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We investigate the tunability of electrostatic coupling between solid-state quantum dots as building blocks
for quantum bits. Specifically, our analysis is based upon two-dimensional electron gas �2DEG� systems and
depletion by top gates. We are interested in whether the Coulomb interaction between qubits can be tuned by
electrical means using screening effects. The systems under investigation are analyzed numerically solving the
Poisson equation in 3D via relaxation techniques with optimized algorithms for an extended set of boundary
conditions. These include an open outer boundary, simulation of 2DEG systems, and dielectric boundaries like
the surface of a physical sample. The results show that for currently lithographically available feature sizes, the
Coulomb interaction between the quantum bits is weak in general due to efficient screening in the planar
geometry of 2DEG and top gates. The evaluated values are on the order of 1 �eV. Moreover, while it is not
possible to turn off the qubit interaction completely, an effective tunability on the order of 50% is clearly
realizable while maintaining an intact quantum bit structure.
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I. INTRODUCTION

Quantum dot structures based upon localized regions of
charge play an important role in investigating quantum-
mechanical effects at the nanoscale.1–3 Despite the short de-
coherence times, considerable progress is made in utilizing
the charge degree of freedom for coherent quantum pro-
cesses with possible application in quantum information.4–6

In particular, electrostatically defined quantum dots, based on
depletion of two-dimensional electron gas �2DEG� systems,
play an important role due to their variability, as the charge
“drop” in the dot can be controlled in shape and size by
applying well-controlled gate voltages.

In this paper we consider a linear array of double dots as
shown in Fig. 1. With different arrangements of voltage
gates, quantum dots are formed and arranged in pairs to de-
fine charge qubits. Every pair is defined with a tunnel contact
�quantum point contact �QPC�� between the two dots, which
can be tuned by an external gate voltage. With the QPC in a
weakly transparent regime, the charges are well localized in
their respective quantum dot and the dot occupation is char-
acterized by a well-defined number of electrons. The system
can then be tuned to the energetically degenerate case, where
an extra electron can reside on either quantum dot symmetri-
cally. The dynamics of such a system is well described by the
two qubit states �L� and �R�, with the extra electron either on
the left �L� or on the right �R� dot. These two states form the
natural basis to define the two charge qubit configurations
easily controlled by the gates that define the quantum dots
and the QPC.7

As different dot pairs are used to define charge qubits via
local gate voltages, their states are well defined and con-
trolled experimentally. However, it is crucial to be able to
control the interactions between neighboring qubits if one is
to implement the quantum gate operations required in quan-
tum computation.8 We are thus interested here in the energet-
ics of different charge configurations in the double-dot array
and the tunability of the coupling between charge qubits via

purely electrostatic means. Notice that including the interac-
tion with neighboring qubits results in an effective dipole-
dipole interaction �the common ZZ interaction in solid-state
qubits in a spin notation�. This causes the states in the qubit
to align according to their neighbors and misalignments to be
energetically costly. We investigate the energetics of differ-
ent qubit configurations and how one can stabilize different
states by purely electrostatic means.

For typical nanoscopic devices with many �or at least a
few� electrons in each of the electrostatically defined regions,
the charge distribution and the major energy scales are de-
scribed to a good approximation by classical electrostatics.9

Due to the strong electric fields generated by segregating
charge in a 2DEG, the Coulomb energy is the dominant en-
ergy scale. Thus, it is important to know the electrostatics of
the system if one expects a good quantitative description
thereof. We present here a detailed study of the electrostatic
coupling in the quantum dot array of Fig. 1. We find that one
can substantially modify the qubit couplings by proper gate
geometry and voltage control ��50% �. However, we also
find that it is not possible to completely turn off the coupling
among dots, as one would need in order to allow for total
decoupling of the system. Our studies utilize an efficient
three-dimensional electrostatic code that uses higher-order
grid relaxation and fast Fourier transform algorithms. This
allows for accurate and realistic modeling of the quantum dot
array of interest here, as well as a variety of other structures.
Effects such as depletion in a 2DEG due to shallow etch10 or
deep etch11 have been investigated with our code, and the
results agree well with experimental data and other simula-
tions built on Schrödinger Poisson solvers.12

