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We consider asymmetric spin-1
2 two-leg ladders with nonequal antiferromagnetic �AF� couplings J� and �J�

along legs ���1� and ferromagnetic rung coupling, J�. This model is characterized by a gap � in the spectrum
of spin excitations. We show that in the large J� limit this gap is equivalent to the Haldane gap for the AF
spin-1 chain, irrespective of the asymmetry of the ladder. The behavior of the gap at small rung coupling falls
in two different universality classes. The first class, which is best understood from the case of the conventional
symmetric ladder at �=1, admits a linear scaling for the spin gap ��J�. The second class appears for a strong
asymmetry of the coupling along legs, �J� �J��J� and is characterized by two energy scales: the exponen-
tially small spin gap ��J� exp�−J� /J��, and the bandwidth of the low-lying excitations induced by a Suhl-
Nakamura indirect exchange �J�

2 /J�. We report numerical results obtained by exact diagonalization, density-
matrix renormalization group and quantum Monte Carlo simulations for the spin gap and various spin
correlation functions. Our data indicate that the behavior of the string order parameter, characterizing the
hidden AF order in Haldane phase, is different in the limiting cases of weak and strong asymmetries. On the
basis of the numerical data, we propose a low-energy theory of effective spin-1 variables, pertaining to large
blocks on a decimated lattice.
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I. INTRODUCTION

Recent progress in nanotechnologies, molecular electron-
ics, and quantum computing reinvigorated the interest to
low-dimensional systems. Special attention has focused dur-
ing recent years on quantum dots, arrays of coupled quantum
dots,1 quantum wires, spin chains, or ladders. Another class
of physical systems where low dimensionality can be
achieved is ultracold gases in optical lattices,2,3 which form
good prototype systems for investigation of many strongly
correlated effects, such as metal-insulator transition, low-
dimensional superconductivity, or formation of various
density-wave states. The advantage of these systems is the
high controllability of model parameters with external fields
and preparation conditions.

Many of these systems display low-energy features that
fall outside the standard behavior predicted by Landau’s
Fermi-liquid or symmetry-breaking theories. In particular,
the existence of a nonlocal �string� order parameter is
proven, both analytically4 and numerically,5 to be a charac-
teristic feature of several classes of one-dimensional �1D�
and quasi-1D systems.6,7 Such nonlocal order parameters are
topologically protected against any local perturbations. The
nature of these order parameters and the connection to topo-
logical invariants6 is well understood8 for spin chains with
S�1. For instance, the Haldane conjecture9 proposed more
than 20 years ago states that the properties of SU�2� sym-
metric antiferromagnetic �AF� spin-S Heisenberg chains dif-
fer for integer and half-integer spins. The excitations in the

AF Heisenberg chains with half-integer spins are gapless10

whereas in the integer spin case, a gap is present. The pure
1D AF spin-1

2 Heisenberg chain can be mapped onto a Lut-
tinger liquid which allows an exact bosonization treatment,
resulting in a well understood gapless phase.10 In contrast,
for the AF spin-1 Heisenberg chain it is widely accepted that
the excitations exhibit a gap, thanks to extensive
numerical11–16 and experimental17,18 analysis.

The present understanding of systems of coupled identical
S=1 /2 chains �spin ladders� is based on its similarities to
larger spin chains. This similarity allows the one-to-one
translation of Haldane’s conjecture, originally formulated for
large spins chain, onto spin-1

2 ladders with an odd or even
number of identical legs. The usual assumption about the
equivalence of the individual chains constituting the ladder is
referred below as a symmetric ladder situation. While the
behavior of symmetric ladders has been thoroughly investi-
gated, both theoretically and experimentally,6,19 the case of
spin ladders with inequivalent legs �asymmetric ladders� is
less understood. The behavior of the spin gap, in particular,
for the case of a single chain coupled to nearly free spins
�dangling spins� was recently discussed in Refs. 20–23 but
no firm conclusions about the gap scaling in the weak-
coupling regime were made there.

In this work, we consider the spiral staircase Heisenberg
ladder �SSHL�, consisting of two unequal antiferromagneti-
cally coupled spin-1

2 chains with a ferromagnetic �FM� rung
coupling J�. Geometrically, this model may be understood as
a continuous twist deformation of an isotropic two-leg ladder
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with interleg coupling J� along leg 1 by an angle � �see Fig.
1�. As a result of the deformation, the coupling between
neighboring sites along leg 2 is rescaled to the form
J� cos2�� /2� leading to Hamiltonian �1� below.

Throughout the paper we use the word “main” or “first”
for the leg with the larger coupling J�, whereas the leg with
the smaller spin exchange J� cos2�� /2� is called “second” leg
or the leg with “dangling” spins �in case of �=��.

As is known from the seminal bosonization work of Shel-
ton et al.,4 the FM coupling of AF spin chains induces a
Haldane gap proportional to J� for weak interleg couplings.
However, when the spin velocity on one of the legs vanishes
the bosonization method fails as seen from the fact that a
simple formulation of the continuum limit, on which the
bosonization approach relies, is inhibited. Alternative ap-
proaches, such as using other analytical or numerical meth-
ods, are then demanded. Beside the theoretical interest, an
experimental motivation comes from the fact that the single-
pole ladder model at �=� can been used for modeling a

stable organic biradical crystal 2-�4’-�N-tert-butyl-N-
oxyamino�phenyl�-4,4,5,5–tetramethyl-4,5–dihydro-1H-imi-
dazol-1–oxyl3–oxide �PNNNO�.24

In our previous work �Ref. 23�, we used the quantum
Monte Carlo �QMC� simulations for investigation of asym-
metric ladders. We demonstrated a nonzero value of string
order parameter for the whole family of such ladders, which
confirmed that the system is in a Haldane phase. We also
presented numerical evidence for the smaller energy scale,
J�

2 /J�, associated with Suhl-Nakamura �SN� interaction �see
below�. Numerical results for the spin gap were also judged
compatible as vanishing as J�

2 /J�, even though a faster decay
could not be ruled out. These results were consistent with the
flow equation calculations of Essler et al.22

In the present paper we show that the spin gap changes its
behavior at small J��J� from ��J� in the symmetrical
ladder case to ��J� exp�−J� /J�� in the single-pole ladder
case. Alternatively, we may think about rungs with a fixed
exchange coupling J� while the leg exchange increases
gradually. We observe that the small-J� behavior ��J� is the
same for all asymmetric ladders but that important differ-
ences appear in the limit J�→�. The symmetrical ladder dis-
plays a saturation of the spin gap, ��J�, while the gap in
the single-pole ladder reaches a maximum at J� �J� and
exhibits exponential suppression beyond that scale, accord-
ing to the above formula.

The plan of the paper is as follows. We introduce the
model and important definitions in Sec. II, where we also
provide simple qualitative considerations. Particularly, we
explain here the importance of SN indirect exchange be-
tween dangling spins in the single-pole situation.

We propose analytical approaches to our model in Sec.
III. In Sec. III A we develop a theory, incorporating spin-
wave analysis, SN interaction, and Kadanoff’s decimation
procedure, which satisfactorily describes the whole body of
numerical data presented below. We stress that several quan-
tities are extracted from the numerical data and plotted spe-
cifically for comparison with the predictions of this effective
theory. The unusual slow saturation of the spin gap value at
large J� is discussed in Sec. III B.

In Sec. IV we describe the results of our extensive nu-
merical investigations of the problem. Section IV A dis-
cusses exact diagonalization �ED� results. The appearance of
a SN energy scale J�

2 /J� is shown here. Given the long-range
character of the SN interaction which requires large systems
to be appreciated, we resort to large-scale QMC simulations
in the next section. With this approach, we investigate the
form of the spin correlation functions in Sec. IV B, compute
the spin gap in Sec. IV C, as well as the string order param-
eter in Sec. IV D, characteristic of the Haldane phase. The
most challenging case of the single-pole ladder gives rise to
the largest uncertainties for the spin gap, and we focus on
this system with the use of the density-matrix
renormalization-group �DMRG� method, as described in Sec.
IV E. The DMRG results do not give a principal advantage
over QMC findings but they provide a strong independent
verification of the observed form of the spin gap, namely, an
exponential suppression at small J�.

In Appendix A, we analyze the qualitative changes in the
spectra of symmetric and single-pole ladders within a

(a) (b)

FIG. 1. �Color online� �a� Sketch of the spiral staircase Heisen-
berg ladder. �b� View of the system from the top. For �=0 the
model corresponds to the standard antiferromagnetically coupled
spin-1

2 Heisenberg ladder with FM rung coupling. The case �=�
corresponds to the 1D SU�2� symmetric single-pole ladder model.
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Jordan-Wigner mean-field calculation. Technicalities of spin-
wave theory for long-range interaction are given in Appendix
B. We finally present our conclusions in Sec. V.

