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The magnitude and phase of the transmission amplitude of a multilevel quantum dot is calculated for the
mesoscopic regime of level spacing large compared to level width. The interplay between Kondo correlations
and the influence by neighboring levels is discussed. As in the single-level case, the Kondo plateaus of
magnitude and phase disappear with increasing temperature. At certain gate voltages, “stationary” points are
found at which the transmission phase is independent of temperature. Depending on the mesoscopic parameters
of the adjacent levels �such as relative sign and magnitude of tunneling matrix elements�, the stationary points
are shifted to or repelled by the neighboring level.
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I. INTRODUCTION

In a remarkable series of experiments,1–6 the Heiblum
group has analyzed the complex transmission amplitude, td
= �td�ei�, of a quantum dot embedded in an Aharonov-Bohm
ring. In particular, by analyzing the Aharonov-Bohm oscilla-
tions of the conductance of such a ring, the dependence of
both the magnitude and phase of the transmission amplitude,
�td� and �, were measured as a function of various parameters
such as gate voltage Vg applied to the dot, temperature T,
mean coupling strength to the leads �, etc.

The first two experiments in this series1,2 dealt with large
dots containing many ��100� electrons. The experiment by
Yacoby et al.1 showed that coherent transport through a
quantum dot is possible despite the presence of strong inter-
actions. The next experiments by Schuster et al.2 generated
tremendous interest because the behavior of the transmission
phase showed a surprisingly “universal” behavior as function
of gate voltage: the phase experienced a series of sudden
jumps by −� �phase lapses� between each pair of Coulomb
blockade peaks in the conductance through the dot. This con-
tradicted a naive expectation that the behavior of the trans-
mission phase should depend on microscopic details of the
dot such as the signs of the matrix elements coupling a given
level to the left or right lead.

Subsequent experiments by Ji et al.,3,4 performed on
smaller dots containing tens of electrons, analyzed how the
occurrence of the Kondo effect influences the transmission
amplitude, and in particular its phase. For transmission at
zero temperature through a single level, the Kondo effect
causes the magnitude of the transmission amplitude to ex-
hibit �as function of gate voltage� a plateau at the unitary
limit ��td�=1�. For this regime it had been predicted by Ger-
land et al.7 that the phase should show a plateau at �=� /2,
a result very different from the universal behavior mentioned
above. While the experiments of Ji et al. did yield deviations
from the universal phase behavior, they did not verify the
prediction of a � /2 Kondo plateau in the phase. With hind-
sight, the reason probably was that the experiments did not
realize the conditions assumed in the calculations of Gerland
et al.,7 namely, transport through only a single level.

Truly “mesoscopic” behavior for the phase was observed
only rather recently by Avinun-Kalish et al.,5 in even smaller
dots containing only a small ��10� number of electrons. For
these, the mean level spacing � was significantly larger than
the average level width �, so that for any given gate voltage,
transport through the dot is typically governed by the prop-
erties of only a single level, namely, that closest to the Fermi
energies of the leads. When the number of electrons was
increased beyond about 14, universal behavior for the phase
was recovered. Consequently, it was proposed5,8–13 that the
universal behavior occurs whenever a quantum dot is large
enough for that the ratio � /� is sufficiently small ��1� that
for any given gate voltage, typically more than one level
contributes to transport.

The latest paper in this series, by Zaffalon et al.,6 studied
the transmission phase through a quantum dot in the “deep
mesoscopic” regime � /��1, containing only one or two
electrons. When this system was tuned into the Kondo re-
gime, the transmission phase indeed did show the � /2
Kondo plateau predicted by Gerland et al.7

The experiments of Avinun-Kalish et al.,5 which observed
mesoscopic effects for the transmission phase through a
small number of levels, and those of Zaffalon et al.,6 which
found characteristic signatures of the Kondo effect in the
transmission phase through a single level, raise the following
question: what type of phase behavior can arise in the deep
mesoscopic regime from the interplay of �i� random signs for
tunneling amplitudes of neighboring levels and �ii� the
Kondo effect for individual levels? In the present paper, we
address this question by studying spin-degenerate models of
dots with 2 or 3 levels in the deep mesoscopic regime of
� /��1. This is the regime relevant for the experiments of
Zaffalon et al.6 �for those of Ji et al.,3,4 the ratio � /� was
presumably smaller than used here�. Our goal is to provide a
catalogue of the types of behavior that can occur in this
regime and to illustrate how the characteristic transmission
amplitude �magnitude and phase� depends on temperature as
well as on the strength of the coupling to the leads.

This paper is organized as follows. In Sec. II we introduce
our many-level model for the quantum dot system. We dis-
cuss the relation between the Aharonov-Bohm contribution
to the linear conductance and the transmission amplitude
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through the quantum dot. The latter can be expressed in
terms of the local Green’s function of the dot. We briefly
present the technique used to calculate the latter, the numeri-
cal renormalization group method. In Sec. III we present our
numerical results of both the phase and the magnitude of the
transmission amplitude through a two- and three-level model
in the regime � /��1. We discuss the T and � dependence of
the transmission amplitude with focus on the influence on
Kondo correlations. We study all relevant choices of the me-
soscopic parameters given by the relative signs of the tun-
neling amplitudes of adjacent levels. The influence of neigh-
boring levels is studied. It results not only in a phase lapse in
Coulomb blockade valleys but also introduces a Vg asymme-
try in the finite-temperature modulations of the Kondo pla-
teaus. “Stationary” points of T and � independence are dis-
cussed. In the Appendix, we give a derivation of a formula
for the Aharonov-Bohm contribution to the linear conduc-
tance through a multiterminal interferometer with open ge-
ometry, as used in the Heiblum group. This formula has been
used in several publications including some of the present
authors,7,11,12 but its derivation had not been published be-
fore.

