of Paper I and can be read without
detailed knowledge of the latter.
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I. INTRODUCTION

This is the second in a series of two papers �Papers I and
II�, in which we revisit the problem of decoherence in weak
localization, using both an influence-functional approach
�Paper I� and a Bethe-Salpeter equation for the cooperon
�Paper II� to calculate the magnetoconductivity. The basic
challenge is to calculate the interference between two time-
reversed trajectories of an electron traveling diffusively in a
Fermi sea and coupled to a noisy quantum environment,
while taking proper account of the Pauli principle. In Paper
I,1 we discussed how this could be done using an influence-
functional approach by dressing the spectrum of the noise
field by “Pauli factors” �see Eq. �I.66�; throughout, “I” will
indicate formulas from Paper I�. Moreover, within the
influence-functional scheme, we concluded that a
divergence-free calculation of the decoherence rate can be
obtained by expressing the cooperon in the position-time
representation as

C̃�0,t� � C̃0�0,t�e−F�t�, F�t� = −
C̃1�0,t�

C̃0�0,t�
, �1�

where C̃1�0, t� is the first-order term in an expansion of the

full cooperon C̃�0, t� in powers of the interaction. �In the
present paper, this statement will be made more precise:

when reexponentiating, a part of C̃1�0, t� has to be omitted
that can be determined, in a self-energy-only calculation, to
contribute only to the prefactor of the cooperon; see Sec.
II C.�

These conclusions of Paper I rest entirely on the
influence-functional approach and, in the discussion of the
Pauli principle, relied on heuristic arguments. Though these
are in accord with results derived elsewhere2–6 �as shown in
Paper I, Sec. VII�, it is desirable to compare the approxima-
tions used and the results obtained so far against a treatment

relying purely on diagrammatic perturbation theory, the
framework within which most of our understanding of disor-
dered metals to date has been obtained.

In the present paper, we check and confirm the results
mentioned above by diagrammatically setting up a Bethe-
Salpeter equation for the cooperon using standard Keldysh
diagrammatic perturbation theory �using conventions sum-
marized in Ref. 6�, which includes self-energy and vertex
terms on an equal footing and is free from both infrared and
ultraviolet divergences. We then show that this equation can
be solved �approximately, but with exponential accuracy�
with an ansatz that is precisely of the form of Eq. �1�, and
that the function F�t� so obtained agrees with the form de-
rived in Paper I �Eq. �I.65��.

The usual diagrammatic calculation of the cooperon starts
from a Dyson equation for a “self-energy-diagrams-only”
version of the cooperon,

C̄�,q
self��� = C̄q

0����1 + �̄�,q
self���C̄�,q

self���� . �2�

Here, the cooperon self-energy �̄�,q
self includes only self-energy

diagrams, in which interaction lines connect only forward to
forward or backward to backward electron propagators; for
these diagrams, the frequency labels along both the forward
and the backward propagators are conserved separately,
which is why the Dyson equation is a simple algebraic equa-

tion for C̄�,q
self���. However, the cooperon self-energy �̄�,q

self���
turns out to be infrared divergent in the quasi-two- and quasi-
one-dimensional cases. This problem is usually cured by in-
serting an infrared cutoff by hand �as reviewed in Sec. II C
below�. The results so obtained are qualitatively correct but,
due to the ad hoc treatment of the cutoff, not very accurate

quantitatively �e.g., in the first line of Eq. �19� for F̃�
self�t�

below, the exponent is correct, but the prefactor is wrong by
roughly a factor of 2 compared to Eq. �I.44��.
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Our goal in the present paper is to obtain, starting from a
diagrammatic equation, results free from any cutoffs, infra-
red or ultraviolet, that have to be inserted by hand—the
theory “should take care of its divergences itself.” This can
be achieved if the cooperon self-energy is taken to include
vertex diagrams, in which interaction lines connect forward
and backward electron propagators. Since this brings about
frequency transfers between the forward and the backward
propagators, their frequency labels are no longer conserved
separately. As a consequence, it becomes necessary to study

a more complicated version of the cooperon, C̄q
E��1 ,�2�, la-

beled by three frequencies, and governed not by a simple
algebraic Dyson equation but by a nonlinear integral equa-
tion, which we shall refer to as “Bethe-Salpeter equation.”

Finding an exact solution to the Bethe-Salpeter equation
seems to be an intractable problem, which we shall not at-
tempt to attack. Instead, we shall transcribe the Bethe-
Salpeter equation from the momentum-frequency to the
position-time domain, in which it is easier to make an in-
formed guess for the expected behavior of the solution. Us-
ing the intuition developed in Paper I within the influence-
functional approach �summarized in Eq. �1� of the present
paper�, we shall make an exponential ansatz for

C̃��r12, t1 , t2�, the cooperon in the position-time domain. We
shall show that this ansatz solves the Bethe-Salpeter equation
with exponential accuracy, in the sense that improving the
ansatz would require terms to be added to the exponent that
are parametrically smaller �in powers of 1 /g, g being the
dimensionless conductance� than the leading term in the ex-
ponent.

II. SETTING UP BETHE-SALPETER EQUATION FOR
COOPERON

A. Various expressions for conductivity

The diagrammatic definition of the weak-localization con-
tribution to the ac conductivity of a quasi-d-dimensional dis-
ordered conductor is given by Fig. 1�a�, which corresponds
to the following expression �see Appendix A of Ref. 2, or
Appendix C of Ref. 6�:

��d
WL��0� = −

�d

��	
�C̃cond

�,�0��, �3a�

C̃cond
�,�0 =� �d2�̃� � �dq�C̄q

�−�̃/2��0 − �̃,�0 + �̃� , �3b�

where

�¯�� 	� d�
f��−� − f��+�

�0
¯ �4�

denotes an average over �, with �±=�± 1
2�0, and in the dc

limit �0→0, the weighting function reduces to −f����, the
derivative of the Fermi function f���=1 / �e�/T+1�. �In this
paper, temperature is measured in units of frequency, i.e., T
stands for kBT /	 throughout; likewise, although � will often
be referred to as “excitation energy,” it stands for a fre-
quency.�

The full cooperon with general arguments, C̄q
E��1 ,�2�, is

defined diagrammatically in Fig. 1�b�: E is the average of the
frequencies of the upper and lower electron lines, while �1
and �2 are the outgoing and incoming cooperon frequencies,
respectively. In the absence of external time-dependent
fields, the average energy E is conserved between incoming
and outgoing lines. The cooperon needed for the ac conduc-
tivity in Fig. 1�a� has incoming upper and lower electron
lines with energies �+ and �−− �̃ and outgoing upper and
lower electron lines with energies �+− �̃ and �−, implying
�1= ��0− �̃�, �2= ��0+ �̃�, and E=�− 1

2 �̃, as used in Eq.
�3b�.

To make contact with the expression for the conductivity
in the position-time representation used in Paper I, we re-
write Eq. �3b� as

C̃cond
�,�0 	� dtei�0tC̃�+�0,t� , �5a�

C̃�+�0,t� 	 C̃�+�r12 = 0;t1 = 1
2 t,t2 = − 1

2 t� , �5b�

where C̃�+�r12; t1 , t2� is a representation of the full cooperon
in an energy/position/two-time representation,

FIG. 1. �a� Diagram for the weak-localization correction to the
ac conductivity, ��WL��0� �Eqs. �3��. In contrast to the so-called
“interaction corrections” to the conductivity, each current vertex is
attached to both a retarded and an advanced electron line. �b� Dia-

grammatic definition of full cooperon C̄q
E��1 ,�2� and schematic

depiction of the Bethe-Salpeter equation �8� satisfied by it; E
= 1

2 �� j
++� j

−� is the conserved average of the energies of the upper
and lower lines, while �1 and �2 are the outgoing and incoming
cooperon frequencies �with � j =� j

+−� j
−�. For the structure of the

cooperon self-energy �̄full and details of our diagrammatic conven-
tions, see Appendix A and Fig. 2.
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C̃�+�r12;t1,t2� =� �dq��d�1��d�2�ei�qr12−�1t1+�2t2�


C̄q
�+−�1/2��2��1,�2� �5c�

=� �dq��d2�̃��d��ei�qr12−�t12+�̃t̃12�


C̄q
�+−�1/2���̃+���� − �̃,� + �̃� , �5d�

where r12=r1−r2, t12= t1− t2, t̃12= t1+ t2, �= 1
2 ��2+�1�, and

�̃= 1
2 ��2−�1�. The 
dt time integral in Eq. �5a� sets �=�0

and hence �+− 1
2 ��̃+��=�− 1

2 �̃ in Eq. �5c�, as needed for Eq.
�3b�. Inserting Eq. �5a� into Eq. �3a�, we find

��d
WL��0� = −

�d

��	
�

0

�

dtei�0t�C̃�+�0,t���. �6�

Thus, the dc limit ��d
WL�0� is seen to be an energy-averaged

version of Eq. �I.1�. Since our goal is to make contact with
the results of Paper I, we shall take the dc limit �0→0 and
�+→� throughout below �it is straightforward to reinstate the
�0 dependence explicitly by replacing the parameter � by �+
in all cooperons below�.

We choose to normalize the full cooperons such that in
the absence of interactions, they reduce as follows to their
noninteracting versions ��12=�1−�2�:

C̄q
E��1,�2� ——→

no int

2����12�C̄q
0��1� , �7a�

C̃E�r12;t1,t2� ——→
no int

C̃0�r12,t12� . �7b�

Here, C̄q
0���= �Eq− i��−1, with Eq=Dq2+�H, where �H is a

magnetic-field induced decay rate. For later reference, we
also define Eq̄

0=Dq̄2.
Our strategy for determining the decoherence rate will be

to find an approximation for C̃E�0, t� of the form �1�. To this
end, we shall set up a Bethe-Salpeter equation for

C̄q
E��1 ,�2�, transcribe it to the position-time domain to find a

Bethe-Salpeter equation for C̃E�r12; t1 , t2�, and then solve the
latter using ansatz �1�.