II. PROBLEM SETUP AND QUALITATIVE
CONSIDERATIONS

We study the low-energy physics of the SSHL system,
characterized by the following Hamiltonian:

H = J��
i
�S1,i · S1,i+1 + cos2��

2
	S2,i · S2,i+1	

− J��
i

S1,i · S2,i. �1�

Here, S	,i is a spin-1
2 operator acting on leg 	 and lattice site

i and J� 
0 sets the energy scale. The single-pole ladder
model20,23,25 corresponds to �=�.

It is convenient to reformulate the model, Eq. �1�, in terms
of new variables,

Si = S1,i + S2,i, Ri = S1,i − S2,i, �2�

defined on the rung. The Hamiltonian then reads

H =
J�

4 �
i

1 + cos2��

2
	��Si · Si+1 + Ri · Ri+1�

+
J�

4 �
i

sin2��

2
	�Si · Ri+1 + Ri · Si+1� −

J�

4 �
i

�Si
2 − Ri

2� .

�3�

The set of operators Si and Ri fully defines the o4
algebra.20,21

Let us define the retarded spin response function in the
ladder situation

� jl�q,�� = − i�
0

�

dt�
n

ei�t−iqn�Sj,1
z �t�,Sl,1+n

z �� ,

=� d��
Sjl�q,���

� − �� + i0
�4�

with j , l=1,2. At zero temperature the dynamic structure fac-
tor �spectral weight�, given by Sjl�q ,��=−�−1 Im � jl�q ,�� is
represented as

Sjl�q,�� = �
n

0�Sl
z�q��n�n�Sj

z�− q��0��En − E0 − �� , �5�

where �0� stands for the ground state with the energy E0, the
sum runs over all eigenstates �n� of the Hamiltonian with
energies En and Sl

z�q� is a Fourier transform of Sln
z . We also

define the symmetrized combinations,

S�q,�� = S11�q,�� + S22�q,�� + S12�q,�� + S21�q,�� ,

R�q,�� = S11�q,�� + S22�q,�� − S12�q,�� − S21�q,�� , �6�

which are response functions for operators Sz and Rz in Eq.
�2�, respectively.

In Secs. IV B and IV D we also use imaginary time cor-
relation functions

Sq
z���S−q

z �0�� =� d�
e−��

1 − e−��S�q,�� ,

Rq
z���R−q

z �0�� =� d�
e−��

1 − e−��R�q,�� �7�

with �=1 /T.
Let us now qualitatively discuss the situation. In the

strong-coupling region, J� /J�→�, and for all possible twist
angles � triplets on the rungs become more and more favor-
able such that the Hamiltonian of Eq. �3� reduces to a pure
spin-1 effective Hamiltonian,

Heff = Jeff�
i

Si · Si+1,

Jeff =
J�

4
�1 + cos2��/2�� . �8�

In units of effective coupling Jeff �and thus irrespective of the
twist angle� the spin gap of our model scales to the Haldane
gap �H /Jeff=0.41048�6�.16

In the weak-coupling region the situation is more delicate
and depends on the twist �. Let us discuss here the limiting
cases.

For the symmetric ladder, �=0, the gap opens as ��J�,
as obtained by bosonization and also qualitatively repro-
duced in the simplified mean-field picture, Appendix A. For
the fully asymmetric single-pole ladder �=� the mean-field
calculation predicts a sublinear behavior of the gap
��J�

2 /J�. The bosonization treatment becomes problematic
in this case, as we cannot apply the continuum approach to
the chain of dangling spins attached to the main leg. The
assumption of the finite Fermi �sound� velocity in the sub-
system breaks down and J� cannot be used as a perturbation
in the implicitly assumed hierarchy of scales
J��J� cos2�� /2��J�.

Instead, we should start with the picture of a degenerate
band of dangling spins, whose degeneracy is lifted by indi-
rect exchange between these spins through the main leg. This
phenomenon is known as a Suhl-Nakamura interaction26–28

for the case of a dilute system of extra spins in a magnetic
host. It has a direct analogy with the Ruderman-Kittel-
Kasuya-Yoshida interaction where itinerant electrons medi-
ate a long-range spin-spin interactions between localized
spins �see Ref. 29 and references therein�. In second-order
perturbation theory the SN interaction reads

JSN � J�
2 ��q,� = 0� , �9�

where ��q ,�=0� is the spin susceptibility of the spin-1
2

Heisenberg chain. We thus arrive at a similar energy J�
2 /J�

but now it stands for the SN-induced bandwidth, not for the
spin gap.

It is important to remark that both the mean-field treat-
ment and the SN energy scale estimate provide us only with
an upper bound for the gap value, J�

2 /J�. However this is
likely a strong overestimation as quantum fluctuations,
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which are important in 1D, are not accounted for. In Sec. III
we present analytic arguments in favor of a gap vanishing
faster than with a power law. In Sec. IV we show that the
whole body of numerical data supports this scenario.

III. ANALYTIC APPROACHES AND INTERPRETATION

In most cases, it is instructive to map the system of spins
onto a system of 1D spinless fermions. We show in Appendix
A that such Jordan-Wigner transformation and a subsequent
mean-field theory analysis predict qualitative changes in the
behavior of the gap with �. Particularly, Eq. �A9� there indi-
cates that the prefactor in the linear law, ��J�, diminishes
with decreasing cos�

2 , and that in the extreme case of single-
pole ladder �cos�

2 →0�, the gap vanishes faster than �J��.
These observations are qualitatively confirmed by our nu-
merical simulations. At the same time, the attempt to com-
pare the mean-field results for the fermionic theory with the
gap extracted from QMC data shows that the mean-field
theory overestimates the gap by an order of magnitude. In
view of this fact, we perform a different type of analysis in
the remainder of this section.

A. Decimated blocks and effective spins

In this section we propose a scenario, which assumes dif-
ferent behavior of spin dynamics at high and low energies, as
separated by the scale J�. This scenario is explicitly formu-
lated for the single-pole ladder, which represents the most
intriguing and difficult case, as seen in the numerics. The
extension of this scenario to ��� is also briefly discussed at
the end of this section. The proposed theory allows to semi-
quantitatively explain all features observed in the large-scale
QMC and DMRG studies.

For the high energies in consideration �
J�, the dangling
spins should be considered as freely attached to the main
chain. These energies correspond to short times, t�J�

−1, and
distances, x�J� /J�. Alternatively, one may think in terms of
a higher temperature T
J�, which smears all fine features
of the spectrum and leads to exponential decay of correla-
tions beyond the temperature correlation length �J� /T. The
inverse length scale along the leg, �−1, associated with the
crossover to the low-energy dynamics is defined by the rela-
tion J���−1J�, showing that soft spinon excitations in the
Heisenberg AF spin-1

2 chain, with momenta q��−1 are
strongly intertwined with triplet-singlet transitions on the
rungs.

At these shorter time scales the classification in terms of
singlet and triplet on the rung is not very appropriate. It
means that the dangling spins are viewed as almost decou-
pled from the main chain: the situation is best described in
terms of dangling spins coupled to each other by the Suhl-
Nakamura interaction. The long-range character of SN inter-
action leads to an almost flat dispersion of the magnon exci-
tations in the subsystem of dangling spins, the estimated SN
energy scale not exceeding the crossover energy J�.

At smaller energies, ��J�, a picture of already formed
triplets on the rungs is more appropriate. The discussion of
the dynamics reduces to the rotations of the effective spins

S=1. Further, these rung triplets are interlaced by the leg
interaction into large effective spin blocks of size �. Despite
a possibly large spatial size of the block, the AF character of
the main leg interaction selects the smallest possible total
spin state of this block. Discarding the nonmagnetic singlet,
we focus on the block triplet state, i.e., when � spins S=1 are
combined into a new effective spin S=1 of the block. As a
result, we have a model with nearest-neighbor interaction
between large blocks. Such a model should display a
Haldane gap, whose value can be determined from usual
arguments.

Let us start with the shorter distances and higher energies.
In this case the SN interaction between dangling spins S2,i
and S2,i+x has the form V�x�S2,iS2,i+x with

V�x� = J�
2 � dq

2�
��q,� = 0�eiqx � J�

2 /J��− 1�xln��/x�

�10�

with ��q ,�� is the response function for the HAF S=1 /2
model.6 For our purposes it suffices to approximate
��q ,�=0� by J�

−1�cos�q /2��−1. The 1 /q singularity near
q=� shows that V�x� is sign reversal and logarithmically
decaying with distance, V�x���−1�xln�� /x�. The scale � in
the argument of the logarithm appears here as a parameter
which will be further determined by a self-consistency crite-
rion. Technically it is assumed that the allowed energies, �q,
of the spin-wave continuum are restricted from below,
�q�J� /�.

