DMRG and quantum impurity models

Andreas Weichselbaum and Jan von Delft

Arnold Sommerfeld Center (ASC) Ludwig Maximilians Universität, München

<u>Collaboration</u> Uli Schollwöck (Aachen) Frank Verstraete (Uni Wien) Ignacio Cirac (MPI Garching)

Students Hamed Saberi Andreas Holzner Wolfgang Münder

ARNOLD SOMMERFELD

CENTER FOR THEORETICAL PHYSICS

Outline

7

Motivation

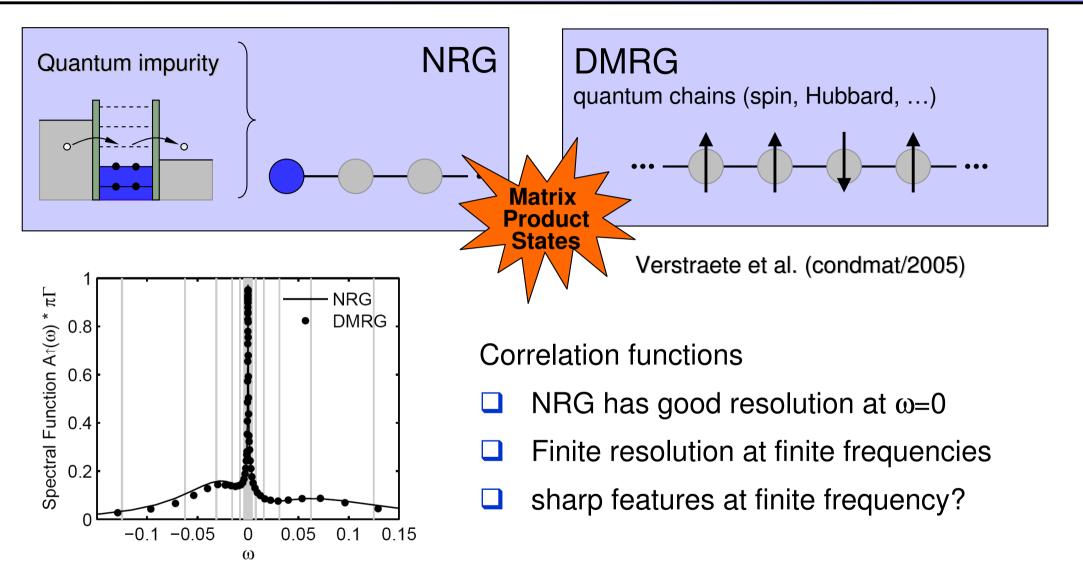
NRG point of view

- based on energy scale separation
- NRG produces matrix product state
- DMRG applied to quantum impurity models
 - variational within the space of matrix product states
 - Ioosens several strict NRG constraints
 - Inks to concepts of quantum information
- Correlation functions
- Application to Kondo model in the limit of large B $(B>>T_K)$
 - DMRG resolves sharp features at finite frequencies <u>out of reach for NRG</u>
 - results compare well with analytic results perturbative in $\log[B/T_K]$

Summary and outlook

Arnold Sommerfeld	DMRG and quantum impurity models	0	
CENTER FOR THEORETICAL PHYSICS	(NETN Copenhagen 2008)	2	Genter for Nano Science

Motivation



NRG = Numerical Renormalization Group (Wilson, 1975) DMRG = Density matrix Renormalization Group (White, 1992)

ARNOLD SOMMERFELD

CENTER FOR THEORETICAL PHYSICS

DMRG and quantum impurity models (NETN Copenhagen 2008)

Quantum Impurity Models and Numerical Renormalization Group (NRG)

Wilson (1975)

Kondo Hamiltonian

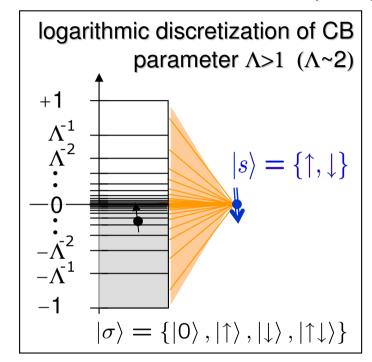
ARN

CENTER FOR THEORETICAL PHYSICS

$$\mathcal{H} = \mathbf{B} \cdot \mathbf{s} + 2J\mathbf{s} \cdot \mathbf{S} + \int_{-D}^{D} d\epsilon \ \epsilon \ c_{\epsilon\mu}^{\dagger} c_{\epsilon\mu}$$
$$\mathbf{S} \equiv \frac{1}{2} \int_{-D}^{D} d\epsilon d\epsilon' \rho \ c_{\epsilon\mu}^{\dagger} \sigma_{\mu\mu'} c_{\epsilon'\mu'}$$
$$T_{K} = \sqrt{2\rho J} e^{-\frac{1}{2\rho J}}$$

logarithmic discretization + tridiagonalization \rightarrow Wilson chain:

