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Goal

Mathematical structures in planar N=4 SYM

The first instance of this phenomenon is extremely simple and trivial. Consider

an analog of the “factorization channel” diagram (2.22), but connecting two black

vertices. Because these vertices require that all the e�’s be parallel, it makes no

physical di↵erence how they are connected. And so, on-shell diagrams related by,

(2.28)

represent the same on-shell form. Thus, we can collapse and re-expand any chain

of connected black vertices in anyway we like; the same is obviously true for white

vertices. Because of this, for some purposes it may be useful to define composite black

and white vertices with any number of legs. By grouping black and white vertices

together in this way, on-shell diagrams can always be made bipartite—with (internal)

edges only connecting white with black vertices. We will, however, preferentially

draw trivalent diagrams because of the fundamental role played by the three-particle

amplitudes.

There is also a more interesting equivalence between on-shell diagrams that will

play an important role in our story. We can see this already in the BCFW represen-

tation of the four-particle amplitude given above, (2.20). The picture is obviously not

cyclically invariant—as a rotation would exchange its black and white vertices. But

the four-particle amplitude of course is cyclically invariant; and so there is another

generator of equivalences among on-shell diagrams, the “square move”, [80]:

(2.29)

The merger and square moves can be used to show the physical equivalence of

many seemingly di↵erent on-shell diagrams. For instance, the following two diagrams

generate physically equivalent on-shell forms:

(2.30)
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Non-planar N=4 SYM/N=8 SUGRA



Plan of the talk

✤ On-shell diagrams, Amplituhedron in planar N=4 SYM

✤ Evidence for non-planar Amplituhedron in N=4 SYM

✤ Partial progress in N=8 SUGRA



Object of interest

✤ Massless maximal susy scattering amplitudes in D=4

✤ Integrands: no divergencies, only simple pole

✤ Simple singularity structure: 

✤ Recursion relations: “integrating” this equation

1

P 2



✤ Write the amplitude in the basis of integrals

✤ Iterative use of cut equation

✤ Cuts of loops are products of tree-level amplitudes

✤ Very efficient method of calculation

Generalized unitarity

A =
X

j

aj

Z
dIj

(Bern, Dixon, Kosower) (Britto, Cachazo, Feng 2004)



Hydrogen atom of gauge theories

✤ N=4 Super Yang-Mills theory in the planar limit

✤ Convergent perturbative series, hidden symmetries

✤ Two ingredients: 

✤ Loops: no renormalization, running of coupling

N=4 susy: conformal symmetry, helicity book-keeping
Planarity: dual variables, dual conformal symmetry



Dual variables

✤ Expand the amplitude as a sum of diagrams

✤ Planar limit: dual variables

No global loop momenta
Each diagram: its own labels
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Notice that while both the triangle and box integrals

are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.
There are many reasons to expect that loop amplitudes

which are logarithmic have uniform (maximal) transcen-
dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

Our experience with planar N = 4 SYM suggests that
the natural representation of the integrand which makes
logarithmic singularities manifest in terms of on-shell di-
agrams, which are not in general manifestly local term-
by-term. However at low loop-order, it has also been
possible to see logarithmic singularities explicitly in par-
ticularly nice local expansions [18, 19]. Since we don’t yet
have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.
The four-point, two-loop amplitude in N =4 SYM and

N =8 SUGRA has been known for some time, [20]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:
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While the representation (5) is correct, it obscures

the fact that the amplitudes are ultimately logarithmic,
maximally transcendental, and free of any poles at
infinity. This is because the non-planar integral’s

measure, I(NP )

� , is not itself logarithmic. We will show
this explicitly below by successively taking residues until
a double-pole is encountered; but it is also evidenced
by the fact that its evaluation (using e.g. dimensional
regularization) is not of uniform transcendentality,
[21]. These unpleasantries are of course cancelled in
combination, but we would like to find an alternate
representation of (5) which makes this fact manifest
term-by-term. Before providing such a representation,
let us first show that the planar double-box integrand
can be put into dlog-form, and then describe how the
non-planar integrands can be modified in a way which
makes them manifestly logarithmic.
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Dual conformal symmetry

✤ Using these variables: define a single function

✤ Tree-level amplitudes + integrand in planar N=4 SYM:                                           

✤ Superconformal symmetry + Dual -> Yangian

Dual conformal symmetry

(Drummond, Henn, Plefka 2009)

M =

Z
d

4
y1 . . . d

4
yL I(xi, yj)

Planar integrand

(Drummond, Henn, Smirnov, Sokatchev 2007)



Hidden structures

✤ Modern unitarity approach for planar N=4 SYM

✤ We obtained many results using this method 

A =
X

j

aj

Z
dIj

Dual conformal invariant
basis of pure integrals

Yangian invariant
coefficients fixed by
leading singularities

2-loop for any n,k
3-loop n-pt MHV 

(Arkani-Hamed, Bourjaily, Cachazo, Trnka, 2010)
(Bourjaily, Trnka, 2015)

Chapter 1: Local Integrals for Planar Scattering Amplitudes
Arkani-Hamed, Bourjaily, Cachazo, JT [2010]

New results for multi-loop amplitudes in N = 4 SYM
Main idea: to choose the suitable basis of integrals for amplitudes.
All integrals are chiral and have unit leading singularities.
Coe�cients are then given by leading singularities of the amplitude.
Unexpected simplicity of final results.

MHV 2-loop amplitude can be expressed as a cyclic sum of one integral
topology

M2�loop
MHV =

1

2

X
i<j<k<l<i

k

li

j

Jaroslav Trnka Grassmannian Origin of Scattering Amplitudes 14/59



Why is planarity important?

✤ Unique planar integrand: one object, no expansions

✤ Search for new methods which reproduce the function

✤ Unphysical poles: well-defined cancelations

✤ Definition of the amplitude as single object: Amplituhedron

For example: 
Generalization of BCFW

to loop amplitudes
(Arkani-Hamed, Bourjaily, Cachazo, Caron-Huot, Trnka, 2010)



New picture for planar integrand



✤ Two options

Three point kinematics

pµ = �µ
aȧ�a

e�ȧ

Spinor helicity variables

h12i = ✏ab�1a�2b

[12] = ✏ȧḃ�1ȧ�2ḃ

�1 ⇠ �2 ⇠ �3

e�1 ⇠ e�2 ⇠ e�3
Two solutions for

3pt kinematics
p21 = p22 = p23 = (p1 + p2 + p3) = 0

Three point massless amplitudes fixed in any QFT



✤ Three point amplitudes in N=4 SYM

Three point amplitudes

A(1)
3 =

�4(p1 + p2 + p3)�4([23]e⌘1 + [31]e⌘2 + [12]e⌘3)
[12][23][31]

A(2)
3 =

�4(p1 + p2 + p3)�8(�1e⌘1 + �2e⌘2 + �3e⌘3)
h12ih23ih31i

�1 ⇠ �2 ⇠ �3

e�1 ⇠ e�2 ⇠ e�3

� = G++ ⌘̃A�A+
1

2
⌘̃A⌘̃BSAB +

1

6
✏ABCD⌘̃A⌘̃B ⌘̃C�

D
+

1

24
✏ABCD⌘̃A⌘̃B ⌘̃C ⌘̃DG�



✤ Draw planar graph with three point vertices

On-shell diagrams

Cuts of loop integrands Product of 3pt amplitudes
All legs are on-shell

(Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, JT 2012)



✤ The results are functions of external kinematics

On-shell diagrams

P > 4L

P = 4L

P < 4L

Extra delta functions

Leading singularities

Unfixed parameters

v

vz

(Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, JT 2012)



Recursion relations

✤ Recursion relations for    -loop integrand

✤ Example: 4pt 1-loop

+
X

L,R

=

`

5-loop on-shell diagram =      
1-loop off-shell box

(Arkani-Hamed, Bourjaily, Cachazo, Caron-Huot, JT 2010)(Britto, Cachazo, Feng, Witten 2005)



Momentum conservation

✤ Deep connection: on-shell diagrams vs Grassmannian

✤ Simple motivation: linearize momentum conservation

✤ We want to write it as two linear factors

 �
⇣
Cab

e�b

⌘
� (Dab�b)

�(P ) = �

 
X

a

�a
e�a

!



Grassmannian

✤ You get k relations, (k x n) matrix C / GL(k) 

✤ This matrix C has many free parameters: many ways 
how linearize momentum conservation

✤ Each on-shell diagram gives you one

�
⇣
Cab

e�b

⌘
a = 1, . . . , k

b = 1, . . . , n
C 2 G(k, n)

k-plane in n dimensions
�(Dab�b) = �

⇣
C?

ab
e�b

⌘

(Arkani-Hamed, Bourjaily, Cachazo, Kaplan 2009)



Grassmannian

✤ Building matrix: face or edge variables 

✤ Exciting connection to mathematics 

4.6 Coordinate Transformations Induced by Moves and Reduction

Let us now examine how the identification of diagrams via merge-operations, square-

moves, and bubble-deletion is reflected in the coordinates—the edge- or face-variables

—used to parameterize cells C 2 G(k, n). As usual, the simplest of these is the

merge/un-merge operation which trivially leaves any set of coordinates unchanged.

For example, in terms of the face variables, it is easy to see that

(4.62)

The square-move is more interesting. It is obvious that squares with opposite coloring

both give us a generic configuration in G(2, 4), but (as we will soon see), the square-

move acts rather non-trivially on coordinates used to parameterize a cell,

(4.63)

Let us start by determining the precise way the face-variables f
i

and f 0
i

of square-

move related diagrams are related to one another. To do this, we will provide perfect

orientations (decorated with edge variables) for both graphs, allowing us to com-

pare the resulting boundary-measurement matrices in each case. Because these two

boundary measurement matrices must represent the same point in G(2, 4), we will

be able to explicitly determine how all the various coordinate charts are related—

including the relationship between the variables f
i

and f 0
i

. Our work will be consid-

erably simplified if we remove the GL(1)-redundancies from each vertex, leaving us

with a non-redundant set of edge-variables. Of course, any choice of perfect orienta-

tions for the graphs, and any fixing of the GL(1)-redundancies would su�ce for our

purposes; but for the sake of concreteness, let us consider the following:
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C =

✓
1 ↵1 0 �↵4

0 ↵2 1 ↵3

◆

Choose              : positive minors -> Positive Grassmannian↵i > 0

Area of research in algebraic geometry, combinatorics

(Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, JT 2012)



Connection to amplitudes

✤ Building matrix: face or edge variables 

✤ Same function as a product of 3pt amplitudes equal to
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Let us now examine how the identification of diagrams via merge-operations, square-

moves, and bubble-deletion is reflected in the coordinates—the edge- or face-variables

—used to parameterize cells C 2 G(k, n). As usual, the simplest of these is the

merge/un-merge operation which trivially leaves any set of coordinates unchanged.

