Existierende, zukünftige und alternative Beschleunigerkonzepte

- Existierende, zukünftige und alternative Beschleunigerkonzepte
 - 1. LEP, SLC
 - 2. Tevatron, PEP-II, KEK-B, HERA, RHIC, CESR, DA Φ NE
 - 3. LHC
 - 4. Linear-Collider: NLC, TESLA, CLIC
 - 5. Neutrino-"Beschleuniger"
 - 6. Myon-Beschleuniger
 - 7. Free-Elektron-Laser
 - 8. Laser/Teilchenstrahl-Plasma-Beschleuniger

Übersicht der Beschleuniger-Projekte

Tab. 3.3 Liste einiger im Betrieb oder im Bau befindlicher Teilchenbeschleuniger und Sp cherringe.

Name	Ort		Max. Strahl- energie/GeV	Fertig- stellung
Protonen-Synchrotrons				
CERN PS	Genf, Schweiz		28	1960
BNL AGS	Brookhaven, USA		32	1960
KEK	Tsukuba, Japan		12	
Serpukhov	Serpukhov, UdSSR		76	
CERN SPS	Genf, Schweiz		450	
Fermilab Tevatron	Batavia, USA		900	
Elektronenbeschleuniger				
SLAC Linearbeschleuniger	Stanford, USA		20	1966
DESY-Synchrotron	Hamburg, BRD		7	1964
Speicherringe				
SPEAR	Stanford, USA	e+e-	4.2 + 4.2	1972
DORIS II	DESY, Hamburg	e+e-	5.6 + 5.6	1974/82
PETRA	DESY, Hamburg	e+e-	23 + 23	1978
PEP	Stanford, USA	e+e-	15 + 15	1980
CESR	Cornell, USA	e+e-	8 + 8	1979
TRISTAN	Tsukuba, Japan	e†e	30 + 30	1986
LÉP	CERN, Schweiz	e+e-	100 50 + 50 100	1989
SppS	CERN, Schweiz	pp	310 + 310	1982
Tevatron	Fermilab, USA	pp	900 + 900	1987
HERA	Hamburg, BRD	ep	30e + 820p	1990
Linearbeschleuniger mit koll	idierenden Strahlen			
SLC	Stanford, USA	e ⁺ e ⁻	50 + 50	1988

Davon noch in Betrieb, u.a.: CERN PS : p, e^{\pm} , lonen (Teststrahlen, Vorbeschl. SPS) CERN SPS : p, e^{\pm} , lonen (Teststrahlen, Vorbeschl, LHC) $: e^+ \rightarrow \leftarrow e^-$ KEK (für b-Quark-Fabrik KEK-B) DORIS II : e⁻ (Synchrotron-Strahlungsquelle) : p, e^+ (Vorbeschl. HERA) PETRA $: e^+ \rightarrow \leftarrow e^-$ PEP (für b-Quark-Fabrik PEP-II) $: e^+ \rightarrow \leftarrow e^-$ CESR (für CLEO-Exp.) Tevatron $: \mathbf{p} \rightarrow \leftarrow \overline{\mathbf{q}}$ (für DØ-& CDF-Exp., 2×1000 GeV) : $p \rightarrow \leftarrow e^+$ HERA (für H1-& ZEUS-Exp.) : ¹⁹⁷Au $\rightarrow \leftarrow$ ¹⁹⁷Au RHIC (100 GeV/Nukleon)

WS 2003/04

Large Hadron Collider

Im Tunnel des LEP- e^+e^- -Beschleunigers:

- LHC: größter & höchstenergetischster Beschleuniger weltweit
- Proton→←Proton
- zwei separate Ringe
- 2×7 TeV Energie
- 4 Experimente:
 - ♦ ATLAS, CMS (Vielzweck-Experimente)
 - ♦ LHC-b (CP-Verletzung bei b-Quarks)
 - ♦ ALICE (Quark-Gluon-Plasma)

Chronologie von LHC:

- $\diamond \sim$ 1984 erstes Konzept
- ♦ 1991 konkrete Design-Studie
- ♦ Dez. 1994 Zustimmung des CERN Councils
- ♦ 1999 Beginn der Erdarbeiten
- ♦ 2000/1 Demontage von LEP & Experimenten