A chain of dangling spins, coupled by long-range SN in-
teractions �Eq. �10��, behaves differently from the standard
HAF model with nearest-neighbor interaction. A simple spin-
wave analysis is then indispensable here. Such an analysis
cannot give a correct form of correlation functions but deliv-
ers a qualitative information about the spectrum.30,31

Using the formulas listed in Appendix B we conclude
that the spin-wave spectrum in the system of dangling
spins is given by the expression �k=�gkgk+�, with
gk=V���−V��+k�. Approximating the range function
V��+k���J�

2 /J���sin2�k /2�+�−2�−1/2 we have

�k+� � �J�
2 /J����1 − �1 + �2 sin2�k/2��−1/2

��J�
2 /J���, �k� � �−1

��J�
2 /J���2�k�, �k� � �−1. �11�

Next we make the natural assumption that the top of the
SN-induced band coincides �at least by the order of magni-
tude� with the logarithmic low-energy cutoff introduced
above in Eq. �10�, leading to �J�

2 /J����J� /� or

� � J�/J�. �12�

Remarkably, this estimate shows that the low-energy spin-
wave dispersion �Eq. �11�� is characterized by the same ve-
locity �k+��J��k� as the higher energy excitations in the
main leg. This is despite the fact that, strictly speaking, the
low energies ��J� should be considered with a different
approach as proposed in the next paragraphs. Notice that the
described spectrum resembles a simple picture of hybridiza-
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tion between the linear spectrum and initially degenerate
band at nonzero energy �J�, with the crossing level repul-
sion phenomenon.

At small energies ��J�, we expect that the picture of
spinons �in the main leg� scattering on the dangling spins,
becomes inadequate. The dynamics of spins on the rung is
characterized in terms of soft triplet dynamics while the tran-
sitions to singlet state with the �now� large energy J� are
discarded. On the same ground, we discard spin-wave con-
tinuum excitations with energies ��J��J /�, i.e., the de-
scription now has changed from the individual sites along the
leg to entire blocks of length �. We may thus think in terms
of the effective spin S=1 on the rung, and these individual
spins S=1 are antiferromagnetically coupled to each other in
the large block.

Furthermore, we can characterize the whole block � of
spins 1 by its lowest nontrivial multiplet, a spin 1 again.
However now it is an object defined at a much larger spatial
scale. The trivial low-energy multiplet in such � block is a
spin-singlet state, which obviously drops out from the soft
spin dynamics.

The typical energy spacing between the resulting spin
triplet of the � block and the higher multiplets is estimated
again as J� /��J�. We expect that this lowest triplet state is
nondegenerate, i.e., other triplets are higher in energy. Below
we refer to this lowest triplet state as � triplet.

We note in passing that the estimate ��J� /J� follows
also from the argument presented in Ref. 22. It was sug-
gested there that the spinons, propagating along the main leg
by distance m and characterized by a typical energy J�, break
the preformed rung triplets resulting in an energy cost
�mJ�. The resulting confining potential should, in principle,
restrict the motion of spinons to distances �J� /J�.

Our way of constructing � triplet resembles Kadanoff’s
decimation procedure in the description of critical
phenomena.32 The new lattice of large blocks contains spins
1, which are denoted below by S�,n �here n numbers a posi-
tion in a new lattice� and are coupled to each other by a
nearest-neighbor interaction. In fact, only the edge spins of
each � block are responsible for this interaction. Adopting
the notation that the weight of these edge spins in the �
triplet is w1�1 at ��1 �see discussion after Eq. �15� and
Fig. 7�, we write explicitly for odd �

S1,j
	 = w1S�,n

	 �− 1� j+n, �13�

where n= �j /�� and �¯ � stands for the floor function. Simi-
larly, S2,j

	 =w2S�,n
	 �−1� j+n. The phase �−1� j accounts for the

AF character of the contributing spins in the � block and the
additional phase shift �−1�n is introduced to restore the trans-
lational invariance in the blocks picture.

The definition of the above weight wj is as follows. As-
sume that the lowest multiplet in the � block is a triplet
�T ,m�, spanned by the spin-1 operators S�,n

	 . Then, up to a
sign, the edge operators of the block act as

T,m��S1,j
	 �T,m� = w1T,m��S�,n

	 �T,m� �14�

and similarly for the weight w2 of S2,j
	 . The block Hamil-

tonian on the decimated lattice reads

�
n

J�S1,n�S1,n�+1 → �
n

w1
2J�S�,nS�,n+1 �15�

with n=1, . . . ,L /�. This model should exhibit a Haldane gap
but the value of this gap is strongly diminished.

Employing a standard albeit simplified approach used in
the original Haldane paper, we apply the linearized spin-
wave theory outlined in Appendix B and obtain the magnon
dispersion, �k=4w1

2J� sin�k�, where k is the wave vector on
the decimated lattice k=2�n�� /L� with n=1,2 , . . . It implies
that the velocity of the lowest-lying excitations with respect
to the real lattice is given by ṽ=4w1

2�J�. With the plausible
assumption that this low-energy estimate coincides with the
high-energy one, we obtain ṽ�J� and hence w1

2��−1. Notice
that it corresponds to a bandwidth 4w1

2J� �J�, in accordance
with Eq. �11�.

We require that the zero-point magnon fluctuations
cancel the local magnetization in the usual formula
S1,j

z =1 /2−S1,j
− S1,j

+ , i.e., we write S1,j
− S1,j

+ �=1 /2. For the rel-
evant low-lying modes, we have S1,j

− =w1
�2an

†, where an
† is

magnon creation operator in the nth � triplet. We then obtain
the relation

1/2 � 2w1
2�

q0

�/2 dk

�
� 1

sin k
− 1	 ,

where we introduced the cutoff wave vector q0, related to the
Haldane gap �=4w1

2J� sin q0. This leads to the estimate
q0�exp�−� /4w1

2� and

� � w1
2J� exp�−

�

4w1
2	 . �16�

Let us discuss the decay of correlations at the distances
r��; we take r /�=x integer for simplicity. We have

S1,jS1,j+r� � �− 1�r+xw1
2S�,nS�,n+x�

=�− 1�rw1
2�

−�

� dk

4�

1 − cos k

�q0
2 + sin2k

ei��+k�x

��− 1�rw1
2

�
K0�rq0/�� . �17�

The above assumption that w1
2��−1 leads to the following

final formulas:

� � J� exp�−
J�

J�

c2	 ,

S1,jS1,j+r� � �− 1�r J�

�J�

K0�r�/J�� �18�

with c2�1. Our scenario also suggests that the long-range
behavior of correlations �Eq. �18�� takes place for both main
leg and dangling spins at distances r���J� /J�.

Comparing the above formula �18� to our numerical find-
ings below, see Figs. 6 and 7, we verify that, indeed,
wj

2�J�.
Finally, let us briefly comment on the situation where

there is a weak exchange along the second leg, ��� and
J2=J� cos2 �

2 �J�. Repeating the steps of the analysis leading
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to Eq. �11�, we observe that the SN-induced band appears on
the background of usual exchange. Roughly, one can write
V�k��−J2 cos k+J�

2 /J��cos�k /2��−1 and the bandwidth is es-
timated as J2+�J�

2 /J�. This scale should not exceed the low-
energy cutoff for the otherwise long-range SN interaction,
J� /�, which leads to the corrected estimate,
�−1�max�J� /J� , cos2 �

2 �. The scenario described in this sec-
tion remains valid, as long as �−1�1, which imposes restric-
tions on �. We see in Fig. 8�a� that the gap at �=8� /9
�cos2 �

2 �0.03� behaves qualitatively similar to the one
at �=�, whereas the behavior of the gap at �=7� /9
�cos2 �

2 �0.12� is apparently different and closer to the one of
the symmetric ladder, �=0. For our semiquantitative level of
consideration these conclusions appear consistent and satis-
factory. It was implied in Ref. 23 that the scaling of the gap
with J� changes at a critical �c��. The above consideration
suggests that there is no critical � but rather a smooth cross-
over between two regimes, cf. also the estimate ��0.54� in
the next section for the crossover in strong rung coupling
behavior.