For example, in terms of the face variables, it is easy to see that

(4.62)

The square-move is more interesting. It is obvious that squares with opposite coloring

both give us a generic configuration in G(2, 4), but (as we will soon see), the square-

move acts rather non-trivially on coordinates used to parameterize a cell,

(4.63)

Let us start by determining the precise way the face-variables f
i

and f 0
i

of square-

move related diagrams are related to one another. To do this, we will provide perfect

orientations (decorated with edge variables) for both graphs, allowing us to com-

pare the resulting boundary-measurement matrices in each case. Because these two

boundary measurement matrices must represent the same point in G(2, 4), we will

be able to explicitly determine how all the various coordinate charts are related—

including the relationship between the variables f
i

and f 0
i

. Our work will be consid-

erably simplified if we remove the GL(1)-redundancies from each vertex, leaving us

with a non-redundant set of edge-variables. Of course, any choice of perfect orienta-

tions for the graphs, and any fixing of the GL(1)-redundancies would su�ce for our

purposes; but for the sake of concreteness, let us consider the following:
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C =

✓
1 ↵1 0 �↵4

0 ↵2 1 ↵3

◆

⌦ =
d↵1

↵1

d↵2

↵2

d↵3

↵3

d↵4

↵4
�(C · Z)

Solves for        
in terms of 
and gives

↵i

�i, e�i

�(P )�(Q)
�(C · Z) = �(C · e�)�(C? · �)�(C · e⌘)

(Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, JT 2012)



Hidden symmetries

✤ Each on-shell diagram:

✤ Recursion relations: true for amplitudes 

✤ Geometric formulation using Grassmannian 

✤ Role of recursion relations, complete geometry picture?

Dual conformal symmetry, Yangian
Logarithmic singularities

All dependence on kinematics: delta function

dx

x



Amplituhedron

✤ Motivation: Grassmannian + polytope picture

✤ Definition of the space

✤ Loop integrand = volume form

THE 3D INDEX OF AN IDEAL TRIANGULATION AND ANGLE STRUCTURES 7

that recover the complete hyperbolic structure. A case-by-case analysis shows that this ex-
ample admits an index structure, thus the index IT exists. This example appears in [HRS,
Example 7.7]. We thank H. Segerman for a detailed analysis of this example.

2.4. On the topological invariance of the index. Physics predicts that when defined,
the 3D index IT depends only on the underlying 3-manifold M . Recall that [HRS] prove
that every hyperbolic 3-manifold M that satisfies

(2.9) H1(M,Z/2) → H1(M, ∂M,Z/2) is the zero map

(eg. a hyperbolic link complement) admits an ideal triangulation with a strict angle struc-
ture, and conversely if M has an ideal triangulation with a strict angle structure, then M is
irreducible, atoroidal and every boundary component of M is a torus [LT08].

A simple way to construct a topological invariant using the index, would be a map

M "→ {IT | T ∈ SM}

where M is a cusped hyperbolic 3-manifold with at least one cusp and SM is the set of ideal
triangulations of M that support an index structure. The latter is a nonempty (generally
infinite) set by [HRS], assuming that M satisfies (2.9). If we want a finite set, we can use
the subset SEP

M of ideal triangulations T of M which are a refinement of the Epstein-Penner
cell-decomposition of M . Again, [HRS] implies that SEP

M is nonempty assuming (2.9). But
really, we would prefer a single 3D index for a cusped manifold M , rather than a finite
collection of 3D indices.

It is known that every two combinatorial ideal triangulations of a 3-manifold are related
by a sequence of 2-3 moves [Mat87, Mat07, Pie88]. Thus, topological invariance of the 3D
index follows from invariance under 2-3 moves.

Consider two ideal triangulations T and T̃ with N and N+1 tetrahedra related by a 2−3
move shown in Figure 1.

Figure 1. A 2–3 move: a bipyramid split into N tetrahedra for T and N + 1 tetrahedra for

T̃ .

Proposition 2.13. If T̃ admits a strict angle structure structure, so does T and IT̃ = IT .

For the next proposition, a special index structure on T is given in Definition 6.2.⌦ =
dx1

x1

dx2

x2
. . .

dxm

xm

Y = C · Z

(Hodge 2009)

Amplitudes are
volumes!

(Arkani-Hamed, JT 2013)



Amplituhedron

✤ The definition of the space if known to all loops

✤ Main challenge: find the form

✤ Our goal is non-planar: use of diagrams, unitarity

✤ Formulate the Amplituhedron in this language

(Arkani-Hamed, JT 2013)

Triangulate the space into “simplices”
Find the form from the definition



Properties of Amplituhedron

✤ Assumptions:

✤ Implications:

Dual conformal symmetry: momentum twistors
Logarithmic singularities: definition of the form

All-loop order definition of the integrand
Proof: reproduces the same singularity structure
Dual Amplituhedron: volume of some region



Positivity of amplitudes

✤ Volume form of the Amplituhedron

✤ Numerator fixed by zeroes

✤ Amplitude positive (for points inside): volume interpretation

✤ Vanishing on a conic of illegal points

I =

(Numerator)

(all poles)

Points outside Amplituhedron
Canceling higher poles

(Arkani-Hamed, Hodges, JT, 2014)

Surface outside 
Amplituhedron



Implications in unitarity methods

✤ Expansion of the amplitude

✤ Step 1: construct the basis of special integrals

✤ Step 2: fix the coefficients by checking vanishing cuts

A =
X

j

aj

Z
dIj

Special basis of integrals:
Dual conformal symmetry
Logarithmic singularities

Yangian invariant
coefficients fixed by

vanishing cuts



✤ All integrals in the basis: dual conformal invariant

✤ Simple rule: function of momentum twistors

✤ How to see dual conformal symmetry in the cut 
structure of individual integrals?

Dual conformal symmetry



DCI in action

Unit leading singularities

hABd2AihABd2BihAB13ih2345ih4512i
hAB12ihAB23ihAB34ihAB45ihAB51i

hABd2AihABd2BihABIi
hAB12ihAB23ihAB34ihAB45ihAB51i

1

23

4

5 Chiral vs scalar pentagon

Unit

Non-unit

For n>6 can be 
cross ratio

On all 4L-cut the 
residue is 1



DCI in action

No poles at infinity

hABd2AihABd2Bih1234i2

hAB12ihAB23ihAB34ihAB41i

hABd2AihABd2Bih1234ih23Ii
hAB12ihAB23ihAB34ihABIi

1

2 3

4

1

23

4

Cut this propagator

No pole

Pole

` ! 1



DCI in action

No poles at infinity

hABd2AihABd2Bih1234i2

hAB12ihAB23ihAB34ihAB41i
1

2 3

4

1

23

4

No pole

Poled4`

`2(`+ k2)2(`+ k2 + k3)2

` ! 1



DCI in action

No poles at infinity

hABd2AihABd2Bih1234i2

hAB12ihAB23ihAB34ihAB41i
1

2 3

4

1

23

4

No pole

Poled4`

`2(`+ k2)2(`+ k2 + k3)2

#
0

#
0

#
0

` ! 1



DCI in action

No poles at infinity

hABd2AihABd2Bih1234i2

hAB12ihAB23ihAB34ihAB41i
1

2 3

4

1

23

4

No pole

Poled↵

↵
`+ k2 = ↵�2�̃3

↵ ! 1

` ! 1

` ! 1



Logarithmic singularities

✤ Logarithmic singularities

✤ More than single poles

✤ Certain integrals also have this property

Statement about types of poles in the cut structure
Link to the uniform transcendentality 

dx dy

xy(x+ y)
x=0��! dy

y

2

dI4 =
d4` st

`2(`+ k1)2(`+ k1 + k2)2(`� k4)2
=

df1
f1

df2
f2

df3
f3

df4
f4

dx

x

f1 =
`2

(`� `⇤)2



Homogeneous constraints

✤ Basis is constructed: fix the coefficients using cuts

✤ Standard unitarity methods

✤ (Dual) Amplituhedron: only vanishing cuts enough
Example:

Illegal cut of the 
2-loop 4pt amplitude

Fixes the relative coefficient
of two planar double boxes

(Arkani-Hamed, Hodges, JT, 2014) (Bern, Herrmann, Litsey, Stankowicz, JT 2015)



Non-planar amplitudes  
in N=4 SYM

(Arkani-Hamed, Bourjaily, Cachazo, JT, 2014)
(Bern, Herrmann, Litsey, Stankowicz, JT 2014, 2015)



✤ No unique integrand, labeling problem

✤ No momentum twistors, no known symmetries

✤ On-shell diagrams for singularities

What is     ?

Non-planar problems

1 1 1

222 3

3

3 4

44

Let us now show that n= nW 0 , which implies that there are no black-to-black

internal edges. Let us say the number of white multi-vertices is n+q; we want to

show that q=0. From the definition of k,

k = 2nB + nW 0 � nI = 2nB + (n+ q)� nI = 3nB + 2 + q � nI , (2.5)

from which we see that for k = 2, 3nB = nI q. But 3nB � nI on general grounds,

and so we must have that q=0, and hence 3nB=nI . Because q=0, there is one leg

connected to each white multi-vertex (nW 0 =n); and because 3nB=nI , there can be

no black-to-black internal edges. Thus every black vertex connects to precisely three

external legs via white multi-vertices, as we wanted to prove.

Therefore, any MHV (k = 2) on-shell diagram corresponding to an ordinary

function of the external data (n�=0) with kinematical support will involve precisely

(n 2) black vertices, each of which is attached to exactly three external legs via

white vertices. Thus, we can label any such diagram by a set T consisting of triplets

⌧ 2T of leg labels for each of the (n 2) black vertices.