- ♦ 2004-6 Installation Beschleuniger&Experimente
- ◊ 2004 LHC-Sektor- & Injektionstest
- ♦ Herbst 2006 Testlauf Beschleuniger
- ◇ Frühjahr 2007 Beginn des regulären Messprogramms
- $\diamond \gtrsim$ 15 Jahre Laufzeit des Messprogramms

LHC-Parameter:		Injektion	Kollision	
Ringumfang	[m]	26658.883		
Ringabstand	[mm]	194		
Anzahl Ablenkmagnete		1232		
Länge je Magnet	[m]	14.3		
B-Ablenkfeldstärke	[T]	0.535	8.33	
Protonenergie	[GeV]	450	7000	
Protonen/Bunch		1.15×10 ¹¹		
Bunchanzahl		2808		
Strahlstrom	[A]	0.584		
Energie im Strahl	[MJ]	23.3	362	
Synchrotron- Strahlungsleistung	[W]	0.06	3600	
Energieverlust/Umlauf	[eV]	0.12	6710	
RF-Frequenz	[MHz]	400.8		
ges. RF-Spannung	[MV]	8	16	

		Injektion	Kollision	
Energiestreuung δ	[10 ⁻⁴]	3.06	1.11	
(RMS)				
eta^* in IP1&5	[m]	18	0.55	
transv. Emittanz $arepsilon_{x,y}$	[μ m rad]	3.5	3.75	
Bunchlänge (RMS)	[cm]	17.5	7.7	
Strahldurchmesser	[μ m]	375.2	16.7	
an IP1&5 (RMS)				
Betatron-Tunes $Q_{x,y}$ (hori, vert)		64.28, 59.31	64.31, 59.32	
Synchrotron-Tune Q_s		5.5×10^{-3}	1.9×10^{-3}	
Übergangsenergie γ_t		55.68		
Spitzenluminosität	$[cm^{-2}s^{-1}]$	_	1.0×10 ³⁴	
Strahllebensdauer	[h]	_	14.9	

Figure 3.2: Schematic layout of the LHC. The blue line indicates Beam1 and the red line Beam 2. Beam 1 circulates clockwise and Beam 2 counter clockwise.

- Ring besteht aus 8 Oktanden
- 4 Wechselwirkungszonen: IP1, IP2, IP5, IP8
- Strahlinjektion in IP2 und IP8
- Strahlextraktion (Dump) in IP6
- RF-Beschleunigungsstrukturen in IP4
- Reduktion der Impulsstreuung in IP3 (große Dispersionsfunktion D(s): Teilchen mit großer Impulsstreuung $\delta \rightarrow$ Kollimator)
- Reduktion der Betatron-Amplitude in IP7 (kleine Dispersionsfunktion D(s): Teilchen mit großer Betatron-Ampl. $\beta_{x,y} \rightarrow$ Kollimator)

Strahloptik in Kollisionspunkten IP1&5:

(a) Beam 1, injection optics

IP5B2

β.

ß

6400.

350.

315.

280.

245.

210.

175.

140.

105.

70.

35.

 $\begin{array}{c} 0.0 + \\ 6100. \end{array}$

 β_{k} (m), β_{j} (m)

 D_x

6700.

MAD-X 1.12 18/06/03 15.21.32

7000.

2.2

2.0

1.8

1.5

1.2

1.0

0.8

0.5

0.2

0.0 -0.2 7300.

s (m)

D (m)

(c) Beam 1, collision optics

(d) Beam 2, collision optics

Figure 4.3: Injection (top) and collision (bottom) optics of the high-luminosity insertions at IP1 and IP5 for a β^* of 18 m and 0.55 m.