B. Strong rung coupling limit

Let us consider the limit of strong rung coupling, �J��
�J�. In the zeroth order of the small parameter J� / �J��, we
have the effective Hamiltonian, Eq. �8�. The perturbation is
given by the operators Ri

	 in Eq. �3�, which connect the
spin-1 rung sector, spanned by operators Si

	, to the high-
energy singlet rung state. The perturbing part is given by

Ĥint = �
i	

�JRQRi
	Qi

	 + JRRRi
	Ri+1

	 � ,

Qi
	 = �Si−1

	 + Si+1
	 � ,

JRQ =
1

4
J�
1 − cos2��

2
	� , �19�

and JRR=
J�

4 �1+cos2�� /2��=Jeff. The leading correction to the
effective Hamiltonian �8� is obtained in second order of per-

turbation in Ĥint, by considering the virtual transitions to
singlet states separated by the energy �J��. This derivation is
similar to the one of the t-J model from the large-U Hubbard
model. We have

Ĥeff
�1� = Ĥeff

�1A� + Ĥeff
�1B�,

Ĥeff
�1A� = −

JRQ
2

�J���i	�

Ri
	Ri

�Qi
	Qi

�,

Ĥeff
�1B� = −

JRR
2

2�J���i	�

Ri
	Ri

�Ri+1
	 Ri+1

� . �20�

Using the identity

Rj
	Rj

� + Sj
	Sj

� = 	� + i�	��Sj
�, �21�

one can eventually arrive to

Ĥeff
�1A� = −

JRQ
2

�J���i

�QiQi − SiQi − �SiQi�2�

=2
JRQ

2

�J���i

�SiSi+1 + �SiSi+1�2 − Si−1Si+1 + �SiSi−1�

��SiSi+1�� ,

Ĥeff
�1B� = −

JRR
2

2�J���i

�SiSi+1�2. �22�

The effective Hamiltonian �22� is rather complicated, con-
taining quartic combinations of spins, and we propose here
its qualitative analysis. The main term, Eq. �8�, results in
antiferromagnetic correlations of the spins Si at adjacent
sites, whereas the next-to-nearest-neighboring spins are
aligned ferromagnetically. We thus expect Qi to be in the
state Q=2, and QiQi=Q�Q+1�=6. Next, let Qi and
Si be added into a multiplet of total spin p so that
SiQi=

1
2 ��Si+Qi�2−Si

2−Qi
2�= 1

2 p�p+1�−4. One can check
that �QiQi−SiQi− �SiQi�2�=0,6 ,0 for states with p=1,2 ,3,
respectively. It means that the mostly AF correlated state

with p=1 obtains a higher energy due to Ĥeff
�1A� while the less

antiferromagnetically aligned state p=2 leads to an energy
gain −6JRQ

2 / �J��. Alternatively, we may use the second line

in the representation of Ĥeff
�1A� in Eq. �22� and estimate it as

�2�x+2x2−1�JRQ
2 / �J��. Here SiSi+1�x=−2, −1, 1 for the

total spin of the pair, Si+Si+1, equaling 0, 1, 2, respectively;

we also approximate Si−1Si+1�1. Combining it with Ĥeff
�1B�,

we have the estimated energy per unit cell

E �
2Jeff

2

�J�� 
Y�x + 2x2� −
x2

4
� ,

Y = 
1 − cos2��/2�
1 + cos2��/2��2

. �23�

In a simplified picture, we can compare the energy differ-
ence, �Ets, between the bond triplet state, x=−1, and the
bond singlet state, x=−2. From Eq. �23� it follows that this
energy difference per unit cell is

�Ets = Jeff +
2Jeff

2

�J��
�− 5Y +

3

4
	 . �24�

For symmetric ladder, �=0 and Y =0, the correction �Eq.
�23�� favors the bond singlet and �Ets is always positive. For
the single-pole ladder, �=� and Y =1, expression �24� shows
that the corrections �Jeff

2 / �J�� are important even for
J��10Jeff due to a large numerical prefactor. The sign of the
correction in Eq. �24� changes at Y =3 /20 or ��0.54�, and
indeed we observe a slower saturation of the gap at J��J�

for �
� /2.
Roughly, we can regard �Ets as a new value of Jeff in Eq.

�22�, and it implies that the gap at �
� /2 should follow the
law ��0.41Jeff�1−c���Jeff / �J��� with c����1. At large
value of c���, the intermediate region 1�J� /J� �c��� be-
comes rather extended. The detailed description of ��J�� at
intermediate J� is beyond the scope of this study.
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IV. NUMERICAL ANALYSIS

A. Exact diagonalization

In this section we analyze the SSHL model by means of
ED methods using the Lanczos algorithm.33,34 Even though
ED methods are limited to small systems, they provide con-
siderable insight. We start our analysis with a study of the
spin excitations Sjl�q ,��, Eq. �5�

Figure 2 presents the spin excitation spectrum for the iso-
tropic ladder ��=0� and the single-pole ladder model
��=�� in the weak-coupling region. Precisely, it shows the
dynamical spin structure factor �depending on the momen-
tum q along the ladder�, separately for the bonding �S�q ,���
and antibonding �R�q ,��� configuration. For the ladder, the
dynamical spin structure factor for both bonding and anti-
bonding cases displays features of the two spinons con-
tinuum of a single spin-1

2 chain.35

We show in Appendix A that such a continuum is quali-
tatively well reproduced by a mean-field theory, and corre-

sponds to the particle-hole continuum stemming from the
effective fermionic Hamiltonian. The continuum for bonding
combination, S�q ,��, is characterized by a slightly lower en-
ergy due to the weak ferromagnetic coupling between the
chains.

As apparent from Fig. 2�b�, a narrow band emerges for
the single-pole ladder model. We define its width, W, as the
differences in energy between the low-energy maxima at
q=� and q=� /2 in the spin excitation spectrum for �=�.
Associating this band with the SN splitting of dangling spins,
we expect the width, W, to scale as J�

2 /J� in the weak-
coupling region. This is indeed confirmed for small system
size in Fig. 3 where the ED data are found to fit well to a
W�J�

2 form.
For reasons that are clarified at the end of Sec. IV B, we

also investigated the zero temperature spectral functions
S11�q ,�� and S22�q ,��, Eq. �5�, with the emphasis on the
weight, or residue, of the lowest excitation energy. This

weight is a measure of the overlap between Ŝl
z�q��0� and the

first low-lying excitation as modeled with the effective
Hamiltonian of Eq. �8�. Figure 4 plots this quantity, normal-
ized by �0

�d�Sll�q ,��, that is,

Zl�q� =
�1�Ŝl

z�q��0��2

Sl
z�− q�Sl

z�q��
, �25�

where the state �1� corresponds to the first magnetic excita-
tion at wave number q. As apparent from the ED results for
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FIG. 2. �Color online� Dynamical spin susceptibility in the
weak-coupling limit at J� /J� =0.1: �a� ladder system ��=0� and �b�
single-pole ladder system ��=��. In both cases, results are obtained
on 2�12 lattices with ED techniques. We choose a broadening
s=0.1J�. The solid �red� lines represent the bonding spectrum,
S�q ,��, the dashed �blue� lines corresponds to the antibonding
spectrum, R�q ,��. The spectral functions in the left panels are nor-
malized to the structure factors S�q , t=0� ,R�q , t=0�, respectively;
the latter are shown in the right panels.
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FIG. 3. �Color online� ED results for the width W in the single-
pole ladder model ��=��. The effective SN interaction yields a
bandwidth proportional to J�

2 /J�.
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FIG. 4. �Color online� Normalized residue as a function of J� /J�

for the ferromagnetic single-pole ladder. The calculations were car-
ried out with ED on an 2�8 lattice.
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the single-pole ladder model �see Fig. 4�, Z2�q=�� corre-
sponding to the second leg is almost independent of J�.
Similar results are found for other momenta. It means that
nearly all the spectral weight for spins in the second leg
belongs to the well-defined lowest-lying excitation. This
should be contrasted with the situation in the first leg, where
only a fraction of the spectral weight belongs to this low-
lying mode, and the rest of the weight belongs to the spin-
wave continuum. Clearly, the continuum fraction in S11�q ,��
should increase as J� is decreased up to the decoupled situ-
ation J�=0, where one expects Z2�q=��=0.

We have also computed the spin gap � as a function of
the interleg coupling J� for different values of �. Unfortu-
nately, the finite-size scaling becomes difficult in the weak-
coupling limit for all � �data not shown� and an extrapolation
to the thermodynamic limit is not feasible. We can only con-
firm the differences in the scaling behavior of the spin gap
between the single-pole model and the ladder model, where
it is widely accepted that the gap opens linearly with the
coupling between chains.4,36

Concluding this section, we notice that the advantage of
the ED method is its high accuracy but the method is limited
to relatively small system sizes. For the single pole ladder,
when the gap becomes small and comparable to interlevel
spacing �J� /L, the accuracy of the calculation becomes
irrelevant.