We can illustrate how this labeling works with the following examples:

⇢
(1 2 4)

(2 3 4)

� 8
<

:

(1 2 3)

(1 3 4)

(1 3 5)

9
=

; (2.6)

8
>>><

>>>:

(1 2 3)

(2 5 6)

(3 4 6)

(4 5 1)

9
>>>=

>>>;

8
>>>>>>>>><

>>>>>>>>>:

(1 2 4)

(1 8 9)

(2 9 3)

(3 6 4)

(4 6 5)

(6 8 7)

(6 9 8)

9
>>>>>>>>>=

>>>>>>>>>;

(2.7)

Notice that because there is no preferred way to order the external legs of a non-

planar diagram, there is no preferred way to order the triples. And so while we

have chosen a particular ordering for each triple in the examples above, these choices

should be viewed as completely arbitrary.

– 5 –

No recursion relations

`



✤ Non-planar diagrams

✤ Conjecture: logarithmic singularities of the amplitude
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(Arkani-Hamed, Bourjaily, Cachazo, Postnikov, JT, 2014)
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A 2 G(3, 6)

(Franco, Galloni, Penante, Wen 2015)

Same logarithmic form
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(Bourjaily, Franco, Galloni, Wen 2016)

see talks by
Jake and Daniele



MHV on-shell diagrams

✤ Planar sector: all are Parke-Taylor factors

✤ Non-planar diagrams: holomorphic functions

=
1

h12ih23ih34ih45ih51i

required by
superconformal

symmetry

Let us now show that n= nW 0 , which implies that there are no black-to-black

internal edges. Let us say the number of white multi-vertices is n+q; we want to
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from which we see that for k = 2, 3nB = nI q. But 3nB � nI on general grounds,

and so we must have that q=0, and hence 3nB=nI . Because q=0, there is one leg

connected to each white multi-vertex (nW 0 =n); and because 3nB=nI , there can be

no black-to-black internal edges. Thus every black vertex connects to precisely three

external legs via white multi-vertices, as we wanted to prove.

Therefore, any MHV (k = 2) on-shell diagram corresponding to an ordinary

function of the external data (n�=0) with kinematical support will involve precisely

(n 2) black vertices, each of which is attached to exactly three external legs via

white vertices. Thus, we can label any such diagram by a set T consisting of triplets

⌧ 2T of leg labels for each of the (n 2) black vertices.

We can illustrate how this labeling works with the following examples:
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Notice that because there is no preferred way to order the external legs of a non-

planar diagram, there is no preferred way to order the triples. And so while we

have chosen a particular ordering for each triple in the examples above, these choices

should be viewed as completely arbitrary.
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=
(h34ih51ih62i+ h14ih25ih63i)2

h12ih23ih31ih25ih56ih62ih34ih46ih63ih45ih51ih14i

= PT (12345)



MHV on-shell diagrams

✤ Planar sector: all are Parke-Taylor factors

✤ Non-planar diagrams: holomorphic functions

=
1

h12ih23ih34ih45ih51i

required by
superconformal

symmetry

Let us now show that n= nW 0 , which implies that there are no black-to-black

internal edges. Let us say the number of white multi-vertices is n+q; we want to

show that q=0. From the definition of k,

k = 2nB + nW 0 � nI = 2nB + (n+ q)� nI = 3nB + 2 + q � nI , (2.5)

from which we see that for k = 2, 3nB = nI q. But 3nB � nI on general grounds,

and so we must have that q=0, and hence 3nB=nI . Because q=0, there is one leg

connected to each white multi-vertex (nW 0 =n); and because 3nB=nI , there can be

no black-to-black internal edges. Thus every black vertex connects to precisely three

external legs via white multi-vertices, as we wanted to prove.

Therefore, any MHV (k = 2) on-shell diagram corresponding to an ordinary

function of the external data (n�=0) with kinematical support will involve precisely

(n 2) black vertices, each of which is attached to exactly three external legs via

white vertices. Thus, we can label any such diagram by a set T consisting of triplets

⌧ 2T of leg labels for each of the (n 2) black vertices.

We can illustrate how this labeling works with the following examples:

⇢
(1 2 4)

(2 3 4)

� 8
<

:

(1 2 3)

(1 3 4)

(1 3 5)

9
=

; (2.6)

8
>>><

>>>:

(1 2 3)

(2 5 6)

(3 4 6)

(4 5 1)

9
>>>=

>>>;

8
>>>>>>>>><

>>>>>>>>>:

(1 2 4)

(1 8 9)

(2 9 3)

(3 6 4)

(4 6 5)

(6 8 7)

(6 9 8)

9
>>>>>>>>>=

>>>>>>>>>;

(2.7)

Notice that because there is no preferred way to order the external legs of a non-

planar diagram, there is no preferred way to order the triples. And so while we

have chosen a particular ordering for each triple in the examples above, these choices

should be viewed as completely arbitrary.
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= PT (12345)

= PT (123456) + PT (124563) + PT (142563) + PT (145623)

+PT (146235) + PT (146253) + PT (162345)

Parke-Taylor factors: similar to planar
No poles at infinity 



Non-planar amplitudes

✤ No unique integrand, no recursion relations

✤ On-shell diagrams: cuts of amplitudes 

✤ Conjecture: amplitude has the same properties
Logarithmic singularities
No poles at infinity

Geometric construction?
New symmetries?



Non-planar amplitudes

✤ Conservative approach: sum of integrals

✤ Conditions imposed term-by-term: special numerators

✤ Some diagrams forbidden

A =
X

i

ai · Ci · Ii
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While the bubble integration measure is not logarithmic,
it is known (see e.g. [8]) that the box can be written in
dlog-form, I
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Notice that while both the triangle and box integrals

are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.

There are many reasons to expect that loop amplitudes
which are logarithmic have uniform (maximal) transcen-
dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

Our experience with planar N = 4 SYM suggests that
the natural representation of the integrand which makes
logarithmic singularities manifest in terms of on-shell di-
agrams, which are not in general manifestly local term-
by-term. However at low loop-order, it has also been
possible to see logarithmic singularities explicitly in par-
ticularly nice local expansions [18, 19]. Since we don’t yet
have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.

The four-point, two-loop amplitude in N =4 SYM and
N =8 SUGRA has been known for some time, [20]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:

A2-loop
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where � is a permutation of the external legs and
�

4|2N (�·q) encodes super-momentum conservation with

q⌘(e�, e⌘); the factors KN are the permutation-invariants,
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for � = {1, 2, 3, 4}; and the coe�cients C
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{1,2,3,4},N are
the color-factors constructed out of structure constants
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While the representation (5) is correct, it obscures

the fact that the amplitudes are ultimately logarithmic,
maximally transcendental, and free of any poles at
infinity. This is because the non-planar integral’s

measure, I(NP )

� , is not itself logarithmic. We will show
this explicitly below by successively taking residues until
a double-pole is encountered; but it is also evidenced
by the fact that its evaluation (using e.g. dimensional
regularization) is not of uniform transcendentality,
[21]. These unpleasantries are of course cancelled in
combination, but we would like to find an alternate
representation of (5) which makes this fact manifest
term-by-term. Before providing such a representation,
let us first show that the planar double-box integrand
can be put into dlog-form, and then describe how the
non-planar integrands can be modified in a way which
makes them manifestly logarithmic.

The Planar Double-Box Integral I(P )
�
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Notice that while both the triangle and box integrals

are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.

There are many reasons to expect that loop amplitudes
which are logarithmic have uniform (maximal) transcen-
dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

Our experience with planar N = 4 SYM suggests that
the natural representation of the integrand which makes
logarithmic singularities manifest in terms of on-shell di-
agrams, which are not in general manifestly local term-
by-term. However at low loop-order, it has also been
possible to see logarithmic singularities explicitly in par-
ticularly nice local expansions [18, 19]. Since we don’t yet
have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.

The four-point, two-loop amplitude in N =4 SYM and
N =8 SUGRA has been known for some time, [20]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:
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✤ Standard/BCJ basis for 4pt at 2-loop and 3-loop, 5pt 2-loop

3

by various constraints. We include only those Lorentz
products not simply related to the others via momentum
conservation. After factoring out a universal factor of the
color-ordered tree amplitude and Mandelstam invariants
stAtree

4 (1, 2, 3, 4), which appears in each term for N = 4
sYM, the remaining polynomial has total degree four in
the external and loop momenta. In order to respect the
known power counting, we require that the numerator of
each diagram is at most quadratic in the loop momenta.
We also require that each kinematic numerator respect
the symmetries of the diagram, accounting for the anti-
symmetry of each cubic vertex under an interchange of
any two legs.

To initially constrain the parameters, we use the uni-
tarity method to compare each cut of the ansatz against
the corresponding cut of the N = 4 sYM amplitude,

∑

states

Atree
(1) A

tree
(2) A

tree
(3) · · ·Atree

(m) , (7)

invoking kinematics that place all cut lines on shell,
l2i = 0. Once a solution consistent with a complete set
of cuts is found, we have the amplitude. From ref. [11]
we know that for this amplitude the maximal and near
maximal cuts are sufficient (although we also evaluated
other complete sets of cuts as a cross check). We perform
all cut evaluations in D dimensions using the known D-
dimensional results [19] for the cuts. Matching to the
cut conditions determines the amplitude but still allows
freedom, as contact terms can be assigned to various di-
agrams.

To impose the duality (3) on the amplitude, we step
through every propagator in each diagram, ensuring that
all duality relations hold off shell. On any diagram, we
can describe any internal line, carrying some momentum
ls, in terms of formal graph vertices V (pa, pb, ls), and
V (−ls, pc, pd) where the pi are the momenta of the other
legs attached to ls, as illustrated on the left side of fig. 1.
The duality (3) requires the following:

n({ V (pa, pb, ls), V (−ls, pc, pd), · · · }) =

n({ V (pd, pa, lt), V (−lt, pb, pc), · · · })

+n({ V (pa, pc, lu), V (−lu, pb, pd), · · · }) , (8)

where n represents the numerator associated with the di-
agram specified by the set of vertices, the omitted vertices
are identical in all three diagrams, and ls ≡ (pc + pd),
lt ≡ (pb + pc) and lu ≡ (pb + pd) in the numerator ex-
pressions. There is one such equation for every propa-
gator in every diagram. Solving the system of distinct
equations enforces the duality conditions (3).