Strahlinjektionsprinzip IP2&8:

- Strahl läuft von unten auf LHC-Sollorbit zu (1.24 mrad Winkel)
- Quadrupol Q5 reduziert Annäherungswinkel (um 0.39 mrad)
- Kickermagnet bringt zu injizierenden Strahl auf LHC-Sollorbit (0.85 mrad Kickwinkel)
- Kickermagnet: Anstiegszeit des *B*-Feldes < 1 μ s, Plateaulänge 8 μ s, Abfallzeit des *B*-Feldes < 3 μ s (Abfallszeit = Länge der Zeitlücke für Strahldump-Kicker)

15.8

LHC Bunch-Struktur des Strahls:

Figure 4: Kicker magnet cross section.

- (Lambertson)-Septummagnet:
 - ♦ Dipolfeld f
 ür Injektionsstrahl
 - \diamond Strahl auf Sollorbit verläuft in B-feldfreien Raum
 - (B-Feldabschirmung durch Mu-Metall)
 - Septummagnetlänge: 4 m
 - ♦ Anzahl Septummagnete: 5/Injektionszone
- Kickermagnet:
 - $\diamond\,$ kurzzeitiges Dipolfeld $\rightarrow\,$ Kick (=kleine Ablenkung) des Injektionsstrahls
 - ◊ Konzept: Kondensator (54 kV) über Stromschiene entladen

 - HV-Versorgung, Pulsformung, HV-Schalter:
 außerhalb des LHC-Tunnels
 - Zuleitung über 35 m lange Koaxialkabel (10 Stück parallel)
 - ♦ Kickermagnetlänge: 2.65 m
 - ♦ Anzahl Kickermagnete: 4/Injektionszone

Strahldump in IP6:

Strahldump: 7 TeV Strahlen in einem Umlauf (88 μ s) aus LHC extrahieren & absorbieren

- 15 Kickermagnete $(t_{\text{Anstieg}} < 3 \,\mu\text{s}, t_{\text{Plateau}} > 90 \,\mu\text{s})$
- 15 Septummagneten

(vergleichbar zu Injektionsseptum)

• 10 Dilution-Kickermagnete

(verteilen Strahlintensität auf Absorber)

- Absorberblock je: \diamond 7.7 m langer, segmentierter Kohlenstoff-Zylinder mit Ø0.7m \diamond muss 428 MJ absorbieren
 - ◊ in Stahlmantel eingeschlossen
 - ◊ rund 6 t Eigengewicht
 - \diamond umgeben von \sim 900 t Eisen-Stahl-Strahlungsschilde

The extraction process

 $<3 \ \mu s$ extraction kicker rise time (abort gap),

>89 µs extraction kicker flat-top length (full LHC turn)

- ♦ max. Temperatur 1050-1250 °C
- ♦ wassergekühlt
- ♦ muss 20 Jahre halten

Linea-Collider: NLC, TESLA, CLIC

- Elektron-Positron-Collider limitiert durch Synchrotron-Strahlung (Energieverlust $\propto E^4/R$)
- größter e^+e^- -Beschleuniger: LEP (27 km Umfang, 2×104 GeV, ~ 10 MW Synchrotron-Strahlungsverluste)
- höhere Teilchenenergie \longrightarrow Lineare Collider (LC)
 - Unterscheidung i.W. durch Beschleunigungs-System:
 - normalleitende Beschl.resonatoren (=Cavities)
 - ◊ (nahezu) beliebig hohe Beschleunigungsgradienten
 - hohe thermische Verluste in Cavities
 - ◊ nur sehr kurze Strahlpulse möglich
 - ightarrow Strahllagekorrektur für aktuellen Strahl nicht möglich
 - ◊ i.A. starke "Beam-Strahlung" (longit. Synch.-Strahlung)
 - supraleitende Beschleunigungsresonatoren (TESLA)
 - \diamond Beschl.gradienten theor. auf \sim 55 MV/m beschränkt
 - \diamond praktisch erreicht ${\sim}35\text{-}40$ MV/m

- ♦ geringste Verluste in Cavities
- ◊ lange Strahlpulse möglich
- ightarrow Strahllagekorrektur für aktuellen Strahl möglich
- onur geringe "Beam-Strahlung"
- ▷ "Drive-beam"-Beschleunigung (CLIC)
 - intensiver, niederenergetischer Strahl parallel zu Linear-Collider erzeugt HF in Resonatoren im Multi-GHz-Bereich

(entspricht langgestrecktem Klystron)

