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We study a frustrated Heisenbefg= 1 quantum spin chain with next-nearest neighbor (NNN)
coupling @ using a variational ansatz and the density matrix renormalization group. We find as
qguantum remnants of the phase transition in the classical chain a disorder peaipt=at0.284(1)
and a Lifshitz point aty; = 0.3725(25). Our main finding is a first-order transition from an Affleck-
Kennedy-Lieb-Tasaki (AKLT) phase to a NNN generalization of the AKLT phaserat 0.7444(6).

At the transition, string order jumps discontinuously #$4.085 to 0O; correlation length and gap are
finite. [S0031-9007(96)01843-1]

PACS numbers: 75.50.Ee, 75.10.Jm, 75.40.Mg

In recent years, classical and quantum frustrated sygransition in the classical model. Our main result is
tems in low dimensions have been extensively studiedhat there is a first-order transition at; = 0.7444(6)
motivated by both experiment and their role as a theowith a discontinuous jump in the string order and a
retical testbed: Frustrated systems show rich behaviofinite correlation length. The emerging picture is thus
but many conventional techniques meet with considersubstantially different from the frustrated= % chain.
able difficulty [1]. The Heisenberg isotropic quantum We start with an analytical approach [9] based on
spin chain with antiferromagnetic interactions betweerthe Affleck-Kennedy-Lieb-Tasaki (AKLT) [10] model, as
nearest and next-nearest neighbors (NNNs) are about ttee guideline for the numerical results presented below.
simplest frustrated quantal system, and thus of central irBasically, two ground states are compared: one being
terest. From the well-established [2] Haldane conjectur¢he conventional AKLT model, the other a NNN-AKLT
[3] it is known that in the limit of no frustration there is model which links next-nearest neighbors by singlet
a fundamental difference between half-integer and integdsonds (Fig. 1). These two ground states arise naturally
spin chains. We may thus expect significantly differentif one considers the unfrustrated = 0 limit, known to
behavior also in the frustrated chains. be well described by the AKLT model, and tlhe— o«

Frustrated half-integer spin chains have been exterimit, where the chain decomposes into two unfrustrated
sively studied and are by now well understood [4]. Frussubchains. Comparing ground-state energies, we obtain
trated next-nearest neighbor integer spin chains hava naive (but surprisingly good) estimate for the transition
also attracted considerable interest. Several scenarios apdint a7 = %. The elementary excitations in the AKLT
analytical and numerical studies have been proposed, iphase can be studied in a soliton approach in the spirit
particular, forS = 1. Numerical studies [5] seem to in- of Ref. [11]. The dispersion law of the soliton excitation
dicate that there is no phase transition for any value ofor @ < 0.75 is given by
frustration. Field theoretical studies [6,7] predict that
there is always a gap for any value of frustration. On

the other hand, it was claimed recently [8] that there AKLT
is an (almost) gapless point for @ = 0.73(1). Thus @_@_@_@_@_@
the situation is obscure; there is no agreement whether
there is a phase transition in the chain and, if so, of NNN-AKLT
which order. oo .
In this work we study the phase diagram of a frustrated @\@\J ®\®
antiferromagnetic isotropic Heisenbefg= 1 quantum b’ @
spin chain 1 2 3 4 5 6

i FIG. 1. Schematic representation of the AKLT model and the
H = ZSiSiH ta Z S:iSi+2 (1) NNN-AKLT. Circles are spin-1 sites, a dot is a spinand fat
! . b . . links are singlet bonds between spins. Note the Zfree %pan
at 7 = 0. We find a disorder point of the first kind each end of the open AKLT chain. In the NNN-AKLT model,
for ap = 0.284(1), a quantum remnant of the phasethe chain is indicated by dashed lines.
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measuring thehidden orderof the § = 1 Heisenberg
chain due to a broke#, X Z, symmetry. This gives rise

to the Kennedy edge excitation triplet, which is degenerate
with the ground state singlet in the thermodynamic
limit [15]. We clearly observe the Kennedy triplet
@) numerically, as &\, = 1 boundary excitation with odd
5 + 3cogk) parity (abbreviated in the following at™), degenerate

The gap does not disappear at the transition poin‘{"ith the0™ ground state. The first bulk excitation is given