FIG. 1. Linear array of double quantum dots. Charge is ex-
changed between the dots in each pair but different pairs are only
coupled electrostatically. Defining gates are not shown.
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As we mentioned above, we are interested in the tunabil-
ity of the coupling between charge qubits. Electrostatically,
tunability is directly related to changes in the geometry of
the system—i.e., the regions were there is charge—since a
constant geometry of electrically isolated regions implies a
constant capacitance matrix and constant electrostatic cou-
pling. Application of gate voltages produces changes in the
lateral charge depletion on the 2DEG system, drastically
changing the electric field line distribution around the area of
interest. In the quantum dot structures analyzed here, this
includes field lines that emerge out of the dots through the
surface, as well as throughout the semiconducting material
including the depleted 2DEG region. Notice, however, that
depletion of charge in the 2DEG already suggests that the
local electric field is strong with dominant field lines vertical
to the 2DEG layer. Small local changes of charge or rear-
rangements are likely not to affect the interdot coupling
strongly. This conclusion is not trivially reached, due to the
complexity of the dot array and gate geometry, which in-
cludes subtle screening effects. Still, this intuitive picture
turns out to be correct, as will be demonstrated in detail in
the following.

II. SIMULATION OF 2DEG

2DEG systems are “volatile” by design; i.e., the electric
charge can be depleted or accumulated by external means
using appropriately fabricated conducting leads acting as
voltage gates. Thus the 2DEG regions containing electric
charge density change dynamically with the voltage patterns
applied to the gates. For a flexible and reliable numerical
analysis it is thus necessary that the 2DEG boundary be
treated dynamically. The plane of the 2DEG may contain
several independent regions of charge that can be addressed
individually. Moreover, well-isolated regions of charge have
a floating potential, and this situation remains even if weak
tunnel junctions are present because of charge quantization.
These considerations introduce a set of specific boundary
conditions related to 2DEG systems. They are readily real-
ized in our numerical code and explained in detail in Ref. 13.
Moreover, as from a numerical point of view we are dealing
with a finite system, the potential on the outer boundary
floats freely and the system must be solved self-consistently.
For more detail in that respect the reader is also referred to
the Appendix .

The primary boundary condition for the 2DEG as it turns
out is a surprisingly simple local update prescription built in
easily with the relaxation sweeps:13 when coming across a
2DEG grid point—say, point i—with the 2DEG layer kept
from the exterior at the potential V2DEG, then proceed as
follows: First, update the potential Vi locally as in homoge-
neous space. Second, if Vi

new�V2DEG, take Vi=V2DEG; other-
wise, accept the calculated Vi

new. The result is that the regions
where Vi=V2DEG contain electronic charge while the regions
in the 2DEG with Vi�V2DEG are depleted. The basic idea
underlying this prescription is simply that for the electronic
charges qi�0 in the 2DEG it is energetically favorable to go
to a potential that is higher then V2DEG. The effect is that
charges gather in these regions until the potential equilibrates
at V2DEG.

The gross features of the charge distribution in a realistic
sample with a uniform 2DEG system buried in close vicinity
to the surface can be well understood by a parallel plate
capacitor arrangement as shown in Fig. 2. �1 is the charge
density at the free surface. A distance d1 below lies the donor
layer �“� doping”� with a doping density �p�enD, followed
by the 2DEG separated by a distance d2 from the donors. The
variables d1 and d2 are parameters that can be adjusted to
account for the finite width of each of the three layers. The
electrical voltage V0 of the surface with respect to the 2DEG
is fixed as a consequence of the pinning of the Fermi energy
at the surface and makes up for the difference in chemical
potential due to surface states. For the case of Ga�Al�As, for
example, the Fermi level is pinned to midgap,14 and so the
potential V0 is chosen to be fixed at V0	−0.7 V �note that
the 2DEG is considered grounded�.

The charges at the surface and in the 2DEG rearrange and
equilibrate when the temperature is high enough, typically at
room temperature. This leads to the energetically most favor-
able charge distribution that shares the charges available
from the donor layer between the surface and the 2DEG
such, that the electrical field above the surface and below the
2DEG of the sample is zero. The remaining adjustable pa-
rameter in a real system is then the distance d1 which can be
reduced by etching. The critical distance d1

* for depletion of
the 2DEG layer below is given by d1

crit=−V0��0 /enD which
is independent of the distance d2 �note that V0 is negative
here�.

