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The electron and current-density distributions in the close proximity of quantum point contacts �QPCs� are
investigated. A three-dimensional Poisson equation is solved self-consistently to obtain the electron density and
potential profile in the absence of an external magnetic field for gate and etching defined devices. We observe
the surface charges and their apparent effect on the confinement potential, when considering the �deeply�
etched QPCs. In the presence of an external magnetic field, we investigate the formation of the incompressible
strips and their influence on the current distribution both in the linear response and out of linear response
regime. A spatial asymmetry of the current carrying incompressible strips, induced by the large source drain
voltages, is reported for such devices in the nonlinear regime.
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I. INTRODUCTION

The new era of quantum information processing attracts
an increasing interest to investigate the intrinsic properties
of small-scale electronic devices. One of the most interesting
of such devices is the so-called quantum point contacts
�QPCs�, where a quantized current is transmitted through it
under certain conditions.1,2 They are constructed on two-
dimensional electron systems �2DES� either by inducing
electrostatic potential on the plane of 2DES and/or by chemi-
cally etching the structure. The essential physics is that the
small size of the constraint creates quantized energy levels in
one dimension �perpendicular to the current direction�; there-
fore, transport takes place depending on whether the energy
of the electron coincides with this quantized energy or not. In
the ideal case at low bias voltages, if the energy of the elec-
tron is smaller than the lowest eigenenergy of the constraint,
no current can pass through the QPC. Otherwise, only a cer-
tain integer number of levels �channels� are involved, there-
fore conductance is quantized.3 Beyond being a useful play-
ground for the basic quantum mechanical applications many
other interesting features are reported in literature such as the
0.7 conductance anomaly,4,5 which became a paradigm since
then. Another adjustable parameter which induces quantiza-
tion on the 2DES is the magnetic field B applied perpendicu-
larly to the system. Such an external field changes not only
the density of states �DOS� profile of the 2DES but also the
screening properties of the system drastically. The interesting
physics dictated by this quantization is observed as the quan-
tum Hall effects.6,7 Recent theoretical investigations point
out the importance of the electron-electron interactions in
explaining the integer quantum Hall effect,8,9 believed to be
irrelevant in the early days of this field,10 which we discuss
briefly in this work. The basic idea behind the inclusion of
the interaction is as follows: Due to the perpendicular mag-
netic field the energy spectrum is discrete, known as the
Landau levels �LLs�, and is given by En=��c�n+1 /2�,
where n is a positive integer and cyclotron energy is defined

as ��c=�eB /m�, with effective electron mass m�

=0.067�me. Taking into account the finite size of the sample,
i.e., the confinement potential, and the mutual interaction
�Hartree� potential, one obtains the total potential. In the next
step for a fixed average electron density one calculates the
resulting electron-density distribution and from this distribu-
tion recalculates the potential distribution iteratively. This
self-consistent calculation ends in formation of the compress-
ible and incompressible regions. In a situation where Fermi
energy EF is pinned to one of the LLs, then the system is
compressible. Otherwise, if EF falls in between two consecu-
tive LLs, the system is known to be incompressible and,
since there are no available states at the EF for electrons to
be redistributed, screening is poor. However, within these
incompressible regions the resistivity vanishes, hence all the
applied current is confined to these regions. We will be dis-
cussing the details of this model in Sec. IV.

Most recently, the experiments performed at the 2DES
including the QPCs, in the presence of an external magnetic
field, manifested peculiar results.11–13 In the first set of ex-
periments electron interference, such as Mach-Zehnder �MZ�
�Refs. 11 and 14–18� and Aharonov-Bohm �AB�,19 was in-
vestigated. The MZ interference experiments exhibit a novel
and yet unexplained behavior, regarding the interference
contrast �visibility� at the interferometer in the nonlinear
transport regime �finite transport voltage�. As a function of
voltage, the visibility displayed oscillations whose period
was found to be independent of the path lengths of the inter-
ferometer, in striking contrast to any straightforward theoret-
ical model �e.g., using Landauer-Büttiker edge states �LBES�
�Ref. 20��. In particular, a new energy scale, of order of
� eV, emerged, determining the periodicity of the pattern.
This unexpected behavior of interfering electrons is believed
to be related to electron-electron interactions.11 The most sat-
isfying model existing iin literature is proposed by
Levkivskyi and Sukhorukov.21 However, other schemes also
including interactions are present22 and models, which con-
sider a non-Gaussian noise as a source of the visibility
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oscillations,23 without interaction. The novel magnetic focus-
ing experiments concerning QPCs have revealed the scatter-
ing processes taking place near these devices.12 It was ex-
plicitly shown that the experimental realization of the sample
and the device itself strongly affects the transport properties.
It is reported that the potential profile generated by the do-
nors �impurities� and the gates deviates strongly from the
ideal “point” contact. Even in each cool down process, since
the impurity distribution changes, the quantum interference
fringes differ considerably. Hence a realistic modeling of a
QPC is desirable, which we partially attack in this work.
Another interesting set of experiments within the integer
quantum Hall regime is conducted by Roddaro et al.,13

where the transmission is investigated as a function of the
gate bias. The findings show that current transmission
strongly deviates from the expected chiral Luttinger liquid24

behavior, since the transmission is either enhanced or sup-
pressed by changing the gate bias. This effect was attributed
to the particle-hole symmetry of the Luttinger liquid and is
discussed in detail in Ref. 25. However, the explicit treat-
ment of the QPC was left unresolved. Since the essential
physics can be still governed by considering a finite-size
QPC opening, assuming formation of a �integer� filling re-
gion is sufficient.

The theoretical investigation of QPCs covers a wide vari-
ety of approaches, which can be grouped into two: �i� the
models that include electron-electron interactions and �ii� the
models that do not. At the very simple model in describing
the QPCs, one considers a potential barrier perpendicular to
the current direction quantizing the energy levels. Therefore
the electrons are considered to be plane waves before they
reach to the QPC and transmission and reflection coefficients
are calculated from this potential profile. A better �2D� ap-
proximation is to model the QPCs with well defined
functions,26,27 e.g., ellipses, which lead to analytic solutions
for the eigenfunctions and energies. About a decade ago
Davies and Lorkin28 developed the “frozen charge” model to
calculate the potential profile induced by the gates defining
the QPC. This approach is still one of the most used tech-
niques to obtain the potential profile; however, it is not self-
consistent and completely ignores the donors and surface
charges. There exist many theories which take the potential
profile from the frozen charge model as an initial condition,
and provides explicit calculation schemes to obtain charge,
current, and potential distributions.29–33 One of the most
complete schemes, even in the presence of an external B
field, is the local spin-density approximation �LSDA� within
the density-functional theory �DFT�.34 The LSDA+DFT
�Refs. 30, 35, and 36� approaches are powerful to describe
the essential physics of density distribution and even 0.7
anomaly phenomenologically, however, the description of
the current distribution is still under debate. The scattering
problem through the QPCs is usually handled by the “wave-
packet” formalism and is very successful in explaining the
magnetic focusing experiments. However, the potential pro-
file is not calculated self-consistently and therefore, the ef-
fect of the incompressible strips resulting from electron-
electron interaction is not taken into account.

Back to early days of the theories that account for electron
interactions, i.e., Chklovskii, Shklovskii, and Glazman37

�CSG� and Chklovskii, Matveev, and Shklovskii26 �CMS�
models, the influence of the formation of the incompressible
strips has been highlighted. In the CMS paper, it was even
conjectured that, “the ballistic conductance of the QPC in
strong magnetic field is given by the filling factor at the
saddle point of the electron density distribution multiplied by
e2 /2��”, which is quantized only if an incompressible strip
�region� resides at the saddle point. In one of the recent ap-
proaches, in the presence of a strong B field, the electron-
electron interaction is treated explicitly within the Thomas-
Fermi approximation �TFA� self-consistently, meanwhile the
current distribution is left unresolved.31 In this model, similar
to other approaches, the bare confinement potential is ob-
tained from the “frozen charge” approximation, which in
turn leads to discrepancies due to its non-self-consistent ap-
proach. Here, we improve on this previous work in two main
aspects: �i� the electrostatic potential is obtained self-
consistently in three dimensions �3D�, which allows us to
treat also the etched structures and �ii� the current distribu-
tion is calculated explicitly using the local version of Ohm’s
law, also in the out of linear response regime. We organize
our work as follows: In Sec. II, we briefly describe the nu-
merical scheme to calculate the potential profile at B=0 fol-
lowing Ref. 38, which is based on iterative solution of the
Poisson equation in 3D. In particular, we study the effect of
different gate geometries and focus on the comparison of the
potential profiles of gate and etch defined QPCs. The numeri-
cal scheme to calculate potential and density profiles at finite
temperature and magnetic field is in Appendix A, where we
review the essential ingredients of the TFA and discuss the
limitations of our approach. Section IV is dedicated to inves-
tigating the current distribution within the local Ohm’s
law.8,39,40 Both the linear response �LR� and out of linear
response �OLR� regimes are investigated. In the OLR, we
show that the large current bias induces an asymmetric dis-
tribution of the incompressible strips, due to the tilting of the
Landau levels resulting from the position dependent chemi-
cal potential. We conclude our work in Sec. V where we
discuss the experimental implications of our findings, fol-
lowed by a brief summary in Sec. VI.