Review Bulla et al. (RMP 2008) Kondo (1963)

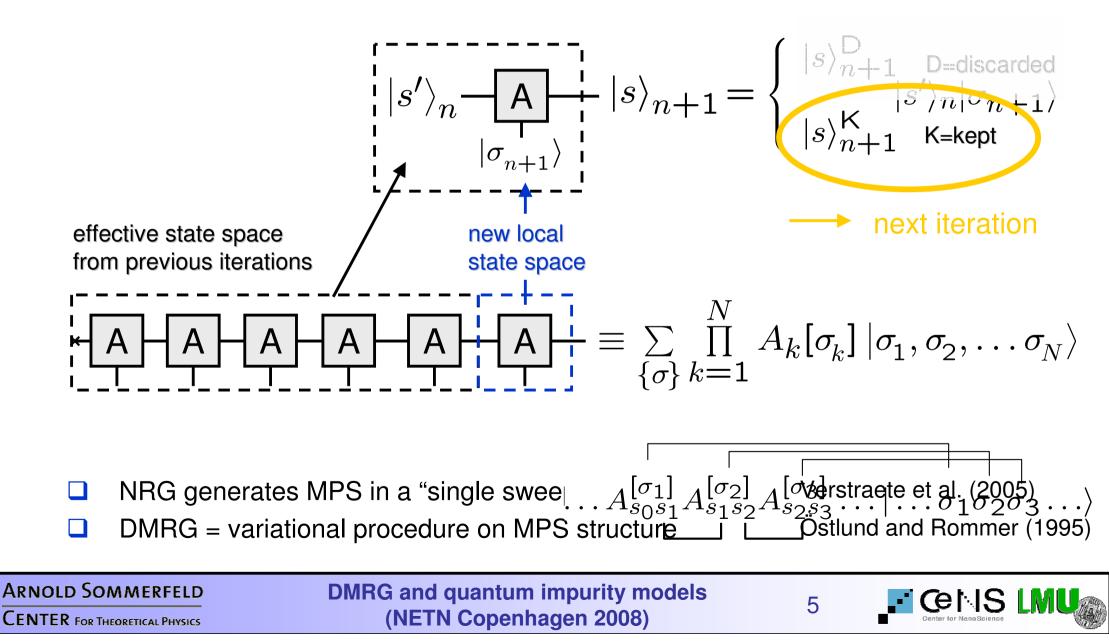


/ I U

$$\mathbf{r} = H_{\text{dot}} + (2\rho J D) \mathbf{s} \cdot \tau + \frac{1}{2} \left(1 + \frac{1}{\Lambda}\right) \sum_{n=0}^{\infty} \underbrace{\xi_n}{\Lambda^{n/2}} f_{n\mu}^{\dagger} f_{n+1,\mu} + f_{n+1,\mu}^{\dagger} f_{n\mu} \right), \quad \tau \equiv f_{0\mu}^{\dagger} \sigma_{\mu\mu'} f_{0\mu'}$$
DDDRG and quantum impurity models
$$4$$