Imposing the duality on the ansatz, at this point, com-
pletely fixes the form of the amplitude. We find that only
the 12 diagrams shown in fig. 2 contribute, with the nu-
merator factors given in table I. As noted above, a direct
consequence of unitarity and the tree-level duality is that
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FIG. 2: Loop diagrams contributing to both N = 4 sYM and

N = 8 sugra three-loop four-point amplitudes. Integrals (6)

are specified by combining their propagators with numerator

factors given in table I. The (internal) symmetry factor for di-

agram (d) is S(d) = 2, the rest are unity. All distinct external

permutations of each diagram contribute.

squaring these numerator factors should give the numer-
ators for N = 8 sugra. We verified this is indeed the case
using a complete set of cuts of the known result [11, 19].
Interestingly, by cutting one or two internal legs of the
three-loop four-point gauge-theory amplitude, we obtain
eight-point one-loop and six-point two-loop amplitudes
also satisfying the duality (3) off-shell, albeit with sums
over states and restricted kinematics. This suggests that
higher-point amplitudes will be consistent with our con-
jecture.

We also construct another version of the three-loop
four-point N = 8 sugra expression via (6) using the ni

given in table I of the present Letter and the correct,
but duality violating, ñi from table I of ref. [11]. We find
that this is also a valid representation of the N = 8 sugra
three-loop four-point amplitude, providing a strong con-
sistency check on table I and our conjecture. Such repre-
sentations are valid at loop level by the same argument
as at tree level: they differ from one where both ni and
ñi satisfy the duality by a generalized gauge transforma-
tion (2). In the same spirit, we expect that N = p + 4
sugra loop amplitudes can be obtained simply by taking
any corresponding N = p sYM amplitude and replacing
the color factors ci with duality satisfying ni of N = 4
sYM theory.

An important feature of the supergravity solution dis-
played in table I is that each contribution to eq. (6) has
no worse power counting than the leading behavior of the
N = 4 sYM amplitude. This is worthy of further study,
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While the bubble integration measure is not logarithmic,
it is known (see e.g. [8]) that the box can be written in
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Notice that while both the triangle and box integrals

are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.
There are many reasons to expect that loop amplitudes

which are logarithmic have uniform (maximal) transcen-
dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

Our experience with planar N = 4 SYM suggests that
the natural representation of the integrand which makes
logarithmic singularities manifest in terms of on-shell di-
agrams, which are not in general manifestly local term-
by-term. However at low loop-order, it has also been
possible to see logarithmic singularities explicitly in par-
ticularly nice local expansions [18, 19]. Since we don’t yet
have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.
The four-point, two-loop amplitude in N =4 SYM and

N =8 SUGRA has been known for some time, [20]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:
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While the representation (5) is correct, it obscures

the fact that the amplitudes are ultimately logarithmic,
maximally transcendental, and free of any poles at
infinity. This is because the non-planar integral’s

measure, I(NP )

� , is not itself logarithmic. We will show
this explicitly below by successively taking residues until
a double-pole is encountered; but it is also evidenced
by the fact that its evaluation (using e.g. dimensional
regularization) is not of uniform transcendentality,
[21]. These unpleasantries are of course cancelled in
combination, but we would like to find an alternate
representation of (5) which makes this fact manifest
term-by-term. Before providing such a representation,
let us first show that the planar double-box integrand
can be put into dlog-form, and then describe how the
non-planar integrands can be modified in a way which
makes them manifestly logarithmic.
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are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.

There are many reasons to expect that loop amplitudes
which are logarithmic have uniform (maximal) transcen-
dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.
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the natural representation of the integrand which makes
logarithmic singularities manifest in terms of on-shell di-
agrams, which are not in general manifestly local term-
by-term. However at low loop-order, it has also been
possible to see logarithmic singularities explicitly in par-
ticularly nice local expansions [18, 19]. Since we don’t yet
have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.

The four-point, two-loop amplitude in N =4 SYM and
N =8 SUGRA has been known for some time, [20]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:
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Individual terms
do not satisfy

our constraints

(Arkani-Hamed, Bourjaily, Cachazo, JT, 2014) (Bern, Herrmann, Litsey, Stankowicz, JT 2014, 2015)
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Notice that while both the triangle and box integrals

are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.
There are many reasons to expect that loop amplitudes

which are logarithmic have uniform (maximal) transcen-
dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

Our experience with planar N = 4 SYM suggests that
the natural representation of the integrand which makes
logarithmic singularities manifest in terms of on-shell di-
agrams, which are not in general manifestly local term-
by-term. However at low loop-order, it has also been
possible to see logarithmic singularities explicitly in par-
ticularly nice local expansions [18, 19]. Since we don’t yet
have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.
The four-point, two-loop amplitude in N =4 SYM and

N =8 SUGRA has been known for some time, [20]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:
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the fact that the amplitudes are ultimately logarithmic,
maximally transcendental, and free of any poles at
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� , is not itself logarithmic. We will show
this explicitly below by successively taking residues until
a double-pole is encountered; but it is also evidenced
by the fact that its evaluation (using e.g. dimensional
regularization) is not of uniform transcendentality,
[21]. These unpleasantries are of course cancelled in
combination, but we would like to find an alternate
representation of (5) which makes this fact manifest
term-by-term. Before providing such a representation,
let us first show that the planar double-box integrand
can be put into dlog-form, and then describe how the
non-planar integrands can be modified in a way which
makes them manifestly logarithmic.
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by-term. However at low loop-order, it has also been
possible to see logarithmic singularities explicitly in par-
ticularly nice local expansions [18, 19]. Since we don’t yet
have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.
The four-point, two-loop amplitude in N =4 SYM and

N =8 SUGRA has been known for some time, [20]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:
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the color-factors constructed out of structure constants
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abc’s according to the diagrams above for N =4, and are
both equal to (p
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)2 for N =8.
While the representation (5) is correct, it obscures

the fact that the amplitudes are ultimately logarithmic,
maximally transcendental, and free of any poles at
infinity. This is because the non-planar integral’s

measure, I(NP )

� , is not itself logarithmic. We will show
this explicitly below by successively taking residues until
a double-pole is encountered; but it is also evidenced
by the fact that its evaluation (using e.g. dimensional
regularization) is not of uniform transcendentality,
[21]. These unpleasantries are of course cancelled in
combination, but we would like to find an alternate
representation of (5) which makes this fact manifest
term-by-term. Before providing such a representation,
let us first show that the planar double-box integrand
can be put into dlog-form, and then describe how the
non-planar integrands can be modified in a way which
makes them manifestly logarithmic.

The Planar Double-Box Integral I(P )
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In order to write I(P )

1,2,3,4 in dlog-form, we should
first normalize it to have unit leading singularities.
This is accomplished by rescaling it according to:
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Notice that while both the triangle and box integrals

are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.
There are many reasons to expect that loop amplitudes

which are logarithmic have uniform (maximal) transcen-
dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

Our experience with planar N = 4 SYM suggests that
the natural representation of the integrand which makes
logarithmic singularities manifest in terms of on-shell di-
agrams, which are not in general manifestly local term-
by-term. However at low loop-order, it has also been
possible to see logarithmic singularities explicitly in par-
ticularly nice local expansions [18, 19]. Since we don’t yet
have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.
The four-point, two-loop amplitude in N =4 SYM and

N =8 SUGRA has been known for some time, [20]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:
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While the representation (5) is correct, it obscures

the fact that the amplitudes are ultimately logarithmic,
maximally transcendental, and free of any poles at
infinity. This is because the non-planar integral’s

measure, I(NP )

� , is not itself logarithmic. We will show
this explicitly below by successively taking residues until
a double-pole is encountered; but it is also evidenced
by the fact that its evaluation (using e.g. dimensional
regularization) is not of uniform transcendentality,
[21]. These unpleasantries are of course cancelled in
combination, but we would like to find an alternate
representation of (5) which makes this fact manifest
term-by-term. Before providing such a representation,
let us first show that the planar double-box integrand
can be put into dlog-form, and then describe how the
non-planar integrands can be modified in a way which
makes them manifestly logarithmic.
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Notice that while both the triangle and box integrals

are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.
There are many reasons to expect that loop amplitudes

which are logarithmic have uniform (maximal) transcen-
dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

Our experience with planar N = 4 SYM suggests that
the natural representation of the integrand which makes
logarithmic singularities manifest in terms of on-shell di-
agrams, which are not in general manifestly local term-
by-term. However at low loop-order, it has also been
possible to see logarithmic singularities explicitly in par-
ticularly nice local expansions [18, 19]. Since we don’t yet
have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.
The four-point, two-loop amplitude in N =4 SYM and

N =8 SUGRA has been known for some time, [20]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:
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While the representation (5) is correct, it obscures

the fact that the amplitudes are ultimately logarithmic,
maximally transcendental, and free of any poles at
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� , is not itself logarithmic. We will show
this explicitly below by successively taking residues until
a double-pole is encountered; but it is also evidenced
by the fact that its evaluation (using e.g. dimensional
regularization) is not of uniform transcendentality,
[21]. These unpleasantries are of course cancelled in
combination, but we would like to find an alternate
representation of (5) which makes this fact manifest
term-by-term. Before providing such a representation,
let us first show that the planar double-box integrand
can be put into dlog-form, and then describe how the
non-planar integrands can be modified in a way which
makes them manifestly logarithmic.
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Notice that while both the triangle and box integrals

are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.

There are many reasons to expect that loop amplitudes
which are logarithmic have uniform (maximal) transcen-
dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

Our experience with planar N = 4 SYM suggests that
the natural representation of the integrand which makes
logarithmic singularities manifest in terms of on-shell di-
agrams, which are not in general manifestly local term-
by-term. However at low loop-order, it has also been
possible to see logarithmic singularities explicitly in par-
ticularly nice local expansions [18, 19]. Since we don’t yet
have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.

