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Understanding the charging of exceptionally narrow levels in quantum dots in the presence of

interactions remains a challenge within mesoscopic physics. We address this fundamental question in

the generic model of a narrow level capacitively coupled to a broad one. Using bosonization we show that

for arbitrary capacitive coupling charging can be described by an analogy to the magnetization in the

anisotropic Kondo model, featuring a low-energy crossover scale that depends in a power-law fashion on

the tunneling amplitude to the level. Explicit analytical expressions for the exponent are derived and

confirmed by detailed numerical and functional renormalization-group calculations.
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Introduction.—Confined nanostructures offer a unique
arena for thoroughly interrogating the interplay between
interference and interactions while holding the promise of
future applications. Particularly appealing are semiconduc-
tor quantum dots (QDs), for which the manipulation of spin
[1,2] and charge [3] has recently been demonstrated. The
precise and rapid control of switchable gate voltages ren-
ders these devices attractive candidates for a solid-state
qubit [4,5]. The accurate manipulation of QD setups re-
quires, however, detailed understanding of how charging
proceeds. Indeed, interactions can substantially modify the
orthodox picture of charging, whether by renormalizing the
tunneling rates or by introducing nonmonotonicities into
the population of individual levels [6–8]. Even the simplest
two-level device, where each level harbors only a single
spinless electron, displays remarkably rich behavior [9].

We consider a situation in which the width of one narrow
level is much smaller than the width of the other broad one.
A disparity in widths is generic for QDs in the intermediate
regime between integrable and chaotic [6]. It was reported
in several artificial structures [10,11], and has been ex-
ploited for charge sensing [12,13]. As the energy �� of the
narrow level is raised, its occupation varies from 1 to 0 over
a characteristic width �. This energy scale, or the corre-
sponding charge-fluctuation time scale @=�, manifests
itself in charge sensing and transmission-phase measure-
ments [14]. The effect of interlevel repulsion U on � has
been explored only in the large-U limit, revealing novel
correlation effects [15–18]. The physical mechanism de-
termining � for moderate U remains unclear [9].

In this Letter we solve the fundamental question of the
charging of a narrow QD level from a quantum-critical
perspective. Because of the capacitative coupling U, every
switching of the narrow level initiates restructuring of the
broad level and its attached Fermi sea, in direct analogy

with the x-ray edge singularity. For nonzero tunneling to
the narrow level, coherent superpositions of these charge
rearrangements lead to Kondo physics [19] with the charge
state (0 or 1) acting as a pseudospin, and the energy of the
narrow level acting as a Zeeman field. Using Abelian
bosonization we show that �, being the Kondo scale in
the pseudospin language, depends on the tunneling ampli-
tudes in a power-law fashion. We derive explicit analytical
expressions for the exponents encompassing all physical
regimes of the model (at zero temperature T). In a second
step we confirm our predictions by detailed numerical
(NRG) [20] and functional (FRG) [21] renormalization-
group (RG) calculations, thus resolving this challenging
aspect of mesoscopic physics.
Model and objective.—Our specific model for charging

is depicted schematically in the inset of Fig. 1, and is
defined by the Hamiltonian (� is the pseudospin index)

H ¼ X
�¼�

�X
k

�kc
y
k�ck� þ V�

X
k

ðcyk�d� þ dy�ck�Þ

þ ��d
y
�d�

�
þ b=2ðdyþd� þ dy�dþÞ

þU�n̂þ�n̂�: (1)

Here, dy� (cyk�) creates an electron on the dot (in the leads),
and�n̂� equals dy�d� � 1=2. Equation (1) is a generalized
Anderson impurity model with pseudo-spin-dependent
tunneling amplitudes Vþ � V� � 0 and a tilted magnetic
field, whose components are �þ � �� and the direct hop-
ping amplitude b. This form follows from a generic model
of spinless electrons with two dot levels and two leads by
simultaneous unitary transformations in the dot and the
lead space [16–18]. The Hamiltonian (1) has recently
gained considerable attention in connection with phase
lapses, population inversion, and many-body resonances
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[9]. The energies �� are tuned using gate voltages.
Depending on the specific realization, their tuning may
inflict a similar change in b. We focus on realizations
where �� can be tuned independently of b.

The bare energy scales that characterize tunneling in
Eq. (1) are the level broadenings �� ¼ ��V2� and the
direct hopping amplitude b. The density of states (DOS)
� is taken to be equal for both bands without loss of
generality. Our interest is in the charging properties of
the narrow level dy� as a function of �� in the limit where
b and V� are both small: ��; b � �þ. Strictly at b ¼
V� ¼ 0 ergodicity of the microcanonical ensemble is bro-
ken as a new conserved quantity arises: n̂� � dy�d� is
either equal to 0 or 1. Comparing the total energies of
the competing ground states with hn̂�i ¼ 0 and hn̂�i ¼ 1
as a function of �� one finds a critical value �� ¼
��ð�þ; U; VþÞ at which the two become degenerate. For
�þ ¼ 0, �� is pinned to zero by particle-hole symmetry if
symmetric bands are assumed. In the limit b; V� ! 0 the
average occupation hn̂�i thus indicates a first-order tran-
sition (width � ¼ 0) as �� is swept across ��. It is the
smoothening (�> 0) of this transition at small but finite
b; V� for U � 0 that is addressed in this Letter.