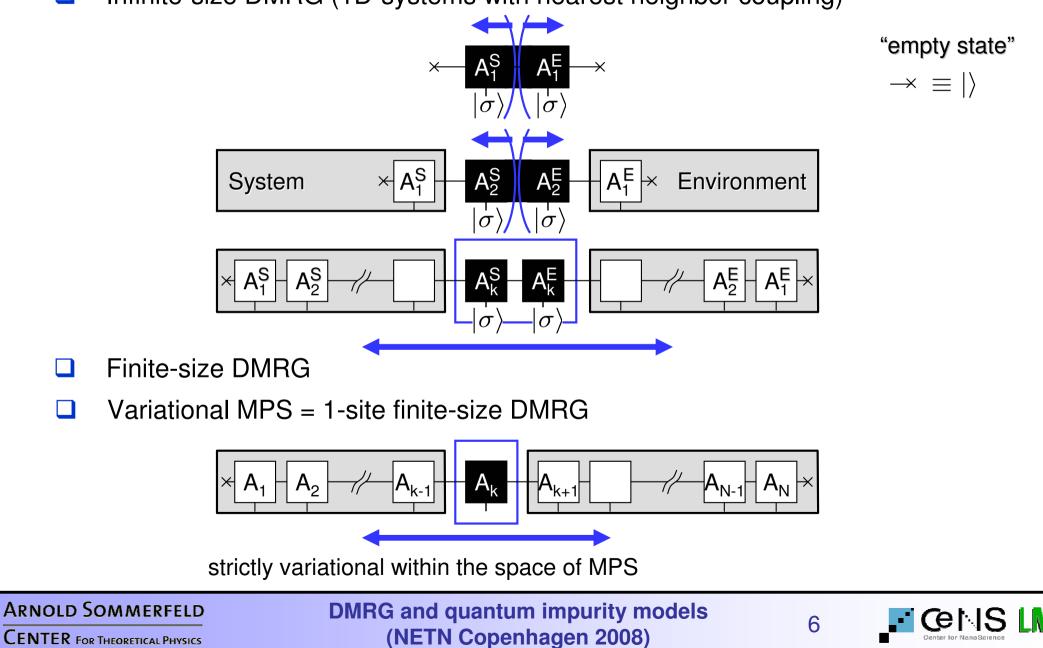
(NETN Copenhagen 2008)

NRG produces Matrix Product States

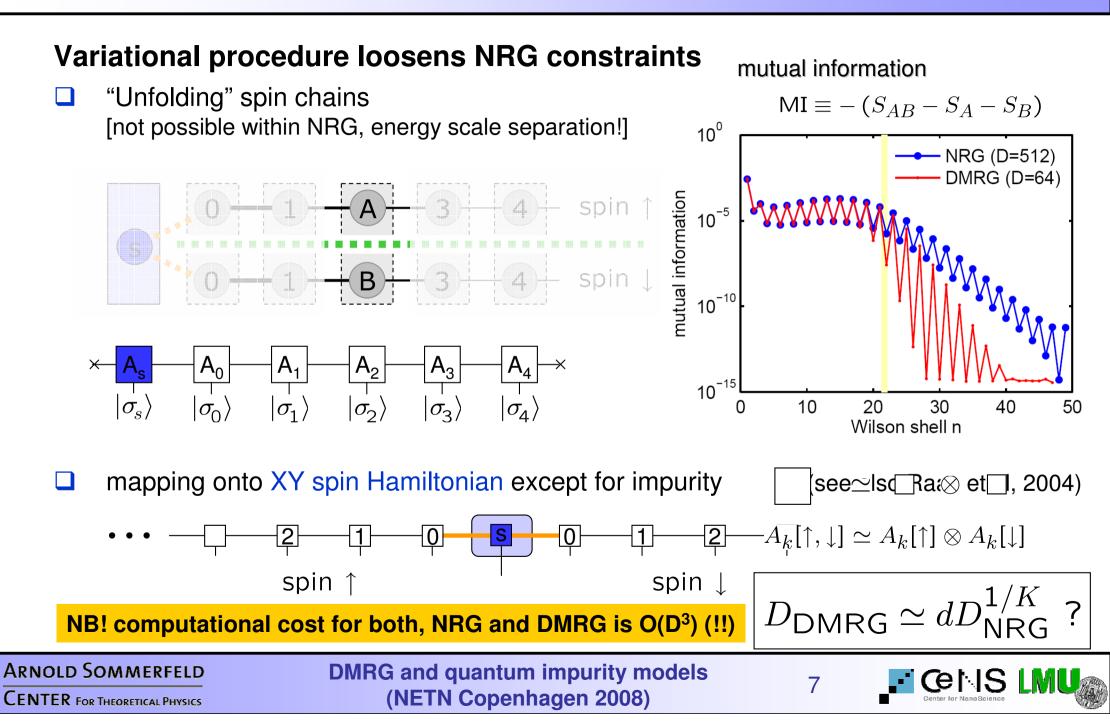


DMRG Primer

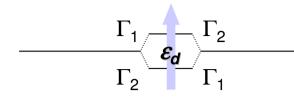
□ Infinite-size DMRG (1D-systems with nearest neighbor coupling)



Unfolding the Kondo model



Spinless 2-level 2-channel model



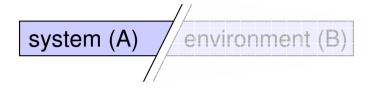
there exists unitary rotation which disentangles channels but depends on non-trivially on ε_d !