II. MODEL AND METHOD

In the experiments,2–6 the temperature-dependent trans-
mission amplitude through the quantum dot is extracted from
the Aharonov-Bohm oscillations of the conductance in a
multilead ring geometry. In the Appendix, which contains a
figure depicting such a geometry, we show that this transmis-
sion amplitude can be expressed in terms of the equilibrium
local Green’s function of the dot tunnel-coupled only to two
leads on its left and right side, without explicitly incorporat-
ing the other leads of the ring geometry in the calculation.

In this section we introduce a reduced model �called
“double-slit model” in the Appendix�, describing the latter
situation of a spinful multilevel quantum dot coupled to two
reservoirs and present the transmission formula derived in
the Appendix. Further, we comment on the numerical renor-
malization group method, used to calculate the local Green’s
function.

A. Model Hamiltonian

The model Hamiltonian can be split into three parts,

H = Hd + Hl + Ht , �1a�

specifying the properties of the bare dot, the leads and the
coupling between the two systems, respectively. For N spin-
ful levels coupled to a left �emitter� and right �collector� lead,
these terms are given by

Hd = �
j=1..N

�
�

	djndj� + �
�j����j����

U

2
ndj�ndj��� �1b�

Hl = �
a=L,R

�
k�

	kcak�
† cak� �1c�

Ht = �
j

�
a=L,R

�
k�

�ta
j cak�

† dj� + H.c.� . �1d�

Dot creation operators for level j and spin �= �↑ ,↓� are de-
noted by dj�

† , with ndj�=dj�
† dj�, where j=1¯N labels the

levels in order of increasing energy �	dj �	dj+1�. We use an
inter and intralevel independent Coulomb energy U�0. The
leads are assumed to be identical and noninteracting with a
constant density of states per spin of 
=1 /2D, where the
half-bandwidth D=1 serves as energy unit. Electrons in lead
a are created by cak�

† . The local levels are tunnel-coupled to
the leads, with real overlap matrix elements ta

j that for sim-
plicity we assume to be energy and spin independent. The
resulting broadening of each level is given by � j =� jL+� jR,

with � ja=�
�ta
j �2. Notation: we define sj =sgn�tL

j tR
j tL

j+1tR
j+1�

=�. For example, matrix elements of same sign re-
sult in sj =+, whereas one different sign yields sj =−. We
further define s��s1 , ¯ ,sN−1�, and use �
= ��1L ,�1R , ¯ ,�NL ,�NR� /�, with the mean level broadening
�=1 /N� j� j. We assume constant level spacing �=	dj+1
−	dj. The local levels can be shifted in energy by a plunger
gate voltage Vg, with 	dj = j�− �Vg+Vg0�, where Vg0= N+1

2 �
+ 2N−1

2 U. This convention ensures that in case of maximal
symmetry �ta

j =const. for all j ,a�, the system possesses
particle-hole symmetry at Vg=0.

B. Transmission

In the Appendix we generalize a result of Bruder, Fazio,
and Schoeller14 to show that the Aharonov-Bohm contribu-
tion to the linear conductance through the multiterminal in-
terferometer with open geometry with a multilevel quantum
dot embedded in one arm �illustrated by figures in the Ap-
pendix� can be expressed as

GAB�T� =
e2

h
�
�

�Tu��td��T��cos	2�


0
+ �0 + ���T�
 .

�2�

Here Tu= �Tu�ei�0+i2�/0 is the energy- and temperature-
independent transmission amplitude through the upper refer-
ence arm including the Aharonov-Bohm contribution
2� /0 to the phase, where  is the magnetic flux enclosed
by the interferometer arms and 0=h /e is the flux quantum.
The equilibrium Fermi function of the leads are denoted by
f0. The effective, temperature-dependent transmission ampli-
tude td��T� for a spin-� electron through the lower arm in-
cluding the quantum dot is given by

td��T� =� dE	−
� f0�E,T�

�E

Td��E,T� � �td��ei��, �3�

where

Td��E,T� = �
j j�

2�
tL
j tR

j�G j�,j��
R �E,T� . �4�

Therefore, only local properties like the local retarded
Green’s function G j�,j��

R and the Fermi function of the leads
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enter in the transmission amplitude through the quantum dot
td� �Eq. �3�. Thus, it suffices to evaluate the local Green’s
function for the model given in Eqs. �1� in equilibrium at
temperature T. Since we do not consider the effects of a
magnetic field in this paper, G j�,j��

R and all quantities derived
from it, such as td�, do not depend on the spin index �. We
will hence drop this index henceforth and denote the trans-
mission amplitude per spin by td��td�ei�.