II. ELECTROSTATICS IN 3D

The realistic modeling of 2DES relies on solving the 3D
Poisson equation for given boundary conditions, set by the
heterostructure �GaAs/AlGaAs in our calculations� and the
gate pattern, which describes the charge and potential distri-
bution. The heterostructure, shown in Fig. 1�a�, consists of
�metallic� surface gates �dark semielliptic regions on sur-
face�, a thin donor layer �denoted by light thin layer and �
silicon doping� which provides electrons to the 2DES and the
2DES itself indicated by minus signs confined to a thin area.
The 2DES is formed at the interface of the heterostructure.
The average electron density nel �and its spatial distribution
nel�x ,y�� is dictated by the donor density n0 and the metallic
gates. Once the number of donors and the gate voltage Vg are
fixed, the potential and charge distribution of the system can
be obtained by solving the Poisson equation self-consistently.

For typical nanoscale devices with many �or at least a
few� electrons in each of the electrostatically defined regions,
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the charge distribution and the major energy scales are de-
scribed to a good approximation by classical electrostatics.
Due to the strong electric fields generated by segregating
charge in a 2DES, the Coulomb energy is the dominant en-
ergy scale. In this sense, it is desirable to have a self-
consistent electrostatic description of the system if one ex-
pects a good quantitative description thereof.

For solving the electrostatics of the system in three di-
mensions we used a code developed and successfully applied
in previous studies.38,41 It is based on a fourth-order algo-
rithm operating on a square grid. The code allows flexible
implementation of many boundary conditions relevant for
nanoscale electrostatics: standard boundaries such as con-
ducting regions at constant voltage �potential gates�, of con-
stant charge �large quantum dots� or charge density �doping�,
but also boundaries such as a depletable 2DEG, dielectric
boundaries and surfaces of semiconductors with the Fermi

energy pinned due to surface charges. Since the calculation is
constrained to a finite volume of space including the surface
of the sample, the outer boundary is considered open and is
also obtained self-consistently along with the rest of the cal-
culation. Overall the code provides a reliable description of
the potential landscape and thus the electric field as well as
the charge distribution for the sample under consideration.

As an illustrating example in Fig. 1 we show the hetero-
structure under investigation together with the charge distri-
butions at different layers. The area of the unit cell is 1.5
�1.5 �m2, whereas the height is chosen to be 156 nm. The
donor and the electron layer lie 43 and 56 nm below the
surface, respectively. The metallic gates are deposited on the
surface of the structure and are biased with Vg=−1.7 V and
a homogeneous donor distribution is assumed �Fig. 1�c��.
The induced charge distribution on the metallic gates exhib-
its apparent inhomogeneities shown in Fig. 1�b�. The elec-
trons are accumulated near the boundaries of the gates, a
well-known behavior for metallic boundary conditions.
However, here we provide the explicit distribution, which
strongly differs from the previously used “frozen charge”
model where only a constant potential profile is assumed.
The influence of these induced charges become more impor-
tant when considering an external B field, since the steepness
of the external potential profile determines the effective
widths of the current carrying incompressible strips. We
should note that our self-consistent model enables us also to
handle the �side� surface charges, which becomes important
when considering chemical etching. In the following part we
investigate systematically the effects of the gate voltage and
the device geometry on the electrostatic quantities.

A. Gate defined QPCs

In this section we compare the electron-density profiles
calculated for different QPC geometries applying various
bias voltages, which exhibit strong nonlinear behavior in
contrast to many models used iin literature. We start our
discussion with a rather smooth configuration, where the dis-
tance between the gates �W� is chosen to be 200 nm �see Fig.
1�a��. In Fig. 2 we show the electron-density profile for dif-
ferent gate voltages. Interestingly, at Vg=0 we see that more
electrons are residing beneath the gates. This effect is due to
inhomogeneous �induced� charge distribution at the metallic
gates similar to the distribution shown in Fig. 1�d�. The in-
duced charges are mostly accumulated near the gate bound-
aries, whereas the center of the gates has almost a constant
charge profile. Increasing Vg to −0.3 V already starts to de-
populate electrons under the gates and the depopulation rate
remains linear to the applied gate potential until the 2DES
becomes depleted. In the �−0.5,−1.2� volt interval, the den-
sity distribution changes relatively smooth, since the elec-
trons can still screen the external potential quite well. It is
important to recall that, in the absence of an external B field,
the DOS of a 2DES is just a constant D0 �=m� /��2=2.83
�1010 meV−1 cm−2 for GaAs�, which is set by the sample
properties, therefore screening is nearly perfect; whereas this
changes considerably when the electrons are depleted under
the gate. This is observed by the strong drop of the potential

FIG. 1. �Color online� �a� The silicon doped heterostructure, the
2DES is formed at the interface of the GaAs/AlGaAs �denoted by
minus signs� and the metallic gates are deposited on the surface. At
zero gate bias, the electron density is determined by the number of
donors, which we chose to be 4�1016 m−2. Charge distribution at
different layers obtained by considering a gate voltage −1.7 V, at
the gates �b�, the dopant layer �c� and the 2DES �d�. It is clearly
seen that not all the excess electrons are captured by the 2DES,
rather a significant amount is accumulated on the surface. The elec-
trostatic quantities are normalized with the relevant scales; i.e.,
charge �density� is normalized with the average electron density
�i.e., Q2DES�x ,y�=nel�x ,y� / n̄el� and electrostatic potential �energy�
with the potential energy of a single electron, −eV.
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when the depletion bias is reached, namely Vg�−1.3 V. A
sudden variation appears at the potential profile when the
electrons are depleted beneath the gates where the Vg be-
comes larger than −1.5 V. Therefore, the simple picture de-
scribing the QPCs as a smooth function of the applied gate
voltage fails. In that picture it is assumed that the Fermi
energy of the system remains constant and the potential pro-
file, given by a well defined function, of the constriction is
simply shifted by the amount of potential applied to the
gates. Such a model is reasonable in the regime where the
gate voltage is small enough that no electrons are essentially
depleted. However, as mentioned above, when the barrier
height is larger than the Fermi energy there exists no elec-
trons to screen the external potential and the potential distri-
bution must be calculated self-consistently.