With clearly separated layers of uniform charge, this ca-
pacitor model can be expected to provide a good description
of charge distribution. The quantum-mechanical effects are
implicitly present in the effective parameters d1 and d2 as
well as in effects such as the pinning of the Fermi energy at
the surface. To this extent, this semiclassical description of
the system provides an accurate picture.9

FIG. 2. �Color online� Electric potential V�z� in a parallel plate
geometry to demonstrate depletion in 2DEG—the material below
the surface �to the right of the �1 layer� is considered uniform with
a dielectric constant of �. The charge densities on the three planes
shown are �1, �p �p for the positive charge of the donor layer�, and
�2, respectively. V0 is the total potential difference across the whole
stack related to the pinning of the Fermi level at the surface.
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III. ENERGETICS OF DOUBLE-DOT QUBITS

Double-dot systems are created in the 2DEG via depletion
through negatively biased metallic top gates on the surface of
the structure—e.g., fabricated by lithographic means. The
typical system analyzed here is shown together with its nu-
merical results in Fig. 3. The relatively large number of gates
defining the structure keeps the system flexible. However,
the exact number of gates and their respective arrangement
are arbitrary to a certain extent and may be simplified by
fewer gates in a specific experimental setup.

Every double-dot system �qubit� in our design has alto-
gether six gates defining the dots, including a plunger gate
for every dot, and two gates that tune the tunnel barrier
�QPC� between the two dots defining the qubit. One of the
two QPC gates for a pair of dots may eventually be merged
with one of the gates confining the dot.

The set of top gates chosen can be seen in panel �a� of
Fig. 3. The charge distribution shown with biased gates
clearly outlines their geometry. The red shading �negative
charge density� results from the negative bias voltages ap-
plied. Thus the more negative the bias, the larger the accu-
mulated negative charge on that gate.

The potentials on the top gates were chosen as follows
depending on the local degree of depletion that was required:
−2.5 V on the plunger gates for every dot, −5.2 V for the
QPC between a pair of dots, and −2.4 V for the transition
region between pairs of quantum dots, except for the center
transition whose gate potential was alternatively also set to
0 V. For the other confining potentials a value of −4.5 V was
taken. The remaining �geometrical� parameters are pinning
of the surface potential V0=−0.75 V, dielectric constant �

=12, grid spacing h=12 nm, d1=d2=36 nm, and nD=4
�1016 m−2, resulting in a charge distribution ratio between
the surface and the 2DEG of about 2:1.

In the setup of Fig. 3, the quantum dots contain about 200
electrons. In the following, the two adjacent qubits in the
center of Fig. 3 are considered in more detail and the outer
qubits allow us to examine the effect of qubit pair interac-
tion. The plunger gate for individual dots was fine-tuned self-
consistently at the end of the initialization process to produce
half-integer occupancy on the dot. With this it is then an easy
numerical task to achieve equivalent integer charge distribu-
tions for a single qubit with one extra electron symmetrically
on either of the dots forming the qubit labeled as the two
qubit states �L� and �R�. More specifically, with the gate volt-
ages frozen to their initial configuration for half-integer oc-
cupation of the dots, the charge configuration can now be
altered to the possible different integer value charge configu-
rations, shifting half of an electron in a quantum dot to the
other or vice versa.

As indicated in Fig. 3, the gate in the center is introduced
for the purpose of screening the qubit-qubit interaction
through depletion or accumulation of charge in between the
qubits, thus introducing the change of geometry of the
charged regions necessary for tunability of the qubit interac-
tion. The two resulting configurations analyzed are shown in
panels �b� and �c� for the gate voltages Vc=−2.4 V and Vc
=0 V, respectively. For the setup in panel �b�, the different
qubit states resulting from single-electron hopping on the
two qubits in the center are presented in the panel �d�. For
better visual contrast, the difference in the charge configura-
tion 	q�r�� in the layer of the 2DEG with respect to the initial
half-integer setup is shown. When summing up 	q�r�� over a