In the zero-temperature limit and in linear response, the
dot produces purely elastic potential scattering between left
and right leads, which can be fully characterized15 by the
eigenvalues ei2�� ��=b ,d� per spin of the S matrix, and the
transformation � cos � sin �

−sin � cos � �, that maps the left-right basis of
lead operators onto the b-d eigenbasis of S. The transmission
amplitude per spin through the dot then reads

td = − iSLR = sin�2��sin��b − �d�ei��b+�d�, �5�

where in general � and �� are all Vg dependent. The phase ��

is related by the Friedel sum rule16 to the charge �per spin�
n�=�� /� extracted by the dot from effective lead �. As Vg is
swept, the transmission amplitude goes through zero when-
ever nb=nd mod 1, and a phase lapse by � occurs. Equation
�5� is useful for the special case of “proportional couplings,”
tL
j = ��tR

j with � independent of j, in which the occupations
nb,d take a simple form. Then the two effective leads b and d
are the even and odd combinations of the left and right leads,
respectively, with tan �=1 /� independent of Vg. Then each
level either couples to the even or the odd lead, and the
occupations extracted from the leads are given by nE,O
=� j�E,Ondj�. Note that if all levels are coupled to the same
effective lead �which is the case for s= �+¯+�, the other
effective lead decouples, thereby reducing the computational
complexity significantly.

C. Method

We calculate the local Green’s function GR needed for the
transmission amplitude �Eqs. �3� and �4�, respectively using
the numerical renormalization group method17 �NRG�, a
well-established method for the study of strongly correlated
impurity systems. For a review, see Ref. 18. The key idea of
NRG is the logarithmic discretization of the conduction band
with a discretization parameter ��1. As a result, Hl is rep-
resented as a semi-infinite chain, where only the first site
couples to the local level. The hopping matrix elements
along the chain fall off exponentially like �−�n−1�/2 with the
site number n �energy scale separation�. The NRG Hamil-
tonian can be solved iteratively by successively adding sites
and solving the enlarged system, thereby increasing the en-
ergy resolution with each added site by a factor of �1/2. The
corresponding increase in Hilbert space is dealt with by a
truncation strategy that keeps only the lowest Nkeep states for
the next iteration.

For the calculation of Im GR we use the full density matrix
NRG,19,20 based on the only recently developed concept of a
complete basis set within NRG.21 The real part of GR is ob-
tained by Kramers-Kronig transformation. Improvement of
the results is obtained by the self-energy representation,
where the U-dependent part of the impurity self-energy

����=U FR���
GR��� is expressed by two correlation function,22

which both are calculated with the full density matrix NRG.

III. RESULTS

In this section we present our results for the phase and
magnitude of the transmission amplitude td through the quan-
tum dot. The gate voltage Vg is swept over a range suffi-
ciently large that the full occupation spectrum of the quan-
tum dot is covered ranging from 0 to 2N. The exact
distribution of the couplings seems to play only minor role
for the transmission amplitude. Therefore we choose left-
right symmetric coupling in the cases where all sj =+, reduc-
ing the computational effort significantly, since then the odd
channel decouples.

In the regime of interest, the deep mesoscopic regime, the
mean level spacing � is much larger than the typical level
widths � j, � /��1. Therefore electrons enter the dot one by
one when increasing the gate voltage. Transport thus occurs
mainly through one level at a time; more precisely, it occurs
through a linear combination of all levels, where in the me-
soscopic regime the level closest to the Fermi energy
dominates.11

The section is organized as follows: we first elucidate the
basic properties of the transmission amplitude for the ex-
ample of a two-level system. Varying temperature T �at fixed
coupling ��, or average coupling � �at fixed T�, we study
both possible choices s=+ and s=−, respectively. In order to
analyze the interplay of s=+ and s=−, we then present data
for a three-level system for all four possible combinations of
s= �s1 ,s2�. Additionally, this has the advantage that for the
middle level “boundary effects” �effecting the outermost lev-
els� can be assumed to be eliminated, thus the behavior of
the middle level can be viewed as representative of a generic
level in a multilevel quantum dot in the deep mesoscopic
regime.

Unless otherwise noted, we use U=0.6. In order to cover
all relevant energy scales with reasonable computational ef-
fort, we usually use �=3.2 for the two-level model and �
=3.5 in case of three levels. We checked that already by
keeping �1000 states at each iteration, also for the two-
channel calculations �that involve at least one si=−� the
physical trends are captured qualitatively. Note that since the
eigenvalues of the scattering matrix are given by ei2��, the
transmission phase � is defined modulo �. For clarity of the
figures, curves showing � are shifted by multiples of � as
convenient.

A. Two-level model

1. Temperature dependence

Figure 1 shows the transmission amplitude for both s=+
�a,b� and s=− �c,d�, for fixed dot parameters and various
different temperatures. The mean level broadening is chosen
to be � /U=0.03 in panels �a,c�, and � /U=0.08 in panels
�b,d�. Therefore the �Vg-dependent� bare Kondo
temperatures23
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TK
j =�� jU

2
exp��

	dj

2U

�	dj + U�
� j

� �6�

vary in a lower-lying range of energies for panels �a,c� than
for panels �b,d�. In all panels the relative coupling of the first
and the second levels are chosen to be �= �0.8,1.2�. There-
fore, the bare Kondo temperature for level 1 is lower than for
level 2, TK

j=1�TK
j=2, as indicated in the legends. The resulting

difference in the temperature dependence can be nicely ob-
served in the figure. We first describe those general proper-
ties of the transmission amplitude that qualitatively agree
with those that one would obtain for just a single level, then
discuss the effect of the presence of a second level.