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

ARNOLD SOMMERFELD

CENTER FOR THEORETICAL PHYSICS

DMRG and quantum impurity models (NETN Copenhagen 2008)

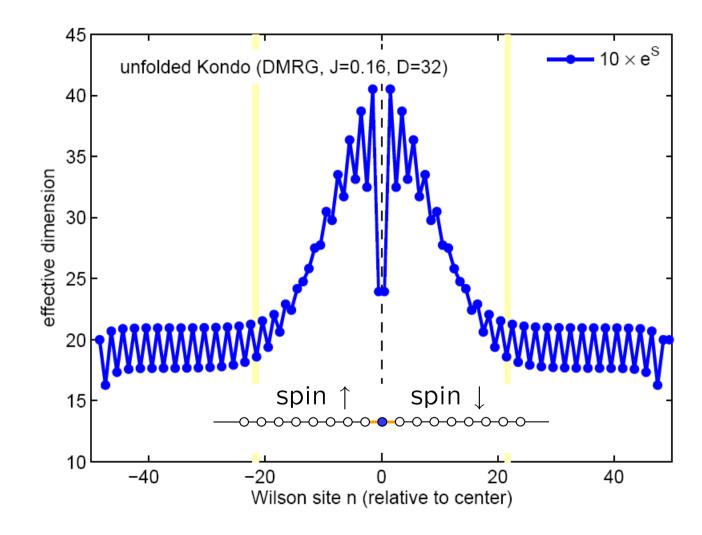


bond entropy

$$S = -\sum_i \rho_i \, \log \rho_i$$

effective dimension

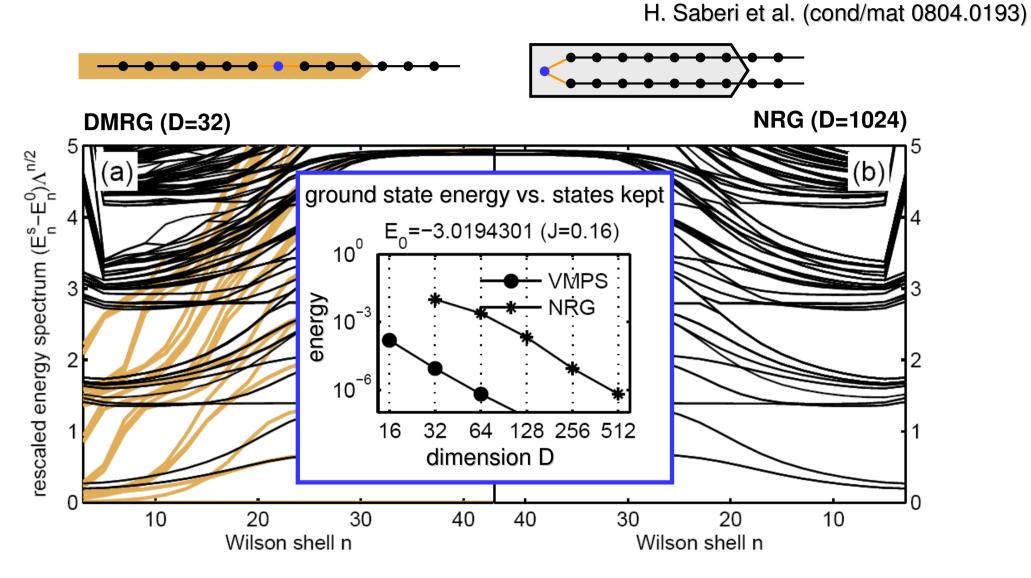
 $D^* \sim e^S$



numerical resources can be adjusted dynamically!

Arnold	Sommerfeld				
CENTER FOR THEORETICAL PHYSICS					

DMRG and quantum impurity models (NETN Copenhagen 2008)



D = effective number of states kept per iteration

 $D_{\rm DMRG} \simeq 2 \sqrt{D_{\rm NRG}}$

CENTER FOR THEORETICAL PHYSICS

ARNOLD SOMMERFELD

Correlation functions (T=0)

$$G(\omega) = \langle 0 | c_{\sigma} \frac{1}{\hat{H} - \left(E_0^N + \omega + i\eta\right)} c_{\sigma}^{\dagger} | 0 \rangle$$