FIG. 3. �Color online� Simulation of 2DEG with top gates and applied gate voltages. The center gates �labeled Vc in panel �a�� extend in
between the qubit pair such that the 2DEG underneath the gate Vc can be depleted at will �see panels �b� and �c��. The color coding for charge
distributions is consistently taken such that red corresponds to negative and blue to positive charge density �in gray scale all shades are to
be considered red except for the dark gray regions in panel �d��. �a� Outline of top gates by showing the charge distribution on these gates.
The 1-�m bar shows chosen length scale. �b� Charge distribution in the 2DEG with the center gate at the same voltage as the gates separating
the other qubits. �c� Same as �b� but with the voltage on the center gate lifted such that additional charge accumulation is allowed in the
2DEG underneath the gate. �d� Differences in the charge distribution for the setup in �c� resulting from small variations on the plunger gate
voltages chosen such that the total change of charge within one dot is ±e /2. �e� Free electrostatic energy of the different charge configura-
tions shown in �d� taken relative to the first configuration No. 1.
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single dot, then the total difference in charge 	Qi for dot i is
�	Qi�=e /2 up to numerical precision. Note that the influence
on the outer qubits—i.e., the qudot pair on the very left and
the very right as seen in panels �b� and �c�—is minimal, and
no appreciable charge rearrangement occurs there due to the
charge alterations in the two middle qubits.

From the numerical evaluation of the electrostatics, we
obtain the potential of the quantum dot array together with
the total charge on every dot. For a calculated set of initial
values qa and Va for the charge and the potential on the
individual dots, the electrostatic free energy is evaluated us-
ing 	Wab=
qa

qbV�q� ;Vg�dq�. The vector Vg stands for a set of
external potentials held at constant voltage. For the case of
weak changes in the systems electrical geometry, the total
change in free energy for different charge configurations is
given by13

	Wab 	 	q
1

2
�Va + Vb� , �1�

where 	q�qb−qa. For a constant geometry �capacitance
matrix� this equation holds exactly. However, in the relevant
cases here where gate voltages do change the geometry—
namely the shape of the quantum dots as well as the remain-
ing extended regions of charge in the 2DEG—Eq. �1� only
holds to first order in small variations of the geometry. Yet
this is definitely the case for the single-electron hopping pro-
cesses considered here.

The qubit-qubit interaction energy for the configurations
in panel �d� is then evaluated by means of Eq. �1� with the
results shown in panel �e� of Fig. 3. The quantum dots have
been intentionally designed not to be exactly the same, re-
sulting in small relative charge variations �maximum devia-
tion of two electrons between the dots�. This variation is also
reflected in the slight asymmetry seen in panel �e� between
the ideally equivalent cases shown in the panels �d�. For the

setup in panel �b� with the charge depleted under the center
gate, the qubit-qubit interaction energy is given by 	E
	1.17 �eV. By lifting the potential on the center gate from
Vc=−2.4 V to Vc=0 V, thus allowing extra charge to screen
the qubit-qubit interaction �see middle of panel �c��, the in-
teraction energy is reduced to 	E	0.66 �eV which is about
half the former value.

The quantum dot spacing is about 300 nm from center to
center of charge within a qubit and 430 nm between neigh-
boring qubits. Considering the initial half-integer configura-
tion as neutral—i.e., the negatively charged qudots as
screened by the environment—then a simple classical esti-
mate of the energy scale for the qubit-qubit interaction by
shifting half of an electron charge in between the qubit gives
65 �eV, which is two orders of magnitude larger than the
actual realization of dots formed by depletion. This strong
suppression of the interqubit interaction is clearly due to the
large metallic top gates which efficiently screen the slightly
rearranged charge configurations closeby.

A similar calculation was performed with the center gate
stretching only halfway through the qubit-qubit intermediate
regions. The results are shown in Fig. 4. The average dis-
tance between the qudots is slightly different from the previ-
ous case �320 nm intraqubit vs 430 nm interqubit separa-
tion�. The confining potentials on the top gates are slightly
weaker, allowing larger dots with about 300 electrons each.
The remaining parameters are the same as in the previous
case.

The dots are completely symmetric in this case, reflected
in the energy of the equivalent charge configurations in panel
�d� plotted in panel �e�. Again, the qubit-qubit interaction
energy for each configuration in panel �d� was evaluated us-
ing Eq. �1� and results shown in panel 3�e�. For the setup in
panel �b� with the charge depleted all along the center gate,
the qubit-qubit interaction energy is given by 	E
	0.71 �eV. By raising the potential on the center gate from

FIG. 4. �Color online� Same as Fig. 3 but with the center gate �labeled Vc in panel �a�� extending only halfway through from top to
bottom. This structure has also slightly increased quantum dot spacing and size from that in Fig. 3. The color coding for charge distributions
is the same, with red for negative and blue for positive charge density �in gray scale all shades are to be considered red except for the dark
gray regions in panel �d��. See the description of panels �a�–�e� in the caption of Fig. 3.
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Vc=−2.5 V to Vc=−0.75 V, the interaction energy is reduced
to 	E	0.29 �eV which is less than half the former value,
but still clearly present. The simple classical estimate similar
to the previous example with the extra charge in the qudots
positioned around the center of charge leads to 71 �eV,
again two orders of magnitude larger than the energies in the
actual realization.