a. General properties. In the mesoscopic regime, where
transport mainly occurs through one level at a time, two
different regimes of transmission can be distinguished as Vg

is varied, as indicated in Fig. 1�a�: These are �i� the Kondo
valleys and �ii� the regime in between, to be called “Cou-
lomb blockade valleys.” There, the transmission amplitude is
mainly determined by the mesoscopic parameter s, showing
a phase lapse only in case s=+, similar for both spinful and
spinless models.11,12

In the zero-temperature limit, T�TK
�j�, the transmission

amplitude exhibits the typical Kondo behavior: in the local-
moment regime a typical Kondo plateau forms, with �td� ap-
proaching the unitary limit, �td�→1. In the mixed valence
regime the magnitude changes rapidly as a function of Vg. In
the Coulomb blockade valleys, transmission is suppressed by

Coulomb interaction. The transmission phase increases by
�� /2 for each entering electron �see black curves for � in
Fig. 1�, increasing only slightly in between. In the Kondo
valleys this results in a plateau at � mod �= �

2 , as direct
consequence of the �

2 phase shift due to the formation of the
Kondo singlet.

With increasing temperature, the Kondo effect is sup-
pressed, thus the behavior in the middle of the Kondo valleys
changes dramatically. The Kondo plateaus in �td� and � dis-
appear: The magnitude tends towards Coulomb blockade be-
havior, with a resonance of width �� j for each entering
electron, while the phase develops a nonmonotonic Vg de-
pendence. As in the single-level case, all finite-temperature
curves of the phase intersect the zero temperature at the same
gate voltage, say Vg

cj �see thin arrows�. We shall refer to this
gate voltage as a “stationary” point �with respect to
temperature�.

As observed in the experiments of Ji et al.3 and empha-
sized by Silvestrov and Imry,24 the transmission phase reacts
more sensitively to the buildup of Kondo correlations with
decreasing temperature than the transmission magnitude: �
approaches its T=0 behavior already at temperatures T
�TK �the �

2 plateau develops�, whereas �td� develops its pla-
teau for T significantly less than TK �see the dashed-dotted
curve �T /U=10−4� for level 1 in Fig. 1�b� or the dashed
curve �T /U=10−6� for level 2 in Fig. 1�a�. Similar to the
predictions of Silvestrov and Imry,24 we find shoulders in the
evolution of the phase, see for example the fat arrow and the

0
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3

|t d|
α

/π

-2 -1 0 1
Vg/U

0

1

2

3

|t d|
α
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Γ/U=0.03

(a)

TK /U= 9 10
-9

, 2 10
-6

Γ/U=0.08

(b)

(c) (d)

T/U

δ/U=0.3, γs=+={0.4,0.4,0.6,0.6}, γs=-={0.3,0.5,0.7,0.5},

TK /U= 4 10
-4

, 4 10
-31,2 1,2

N=2, T-dependence

1 2

(i) (ii) (i)

U=0.6, Λ=3.2

. . . .

FIG. 1. �Color online� Transmission amplitude per spin, td= �td�ei�, through a spinful two-level quantum dot for various temperatures and
constant couplings. Regimes �i�, �ii�, indicated in panel �a� only, refer to Kondo valleys or Coulomb blockade valleys, respectively �see text�.
The levels involved are indicated by their level number 1,2. Level 2 is coupled more strongly to the leads than level 1, resulting in different
bare Kondo temperatures, e.g., TK

j=1�TK
j=2. We use � /U=0.03 �a,c� and � /U=0.08 �b,d�, thus TK

�a,c��TK
�b,d�. The minimum value of the TK

j

�in the center of the Kondo valleys� are indicated in the legends. In accordance with Ref. 24, we find shoulders in the phase �see, e.g., the
fat arrow and the dashed curve �T /U=10−6� in �c� for level 1 and an enhanced sensitivity of the phase to Kondo correlations compared to
the magnitude, see e.g., the dashed-dotted �T /U=10−4� curves in �d� for level 1 or the dashed curve �T /U=10−6� for level 2 in �a�. There,
the typical �

2 -Kondo plateau in the phase is present, whereas the Kondo plateau in amplitude is not fully developed yet. At certain points in
gate voltage, say Vg

cj �as indicated by thin arrows�, we find stationary points where the curves for � for all temperatures intersect. The
position of Vg

cj is shifted by the presence of a neighboring level, being repelled by or shifted towards the latter for s=+ or −, compare �a,c�
or �b,d�, respectively. Depending on the mesoscopic parameter s=�, the phase either exhibits a sharp drop of �, accompanied by a zero in
the amplitude �td� �s=+, see �a,b�, or increases monotonically �s=−, see �c,d� in the Coulomb blockade valleys.
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dashed curve �T /U=10−6� in Fig. 1�c�. This indicates that the
temperature is large enough to suppress Kondo correlations
in the deep local-moment regime �middle of the Kondo val-
ley�, where TK is very small. Towards the borders of the
local-moment regime the crossover temperature for the onset
of phase sensitivity increases �as does the Kondo tempera-
ture, see Eq. �6�, eventually exceeding the temperature.
Then the phase tends towards its zero-temperature behavior,
thus producing shoulders.