The four-point, two-loop amplitude in N =4 SYM and
N =8 SUGRA has been known for some time, [20]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:
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by the fact that its evaluation (using e.g. dimensional
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Expand the 
amplitude:

(Arkani-Hamed, Bourjaily, Cachazo, JT, 2014) (Bern, Herrmann, Litsey, Stankowicz, JT 2014, 2015)
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Table 3. The parent diagram numerators that give pure integrands for the two-loop five-
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Table 3. The parent diagram numerators that give pure integrands for the two-loop five-

point amplitude. Each basis diagram is consistent with requiring logarithmic singularities

and no poles at infinity. The overline notation means [·] $ h·i.
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Explicit checks

✤ Construct basis for 4pt at 2-loop and 3-loop, 5pt 2-loop
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While the bubble integration measure is not logarithmic,
it is known (see e.g. [8]) that the box can be written in
dlog-form, I
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Notice that while both the triangle and box integrals

are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.
There are many reasons to expect that loop amplitudes

which are logarithmic have uniform (maximal) transcen-
dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

Our experience with planar N = 4 SYM suggests that
the natural representation of the integrand which makes
logarithmic singularities manifest in terms of on-shell di-
agrams, which are not in general manifestly local term-
by-term. However at low loop-order, it has also been
possible to see logarithmic singularities explicitly in par-
ticularly nice local expansions [18, 19]. Since we don’t yet
have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.
The four-point, two-loop amplitude in N =4 SYM and

N =8 SUGRA has been known for some time, [20]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:
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for � = {1, 2, 3, 4}; and the coe�cients C
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{1,2,3,4},N are
the color-factors constructed out of structure constants
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abc’s according to the diagrams above for N =4, and are
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While the representation (5) is correct, it obscures

the fact that the amplitudes are ultimately logarithmic,
maximally transcendental, and free of any poles at
infinity. This is because the non-planar integral’s

measure, I(NP )

� , is not itself logarithmic. We will show
this explicitly below by successively taking residues until
a double-pole is encountered; but it is also evidenced
by the fact that its evaluation (using e.g. dimensional
regularization) is not of uniform transcendentality,
[21]. These unpleasantries are of course cancelled in
combination, but we would like to find an alternate
representation of (5) which makes this fact manifest
term-by-term. Before providing such a representation,
let us first show that the planar double-box integrand
can be put into dlog-form, and then describe how the
non-planar integrands can be modified in a way which
makes them manifestly logarithmic.
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Notice that while both the triangle and box integrals

are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.

There are many reasons to expect that loop amplitudes
which are logarithmic have uniform (maximal) transcen-
dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8
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Table 1. The basis of numerators for pure integrands for the three-loop four-point amplitude.
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Table 1. The basis of numerators for pure integrands for the three-loop four-point amplitude.
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Expand the 
amplitude:

Coefficient fixed
by standard

unitarity 
methods

(Arkani-Hamed, Bourjaily, Cachazo, JT, 2014) (Bern, Herrmann, Litsey, Stankowicz, JT 2014, 2015)
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Table 3. The parent diagram numerators that give pure integrands for the two-loop five-

point amplitude. Each basis diagram is consistent with requiring logarithmic singularities

and no poles at infinity. The overline notation means [·] $ h·i.
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Notice that while both the triangle and box integrals

are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.
There are many reasons to expect that loop amplitudes

which are logarithmic have uniform (maximal) transcen-
dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

Our experience with planar N = 4 SYM suggests that
the natural representation of the integrand which makes
logarithmic singularities manifest in terms of on-shell di-
agrams, which are not in general manifestly local term-
by-term. However at low loop-order, it has also been
possible to see logarithmic singularities explicitly in par-
ticularly nice local expansions [18, 19]. Since we don’t yet
have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.
The four-point, two-loop amplitude in N =4 SYM and

N =8 SUGRA has been known for some time, [20]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:

A2-loop

4,N =
KN
4

X

�2S4

Z h
C

(P )

�,NI(P )

� +C
(NP )

�,N I(NP )

�

i
�

4|2N�
�·q

�
(5)

where � is a permutation of the external legs and
�

4|2N (�·q) encodes super-momentum conservation with

q⌘(e�, e⌘); the factors KN are the permutation-invariants,

K
4

⌘ [3 4][4 1]

h1 2ih2 3i and K
8

⌘
✓

[3 4][4 1]

h1 2ih2 3i

◆
2

; (6)

the integration measures I(P )

� , I(NP )

� correspond to,

(7)

and

I(NP )

1,2,3,4 ⌘ (p
1

+ p

2

)2 ⇥ (8)

for � = {1, 2, 3, 4}; and the coe�cients C

(P ),(NP )

{1,2,3,4},N are
the color-factors constructed out of structure constants
f

abc’s according to the diagrams above for N =4, and are
both equal to (p

1

+ p

2

)2 for N =8.
While the representation (5) is correct, it obscures

the fact that the amplitudes are ultimately logarithmic,
maximally transcendental, and free of any poles at
infinity. This is because the non-planar integral’s

measure, I(NP )

� , is not itself logarithmic. We will show
this explicitly below by successively taking residues until
a double-pole is encountered; but it is also evidenced
by the fact that its evaluation (using e.g. dimensional
regularization) is not of uniform transcendentality,
[21]. These unpleasantries are of course cancelled in
combination, but we would like to find an alternate
representation of (5) which makes this fact manifest
term-by-term. Before providing such a representation,
let us first show that the planar double-box integrand
can be put into dlog-form, and then describe how the
non-planar integrands can be modified in a way which
makes them manifestly logarithmic.

The Planar Double-Box Integral I(P )
�

In order to write I(P )

1,2,3,4 in dlog-form, we should
first normalize it to have unit leading singularities.
This is accomplished by rescaling it according to:
eI(P )

1,2,3,4⌘s t I(P )

1,2,3,4, where s⌘(p
1

+p

2

)2 and t⌘(p
2

+p

3

)2

are the usual Mandelstam invariants. Now that it is
properly normalized, we can introduce an ephemeral
extra propagator by multiplying the integrand by

(`
1

+p

3

)2/(`
1

+p

3

)2, and notice that eI(P )

1,2,3,4 becomes the
product of two boxes—motivating the following change

2

I
2

(`) ⌘ d

4

`

`

2(`+ p

2

+ p

3

)2
; I

3

(`) ⌘ d

4

` (p
1

+ p

2

)2

`

2(`+ p

2

)2(`� p

1

)2
;

I
4

(`) ⌘ d

4

` (p
1

+ p

2

)2(p
2

+ p

3

)2

`

2(`+ p

2

)2(`+ p

2

+ p

3

)2(`� p

1

)2
. (2)

While the bubble integration measure is not logarithmic,
it is known (see e.g. [8]) that the box can be written in
dlog-form, I

4

(↵)=dlog(↵
1

) ^ · · · ^ dlog(↵
4

), via:

↵

1

⌘`

2

/(` `

⇤)2, ↵

3

⌘(`+p

2

+p

3

)2/(` `

⇤)2,
↵

2

⌘(`+p

2

)2/(` `

⇤)2, ↵

4

⌘(` p

1

)2/(` `

⇤)2,
(3)

where `

⇤ ⌘ h23i
h31i�1

e
�

2

is one of the quad-cuts of the box.
Similarly, the triangle can also be written in dlog-form,
I
3

(↵)=dlog(↵
1

) ^ · · · ^ dlog(↵
4

), via:

↵

1

⌘`

2

, ↵

2

⌘(`+p

2

)2, ↵
3

⌘(` p

1

)2, ↵
4

⌘(` · `⇤), (4)

where `

⇤⌘�

1

e
�

2

.
Notice that while both the triangle and box integrals

are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.

There are many reasons to expect that loop amplitudes
which are logarithmic have uniform (maximal) transcen-
dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

Our experience with planar N = 4 SYM suggests that
the natural representation of the integrand which makes
logarithmic singularities manifest in terms of on-shell di-
agrams, which are not in general manifestly local term-
by-term. However at low loop-order, it has also been
possible to see logarithmic singularities explicitly in par-
ticularly nice local expansions [18, 19]. Since we don’t yet
have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.

The four-point, two-loop amplitude in N =4 SYM and
N =8 SUGRA has been known for some time, [20]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:

A2-loop

4,N =
KN
4

X

�2S4

Z h
C

(P )

�,NI(P )

� +C
(NP )

�,N I(NP )

�

i
�

4|2N�
�·q

�
(5)

where � is a permutation of the external legs and
�

4|2N (�·q) encodes super-momentum conservation with

q⌘(e�, e⌘); the factors KN are the permutation-invariants,

K
4

⌘ [3 4][4 1]

h1 2ih2 3i and K
8

⌘
✓

[3 4][4 1]

h1 2ih2 3i

◆
2

; (6)

the integration measures I(P )

� , I(NP )

� correspond to,

I(P )

1,2,3,4 ⌘ (p
1

+ p

2

)2 ⇥ (7)

and

I(NP )

1,2,3,4 (8)

for � = {1, 2, 3, 4}; and the coe�cients C

(P ),(NP )

{1,2,3,4},N are
the color-factors constructed out of structure constants
f

abc’s according to the diagrams above for N =4, and are
both equal to (p

1

+ p

2

)2 for N =8.
While the representation (5) is correct, it obscures

the fact that the amplitudes are ultimately logarithmic,
maximally transcendental, and free of any poles at
infinity. This is because the non-planar integral’s

measure, I(NP )

� , is not itself logarithmic. We will show
this explicitly below by successively taking residues until
a double-pole is encountered; but it is also evidenced
by the fact that its evaluation (using e.g. dimensional
regularization) is not of uniform transcendentality,
[21]. These unpleasantries are of course cancelled in
combination, but we would like to find an alternate
representation of (5) which makes this fact manifest
term-by-term. Before providing such a representation,
let us first show that the planar double-box integrand
can be put into dlog-form, and then describe how the
non-planar integrands can be modified in a way which
makes them manifestly logarithmic.