Another adjustable parameter, which can be accessed ex-
perimentally is the geometry of the structure. Of course, in
the simplistic models describing QPCs this does not play an
important role, since the constriction is assumed to be isotro-
pic in the current direction, in contrast to the experimental
findings. It is well known that the shape of the QPCs, as well
as the cooling and biasing procedure, is important when
measuring interference or magnetic focusing.12 In Fig. 3, we
compare two different gate patterns considering typical gate
separations W for a fixed gate voltage, Vg=−2.0 V. The
smooth configuration �C1� exhibits a stronger nonlinear be-
havior when W is changed from 200 nm �black dashed line�
to 300 nm �red dashed line�. This relies on the fact that, in a
first-order approximation, the screening is better when more
electrons are accumulated at the opening of the QPC. How-
ever, since the screened potential Vscr�x ,y� can be obtained
from the external potential Vext�x ,y� via the Thomas-Fermi
screening relation,

Vscr
q = Vext

q /	�q� , �1�

where 	�q�=1+2 / �aB
� �q�� is the Thomas-Fermi dielectric

function with q being the momentum and aB
� �=9.8 nm for

GaAs� the effective Bohr radius, the long range fluctuations
�large q�, compared to aB

� , are less screened whereas the short
range fluctuations are predominantly screened. Considering
the sharp configuration �C2� this observation becomes more
evident, since the potential profile across the QPC varies
smoother than of the configuration �C1�, when varying W.
From an experimentalist’s point of view, therefore, drawing
sharper QPC structures by electron-beam lithography may
lead to a better �linear� control of the potential profile which
is closer to the ideal potential profile. This is certainly in
contrast to what we would expect from a noninteracting
model, however, it is known by the experimentalists that
defining the QPCs with sharper edges increases the quality of
the visibility signal.42 For the C2 configuration we also ob-
serve that the potential profile becomes almost insensitive to
the width W above 300 nm, which coincides with our previ-
ous finding of better screening of the long range fluctuations.
It is worth to note that our calculation scheme is beyond the
simple Thomas-Fermi screening scheme in obtaining the
bare confinement potential.31 It fully takes into account the
interaction effects, however, does not include any quantum
mechanical effects. In a better approximation, of course, one
should also solve the Schrödinger equation self-consistently
in 3D. This procedure is known to be costly in terms of
computational effort even only if the 2DES is treated quan-
tum mechanically. Since we are interested in either zero or
very strong magnetic fields, representing electron as a point
charge is still a reasonable and valid approximation. We will
discuss the justification of this assumption in the presence of
an external magnetic field in more detail in Sec. III and Ap-
pendix A, where we also discuss the limitations of our
model, Appendix B.

The different configurations of the gate patterns are also
important when investigating the scattering processes by

FIG. 2. �Color online� Spatial distribution of the electrons as a
function of the gate voltage. At zero bias �a� more electrons are
populated under the gate which changes when depletion starts �b�–
�d�, where the gate voltage is set to be �b� −0.3 V, �c� −0.7 V, �d�
−1.0 V. Almost no electrons are left beyond −1.5 V applied to the
gates, �e� −1.5 V, �f� −2.0 V, pinch-off.

FIG. 3. �Color online� Potential profile across the QPCs for two
different geometrical patterns. The insets depict the smooth �C1�
and the sharp edged �C2� patterns. The dark �blue� regions are elec-
tron depleted; i.e., the local potential is larger than the EF, denoted
by the solid thick horizontal line. The white contours denote the
depletion boundary, where the width of the QPC is set to be 200 nm
and the curvature is changed. The dashed lines stand for the first
configuration and two different W values �=200 nm �black� and
300 nm �red��, whereas for the sharper configuration four W values
are shown.
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magnetic focusing experiments.12 It is apparent that the scat-
tering patterns of the electron waves will not only depend on
the impurity distribution but also on the structure of the
QPCs. We expect that for the sharper defined QPC �C2� the
scattering should depend weakly on the QPC opening, since
the width does not change along the constraint. Whereas, for
C1 configuration small changes at W should affect the scat-
tered waves drastically. Another comment on the experimen-
tal setups is to the Roddaro13 experiments, since the forma-
tion of �stable� integer filling region is important to explain25

the findings, we believe that C2-type configurations would
be leading to a better resolution of the transmission ampli-
tudes. The choice of the structure and the width apparently
depends on the experimental interest, which is believed to be
irrelevant when modeling QPCs as ideal point contacts. Note
that the QPCs are not only defined by gates but alternatively
also by chemical etching. The gated structures are of course
more controllable, however, at high gate voltages required
for depletion, electrical sparks can occur, therefore the struc-
ture can even be destroyed. In such situations etching defined
QPCs are preferred, although without further gates one loses
the full control of the potential profile. In Sec. II B, we will
compare the potential profiles of etched and gate defined
QPCs to show that in some cases etch defined QPCs may be
more useful to obtain steeper potential profiles.

B. Etching versus gating

For simple calculation purposes, QPCs are modeled either
as a finite potential well or with a parabolic confinement
potential, perpendicular to the current direction. Starting
from the early experiments,1 usually the conductance is mea-
sured as a function of the applied gate voltage, which pre-
sents clear quantized values. This quantization can be well
explained by the Landauer formula43

G =
e2

��
�

n,m=1

Nc

�tn,m�2, �2�

where ballistic transport is assumed to take place; i.e., the
transmission is given by �tn,m�2=�n,m, and no channel mixing
is allowed. The �integer� number of channels Nc is defined by
the Fermi energy and the width of the constriction, in gen-
eral. The gate defined QPCs, in a first-order approximation,
can be represented by parabolic or finite well potential pro-
files. However, it is known that the chemical etching process
creates �side� surface charges, which in turn generates a
steeper potential profile at the edges of the sample. In this
situation it is apparent that the confinement potential cannot
be assumed to be parabolic, rather a steeper potential should
be considered. In this section we compare these two different
constriction profiles, namely, the gated and the etched ones.

The self-consistent potential across the QPC at the center
is plotted versus the lateral coordinate in Fig. 4. The 2DES
under the gates is depleted at Vg�−1.5 V, similarly when
the etching depth De is larger than 47.7 nm. In both cases,
until the depletion is reached the potential profile is varying
rather smoothly and the depth of the potential depends lin-
early on the applied gate bias or the depth. This behavior is

drastically changed when electrons are depleted; the poten-
tial now strongly depends on Vg or De. Moreover, for the
etched structure, potential becomes very steep at the edge of
the QPC when De
47.7 nm, i.e., is deeper than the donor
layer. The transition from linear behavior to nonlinear behav-
ior is simply due to the significant change of the screening
properties of the system. Once the electrons are depleted, the
external potential can no longer be screened, therefore the
amplitude of the self-consistent potential increases by a large
amount. Therefore, screening calculations based on the for-
mula given in Eq. �1� cannot account for such situations,
where the dielectric function is not aware of the Fermi en-
ergy, i.e., the occupancy. A better approximation to this ap-
proach is to consider a Linhard-type dielectric function,
which also takes into account the Fermi momentum.44 It is
known that such an improvement will also cover some of the
quantum mechanical aspects �such as the extension of the
wave functions�, which brings extra oscillations to the poten-
tial profile.27 However, for our present interest we neglect
this correction knowing that the self-consistency of the cal-
culation scheme already takes into account the occupation
and the 1D electron density at the QPC satisfies the validity
condition nelaB

� �1 of the TFA.31

We summarize our findings in Fig. 5, where we show the
electron density �left� and potential profiles �right� for typical
gate biases Vg and etching depths De versus the spatial coor-
dinate. We choose a representative cross section of the ob-
tained profiles along the current direction x, where the y
coordinate is fixed to 450 nm. Figure 5�a� depicts the density
profile for selected depths of etching varying from shallow
�De=4.7–19.1 nm� to deep �De=38.2–78.4 nm�. For the
smallest two Des, the 2DES is not depleted beneath the pat-
tern and the density profile is rather smooth. Depletion is
observed when the depth is larger than 19.1 nm, however,
until the etching depth reaches to the depth of 2DES
��60 nm� we do not see the surface charges �the spikelike
point, indicated by the arrow� at the level of the 2DES. The

FIG. 4. �Color online� Potential cross section of �a� gated and
�b� etched QPCs calculated at selected gate biases and etching
depths for C1 for a fixed W=150 nm. The insets focus on the high
bias or shallow etching profiles
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inset of Fig. 5�b� shows the electron-density distribution in a
color coded contour plot together with the corresponding po-
tential profile across the white �dashed� line. The thin �green�
lines contouring the depleted �red� region indicates the spa-
tial distribution of the surface charges. The potential is
steeper compared to that of the gated one �Fig. 5�d�� and the
profile does not show any considerable variation once the
etching depth reaches the plane of the 2DES. This behavior
clearly exhibits the uncontrollability of the etched samples,
since the corresponding potential profile obtained for the
gated samples varies slowly on the length scales of the Fermi
wavelength, even if the 2DES is completely depleted beneath
the gates. Moreover, the amplitude of the potential strongly
depends on the applied gate voltage. The slow variation of
the potential is not the case for the etched sample, for ex-
ample, consider the case when De is changed from 57.3 to
78.4 nm, and compare it with that of the gated sample when
voltage is changed from −2.0 to −3.0 V. For the gated
sample the potential profile still remains smooth, however,
the spatial distribution of the electron density is almost un-
changed. Meanwhile, for the deeply etched sample both the
electron density and the potential profile are steep and the
steepness depends very weakly on the etching depth.