- HF-Leistung beschleunigt Teilchen im Haupt-Beschleuniger
- (nahezu) beliebig hohe Beschleunigungsgradienten
 (> 60 MV/m)
- \diamond Multi-GHz-Bereich führt zu starken Wake-Feldern (Effekte wachsen \propto Frequenz^3)
- \rightarrow derzeit noch Research&Development (R&D)

TESLA: Supraleitender Linearer e⁺e⁻ Collider

		TESLA-500
Accelerating gradient	$E_{acc} [MV/m]$	23.4
RF-frequency	f_{RF} [GHz]	1.3
Fill factor		0.747
Total site length	L_{tot} [km]	33
Active length	[km]	21.8
No. of accelerator structures		21024
No. of klystrons		584
Klystron peak power	[MW]	9.5
Repetition rate	f_{rep} [Hz]	5
Beam pulse length	$T_P \ [\mu s]$	950
RF-pulse length	T_{RF} [μs]	1370
No. of bunches per pulse	n_b	2820
Bunch spacing	$\Delta t_b \; [\mathrm{ns}]$	337
Charge per bunch	$N_e [10^{10}]$	2
Emittance at IP	$\gamma \varepsilon_{x,y} \ [10^{-6} \mathrm{m}]$	10, 0.03
Beta at IP	$\beta_{x,y}^*$ [mm]	15, 0.4
Beam size at IP	$\sigma_{x,y}^*$ [nm]	553, 5
Bunch length at IP	σ_{z} [mm]	0.3
Beamstrahlung	$\delta_E ~[\%]$	3.2
Luminosity	$L_{e+e-} [10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	3.4
Power per beam	$P_b/2 \; [\mathrm{MW}]$	11.3
Two-linac primary electric power	P_{AC} [MW]	97
(main linac RF and cryogenic systems)		
e^-e^- collision mode:		
Beamstrahlung	$\delta_{E,e-e-} [\%]$	2.0
Luminosity	$L_{e-e-} [10^{34} \text{cm}^{-2} \text{s}^{-1}]$	0.47

Table 1.3.1: TESLA parameters for the $E_{cm} = 500 \text{ GeV}$ baseline design. The machine length includes a 2% overhead for energy management. The klystron power and primary electric power quoted include a 10% regulation reserve.

TESLA: Optik

- vor Wechselwirkungspunkt: Ablenkung des Strahls aus Beschleunigungsstrecke, damit so gen. "Beam-Strahlung" (
 Iongitudinale Synchrotron-Strahlung) nicht in Wechselwirkungszone gelangt
- Magnetgitter mit Dipolen & fokus./defokus.
 Quardrupolen
- Fig.7.2.1: Betatron-Funktion, Dispersionsfunktion, Magnetgitter auf einer Seite des Wechselwirkungspunkts (engl. Interaction Point, IP)
- "Final Focus" ist spezielle Anordnung von Fokussierungsmagneten (im Bild nicht detailliert)
- \rightarrow am IP Strahlgröße: 533 nm \times 5 nm ! (horizontal \times vertikal, notwendig für Luminosität)

Figure 7.2.1: Optics functions for the TESLA BDS (e^{-}) .

beamline axis (meter)

TESLA: einige weitere Beschleuniger-Elemente

- Positron-Quelle:
 - \diamond Undulator-Magnet erzeugt intensive γ -Strahlung

(γ -Energie mehrere MeV)

- $\diamond \gamma$ -Photonen auf Absorber-Target
- $\rightarrow e^+e^-$ -Paarbildung (im Feld der Atomkerne)
- Einfangen der Positronen durch Solenoid-Magnet
- ♦ und Beschleunigung der Positronen
- ♦ Speicherung im Emittanz-Dämpfungsring
- Emittanz-Dämpfungsring:
 - ◇ "hundknochen-förmiger" Ring
 - ◇ ca. 17 km Umfang, 5 GeV Strahlenergie, bis zu 160 mA
 Strahlstrom
 - \diamond Emittanz $\gamma \varepsilon$: Dämpfung durch Wiggler-Magnete
 - \diamond Injektion: $\gamma \varepsilon \approx$ 0.01 m/10 \times 10⁻⁵ m (e⁺/e⁻)
 - ♦ Extraktion: $\gamma \varepsilon_x / \gamma \varepsilon_y \approx 8 \times 10^{-6}$ m / 0.02×10⁻⁶ m
 - ♦ Dämpfungszeit 28 ms/50 ms für e⁺/e⁻

Figure 4.3.1: Sketch of the positron source layout.