B. Quantum Monte Carlo, spin correlations

To extend our analysis to larger system sizes, we also
used QMC methods, performing simulations at finite inverse
temperature �=1 /T. We applied two variants of the loop
algorithm. For the spin-spin correlation function and for the
string order parameter, discussed here and in Sec. IV D, we
used a discrete time algorithm.37 From the spin-spin correla-
tion function we can then extract the spectral function via
stochastic analytical continuation schemes.38,39 In Sec. IV C,
we also use a continuous time loop algorithm to directly
compute the spin gap.

We start our QMC analysis with a discussion of the dy-
namical spin-spin correlations, which can be computed on
much larger sizes than with ED. However, the energy reso-
lution is limited and hence we can only use this approach at
larger couplings than the ones reached with ED.

The QMC results of the dynamical spin susceptibility for
�=0 �ladder� and �=� �single-pole ladder� with 2�100 sites
at J� /J� =1.0 ��J� =200� are shown in Fig. 5 �these results
were partly shown in Fig. 4 of Ref. 23�. At �=0, inversion
symmetry S1,i↔S2,i is present, such that the bonding and
antibonding combinations do not mix. Since Si is even under
inversion symmetry �with respect to the transverse direc-
tion�, S�q ,�� picks up the dynamics of the triplet excitations
across the rungs. For ferromagnetic rung couplings J�
0,
the low-energy spin dynamics of the model is apparent in
S�q ,�� which in the strong-coupling limit maps onto the spin
structure factor of the Haldane chain. In contrast, Ri is odd
under inversion symmetry and picks up the singlet excita-
tions across the rungs. As apparent from Fig. 5�b� those ex-
citations are located at a higher energy scale set by J� in the

strong-coupling limit. For the single-pole ladder model,
�=�, a mixing of the bonding and antibonding sectors oc-
curs. As apparent in Figs. 5�c� and 5�d� both R�q ,�� and
S�q ,�� show high- and low-energy features. The low-energy,
narrow, dispersion curve in Fig. 5�c� is a consequence of the
SN interaction and reflects the slow dynamics of triplets
formed across the rungs.

In spite of the limited energy resolution of the QMC
method, we can extract the value of the spin gap by studying
the spin correlation functions at long distances. Such analysis
also provides an insight of the intermediate energy scales.
We show the behavior of the correlations S1,i

z S1,j
z � and

S2,i
z S2,j

z � as function of �i− j� in Fig. 6 for a particular value
J�=0.5J�; the distance is measured in lattice spacings. We
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FIG. 5. �Color online� QMC results of the bonding and anti-
bonding dynamical spin susceptibilities for the ladder ��=0� �two
top panels� and single-pole ladder ��=�� �two bottom panels� sys-
tems at J� /J� =1.0. �J� =200 was taken in the simulations.
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notice that beyond a certain length scale both correlation
functions behave similarly, differing only in overall factor.
We hence plot in Fig. 6 the function S1,i

z S1,j
z � as is, while

S2,i
z S2,j

z � is multiplied by a factor discussed below; after this
“normalization” both curves are indistinguishable at large
distances d�10 �these results were partly shown in Fig. 3 of
Ref. 23�. This indicates that the lowest-energy dynamics of
dangling spins S2,i

z and of the main leg S1,i
z is the same slow

dynamics of rung triplets, wherein these spins enter with
different weight.

At largest distances an exponential decrease in correla-
tions is observed, corresponding to a gap in the spectral
weight of Sjj�q ,��. In Sec. III A we developed a theory
which predicts the long distance behavior of the spin-spin
correlations in the form

�Sj,r
z Sj,0

z �� =
wj

2

�
K0��r

v
	 �26�

with K0 the modified Bessel function, v�J� velocity of spin
excitations, wj �with j=1,2� is the weight of the spin Sj,r

z in
the effective spin-1 variable of the single-pole ladder. As
explained in Sec. III A above, we expect wj �J� /J� while
��J� exp�−J� /J��.

In Fig. 6 we fit the long-ranged equal time spin-spin cor-
relation function at J� /J� =0.5 to this form. Several com-
ments are in order.

�a� Normalizing the spin-spin correlations of the
dangling spin by a factor 2.18=w2

2 /w1
2 provides a perfect

agreement between the long-range correlations on both
legs. Note that the numerical factor 2.18 is close to
Z2�q=�� /Z1�q=���2.25 as obtained from the data of Fig.
4. Hence the low-energy dynamics of the spins on both legs
are locked in together. This observation confirms the picture
that the low-lying spin mode observed in Fig. 5�c� indeed
corresponds to the dynamics of triplets across the rungs.

�b� One can read off a length scale at which the functional
form of both correlation functions differs. This length scale
marks the crossover from high to low energy beyond which
an effective low-energy theory can be applied.

�c� In our previous paper23 we also pointed out the exis-
tence of the intermediate asymptotic, �i− j�−1/3, in case
J�=0.3J�. The existence of such power-law decay is inter-
esting on its own but the detailed description of this regime
is beyond the scope of this study. This is the case when the
gap becomes comparable to the energy spacing due to the
finite size of the system, and it causes difficulties in other
complementary numerical techniques, see, e.g., DMRG re-
sults of Sec. IV E below.

�d� For comparison we have plotted the spin-spin correla-
tions of the spin-1

2 chain22,40 which, on a length scale set by
the correlation length, decay much faster than the correla-
tions of the single-pole ladder. This very slow decay should
be seen as a direct consequence of the long-ranged nature of
the SN interaction.

�e� The fit to the form of Eq. �26� is next to perfect
thereby providing an excellent description of the low-energy
physics. The ratio of the gap to the velocity as well as the
weight of the spins in effective spin-1 variable is plotted in
Fig. 7. In particular, assuming a linear dependence of the
weight discussed in Sec. III A, we obtain w2

2=0.13J� /J� and
w1

2=0.060J� /J�. The gap values are fitted by an exponential
law, ��J� exp�−J� /J��, as discussed in Sec. III A. In the
next section, we will see that this exponential form provides
an excellent fit to the spin gap directly measured in QMC.
The parameters of the fit shown by a dashed line in Fig. 7 are
explained in the last paragraph of the next section.

C. Quantum Monte Carlo, spin gap

For the spin gap calculation the continuous-time loop al-
gorithm of ALPS �Ref. 41� was used. Here, we can calculate
the correlation length in imaginary time ���q� for a given
wave vector q via a second moment estimator,16,42

���q� =
�

2�

 ��q,� = 0�

��q,� = 2�/��
− 1�1/2

�27�

with ��q ,��=�0
�d�ei����q ,�� the Fourier transform of the

imaginary time dynamical structure factor �Eq. �7��.
The inverse of ���q� converges in the limit L ,�→� to

��q�=E1�q�−E0, if ��q��0. Here E1�q� is the minimum of

spin-1/2 AFH
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FIG. 6. �Color online� Equal time spin-spin correlation function
at J� /J� =0.5 for the single-pole ladder along both chains. Simula-
tions were done at �J� =5000 on a 2�800 lattice.
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FIG. 7. �Color online� Scales in the correlation function �Eq.
�26�� on the second leg as a function of J� /J�. The dotted line is a
fit to a linear law and the dashed curve is a fit with v=0.28J�. The
form of � is discussed at the end of Sec. IV C.
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the dispersion at wave vector q and E0 the ground-state en-
ergy: the spin gap is simply obtained as �=minq ��q�. If the
system is gapless at q, ���q�−1 is an upper bound of the
finite-size gap at q for any finite L and �. The full dispersion
curve can therefore be calculated in principle with this
method. In practice however, the simulations suffer from
large statistical errors in ��q ,�� when q is different from the
wave vector of the lowest lying excitation. The situation can
be ameliorated by using improved estimators43 for the imagi-
nary time dynamical structure factor, which is simply related
to the loop sizes in the algorithm. The wave vector picked by
the loops in the algorithm corresponds to the one given by
the sign of the coupling constants,37 which is in our case
q= �� ,0� �for ferromagnetic J�
0 and antiferromagnetic
J� �0�. The improved estimators have a smaller variance
than conventional ones, and we therefore obtain good statis-
tics for ���� ,0� and the spin gap �=��� ,0� when it is finite.
Now we turn our attention to the spin gap as a function of the
coupling J� and twist angle � �see Fig. 8�a�� �these results
were partly shown in Fig. 2 of Ref. 23�.

In the strong-coupling limit J� /J�→� the model maps
onto the AF spin-1 Heisenberg chain, Eq. �8� and we expect
the Haldane gap �H�0.41Jeff. This behavior is clearly ap-
parent in Fig. 8�a�. However, as � grows from �=0 to �=�
the approach to the Haldane limit becomes slower. Whereas
the scaling for �=0 and �=� /2 are nearly similar, the scal-
ing behavior for the single-pole ladder ��=�� differs, as can
be seen in Fig. 8�c�. In Sec. III B we argued that at largest J�

the gap should follow the law ��0.41Jeff�1−c���Jeff / �J���.
Now we confirm this picture by fitting the numerical data
with this form at the largest J�, as shown in Fig. 8�c�. We see
that c��� definitely grows as a function of � and reaches a
large value c����8 for the extreme case of the single-pole
ladder, �=�. In the intermediate region, 1�J� /J� �c���, we
cannot expect a good fit of the gap, as clearly visible in Fig.
8�c�.