From the above discussion we conclude that for the gated
samples the electron-density distribution is weakly affected
by the applied gate potential when the depletion is once ob-
tained, meanwhile the potential is smooth and strongly de-
pends on Vg. For the etched samples, potential profile be-
comes very steep when the etching depth exceeds the depth
of the 2DES, since the �side� surface charges pin the Fermi
level at the mesa surface to the midgap of GaAs forming a
Schottky-type barrier.45 We should also note that, at zero
bias, more electrons are populated under the gates, which is
not the case for the etched samples. As a rule of thumb, when
a steeper potential profile is required one should consider
chemical etching where the etching depth is deeper than the
electron layer and one should keep in mind that biasing gates
with high potential do not necessarily imply that the
electron-density profile is also changed considerably.

The outcome of the self-consistent solution of the 3D
Poisson equation considering QPCs at zero magnetic field is

twofold: �i� the geometrical properties �i.e., considering C1-
or C2-type patterns� strongly change the potential landscape
in the close vicinity of the QPCs. We found that the smoother
constrictions with a larger width W can be modeled better
with the ideal point contacts, i.e., parabolic confinement. The
sharper constrictions can be considered as finite well profiles,
in a first-order approximation and potential profile remains
unchanged when considering W
300 nm. �ii� Due to sur-
face pinning the etched samples generate steeper potential
profiles and the density profile remains unaffected once etch-
ing is deeper than the depth of the 2DES. These numerical
results show a strong deviation from the the widely used
“ideal point contact” and “frozen charge” models, proposing
that depending on the experimental interest it is important to
reconsider the geometrical �C1, C2� and structural �gated/
etched� factors defining the QPC under investigation. As a
final remark, the artifacts, such as local minima and maxima
at the potential and density profiles, resulting from the pre-
vious non-self-consistent Thomas-Fermi31 and “frozen
charge” models28,30,35 are resolved by considering the 3D
calculation scheme.

III. FINITE B FIELD

The aim of this section and Sec. IV is to calculate, and
compare, the density and subsequently the current distribu-
tions, in the close vicinity of the QPCs, within interacting
and noninteracting models in the presence of an external per-
pendicular magnetic field. Here we take into account
electron-electron interaction within the Thomas-Fermi theory
of screening using the potential profiles calculated in Sec. II,
as an initial configuration of the landscape. The details of the
calculation scheme are presented in Appendix A. Here, we
first compare the spatial distribution of the LBES with the
distribution of the incompressible edge states, where the ap-
plied external current is confined.8,39,46,47 The limitations of
the TFA are discussed in Appendix B, where we suggest
improvements on the calculation scheme based on �i� quan-
tum mechanical considerations, such as the finite extension
of the wave functions, and �ii� replacement of the global
density of states with the local one.

The transport through the QPCs in the absence of an ex-
ternal magnetic field is well described by the Landauer for-
malism, summarized in Eq. �2�. The main idea is that the
transport is ballistic and due to the cancellation of the veloc-
ity and a 1D DOS,3 the conductance is integer multiples of
the conductance unit, e2 /h. These integers are just the num-
ber of channels Nc, i.e., the number of eigenenergies below
the Fermi energy. A similar path is followed when consider-
ing an external B field, which assumes that the conductance
is ballistic within 1D channels and neglects the electron in-
teractions. These 1D channels are formed whenever the
Fermi energy coincides with a Landau level �Landauer-
Büttiker picture�. Before proceeding with the full self-
consistent solution of the density and current distribution
problem, we first investigate the positions of the Landauer-
Büttiker edge states. The procedure is simple; to obtain the
energy dispersion we use the relation

FIG. 5. �Color online� Spatial distribution of the electron density
��a� and �c�� and screened potential ��b� and �d�� for etched �upper
panel� and gated samples �lower panel�, y=450 nm.
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En,ky
�x,y� = En + V�x,y� �3�

and follow the equipotential �energy� lines coinciding with
the Fermi energy. By doing so we would be able to discuss
qualitatively the phase coherence �, taken to be equal to 1
when there is a full phase coherence and 0 when there is
none. We neglect all the external sources of decoherence and
assume that the LBES are coherent at the length scales we
are interested in; i.e., the wave functions of the associated
channels do not overlap.

In Fig. 6, we show the spatial distribution of the expected
positions of the LBES at two filling factors. The color scale
depicts the self-consistent potential, whereas the black strips
show the LBES. The white shaded areas are the electron
depleted regions. The =2 and =4 edge states nicely show
the expected distribution which are spatially �40 nm apart
�Fig. 6�a��. Depending on the steepness of the potential or
the magnetic-field value, however, this distance may become
less. For the etched samples �not shown� at the same filling
factor the spatial distance between =2 and =4 edge states
become almost half the value of the gated samples. For the
filling factor =8 plateau outermost �the ones closest to the
gates� two edge states are less than 15 nm apart from each
other, and the wave functions extend over a larger distance
�20 nm. It is clear that when the two wave functions start to
overlap, the coherence � is reduced drastically. However, for
the ideal case �no overlap� � should stay constant for all
plateau regions, since by definition the edge states cannot
cross each other. The conductance quantization is, of course,
independent of the structure of the ES itself and according to
Eq. �2� one should simply count the number of ES, which
cross the constriction. The conductance is shown by the
sketch in Fig. 6�d�; of course the sharp transition between the
plateaus is changed when one considers level broadening or

in general impurity scattering. One should note that, al-
though the LBES picture is useful in making qualitative ar-
guments, one needs to grasp the actual distribution of the
edge states to understand the physics observed at the
experiments.17

Next we investigate the distribution of the incompressible
strips calculated self-consistently described by Eqs. �A5� and
�A6�. The conductance through the QPC can be rewritten

G =
e2

h
center �4�

as conjectured in Ref. 26, where center is the filling factor at
the very center of the QPC. It is apparent that, if this value is
an integer, i.e., incompressible, the conductance is quantized.
Therefore, it is important to study this condition for a realis-
tic QPC geometry. In the following we first calculate the
filling factor distribution in the absence of an external current
and then obtain the current distribution in Sec. IV.

In order to cure the artifacts arising from TFA �see Ap-
pendix B�, �i� we consider a Gaussian broadened DOS �Ref.
39� given by

D�E� =
1

2�l2 �
n=0

�
exp�− �En − E�2/�imp

2 �
���imp

�5�

with the impurity parameter �imp, which is chosen large
enough �imp /��c=0.3 to cover the level broadening gener-
ated by the local electric field10 and self-consistent broaden-
ing effects48 and �ii� a spatial averaging is carried out over
the Fermi wavelength ��30 nm�. Figure 7 summarizes our
results showing the spatial distribution of the incompressible
ES, considering the quantum Hall plateau =2. Pedagogi-
cally, starting our investigation from large magnetic fields is
preferable; at large magnetic fields �Fig. 7�e��, the system is
mostly compressible �colored area� and the two incompress-
ible �white� regions do not merge at the opening of the QPC.
Therefore, both the Hall resistance and the conductance
through the QPC are not quantized. As soon as one enters the
QH plateau almost all of the sample becomes incompressible
shown in Fig. 7�d� �in the absence of short range impurities�
and both RH and G become quantized. Decreasing the mag-
netic field creates two incompressible ES which are spatially
separated seen in Fig. 7�b�, however, the quantization is not
affected. At a lower magnetic-field value these IS-ES disap-
pear �Fig. 7�a�� as an end result of level broadening and
�simulation� of the finite extension of the wave functions,
now we are out of the QH plateau and G is no longer quan-
tized. This picture and the LBES picture yield same behavior
for the RH and G, however, in the latter current is carried by
the IS-ES, which we will discuss in Sec. IV. The qualitative
difference between the two pictures is the coherence as
shown by the �red� dashed line in Fig. 7�c�. First � presents
minima in between two plateau regimes, since the IS die out,
second at the higher edge of the QH plateau the system be-
comes completely incompressible; therefore, it is not pos-
sible to define separate ESs hence coherence is lost �aver-
aged�. We believe that this nonuniform behavior of the
coherence within the QH plateau coincides with the experi-
mental findings of Roulleau et al.,18 however, we admit that

