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We use the adaptive time-dependent density matrix renormalization group method �t-DMRG� to study the
nonequilibrium dynamics of a benchmark quantum impurity system which has a time-dependent Hamiltonian.
This model is a resonant-level model, obtained by a mapping from a certain Ohmic spin-boson model describ-
ing the dissipative Landau-Zener transition. We map the resonant-level model onto a Wilson chain, then
calculate the time-dependent occupation nd�t� of the resonant level. We compare t-DMRG results with exact
results at zero temperature and find very good agreement. We also give a physical interpretation of the
numerical results.
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I. INTRODUCTION

Quantum impurity models, describing a discrete degree of
freedom coupled to a continuous bath of excitations, arise in
many different contexts in condensed-matter physics. In par-
ticular, they are relevant for the description of transport
through quantum dots and of qubits coupled to a dissipative
environment.1,2 In recent years, there has been increasing
interest in studying the real-time dynamics of such models
for Hamiltonians H�t� that are explicitly time dependent, as
relevant, for example, to describe external manipulations be-
ing performed on a qubit. It is thus important to develop
reliable numerical tools that are able to deal with such prob-
lems under very general conditions.

The most widely used numerical method to study quan-
tum impurity systems is Wilson’s numerical renormalization
group �NRG�.3 With the recently proposed time-dependent
NRG �TD-NRG� �Ref. 4� one can now calculate certain class
of time-dependent problems where a sudden perturbation is
applied to the impurity at time t=0. TD-NRG may very well
be accurate for arbitrary long time. However, up to now,
TD-NRG is not capable of dealing with a Hamiltonian H�t�
with a time dependence more general than a single abrupt
change in model parameters at t=0. We will show in this
paper that the adaptive time-dependent density matrix renor-
malization group method �t-DMRG� is a promising candidate
for treating a general time-dependent Hamiltonian H�t�.

The density matrix renormalization group �DMRG�
method is traditionally a numerical method to study the low
lying states of one-dimensional quantum systems.5 The re-
cent extension of this method, the adaptive t-DMRG,6,7 can
simulate real-time dynamics of one-dimensional models with
time-dependent Hamiltonians as well. t-DMRG has already
been used to study problems involving real-time dynamics of
one-dimensional quantum systems, for example the far-from-
equilibrium states in spin-1/2 chains,8 dynamics of ultracold
bosons in an optical lattice,9,10 transport through quantum
dots,11 dynamics of quantum phase transition,12 and demon-
stration of spin charge separation.13 These works showed that

t-DMRG is a versatile and powerful method to study the
real-time dynamics of one-dimensional quantum systems.

The underlying mathematical structures of DMRG and
NRG are similar in the matrix product state representation
language.14 Indeed, once a quantum impurity model has been
transformed into the form of a Wilson-chain model, it can be
treated by DMRG instead of NRG.14–17 This possibility
opens the door toward studying time-dependent quantum im-
purity models using t-DMRG. In this paper, we take a first
step in this direction by using t-DMRG to study a simple,
exactly solvable quantum impurity model whose Hamil-
tonian is a function of time. This model allows us to bench-
mark the performance of t-DMRG by comparing its results
to those of the exact solution.

II. MODEL AND DMRG METHOD

We study the resonant-level model with a time-dependent
potential applied to the level. The Hamiltonian is

Ĥ�t� = �d�t�d†d + �
k

�kck
†ck + V�

k

�d†ck + ck
†d� . �1�

d† creates a spinless fermion on the level �impurity� and ck
†

creates a spinless fermion with momentum k in a conduction
band whose density of states is constant between −D and D
and zero otherwise, with Fermi energy set equal to 0. The
energy of the local band is swept linearly with time,
�d�t�=Dvt, where v is the sweeping rate in units of the half
band width D. This model is equivalent to the dissipative
Landau-Zener model with a Ohmic boson bath whose spec-
tral function is J���=2���, for ���c, where �c is the high
energy cutoff,18 and the dimensionless strength of dissipation
parameter � is henceforth set equal to 1

2 . When � is close but
not equal to 1

2 , Hamiltonian �1� contains an additional inter-
action term proportional to U�d†d− 1

2 ���k,k�ck
†ck�− 1

2 �,19 but
this case will not be considered here.