B. Bethe-Salpeter equation for cooperon

In the presence of interactions, the full cooperon

C̄q
E��1 ,�2� satisfies a Bethe-Salpeter equation of the general

form

C̄q
E��1,�2� = C̄q

0��1��2����12�

+� �d�3��̄q,full
E ��1,�3�C̄q

E��3,�2�� , �8�

depicted schematically in Fig. 1�b�. The average energy E is
conserved because no external fields are present. For the

cooperon self-energy �̄q,full
E ��1 ,�3� occurring herein, we

shall adopt the diagrammatic definition first written down in
Ref. 7. The corresponding diagrams and equations for �̄full
are rather unwieldy and hence have been relegated to Appen-
dix A �see Fig. 2 and Eqs. �A2a�–�A2f� in Appendix A 1�.
This very technical appendix can be skipped by casual read-
ers; its contents are summarized in the next two paragraphs,
and to be able to follow the developments of the main text
below, it should suffice to just occasionally consult the final
formulas for the self-energies given in Eqs. �A5a�–�A5f�.

The cooperon self-energy �̄full is itself proportional to the
cooperon C̄; thus, the Bethe-Salpeter equation �8� is nonlin-
ear in C̄. Solving it in full glory thus seems hardly feasible.
Therefore, we shall henceforth consider only a “linearized”
version thereof, obtained �in Appendix A 2� by replacing the
full cooperon self-energy �̄full in Eq. �8� by a bare one, �̄bare.
The latter, given explicitly in Eqs. �A5a�–�A5f�, is obtained

by making the replacement C̄q
E��1 ,�3�→2����13�C̄q

0��1�
for every occurrence of the full cooperon in �̄full.

A perturbative expansion of the full cooperon C̄ in powers
of the interaction can readily be generated by iterating Eq.
�8�. This is done explicitly to second order in Appendix A 3
�see Eq. �A6��. The expansion illustrates two important
points: First, due to the frequency transfers between the for-
ward and backward propagators generated by the vertex dia-

grams, the frequency arguments of �̄bare increasingly become
“entangled” from order to order in perturbation theory, i.e.,
they occur in increasingly complicated combinations. This
makes it exceedingly difficult to directly construct an explicit
solution. Secondly, no ultraviolet divergences arise in pertur-
bation theory, confirming the heuristic golden rule arguments
of Paper I, Sec. V �and contradicting suggestions to the con-
trary implicit in Refs. 8–10; see Appendix A 3 for a discus-
sion of this point�.

C. Recover Dyson equation by neglecting vertex terms

Before attempting to solve the �linearized� Bethe-Salpeter
equation, it is instructive to start for the moment with a
rather strong approximation, namely, to simply neglect all
vertex terms �they will be reinstated later�, thereby avoiding
the above mentioned “entanglement” of frequencies. This re-
duces the Bethe-Salpeter equation to the more familiar

Dyson equation �2� for the “self-energy-only” cooperon C̄self,
and will allow us to review some standard arguments and to
recover some familiar and simple results.

In the absence of vertex diagrams, the cooperon self-

energy �̄q,bare
E ��1 ,�2� of Eq. �A5a� is proportional to ���12�,

implying the same for the cooperon C̄q
�−�2/2,self��1 ,�2�, so

that the cooperons needed on the right-hand sides of Eqs.
�5c� and �5b� can, respectively, be written as

C̄q
�−�2/2,self��1,�2� 	 2����12�C̄�,q

self��2� , �9a�

C̃�,self�0,t� =� �dq��d��e−i�tC̄�,q
self��� . �9b�

The “single-frequency” cooperon C̄�,q
self��� introduced in Eq.

�9a� is the generalization of the free, single-frequency coop-
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eron C̄q
0��� to the case of a cooperon for pairs of paths with

average energy � in the presence of self-energy-only interac-
tions. From Eq. �8�, it is seen to satisfy the familiar Dyson
equation �2�, with solution

C̄�,q
self��� =

1

Eq − i� − �̄�,q
self���

, �10�

where the effective cooperon self-energy is given by an in-
tegral over all momentum and frequency transfers to the en-
vironment,

�̄�,q
self��� =

1

	
� �d�̄��dq̄��̄q,q̄,bare

�,self ��,�̄� , �11�

with �̄q,q̄,bare
�,self �� , �̄� given in Eqs. �A5b�–�A5d�.

Now, the standard way to extract the decoherence rate
from Eq. �10� is to expand the self-energy in powers of Eq
− i�:

�̄�,q
self��� = − ��,q

,self + �Eq − i���̄�,q�self + ¯ , �12a�

��,q
,self 	 − ��̄�,q

self����Eq=i�. �12b�

The leading “cooperon mass” term can be identified with the
decoherence rate, because Eq. �9b� yields �after performing
the 
�d�� integral by contour integration�

C̃�
self�0,t� � � �dq�e−t�Eq+��,q

,self��1 + �̄�,q�self + ¯ � . �13�

Since the �dq� integral is dominated by small q, let us replace

q by 0 in ��,q
,self and �̄�,q�self, so that they can be pulled out of

the integral. This yields

C̃�
self�0,t� � C̃0�0,t�e−F̃�

self�t��1 + �̄�,0�self + ¯ � , �14a�

F̃�
self�t� = t��,0

,self, �14b�

in which C̃�
self�0, t� is expressed in a form reminiscent of Eq.

�1�: a free cooperon, times the exponential of a decay func-

tion, times a factor 1+ �̄�,0�self that renormalizes the overall
amplitude of the cooperon �i.e., it corresponds to “wave-
function” renormalization, in analogy to the occurrence of a
finite quasiparticle weight Z in a Fermi liquid due to the
short-time decay that is not resolved further by this approxi-
mation�.

Since we have to set Eq= i� in Eq. �12b� and q=0 in Eq.
�14b�, it is natural to split the self-energy of Eq. �11� into two

parts, �̄�,q
self���= �̄�,q

self,dec���+ �̄�,q
self,Z���, chosen such that

�̄�,q
self,Z��� vanishes when Eq= i� and q=0. �This requirement

is, in fact, fulfilled by �and was the motivation for� the sepa-
ration of Eq. �A5b� into two terms, labeled “dec” and “Z.”�
Thus, ��,0

,self depends only on �̄�,q
self,dec���; using Eq. �A5c� in

Eqs. �11� and �A5f�, it can be written as follows for not too
large magnetic fields11 ��H /T�1�:

��,0
,self =

1

	2 � �d�̄��dq̄�
2Eq̄

0

�Eq̄
0�2 + �̄2

�VV�q̄�̄
pp . �15�

Here, the effective propagator �V̂V̂�q̄�̄
pp arising in Eq. �15�

turns out to be precisely the Pauli-principle-modified propa-
gator of Eq. �I.66b� which we conjectured by heuristic argu-
ments in Paper I, Sec. V D:

1

	
�VV�q̄�̄

pp = Im L̄q̄
R��̄�coth� �̄

2T
� +

1

2
tanh�� − �̄

2T
�

−
1

2
tanh�� + �̄

2T
�� . �16�

The coth+tanh combination occurring in �V̂V̂�q̄�̄
pp limits the

frequency integral to ��̄��T, as anticipated by the golden
rule discussion in Sec. VC of Paper I �see Eq. �I.62��.

After performing the �dq̄� integral in Eq. �15�, the remain-
ing �d�̄� integral turns out to have an infrared divergence for
quasi-one- or quasi-two-dimensional samples. To be explicit,
if we regularize it by hand by inserting a steplike cutoff
function ����̄�− �̄0�, we obtain for the quasi-d-dimensional
case

��,0
,self �

pd

2
�

�̄0

� d�̄

�̄1−d/2coth� �̄

2T
� +

1

2
tanh�� − �̄

2T
�

−
1

2
tanh�� + �̄

2T
�� , �17a�

with p1=�2�1 /�, p2=1 / �2�g2�, and p3=1 / ��2�3�2�, where
�1=D�e2 /	�1�2, g2=	�2 /e2, and �3=D�e2 /	�3�−2. For d
=3, the integral is well behaved in the limit �̄0→0, but not
for d=1,2. For example, in the quasi-one-dimensional case,
the integral evaluates to

�0,0
,self =

2T

�
�2�1

�̄0
�1/21 + O��	�̄0

T
�1/2�� , �17b�

which diverges for �̄0→0. This infrared divergence arises
because in the present approach, we have neglected vertex
terms, which in general ensure that frequency transfers
smaller than the inverse propagation time 1 / t do not contrib-
ute �see Paper I, Sec. III�. Thus, we should choose the infra-
red cutoff at �̄0�1 / t �as noted in Ref. 6�, obtaining a
time-dependent12 decay rate, ��,0

,self=2�2 /� t1/2 / ��,1
AAK�3/2,

where13

1

�,1
AAK = �,1

AAK = �T��1�2/3 = �Te2�D

	�1
�2/3

�18�

is the decoherence rate first derived by Altshuter, Aronov,
and Khmelnitskii �AAK�.2 ��,0

,self grows with time, because
with increasing time, the cooperon becomes sensitive to
more and more modes of the interaction propagator with
increasingly smaller frequencies, whose contribution in Eq.
�17a� scales like �̄−3/2.

Alternatively, instead of �̄0=1 / t, the choice �̄0=��,0
,self is

often made, since in weak localization the time duration of
relevant trajectories is set by the inverse decoherence rate.
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Then, Eq. �17b� is solved self-consistently,3,8 yielding
��,0

,self= �2�2 /��2/3 /�,1
AAK, with �,1

AAK again given by Eq. �18�.
The decay functions for d=1 corresponding to the above

two choices of �̄0 in Eq. �17b� are, respectively �from Eq.
�14b��,

F̃�
self�t� = �2�2/���t/�,1

AAK�3/2

�2�2/��3/2�t/�,1
AAK� .