Figure 5.1.1: Conceptual layout of the positron damping ring. The electron ring is similar with the exception that the injection point is located close to the indicated ejection position at the beginning of the linac.

Neutrino-"Beschleuniger"

- Höchstintensiver Protonenstrahl
 - $(>10^{13}$ Protonen/ Schuss, 10-20 GeV)
- * auf Target (muss \gtrsim MW absorbieren, z.Zt. Quecksilber)
- produzierte Pion-Teilchen einfangen \rightarrow Pion-Zerfall in langem Flugtunnel \rightarrow Myonen
- * Kühlung des Myonstrahls (v.a. transversal)
- Phasenrotation des Myonstrahls (große Energiestreuung dE, kurze Pulsdauer $dt \longrightarrow$ geringes dE, großes dt + Bunchstruktur)
- speichern der Myonen in Kreisbeschleuniger mit langen geraden Abschnitten
- Myonzerfall \rightarrow Neutrinos, starke Bündelung in geradem Abschnitt, wg. Lorentzfaktor $\gamma \gg 1$
- \triangleright große technologische Herausforderungen in *
- \rightarrow Neuentwicklungen erforderlich:

Myon-Beschleuniger

- Myon: ~ 200 -fach höhere Masse gegenüber Elektron
- \rightarrow Synchrotron-Strahlung $200^4 \approx 2 \times 10^9$ -fach geringer
- ♦ höhere Strahlenergie in Beschleuniger mit geringem Radius möglich
- \diamond Kollisionen: punktförmige Myonen \leftrightarrow Protonen mit komplizierter Struktur
- \diamond hohe Myon-Masse \rightarrow stärke Kopplung ans Higgs-Boson
 - \rightarrow direkte Erzeugung und Präzisionsuntersuchung des Higgs-Bosons
- ▷ Myon-Collider benötigt μ^+ und μ^- -Strahlen
- Neutrino-Fabrik ist erster Schritt zu Myon-Collider
- neue technologische Probleme bei Myon-Strahlenergie \gtrsim TeV, u.a.:
- $\diamond\,$ Neutrinos aus Myon-Zerfall mit Energie $E_{\nu}\sim{\rm TeV}$
- \diamond Wirkungsquerschnitt Neutrino-Nukleon wächst $\propto E_{
 u}$
- signifikante Strahlungsbelastung durch Neutrinos
- \rightarrow Myon-Collider z.B. tief unterirdisch

Free-Elektron-Laser (FEL)

- Elektronenstrahl durchläuft Undulator
- Spontane Emission von Synchrotron-Strahlungsphotonen
- Elektronenstrahl wechselwirkt mit Synchrotron-Strahlungsphotonen
- Bunch wird durch Wechselwirkung in Mikro-Bunche aufgeteilt
- Mikro-Bunche emittieren kohärent Synchrotron-Strahlungsphotonen
- \rightarrow *SASE*-Prinzip:

Self-Amplified-Spontaneaous-Emission

- Intensität der Synchrotron-Strahlung \propto (Teilchenzahl im Bunch)²
- FEL-Parameter:
 - ♦ Photon-Energiebereich: 0.2-12.4 keV
 - ♦ Photonstrahl-Leistung: 20-100 GW

Figure 9.1.1: Schematic Diagram of a Single-Pass Free Electron Laser (FEL) operating in the Self-Amplified-Spontaneous-Emission (SASE) mode. The bunch density modulation ("micro-bunching"), growing up in parallel to the radiation power, is schematically shown in the lower part of the figure. Note that in reality the number of slices is much larger.