At time t0→−� the local level contains a spinless fermion
and the band is half filled. Then, we lift the energy of the
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level linearly with time. As the level approaches the band,
the probability that the fermion jumps to and from the band
will increase, and decrease after the level has passed the
band. In this paper we study this problem in detail. In par-
ticular, we are interested in the expectation value of the oc-
cupation number on the level nd�t� at time t.

Before using t-DMRG to solve this problem, we need to
transform the Hamiltonian to a DMRG-friendly form. This
can be realized by using a standard Wilson mapping �origi-
nally invented in the context of NRG�, which include two
steps: logarithmic discretization of the band and converting
the Hamiltonian to a hopping form.20,21 Here, we just give
the final result: Hamiltonian �1� is mapped to a semi-infinite
Wilson chain

Ĥ�t� = �d�t�d†d + �2�D

�
�1/2

�f0
†d + d†f0�

+
D

2
�1 + 	−1��

n=0

�

	−n/2
n�fn
†fn+1 + fn+1

† fn� , �2�

where 
n= �1−	−n−1��1−	−2n−1�−1/2�1−	−2n−3�−1/2. �
���V2 is the hybridization parameter and � is the density of
states at the Fermi level. 	�1 is a logarithmic discretization
parameter, which means we divide the band into discrete
energy intervals determined by 	−1, 	−2, 	−3 , . . .. In
the limit 	→1, the discretized spectrum becomes dense
throughout the band. The hopping factors in Hamiltonian �2�
decrease exponentially so it is sufficient to keep the first L
sites to achieve an energy resolution of 	−L/2.

The dimensionless parameter r�2� /v can be used to de-
fine three typical regimes of this problem. They are:

�i� fast sweep: r�1,
�ii� intermediate sweep: r�1, and
�iii� slow sweep: r�1.
We will examine the performance of DMRG in all these

regimes.
The Wilson-chain form of Hamiltonian �2� can now be

treated using DMRG. We first use infinite and finite DMRG
�Ref. 5� to calculate the ground state of the initial Hamil-

tonian Ĥ�t0� at t0. This ground state is a very good approxi-
mation to the true initial state in the ideal case in which the
level would start from t0→−� as long as �d�t0��−���. In the
fast and intermediate sweep regimes, we can choose t0 so
that the �d�t0�=Dvt0 is far below the Fermi surface to satisfy
�d�t0��−���. In slow sweep regime we can do the same if we
use a very large �t0�. However, a more efficient way we adopt
is to use a moderate t0, but set �d�t0� as a very low value
�e.g., −10000D�. After we get the starting state we apply the

evolution operator Te−i	t0
t Ĥ�s�ds on the starting state ���t0�
 to

get the state ���t�
 at time t using t-DMRG,

���t�
 = Te−i	t0
t Ĥ�s�ds���t0�
 . �3�

Here T is the time-ordering operator and we set �=1 in this
paper.

More specifically, we first divide the time interval t into a
series of tiny time steps of the length �. The Hamiltonian is a

function of time, but in each tiny time step it can be approxi-
mated by a constant, so we have

Te−i	t0
t Ĥ�s�ds � e−i�Ĥ�t−�/2�

¯ e−i�Ĥ�3/2��e−i�Ĥ��/2�. �4�

We chose the value of Hamiltonian in the middle of each
interval to represent the Hamiltonian of that interval. At ev-

ery time step we decompose e−iĤ�s�� into local operators us-
ing second-order Suzuki-Trotter decomposition, and we get

e−iĤ�s�� = e−i��Ĥd,0�s�+Ĥ0,1+Ĥ1,2+¯+ĤL−1,L�

= e−i��/2�Ĥd,0�s�e−i��/2�Ĥ0,1e−i��/2�Ĥ1,2
¯ e−i��/2�ĤL−1,L

�e−i��/2�ĤL−1,L
¯ e−i��/2�Ĥ1,2e−i��/2�Ĥ0,1e−i��/2�Ĥd,0

+ O��3� , �5�

where

Ĥd,0�s� = �d�s�d†d + �2�D

�
�1/2

�f0
†d + d†f0� , �6�

and Hn,n+1 is the hopping term involving site n and n+1. The
only time-dependent part of the Hamiltonian is the impurity
so we only need to update the Suzuki-Trotter term of the

impurity and the first site of the Wilson chain e−i��/2�Ĥd,0�s� at
every time step.