� �19�

Evidently, both equations describe decay on the same time
scale �,1

AAK. The second choice does not properly reproduce
the 3 /2 power law in the exponent that we expect from Eq.
�I.44� for Fcrw

cl �t� �a fact strongly criticized by Golubev and
Zaikin �GZ�9�. However, the first choice does, up to a nu-
merical prefactor, whose precise value cannot be expected to
come out correctly here because it depends on the shape of
the infrared cutoff function �arbitrarily chosen to be a sharp
step function above�. We thus recover the classical result for
the decoherence rate. The reason is essentially that Pauli
blocking �represented by the tanh terms in �VV�q̄�̄

pp � sup-
presses the effects of quantum fluctuations �represented by
the +1 in coth��̄ /2T�=2n��̄�+1� with frequencies larger
than T, as discussed in detail in Sec. V D of Paper I. More-
over, we also obtain the important result that the first “quan-
tum correction” to this classical result that arises from self-
energy terms �the O���̄0 /T�1/2� correction in Eq. �17b�� is
smaller by a factor 	 /�tT. For t��, this is �1 in the regime
of weak localization �see discussion after Eq. �I.7��, in agree-
ment with the conclusions of Vavilov and Ambegaokar.14

III. BETHE-SALPETER EQUATION IN THE
POSITION-TIME DOMAIN

The infrared divergences mentioned above are cured as
soon as vertex diagrams are included. However, as men-
tioned at the end of Sec. II B and detailed in Appendix A 2,
frequency entanglement then renders the momentum-
frequency version �8� of the Bethe-Salpeter equation intrac-
table. This suggests that we try a more pragmatic way of
finding an approximate expression for the full cooperon: in-
spired by the insight from Paper I �Sec. III D� that in the case
of classical noise, a rather accurate description of the coop-
eron can be obtained in the position-time representation by
reexponentiating its expansion to first order in the interaction
�Eq. �1� of this paper�, we shall try a similar approach here:
we transcribe the Bethe-Salpeter equation to the position-
time domain to obtain an equation for the corresponding

cooperon C̃��r12, t1 , t2� of Eq. �5c�, and solve this equation
approximately with an exponential ansatz; this ansatz will
turn out to yield precisely the reexponentiation of

C̃��1��r12; t1 , t2�, the first-order expansion of the full coop-
eron, in full analogy to Eq. �1�.

A. Transcription to time domain, exponential ansatz

Let us now consider the Bethe-Salpeter equation �8� for

C̄q
�−�1/2��2��1 ,�2�, i.e., with E=�− 1

2�2, as needed in Eq.
�3b� when �0=0. This equation can be transcribed using Eq.

�5c� �with �+ there replaced by �� to the form

�− D�r1

2 + �t1
+ �H�C̃��r12;t1,t2�

= ��r12���t12�

+� dr4dt4dt4��̃full
�,t4��r14;t1,t4�C̃��r42;t44�,t24�� , �20�

where the self-energy in the energy/position/time representa-
tion is defined by

�̃full
�,t4��r14;t1,t4� 	 � �dq��d�1��d�2��d�4�


ei�qr14−�1t1+�4t4−t4���2−�4��


�̄q,full
�−�2/2��1,�4� . �21�

Before trying to solve Eq. �20�, let us get a feeling for the
structure of this equation by calculating the zeroth- and first-

order terms of C̃��r12; t1 , t2� in an expansion in powers of the

interaction propagator �i.e., �̃bare�. To this end, we use the
fact that

�− D�r
2 + �t + �H�C̃0�r,t� = ��r���t� , �22�

iterate Eq. �20� once, and replace �̃full by �̃bare �given by Eqs.
�A5a�–�A5f�� on its right-hand side. We find

C̃��r12;t1,t2� = C̃0�r12,t12� + C̃�1���r12;t1,t2� + ¯ ,

�23a�

where C̃�1���r12; t1 , t2� has just the structure discussed in Pa-
per I, Sec. III C, describing propagation from �r2 , t2� to
�r1 , t1�, with interaction vertices along the way at points
�r4 , t4� and �r3 , t3�:

C̃�1���r12;t1,t2� =� dr3dt3dr4dt4C̃0�r13,t13��̃bare
� �r34;t3,t4�


C̃0�r42,t42� , �23b�

�̃bare
� �r34;t3,t4� 	 � dt4��̃bare

�,t4� �r34;t3,t4� �23c�

=� �dq��d�3��d�4�ei�qr34−�1t3+�4t4�


�̄q,bare
�−�4/2��3,�4� . �23d�

Let us now construct an approximate solution of the
Bethe-Salpeter equation �20� by making an exponential an-
satz of the following form:

C̃��r12;t1,t2� = C̃0�r12,t12�e−F̃��r12;t1,t2�. �24�

The decay function F̃� is needed only for t12�0 �since

C̃0�r12, t12� vanishes otherwise� and is required to obey the

initial condition F̃��0, t2 , t2�=0 for all t2. Ansatz �24� solves
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Eq. �20� exactly, provided that the decay function F̃� satisfies
the equation

− C̃0�r12,t12���t1
− D�r1

2

− 2D
�r1

C̃0�r12,t12� · �r1

C̃0�r12,t12�
�F̃��r12;t1,t2�

− D��r1
F̃��r12;t1,t2��2�

=� dr4dt4dt4��̃full
�,t4��r14;t1,t4�C̃0�r42,t42�


e−�F̃��r42;t44�,t24��−F̃��r12;t1,t2��. �25�

B. Evaluation of the decay function F̃�
„t…

Let us now evaluate the decay function F̃��t� explicitly;
after three simplifying approximations, we shall find that it
reproduces the function Fd,crw

pp �t� of Eq. �I.65�.
Our first simplifying approximation is as follows: instead

of trying to solve Eq. �25� in general, we shall be content to

determine the decay function F̃� only to linear order in the
self-energy, in accord with the fact that we “linearize” the
latter by replacing the full self-energy by the bare one. �In-
cluding nonlinear contributions would add terms that are
smaller than those kept by powers of the small parameter

1 /g.� To this end, it suffices to linearize Eq. �25� in F̃�, by

dropping the ��r1
F̃��2 term on the left-hand side and the

exponential factor e−�F̃42
� −F̃12

� � on the right-hand side, and re-

placing �̃full by �̃bare. One readily finds that the resulting
linearized equation is solved by

F̃��r12;t1,t2� = −
C̃�1���r12;t1,t2�

C̃0�r12,t12�
, �26�

where C̃�1�� is given by Eq. �23b�. Thus, the expansion of C̃�

�Eq. �24�� to first order in F̃� reproduces Eq. �23a�, as it
should, and conversely, Eq. �24� turns out to be nothing but
the reexponentiated version of Eq. �23a�. Our explicit solu-

tion of the Bethe-Salpeter equation, to linear-in-�̃ accuracy
in the exponent, thus very nicely confirms the heuristic
analysis presented in Sec. III D of Paper I in favor of reex-
ponentiation strategies.

The second approximation is necessitated by the first:
upon comparing with the structure of the self-energy-only
solution �Eq. �14a��, and following the discussion before Eq.
�15�, we recognize that effectively only a part of C�1�� may
be reexponentiated �note that this remark would be irrelevant

if we were able to find the exact F̃��. Therefore, when evalu-

ating C̃�1�� explicitly from Eq. �23b�, we insert �̄bare= �̄bare
self

+ �̄bare
vert �Eqs. �A5a�� into Eq. �23d�, but for the self-energy

term �̄bare
self �Eq. �A5b��, we retain only the “decoherence”

contribution �̄bare
self,dec �Eq. �A5c��, because �̄bare

self,Z �Eq. �A5d��
contributes only to the renormalization of the overall ampli-
tude of the cooperon �and in any case, its time dependence
for long times turns out to be weaker than that arising from

�̄bare
self,dec, as is checked explicitly in Appendix C 2�. In other

words, we write C̃�1�,�= C̃dec
�1�,�+ C̃self,Z

�1�,� and drop the second

term. The resulting expression for C̃dec
�1�,� reads

C̃dec
�1���r12;t1,t2� =

1

	
� �dq��d���dq̄��d�̄�


eiqr12e−i�t12�C̄q
0����̄q,q̄,bare

�,self,dec��,�̄�C̄q
0���

+ ei�̄t̃12C̄q
0�� − �̄��̄q,q̄,bare

�,vert ��,�̄�C̄q
0�� + �̄�� .

�27�

�The quickest way to arrive at Eq. �27� is from the second

term of Eq. �8�, with C̄q
E��3 ,�2�→2����23�C̄q

0��2� on the

right-hand side, and �̄full→ �̄bare, given by Eqs.
�A5a�–�A5f�.�

Our third approximation for evaluating the first-order de-
coherence correction to the cooperon �and thus the decay
function� consists in retaining only its dominating long-time
behavior, for Tt12�1. In this limit, terms of order � /T are
�1 and may be neglected �they produce subleading contri-

butions for F̃��t�, as is checked explicitly in Appendix C 1�.
This allows us to keep only the �=0 component of the ef-

fective environmental propagator L̄E�,q̄
dec ��̄� �Eq. �A5f��,

which is contained in both �̄q,q̄,bare
�,self,dec and �̄q,q̄,bare

�,vert �see Eqs.
�A5c� and �A5e��. More formally, after substituting the latter

two equations for the �̄’s occurring in Eq. �27� and symme-
trizing the integrand with respect to �̄↔−�̄, we Taylor ex-

pand L̄��,q̄
dec ��̄� in powers of � and represent � as i�t12

under
the Fourier integral, thereby bringing Eq. �27� into the form

C̃dec
�1���r12;t1,t2� = − �

n=0

�

�t12

n 1

	
� �dq̄��d�̄�


L̄��n�,q̄
dec ��̄�C̃0�r12,t12�P̄�r12;t1,t2�

crw �q̄,�̄� .

�28�

Its ingredients are defined as follows:

L̄��n�,q̄
dec ��̄� =

�i���n

2n!
�L̄��,q̄

dec ��̄� + L̄��,q̄
dec �− �̄���=0, �29�

P̄�r12;t1,t2�
crw �q̄,�̄� = 2� �d���dq�

eiqr12e−i�t12

C̃0�r12,t12�


�C̄q
0���C̄q−q̄

0 �� − �̄�C̄q
0���

− ei�̄t̃12C̄q
0�� − �̄�C̄q−q̄

0 ���C̄q
0�� + �̄��

�30a�
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=2�
t2

t1

dt3�
t2

t3

dt4�e−i�̄t34 − ei�̄t̃34�


P̄�r12,t12�
crw �q̄,t34� . �30b�

Equation �30b� follows by transforming the free cooperons
in Eq. �30a� to the time domain and recognizing the �dq�
integral of the resulting expression to contain the object

P̄�r12,t12�
crw �q̄,t34� =

� �dq�eiqr12C̄q
0�t13�C̄q−q̄

0 �t34�C̄q
0�t42�

C̃0�r12,t12�

= e−Dq̄2t34�1−t34/t12�+iq̄r12�t34/t12�. �31�

For r12=0, this quantity is the Fourier transform �w.r . t . r��
of the probability density P̃�0,t��r� , t�� for an intermediate
portion of a random walk to cover the distance r� in the time
t�, under the condition that the total walk is closed, returning
to the starting point r=0 after a total time t. It was introduced
in Paper I �Eqs. �I.26� and �I.29�� as central ingredient for
averaging the effective action of the influence functional de-
rived there over pairs of time-reversed, closed random walks.