Two regimes can be distinguished depending on �þ.
When j�þj � U;�þ, the level dyþ maintains an approxi-
mately fixed integer valence hnþi 2 f0; 1g, independent of
��. Hence, the charging of dy� is essentially single particle
in nature with � ¼ �� þ �þb2=�2þ. The effect of inter-
actions is contained in the simple Hartree renormalization,
�� ! �� þUðhnþi � 1=2Þ. Far more complex is the case
of j�þj � maxfU;�þg, when the broad level is prone to
strong valence fluctuations (for �� ! ��). Going from
U=�þ � 1 to 1 � U=�þ spans all physical regimes
from weak to strong electronic correlations [16–18], which
constitutes the main focus of our study. To this end we
initially set �þ ¼ 0, which fixes �� ¼ 0. Using analytical
and numerical tools we first obtain � in the case where

either V� or b is nonzero. The combined effect of V� and b
is next addressed by single-parameter scaling and FRG.
Finally, we extend our analytical results to arbitrary �þ.
Analytical approach.—To analytically determine the

width � using minor approximations, we proceed in two
steps. First, we derive a continuum-limit Hamiltonian
where �þ is incorporated in full. Second, an exact mapping
of this Hamiltonian onto the anisotropic Kondo model is
established. This allows usage of known results for the
Kondo problem in order to extract �.

In the first step, we diagonalize the HamiltonianHþ ¼P
k�kc

y
kþckþ þ Vþ

P
kfcykþdþ þ dyþckþg using scattering

theory. Expanding dyþ in terms of the single-particle eigen-
modes of Hþ and converting to continuous constant-
energy-shell operators [22], H takes the form of a gener-
alized interacting resonant-level model with a single dy�
level tunnel coupled to two bands: a narrow � ¼ þ band
with a Lorentzian DOS of half-width �þ, and a flat � ¼ �
band with half-width D � �þ. In addition, the dy� level is
capacitively coupled to the ‘‘þ’’ band.
In the desired limit b;�� � �þ, one can conveniently

replace the Lorentzian DOS with a flat symmetric one of
height 1=��þ and half-width Dþ ¼ ��þ=2 [22]. The
elimination of all degrees of freedom in the energy interval
Dþ < j�j<D leads to renormalizations of the couplings
of the order of ��=�þ � 1 or higher, which can be safely
neglected. Converting at this point to left-moving fields,
we obtain the continuum-limit Hamiltonian

H ¼ i@vF

X
�¼�

Z 1

�1
c y

�ðxÞ@xc �ðxÞdxþ ��dy�d�

þ ðb=2Þ ffiffiffi
a

p fc y
þð0Þd� þ H:c:g

þUa : c y
þð0Þcþð0Þ : �n̂�

þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�þ��

p fc y�ð0Þd� þ H:c:g; (2)

applicable at energies below �þ. Here, a ¼ �@vF=Dþ is a

new short-distance cutoff (‘‘lattice spacing’’), and :c y
þcþ:

stands for normal ordering with respect to the filled Fermi
sea. The left-moving fields obey canonical anticommuta-
tion relations subject to the regularization �ð0Þ ¼ 1=a. The
derivation of Eq. (2) is controlled by the small parameters
��=�þ � 1 and b=�þ � 1, and hence is expected to
become asymptotically exact as ��, b ! 0.
If either b ¼ 0 or �� ¼ 0, Eq. (2) can be treated using

Abelian bosonization [23]. To this end, we introduce two
bosonic fields ��ðxÞ, one for each fermion field c�ðxÞ.
With a proper choice of the phase-factor operators, the
bosonized Hamiltonian reads

H¼ X
�¼�

@vF

4�

Z 1

�1
½r��ðxÞ�2dxþ��dy�d�

þ@vF

2�U

�
r�þð0Þ�n̂�þ Affiffiffi

2
p fei��ð0Þd�þH:c:g: (3)

The tunneling term in Eq. (3), proportional to A, depends
on the case of interest; one takes A ¼ b=2 and the upper

0 2 4 6
U/Γ+

1

2

3

α

analytic
FRG
NRG

FIG. 1 (color online). The exponent � computed using the
NRG, FRG, and Eqs. (8). NRG parameters: �þ=D ¼ 0:04, � ¼
1:7, and 2800 states are retained. Inset: The model system. Two
localized QD levels are coupled by tunneling to separate baths.
Spinless electrons residing on the two levels experience a
Coulomb repulsion U.
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sign (A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ��

p
, lower sign) for �� ¼ 0 (b ¼ 0). The

value of �U ¼ arctanðU=2�þÞ is fixed by matching the
b ¼ �� ¼ 0 scattering phase shifts of the ‘‘þ’’ band in
the fermionic and the bosonic representations, for each
sector with fixed integer occupancy of the ‘‘�’’ level.