+
[A¥r(a = 0.75) = 0.325], indicating a first-order phase PY tL\e lowese s(';ate. . hroudh
transition (or absence of a phase transition). In the 1N€ String order parameter is nonzero throughout

NNN-AKLT phase (Fig. 1) the soliton dispersion can be thiS phase (Fig. 2), peaks @1397(1) very close to the
obtained from (2) bya — 0, k — 2k, and scaling the AKLT value of 5, and drops to zero discontinuously at the

expression byx. This description is perhaps too crude, phase transition. The gap results obtained by the varia-
for example, ate = 0.75 the energy per spin of the tional approach starting from the AKLT model are in rea-

completely dimerized valence bond state is exactly th&°nable agreement with the numerical findings (Fig. 3).
same as that of the AKLT and NNN-AKLT configura- The most remarkable feature of this phase is the

tions. We have constructed a variational wave functiorfliSCrder point. In a previous work [16] by one of us
in higher matrix dimensions interpolating smoothly (U. Sch.) it was shown that the relationship between the

between the AKLT, NNN-AKLT, and the completely antiferromagnetic Heisenberg model and the AKLT model

dimerized state. We find results in reasonable agreememr.s =1 can bef ut?di_rstoiq within”thef_framework of
with the naive findings just presented; the main featuré disorder point of the first kinda well-defined concept

is that though the discontinuity at the transition is less" clagsical statistical m.echanics [17].' It basically .arises
distinct, and the transition point shifted to ~ 0.81, the N @ disordered phase linked by continuous transitions to

transition is still found to be first order [9]. two ordered low-temperature phases with different forms

To obtain quantitative results, we use the density maof order. In the case of the frustrated antiferromagnetic

trix renormalization group (DMRG) [12], typically using Heisenberg quantum spin chain, there is no ordered zero-
M = 250 block states in chains up to = 350. This by (emperature phase [18]. However, the quantum spin-
far exceeds previous calculations [8] in precision. WeS chain at7T =0 can be mapped to a classical spin
present calculations of important quantities not considereghain at7’ # O'_ It is known [19] that, at Ieas.t for the
beforehand and analyze the excitation spectrum carefullynfrustrated Heisenberg model, the relationship 1/
The use of a prediction mechanism [13] to accelerate th oId_s. The classical spin Cha.'n at finite temperatures
exact diagonalization in the DMRG allows us to perform!S disordered due to the Mermin-Wagner theorem [18],
all calculations on a PentiumPro based personal conUt ordered at’ =0. TheT = 0 classical spin chain
puter at good computing speed. The DMRG is particu-
larly adapted to the problem, as it allows us to treat large
systems and is not plagued by quantum Monte Carlo’s
negative sign problem. We have calculated a number o I
low-lying states, including their magnetization, to distin- . - n 1
guish between edge and bulk excitations in open chainsé 04 - m 1
spin-spin correlations, and the string order parameter. o [ \
should be mentioned that our results do not verify some% I \
observations obtained by Pati al. [8] using the DMRG, = L \ : J
namely, the local drop in the gap at = 0.5, and their a, W f 1
gap data at the transition. This difference in results going &, | \
beyond finite size effects may be explained by the pres& | \
ence of parasitic edge excitations which were not taker & o2 - disorder pt
completely into account in Ref. [8]. w | \
Numerically, we find two phases, namely, the AKLT & P
(the Haldane) and the NNN-AKLT phase, and three 5 [ .
special points in the phase diagram, the disorder point am ’
the Lifshitz pointa;, and the transition poinkr. I
The AKLT phase forar < 0.7444(6) is characterized

H PSR RU SN S S R T S P | o w
by the string order parameter [14] 0 " ” " e

0
J
0%, j) =<S§(exp 3 ms,g)s;> 3) “

=it FIG. 2. String order parameter ljm;—. O (i, j).
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T T T doubly degenerate structure. Ground-state energy, excita-

tion gap and correlation length approach their asymptotic
] behavior,Ey(a) = aEy(0), é(a) = 2£(0), and A(a) =
transition aA(0). Asymptotic behavior is slower to set in fgrand

. A: The gap is slightly bigger, as it costs more energy to
excite a subchain still coupled to the other subchdits
correspondingly smaller than expected.