We can also easily extend this method to study finite-
temperature dynamics. Instead of using infinite and finite
DMRG to find the starting state, we use finite-temperature
DMRG �Ref. 22� to get the starting state. Then, one can
evolve this purified state using t-DMRG to simulate the real-
time dynamics at finite temperature.23 In this paper, however,
we only focus on the zero temperature and noninteracting
case.

III. EXACT METHOD

Hamiltonian �2� is of quadratic form so we can write it as

Ĥ�t� = �a0
†,a1

†, . . . ,aL−1
† �H�t��a0,a1, . . . ,aL−1�T, �7�

where a0�d and ai� f i−1. H�t� is a L�L Hermitian matrix
with L being the length of the Wilson chain.

By diagonalizing H�t0� we get

Ĥ�t0� = �
k

Ekãk
†ãk. �8�

The kth single-particle state is

�k
 = ãk
†�0
 = �

i

uikai
†�0
 , �9�

where uik are the eigenvectors of H�t0�, in the sense that
� jH�t0�ijujk=Ekuik.

At t0 the system is in its ground state, characterized by the
single-particle distribution function

f�k� = 0, Ek � 0

1, Ek � 0.
� �10�

The initial density matrix of the whole system is
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�̂�t0� = �
k

f�k��k
�k� . �11�

The density matrix evolves according to the von Neumann
equation

i
� �̂�t�

�t
= �Ĥ�t�, �̂�t�� . �12�

This equation can easily be solved with an ordinary differ-
ential equation solver such as ode45 of MATLAB. Then we
can calculate the expectation value of operators, such as
n̂d�t�, as

nd�t� = Tr�n̂d�̂�t�� = Tr�a0
†a0�̂�t�� . �13�

IV. RESULTS AND PHYSICAL INTERPRETATION

In Fig. 1 we plot both the exact and DMRG results in the
three typical parameter regimes at zero temperature, respec-
tively. We use Wilson-chain length L=160 and logarithmic
discretization parameter 	=1.08 for all the three figures. We
will discuss the discretization method in more detail in Sec.
V. Note that we set D=1 in our calculation.

For all three regimes, the DMRG error �shown in Fig. 2
for fast regime� is at worst of order 1�10−4 when keeping
�=100 states during DMRG calculation. This error can be
further reduced by increasing �.

Let us now try to understand the results physically. In the
fast sweep regime the spinless fermion on the impurity does
not have enough time to totally jump into the band, so the
occupation on the impurity nd�t� converges to a finite value
as the level is swept through and out of the band. In contrast,
in the slow sweep regime the fermion ends up in the band
with a very high probability. For comparison we also show
the results of an adiabatic sweep in the slow sweep regime in
Fig. 1. The adiabatic results are obtained from the thermody-
namic average Tr��̂�d�t�n̂d�, where �̂�d�t� is calculated using
Eq. �11� with single-particle states �k�d�t�
 of the Hamiltonian
H�d�t�. Evidently, the DMRG and exact results agree very
well with the adiabatic results.

Another important feature of the results is the oscillation
of nd�t�. To understand it, we first study a simplified model,
in which we only consider one level in the band and disre-
gard the rest levels for the moment. When there is one spin-
less fermion in this system the Hamiltonian is

H�t� = �E0�t� �

� E1
� , �14�

This is just the Hamiltonian of the original Landau-Zener
problem. We denote the instantaneous two eigenstates as
�+ 
t and �−
t with the corresponding eigenenergies
E�t�= 1

2 �E0�t�+E1��t��, where

��t� = �4�2 + �E1 − E0�t��2. �15�

The probability that a state of the form ���t�

=a�−
t+b�+ 
t at time t will still be found in the same state at
time t+�t is given by