- ♦ Zahl der Photonen/Bunch: $(1-20) \times 10^{12}$
- \diamond typ. Photonstrahl-Divergenz: 1 μ rad
- \diamond typ. Photonstrahl-Durchmesser: 20 μ m

Figure 9.1.2: Spectral peak brilliance of X-ray Free Electron Lasers (XFEL) and undulators for spontaneous radiation at TESLA, in comparison with third-generation synchrotron radiation sources. For comparison, also the spontaneous spectrum of an XFEL undulator is shown. The label TTF-FEL indicates design values for the FEL at the TESLA Test Facility, with (M) for the planned seeded version. First lasing was demonstrated at TTF FEL in the year 2000 at 11 eV photon energy, and a peak brilliance of $(6 \pm 4) \cdot 10^{25}$ in the above units has been achieved up to now.

Variable	Unit	Value
Linac Parameters		
optimised gradient for XFEL operation	MV/m	18
linac repetition rate f_{rep} for XFEL	Hz	5
bunch length (rms)	$_{\mathrm{fs}}$	80
bunch spacing	ns	93
number of bunches per train		11500
bunch train length	$\mu { m s}$	1070
bunch charge	nC	1
normalised emittance at undulator entrance	$\operatorname{mrad}\operatorname{mm}$	1.6
uncorrelated rms energy spread	MeV	5.1
RF duty cycle	%	0.5
average electron beam power (27 GeV branch)	MW	≤ 0.8
average electron beam power (50 GeV branch)	MW	≤ 1.4
over-all power efficiency AC to electron beam	%	28
FEL Parameters		
typical saturation length	m	100 - 220
photon energy range	keV	0.2 - 12.4
photon beam power range	GW	20 - 100
number of photons per bunch	10^{12}	1 - 20
typical photon beam divergence (rms)	$\mu \mathrm{rad}$	1
typical photon beam diameter (rms)	$\mu { m m}$	20

Table 9.1.1: Key parameters for XFEL operation with TESLA. More detailed tables on XFEL operation are given in part V.

Laser/Teilchenstrahl-Plasma-Beschleuniger

- Limitierung der Beschleunigungsgradienten in herkömmlichen Resonatoren auf typ. < 100 MV/m (höhere Gradienten → stärkere HF-Felder → Feldemission aus Resonatorwänden → Oberflächenbeschädigung)
- alternative Beschleunigungsmethoden gesucht, z.B. mittels Plasma:
 - ♦ Plasma: Elektronen e^- & Ionen I^+ , im Mittel neutral
 - ◇ Plasma: e⁻ sehr beweglich, I⁺ "träge"
 - ◊ durchlaufender Teilchen- (a)/ Laserpuls (b)
 - ightarrow transv. Verschiebung der e $^-$ bzgl. I $^+$
 - $\hat{=}$ transversale Wake-Felder
 - verschobene e⁻ oszillieren transversal durch pos.
 I⁺-Kanal
 - ightarrow Wake-Felder laufen durch Plasma
 - > zu beschleunigender Elektronenbunch "surft" auf beschleunigendem Wake-Feld
 - $\diamond~$ (theor.) Beschleunigungsgradienten: bis zu $\sim~$ 100 GV/m !

Fig. 12.3. Transverse parasitic mode

transv. Wake-Felder durch nicht-zentrierten Teilchenstrahl

Zusammenfassung

- Physik der Beschleuniger: angewandte Elektrodynamik mit Berührungspunkten zu vielen weiteren Gebieten:
 - ♦ Hochfrequenztechnik
 - ♦ Magnettechnik
 - ♦ Supraleitung f
 ür Magnete & Hochfrequenz-Resonatoren
 - ♦ Nicht-lineare Theorie
 - \diamond Chaos
 - ♦ Laser
 - ♦ Plasma
 - $\diamond \cdots$
- Prinzipien werden bis zur technologischen Grenze ausgereizt
- neue Prinzipien werden gesucht/untersucht, um zu höheren Strahlenergien & -intensitäten zu gelangen
- Teilchenführung basiert meist noch auf Magnete (abgesehen von "Channeling" von Teilchen entlang Kristallebenen für Spezialanwendungen)
- Physik der Beschleunigung: immer noch weites Feld für neue Ideen & Konzepte !