IV. CONCLUSIONS

The tunability of qubit interaction based on electrostatic
gate screening has been analyzed numerically. Our program
uses an efficient relaxation algorithm and efficiently de-
scribes general 3D structures, including the ability to handle
an extended set of boundary conditions, specifically appro-
priate for the treatment of 2DEG systems and including di-
electric effects.

The typical systems analyzed are based on 2DEG geom-
etries derived from GaAs/GaAlAs structures and depletion
via top gates. For a chain of qudot pairs—the qubits—the
region in the 2DEG between qubits is depleted at will, al-
lowing for tunable screening and control of the nearest-
neighbor qubit interaction. The tunability derived for realistic
gate voltage changes is on the order of 50%. The interaction
energy can thus be clearly modulated. However, we find that
it cannot be turned off for moderate voltages, as would be
desirable for the on-off switching of the interaction of ideal
qubits. We believe that this general trend does not only hold
for the few systems analyzed in this paper. The tunability
based on charge rearrangement and screening of Coulomb
interaction on charged-localized quantum dots is definitely
possible, but limited in efficiency. It may indeed be neces-
sary to implement dynamic pulse control techniques, such as
the “bang-bang” approach or others discussed for qubits
recently.15
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APPENDIX: RELAXATION ON THE GRID AND OPEN
BOUNDARIES

The algorithm used in this paper is based on a higher-
order relaxation algorithm for a finite physical system as de-
scribed by the authors in an earlier paper.16 Major modifica-
tions are significantly optimized update of the outer

boundary and an extended set of additional boundary condi-
tions mainly related to 2DEG systems. As later ones repre-
sent dielectric media it is also clear that a proper treatment of
surfaces requires a proper incorporation of the dielectric con-
stant. A detailed description can be found in Ref. 13.

Solving the electrostatics in 3D for a finite system with an
open outer boundary may not allow for a simple boundary
condition such as constant potential on the outer surface.
With uniform grid spacing, one is bound to a finite total grid
size, which in 3D is even more stringent. Therefore the re-
gion under investigation cannot assume constant potential on
the outer boundary. However, by having direct access to the
local charge distribution throughout the grid during relax-
ation, one can calculate the potential on the outer boundary.
The naive way of summing up charge over distance Vi
�� jqi /dij, however, is computationally expensive, to the ex-
tent that the actual relaxation process becomes much faster
compared than the self-consistent update of the outer bound-
ary.

The reason for this lies in the folding of the charge versus
the relative distance. The structure of the sum suggests the
use of fast Fourier transform �FFT� algorithms in 3D �Ref.
17� where the folding is replaced by a single product for each
Fourier component. The fact that the FFT automatically im-
plies periodic boundary conditions which may introduce ar-
tificial effects can be circumvented by doubling the system
size in every dimension.18 Despite the largely enhanced num-
ber of grid points in 3D, the resulting update of the outer
boundary is drastically two orders of magnitude faster than
the original way of carrying out the sum in real space.

Typical materials such as Ga�Al�As or Al2O3 have a large
dielectric constant of order �=12. This strongly affects the
screening of charges such as those in the 2DEG or surface
charges, and it is absolutely crucial to include the dielectric
properties in these calculations. The numerical implementa-
tion goes along the lines of algorithms found in the
literature,19,20 and it is discussed in detail in Ref. 13. The
main idea is that the local relaxation of the potential must be
done under the constraint that there be no free charge in the
bulk dielectric media. This leads to the incorporation of the
dielectric constant into the weights of the potential average
over neighboring sites, Vi

new=� j�NN� jqj /� j�NN� j. One
should be aware that the dielectric constant � j has to be
evaluated midway between the grid point i under consider-
ation and the neighboring point j.13 Finally, note that the
subsequent calculation of the source qi from the potential
without weighting it by the dielectric constant gives the in-
duced charge at dielectric boundaries �note that in uniform
dielectric media, the dielectric constant drops out in the av-
eraging process for the local update of Vi

new and so the in-
duced charge equals zero by construction�.
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