We are now in a position to write down an explicit ex-

pression for the decay function F̃��r12; t1 , t2�. Writing F̃�

=�n=0
� F̃�n�

� , we find from Eqs. �28� and �26�

F̃�n�
� �r12;t1,t2� =

1

C̃0�r12,t12�
�t12

n 2

	
�

t2

t1

dt3�
t2

t3

dt4


� �dq̄�C̃0�r12,t12�P�r12,t12�
crw �q̄,t34�


� �d�̄�L̄��n�,q̄
dec ��̄��e−i�̄t34 − ei�̄t̃34� .

�32�

We henceforth set r12=0 and t1=−t2= 1
2 t, as required for cal-

culating the conductivity �cf. Eq. �5b��, and write F̃�n�
� �t�

	 F̃�n�
� �0; 1

2 t ,− 1
2 t�. We shall discuss only the leading term F̃�0�

� ,
since the F�n�0� terms give subleading contributions. �This is
illustrated in Appendix C 1 for F�1�.� For n=0, the correlator
needed in Eq. �32� reduces �via Eqs. �29� and �A5f�� to the
Pauli-principle-modified noise correlator of Eq. �16�,
L̄��n�,q̄

dec ��̄�= 1
	 �V̂V̂�q̄�̄

pp . After symmetrizing the range of the t4

integral to be 
−t/2
t/2 dt4 and setting t4→−t4 in the ei�̄t̃34 term of

Eq. �32�, we obtain

F̃�0�
� �t� =

1

	2�
−t/2

t/2

dt3�
−t/2

t/2

dt4� �dq̄� � �d�̄�e−i�̄t34�V̂V̂�q̄�̄
pp


�P̄�0,t�
crw �q̄, �t34�� − P̄�0,t�

crw �q̄, �t̃34��� . �33�

This result is identical to the function Fcrw
pp �t� whose form

was conjectured by heuristic arguments in Sec. V D of Paper

I, namely, Eq. �I.65� �with �P̄ therein given by the “closed
random walk” version of Eq. �I.32a��. Thus, we reach the

main conclusion of this paper: the heuristic way of introduc-
ing Pauli blocking into an influence-functional approach in
Paper I, Sec. V D �and, by implication, also the more formal
analysis of Ref. 6�, is fully consistent with the present dia-
grammatic Bethe-Salpeter approach.

To calculate the energy-averaged version of the cooperon,

�C̃��0, t���, as needed in Eq. �3a�, we need the energy average

of e−F̃�0�
� �t�. This was done in great detail in Paper I, Sec.

VI A, for d=1,2 ,3, so we shall quote only the result for d
=1 here:

�e−F̃�0�
� �t��� � e−�F̃�0�

� �t���, �34�

�F̃�0�
� �t��� = F̃crw

cl �t��1 + O��tT�−1/2�� . �35�

Here, Fcrw
cl �t�= ��� /4��t /�,1

AAK�3/2, with �,1
AAK given by Eq.

�6�, is the result for the decay function F̃crw
cl �t� obtained in

Paper I �Eq. �I.44�� for classical white Nyquist noise. Equa-
tion �35� states that the leading quantum correction to the

F̃crw
cl �t� is of order �Tt�−1/2�g−1/2, i.e., small in the regime

where weak-localization theory is applicable. �The numerical
prefactor of this term was evaluated explicitly in Paper I, Eq.
�73a�.�

C. Comparison with magnetoconductivity of Aleiner et al.

As a final check of our Bethe-Salpeter analysis, let us use
it to directly calculate ��WL�1�, the first term in an expansion
of the weak-localization conductivity in powers of the inter-

action. Inserting C̃dec
��1��0; 1

2 t ,− 1
2 t� from Eq. �27� into Eqs. �5a�

and Eq. �3a� to obtain ��WL�1�, the 
dt integral produces a
���� that sets �=0; after some obvious substitutions �from
Eqs. �A5c�, �A5e�, and �16��, we readily find that the result-
ing expression for ��WL�1� is given precisely by Eq. �I.76�,
which, as mentioned previously, agrees with Eq. �4.5� of
Aleiner et al.3

D. Plausibility arguments for exponential ansatz

To end this section, some remarks on the adequacy of our
exponential ansatz are in order. First, if an exact solution for

Eq. �25� for F̃��r12; t1 , t2� could be found, the exponential

ansatz �24� for C̃��r12; t1 , t2� would yield the exact expression
for the cooperon. Of course, however, it was necessary to
make approximations in solving Eq. �25�, and once these
have been made, one might question whether the exponential
ansatz adequately captures the important physics. For ex-
ample, one might consider functional forms of the type

Ad�t�e−F̃d�t�, as discussed by Golubev and Zaikin,9 where the
prefactor Ad�t� has a nontrivial time dependence different

from C̃0. �With such an ansatz, it would not be possible to
determine Ad�t� and Fd�t� from a first-order calculation of the
cooperon, since it would be unclear how to separate the con-

tributions of Ad�t� and F̃d�t� to C̃1 in order to decide which
part has to be reexponentiated and which part should stay in
the prefactor.� Indeed, GZ have argued9 that the final expres-

DECOHERENCE IN WEAK…. II. BETHE-SALPETER… PHYSICAL REVIEW B 76, 195332 �2007�

195332-7



sion for F̃d�t� after averaging over diffusive paths contains
only coth��̄ /2T� factors and no tanh�����̄� /2T� factors,
and that the latter instead only contribute to the prefactor

Ad�t�, in such a way that an expansion of Ad�t�e−F̃d�t� to first
order in the interaction propagator correctly reproduces the

combinations coth+tanh occurring in C̃1. In our language,
that would correspond to reexponentiating only contributions

from �̄I, while attributing all contributions from �̄R to the
prefactor Ad�t�.

However, there are several strong arguments against such

a procedure. First, the diagrams for �̄I and �̄R always occur
in matching pairs, generating a series of products of the type

C̄�0����̄I+ �̄R�C̄�0��¯ C̄�0����̄I+ �̄R�C̄�0��. An ansatz assigning

�̄R to the prefactor only and �̄I to the exponent would dis-
respect the structure of this series. Secondly, the structure of
the ansatz should be sufficiently general that it holds for any
dimensionality, d=1,2 ,3. However, for d=3, the compli-
cated Bethe-Salpeter analysis is not necessary and the Dyson
equation sufficient, because the self-energy contributions

�̄�,q
self��� �Eq. �11�� are infrared convergent by themselves,

without the need for vertex corrections; in this case, the

cooperon decay is indeed purely exponential, e−�0,0
,selft, where

the decoherence rate is given by �0,�
,self of Eq. �17a�, which

evidently does contain the combination coth��̄ /2T�+tanh��
− �̄� /2T. The fact that this combination shows up in F̃3�t�
implies that it should also show up in two and one dimen-

sions for the decay functions F̃1,2�t�. Thirdly, in the limit �
�T, it is general consensus that the decoherence rate is sim-
ply given by the inelastic rate, Fd

��t���d/2t, and indeed this
result was recovered from our theory in Paper I �Sec. VI C�;
but this is possible only if F̃��t� contains tanh���− �̄ /2T��
functions, since they are the only way in which the energy
dependence enters the theory. Finally, the fact that the com-
bination coth+tanh occurs in the effective action of the in-
fluence functional, i.e., in the exponent, was derived by GZ
themselves8 using their influence-functional approach �the
fact that the tanh terms dropped out of their final results for
the decoherence rate is only due to their neglect of recoil, as
shown in Ref. 6�.

IV. CONCLUSIONS

In Papers I and II, we have shown how the combined
effects of quantum noise and the Pauli principle can be in-
corporated into a calculation of decoherence rate of interact-
ing electrons in disordered metals. To this end, we used both
an influence-functional formulation and standard diagram-
matic methods, obtaining identical results with both meth-
ods. The influence-functional approach is perhaps more intu-
itively transparent: it is formulated in the position-time
domain, where we have intuition about the behavior of dif-
fusive trajectories, and shows very nicely how for quantum
noise the contribution to decoherence that arises from spon-
taneous emission gets canceled by Pauli blocking at suffi-
ciently low temperatures. Thus, we find that as long as the
condition T��1 holds �which characterizes the regime of

weak localization�, the decoherence rate decreases without
saturation as the temperature is lowered toward zero. The
fact that Golubev and Zaikin obtain a saturation was identi-
fied to be due to their neglect of recoil.

However, Paper I does rely on heuristic arguments in the
way Pauli blocking is introduced. Corroborating the correct-
ness of these arguments was the purpose of the present paper,
and indeed, setting up a Bethe-Salpeter and solving it by an
exponential ansatz, we recovered the decay function found in
Paper I. Moreover, we identified several correction terms that

do not arise in the influence-functional approach �F�1� , C̃self,Z
�1�� �

and showed them to be negligible.
Apart from clarifying the fundamentally important inter-

play between spontaneous emission and Pauli blocking, our
calculation of the decoherence rate has the merit of being
free from any infrared or ultraviolet divergences: in the lead-
ing terms that govern the decoherence rate, all necessary
cutoffs arise naturally from within our formalism and do not
need to be inserted by hand �whereas AAK did need to insert
an UV cutoff by hand for d=2,3�. This has enabled us to
obtain the following additional results. First, our more accu-
rate treatment of the regime of large frequency transfers ��̄
�T� has allowed us to calculate explicitly the leading quan-
tum corrections to the results of AKK for � �Eqs. �I.75��,
finding them to be small in 1 /T�. Secondly, by explicitly
keeping track of the energy dependence of the propagation
energy � of the diffusing electrons, we were also able to
discuss in detail the energy dependence of the decoherence
rate, also for energies higher than the temperature in Eqs.
�I.85�.
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APPENDIX A: DIAGRAMMATIC DERIVATION OF
BETHE-SALPETER EQUATION

This appendix diagrammatically specifies the Bethe-
Salpeter equation governing the cooperon and gives explicit
expressions for the full and bare cooperon self-energies oc-
curring therein.
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1. Full Bethe-Salpeter equation

The diagrams specifying the Bethe-Salpeter equation for
the full cooperon, first written down in Ref. 7, are shown in
Fig. 2. The feature that distinguishes “weak-localization”
from “interaction” corrections to the conductivity is that for
the former, each current vertex is attached to a retarded and
an advanced electron propagator, GRjGA, whereas for the
latter, one or both current vertices are connected to two re-
tarded or two advanced electron lines, GRjGR or GAjGA.
Hence, in setting up the Bethe-Salpeter equation, only those
types of diagrams have been included for which the upper
�or lower� lines entering and leaving the cooperon are both
retarded �or advanced� electron propagators.