The remaining central question is how the change from
the AKLT to the NNN-AKLT phase atvr = 0.7444(6)
can be characterized.

We observe a finite gajp(«) (Fig. 3) at the transition.
This fact is obscured by the presence of parasitic low-
lying states corresponding to edge excitations, which have
to be excluded. The minimal gap is small,= 0.10, to
be compared with a variational prediction &f= 0.325.

1’_,( | The correlation length (Fig. 4) increases on both sides of
| P : | the transition, but remains clearly finite on the AKLT side
S S U S A S (¢ = 18), whereas it becomes very long on the NNN-
0 02 0.4 06 08 ! AKLT side, such that a divergence cannot be as clearly

excluded. This behavior is not compatible with a second-
FIG. 3. Bulk excitation gag\(«). The precision is=0.02 at  order transition.

were chosen. Solid line: analytical result. is the clearly discontinuous disappearance of the string
order parameter (Fig. 2) atr = 0.7444(6). We observe
provides the required ordered low-temperature phasesumerically a jump of0.085 (20% of its maximum
For « < a. = 0.25, the chain is antiferromagnetically value) betweena = 0.74375 and a = 0.7450. Up to
ordered; for @ > «a., there is spiral orderSyS,) « « = 0.74375, the string order parameter decays almost
cosg(a)x with g(a) = arrcos(—1/4a). Indeed, we can linearly; at this point the slope increases about sixty times.
identify an ap = 0.284(1), which meets the criteria of It appears extremely unlikely that there is a crossover
a disorder point to numerical precision: Correlationsfrom this linear behavior to an extremely strong power-
become incommensurate in real space at this point; thiaw decay (as in a continuous transition).
wave numberg(a) for « > ap shows the expected
singular behavior; the correlation length shows a
minimum of ¢ = 1.20 and a very steep slope far < 50
ap, probably infinite. I
For 0.37 < a < 0.375 we find the associated Lifshitz
point, defined by the emergence of a two-peak structure
in the S(g) structure function, with maxima @t,.x # 7.
The small difference in the location of the Lifshitz point
in Ref. [8] is an effect of the smaller precision and
system size studied there. At the Lifshitz point, we
see the development ofdoubly degeneratstructure of
the excitation spectrum, already predicted by Allen and £
Sénéchal [7] and in agreement with Eq. (2): The lowest 3
2~ state is degenerate with the state. Classically, the
two degenerate states correspond to spin wavegicos
(even parity) and sipx (odd parity). Variationally, the
Lifshitz point is predicted ax = 0.325. Note that, above
ap, there is a low-lyingl* edge excitation in the open i
chain, a precursor of the transition. This explains the LT -
difference in gap curves between Ref. [8] and us. . e
In an open chain in the NNN-AKLT phase, there are % 02 0.4 06 08 1
two freeS = % spins at each chain end, which we link up o

by nearest-neighbor singlet bonds. The ground state of g5 4 Spin-spin correlation lengths They are systemati-

open chain is thl!s unique, W_hiC_h we can verify n_Um?ri'caIIy underestimated by the DMRG. At the transition the error
cally. The low-lying bulk excitation spectrum retains its is maximal, but will, generously estimated, not exceed 20%.

08 -

0.4

bulk excitation gap
W

02 disorder pt Lifshitz pt

40 : .

elation length

20 [ in N

spin—spin
b

5144



VOLUME 77, NUMBER 25 PHYSICAL REVIEW LETTERS 16 BCEMBER 1996

A first-order transition would be most neatly identified Competing Interactions (Frustrated Spin Systeresljted
by a discontinuous derivative of the ground-state energy by H.T. Diep (World Scientific, Singapore, 1994).
per spin. Numerically, we find it very difficult to clearly [2] S.R. White, Phys. Rev. Lett69, 2863 (1992); S.R.
identify such a discontinuity. Though the correlation ~ White and D.A. Huse, Phys. Rev. B3, 3844 (1993);
length is finite, it is long enough to suggest a rather soft O. Golinelli, Th. Jolicoeur, and R. Lacaze, Phys. Rev. B
first-order transition. 50, 3037 (1994).