b. Properties special to the multilevel model. The most
obvious difference between the transmission amplitude of
the many-level model in the mesoscopic regime compared to
the single-level model is the phase behavior in the Coulomb
blockade valleys between the levels. Depending on s, i.e. on
the relative sign of the tunnelling matrix elements of the two
adjacent levels, the phase either exhibits a sharp drop �“phase
lapse”� by � in the s=+ case �accompanied by a transmission
zero, �td�=0�, or evolves continuously for s=−.11,12,14,25–27

The phase lapse that occurs for s=+ is smeared out with
increasing temperature �not discernible on the Vg scale used
in Fig. 1, but evident, e.g., in Fig. 2�f� of Ref. 11 and in Fig.
4 of Ref. 12, allowing the phase lapse to be identified as
such despite the fact that � is defined only modulo �. The
phase lapse occurs already at zero temperature and also ex-
ists for spinless models,11,12 contrary to the nonmonotonic
phase evolution discussed above. Therefore, the relevant en-
ergy scale for the temperature dependence of this phase lapse
is not related to the Kondo temperature but to the level dis-
tance and width of the effective transport levels.24 It is there-
fore not a relevant energy scale in the temperature range
studied in this work.

A further peculiarity for models with more than one level
is the asymmetry �with respect to the center of the Kondo
valleys� of the transmission amplitude in the local-moment
regime at finite temperature, introduced by the mixing of
neighboring levels. The asymmetry in phase can be charac-

terized by the position of the stationary points, Vg
cj �indicted

by thin arrows in Fig. 1�. In case s=+, these points are re-
pelled by the neighboring level, whereas they are shifted to
the latter for s=−, compare for example Figs. 1�a� and 1�c�
or Figs. 1�b� and 1�d�. For �1��2, the repulsion and attrac-
tion is enhanced or reduced compared to �1=�2 for the level
that is coupled less or more strongly to the leads, respec-
tively. Clearly, in the limit of one decoupled level �effective
one-level system�, the stationary point of the other level is
symmetric with respect to the corresponding Kondo plateau.
The dips that form in the plateaus of the amplitude with
increasing temperature develop a distinct asymmetry only for
T�TK

�j�, for which they tend to shift towards the correspond-
ing Vg

cj. This is consistent with the fact that as the phase drop
in the Kondo valley gets sharper with increasing temperature
and approaches a quasiphase lapse, the magnitude experi-
ences a minimum, as for every complex function. Interest-
ingly, the asymmetry in phase is the same for all tempera-
tures, thus already at temperature T�TK the phase “knows”
in which direction �of Vg� the dip in magnitude will shift at
higher temperatures.

2. Dependence on the coupling strength

In experiments, it is more convenient �and easier to con-
trol� to change the coupling strength between the quantum
dot and the reservoirs than the temperature. Accordingly, Fig.
2 presents the transmission amplitude for various values of
�, keeping the temperature constant. With decreasing �, the
decrease in TK together with the suppression of Kondo cor-
relations is nicely illustrated. At fixed temperature T�TK,
the nonmonotonic Vg-dependence of the phase evolution gets
more pronounced and sharper with decreasing �. In the Cou-
lomb blockade valleys, the suppression of �td� by Coulomb
interaction increases with decreasing ration � /U.

In the single-level problem, in addition to stationary
points with respect to temperature, we also find stationary
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1 2

(i) (ii) (i)

FIG. 2. �Color online� Transmission per spin through a spinful two-level quantum dot for both choices of s=� and various values of
mean couplings � at fixed temperature T, level spacing � and relative couplings �. Due to the mixing of the levels, no stationary points with
respect to � exist, see text and the arrows in �d�. Level numbers and the regime of �i� Kondo and �ii� Coulomb blockade valleys are indicated
in panel �a� only.
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points with respect to � for td, i.e., for magnitude and phase
of the transmission amplitude. These occur at the outer flanks
of the Kondo plateaus. Varying the mean coupling strength �
at fixed �, � and T in the two-level model, as shown in Fig.
2, these points can still be recognized �indicated by arrows in
�d�, even though the � independence is not perfect �within
our numerical accuracy�. We expect that due to the mixing of
the levels, also the level distance � has to be taken into
account to recover these stationary points. Between the lev-
els, near Vg /U�0, another quasistationary point seems to
occur.

B. Three-level model

Naturally, the question arises about the effects of several
levels, with different choices of si=�, which is present only
for models with more than two levels. Assuming that in the
mesoscopic regime only neighboring levels mix significantly,
i.e., simultaneously influence transport, any local level of a
quantum dot �except the lowest or highest one� can be rep-
resented adequately by the middle level of a three-level
model.

In Fig. 3 we present numerical data of a three-level model
for all four possible combinations of s= �s1 ,s2� and various
temperatures. The second level is influenced by the effect of
both s1 and s2, resulting in an effective enhancement or com-
pensation of the asymmetry of the stationary point Vg

c2 of
level 2, as discussed in Sec. III A 1. Also the relative strength
of the level couplings �given by �� has to be considered. In
Fig. 3�a�, both s and � symmetrize the transmission curves of
the middle level, whereas in panel 3�b� � shifts Vg

c2 to posi-
tive Vg. In panels 3�c� and 3�d� both s and � tend to increase
the asymmetry.

Therefore, the transmission phase through a spinful quan-
tum dot with Kondo correlations present has S-like shape in
the local-moment regimes at T�TK. Analogously to experi-

ments, we find an asymmetry of this S-like shape. It is de-
termined by both the relative strength � and the sign s of the
level couplings.