By adopting a pure ladder structure in Fig. 2�a�, self-
energy diagrams containing crossed interaction lines con-
nected to only the upper or only the lower electron line have
been dropped, but these are known15 to be smaller than those
included by at least a factor of �kFlel�−1�1 �where lel is the
mean free path�. However, the “vertex contribution” to the
cooperon self-energy �Fig. 2�d�� contains interaction lines
that “reach across” the full cooperon, thus going beyond a
pure ladder structure. Thus, iterating Fig. 2�a� will produce
vertex diagrams in which interaction lines connecting upper
and lower lines do cross, including a set of diagrams with
maximally crossed interaction lines. This is important be-
cause from semiclassical considerations, it is known that the
latter set of diagrams are the most relevant vertex diagrams
for decoherence �as is particularly evident for interaction ker-
nels that are short range in time, e.g., as for white noise�.
Indeed, we show in Appendix B that for the case of classical
white noise in d=1, the present Bethe-Salpeter equation can
be rearranged �without using any approximations� to yield
precisely the exact AAK equation for the cooperon.

We should note, however, that the inclusion of these
maximally crossed interaction lines �though important, in
principle� turns out to be beyond the accuracy of the approxi-
mations adopted in the main text �in Sec. III B and beyond�.
The step of linearizing Eq. �25�, in order to determine the

decay function F̃� to first order in the interaction only, entails

replacing the full cooperon self-energy, �̄q,full
E , by its bare

version, �̄q,bare
E , thus eliminating in effect the said maximally

crossed diagrams. Nevertheless, as shown in Sec. III B, the
resulting approximation turns out to be sufficiently accurate
to avoid the occurrence of infrared divergences and yields a
result �Eq. �33�� for the decay function identical to that of the
semiclassical influence-functional approach of Paper I �Eq.
�I.65��.

Figure 2�a� translates into the following equation:

1

�el
C̄q

E��1,�2� = 2����12� + � 1

�el
− �Eq − i�1��C̄q

E��1,�2�

+� �d�3��̄q,full
E ��1,�3�C̄q

E��3,�2� . �A1�

This equation is equivalent to Eq. �8� of the main text.

The “cooperon self-energy” �̄q,full
E occurring herein is de-

fined by

�̄q,full
E ��1,�3� =

1

	
� �dq̄� � �d�̄���̄q,q̄,full

E,I+R,self��1,�3,�̄�

+ �̄q,q̄,full
E,I+R,vert��1,�3,�̄�� , �A2a�

where �̄I+R indicates a sum �̄I+ �̄R, and the self-energy and

vertex contributions to �̄ are given diagrammatically by
Figs. 2�b�–2�d�. These lead to the following expressions
�here � j

±	E± 1
2� j�:

�̄q,q̄,full
E,I,self��1,�3,�̄� 	 1

2 iL̄q̄
K��̄��C̄q−q̄

E−�̄/2��1 − �̄,�3 − �̄�

+ C̄q−q̄
E−�̄/2��1 + �̄,�3 + �̄�� , �A2b�

�̄q,q̄,full
E,R,self��1,�3,�̄� 	 tanh���3

+ − �̄�/2T� 1
2 iL̄q̄

R��̄�


C̄q−q̄
E−�̄/2��1 − �̄,�3 − �̄�

− tanh���1
− − �̄�/2T� 1

2 iL̄q̄
A��̄�


C̄q−q̄
E−�̄/2��1 + �̄,�3 + �̄�

+ 2����1 − �3��̄q,q̄,Hikami
E,R ��1,�̄� ,

�A2c�

�̄q,q̄,Hikami
E,R ��1,�̄� 	 tanh���1

+ − �̄�/2T� 1
2 iL̄q̄

R��̄�


�D̄q̄
0��̄��2��C̄q

0��1��−1 + �D̄q̄
0��̄��−1�

− tanh���1
− − �̄�/2T� 1

2 iL̄q̄
A��̄�


�D̄−q̄
0 �− �̄��2��C̄q

0��1��−1

+ �D̄q̄
0�− �̄��−1� , �A2d�

�̄q,q̄,full
E,I,vert��1,�3,�̄� 	 −

1

2
iL̄q̄

K��̄��C̄q+q̄
E+�̄/2��1 + �̄,�3 − �̄�

+ C̄q−q̄
E−�̄/2��1 + �̄,�3 − �̄�� , �A2e�

�̄q,q̄,full
E,R,vert��1,�3,�̄� 	 �tanh��1

+/2T�L̄q̄
R��̄�

− tanh��3
−/2T�L̄q̄

A��̄��


�− 1
2 i�C̄q+q̄

E+�̄/2��1 + �̄,�3 − �̄�

+ �tanh���3
+ − �̄�/2T�L̄q̄

R��̄�

− tanh���1
− − �̄�/2T�L̄q̄

A��̄���− 1
2 i�


C̄q−q̄
E−�̄/2��1 + �̄,�3 − �̄� . �A2f�

The terms in Eq. �A2d�, with their characteristic dependence

on �D̄0�2��C̄0�−1+ �D̄0�−1�, stem from the Hikami-box contri-
butions of Fig. 2�c�. The ingredients entering the above equa-
tions are given by
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FIG. 2. �a� Diagrammatic depiction of the Bethe-Salpeter equation �Eq. �A1�� for the cooperon C̄q
E��1 ,�2�. ��b�–�d�� The contributions

to the full self-energy �̄q,full
E ��1 ,�3� of Eq. �A2a�, namely, �b� �̄q,q̄,full

E,I/R,self��1 ,�3 , �̄�, �c� �̄q,q̄,Hikami
E,R ��1 , �̄� �which contributes to �̄full

R,self only�,
and �d� �̄q,q̄,full

E,I/R,vert��1 ,�3 , �̄�. The superscripts I /R on �̄ indicate which type of interaction propagator occurs: �̄I �generated by SI in GZ’s

approach �Refs. 6 and 8� contains L̄K, together with ḠR and ḠA on the upper and lower contours, respectively; �̄R �generated in GZ’s

approach by SR� contains a sum of two types of terms. The first type features the combinations L̄R together with ḠK and ḠA on the upper and

lower contours, respectively, while the second type features L̄A together with ḠR and ḠK on the upper and lower contours, respectively. The

diagrams in �d� for �̄full
I/R,vert occur both without and with bracketed labels for the interaction and electron propagators, e.g., R or �A� on L, to

distinguish contributions in which the electron Keldysh Green’s function occurs on the upper or lower electron line, respectively. The vertex
to which the electron Keldysh Green’s function is attached is always indicated by a double dot �adopting a convention used in Ref. 6�. �e�
Diagrammatic conventions; the dressed interaction vertex is denoted by �̄q̄��̄�= �D̄q̄

0��̄�� /�el, where D̄0 is the bare diffusion propagator.
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L̄q̄
K��̄� = 2i coth��̄/2T�Im�L̄q̄

R��̄�� , �A3a�

L̄q̄
R��̄� = �L̄q̄

A��̄��* � −
Eq̄

0 − i�̄

2�Eq̄
0 , �A3b�

C̄q̄
0��̄� =

1

Eq̄ − i�̄
, D̄q̄

0��̄� =
1

Eq̄
0 − i�̄

, �A3c�

Eq̄
0 	 Dq̄2, Eq̄ 	 Dq̄2 + �H. �A3d�

In Eq. �A3b� we have taken the usual “unitary limit,” which
is relevant in the limit of small frequencies and momenta; the
more general expression is16

L̄q̄
R��̄� = −

Eq̄
0 − i�̄

2�Eq̄
0 + �Eq̄

0 − i�̄�/Vq̄
�d� , �A4�

where Vq̄
�d�=a3−d
ddre−iq̄r�e2 /r� is the Fourier transform of

the Coulomb potential in d effective dimensions: Vq̄
�3�

=e24� / q̄2, Vq̄
�2�=ae22� / �q̄�, and Vq̄

�1�=a2e2 ln�q̄2a2�.