The Planar Double-Box Integral I(P )
�

In order to write I(P )

1,2,3,4 in dlog-form, we should
first normalize it to have unit leading singularities.
This is accomplished by rescaling it according to:
eI(P )

1,2,3,4⌘s t I(P )

1,2,3,4, where s⌘(p
1

+p

2

)2 and t⌘(p
2

+p

3

)2

are the usual Mandelstam invariants. Now that it is
properly normalized, we can introduce an ephemeral
extra propagator by multiplying the integrand by

(`
1

+p

3

)2/(`
1

+p

3

)2, and notice that eI(P )

1,2,3,4 becomes the
product of two boxes—motivating the following change

Diagram Numerators

(a)
1

2 3

4

5 6 7

N

(a)

1

= s

3

t ,

�����

(b)
1

2 3

4

5 6 7

N

(b)

1

= s

2

u(`
6

� k

3

)2 , N

(b)

2

= N

(b)

1

��
3$4

,

(c)
1

2 3

4

5 6 7

N

(c)

1

= s

2

u(`
5

� `

7

)2 , N

(c)

2

= N

(c)

1

��
1$2

,

(d)
1

2 3

4

5 6 7 N

(d)

1

= su

h
(`

6

� k

1

)2(`
6

+ k

3

)2 � `

2

6

(`
6

� k

1

� k

2

)2
i
,

N

(d)

2

= N

(d)

1

��
3$4

, N

(d)

3

= N

(d)

1

��
1$2

, N

(d)

4

= N

(d)

1

��
1$2

3$4

,

(e)
1

2 3

45 6

7
�

5
N

(e)

1

= s

2

t(`
5

+ k

4

)2 ,

(f)
1

2 3

45

6

7

N

(f)

1

= st(`
5

+ k

4

)2(`
5

+ k

3

)2 , N

(f)

2

= su(`
5

+ k

4

)2(`
5

+ k

4

)2 ,

(g)
1

2 3

45 6

7
�

5

N

(g)

1

= s

2

t(`
5

+ `

6

+ k

3

)2 ,

N

(g)

2

= st(`
5

+ k

3

)2(`
6

+ k

1

+ k

2

)2 , N

(g)

3

= N

(g)

2

��
3$4

,

(h)

N

(h)

1

= st

h
(`

6

+ `

7

)2(`
5

+ k

2

+ k

3

)2 � `

2

5

(`
6

+ `

7

� k

1

� k

2

)2

�(`
5

+ `

6

)2(`
7

+ k

2

+ k

3

)2 � (`
5

+ `

6

+ k

2

+ k

3

)2`2
7

�(`
6

+ k

1

+ k

4

)2(`
5

� `

7

)2 � (`
5

� `

7

+ k

2

+ k

3

)2`2
6

i
,

N

(h)

2

= tu

h
[(`

5

� k

1

)2 + (`
5

� k

4

)2][(`
6

+ `

7

� k

1

)2 + (`
6

+ `

7

� k

2

)2]

�4 `

2

5

(`
6

+ `

7

� k

1

� k

2

)2

�(`
7

+ k

4

)2(`
5

+ `

6

� k

1

)2 � (`
7

+ k

3

)2(`
5

+ `

6

� k

2

)2

�(`
6

+ k

4

)2(`
5

� `

7

+ k

1

)2 � (`
6

+ k

3

)2(`
5

� `

7

+ k

2

)2
i
,

N

(h)

3

= N

(h)

1

��
2$4

, N

(h)

4

= N

(h)

2

��
2$4

,

(i)
N

(i)

1

= tu(`
6

+ k

4

)2(`
5

� k

1

� k

2

)2 , N

(i)

2

= N

(i)

1

��
1$3

N

(i)

3

= st

⇥
(`

6

+ k

4

)2(`
5

� k

1

� k

3

)2 � `

2

5

(`
6

� k

2

)2
⇤
, N

(i)

4

= N

(i)

3

��
1$3

(j)
N

(j)

1

= stu .

(k)
N

(k)

1

= su ,

Table 1. The basis of numerators for pure integrands for the three-loop four-point amplitude.
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Table 1. The basis of numerators for pure integrands for the three-loop four-point amplitude.
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Expand the 
amplitude:

Using only 
vanishing cuts

?

(Bern, Herrmann, Litsey, Stankowicz, JT, 2015)
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Table 3. The parent diagram numerators that give pure integrands for the two-loop five-

point amplitude. Each basis diagram is consistent with requiring logarithmic singularities

and no poles at infinity. The overline notation means [·] $ h·i.
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point amplitude. Each basis diagram is consistent with requiring logarithmic singularities

and no poles at infinity. The overline notation means [·] $ h·i.
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point amplitude. Each basis diagram is consistent with requiring logarithmic singularities

and no poles at infinity. The overline notation means [·] $ h·i.
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Notice that while both the triangle and box integrals

are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.
There are many reasons to expect that loop amplitudes

which are logarithmic have uniform (maximal) transcen-
dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

Our experience with planar N = 4 SYM suggests that
the natural representation of the integrand which makes
logarithmic singularities manifest in terms of on-shell di-
agrams, which are not in general manifestly local term-
by-term. However at low loop-order, it has also been
possible to see logarithmic singularities explicitly in par-
ticularly nice local expansions [18, 19]. Since we don’t yet
have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.
The four-point, two-loop amplitude in N =4 SYM and

N =8 SUGRA has been known for some time, [20]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:
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N =8 SUGRA has been known for some time, [20]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:
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While the representation (5) is correct, it obscures

the fact that the amplitudes are ultimately logarithmic,
maximally transcendental, and free of any poles at
infinity. This is because the non-planar integral’s

measure, I(NP )

� , is not itself logarithmic. We will show
this explicitly below by successively taking residues until
a double-pole is encountered; but it is also evidenced
by the fact that its evaluation (using e.g. dimensional
regularization) is not of uniform transcendentality,
[21]. These unpleasantries are of course cancelled in
combination, but we would like to find an alternate
representation of (5) which makes this fact manifest
term-by-term. Before providing such a representation,
let us first show that the planar double-box integrand
can be put into dlog-form, and then describe how the
non-planar integrands can be modified in a way which
makes them manifestly logarithmic.
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Table 1. The basis of numerators for pure integrands for the three-loop four-point amplitude.
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Table 1. The basis of numerators for pure integrands for the three-loop four-point amplitude.
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Expand the 
amplitude:

Using only 
vanishing cuts

(Bern, Herrmann, Litsey, Stankowicz, JT, 2015)

Diagram Numerators

(a)
6 71

2

3

4

5

N

(a)

1

= h13ih24i
h
[24][13]

⇣
`

7

+ [45]

[24]

�

5

e
�

2

⌘
2

⇣
`

6

� Q12·e�3
e
�1

[13]

⌘
2

�[14][23]
⇣
`

7

+ [45]

[14]

�

5

e
�

1

⌘
2

⇣
`

6

� Q12·e�3
e
�2

[23]

⌘
2

i
,

N

(a)

2

= N

(a)

1

��
1$2

4$5

, N

(a)

3

= N

(a)

1

��
2$4

1$5

, N

(a)

4

= N

(a)

1

��
1$4

2$5

,

N

(a)

5

= N

(a)

1

, N

(a)

6

= N

(a)

2

, N

(a)

7

= N

(a)

3

, N

(a)

8

= N

(a)

4

,

(b)
6 7

1

2

3
4

5

N

(b)

1

= h15i[45]h43is
45

[13]
⇣
`

6

+ Q45·e�3
e
�1

[13]

⌘
2

,

N

(b)

2

= N

(b)

1

,

(c)
6

7

1

2

3

4 5
N

(c)

1

= [13]
⇣
`

6

+ Q45·e�3
e
�1

[13]

⌘
2

h15i[54]h43i(`
6

+ k

4

)2 ,

N

(c)

2

= N

(c)

1

��
4$5

, N

(c)

3

= N

(c)

1

, N

(c)

4

= N

(c)

2

,

(d)
N

(d)

1

= s

34

(s
34

+ s

35

)
⇣
`

7

� k

5

+ h35i
h34i�4

e
�

5

⌘
2

,

N

(d)

2

= N

(d)

1

��
4$5

, N

(d)

3

= N

(d)

1

, N

(d)

4

= N

(d)

2

,

(e)
N

(e)

1

= s

1

15

s

2

45

,

(f)
N

(f)

1

= s

14

s

45

(`
6

+ k

5

)2 , N

(f)

2

= N

(f)

1

��
4$5

,

(g)
N

(g)

1

= s

12

s

45

s

24

,

(h)

N

(h)

1

= h15i[35]h23i[12]
⇣
`

6

� h12i
h32i�3

e
�

1

⌘
2

, N

(h)

2

= N

(h)

1

��
3$5

,

N

(h)

3

= s

12

h13i[15]h5|`
6

|3] , N

(h)

4

= s

12

[13]h15ih3|`
6

|5],

N

(h)

5

= N

(h)

1

, N

(h)

6

= N

(h)

2

,

(i)
N

(i)

1

= h2|4|3]h3|5|2] � h3|4|2]h2|5|3] .

Table 3. The parent diagram numerators that give pure integrands for the two-loop five-

point amplitude. Each basis diagram is consistent with requiring logarithmic singularities

and no poles at infinity. The overline notation means [·] $ h·i.
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are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.
There are many reasons to expect that loop amplitudes

which are logarithmic have uniform (maximal) transcen-
dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8
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possible to see logarithmic singularities explicitly in par-
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have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.
The four-point, two-loop amplitude in N =4 SYM and

N =8 SUGRA has been known for some time, [20]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:

A2-loop

4,N =
KN
4

X

�2S4

Z h
C

(P )

�,NI(P )

� +C
(NP )

�,N I(NP )

�

i
�

4|2N�
�·q

�
(5)

where � is a permutation of the external legs and
�

4|2N (�·q) encodes super-momentum conservation with

q⌘(e�, e⌘); the factors KN are the permutation-invariants,

K
4

⌘ [3 4][4 1]

h1 2ih2 3i and K
8

⌘
✓

[3 4][4 1]

h1 2ih2 3i

◆
2

; (6)

the integration measures I(P )

� , I(NP )

� correspond to,

(7)

and

I(NP )

1,2,3,4 ⌘ (p
1

+ p

2

)2 ⇥ (8)

for � = {1, 2, 3, 4}; and the coe�cients C

(P ),(NP )

{1,2,3,4},N are
the color-factors constructed out of structure constants
f

abc’s according to the diagrams above for N =4, and are
both equal to (p

1

+ p

2

)2 for N =8.
While the representation (5) is correct, it obscures

the fact that the amplitudes are ultimately logarithmic,
maximally transcendental, and free of any poles at
infinity. This is because the non-planar integral’s

measure, I(NP )

� , is not itself logarithmic. We will show
this explicitly below by successively taking residues until
a double-pole is encountered; but it is also evidenced
by the fact that its evaluation (using e.g. dimensional
regularization) is not of uniform transcendentality,
[21]. These unpleasantries are of course cancelled in
combination, but we would like to find an alternate
representation of (5) which makes this fact manifest
term-by-term. Before providing such a representation,
let us first show that the planar double-box integrand
can be put into dlog-form, and then describe how the
non-planar integrands can be modified in a way which
makes them manifestly logarithmic.