FIG. 6. �Color online� The distribution of the spin degenerate
LBES at �a� 	4 and �b� 	8. The potential cross section at 
=8 plateau �c�. Sketch of the conductance �G� and expected coher-
ence � �d� for C1 considering W=150 nm with an applied gate
potential Vg=2.0 V, so that the 2DES is depleted beneath the gates.
Since spin degeneracy is assumed each edge state carries two units
of quantized current.
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other explanations are also possible. Another interesting ex-
perimental work is carried by the Regensburg group, where
they have investigated the amplitude of the visibility oscilla-
tions as a function of B field.17 They have reported a maxi-
mum visibility at 	1.5, which seems quite opposite to
what has been reported by other groups.11,18 However, it is
easy to see that their sample has a homogeneous width all
over, which is not the case for other groups. From self-
consistent calculations49 it is known that if the sample width
is narrower than 5–6 �m the center electron density �or
filling factor� can differ strongly from that of the average
one�s�. An indication of such a case is also shown by numeri-
cal simulations.50 In interconnecting the Hall plateaus and
the spatial distribution of the incompressible strips, we have
used the findings of Ref. 8 where the current is shown to be
flowing through the incompressible strips. This is in contrast
to some of the models37,51 iin literature where the opposite is
proposed. In Sec. IV, we will present the general concepts of
the local Ohm’s law and based on the absence of backscatter-
ing in the incompressible strips we will show that the local
resistivity vanishes and the external current should be con-
fined to these regions.

IV. CURRENT DISTRIBUTION WITHIN LOCAL
OHM’S LAW

The local �potential� probe experiments52–54 brought in-
formation concerning the Hall potential distribution over the

sample. The first set of experiments shows clearly that the
potential, therefore the current, distribution is strongly
magnetic-field dependent. It was shown that out of the QH
plateau the Hall potential varies linearly �type I� all over the
sample, a similar behavior to classical �Drude� result.
Whereas, at the lower edge of the QH plateau the current is
confined to the edges of the sample �type II�, which was
shown to be coinciding with the positions of the incompress-
ible strips. The most interesting case is observed when an
exact �even� integer filling is approached. In these magnetic-
field values, the potential exhibits a strong nonlinear varia-
tion all over the sample, which was attributed to the exis-
tence of a large �bulk� incompressible region. The
explanation of these measurements acquired a local transport
theory, where the conductivities and therefore current distri-
bution can be provided also taking into account interactions.
In the subsequent theoretical works8,39,55 the required condi-
tions were satisfied and an excellent agreement with the ex-
periments were obtained.52 In the second set of
experiments56 a single electron transistor has been placed on
top of the 2DES and the local transparency, i.e., whether the
system is compressible or incompressible, and the local re-
sistivity has been measured. Comparing the transparency and
the longitudinal resistivity, it has been concluded that the
resistivity vanishes when the system is incompressible.

Theoretically, if the local electrostatic potential and the
resistivity tensor �̂�x ,y� are known the current distribution
j��x ,y� can be obtained from the local version of the Ohm’s
law,

E� �x,y� = �̂�x,y� · j��x,y� , �6�

provided that

E� �x,y� = ����x,y�/e , �7�

where the electrochemical potential is position dependent
when a fixed external current I=
Aj��x ,y�dxdy is imposed. In
our calculations we assume a local equilibrium in order to
describe the stationary nonequilibrium state generated by the
imposed current, starting from a thermal equilibrium state
obtained from the modified TFA. At this point if the local
resistivity tensor is known, Eqs. �6� and �7� should be solved
once again iteratively for a given electron density and poten-
tial profile, where the equation of continuity

� · j�r� = 0 �8�

holds. We assume that the local resistivity is related to the
local electron density via the conductivity tensor, i.e.,
�̂�x ,y�= �̂−1�nel�x ,y��. For a Gaussian broadened DOS the
longitudinal component of the conductivity tensor is ob-
tained from

�l =
2e2

h
�

−�

�

dE�−
� f

�E
�

n=0

� �n +
1

2
��e�−��En − E�/�imp�2�� ,

�9�

whereas Hall component is simply

FIG. 7. �Color online� Spatial distribution of the incompressible
strips �white areas� for characteristic B values �a� 6.8 T, �b� 7.3 T,
�d� 8.3 T, �e� 8.8 T calculated at temperatures ��c /kBT�1, together
with the sketch of Hall resistance and the coherence � �c�. The
QPC configuration considered here is C1 with W=150 nm; the gate
voltage is chosen such that all the electrons beneath the gates are
depleted.
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�H =
2e2

h
 , �10�

where we ignored the self-energy corrections depending on
the type of impurity scatterers. We should emphasize that the
above conductivities are used for consistency reasons, in
principle, any other reasonable impurity model such as the
commonly used self-consistent Born approximation �SCBA�
�Refs. 8 and 44� can be considered. Assuming that TFA is
valid, we can replace the local conductivities with the above
defined global ones.

In the absence of an external current our calculation
scheme is as follows: We initialize Eq. �A5� using the total
potential obtained from the 3D calculations and obtain the
electron density at relatively high temperatures �kT /��c
�0.5� and use this density distribution to obtain resulting
potential from Eq. �A6�. Next we keep on iterating until a
numerical convergence is reached, where the electron density
is kept constant. This is followed by the step where the tem-
perature is lowered by a small amount and the iteration pro-
cess is repeated until the target temperature is reached. After
the thermal equilibrium is obtained, we impose a small
amount of external current and solve Eqs. �6� and �7� self-
consistently. While doing this second iteration, we fix the
constant arising from the integral equation to a value such
that the total number of electrons is kept constant with and
without current. As a numerical remark, if the current loop
does not converge we increase the temperature by a relevant
amount and start the iteration procedure. The whole calcula-
tion scheme is composed of three different codes, which are
written in C++, FORTRAN, and MATLAB, respectively. In or-
der to obtain reasonable grid resolution parallel computation
techniques were used.57

Since we are interested in current distribution and also its
effect on the density distribution we find it appropriate to
present our results in two separate sections �i� where the
applied current is weak enough that the electron and poten-
tial distribution is unaffected, linear response and �ii� the
applied current is sufficiently large so that the imposed cur-
rent induces a considerable change in the position dependent
electrochemical potential, out of linear response.

A. Linear response regime

The crucial part of the local approach is that for a given
�large� magnetic field we can calculate the local potentials
and electron distributions self-consistently. The result of such
a calculation is that the 2DES is essentially separated in two
regions, i.e., compressible and incompressible; therefore for
a given �obtained� density we can calculate the local conduc-
tivities via Eqs. �9� and �10�. Let us now discuss the distin-
guishing conductance properties of these two regions starting
from a compressible region. At a compressible region the
Fermi energy is pinned to one of the Landau levels, screen-
ing is nearly perfect, self-consistent potential is flat, and fill-
ing factor is locally a noninteger. According to Eq. �10�, the
Hall conductivity is a noninteger and the longitudinal con-
ductivity is nonzero, meaning finite backscattering. Now the
classically defined drift velocity and also its quantum me-

chanical counterpart are proportional to the electric field per-
pendicular to the current direction. We have seen that at the
compressible region the potential perpendicular to the cur-
rent direction is flat, therefore the x component of the electric
field is zero, hence the drift velocity. Meanwhile, at an in-
compressible region the Fermi energy is in between two Lan-
dau levels, the filling factor is fixed to an integer value and
potential presents a variation perpendicular to the current di-
rection. Due to the Landau gap the longitudinal conductivity
vanishes, whereas the Hall conductivity assumes its �quan-
tized� integer value. If one calculates the inverse of the con-
ductivity tensor for the longitudinal component one obtains

�l�x,y� =
�l�x,y�

�l
2�x,y� + �H

2 �x,y�
, �11�

thus the longitudinal resistivity vanishes within the incom-
pressible region pointing the absence of backscattering. Of
course, the simultaneous vanishing of both the longitudinal
resistivity and the conductivity is a result of applied external
�and perpendicular� B field and is obtained only in two di-
mensions. Moreover, since the x component of the electric
field is now nonzero, the drift velocity is finite and the cur-
rent is confined to this region. Combining these two one
concludes that if there exists an incompressible region some-
where in the sample all the external current is confined to
this region otherwise �if there are no incompressible regions
and all the systems are compressible� the current is distrib-
uted according to Drude formalism; i.e., the current density
is proportional to the electron density.