2. Bare self-energies

Since the self-energies �̄full of Eqs. �A2a�–�A2f� are pro-

portional to the cooperon C̄, the Bethe-Salpeter equation �8�
is nonlinear in C̄. Solving it in its full glory thus seems hardly
feasible. Thus, we shall “linearize” it by making the replace-

ment C̄q
E��1 ,�3�→2����13�C̄q

0��1� for every occurrence of
the full cooperon in the self-energy terms. The resulting bare
self-energies can be written in the form

�̄q,bare
E ��1,�4� =

1

	
� �dq̄� � �d�̄�2�


����14��̄q,q̄,bare
E+�4/2,self��̃14,�̄�

+ ���14 + 2�̄��̄q,q̄,bare
E+�4/2,vert��̃14,�̄�� ,

�A5a�

where �14	�1−�4 and �̃14	 1
2 ��1+�4�, with the follow-

ing ingredients:

�̄q,q̄,bare
E,self ��,�̄� = ��̄q,q̄,bare

E,self,dec + �̄q,q̄,bare
E,self,Z ���,�̄� , �A5b�

�̄q,q̄,bare
E,self,dec��,�̄� 	 − �C̄q−q̄

0 �� − �̄� + C̄q−q̄
0 �� + �̄��L̄E�,q̄

dec ��̄� ,

�A5c�

�̄q,q̄,bare
E,self,Z ��,�̄� 	 tanh��E − �̄�/2T� 1

2 iL̄q̄
R��̄�


†�D̄q̄
0��̄��2��C̄q

0����−1 + �D̄q̄
0��̄��−1�

− C̄q−q̄
0 �� + �̄�‡

− tanh��E − �̄ − ��/2T� 1
2 iL̄q̄

A��̄�


†�D̄q̄
0�− �̄��2��C̄q

0����−1 + �D̄q̄
0�− �̄��−1�

− C̄q−q̄
0 �� − �̄�‡ , �A5d�

�̄q,q̄,bare
E,vert ��,�̄� 	 2C̄q−q̄

0 ���L̄E�,q̄
dec ��̄� , �A5e�

L̄E�,q̄
dec ��̄� 	 coth��̄/2T�Im�L̄q̄

R��̄��

− tanh��E − �̄�/2T� 1
2 iL̄q̄

R��̄�

+ tanh��E − �̄ − ��/2T� 1
2 iL̄q̄

A��̄� . �A5f�

We have split the self-energy contribution �stemming from

Eq. �A2b� plus Eq. �A2c�� into two terms, �̄bare
self,dec+ �̄bare

self,Z,
chosen such that the Hikami-box contributions are fully con-

tained in �̄bare
self,Z and that both �bare

self,dec and �̄bare
vert are propor-

tional to the same combination of propagators, L̄dec �Eq.
�A5f��, a feature that considerably simplifies the analysis in
the main text. To achieve this, the terms in Eq. �A5d� that are

proportional to tanh C̄q−q̄
0 ��± �̄� were added in Eq. �A5c� and

subtracted in Eq. �A5d�, respectively. This addition-
subtraction trick amounts to “replacing” the Hikami-box
contribution to �bare

self,dec by “replacement terms” �those added
to Eq. �A5c�� that �i� have a simpler, more convenient struc-

ture �since proportional to C̄0 instead of �D̄0�2��C̄0�−1

+ �D̄0�−1��, but �ii� nevertheless have the same leading infra-
red and ultraviolet behavior, in the sense that the difference
between the Hikami-box and the replacement terms, namely,

�̄self,Z, generates only subleading contributions to the long-
time behavior of the cooperon �as explained below�. The

leading contribution comes from �̄self,dec and �̄vert, because

both are proportional to the effective propagator L̄E�,q̄
dec ��̄�,

whose coth��̄ /2T� term at small frequencies �̄ makes the

dominant contribution �in contrast, �̄self,Z lacks such a term�.
Although the dominant contribution comes from low fre-

quencies, �̄self,dec+ �̄vert contain no infrared divergence, since
for �̄→0, their contributions cancel each other, as is clear
directly from Eqs. �A5c� and �A5e� �or by inserting them into
Eqs. �A6b� and �A6c� below or Eq. �27� of the main text�.
Moreover, the dominant contribution from �̄self,dec+ �̄vert also
contains no ultraviolet divergences, since the effective propa-

gator L̄E�,q̄
dec ��̄� evidently vanishes exponentially in the limit

�̄�E, T; hence, the 
�d�̄� integrals over both �̄q,q̄,bare
E,self,dec�� , �̄�

and �̄q,q̄,bare
E,vert �� , �̄� are separately free from ultraviolet diver-

gences.

Concerning the contribution from �̄self,Z, there are several
ways to convince oneself that its contribution to the coop-
eron decay function F�t� is subleading. First, an explicit cal-
culation, performed in Appendix C 2, shows that its contri-

bution to C̃�1��, the first-order expansion of the cooperon in
powers of the interaction propagator, depends much more

weakly on propagation time t than that from �̄self,dec+ �̄vert;
for example, for quasi-one-dimension, it scales with t−1/2 �cf.
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Eq. �C15�� compared to the t1 of the leading terms
C̃0�0, t�F̃��t�.

An alternative, and more simple, argument goes as fol-
lows: according to the shortcut “self-energy-diagrams-only”
approach of Sec. II C, the decoherence rate is given by ��,0

,self

of Eq. �12b� �see also Eq. �14b��, for which we have to set
Eq= i� and take q→0. Now, in this limit, �̄�,q

self,Z��� vanishes
identically, regardless of the form of the interaction propa-
gator L̄q̄

R��̄�, and hence does not contribute to ��,0
,self at all.

Actually, an even stronger statement can be made if the gen-
eral form �A4� for the interaction propagator is specialized to
the so-called unitary limit of Eq. �A3b� �as is usually done
anyway�. In that case, both the Hikami-box terms and the
replacement terms separately vanish in the limit Eq= i� and
q→0. Thus, for the unitary limit of the interaction propaga-
tor, Hikami-box contributions actually do not contribute to
the decoherence rate at all.6 It is for this �somewhat fortu-
itous� reason that the influence-functional theory of decoher-
ence developed in Ref. 6 was able to correctly obtain the

cooperon decay function, despite the fact that it did not in-
clude any Hikami-box contributions.

3. Expansion to second order in the interaction

The object needed on the right-hand side of Eq. �5c� for

C̃��r12, t1 , t2� is C̄q
�−�2/2��1 ,�2�, which is determined by the

Bethe-Salpeter equation �8�, with E=�− 1
2�2 �with �0=0

here�. It is instructive to consider the first few terms that are
obtained upon iterating this equation, while using the bare
self-energies of Eq. �A5a�. �Of course, as soon as we go
beyond first order, we should not use the bare self-energy,
but the full one, which should be calculated iteratively order
by order, too; we shall refrain from doing so here since our
intention is merely to illustrate the general structure of the
terms arising in second and higher orders, not to evaluate

them explicitly.� Writing C̄q
�−�2/2��1 ,�2�= C̄�0�+ C̄�1�+ C̄�2� and

evaluating the result for �1,2=���̃, we obtain

C̄�0� = C̄q
0�����2�̃� , �A6a�

C̄�1� =
1

	
� �dq̄1��d�̄1����2�̃�C̄q

0����̄q,q̄1,bare
�,self ��,�̄1�C̄q

0��� + ��2�̃ − 2�̄1�C̄q
0�� − �̄1��̄q,q̄1,bare

�,vert ��,�̄1�C̄q
0�� + �̄1�� , �A6b�

C̄�2� =
1

	2 � �dq̄1��d�̄1��dq̄2��d�̄2����2�̃�C̄q
0����̄q,q̄1,bare

�,self ��,�̄1�C̄q
0����̄q,q̄2,bare

�,self ��,�̄2�C̄q
0���

+ ��2�̃ − 2�̄1�C̄q
0�� − �̄1��̄q,q̄1,bare

�,vert ��,�̄1�C̄q
0�� + �̄1��̄q,q̄2,bare

�,self �� + �̄1,�̄2�C̄q
0�� + �̄1�

+ ��2�̃ − 2�̄2�C̄q
0�� − �̄2��̄q,q̄1,bare

�−�̄2,self�� − �̄2,�̄1�C̄q
0�� − �̄2��̄q,q̄2,bare

�,vert ��,�̄2�C̄q
0�� + �̄2�

+ ��2�̃ − 2�̄1 − 2�̄2�C̄q
0�� − �̄1 − �̄2��̄q,q̄1,bare

�−�̄2,vert�� − �̄2,�̄1�C̄q
0�� + �̄1 − �̄2��̄q,q̄2,bare

�,vert �� + �̄1,�̄2�C̄q
0�� + �̄1 + �̄2�� .

�A6c�

These expressions are useful for illustrating two important
general points. First, expansion �A6� allows us to confirm
explicitly a fact well known to practitioners of diagrammatic
perturbation theory, namely, that the calculation of the coop-
eron is free of ultraviolet divergences. This fact was implic-
itly challenged by GZ, whose conclusion of a finite decoher-
ence rate at zero temperature stems from the occurrence of
an ultraviolet divergence in their expression for the decoher-
ence rate. �GZ’s expression for �GZ for d=1 �Eq. �76� of Ref.
8� has the form of our Eq. �17a�, but without the tanh term,
whence they introduced an upper cut �̄max�1 /�el in the fre-
quency integral there; the relation of their work to ours is
discussed in more detail in Paper I, Sec. VII.� However, it is
straightforward to check �using Eqs. �A5a�–�A5f�� that per-
turbative expansion �A6� generates no ultraviolet diver-
gences when used to calculate that version of the cooperon

governing the conductivity, namely, C̃cond
�,�0 of Eq. �3b�: the

reason is simply that both �̄self,dec and �̄vert are proportional

to the propagator L̄E�,q̄
dec ��̄�, which serves as ultraviolet cutoff

at �̄�T. �The contribution from �̄self,Z is subdominant, as

mentioned above; in fact, �̄q,q̄,bare
E,self,Z �� , �̄�→0 in the limit of

large �̄, and its leading nonzero contribution turns out to be
UV convergent if general expression �A4� is used for the
interaction propagator, instead of its small-frequency ap-
proximation �A3b�.�

Secondly, we note that the frequency arguments �̄i get
more and more “entangled” from order to order in perturba-
tion theory, i.e., they occur in increasingly complicated com-

binations as arguments of �̄self/vert, because the vertex dia-
grams cause a proliferation of frequency transfers between
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the upper and lower cooperon lines. In nth order, the generic
structure will be

C̄�n� � �
j=1

n � �d�̄ j�C̄�0��·��̄�· ,�̄1� ¯ �̄�· ,�̄1�C̄�0��·� ,

�A7�

where �·� stands for combinations of frequency arguments
that can contain any number of �̄ j’s. Due to this entangle-
ment, a direct solution of the Bethe-Salpeter equation �8� is
intractable, and further approximations are needed that
somehow “factorize” the entangled frequency integrals and
thereby truncate the proliferation of frequency transfers.