For the ladder system ��=0� our data stand in agreement
with the independent QMC calculations of Ref. 36; the spin
gap opens linearly with respect to the coupling J� up to
logarithmic corrections. It is beyond the scope of this work
to pin down the exact form of the logarithmic corrections,
and we refer the reader to Ref. 36 for further discussions.
This behavior is stable up to large twist angles, and it is only
in the very close vicinity of �=� that a different behavior is
observed.

As discussed in Sec. III A, the spin gap at �=� is ex-
pected to decrease exponentially with decreasing values of
J�, as �J� exp�−J� /J��. In order to fit the QMC data of Fig.
8�b� in a wider region, J��J�, we also allow for a correction
in the prefactor in this law, namely, we assume the depen-
dence �=aJ��1−bJ� /J��exp�−cJ� /J��. Fitting the data of
Fig. 8�b� to this form gives a=0.077, b=0.32, and c=1.34.
These parameters can now be used to fit the data for the gap,
� /v, as extracted from the spatial decay of correlations in
Fig. 7. The only adjustable parameter there is v /J�, and we
obtain a good agreement in Fig. 7 for v=0.28J�. The effec-
tive model of Sec. III A leads to an expression v=4w1

2�J�.
Comparing these values, we determine the crossover scale
�=1.2J� /J�, which separates the long-distance behavior
from the short-distance one. For the particular value

J�=0.5J�, we obtain ��3, and this scale is clearly visible in
the merging of curves for the spatial dependence of correla-
tions in the first and second legs, as shown in Fig. 6. We
further show in Fig. 8�b� the result of a quadratic fit to the
gap � /J� ��J� /J��2. While such a fit is reasonable for low
J� as remarked in Ref. 23, the above exponential form
appears to provide a better fit in a larger J� window.

D. String order parameter

To pin down the nature of the ground state and, in par-
ticular, for the single-pole ladder, we compute the string or-
der parameter characterizing the Haldane phase. In the
strong-coupling region the system maps onto an effective
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FIG. 8. �Color online� �a� Size and temperature converged val-
ues of the spin gap � as a function of the coupling J� /J� for various

twist angles. The gap is rescaled by Jeff=
J�

4 �1+cos2�� /2�� such that
in the large-J� limit it converges asymptotically toward the Haldane
gap of a AF spin-1 chain �H /Jeff�0.41. �b� Spin gap for the single-
pole ladder model, �=�. Lines denote quadratic and exponential
fits for the spin gap �see text�. �c� Spin gap for SSHL at larger J�

for different �s, see detailed discussion in Sec. III B.
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spin-1 chain, for all twist angles � and the ground state can
viewed in terms a valence bond solid �VBS�.5,44,45 In the
VBS state the spins on a rung form triplets in such a way that
neglecting triplets with z component of spin m=0 reveals a
Néel order. This hidden AF order is characteristic of the
Haldane phase and, as shown by Nijs and Rommelse,46 is
revealed by the nonlocal string order parameter

Os =�Sn0

z exp
i� �
j=n0

n0+L/2−1

Sj
z�Sn0+L/2

z � , �28�

where Si
z=S1,i

z +S2,i
z , n0 stands for an arbitrary rung and L

denotes the system length. Os is also sensitive to a true AF
order. To distinguish between a hidden AF order and a true
Néel order another order parameter has to be introduced46

OH =�exp
i� �
j=n0

n0+L/2

Sj
z�� , �29�

which is zero in the Haldane phase �hidden AF order� and
finite in the Néel phase. Starting from the strong-coupling
region where the system is clearly in the Haldane phase,
Os�0 and OH=0, we analyze the evolution of the string
order parameter as a function of the coupling J� and the
twist angle �. For �=0 the order parameter Os stays finite
and OH is zero for all couplings. Hence the ladder system

remains in the Haldane phase, independent of J�.
The situation for the single-pole ladder is much more deli-

cate �see Fig. 9�a�, these results were shown in Fig. 5 of Ref.
23�. For J� /J� �0.4 the string order parameter OH appears to
be nonzero, thus indicating Néel order. In Sec. III A we have
shown that at weak couplings and for �=� the SN interac-
tion generates a very slow decay of the spin correlations. For
instance, the correlation length � for J� /J� =0.3 is larger than
the system size and the very slow decay of the spin-spin
correlation functions at distances smaller than � mimics AF
order. However, when increasing system size, one expects
OH to vanish and Os to converge to a finite value. This
expectation is supported by a finite-size scaling of the string
order parameters, as shown in Fig. 9�b� for �=8� /9 and
�=�. The crossover between the AF order for small systems
and the disordered phase is rather obvious for �=8� /9
�cos2 �

2 �0.03� at J� /J� =0.2. For small lattice sizes the sys-
tem seems to be in the AF ordered phase as indicated by the
fact that both string order parameters are finite. However, for
increasing lattice sizes the order Os remains nearly constant,
whereas the order parameter OH decreases and finally van-
ishes. At this point the order parameter Os increases again.
For the single-pole ladder ��=�� at J� /J� =0.3 we do not
observe the disappearance of OH, which shows that finite-
size effects are strong in this case even for a system as large
as L=800.

E. DMRG analysis

In this section we present our analysis of the Hamiltonian,
Eq. �1�, with the use of the DMRG �Ref. 47� for the single-
pole ladder, i.e., �=�. Overall, our results presented in Fig.
10 clearly support a nonanalytic exponential scaling of the
gap in J� as suggested by the analytical considerations in
this paper.

For the calculation of the spin gap the specific choice of
the boundary condition �BC� is crucial. While DMRG pre-
fers open BCs for numerical stability and accuracy, they
must be dealt with carefully in order to separate boundary
effects from bulk effects. Periodic boundary conditions can
be applied within DMRG,48,49 yet with somewhat limited
accuracy and efficiency. In this paper we therefore adhere to
the conventional DMRG with open BC. In order to still deal
with a Hamiltonian with periodic BC, a long bond connect-
ing the ends of the chain can be introduced for short system
sizes. Alternatively for somewhat longer system sizes, the
chain with periodic boundary can be reshaped into a double
chain with ends connected to form a loop. We adopted the
latter approach since it is stable in finding the ground state of
the system. Nevertheless it is enormously costly numerically,
and keeping up to 5120 states for chain lengths up to
L=256 rungs total, the DMRG results still showed signifi-
cant uncertainties in the ground-state energy for small J� /J�

insufficient to accurately resolve the exponentially small gap
�see Fig. 10, panel a�.

When compared to the other calculations �see, e.g., panel
�d� below�, the gap for periodic BC is consistently overesti-
mated for small J� /J�. This comes from the fact that the
ground state is typically well represented �smaller block en-
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FIG. 9. �Color online� �a� String order parameters Os and OH as
a function of interleg coupling J� for �=�. In the parameter range
J� /J� �0.5 finite-size effects are still present. �b� Finite-size
scaling of the order parameters for �=8� /9 �J� /J� =0.2�
and �=� �J� /J� =0.3�. The simulations are carried out up to
�J� =7000 and 2�800 spins.
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tropy due to gap� while the excited state at larger Sz has a
larger block entropy as it is a part of the continuum. Due to
the limited number of states kept, the excited state is less
accurately represented which leads to an overestimated gap.

This effect is more pronounced for large system sizes as can
be clearly also seen from Fig. 10�a�.

At the same time the numerical data for the gap for large
J� /J� are reliable, allowing for an extrapolation toward the
known value of the Haldane gap with less than 1% relative
error as shown in panel �a�. The fitting range used was
J� /J��0.55 as indicated by the vertical dotted guide in the
panel. With a fit of the form ��J���e−const J�/J� this shows
that the Haldane gap is reached rather slowly when increas-
ing J�.

With periodic BC being of limited accuracy as explained
above, we adopted the plain open BC also on the level of the
Hamiltonian for the rest of the DMRG calculations. Hence
we deal with a single ladder, in contrast to the connected
double ladder above. Keeping up to 2560 states leads to
clearly converged numerical data for all J� /J� analyzed.
Note nevertheless, that the block entropy rises rapidly for
J� /J� �0.5 due to the near degeneracy of the dangling spins
on the single-pole ladder in the limit J� /J�→0.