. .[3] F.D.M. Haldane, Phys. LetB3A, 464 (1983); Phys. Rev.
We are therefore led to locate a first-order phase transi- Lett. 50, 1153 (1983).

tion atar = 0.7444(6), in very good agreement with the 141 5 R Wwhite and I. Affleck, 1996 (to be published), and

naive analytical predictioa;" = 0.75. references therein.
_To summarize, we can devise a clear and coherenfs] 1. Tonegawa, M. Kaburagai, N. Ichikawa, and I. Harada,
picture of a frustratedS = 1 isotropic Heisenberg spin J. Phys. Soc. Jprbl, 2890 (1992); |. Harada, M. Fuiji-

chain. Its behavior is fundamentally governed by the kawa, and |. Mannari, J. Phys. Soc. Jpg, 3694 (1993).
underlying classical model, characterized by a phase[6] S. Rao and D. Sen, Nucl. PhyB424, 547 (1994).
transition from an antiferromagnetic to a spiral ordered [7] D. Allen and D. Sénéchal, Phys. Rev. Bl, 6394
phase, reflected by the presence of a disorder point and a_ (1995). ) _

Lifshitz point. The classical transition is thus not linked [81 S- Pati, R. Chitra, D. Sen, H.R. Krlshnamurty, and
to the first-order transition found atry = 0.7444(6), 2' Ciel?;nasgsrga, Eléroghys. Le:t?’ 702 |(_|19|36k 'SH Pat, "
which is a pure quantum effect. We argue that there - nitra, . 5en, 5. amasesha, and M. 1. frishnamurty,

. fi d h " b h derlvi Report No. cond-mat/9603107, 1996 (to be published).
Is a first-order phase transition because the under ylng[9] Details of our calculations and further results are found

physical change is the doubling of the lattice spacing, in A. Kolezhuk, R. Roth, and U. Schollwéck (to be

which is not a typical breaking of a symmetry group published).

in a continuous phase transition. We therefore sugge$io] I. Affleck, T. Kennedy, E.H. Lieb, and H. Tasaki, Phys.
that there is a whole first-order transitidme in the Rev. Lett.59, 799 (1987); Commun. Math. Phys15, 477
a — & plane, if one includes Bl + (—1)§] alternation (1988).

in the nearest-neighbor interaction in (1). Assuming thd11] G. Fath and J. Sélyom, J. Phys. Condens. Méife3983
transition line to be characterized by vanishing string ~ (1993); U. Neugebauer and H.-J. Mikeska, Z. Phy9®3
order, we suggest it should be identified with #R®C) 151 (1996).

line in Fig. 3 of Ref. [8], which probably means that our [12] S-R. White, Phys. Rev. B8, 10345 (1993).

i ; X . _[13] U. Schollwéck (to be published).
NNN-AKLT phase is smoothly connected with the dimer [14] M. den Nijs and K. R. Rommelse, Phys. Rev4B, 4709

ized phase. . (1989); S.M. Girvin and D.P. Arovas, Phys. SdrR7,
Two of us (U.Sch. and A.K) wish to thank H.-J. 156 (1989); T. Kennedy and H. Tasaki, Phys. RewvH

Mikeska for his hospitality at the Institute of Theoretical 304 (1992).

Physics, Hannover, where the collaboration leading tg15] T. Kennedy, J. Phys. Condens. Matfer5737 (1990).

this paper was initiated. We thank H. Wagner for useful[16] U. Schollwéck, Th. Jolicoeur, and Th. Garel, Phys. Rev. B

discussions. A. K. acknowledges the financial support by 53, 3304 (1996).

Deutsche Forschungsgemeinschaft. Numerical calculd17] J. Stephenson, Can. J. Phy&/, 2621 (1969); Can. J.

tions were performed mostly on a PentiumPro 200MHz  Phys.48, 1724 (1970); Can. J. Phyg8, 2118 (1970);
machine running under Linux. J. Math. Phys.12, 420 (1970); Th. Garel and J.M.

Maillard, J. Phys. C19, L505 (1986).

[18] D. Mermin and H. Wagner, Phys. Rev. Left7, 1133
(1966).

T19] S. Chakravarty, B.l. Halperin, and D.R. Nelson, Phys.
Rev. Lett.60, 1057 (1988).

*Permanent address: Institute of Magnetism, Natl. Acad
Sci. of Ukraine, 252142 Kiev, Ukraine.
[1] See, for an extensive reviewMagnetic Systems with

5145