P̃�t� � ����t����t + �t�
�2, �16a�

= �a�4 + �b�4 + 2�ab�2 cos���t��t� . �16b�

In each time interval, the instantaneous oscillation fre-

quency ��t� of P̃�t� is equal to the instantaneous oscillation
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FIG. 1. �Color online� The local occupation number nd�t� as a
function of time, calculated with both exact and DMRG method in
the three parameter regimes. At the top, we give the choices made
for the following parameters: sweeping speed v, Suzuki-Trotter step
�, logarithmic discretization parameter 	, Wilson-chain length L,
and the number of states kept in DMRG calculation �. The value of
hybridization parameter � and the corresponding dimensionless pa-
rameter r�2� /v are given in each figure, respectively. The insets
zoom in on fine details of the curves. �a� The markers in the inset
indicate the periods of the oscillations and beats obtained from the
simple physical picture discussed in the text �see Eq. �19��. �c� The
dashed lines are the reference results of the adiabatic sweep calcu-
lation, and the dash-dotted line is the adiabatic sweep result in

infinite band limit, which is simply nd�
�d

� �= 1
2 − 1

�arctan
�d

� .
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frequency of ����t0� ���t�
�2 to the zeroth order in �t. There-
fore, the probability for the system initially in a state ���t0�

to still be found in this state at a later time t,

P�t� � ����t0����t�
�2, �17�

will have an oscillating component proportional to
cos�	t0

t ��s�ds�.
We now return to the original problem and use the picture

described above to roughly estimate the period of the oscil-
lations in the fast sweep regime. In the fast sweep regime
according to Pauli exclusion principle the influence of the
unoccupied levels of the upper half of the band is dominant.
We can neglect the lower half of the band, and add up the
contributions of all levels E1 in the upper half band to the
oscillations by integrating the above mentioned cosine term

over the energies E1. Therefore the occupation on the reso-
nant level

nd�t� � �
0

D

P�t�dE1 �18�

will contain an oscillating contribution proportional to

sin�D

2
�t − t0��cos�1

2
�vt2 − Dt + Dt0 − vt0

2�� . �19�

To get the above result, we approximated ��t� by E1−vt,
neglecting the term 4�2=4�D /� ����D� /� is the prefac-
tor of the hybridization term in the energy representation of
Hamiltonian �1� �Ref. 20��. This is a good approximation,
except around t=0, when the local level is near the middle of
the band, and �E0−E1� is not significantly larger than �.

The resulting Eq. �19� can be used to understand the na-
ture of the oscillations and beats observed in the fast sweep
regime in Fig. 1. The factor sin�D�t− t0� /2� is the beat, and
the period of the beats is Tbeats=4� /D. We plot two markers
with a separation of 4� /D under the curve in the inset of
Fig. 1�a�; they fit the period of the beats very well. The
markers above the curve in the insets of Fig. 1�a� are ob-
tained by solving

1

2
�vt2 − Dt + Dt0 − vt0

2� = 2m� + const., �20�

where m is an integer such that the markers are best aligned
with the maxima of the oscillations shown. We can see that
the final agreement in position is excellent.

Last but not the least, we examined the dependence of the
final local level occupation number nd�+�� on r �shown in
Fig. 3, Table I�, and find it has the typical Landau-Zener
exponential relation,

nd�+ �� = e−r. �21�

This agrees with previous analytical results.24,25 Note that
though nd�+�� only depends on r, the detailed structure of
the nd�t� curve is determined by v and � respectively �see
Eq. �20� for example�.