IV. CONCLUSION

In this paper, we present temperature-dependent NRG cal-
culations of the magnitude and phase of the transmission
amplitude through a multilevel quantum dot in the regime
� /��1. Clearly, the Kondo correlations are suppressed with
increasing temperature. The presence of neighboring levels
results in a Vg asymmetry in the finite-temperature modula-
tion of the Kondo valleys. The asymmetry depends on the
relative signs of the tunneling matrix elements as well as on
the relative couplings of the adjacent levels. Further, sharp
phase lapses may occur between the levels. Studying a three-
level model, the middle level can be understood as a repre-
sentative of a generic level in a multilevel quantum dot.

Throughout the paper, we deliberately focussed only on
the deep mesoscopic regime, for which the results can be
understood rather straightforwardly. The crossover into the
regime � /��1, which is certainly of interest too in order to
understand the fate of Kondo physics in the universal re-
gime, and which we believe to be the regime relevant for the
experiments of Ji et al.,3,4 will be left as a subject for future
studies.
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FIG. 3. �Color online� Transmission per spin through a three-level dot for all four possible combinations of s= �s1 ,s2� and various
temperatures, for fixed � /U=0.03. Level numbers and the regime of �i� Kondo and �ii� Coulomb blockade valleys are indicated in panel �a�
only. The two-channel calculations for �b,c,d� qualitatively capture the physical trends. The asymmetry in the Kondo valleys is determined
by both s and �. For convenience the figure legends for � display only the total relative coupling of each level. The minimal bare Kondo
temperatures are indicated. �a� s=++: �= �0.6,0.6,0.4,0.4,0.5,0.5�. The case T /U=10−8 is included only for this panel. �b� s=−−: �
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APPENDIX: CONDUCTANCE FORMULA FOR
MULTITERMINAL GEOMETRY

1. General case

We generalize the current formula derived by Bruder,
Fazio, and Schoeller14 for a single-level quantum dot embed-
ded into one arm of an Aharonov-Bohm interferometer with
two-terminal geometry to a multiterminal geometry with a
multilevel dot, as used by the Heiblum group.2–6 Fig. 4
shows a schematic depiction of the typical device layout
used �adapted from Fig. 1 of the pioneering experiment;2 the
layout in subsequent experiments was similar in spirit, see,
for example, Fig. 1 of Ref. 6�. The derivation below will
refer to an abstract depiction of the same geometry, shown in
Fig. 5.

Consider a N-level quantum dot described by Hd �Eq.
�1b� embedded in one arm of an Aharonov-Bohm interfer-
ometer connected to six leads, as depicted in Fig. 5. Each
lead, and each arm connecting them, is assumed to support
only one mode. �This assumption is needed below only for
arms 1 and 2 representing emittor and collector, respectively;
it can be relaxed for arms 3 to 6 forming the base region, but
will be retained here for notational simplicity.� The tunnel-
ling between the local levels j=1, ¯ ,N on the quantum dot
and the leads �=1, ¯ ,6 is described by

Ht
multilead = �

j�
�
��

t	��
j c�	�

† dj� + H.c. �A1�

Here t	��
j is the amplitude �indicated by dashed arrow in Fig.

5� for an electron with spin �, initially in dot state �j��, to
tunnel off the dot and end up with energy 	 in lead �, rep-

resented by lead state �	���. Since it can tunnel off to the left
or the right, this amplitude can be represented as t	��

j

=�a=L,Rta�
j A	�

a , where ta�
j = �xa� � j�� is the amplitude �chosen

to be real� to get from dot state �j�� to point xa on side a
=L ,R of the dot �solid arrow�, and A	�

a = �	�� �xa�� is the
amplitude �assumed spin independent� to get from point xa to
lead state �	��� without traversing the dot �dashed-dotted
arrow�.

Following Büttiker,28 the current operator in reservoir � is
given by

Î��t� =
e

h
�
		�

�
���

1



�c	����

† �t�c	���t� − b	����
† �t�b	���t� ,

�A2�

where 
, the density of states per spin, is assumed to be
constant and equal for each reservoir. The first term inside
the bracket stands for the incident, the second term for the
reflected current in reservoir �, thus b	��=��S��

	 c	��, with
S��

	 the �spin independent� scattering amplitude to get from
lead � to lead � with energy 	. Defining the lesser, retarded,
and advanced correlation functions

G�,��
� �t − t�� �

i

�
�a��

† �t��a��t�� =� dE

2��
e−iE�t−t��/�G�,��

� �E� ,

�A3�

G�,��
R,A �t − t�� � −

i

�
����t − t�����a��

† �t��,a��t�+�

=� dE

2��
e−iE�t−t��/�G�,��

R,A �E� , �A4�

where a� denotes a fermionic operator with composite index
�, the expectation value of the current operator Eq. �A2�can
be expressed as

�Î�� =
e

h
�
		�

�
���

�
���

1



�������� − S���

	�� S��
	 

��− i�� dE

2�
G	��,	�����

� �E� . �A5�

FIG. 4. Schematic depiction of an Aharonov-Bohm interferom-
eter of the type used by the Heiblum group �compare Fig. 1 of Ref.
2�: The base region �B�, emittor �E�, and collector �C� have chemi-
cal potentials �0=0, �1, and �2, respectively. In the base region
four reflectors �shown in white� and a central barrier �black� define
an upper and lower arm forming a “ring” threaded by an applied
magnetic flux . The lower arm contains a quantum dot �D�,
coupled to the base region via tunable left and right tunnel barriers
�L,R�. The gate voltages Vg or Vu can be used to sweep the dot’s
energy levels relative to �0 or to change the transmission amplitude
of the upper arm, respectively. The dashed lines are guide for the
eyes, indicating how this devices realizes the geometry depicted in
Fig. 5.