A natural truncation scheme would be to retain the fre-
quency transfer �̄ j generated by a given vertex line only in

the corresponding vertex function �̄q,q̄j

�,vert�� , �̄ j� and to ne-
glect it everywhere else in the diagram. As a result, it would
again become possible to associate a definite frequency label
with the upper and lower electron lines of the cooperon �say,
� and �−��. In fact, such an approximation was in effect
adopted in the integral-functional approach of Ref. 6 and
Paper I �which both implicitly also took the “long-time limit”
�=0, for reasons explained in the last paragraph of Sec.
VII A of Paper I�. Such a procedure can be justified as fol-
lows: The only reason for incorporating the �frequency-
proliferating� vertex terms in the first place is to cure the
infrared divergences arising from the self-energy terms,
which are thereby cut off at frequencies �̄�1 / t �this is per-
haps seen most clearly from the �1−sin��̄t� / ��̄t�� factor in
Eq. �I.41��. For larger frequencies �̄�1 / t, the contribution
of vertex diagrams is always subleading compared to that of
the matching self-energy diagrams, and hence can be ne-
glected without affecting the leading behavior of the decay

function F̃d�t�. Thus, it suffices to treat the �̄ j dependence
associated with the frequency transfer between the forward

and backward contours in the vertex part of �̄�· , �̄ j� explic-
itly only within this particular factor �i.e., in the interaction
propagator, associated coth+tanh functions, and associated

cooperons of �̄�· , �̄ j��. Since the associated contribution is
dominated by frequencies �̄�1 / t, which are small in the

long-time limit, all other factors C̄�·� and �̄�· , �̄i�j� of the
diagram to which this �̄ j dependence has propagated may be
Taylor expanded in �̄ j. Moreover, only the zeroth-order
terms of this Taylor expansion need to be retained, since the
others contain higher powers of �̄ j �1 / t, and hence produce
contributions with a subleading time dependence �as illus-
trated in Appendix C 1, where such an expansion is carried
out explicitly in a very similar context�.

Having clarified that a truncation scheme is justified, in
principle, in the long-time limit, we have to implement one,
in practice, in such a way that the leading terms are not
affected. In the present context, the simplest version of such
a truncation scheme would be to replace the ���14+2�̄� in
Eq. �A5a� by ���14�, thereby rendering the entire equation

for �̄q,bare
E ��1 ,�4� proportional to ���14�. As a result, the

arguments of the self-energy-diagram-only discussion in Sec.
II C would apply: the Bethe-Salpeter equation could then be

simplified to a Dyson-type equation, whose self-energy
would be given by an expression analogous to Eq. �11�, but
now including a vertex contribution:

�̄�,q
s+v��� 	

1

	
� �d�̄��dq̄���̄q,q̄,bare

�,self + �̄q,q̄,bare
�,vert ���,�̄� .

However, note that it would now not be possible to calculate
the decoherence rate ��,0

,self according to Eq. �12b� by setting

Eq= i� and q=0 in �̄�,q
s+v��� because the factor C̄q−q̄

0 ��� con-

tained in �̄q,q̄,bare
�,vert �� , �̄� would then yield an infrared diver-

gence for q̄→0.
To avoid this problem, a version of the calculation has to

be found in which the condition Eq= i� is avoided and the
variables q and � are integrated over instead. In Sec. III, this
is achieved by transcribing the Bethe-Salpeter equation to
the position-time domain and solving it with an exponential

ansatz, C̃�r12; t1 , t2�� C̃0e�C̃�1�/C̃0�, where C̃�1��r12; t1 , t2� is an
appropriately Fourier-transformed version of Eq. �A6b� in-
volving 
�dq��d�� integrals, precisely as desired. This is a
factorization approximation in the sense that a proliferation
of entangled frequencies is avoided by approximating the nth

order contribution to the cooperon by C̃�n�

� 1
n! �C̃

�1��n / �C̃0�n−1.
Note that in this scheme, the frequency transfer between

forward and backward lines generated by the vertex terms is
treated exactly in the first-order terms needed for C�1�; the
factorization approximation sets in only in second and higher
orders. Treating the first-order terms exactly is the best one
can do in our reexponentiation-of-C�1� scheme, since in the
latter, an accurate treatment of effects occurring only in sec-
ond or higher order is beyond the accuracy of the method.
The accumulation of energy transfers is such an effect, but
fortunately it produces corrections that are only subleading
in time, as argued above.

APPENDIX B: BETHE-SALPETER EQUATION YIELDS
THE EXACT COOPERON IN THE CLASSICAL

LIMIT

In general, solving a Bethe-Salpeter equation starting
from a self-energy calculated only to lowest order in the
interaction does not provide the exact solution of the initial
problem. This remains true even when the self-energy is
treated self-consistently �i.e., inserting the full propagators
into the diagram for �, as we have done for �full�. Neverthe-
less, in the following, we shall demonstrate that for d=1 and
classical white Nyquist noise, the exact solution of the
Bethe-Salpeter equation �20� fully reproduces the exact re-
sults for the cooperon derived by AAK,2 implying that our
Bethe-Salpeter equation itself is exact for this type of noise.
The reason for this may be traced back to the special prop-
erties of the white Nyquist noise interaction propagator, as
will be explained below. Thus, nonexact results obtained
from our Bethe-Salpeter equation for d=1 and white noise
are entirely due to approximations involved in constructing a
solution, such as the “reexponentiation” of the first-order re-
sult. �Actually, the deviations resulting from the latter ap-
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proximation are quantitatively rather small, as demonstrated
in Paper I �Sec. IIIE�.�

We start from the Bethe-Salpeter equation, Eq. �20�, using

the full �not bare� self-energy �̃full, given by Eqs. �21� and
�A2a�–�A2f�. The latter simplifies considerably for classical

white Nyquist noise, described by setting L̄q̄
R/A��̄��0 and

− 1
2 iL̄q̄

K��̄�� L̄q̄
cl	T / ��Dq̄2�. The first replacement implies

that the self-energy diagrams, and hence also the cooperon

C̄q
E��1 ,�2�, no longer depend on E, so that this argument will

be dropped henceforth. The second replacement results in an
interaction propagator that is not only independent of � and
� but also of �̄, i.e., white in frequency transfers, implying
that it becomes a � function in the time domain. The result-
ing self-energy has the form

�̃full
�,t4��r14;t1,t4� = W̃cl� �r14����t̃14� − ��t14����t4�� , �B1�

where W̃cl� �r14�= 2
	 
�dq̄�L̄q̄

cleiq̄r14. This is ultraviolet conver-
gent only for d=1, to which we henceforth restrict our atten-

tion, but then W̃cl� �r14� is infrared divergent. However, when
Eq. �B1� is inserted into Eq. �20�, this divergence can be
arranged to cancel between the two terms of Eq. �B1�: its
second term, which stems from �self, produces �using

C̃�r14; t1 , t1�=��r14�� a contribution −W̃cl� �0�C̃�r12; t1 , t2�,
which can be rewritten as −W̃cl� �0�
dr4C̃�r14; t1 ,−t1�C̃�r42;
−t1 , t2�, so that it takes a form similar to that resulting from
the first �vertex� term of Eq. �B1�. Thus, the Bethe-Salpeter
equation �20� can be written as

�− D�r1

2 + �t1
+ �H�C̃�r12;t1,t2�

= ��r12���t12� +� dr4W̃cl�r14�C̃�r14;t1,− t1�C̃�r42;− t1,t2� ,

�B2�

where the kernel W̃cl�r14�=W̃cl� �r14�−W̃cl� �0� is free of infrared
problems:

W̃cl�r� =� dq̄

2�

4e2T

	�1

eiq̄r − 1

q̄2 . �B3�

�Here, �1=a22�e2D is the inverse resistance per length of a
quasi-one-dimensional wire of cross section a2.�

Equation �B2� is solved by the following path integral:

C̃�r12;t1,t2� = ��t1 − t2� � Dr exp�− �H�t1 − t2�

− �
t2

t1 ṙ2�t��
4D

dt� + �
0

t1
*

dt�W̃cl„r�t�� − r�− t��…� ,

�B4�

where t1
*= t1 for −t2� t1�0, t1

*=−t2 for t1�−t2�0, and t1
*

=0 otherwise. Indeed, upon differentiating with respect to t1,

we find that the contribution from the W̃cl term in the path
integral is nonzero only for 0� t1�−t2, as is the case for the

W̃cl term in Eq. �B2� and, in fact, precisely equals the latter:

� DrW̃cl„r�t1� − r�− t1�…exp�¯�

=� dr4W̃cl�r14�C̃�r14;t1,− t1�C̃�r42;− t1,t2� . �B5�

The validity of this equality would be obvious if we were
treating unmodified cooperons. The fact that it remains true
even in the presence of noise is due to the special nature of
this noise: In principle, we need a “three-point cooperon”
involving times t1, −t1, and t2, and it factorizes in the manner
shown in Eq. �B5� only because the classical Nyquist noise
correlator is a � function in time: indeed, as can be seen from
Eq. �B2� itself, the noise correlator always only connects
time points t� and −t�, which means that there is no cor-
relator connecting two points in the disjoint intervals �t2 ,
−t1� and �−t1 , t1� involved here �see Fig. 3, bottom�.

By rewriting path integral �B4� for the special case of
equal times t2=−�, t1=�, it can be shown to be identical to
the exact cooperon path-integral expression considered by
Altshuler et al. in their seminal work �Eq. �20� in Ref. 2,

corrected13 for factors of 2�, where C̃�0;� ,−��
=�elC�,−�

AAK�r ,r�,

�
0

�

dt�W̃cl„r�t�� − r�− t��… = −
2e2T

	�1
�

−�

�

dt��
−�

+� dk

2�k2


�1 − cos�k�r�t�� − r�− t����� .

�B6�

In comparing the expressions, note that our �H plays the role
of their 1 /� as a given extrinsic decoherence rate, and our
� the role of their �N.