Next, we manipulate Eq. (3) by (i) applying the canoni-

cal transformation H 0 ¼ ÛyH Û with

Û ¼ exp½�ið2�U=�Þ�þð0Þ�n̂��; (4)

and (ii) converting to the ‘‘spin’’ and ‘‘charge’’ fields�sðxÞ
and �cðxÞ. The latter are defined as �sðxÞ ¼ �þðxÞ and
�cðxÞ ¼ ��ðxÞ for �� ¼ 0, and

�s;cðxÞ¼ ½1þð2�U=�Þ2��1=2

�
�	ðxÞ	2�U

�
��ðxÞ

�
(5)

for b ¼ 0 (the upper signs correspond to �s). In this
manner, the Hamiltonian acquires the unified form

H 0 ¼ X
�¼s;c

@vF

4�

Z 1

�1
½r��ðxÞ�2dxþ ��dy�d�

þ 2�1=2Afei��sð0Þd� þ dy�e�i��sð0Þg; (6)

where � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2�U=�Þ2

p
for b ¼ 0 and � ¼

1� 2�U=� for �� ¼ 0.

The very same Hamiltonian with 0< �<
ffiffiffi
2

p
also de-

scribes the anisotropic Kondo model with 0< Jz, where in

standard notation A ¼ J?=
ffiffiffi
8

p
and � ¼ ffiffiffi

2
p ½1� ð2=�Þ


arctanð��Jz=4Þ� represent the transverse and longitudinal
spin-exchange couplings, respectively, and �� ¼ �BgH
corresponds to a local magnetic field. This representation
of the Kondo model is obtained by [24] (i) bosonizing the
Kondo Hamiltonian with two bosonic fields �"ðxÞ and

�#ðxÞ, (ii) converting to the spin and charge fields

�s;cðxÞ ¼ ½�"ðxÞ 	�#ðxÞ�=
ffiffiffi
2

p
, (iii) employing H 0 ¼

T̂yH T̂ with T̂ ¼ exp½�i
ffiffiffi
2

p ð2�z=�Þ�sð0Þ	z�, 	z being
the z spin component and �z ¼ arctanð��Jz=4Þ, and
(iv) representing the spin ~	 in terms of the fermion d� ¼
	�. This establishes a mapping between our problem with
either b ¼ 0 or �� ¼ 0 and the anisotropic Kondo model.
In particular, charging of the dy� level is mapped onto the
magnetization of the Kondo impurity, relating the width�
to the Kondo temperature TK.

We can now exploit known results for the Kondo prob-
lem. Specifically, RG equations perturbative in J? but

nonperturbative in Jz [19] give TK �DþðA=DþÞ2=ð2��2Þ,
which yields for our problem

�

�þ
�

� ð��=�þÞ� if b ¼ 0;
ðb=�þÞ2
 if �� ¼ 0;

(7)

� ¼ 1

1� ð2�U=�Þ2
; 
 ¼ 1

2� ½1� ð2�U=�Þ�2
: (8)

Thus,� is a power law of the relevant tunneling amplitude
with an exponent that varies smoothly with U. In going
from U ¼ 0 to U � �þ, � grows monotonically from 1 to
�U=ð8�þÞ while 
 decreases from 1 to 1=2. The asymp-

tote � ¼ �U=ð8�þÞ coincides with the result of Ref. [17]
[Eq. (29) with �0 ¼ �U=2], obtained using very different
techniques. For U ¼ 0, the noninteracting integer expo-
nents are reproduced. Hence Eqs. (8) are precise both at
small and large U. As shown next, these expressions
remain highly accurate also at intermediate U, suggesting
that they might actually be exact.
Numerical analysis.—To test Eqs. (8), we computed �

and 
 numerically using the NRG [20] and FRG [21], each
approach having its own distinct advantage. The NRG is
extremely accurate in all parameter regimes of interest,
while the FRG is approximative in U but offers a far more
flexible framework for scanning parameters. The width
� ¼ 1=ð��cÞ was obtained with either method from the
inverse charge susceptibility �c ¼ dhn̂�i=d��, evaluated
at �� ¼ 0 and T ! 0. The exponents � and 
 were
extracted from log-log fits (see the inset of Fig. 2). Our
results, summarized in Figs. 1 and 2, reveal excellent
agreement between Eqs. (8) and the NRG, to within nu-
merical precision. The agreement extends to all interaction
strengths from small to largeU, confirming the accuracy of
Eqs. (8) at allU. The FRG results for� coincide with those
of the NRG up to U=�þ � 2, above which they acquire a
linear slope that is reduced by a factor of 8=�2 as compared
to the NRG [17]. The exponent 
 is accurately reproduced
up to larger values of U=�þ. In particular, the FRG data
for � and 
 exactly reproduce the leading behaviors of
Eqs. (8) at small U.
Combination of �� and b.—The case where both �� and