We start our discussion of the current distribution when a
small current is imposed for which the electrostatic and elec-
trochemical potential satisfies the linear response relation

V��x,y�;I� − V��x,y�;0� 	 ����x,y�;I� − �eq
� . �12�

This condition essentially states that the imposed current
does not modify the electrochemical potential; therefore, the
electron density remains unchanged. Figure 8 presents the
current distribution, which is calculated for the density dis-
tribution shown in Fig. 7. The correspondence between the
positions of the incompressible strips and the current density
is one to one. In the out of plateau regime the current is
essentially distributed all over the sample, where no incom-
pressible regions exist �Fig. 8�a��. As soon as one enters the
QHP, i.e., when a large bulk incompressible strip �region� is
formed, the essential feature of current distribution is not
affected strongly, however, in this situation current is flowing
in the incompressible region. Tracking the positions of the
ISs in Fig. 7�b�, we can readily guess the distribution of the
current density in Fig. 8�b�. Following our arguments about
the smearing out of the narrow incompressible strips, we
have a situation in which, again, the current is spread over
the sample shown in Fig. 8�a�. Although the IS vanishes the
reminiscence of it still provides a narrow strip of small lon-
gitudinal resistivity and therefore a higher amount of current
is kept confined to these regions. Figure 8�c� presents the
corresponding longitudinal resistance, when measured as a
function of B together with the conductance across the QPC.
The relation between G and RL is interesting, the conduc-
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tance is quantized, as soon as RL vanishes at large fields,
however, becomes nonquantized even though the RL=0 at
the lower edge of the zero resistance state. Let us first discuss
the B dependence of the RL; it is finite if the system is com-
pressible and is zero if an incompressible strip percolates
from one edge of the sample to the other edge in the current
direction, i.e., from source to drain. Therefore, existence of a
percolating IS is sufficient enough to measure zero longitu-
dinal resistance. However, to have a conductance quantiza-
tion the center of the QPC should be incompressible, which
is a stronger restriction.26 Hence, in the lower edge of the
QHP, the IS percolates but the center of the QPC is com-
pressible. The implication of this fact to the coherence is a
bit more complicated. We have seen that as soon as one
enters the QHP a large bulk IS is formed therefore the phase
of the electrons is highly averaged. This implies that the
coherence is relatively less than that of the two well sepa-
rated ISs. On the other hand, at the lower edge of the con-
ductance plateau, the ISs become narrower and are less im-
mune to decoherence effects arising from the environment,
hence, the coherence is reduced. Our above discussion coin-
cides with the recent experiments performed in small Mach-
Zehnder interference �MZI� devices, where the visibility is
measured as a function of the external magnetic field.18 It is
fair to note that some other mechanisms providing B depen-
dence of decoherence can also account for such a behavior.

In the mentioned MZI experiments11,14 and also the mea-
surements performed by the group of Roddaro13 a finite �and
large� source drain voltage VSD is applied either to measure

the VSD dependency of the visibility or the transmission. The
intensity of the applied current, in these experiments, cannot
be treated within the linear response regime, where the elec-
trochemical potential remains constant, i.e., position inde-
pendent. In Sec. IV B, we present the current and the density
distribution calculated where Eq. �12� does not hold any-
more.

B. Beyond linear response

In the absence of an external current an equilibrium state
is obtained by solving Eqs. �A5� and �A6� self-consistently.
Even in the presence of a small current, a Hall potential is
generated which, in principle, modifies the electrochemical
potential, i.e., tilts the Landau levels. This modification can
be compensated by the redistribution of the electrons, which
certainly modifies the total electrostatic potential. If the ap-
plied current is sufficiently small, the modification is negli-
gible, i.e., linear response. However, if the current is large,
the resulting Hall potential is also large and one should re-
calculate the electron density, and therefore the potential dis-
tribution until a steady state is reached. In this section we
present the current and density distribution in the presence of
a large external current, where a local equilibrium is assumed
implicitly. Figure 9�a� shows the electron-density distribution
in color scale for B=7.1 T, where the intensity of the ap-
plied current is in the out of linear response regime. Note
that the B value is chosen such that the Hall resistance is
quantized, however, the conductance is not. The general be-

FIG. 8. �Color online� The local current density calculated at
different field strengths, same as in Fig. 7. The intensity of the
current density is chosen such that the applied current does not
effect the density distribution, i.e., �j�x ,y���0.4�10−3 A /m.

FIG. 9. �Color online� The local filling factor distribution and
the corresponding local current density calculated at the default
temperature. The current intensity is sufficiently high ��j�x ,y��
=2.0�10−2 A /m� to induce an asymmetry on the density distribu-
tion via position dependent electrochemical potential.
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havior is similar to that of linear response, however, it is
clearly seen that the widths of the ISs are asymmetric with
respect to x=750 nm line, where current is driven in y di-
rection. The asymmetry is induced by the large current, since
the electrons are redistributed according to the new �self-
consistent� potential distribution. The corresponding current-
density distribution is plotted in Fig. 9�b�, once more the one
to one correspondence between the positions of the ISs and
the local current maxima is apparent. The consequence of the
asymmetry and thereby the widening of the ISs can be ob-
served in the conductance and the RL, such that the narrow IS
at the upper side is smeared out much earlier than the one on
the lower side. We should note that such large currents heat
the sample therefore the local temperature within the ISs is
larger compared to the lattice temperature due to Joule
heating.58 Such a �local� temperature dependence is treated
explicitly by Kanamaru and his co-workers59 and strong evi-
dence is provided toward explaining the breakdown of the
IQHE within this approach. Our present approach lacks such
a treatment, therefore the competition between the widening
of the ISs and heating due to large currents is thought to be
more complicated than presented here. As a consequence, the
discussion of the coherence is far beyond our model, how-
ever, we think that the amplitude of the current when mea-
suring visibility18 is assumably still in the linear response
regime.

In conclusion, by exploiting the local equilibrium and the
properties of a steady state we have calculated the current
distribution near a QPC in the out of linear response regime.
We have shown that an asymmetry is induced on the density
profile due to the bending of the Landau levels generated by
the large Hall potential. We estimate that the system can still
be considered in the linear response regime if the 1D current
density is smaller than 0.042�10−2 A /m, which certainly
depends on the details of the sample geometry.

V. RELEVANCE OF OUR MODEL CALCULATIONS
TO THE EXPERIMENTS

Besides the interference11,15,16,19 and transmission13 ex-
periments related with QPCs mentioned in the previous sec-
tions, here, we would like to discuss the implications of our
model to simple experimental setups only consisting of a
single QPC. We should note that our discussion holds for any
gate or etched defined narrow constrictions, in general.

The difference between gated and etched defined 2DES
has been discussed iin literature26,60 in terms of analytical
calculation schemes. However, the applications to the experi-
mental systems are left unresolved. These models are not
addressing the questions that we raise about the QPCs. Here,
we suggest a “reasonably easy to realize” experimental setup
involving QPCs, to test our model calculations considering
these two different potential profiles. The idea is simple,
however, fundamental: In Sec. II, we have shown that the
smooth QPC configuration, namely, C1, presents a confine-
ment potential which is more or less like a parabola �cf. Fig.
3�. This implies an energy dispersion which increases lin-
early with the state number n. On the other hand, the C2
configuration deviates from the parabolic behavior, and pre-

sents a finite well potential profile in the high bias limit,
which has an energy dispersion proportional n2. Such a dif-
ference in the energy dispersion should be observable at the
transport properties, when considering different sample ge-
ometries �i.e, C1- and C2-like� and QPC widths, W.

It would also be interesting to observe that after reaching
the saturation potential amplitude, VG
−1.5 V �cf. Fig. 5�
at the gate defined QPCs, it is not possible to change the
slope of the electron density by applying higher voltages on
the gates. In fact, such a behavior is already observed in gate
defined quantum Hall bars61,62 using the incompressible edge
states. Similar behavior is expected considering QPCs. We
believe that interference experiments are the correct address
to look at such a behavior.