Finally, we comment on the connection between our
Bethe-Salpeter equation �B2�, which is quadratic in the coop-
eron, and AAK’s differential equation for the cooperon �Eq.
�23� in Ref. 2, corrected13 for factors of 2�, which is linear:

� �

��
− D

�2

��2 + 2�H +
2�2e2T

	�1
����C�,−�

AAK��,���

=
������� − ���

�2�el

. �B7�

Here, ��t�= �r�t�−r�−t�� /�2 is the difference coordinate in-
troduced by AAK. Both equations yield the same result,

t2 −t1 t1

+η−η

−t/2

−t/2

+t/2

+t/2

FIG. 3. �Color online� Schematic illustration of the time evolu-
tion in the differential equation for the cooperon: AAK’s scheme
�top� evolves both end points symmetrically, while the full Bethe-
Salpeter equation �bottom� contains two cooperons, describing
propagation in the intervals �t2 ,−t1� and �−t1 , t1�. Curved lines rep-
resent interaction propagators.
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since they are solved by the same exact path integral. The
origin of the difference between the two equations �Eqs. �B2�
and �B7�� is that AAK’s Eq. �B7� describes the symmetric
evolution of both the first and second time arguments of their
cooperon, namely �, and −� �as illustrated in Fig. 3, top�,
whereas in our Eq. �B2�, only the first time argument of the
cooperon, t1, is time evolved. For �= t1=−t2, an integral such
as the one in the second line of our Eq. �B2� becomes linear

in C̃, since the second cooperon reduces to a ��r24� function.
However, such a simplification is possible only if the inter-
action propagator is a � function in time, and therefore can-
not be employed to simplify evaluation of the full Bethe-
Salpeter equation in general, with interaction propagators
more long-ranged in time.

APPENDIX C: SOME SUBLEADING CORRECTIONS TO

F̃� AND C̃„1…�

In this appendix, we calculate some subleading correc-

tions to the decay function F̃� and the first-order cooperon

C̃�1��, which were mentioned but not discussed in detail in
the main text.

1. Calculation of F̃1
�

In Eq. �28� in Sec. III B, we expanded the propagator

L̄��,q̄
dec ��̄� in powers of � and subsequently evaluated only the

corresponding lowest-order contribution F̃0
� to the decay

function, arguing that small � dominate in the long-time
limit so that the higher terms are negligible. Let us now
check this explicitly by calculating the first correction,

F̃d
�1��t�	�F̃�1�

� �t���, starting from Eq. �32�, and using methods
and notations analogous to those of Paper I, Secs. III D and
VI A. It will be found to be subleading, so we shall only
calculate its order of magnitude, without caring about nu-
merical prefactors. We begin by noting that Eq. �29� yields

�L̄��n�,q̄
dec ��̄���=−Wpp

�1���̄� /�, where

Wpp
�1���̄� =

1

8T
�sech2��� − �̄�/2T���. �C1�

Writing its Fourier transform as

wpp
�1��t34T� 	 � �d�̄�e−i�̄t34Wpp

�1���̄� , �C2�

we note that the function wpp
�1��z� is dimensionless, peaked

around zero, with height, width, and weight all of order 1.
Inserting this into Eq. �32� for n=1, writing the latter in a
form similar to Eq. �33�, and rewriting the time integrals in
terms of the dimensionless sum and difference variables x̃
= t̃34 / t and z= t34T=xTt, with x= t34 / t, we obtain

F̃d
�1��t� =

Dt

T
�

0

Tt

dzwpp
�1��z�Pd

�1��z/Tt� , �C3�

where we defined the operator Dt=−�t+d / �2t�+�H, the func-

tion Pd
�1��x�=
x0

1−xdx̃�P̃d
�1��� , �̃�, with

�P̃d
�1���, �̃� =

2t

	�
� �dq̄��P̄�0,t�

crw �q̄, �t34�� − P̄�0,t�
crw �q̄, �t̃34���

=
22−d

�d/2gd�Lt�
��−d/2 − �̃−d/2� , �C4�

and the shorthand notations �= �1−x�x, �̃= �1− x̃�x̃. More-
over, we introduced an ultraviolet cutoff x0= t0 / t in Eq. �C3�,
which will be needed for d=2,3, and t0 can be taken as the
elastic scattering time �el. The fact that a cutoff is needed is
of no great concern, since the leading long-time behavior
will turn out to be subdominant anyway.

In the limit Tt�1, we need only the asymptotic small-x
behavior of Pd�x� in Eq. �C3�, which is given by

P1
�1��x� =

2

�1/2g1�Lt�
�x−1/2 + ¯ � , �C5�

P2
�1��x� =

1

�g2�Lt�
�x−1 + ln�xx0� + ¯ � , �C6�

P3
�1��x� =

1

2�3/2g3�Lt�
�x−3/2 − 2x0

−1/2 + . . . � . �C7�

Inserting this into Eq. �C3�, we find that F̃d
�1��t� is smaller

than the leading term F̃d
pp�t�	�F̃�0�

� �t���, given by Eqs. �1.73�
of Paper I, by powers of the parameters �̃t=1 /Tt and �̃H
=1 /T�H, which for present purposes are both �1:

F̃1
�1��t� = F̃1

pp�t�O��̃H�̃t
1/2,�̃t

3/2� , �C8�

F̃2
�1��t� =

F̃2
pp�t�

ln�Tt�
O��̃H,��̃H�̃t,�̃t

2�ln�Tt0�� , �C9�

F̃3
�1��t� = F̃3

pp�t�O��̃H,�̃t,��̃H�̃t,�̃t
2�/�Tt0�1/2� . �C10�

In particular, recalling the leading time dependence of F̃d
pp�t�

�namely, t3/2, t ln�Tt�, or t for d=1,2 ,3�, we see that the

leading terms of F̃d
�1��t� all either vanish in the limit of no

magnetic field ��̃H=0� or are constant or decreasing func-

tions of time. Hence, we conclude that F̃d
�1��t� indeed can be

neglected for the purposes of determining the decoherence
time.

2. Long-time behavior of C̃self,Z
„1…�

Next, we consider in more detail the correction C̃self,Z
�1�� �t�

	 C̃self,Z
�1�� �0; 1

2 t ,− 1
2 t� to the cooperon arising from �̄self,Z; it is

given by an equation similar to the first term of Eq. �27�, but

using �̄self,Z �Eq. �A5d�� as self-energy. This contribution was

purposefully omitted in our calculation of C̃dec
�1���t�

	 C̃dec
�1���0; 1

2 t ,− 1
2 t� from Eq. �27�. To justify this omission, we

shall now show that the long-time behavior of C̃self,Z
�1�� �t� is

subdominant as compared to the leading behavior from

�C̃dec
�1�e�t���.
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It turns out that for this calculation, we have to introduce
both an IR cutoff in q̄ and an UV cutoff in �̄ �though the
latter would not be necessary if, in contrast to the calculation
below, one would use general expression �A4� for the inter-
action propagator instead of unitary limit �A3b��. The occur-
rence of these divergences is not a surprise since the self-
energy diagrams used in our Bethe-Salpeter equation
constitute only a subset of the diagrams that make up the
cross terms of interaction and weak-localization corrections
to the conductivity, namely, that subset of diagrams capable
of being iterated in a diagrammatic equation for the coop-
eron. However, it has been shown in Ref. 3 that when all
contributions to the conductivity to first order in the interac-
tion �and second order in 1 /g� are calculated, numerous ad-
ditional terms arise which turn out to cancel the above men-
tioned IR and UV divergences, but which we have not
considered here.

For present purposes, it is sufficient to simply cut off
these divergence by hand, since we shall find that the leading
long-time behavior of this term is subdominant anyway. To
identify this long-time behavior, we shall isolate the stron-
gest singularity in the frequency domain of the Fourier trans-

form C̃self,Z
�1�� ���	
dtei�tC̃self,Z

�1�� �t�, which has the following
form:

C̃self,Z
�1�� ��� =

1

	
� �dq̄��d�̄�

i

2
L̄q̄

R��̄��tanh�� − �̄

2T
�

− tanh�� + �̄ − �

2T
��I�q̄,�̄,�� , �C11a�

I�q̄,�̄,�� =� �dq�C̄q
0���2

†�D̄q̄
0��̄��2��C̄q

0����−1 + �D̄q̄
0��̄��−1�

− C̄q−q̄
0 �� + �̄�‡ . �C11b�

We shall analyze these expressions explicitly only for d=1,
which is most prone to infrared divergences for �→0, which
would correspond to a long-time behavior that grows with

time t; if C̃self,Z
�1�� �t� is found to be subleading for d=1, the

same will be true for d=2,3. Using Eq. �A3b� for L̄��̄�
R , the

contour integral over q yields I= �I1− I2� /a2 �referring to the
first and second terms in square brackets�, with

I1 =
1

4�D

2� − i�2� + �̄� + Dq̄2

�� − i��3/2�− i�̄ + Dq̄2�2 , �C12a�

I2 =
i

�D�2z2����Dq̄ + z2�2 − z1
2�2

−
i

�D�2z1�2��z1 − �Dq̄�2 − z2
2�
� 1

z1
+

2�z1 − �Dq̄�
�z1 − �Dq̄�2 − z2

2� ,

�C12b�

where z1= i��H− i� and z2= i��H− i��+ �̄�.
For �H→0+, the part of I which will yield the most sin-

gular contribution in the frequency domain �after integration
over �̄ and q̄� is a 1 /�� singularity at �=0 �I1,2 both yield a
�−3/2 contribution, but those cancel in I1− I2�:

I�q̄,�̄,�� � −
�̄/�D

a2��̄ + iDq̄2�3

1
�0+ − i�

. �C13�

The occurrence of a �−1/2 singularity can be understood as
follows: for �=0, the integrand in I�q̄ , �̄ ,0� diverges as
1 / �Dq2� �for d=1�, but this divergence is cut off by ��0, so
that the integral goes as I�q̄ , �̄ ,����−1/2. �By a similar ar-
gument, it follows that for d=2,3, the leading � dependence
will be less singular, namely, ln��� or a constant, respec-
tively.�

The subsequent integrals of this term over q̄ and �̄ need
IR- and UV-cutoffs q̄min and �̄max, respectively. Keeping only
the contribution that dominates for q̄min→0 and �̄max→�,
we find

C̄self,Z
�1�� ��� �

2

	a4�D�0+ − i�

ln�max��,T�
�̄max

�
�Dq̄min

. �C14�

The corresponding temporal behavior is

C̃self,Z
�1�� �t� �

t−1/2

	a4�D

ln�max��,T�
�̄max

�
�Dq̄min

, �C15�

which is subleading at long times compared to C̃dec
�1���t�� t1

�from Eqs. �35� and �26��. Even upon inserting q̄min

��Dt�−1/2 for the IR cutoff, so that C̃self,Z
�1�� �t��1 / �	a4�D�, we

note that as long as g1�L��1, this contribution is much

smaller than the leading contribution to C̃�1�,��t� at scales t

��, namely, C̃dec
�1������a−2�D��−1/2=g1�L� / �	a4�D�.
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