The Planar Double-Box Integral I(P )
�

In order to write I(P )

1,2,3,4 in dlog-form, we should
first normalize it to have unit leading singularities.
This is accomplished by rescaling it according to:
eI(P )

1,2,3,4⌘s t I(P )

1,2,3,4, where s⌘(p
1

+p

2

)2 and t⌘(p
2

+p

3

)2

are the usual Mandelstam invariants. Now that it is
properly normalized, we can introduce an ephemeral
extra propagator by multiplying the integrand by

(`
1

+p

3

)2/(`
1

+p

3

)2, and notice that eI(P )

1,2,3,4 becomes the
product of two boxes—motivating the following change

2

I
2

(`) ⌘ d

4

`

`

2(`+ p

2

+ p

3

)2
; I

3

(`) ⌘ d

4

` (p
1

+ p

2

)2

`

2(`+ p

2

)2(`� p

1

)2
;

I
4

(`) ⌘ d

4

` (p
1

+ p

2

)2(p
2

+ p

3

)2

`

2(`+ p

2

)2(`+ p

2

+ p

3

)2(`� p

1

)2
. (2)

While the bubble integration measure is not logarithmic,
it is known (see e.g. [8]) that the box can be written in
dlog-form, I

4

(↵)=dlog(↵
1

) ^ · · · ^ dlog(↵
4

), via:

↵

1

⌘`

2

/(` `

⇤)2, ↵

3

⌘(`+p

2

+p

3

)2/(` `

⇤)2,
↵

2

⌘(`+p

2

)2/(` `

⇤)2, ↵

4

⌘(` p

1

)2/(` `

⇤)2,
(3)

where `

⇤ ⌘ h23i
h31i�1

e
�

2

is one of the quad-cuts of the box.
Similarly, the triangle can also be written in dlog-form,
I
3

(↵)=dlog(↵
1

) ^ · · · ^ dlog(↵
4

), via:

↵

1

⌘`

2

, ↵

2

⌘(`+p

2

)2, ↵
3

⌘(` p

1

)2, ↵
4

⌘(` · `⇤), (4)

where `

⇤⌘�

1

e
�

2

.
Notice that while both the triangle and box integrals

are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.

There are many reasons to expect that loop amplitudes
which are logarithmic have uniform (maximal) transcen-
dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

Our experience with planar N = 4 SYM suggests that
the natural representation of the integrand which makes
logarithmic singularities manifest in terms of on-shell di-
agrams, which are not in general manifestly local term-
by-term. However at low loop-order, it has also been
possible to see logarithmic singularities explicitly in par-
ticularly nice local expansions [18, 19]. Since we don’t yet
have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.

The four-point, two-loop amplitude in N =4 SYM and
N =8 SUGRA has been known for some time, [20]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:

A2-loop

4,N =
KN
4

X

�2S4

Z h
C

(P )

�,NI(P )

� +C
(NP )

�,N I(NP )

�

i
�

4|2N�
�·q

�
(5)

where � is a permutation of the external legs and
�

4|2N (�·q) encodes super-momentum conservation with

q⌘(e�, e⌘); the factors KN are the permutation-invariants,

K
4

⌘ [3 4][4 1]

h1 2ih2 3i and K
8

⌘
✓

[3 4][4 1]

h1 2ih2 3i

◆
2

; (6)

the integration measures I(P )

� , I(NP )

� correspond to,

I(P )

1,2,3,4 ⌘ (p
1

+ p

2

)2 ⇥ (7)

and

I(NP )

1,2,3,4 (8)

for � = {1, 2, 3, 4}; and the coe�cients C

(P ),(NP )

{1,2,3,4},N are
the color-factors constructed out of structure constants
f

abc’s according to the diagrams above for N =4, and are
both equal to (p

1

+ p

2

)2 for N =8.
While the representation (5) is correct, it obscures

the fact that the amplitudes are ultimately logarithmic,
maximally transcendental, and free of any poles at
infinity. This is because the non-planar integral’s

measure, I(NP )

� , is not itself logarithmic. We will show
this explicitly below by successively taking residues until
a double-pole is encountered; but it is also evidenced
by the fact that its evaluation (using e.g. dimensional
regularization) is not of uniform transcendentality,
[21]. These unpleasantries are of course cancelled in
combination, but we would like to find an alternate
representation of (5) which makes this fact manifest
term-by-term. Before providing such a representation,
let us first show that the planar double-box integrand
can be put into dlog-form, and then describe how the
non-planar integrands can be modified in a way which
makes them manifestly logarithmic.

The Planar Double-Box Integral I(P )
�

In order to write I(P )

1,2,3,4 in dlog-form, we should
first normalize it to have unit leading singularities.
This is accomplished by rescaling it according to:
eI(P )

1,2,3,4⌘s t I(P )

1,2,3,4, where s⌘(p
1

+p

2

)2 and t⌘(p
2

+p

3

)2

are the usual Mandelstam invariants. Now that it is
properly normalized, we can introduce an ephemeral
extra propagator by multiplying the integrand by

(`
1

+p

3

)2/(`
1

+p

3

)2, and notice that eI(P )

1,2,3,4 becomes the
product of two boxes—motivating the following change

a1M2 =
X

�

a2+



Example of zero condition

✤ Expansion of the amplitude

2

I
2

(`) ⌘ d

4

`

`

2(`+ p

2

+ p

3

)2
; I

3

(`) ⌘ d

4

` (p
1

+ p

2

)2

`

2(`+ p

2

)2(`� p

1

)2
;

I
4

(`) ⌘ d

4

` (p
1

+ p

2

)2(p
2

+ p

3

)2

`

2(`+ p

2

)2(`+ p

2

+ p

3

)2(`� p

1

)2
. (2)

While the bubble integration measure is not logarithmic,
it is known (see e.g. [8]) that the box can be written in
dlog-form, I

4

(↵)=dlog(↵
1

) ^ · · · ^ dlog(↵
4

), via:

↵

1

⌘`

2

/(` `

⇤)2, ↵

3

⌘(`+p

2

+p

3

)2/(` `

⇤)2,
↵

2

⌘(`+p

2

)2/(` `

⇤)2, ↵

4

⌘(` p

1

)2/(` `

⇤)2,
(3)

where `

⇤ ⌘ h23i
h31i�1

e
�

2

is one of the quad-cuts of the box.
Similarly, the triangle can also be written in dlog-form,
I
3

(↵)=dlog(↵
1

) ^ · · · ^ dlog(↵
4

), via:

↵

1

⌘`

2

, ↵

2

⌘(`+p

2

)2, ↵
3

⌘(` p

1

)2, ↵
4

⌘(` · `⇤), (4)

where `

⇤⌘�

1

e
�

2

.
Notice that while both the triangle and box integrals

are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
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Non-planar conclusion

✤ Same properties: planar and non-planar

✤ In planar: hidden symmetries + Amplituhedron

✤ Non-planar: see implications of something new

Do not follow from known symmetries
Problem of labels: formulate as symmetry/geometry



Non-planar conclusion

✤ The complete N=4 SYM is the simplest QFT!

✤ Open questions: new symmetries, role of color factor, 
complete geometric formulation…..

✤ Relation to final amplitudes: uniform 
transcendentality, structure in cross-ratios, etc.



Comments on N=8 amplitudes



New hope for gravity

✤ One step forward: N=8 amplitudes

✤ Reasons to hope there is a new approach:

✤ No planar sector of gravity, no natural conjectures

BCJ between N=4 and N=8
Magic properties of tree-level amplitudes
Possible special behavior in UV



Gravity on-shell diagrams

✤ Natural start: gravity on-shell diagrams

✤ Well-defined in any QFT: cuts of the loop amplitudes

✤ Each diagram can be written in Grassmannian

✤ Question: Is there a universal form (like dlog form)?

✤ What do we learn about loop amplitudes?

(Herrmann, JT 2016) (Heslop, Lipstein 2016)



Grassmannian formula

✤ Edge variables for each edge

✤ The value of the diagram in Yang-Mills

4.6 Coordinate Transformations Induced by Moves and Reduction

Let us now examine how the identification of diagrams via merge-operations, square-

moves, and bubble-deletion is reflected in the coordinates—the edge- or face-variables

—used to parameterize cells C 2 G(k, n). As usual, the simplest of these is the

merge/un-merge operation which trivially leaves any set of coordinates unchanged.

For example, in terms of the face variables, it is easy to see that

(4.62)

The square-move is more interesting. It is obvious that squares with opposite coloring

both give us a generic configuration in G(2, 4), but (as we will soon see), the square-

move acts rather non-trivially on coordinates used to parameterize a cell,

(4.63)

Let us start by determining the precise way the face-variables f
i

and f 0
i

of square-

move related diagrams are related to one another. To do this, we will provide perfect

orientations (decorated with edge variables) for both graphs, allowing us to com-

pare the resulting boundary-measurement matrices in each case. Because these two

boundary measurement matrices must represent the same point in G(2, 4), we will

be able to explicitly determine how all the various coordinate charts are related—

including the relationship between the variables f
i

and f 0
i

. Our work will be consid-

erably simplified if we remove the GL(1)-redundancies from each vertex, leaving us

with a non-redundant set of edge-variables. Of course, any choice of perfect orienta-

tions for the graphs, and any fixing of the GL(1)-redundancies would su�ce for our

purposes; but for the sake of concreteness, let us consider the following:

✓
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1

0 ↵
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0 ↵
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◆ ✓
1 �

2

�
3

�
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�
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�
4

�

◆

(4.64)

– 41 –

C =

✓
1 ↵1 0 �↵4

0 ↵2 1 ↵3

◆

Solves for        
in terms of 
and gives

↵i

�i, e�i

�(P )�(Q)
�(C · Z) = �(C · e�)�(C? · �)�(C · e⌘)

⌦ =
d↵1

↵1

d↵2

↵2
. . .

d↵m

↵m
· �(C · Z)



Grassmannian formula

✤ Edge variables for each edge

✤ The value of the diagram in gravity

4.6 Coordinate Transformations Induced by Moves and Reduction

Let us now examine how the identification of diagrams via merge-operations, square-

moves, and bubble-deletion is reflected in the coordinates—the edge- or face-variables

—used to parameterize cells C 2 G(k, n). As usual, the simplest of these is the

merge/un-merge operation which trivially leaves any set of coordinates unchanged.