V. ROLE OF DISCRETIZATION PARAMETER

As in NRG, the value chosen for the discretization param-
eter can affect the real-time dynamics, if it does not lie suf-

TABLE I. The nd�+�� data used in Fig. 3

v
� 0.1D 0.3D 0.9D 2.7D 8.1D 24.3D

0.05D 0.36516 0.71499 0.98419 0.96345 0.98766 0.99587

0.2D 0.01831 0.26199 0.63925 0.86164 0.95155 0.98358

0.8D 0.00480 0.16758 0.55114 0.81984 0.93593

3.2D 0.00081 0.09221 0.45177 0.76732

6.4D 0.00850 0.20404 0.58877

12.8D 0.00009 0.04162 0.34660
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Γ=0.05D, v=1D, τ=0.05/D, Λ=1.08, L=160

fast sweep

FIG. 2. �Color online� Error of the DMRG results for �nd�t�
�nd

DMRG�t�−nd
Exact�t� in fast sweep regime when keeping 100, 150,
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FIG. 3. �Color online� Exact results checking the relation be-
tween the final local occupation number nd�+�� and r. Numerically,
we approximate nd�+�� by averaging nd�t� of the last four time
steps. The time span we use here is t� �−200 /D ,200 /D�. To get
nd�+�� at different r, we choose six different � from a wide param-
eter regime, and with each � six different sweeping speed:
v=0.1D, 0.3D, 0.9D, 2.7D, 8.1D, and 24.3D are used to calculate
nd�+��. We only plot the data for r�10 because the accumulated
numerical error becomes significant compared to nd�+�� for
r�10. The dashed line is a reference line of ln�nd�+���=−r. The
inset zooms in on small r.
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ficiently close to 1. Figure 4�a� compares the exact results of
	=1.08 and 	=2 in fast sweep regime. Note that for 	=2,
big oscillations in nd�t� remain long after the transition.
These are artificial consequences of the rather coarse dis-
cretization scheme, which diminish strongly as 	 is reduced
toward 1. Indeed, for 	=1.08, most of these oscillations
have disappeared. Further reduction in 	 does not change the
results significantly anymore. Note that, incidentally, the
ability of allowing a logarithmic discretization parameter
very close to 1 is a big advantage of DMRG over NRG.

With the physical picture described in Sec. IV, we can
also understand why there are artificial oscillations if 	 is
big. If we use a big logarithmic discretization parameter, the
part of the band far away from the Fermi level is poorly
represented by only a few levels, which means that the os-
cillations from different levels do not average out as well as
would have been the case for a true continuum of levels.

We use logarithmic discretization instead of linear dis-
cretization because in the problem we studied, the levels near
Fermi surface contribute more than levels far away from it,
and logarithmic discretization represents the part of band
around Fermi surface more efficiently.27 This is reflected in
the convergence of the results with respect to the Wilson-
chain length L shown in Fig. 4. As other parameters are the
same, the two discretization methods will both converge to
the same result when L→�. Therefore the faster the result
converges the better the method is. We can see from Fig. 4�b�
that the difference of nd�t� between L=120 and L=160
chains is already negligible for the case of logarithmic dis-
cretization while still significant if using linear discretization,
which means the results converge more quickly if we use
logarithmic discretization. This is even more obvious by
comparing the convergence speed of nd�+�� shown in Fig.
4�c�.

VI. CONCLUSIONS AND OUTLOOK

By studying a benchmark model we demonstrated that the
t-DMRG is a very accurate method to calculate real-time
dynamics of quantum impurity system with a time-dependent
Hamiltonian. To compare with the exact results, the model
we studied here is a noninteracting model, but DMRG can
also treat interacting problems similarly.

Though t-DMRG cannot calculate arbitrary long times �in
contrast to TD-NRG� it can give reliable results in a rela-
tively long time which we expect to be long enough for
numerous practical purposes. For example, in quantum infor-
mation, where fast quantum processes are more useful, the
relevant physics happens in a relatively short time scale,
which can be simulated by t-DMRG with a high precision.
We thus expect t-DMRG to be a powerful tool to study the
real-time dynamics of quantum impurity systems, in particu-
lar in the context of modeling the dynamics of damped,
driven qubits.
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FIG. 4. �Color online� Comparison of the exact results of differ-
ent logarithmic discretization parameters. Both figures zoom in on
fine details. Here we study fast sweep regime as an example. �a�
Comparison of the results with different 	. The large oscillations
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tion and hence artificial. ��b� and �c�� Comparison of the converging
speed with respect to the Wilson-chain length L of linear and loga-
rithmic discretization method.
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