FIG. 5. �Color online� Abstract depiction of a multiterminal
Aharonov-Bohm interferometer, with a multilevel quantum dot em-
bedded in the lower arm, penetrated by a magnetic flux . The
different tunnelling amplitudes used in the text are indicated by
arrows.
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To calculate G��E� in Eq. �A5�, we use the standard
Dyson equation for the Keldysh 2�2 matrix Green’s

function29 Ĝ�E�,

Ĝ	��,	������E� = �		���������Ĝ	��
0 �E�

+ �
j j�

Ĝ	��
0 �E�t	��

j Ĝ j�,j���
d �E�t	�����

j�� Ĝ	�����
0 �E� ,

�A6�

which yields

G	��,	�����
� �E� = �		���������G	��

0� �E�

+ �
j j�

t	��
j �A + B + Ct	�����

j�� , �A7�

where terms in square brackets are given by

A = G	��
0R �E�G j�,j���

� �E�G	�����
0A �E� ,

B = G	��
0R �E�G j�,j���

R �E�G	�����
0� �E� ,

C = G	��
0� �E�G j�,j���

A �E�G	�����
0A �E� ,

and the free Green’s functions for the leads have the form

G	��
0R,A�E� =

1

E − 	 � i0+ , �A8�

G	��
0� �E� = 2�if��E���	 − E� , �A9�

with f��E� the Fermi function of lead �. Inserting G� �Eq.
�A7� into Eq. �A5�, the current can be written as

�Î�� = I�
0 + �I�. �A10�

I�
0 arises from the first term of Eq. �A7�. It describes the

situation when the dot is completely decoupled �t	��
j =0�,

thus does not contribute to Aharonov-Bohm oscillations. The
influence of the quantum dot on the Aharonov-Bohm oscil-
lations is caused by �I�, arising from the second expression
of Eq. �A7�. The energy sums �		� in Eq. �A5� can be evalu-
ated using the Kramers-Kronig relation

�
	

1




S	

E − 	 � i0+ = �− 2�iSE

0
� , �A11�

where S	 stands for t	��
j or t	��

j S��
	 , and the plus �minus�

refers to the upper �lower� case, respectively. This relation
follows from the fact that the amplitudes t	��

j and S��
	 have to

be analytic in the upper half plane, in order to ensure that the
full S matrix of the system �in the presence of tunneling�, of
which they are ingredients, satisfies the necessary causality
requirements in the time domain.30

The two contributions to the current then read

I�
0 =

e

h
� dE�

�
�
�

���� − �S��
E �2f��E� , �A12a�

�I� =
e

h
� dE

2�
�
���

�
j j�

�
���

�������� − S���
E� S��

E 

� �2��2
tE��
j tE����

j�� �− i��G j�,j���
� �E� + G j�,j���

R �E�f���E�

− G j�,j���
A �E�f��E� . �A12b�

The expression for �I� can be simplified somewhat by ex-
ploiting the relations

G j�,j���
R/A �E� = �G j���,j�

A/R �E��, �A13a�

G j�,j���
� �E� = − G j���,j�

�� �E� �A13b�

and relabeling �j���↔ �j������ in some terms, with the re-
sult:

�I� =
e

h
Re�� dE�

���
�
j j�

�
���

�������� − S���
E� S��

E 

� 4�
tE��
j tE����

j�� �− i� � �1

2
G j�,j���

� �E�

+ G j�,j���
R �E�f���E��� . �A14�

This is the desired generalization of Bruder, Fazio, and
Schoeller.14

2. Simplifications

For the experimental setup used by Schuster et al.2 �and
equivalently for the ensuing papers�3–6 to measure transmis-
sion phase shifts, two simplifying assumptions can be made.
The first allows us to neglect nonequilibrium effects, the sec-
ond to perform NRG calculations for a simplified in which
the dot is coupled only to two leads.

a. Neglect of nonequilibrium effects

In the experimental setup used by Schuster et al.,2 the
leads �=3,4 ,5, and 6 serve as draining reservoirs �to pre-
vent multiple traversals of the ring, see below�, and are all
kept at the same chemical potential, ��=�0. �We shall take
�0=0, but nevertheless display �0 explicitly in the discus-
sion up to and including Eq. �A16�. This also fixes the
chemical potential of the ring, referred to as “base region” in
Ref. 2, to equal �0. Lead 1 and 2 serve as emitter and col-
lector, respectively �see Fig. 4�, with chemical potentials �1
and �2, and Fermi functions f1,2�E�= f0�E−�1,2�. A crucial
feature of the device design depicted in Fig. 4 is that the
point contacts between emitter or collector and the base re-
gion �marked P1 and P2 in Fig. 5� are so small that the
voltage drops occur directly at these point contacts, and not
at the tunnel barriers coupling the dot to the ring. Thus, while
the emitter injects electrons into the base region from one
side and the collector extracts them on the other side, thereby
driving a small current, we may assume that this happens at
a sufficiently small rate that the base region is not driven out
of equilibrium. In other words, we may assume that the dot
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and the ring to which it is tunnel-coupled, and also elec-
trodes 3, 4, 5, and 6, are all in equilibrium (governed by �0�
with each other. This implies that the dot Green’s functions
G j�,j���

R,A,� �E� do not depend on �1 and �2 at all, and that they
can be calculated using equilibrium methods, with chemical
potential set by �0. �Note that presence of an equilibrium
base region separating the dot from the emitter and collector
makes this situation different from most experiments on
transport through quantum dots, for which emitter and col-
lector are directly adjacent to the dot, separated from it by
tunneling contacts across which the voltage drops occur. In
such cases, G j�,j���

R,A,� �E� do depend on �1 and �2, and have to
be computed using nonequilibrium methods. Thus, for the
present situation the lesser function can be expressed in
terms of the retarded and advanced ones using the following
standard equilibrium relation:

G j�,j���
� �E� = − f0�E − �0��G j�,j���

R �E� − G j�,j���
A �E� .

�A15�

The conductance in the linear response regime can be ob-
tained by taking �1−�2=eV, where e= �e�, e.g., by setting34

�1 = �0 = 0, �2 = − eV , �A16�

and calculating G=�I1 /�V, with I1 given by Eq. �A14�.

b. Reduction to a double-slit geometry

The reason why a multilead geometry was used in experi-
ment is to avoid phase rigidity: in an Aharonov-Bohm ring
connected to only two leads, current conservation and time-
reversal symmetry imply, via Onsager-Casimir relations,31

that the transmission phase of the dot does not vary smoothly
with gate voltage, but can assume only two distinct values,
differing by �. A multilead geometry avoids this by strongly
reducing the probability amplitudes for paths from emitter to
collector to traverse the ring multiple times, since with each
traversal of the ring the probability increases that electrons
travelling in the ring are “siphoned off” into the side
arms.32,33 We shall exploit this fact by making the assump-
tion that the probability amplitude for passing any side arm
more than once along the way from emitter to collector is
negligibly small. This assumption amounts to reducing the
problem to that of a double-slit problem, where the transmis-
sion amplitude through one arm is calculated without incor-
porating the effect of the other arm at all. More specifically,
we mimick the multilead geometry using the following re-
duced “double-slit model:” The Aharonov-Bohm ring is
coupled to only emitter and collector leads �as in Fig. 5, but
without any side arms�, i.e. � is restricted to the values 1 and
2. The effect of the side arms in the actual experiment is
mimicked by taking the amplitude t	��

j to get from state �j��
on the dot to state �	��� in lead � to be nonzero only for the
short direct path from the dot to lead �, without traversing
the upper arm �concretely: we take A	2�

L =A	1�
R =0�. When

calculating the current we do allow for direct paths from lead
1 to 2 via the upper arm. However, the upper arm is ignored
for the calculation of the equilibrium local retarded or ad-
vanced Green functions G j�,j���

R/A �E� using NRG. For the latter

purpose, we thus use a model of a multilevel dot coupled to
two independent leads, say L and R, with equal chemical
potentials �L=�R, representing the two segments of the ring
to the left and right of the ring, coupled to it by tunnelling
contacts. These two segments should be treated as indepen-
dent leads, due to the above double-slit assumption of ignor-
ing the upper arm while calculating transmission through the
lower arm.

With the assumptions �i� and �ii� just described, let us now
obtain an expression for that part of the conductance show-
ing Aharonov-Bohm oscillations with applied flux, GAB

=
�I1

AB

�V , where I1
AB is that part of the current in lead 1 depend-

ing on ei2�/0. For the chemical potentials given by Eq.
�A16�, this implies that Eq. �A14� should be evaluated with
�=1, ��=2, and �=1. Using the fact that for the model of
present interest spin is conserved, so that all correlators are

spin-diagonal �G j�,j��
R ������, this readily yields

GAB�T� =
e2

h
�
�
� dE Re�Tu�E�Td��E�	−

� f0�E�
�E


 .

�A17�

The amplitudes Td� and Tu, given by

Td��E� = �
j j�

2�
tL�
j G j�,j��

R �E�tR�
j��, �A18�

Tu�E� = 2iAE1
L S11

E S12
E�AE2

R�, �A19�

may be associated with the transmission of a spin-� electron
from xL to xR directly through the dot or once around the ring
via the upper arm, respectively. �In the main text, we used a
somewhat oversimplified phrasing by calling Td� the “trans-
mission through the lower arm including the dot” and Tu the
“transmission through the upper arm.”� We shall assume Tu
to be energy and temperature independent, but lump with it
all flux dependence, since the path associated with it essen-
tially encircles the ring once:

Tu = �Tu�ei�2�/0+�0�. �A20�

Thus, the Aharonov-Bohm contribution to the conductance
can be written in the form

GAB�T� =
e2

h
�
�

�Tu��td��T��cos�2�


0
+ �0 + ���T�� ,

�A21�

where we have defined the temperature-dependent transmis-
sion amplitude for a spin-� electron through the quantum dot
by

td��T� =� dE	−
� f0�E�

�E

Td��E� � �td��T��ei���T�.

�A22�

�The T dependence enters both through that of GR and that of
f0.� The magnitude and phase of td� can be �i� extracted via
Eq. �A21� from the experimental results as well as �ii� cal-
culated with NRG using Eqs. �A18� and �A22�.
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