From the numerical analysis for systems with open BC,
one observes spin-1

2 edge excitations visible in terms of an
alternating finite Si

z� along the sites i which decay exponen-
tially with the distance from the ends of the chain.50 As the
total spin Sz is a conserved quantum number, the individual
symmetry sectors can be analyzed separately, with the over-
all ground state lying within Sz=0. However, as it turns out,
the Sz=0 sector has clear Sz= �

1
2 edge excitations with op-

posite signs being consistent with Sz=0. The situation is
similar in the Sz=1 sector, but this time yet with equal signs
of alternation, consistently adding up to Sz=1. Therefore
Sz=0 and Sz=1 are degenerate in the thermodynamic limit
yielding a fourfold degenerate ground state due to the pres-
ence of the open boundary.50 Only starting with Sz=2 a true
bulk excitation is generated.51 In order to extract the spin
gap, we therefore prefer to monitor the splitting in energy
with respect to Sz�2. To this end the energy differences
�Sz,Sz+1

S between the ground states of the consecutive spin
sectors Sz and Sz+1 are calculated and plotted in Fig. 10�b�.
From the above argument, �0,1

S clearly vanishes in the ther-
modynamic limit as the overlap between the spin-1

2 excita-
tions confined to the boundaries decays exponentially with
system size. Therefore only �Sz,Sz+1

S for Sz
0 resembles the
gap with a finite-size effect added with each increment of Sz.
Note in Fig. 10�b� that all curves for Sz
0 start falling onto
the same line as L increases. This indicates, consistently with
the notion of a spin gap, that for large enough system sizes
each increment of Sz by 1 costs an energy equal to the gap
value. Note, however, that the lowest energy states for the
Sz
1 sectors may already lie within a continuum of states.

The strategy then to extract the spin gap is twofold: �i�
extrapolation of �Sz,Sz+1

S for Sz
0 for constant system size L,
using a quadratic fit toward Sz=0 to eliminate finite-size ef-
fects with increasing Sz,

�0
S � lim

Sz→0

�Sz,Sz+1
S �L = const� �30�

�gray and black dots in Fig. 10�b�� and �ii� actual finite-size
scaling on �1,2

S , i.e., the lowest Sz that yields a finite spin gap
�Sz,Sz+1

S in the thermodynamic limit,
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FIG. 10. �Color online� DMRG analysis of the single-pole lad-
der ��=��—panel �a� shows the spin gap between the ground states
of the Sz=0 and Sz=1 spin sectors for several system sizes using
periodic BCs �double chain, see text�. The error bars indicate the
convergence with respect to the number of states D kept �with an
extrapolation in 1 /D→0 with D�5120�. The convergence to the
Haldane gap for J��J� is reproduced within 1% relative error,
within the fitting range at small J� /J� indicated by the vertical
dotted line. Panel �b� shows spin gap data using open BCs for the
ground states of several spin sectors Sz� �0,1 ,2 ,3 ,4�. Keeping up
to 2560 states, all energies are converged with negligible uncertain-
ties. The consecutive energy differences �spin gap� �Sz,Sz+1

S between
the ground states of the spin sectors Sz and Sz+1 are plotted vs
J� /J� for L=128 �dashed� and L=512 �solid�, respectively. The
vertical order �top to bottom� of the entries in the legend matches
the order of the lines appearing in the panel �top to bottom�. The
extrapolated spin gap �0

S �gray and black dots for L=128 and
L=512, respectively�, as well as ��

S �crosses�, as obtained
from a finite-size scaling of �1,2

S for systems of length
L� �128,256,512�, are shown. Panel �c� shows �0

S from panel �b�
for L� �128,512� and also for L=256 together with ��

S �all for
open BC� on a semilog plot again with inverted x axis similar to
panel �a�. The extrapolated value of the gap for small J� /J� for
open BC compares well with the exact Haldane gap within 1%
relative error already for the smaller system size L=128 �fit range
up to first vertical dotted guide�. Fits to the data for large J� /J� are
shown in solid and dashed curves. The fit range chosen is again
indicated by the two vertical dotted guides, here for J� /J�
1.
Panel �d� summarizes the data obtained with periodic �circles� and
open �crosses� boundary conditions DMRG calculations, as com-
pared with QMC data �black circles�. The solid line is a fit for large
J� /J� similar to the one in panel �c�. Error bars indicate the respec-
tive uncertainty in energy. Inset shows that � /J� reaches the maxi-
mum at J��2J�.
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��
S � lim

1/L→0
�1,2

S �31�

�crosses Fig. 10�b��. As can be seen in the same panel, both
strategies nicely agree with each other for L=512, indicating
that the data are well converged and consistent. It also shows
that Eq. �30� is a valid way of extracting the spin gap for
systems that are large enough.

In order to analyze the data at small J� /J�, the data for �0
S

and ��
S are �re�plotted in Fig. 10�c� with inverted x axis on a

semilog-y plot, as we expect a nonanalytic behavior of the
form ��e−const J�/J� �and as motivated by previous studies
on spin ladders too52�. As a consistency check for open BCs,
the gap �0

S for L=128 is again extrapolated toward
J� /J�→0 to retrieve the Haldane gap with reasonable accu-
racy of 1%.

For large J� /J�
1, the gap ��
S in the thermodynamic

limit �slanted crosses in Fig. 10�c�� can be fitted nicely using
exponential forms of either type

��J�� = a0e−c1/J� �32a�

and

��J�� = �a1J� − a2�J��2�e−c2/J� �32b�

with J��J� /J�, and ai and ci being fitting parameters �see
Fig. 10�c� where x�1 /J��. Note that the �J��2 term in Eq.
�32b� is important to obtain a clear agreement with the nu-
merical data. The data are equally well fitted by both forms
in the region J� /J�
1, with deviations of the fit in Eq. �32b�
�dashed line in Fig. 10�c�� visible only outside the fitted re-
gion, at J� �J�. Note also that despite the fact that the fitting
range chosen to be J� /J�� �1.05,2.25� �as indicated by the
vertical dotted guides in Fig. 10�c��, both fits extrapolate well
up the last data point at 2.5.

Finally, the DMRG results for the gap are summarized
and directly compared to the QMC simulations in Fig. 10�d�,
as a function of J� /J�. The gap ��

S in the thermodynamic
limit �crosses� clearly lies within the error bars of the other
less accurate data sets while its own error bars are negligible.
The results obtained this way are then reliable down to
smaller J� /J�. The exponential fit reproduced from Fig.
10�c� �solid line� in panel �d�, finally, illustrates the ex-
tremely fast decay of the gap toward small J�. Yet as clearly
supported by Fig. 10�c�, the spin gap remains finite in this
region. The inset in Fig. 10�d� illustrates that, when scaled to
J�, the gap in the single-pole ladder has a maximum at J�

�2J� and decreases exponentially at smaller J�. This is to be
contrasted with the symmetrical ladder where � /J� saturates
to a constant at J�→0.

V. CONCLUSIONS

In conclusion, we investigated asymmetric spin ladders,
with different values of exchange interaction of spins
S=1 /2 along the two legs as parametrized by �. For ferro-
magnetic rung coupling J� the spectrum of excitations is
characterized by a Haldane gap, as expected for the effective
spin-1 rung variables which are coupled antiferromagneti-
cally along the chains. We confirm this by the numerical

analysis of the spin gap, spin correlation functions, and of
the corresponding string order parameter.

The most intriguing behavior is observed near the single-
pole situation, i.e., in the absence of exchange along the
second leg. Our extensive numerical analysis shows
that the spin gap decreases with J� exponentially fast,
��J� exp�−J� /J��, unlike the conventional symmetric lad-
der behavior, ��J�. In order to explain the whole body of
numerical data, we develop a theory, which takes into ac-
count the indirect Suhl-Nakamura interaction between spins
and the formation of large effective blocks of spins. In a
certain sense, the formula for the gap as obtained from this
approach combines the “quantum” prefactor J� and the
semiclassical exponent exp�−J� /J�� arising from the large-
block picture.

In summary, we observe the spin gap for any asymmetry
and J�, except for the single-pole situation at J��0.4J�. Our
analysis suggests that in this latter case the gap is finite but
exponentially small, which leads to difficulties in its actual
observation, both due to the finite resolution of the tool em-
ployed �numerical or experimental� and to the finite-size ef-
fects associated with a large correlation length.