Our calculations considering the finite B regime also pro-
vide a couple of interesting effects, which could be also
tested experimentally at the interference setups. As is well
known, interference occurs only if scattering processes take
place, i.e., partitioning of the charge carriers. Here, we have
shown that the current carried by the incompressible strips
can be split without generating noise, therefore no interfer-
ence can be observed. Such a situation is observed
experimentally,63 however, it has to be investigated in detail.

The most striking feature that is presented in this work is
the asymmetric distribution of the incompressible strips near
the close vicinity of the QPCs. Since in experiments one can
control the two gates constituting the QPC separately, it
should be possible to equalize the widths of the incompress-
ible strips at OLR. Certainly, such an effect can be observed
at the interference setups, when driving a large dc. As we
have mentioned above, if the two incompressible strips
merge at the center of the QPC, no noise �therefore, interfer-
ence� will be generated. Now, we suggest that by playing
with the gate voltages on two sides of the QPC separately,
one can reach an equilibrium situation in the OLR, where the
noise can be switched on and off. Another experimental
setup is already proposed considering asymmetrically de-
fined quantum Hall bars,64 which facilitates the current in-
duced asymmetry to observe different quantized Hall plateau
widths by changing the current polarization. The experimen-
tal work is underway.62

VI. SUMMARY

In this paper, we provided a self-consistent scheme to
obtain the electron density, the potential profile, and the cur-
rent distribution in the close vicinity of a QPC, within the
Thomas-Fermi approximation. Starting from a lithographi-
cally defined 3D sample, we calculated the charge distribu-
tion at the surface gates, at the plane of 2DES and for etched
samples at the side surfaces. The 3D self-consistent solution
of the Poisson equation enabled us to present the similarities
and differences between an etched and gate defined QPC. We
found that the relatively deep etched samples present a sharp
potential profile near the edges of the sample. If the depth of
the etching exceeds the depth of the 2DES, surface charges
are calculated explicitly. In the presence of a quantizing per-
pendicular magnetic field, we have calculated the distribu-
tion of the incompressible strips as a function of the field
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strength. We have argued that if an incompressible strip be-
comes narrower than the magnetic length and/or if the trans-
verse electric field is sufficiently large, due to Level broad-
ening, the narrow incompressible strip is smeared. In the
next step, the current distribution is obtained both in the
linear response and out of linear response regimes using a
local version of Ohm’s law assuming a steady state at local
equilibrium. It is shown that the current is confined to the
incompressible strips, due to the absence of backscattering,
otherwise it is distributed all over the sample. We have com-
mented on the relation between the existence and percolation
properties of the incompressible strips and the measured
quantities such as the longitudinal resistance and conduc-
tance across the QPC. For the ideal clean sample, i.e., in the
absence of long range fluctuations, it is shown that the QH
plateau extends wider than that of the conductance plateau.
In the out of linear response regime, a current induced den-
sity asymmetry is presented in such geometries under quan-
tized Hall conditions. The observable effects of such an
asymmetry are not clarified, since it is also known that large
currents increase the temperature locally due to Joule heat-
ing. However, at the gate defined Hall bars the asymmetry is
clearly observed, while the cooling power of the cryostat is
high enough.

A natural extension of the existing model is to include the
spin degree of freedom and thereby exchange and correlation
effects.65 A local spin-density-functional theory approach35,36

is the much promising one among others such as Monte
Carlo66 and exact diagonalization, from computational and
application point of view. In fact, such an approach already
exists, however, the current is handled within the Landauer-
Büttiker formalism, which we think is not reasonable in the
presence of large incompressible strips. On the other hand, a
time dependent spin-density-functional model would be a
good candidate to describe current for the geometries under
investigation. The implementation of Akera’s theory, i.e.,
Joule heating, to our model is of course desirable, which has
been worked presently.

Finally, in order to have a predictive power on the inter-
ference experiments we would like to utilize the existing
coherent transport models in describing the current together
with our electrostatic model, which we are not able to at
present. Another challenge is to simulate the real experimen-
tal geometries, which already include more than a single
QPC and contacts, etc. The numerical routine we developed
is now able to do such large scale calculations within the
linear response regime, however, it still lacks describing the
exchange and correlation effects.
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APPENDIX A: THOMAS-FERMI APPROXIMATION (TFA)

The enormous variety of the theories describing the
density and current distributions at the quantum Hall
systems8,20,37,39,46,47,67 already show the challenge in giving
a proper prescription to these quantities. These theories can
be grouped into two: the current is carried either �i� by
the compressible regions37,51,68 or �ii� by the incompres-
sible regions.8,39,46,47,69 Moreover �and confusingly� these re-
gions can reside at the bulk10,67 or at the edge of the
sample,8,37,39,46,59,68 depending on the model considered and
the magnetic-field strength.8 For the sake of completeness,
we start with a generic Hamiltonian describing an electron
subject to high magnetic fields,

H� = H0 + Vint
� + Vext + VZ

�, �A1�

where ��=�1 /2� is the spin degree of freedom, H0 is the
kinetic part, Vext and Vint are the external and the interaction
potentials, respectively, and VZ

� is the Zeeman term.70 Our
first assumption is to neglect the spin degeneracy, knowing
that the effective band g-factor for the GaAs/AlGaAs hetero-
structures is a factor of 4 less than the one of a free electron
gas, and therefore Zeeman splitting is much smaller than the
Landau splitting ��c, i.e., �g��BB� /��c	0.027, where �B is
the Bohr magneton. However, Zeeman splitting can be as
large as the Landau splitting if exchange and correlation ef-
fects are taken into account at significantly high magnetic
fields, hence filling factor  �=EF /��c� one plateau can be
observed experimentally. On the other hand, for higher filling
factors 
1 exchange and correlation effects are assumed to
be small and Zeeman splitting is negligible. Thus one can
consider spinless electrons in the magnetic-field interval we
are interested in, which yields to the effective Hamiltonian,

Heff = H0 + Vext�x,y� + Vint�x,y� . �A2�

The kinetic part, H0, can be solved analytically using the
Landau gauge which yield plane-wave solutions in one di-
rection �y� and Landau wave functions in the other direction
�x�. Here, implicitly, a long Hall bar �ideally infinite� is as-
sumed, which is justified while the Fermi wavelength is
��30–40 nm� much smaller than the sample length under
consideration �Ly �1500 nm�. Then the eigenfunctions of
H0 can be expressed as

�n,ky
�x,y� =

1

�2nn ! ��lLy

exp�iky · y�exp�− � x − X

l
�2

2
�

� Hn� x − X

l
� , �A3�

where ky is the quasicontinuous momentum in y direction, n
is the Landau index, X=−l2ky is a center coordinate, and
Hn��� is the nth order Hermite polynomial with the argument
�, whereas the eigenenergies are

En = ��c�n + 1/2� . �A4�

The essence of the TFA relies on the fact that the potential
profile varies smoothly on the quantum mechanical length
scales. Throughout this work we will only consider the 6–8
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T interval and as a rough estimation the extension of the
wave functions in x direction �of the ground state, i.e., =2�,
or the magnetic length l=�� /m�c, will be always similar or
less than 10 nm, therefore in almost all cases neglecting the
finite extension of the wave functions is still reasonable.
However, we have already seen that for the etched samples
the potential is quite steep and the results obtained from the
TFA may be doubted, which we will address in Appendix B.