For example, in terms of the face variables, it is easy to see that

(4.62)

The square-move is more interesting. It is obvious that squares with opposite coloring

both give us a generic configuration in G(2, 4), but (as we will soon see), the square-

move acts rather non-trivially on coordinates used to parameterize a cell,

(4.63)

Let us start by determining the precise way the face-variables f
i

and f 0
i

of square-

move related diagrams are related to one another. To do this, we will provide perfect

orientations (decorated with edge variables) for both graphs, allowing us to com-

pare the resulting boundary-measurement matrices in each case. Because these two

boundary measurement matrices must represent the same point in G(2, 4), we will

be able to explicitly determine how all the various coordinate charts are related—

including the relationship between the variables f
i

and f 0
i

. Our work will be consid-

erably simplified if we remove the GL(1)-redundancies from each vertex, leaving us

with a non-redundant set of edge-variables. Of course, any choice of perfect orienta-

tions for the graphs, and any fixing of the GL(1)-redundancies would su�ce for our

purposes; but for the sake of concreteness, let us consider the following:
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C =

✓
1 ↵1 0 �↵4

0 ↵2 1 ↵3

◆

�(C · Z) = �(C · e�)�(C? · �)�(C · e⌘)

⌦ =
d↵1

↵3
1

d↵2

↵3
2

. . .
d↵m

↵3
m

Y

v

�v · �(C · Z) Special numerator:
factor in each vertex

(Herrmann, JT 2016) similar representation (Heslop, Lipstein 2016)



Properties of the formula

✤ Analyzing:

✤ Similar formula for N<8 SUGRA

⌦ =
d↵1

↵3
1

d↵2

↵3
2

. . .
d↵m

↵3
m

Y

v

�v · �(C · Z)

Higher poles present
Reduces to single poles if erasing edge 

(pole for finite momentum)
Diagram vanishes if in any vertex 

three momenta are collinear

(Herrmann, JT 2016)



✤ Gravity on-shell diagrams in the context of BCFW 
recursion relations

✤ Gravity tree amplitudes not just sum of on-shell diagrams

Tree-level recursion relations
(Heslop, Lipstein 2016)

1

s1n
=

X

L,R

Extra kinematical factors see Arthur’s talk



Conjectures for the loop amplitude

✤ No recursion for amplitude using on-shell diagrams

✤ Implications for amplitude: optimistic conjectures

Absence of variables, generic non-planar problem
Dimensionality: extra kinematical factors

Collinearity conditions
Finite poles
Poles at infinity

)

IR

UV



Finite poles

✤ On-shell diagrams: all finite cuts logarithmic

✤ Strong hint from BCJ relations

Integral ! Cut
d↵

↵2
! Cut ! never happens

A(YM) =
X

i

n(BCJ)
i

c
i

s
i

=
X

i

n(dlog)
i

c
i

s
i

A(GR) =
X

i

n(dlog)
i

n(BCJ)
i

s
i

Double poles canceled
by Yang-Mills numerator



Finite poles

✤ Almost certainly correct statement

✤ Interesting implications: some diagrams absent

This diagram and his higher 
loop friends: divergent in 

D = 4 +
4

L
Double poles in the cut structure

D = 4 +
6

L

vs



Collinearity conditions

✤ On-shell diagrams: any cut of the form

✤ In special case of external legs: collinear limit

⇠ [`1 `2] ⇠ h`1 `2i

A ⇠ [12]

h12i · (. . . )



✤ Double cut of the amplitude:

✤ Expansion of the 4pt 1-loop amplitude: three boxes

Collinearity conditions

1

2

3

4

1

h`1`2i and cancel this factor. This does not happen in the case of on-shell diagrams but

it could for generalized cuts. Our conjecture is that indeed it does not happen and any

cut of the amplitude of this type would be proportional to h`
1

`

2

i. We will test this

conjecture explicitly on several examples.

Four point one-loop

The four-point one-loop N = 8 SUGRA amplitude was first given by Green, Schwarz

and Brink [5] as a sum of three box integrals2,

M1

4

(1234) = istuMtree

4

(1234)
h
I

1

4

(s, t) + I

1

4

(t, u) + I

1

4

(u, s)
i
, (5.8)

where the corresponding tree amplitude Mtree

4

(1234) carries the helicity informa-

tion. Multiplying by stu one finds the totally permutation invariant four-point gravity

prefactor, see e.g. [6],

stuMtree

4

(1234) =

✓
[34][41]

h12ih23i

◆
2

| {z }
⌘K8

. (5.9)

The one-loop box integrals I

1

4

( , ) are defined without the usual st-type normal-

ization which was put into the permutation invariant prefactor K
8

. All integrals have

numerator N = 1 and therefore do not have unit leading singularity ±1, 0 on all

residues,

.

.

`1

2 3

4

I

1

4

(s ; t) =

`1

2 3

4

I

1

4

(t ; u) =

1

2 3

4

I

1

4

(u ; s) =

`

(5.10)

.

As there is no unique origin in loop momentum space, there is a general prob-

lem how to label the loop momentum ` in individual diagrams; we will come back to

this point shortly. In the definition above we chose an arbitrary origin for the loop

momentum routing in the three boxes.

Let us consider a double cut of the amplitude where `

2 = (` � p

1

)2 = 0 which

chooses natural labels on the cut. For complex momenta, there are two solutions to

2The gravitational coupling constant (/2)n�2 for n-pt tree level amplitudes and (/2)n for n-pt

one-loop amplitudes will be suppressed ( =
p
32⇡GN ).

– 34 –

⇠ [` 1]` = �1
e�`

Each scales

⇠ 1

[` 1]

Can not be implemented
term-by-term in the amplitude



✤ Double cut of the amplitude:

✤ Expansion of the 4pt 1-loop amplitude: three boxes

Collinearity conditions

1

2

3

4

Very non-trivial statement
even for 4pt 1-loop

1

h`1`2i and cancel this factor. This does not happen in the case of on-shell diagrams but

it could for generalized cuts. Our conjecture is that indeed it does not happen and any

cut of the amplitude of this type would be proportional to h`
1

`

2

i. We will test this

conjecture explicitly on several examples.

Four point one-loop

The four-point one-loop N = 8 SUGRA amplitude was first given by Green, Schwarz

and Brink [5] as a sum of three box integrals2,
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(s, t) + I

1

4
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1

4
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, (5.8)

where the corresponding tree amplitude Mtree

4

(1234) carries the helicity informa-

tion. Multiplying by stu one finds the totally permutation invariant four-point gravity

prefactor, see e.g. [6],
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⌘K8

. (5.9)

The one-loop box integrals I

1

4

( , ) are defined without the usual st-type normal-

ization which was put into the permutation invariant prefactor K
8

. All integrals have

numerator N = 1 and therefore do not have unit leading singularity ±1, 0 on all

residues,

.
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(5.10)

.

As there is no unique origin in loop momentum space, there is a general prob-

lem how to label the loop momentum ` in individual diagrams; we will come back to

this point shortly. In the definition above we chose an arbitrary origin for the loop

momentum routing in the three boxes.

Let us consider a double cut of the amplitude where `

2 = (` � p

1

)2 = 0 which

chooses natural labels on the cut. For complex momenta, there are two solutions to

2The gravitational coupling constant (/2)n�2 for n-pt tree level amplitudes and (/2)n for n-pt

one-loop amplitudes will be suppressed ( =
p
32⇡GN ).
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⇠ [` 1]` = �1
e�`

Sum
⇠ 1



Collinearity conditions

✤ We made a choice in labeling diagrams

✤ Consider another labels, and sum over both options

✤ Two loop checks even more impressive, symmetrization!

✤ Close connection to IR singularities of gravity

this cut. Here we choose one of them, ` = �

1

e
�

`

for some e
�

`

, which corresponds to the

cut diagram,

(5.11)

Note that for `

2 = 0 the loop momentum ` becomes on-shell, ` = �

`

e
�

`

and the

other propagator factorizes, (` � p

1

)2 = h`1i[`1]. The solution we chose sets h`1i = 0

and the Jacobian of this double cut is,

J =
1

[`1]
. (5.12)

Using the box-expansion of the one-loop amplitude (5.8) we can calculate the

residue on this cut for all three boxes (5.14) individually and get,

h
I
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1

4
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4
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i�����
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1

h12i([12]� [`2])h14i[`4] +
1

h13i([13]� [`3])h14i[`4] +
1

h12i([12]� [`2])h13i[`3]

�

=
[`1] · [34]h14i

[`1] · [`3][`4]([12]� [`2])([13]� [`3])h12ih13ih14i (5.13)

From the Jacobian (5.12), each term contains a factor 1

[`1]

but combining all three

boxes we generate an expression with [`1] in the numerator which cancels J . However,

this is not enough. Our conjecture was that on this cut the amplitude behaves like

⇠ [`1]. The computation above seems to immediately contradict the conjecture, but

due to labeling issues the calculation is incomplete. In labeling the box diagrams in

(5.14), we made a particular choice. We could label the three boxes in a di↵erent way,

.

.

`

1

2 3

4

e
I

1

4

(s ; t) =

1

2 3

4

e
I

1

4

(t ; u) =
`

`

1

2 3

4

e
I

1

4

(u ; s) = (5.14)

– 35 –

⇠ [` 1]

Total sum



Poles at infinity

✤ They are present starting at 3-loops

✤ Higher poles at higher loops

✤ Generically everything complex, the detailed 
description of the space of poles at infinity needed

1 2

34

⇠ dz

z z ! 1
`(z) ! 1

Pole at 



Gravituhedron?

✤ Before dreaming about the geometric formulation for 
N=8 SUGRA: describe in details singularity structure

✤ In N=4 SYM: logarithmic singularities

✤ In N=8 SUGRA: more complicated

✤ Precise description of poles at infinity needed

Logarithmic singularities at finite momenta
Multiple poles at infinity



Conclusion



✤ Amplitudes in the complete N=4 SYM

✤ Amplitudes in N=8 SUGRA

Conclusion

Logarithmic singularities
No poles at infinity
Fixed by vanishing cuts

Evidence for non-planar
geometric construction

Grassmannian formula for on-shell diagrams
Simple IR properties, complicated structure of poles at infinity



Thank you for your attention