The case of a negligible gap was reported in Ref. 23 for
J�=0.3J�. We did not discuss this situation in the present
paper since at these parameters the correlation length is
larger than the system size and the true string order param-
eter is not formed, cf. Fig. 9. In such case the observed
power-law decrease in correlation functions should be
viewed as an intermediate asymptote, and the origin of the
particular value of the decay exponent reported in23 is not
clear.
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APPENDIX A: JORDAN-WIGNER MEAN-FIELD
APPROACH

The definition of the Jordan-Wigner transformation for
the ladder topology relies on the choice of a path labeling

FIG. 11. �Color online� �a� Zigzag path used for the Jordan-
Wigner transformation, Eq. �A1� and �b� gauge transformation,
leading to Eq. �A3�.
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different sites. With the choice shown in Fig. 11�a� it reads

S1,i
z = n1,i −

1

2
S2,i

z = n2,i −
1

2
,

S1,i
+ = c1,i

† exp
− i��
l=1

i−1

�n1,l + n2,l�� ,

S2,i
+ = c2,i

† exp
− i���
l=1

i

n1,l + �
l=1

i−1

n2,l	� , �A1�

where n	,i=c	,i
† c	,i is the density operator at site i with leg

index 	=1,2. c	,i
† and c	,i are spinless fermionic creation and

annihilation operators which satisfy the anticommutation
rules �c	,i ,c�,j

† �=ij	�. Before proceeding to the details of
the mean-field calculations below, let us summarize the re-
sults obtained within this approach. The ground state of the
asymmetric ladder is characterized by spinless fermions cir-
culating around a plaquette thereby allowing for a �-flux
phase as solution of the mean-field equations. This leads to a
spin gap �� �J��cos�� /2� for �J���J� cos�� /2�. Such regime
is unavailable for the single-pole system at �=� in which
case we obtain an �indirect� spin gap ��J�

2 /J�. The mean
field also predicts a smooth crossover between these two
regimes.

Our analysis is rather standard and similar to Ref. 53.
After application of the Jordan-Wigner transformation, the
Heisenberg Hamiltonian of Eq. �1� can be written as

H = −
J�

2 �
i=1

L

��Âi
�1��2 − Âi

�1�ei�n̂i,2�

−
J�

2
cos2��

2
	�

i=1

L

��Âi
�2��2 − Âi

�2�ei�n̂i+1,1� +
J�

2 �
i=1

L

�B̂i
2 − B̂i� .

Here, we have defined

Âi
�	� = c	,i

† c	,i+1 + H.c., B̂i = c1,i
† c2,i + H.c. �A2�

We restrict ourselves here to a phase with zero magnetiza-
tion, S	,i

z �=0, which corresponds to n	,i�= 1
2 . To proceed

further we will replace n	,i by its mean value. Although this
simplification cannot be rigorously justified54 and more
elaborate treatments are possible in a Jordan-Wigner
approach,55 we show now that it qualitatively reproduces the
results available by more sophisticated methods.

The replacement ei�n̂	,i+1→ i defines a spiral U�1� phase
shift for fermions on each leg. The relative phase between
these spirals demarcates two qualitatively different situa-
tions. In one case the phase flux � through each plaquette is
zero and in another case it is equal to �. Using the gauge
transformation, we can reduce the �-flux phase effective
Hamiltonian to the form

H� = −
J�

2 �
l

��Âl
�1��2 + Âl

�1�� −
J�

2
cos2��

2
	�

l

��Âl
�2��2 + Âl

�2��

+
J�

2 �
l

�B̂l
2 + ei�lB̂l� �A3�

with a checkerboard character of coupling in the J� channel
happening in the �-flux case, �=�. On the other hand, the
0-flux case is characterized by a uniform J� coupling,
ei�l→1 in Eq. �A3�.

We then use the mean-field decoupling,

Âl
�j�� = A�j�, B̂l� = ei�lB

for the quadratic part of Hamiltonian �A3�, where the special

property B̂l
3= B̂l, �Âl

�j��3= Âl
�j� should be taken into account.

The remaining Hamiltonian is quadratic in fermions and its
spectrum is easily found. It can be shown that the �-flux
phase provides a lower ground-state energy, and hence we
focus on this phase from now on. From the consistency equa-
tions similar to Eq. �A5�, Eq. �A6� below it can be shown
that A�1�=A�2�=A, and we can use this observation to sim-
plify our subsequent formulas.

The spectrum has two bands,

�q
��� =

1

2
J��1 + A�sin2��

2
	cos q �

1

2
Eq,

Eq =��J��1 + A�
1 + cos2��

2
	�cos q�2

+ J�
2 �1 + B�2

�A4�

and this dispersion should be combined with the consistency
conditions

A =
1

L
�

q

J��1 + A�
1 + cos2��

2
	�cos2 q

Eq
, �A5�

B =
1

L
�

q

J��1 + B�
2Eq

, �A6�

where the thermodynamic limit 1
L�q→�dq /2� is assumed.

In the limit J�→0 we have A�2 /� and

B �
�J�/J��ln�J�/J�c1�

�1 + �/2�
1 + cos2��

2
	�

with c1�1.
At half filling, corresponding to a vanishing total magne-

tization in the spin language, a direct gap is given by
�q

�+�−�q
�−�=Eq at q=� /2 or

�0 = �J��1 + B�� ,

��J���1 + O��J�/J��ln�J�/J���� . �A7�

Hence, this simple mean-field approach is consistent �includ-
ing logarithmic corrections� with bosonization4 and quantum
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Monte Carlo simulations36 for which a spin gap of the form,
Eq. �A7�, is found in the weak-coupling limit.

The indirect gap, which is the minimum excitation energy
in the spin system at zero temperature, is defined as
�=minq �q

�+�−maxk �k
�−�=2 minq �q

�+�. The qualitative form of
the spectrum �Eq. �A4�� at ��� is depicted in Fig. 2 of Ref.
21. For small J�, a flat band is apparent reflecting the mac-
roscopic degeneracy of the model at �=� and J�=0. This
leads to a dense spectrum of particle-hole excitations at low
energies. A straightforward calculation shows that

� = �0

2 cos
�

2

1 + cos2�

2

�A8�

at cos �
2 �1 and small enough J�. When cos�

2 →0, the do-
main of linear dependence of � on J� disappears and we
have the quadratic law. Expressing energies in units of
�0=J��1+A��1+cos2 �

2 �, we obtain for small J� /�0 ,cos�
2 �1,

� � 2J� cos
�

2
, J� � 2�0 cos

�

2

�J�
2 /�2�0� + 2�0 cos2�

2
, J� 
 2�0 cos

�

2
. �A9�

A linear regime for the indirect gap occurs for incommensu-
rate q in the above expression minq �q

�+�, whereas the qua-
dratic regime in Eq. �A9� corresponds to the difference
�q=�

�+� −maxk �k=0
�−� , i.e., commensurate wave vector � of the

particle-hole excitation.

APPENDIX B: MAGNONS FOR LONG-RANGE
INTERACTION

We use the Dyson-Maleyev representation of spin opera-
tors. In a predominantly AF situation, we write

Sl
z = �s − al

†al��− 1�l,

Sl
x = �s/2�al

† + al − al
†al

2/�2s��

Sl
y = i�s/2�al

† − al + al
†al

2/�2s���− 1�l. �B1�

For spins in different sublattices we have

S1S2 = − s2 − s + s�a1
† + a2��a2

† + a1� + ¯

and for spins in the same sublattice,

S1S3 = s2 − s�a1
† − a3

†��a1 − a3� + ¯ .

Adopting the FM interaction Ṽ�r� within one sublattice and
AF interaction V�r� between sublattices, we come to the lin-
earized Hamiltonian,

H = s�
k

�2ak
†ak�V�0� + Ṽ�0� − Ṽ�k�� + V�k��ak

†a−k
† + H.c.�� .

�B2�

Notice that we have V�k+��=−V�k� and Ṽ�k+��= Ṽ�k�. To
stress the similarity to acoustic phonons, the last equation
can also be rewritten as

H = s�
k

�gk+�PkP−k + gkQkQ−k� , �B3�

where

Pk = �ak
† + a−k�/�2,

Qk = i�ak
† − a−k�/�2,

gk = �V�0� − V�k� + Ṽ�0� − Ṽ�k�� �B4�

so that canonical commutation relations hold, �Pk ,Qq�
= i�k+q�. For k�0 we have gk�k2, gk+��2V�0� the spec-
trum ��k�=2s�gkgk+��k is linear for small k. The analogy
with acoustic phonons is incomplete because in the second
magnetic Brillouin zone �close to the point k��� the role of
Pk and Qk is reversed with respect to the form of their cor-
relation functions.

For the dynamical susceptibility, �xx, the representation in
terms of a is the same for both sublattices and we have
Sk

x=�sPk. The equations of motion read

�tPk = 2sgkQk,

�tQk = − 2sgk+�Pk �B5�

and hence

�xx�k,�� = s
2sgk

��k�2 − �2 . �B6�

For the nearest-neighbor interaction J this formula simplifies
to

S
2SJ�1 − cos q�

�m
2 + �2SJ sin q�2 . �B7�
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