At the moment let us consider a case that the condition
of TFA holds; i.e., the total potential Vtot�x ,y�=Vext�x ,y�
+Vint�x ,y� varies smoothly on the quantum-mechanical
length scales and the sample is long enough �i.e., kFLy �1�.
Then we can replace the wave functions in both directions
by wave packets centered at X and at y, and the center
coordinate dependent eigenenergy En�X� can be approxi-
mated to En+Vtot�X ,y�. It follows that the spatial distribution
of the electron density within the TFA is given by the
expression31,32,71

nel�x,y� =� D�E,�x,y��f�E + Vtot�x,y� − ���dE , �A5�

with D�E , �x ,y�� as �local� density of states, f�E�
=1 / �exp�E /kbT�+1� as the Fermi function, �� as the elec-
trochemical potential, which is a constant in equilibrium
state, kB as the Boltzmann constant, and T as the tempera-
ture. Once the electron density is obtained, the interaction
potential, i.e., the Hartree potential, can be obtained from

Vint�x,y� =
2e2

�̄
�

A

K�x,y,x�,y��n�x�,y��dx�dy�. �A6�

Here, �̄ is an average dielectric constant �=12.4 for GaAs�
and K�x ,y ,x� ,y�� is the solution of the 2D Poisson equation
satisfying the boundary conditions dictated by the sample.
The results reported in this and Appendix B assume periodic
boundary conditions, where a closed form of the kernel
K�x ,y ,x� ,y�� can be obtained analytically.72 Equations �A5�
and �A6� form a self-consistent loop to obtain the potential
and the density profiles of a 2DES subject to high perpen-
dicular magnetic field in the absence of an external current at
equilibrium, which has to be solved iteratively using numeri-
cal methods. The computational effort to calculate electron
and potential profiles within the TFA is much less than that
of the full quantum mechanical calculation procedures. The
results of both agree quantitatively very well in certain
magnetic-field intervals where the widths of the incompress-
ible strips WIS �in which the potential changes strongly� is
larger than l. If WIS� l condition is reached, first of all the
TFA becomes invalid and the calculation of the electron den-
sity should include the finite extension of the wave functions.
The underestimation of the quantum mechanical effects leads
to existence of artificial incompressible strips both in the
non-self-consistent electrostatic approximation �NSCESA�
�Refs. 26 and 37� and self-consistent TFA schemes.45,73 In
fact, as early as the NSCESA, the self-consistent schemes
which also took into account finite extension of the wave
functions already pointed out the suppression of the incom-
pressible strips in certain magnetic-field intervals74 and also
in the recent reports.8,29 For a systematic comparison of the

calculated widths of the incompressible strips within the TFA
and the full Hartree approximations, we suggest the reader to
check Ref. 8, where a simpler quasi-Hartree scheme is pro-
posed to recover the artifacts arising from TFA.

APPENDIX B: CORRECTIONS TO THE TFA

Historically, the first implementation of the TFA, includ-
ing electron interactions, to quantum Hall systems goes back
to the seminal work by Chklovskii et al.37 There it was
shown that within the electrostatic approximation the 2DES
is divided into two regions, which have completely different
screening properties. In this model, a translation invariance
is assumed in the current �y−� direction. Due to finite widths
of the samples in the x direction the electrostatic potential is
bent upward at the edges, therefore the Landau levels,
En�X�=En+V�X�. Inclusion of the Coulomb interaction and
the pinning of the Fermi energy to the Landau levels result in
two regions �strips�: �i� The Fermi energy is pinned to one of
the highly degenerate Landau levels, where the screening is
perfect, effective potential is completely flat �metal-like�, and
electron density varies spatially. �ii� The Fermi energy falls
in between two consecutive Landau levels, screening is poor,
effective �screened� potential varies �the amplitude of the
variation is ��c�, and electron density is constant over this
region. It is apparent that, if the potential varies rapidly on
the scale of l, the TFA fails and the results become unreli-
able. This condition is realized when considering narrow in-
compressible strips having a width smaller than the magnetic
length. Therefore, one should include the effect of wave
functions within these narrow strips. One way is, of course,
to do full Hartree calculations. We already mentioned the
challenges in the computational effort. A simpler approach is
to replace the delta wave functions of the TFA with the un-
perturbed Landau wave functions, i.e., quasi-Hartree
approximation8 �QHA�. The findings of the QHA are shown
to be more reasonable than of the TFA, which now also
includes the finite extension of the wave functions in the
close vicinity of the incompressible strips. Therefore, as an
end result, when the WIS� l condition is reached the incom-
pressible strip disappears due to the overlap of the neighbor-
ing wave functions. Based on this fact, in our calculations we
exclude the effects arising from the artifacts of the TFA by
considering a spatial averaging of the electron density on the
length scales smaller than l, which is known to be relevant in
simulating the quantum-mechanical effects.40,49,75

We should also make one more point clear in NSCESA; a
gate defined quantum Hall bar is considered. However, it is
more common to define Hall bars by chemical etching and
the edge potential profile is much steeper compared to gated
samples, which was shown previously. Therefore, to fit the
predictions of this model concerning the widths and the po-
sitions of the incompressible strips with the experimental
data one has to assume that52 �i� the 2DES and the gates are
on the same plane and �ii� the gate voltage applied should be
fixed to the half of the midgap of the GaAs, i.e., pinning of
the Fermi energy at the GaAs surface. In fact, after making
these two crucial assumptions the experimental findings of
Ahlswede52 perfectly fits with the NSCESA. However, the
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widths �and the existence� of the incompressible strips
strongly deviate from the predictions, since only the inner-
most incompressible strip can be observed. We have argued
that the widths of the incompressible strips strongly depend
on the slope of the potential; i.e., if the external potential is
steep the incompressible strips are narrow. Therefore one can
easily conclude that since the widths of the outermost incom-
pressible strips, i.e., the ones close to the edge, become
smaller than the magnetic length, they could not be observed.
The overestimation of the WIS within the TFA becomes more
severe when an external current is imposed to the system,
which we discuss in Sec. IV. Before discussing the results of
the relaxed TFA, we want to touch on another locally defined
quantity, namely, the DOS, and comment on the implemen-
tation of the global DOS to our local TFA.

In the absence of impurity scattering the DOS of an infi-
nite �spinless� 2DES is given by the bare Landau DOS as

D�E� =
1

2�l2�
n

��E − En� , �B1�

however, this DOS is broadened by the scattering processes,
which can be described in self-consistent Born
approximation8,44 accurately for short-range impurity poten-
tials yielding a semielliptic broadening. Of course, other im-
purity models and scattering processes can also be consid-
ered resulting in Gaussian or Lorentzian broadened Landau
DOS.39,76 In such descriptions of the DOS broadening an
infinite 2DES is assumed and the DOS is calculated for im-
purity distributions averaged over all possible configurations.
Inserting this �global� DOS in Eq. �A5� can be justified again
if the TFA condition is satisfied. We have already shown that
this condition is violated when a narrow incompressible strip
is formed where the external potential is poorly screened.
Therefore, the actual distribution of the impurity potential
becomes more effective at these transparent regions. We
should also note that the effect of screening on the DOS of
an infinite system has been investigated in detail in Ref. 48
and it has been shown that, since the screening is poor within
the incompressible regions, the DOS becomes much broader
than that of the noninteracting case. Hence, the gap between
two consecutive Landau levels is narrower within the incom-
pressible strips compared to compressible strips. Moreover,
recently it has been shown that the �local� electric field

within the sample also leads to broadening of the �local�
DOS.77 The idea is basically that one calculates the Green’s
function for the given potential profile, which is a function of
the applied magnetic field and external current, and obtains
the local DOS from the general expression

D�E,�x,y�� = �
n

��̃n,ky
�x,y��2��E − Ẽn,ky

� , �B2�

where �̃n,ky
�x ,y� is the nth eigenfunction of the Hamiltonian

given at Eq. �A2� with the eigenvalue Ẽn,ky
. In our above

discussion about the formation of the compressible/
incompressible strips we have mentioned that the potential
varies locally whenever an incompressible strip is formed,
where the variation is linear in position up to a first-order
approximation. Now let us consider a linear potential profile
and reobtain the local DOS �LDOS� following78 for the kth
Landau level,

Dk�E� =
1

2k+1k ! �3/2l2�
e−Ek

2/�2
�Hk�Ek/���2, �B3�

with the level width parameter

� = Exl , �B4�

where Ex=�V�x ,y� /�x is the electric field in the x direction
and Ek=E−�2 / �4��c�+ �2k+1���c. The immediate conse-
quence of a strong electric field in the x direction is a broad-
ening of the LDOS, which happens at the incompressible
strips. On the other hand, since Ex vanishes at the compress-
ible strips, the bare Landau DOS is reconstructed from Eq.
�B3� in the �→0 limit.

In summary, the TFA should be repaired when the widths
of the incompressible strips are comparable to or less than
the magnetic length; since �i� the quantum-mechanical wave
functions have a finite extension and do overlap with the
neighboring ones �ii� the LDOS are broadened where strong
electric fields exist; �iii� within the poor screening regions
the �Landau� gap is smaller than the ones of the nearly per-
fect screening regions. At a very simple approximation these
artifacts of TFA are cured by a spatial averaging over the
Fermi wavelength resulting in nonexistence of narrow in-
compressible strips. Throughout this work an appropriate av-
eraging process will be applied.
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