NRG

$$G(\omega) = \langle 0 | c_{\sigma} [1] \frac{1}{\hat{H} - (E_0^N + \omega + i\eta)} [1] c_{\sigma}^{\dagger} | 0 \rangle$$

$$\Rightarrow \frac{1}{\pi} \text{Im} G(\omega) = \sum_k \langle 0 | c_{\sigma} | k \rangle \langle k | c_{\sigma}^{\dagger} | 0 \rangle$$

$$\times \delta (\omega + i\eta - (E_k - E_0))$$

$$1 = 2 = k = 4 = 5 = 6$$

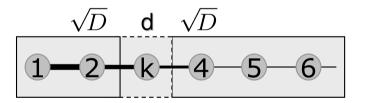
complete (approximate) eigenbasis (Anders et al. 2005)

AW et al. (2007)

all information already carried in NRG basis; evaluate matrix elements; broaden

DMRG

$$G(\omega) = \langle 0 | c_{\sigma} \underbrace{\frac{1}{\hat{H} - \left(E_{0}^{N} + \omega + i\eta\right)} c_{\sigma}^{\dagger} | 0 \rangle}_{\equiv |\chi_{\sigma}\rangle}$$



correction vector method

(Kuhner and White, 1999; Ramasesha et al., 1997 Jeckelmann, 2002)

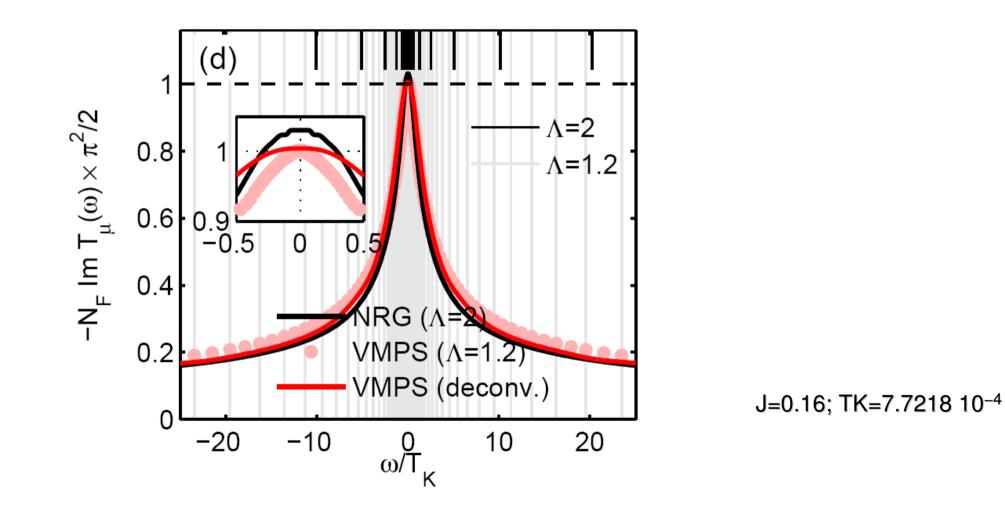
best results but rather expensive as full run is required for every ω_i ; deconvolute

ARNOLD SOMMERFELD

CENTER FOR THEORETICAL PHYSICS

Kondo: T-matrix with no magnetic field

$$-N_F \text{Im}T_{\mu}(\omega) = -J^2 \langle \langle \mathcal{O}_{\mu}^{\dagger} | \mathcal{O}_{\mu} \rangle \rangle_{\omega}, \quad where \quad \mathcal{O}_{\mu} \equiv \mathbf{S} \cdot \sigma_{\alpha \alpha'} c_{\alpha'}^{\dagger}$$