b are nonzero lies beyond the scope of our bosonization
treatment, but allows the formulation of a scaling law. To

this end, consider the dimensionless quantity ~� ¼ �=Dþ,
which depends on the three dimensionless parameters in

Eq. (2): ~� ¼ fð ~V; ~b; �UÞ, with ~V ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ��

p
=Dþ and ~b ¼

b=Dþ. Given the exact RG trajectories, ~� evolves accord-

ing to ~�0 ¼ ~�=� ¼ fð ~V 0; ~b0; �0
U; f
0

igÞ upon reducing the
bandwidth from Dþ to �Dþ (0< �< 1). Here, primes
denote renormalized parameters and f
0

ig are the new cou-
plings generated. At sufficiently weak tunneling the RG

0 2 4 6
U/Γ+

0.5

0.6

0.7

0.8

0.9

1

β

analytic
FRG
NRG

10-8 10-6 10-4

b/Γ+

10-8
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10-4

Ω
/Γ

+
 

U/Γ+=1

U/Γ+=5

FIG. 2 (color online). The exponent 
 computed using the
NRG, FRG, and Eqs. (8). NRG parameters: �þ=D ¼ 0:02, � ¼
1:6, and 2000 states retained. Inset: Representative NRG data for
� vs b, along with the log-log fits used to extract 
.
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equations can be linearized with respect to the relevant

couplings ~V0 and ~b0, resulting in their power-law growth

with the exponents determined previously: ~V 0 ¼ ~V��1=2�

and ~b0 ¼ ~b��1=2
. Note that �U is left unchanged in this
approximation, nor are there any new couplings generated.

Consequently, fð ~V; ~b; �UÞ ¼ �fð ~V��1=2�; ~b��1=2
; �UÞ ¼
~� is a homogeneous function of �, taking the general form

fð ~V; ~b; �UÞ ¼ ~V2�Gð~b2
= ~V2�; �UÞ. Finally, defining the
coefficients A and B from �jb¼0 ¼ A��� and �j��¼0 ¼
Bb2
, we arrive at the scaling form [25]

� ¼ A���F ðBb2
=A���;�UÞ; (9)

with F ð0;�UÞ ¼ 1 and F ðx � 1;�UÞ ¼ x. In Fig. 3 we
confirm the scaling form of Eq. (9) using FRG data.

Extension to arbitrary �þ.—Our discussion has focused
thus far on �þ ¼ 0. A nonzero �þ introduces the potential-

scattering term H ps ¼ �þa:c
y
þð0Þcþð0Þ: into Eq. (2).

Consequently, �U in Eq. (3) is replaced with two dis-
tinct parameters �� ¼ arctan½ðU� 2�þÞ=2�þ�, assigned
to �n̂� ¼ �1=2, respectively. An identical derivation,
only with 2�U~n� ! ð�þ þ ��Þ�n̂� þ ð�þ � ��Þ=2 in
Eq. (4), leads then to the same Hamiltonian (6) with two
modifications: (i) ��, and thus ��, acquires a shift propor-
tional to �2þ � �2�, and (ii) �U is replaced with ð�þ þ
��Þ=2 in the expressions for �. The end results for � and

 are just Eqs. (8) with �U ! ð�þ þ ��Þ=2, which prop-
erly reduce to the noninteracting limit � ¼ 
 ¼ 1 when
j�þj � U, �þ. The effect of nonzero �þ is negligible for
j�þj � maxfU;�þg. It becomes significant only as j�þj
approaches maxfU;�þg.

Summary.—We have resolved the fundamental question
of the charging of a narrow QD level capacitively coupled
to a broad one. The zero-tunneling fixed point is critical in
the sense of being unstable. Finite tunneling is a relevant
perturbation, driving the system to a strong-coupling

Fermi-liquid fixed point. The inverse charge-fluctuation
time � varies as a power of the bare tunneling amplitude,
with a nonuniversal exponent that depends on the nature of
tunneling, the strength of the capacitive coupling, and the
width and position of the broad level. We have proven this
scenario by devising a two-stage mapping of the original
model onto the anisotropic Kondo problem, yielding accu-
rate analytic expressions for the exponents. Our analytic
predictions were confirmed by extensive numerical calcu-
lations within the frameworks of the NRG and FRG.
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