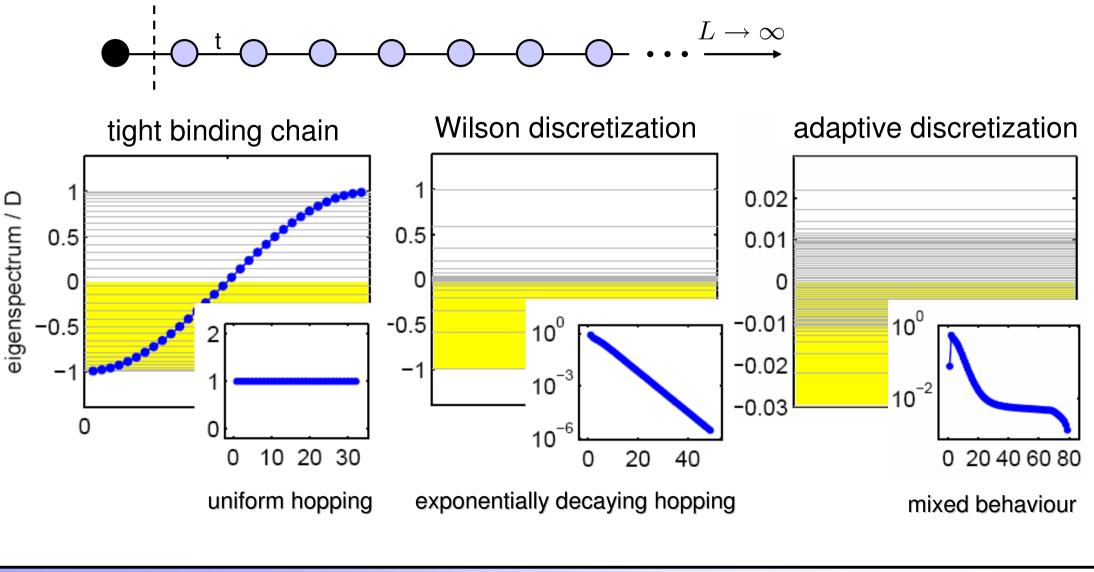


ARNOLD SOMMERFELD

DMRG and quantum impurity models (NETN Copenhagen 2008)

State coupled to non-interacting Fermi sea

mapping onto semi-infinite chain with the impurity coupling to first site only



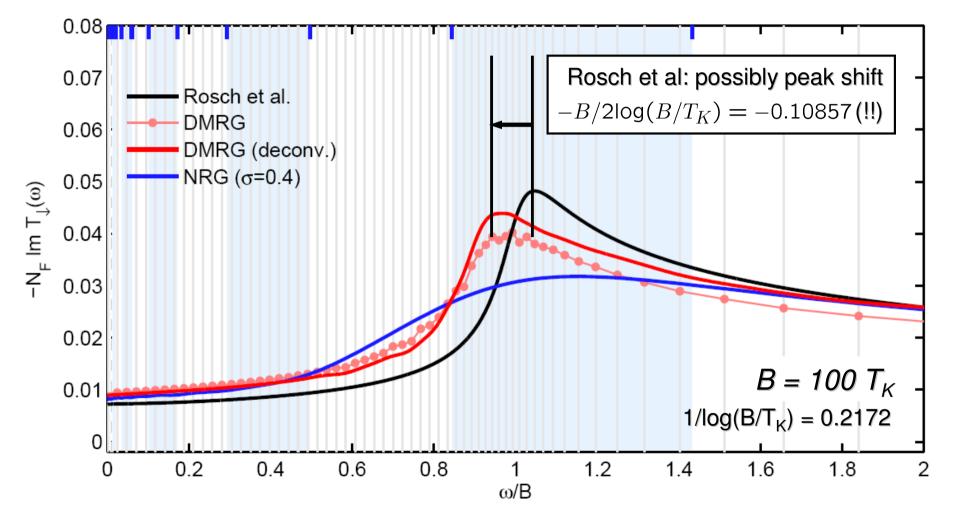
CENTER FOR THEORETICAL PHYSICS

ARNOLD SOMMERFELD

DMRG and quantum impurity models (NETN Copenhagen 2008)

Kondo: T-matrix at large magnetic field

$$-N_F \text{Im}T_{\mu}(\omega) = -J^2 \langle \langle \mathcal{O}_{\mu}^{\dagger} | \mathcal{O}_{\mu} \rangle \rangle_{\omega}, \quad where \quad \mathcal{O}_{\mu} \equiv \mathbf{S} \cdot \sigma_{\alpha \alpha'} c_{\alpha'}^{\dagger}$$



Moore et al. (PRL, 2000): peak (flank) position of spinon density of states

ARNOLD SOMMERFELD	

DMRG and quantum impurity models (NETN Copenhagen 2008)

14 Center for Nano Science

Summary

- ★ applied DMRG to calculate correlation functions for quantum impurity models
- ★ employed flexible discretization scheme
- ★ sharp features clearly not resolvable by NRG
- ★ good agreement with analytic results

AW et al (submitted)

A. Holzner et al. (cond/mat 0804.0550) H. Saberi et al. (to appear in PRB)

Outlook

- ★ energy scale separation / complete basis sets for DMRG?
- ★ application to multi-channel models, dynamic meanfield, ...
- ★ application to true out of equilibrium in transport

Acknowledgment

Ralf Bulla, Frithjof Anders, Achim Rosch, Markus Garst and Theresa Hecht for fruitful discussions. **Supported by DFG.**

Arnold Sommerfeld	
CENTER FOR THEORETICAL PHYSICS	

