Non-abelian vs. non-commutative

hep-th/0503104

R. C. Helling, P. Schupp

International University Bremen

Hamburg, 18th March 2005

Outline

- Introduction: NC theories
- Gauge theories from branes
- Closure of NC gauge groups
- The NC center of mass
- NC CM in terms of tr_{*}
- Non-commutative vs. non-abelian
- Non-commutative vs. non-abelian via Seiberg-Witten maps
- Wrapping up
- NC DBI and non-abelian vs. non-commutative

NC Geometry from open strings

With constant $B_{\mu\nu}$:

Replace all products by *-products in the effective action

$$(f * g)(x) = \left. e^{\pi \theta^{mn} \partial_{x^m} \partial_{y^n}} f(x) g(y) \right|_{y \to x}$$

NC Geometry from open strings

With constant $B_{\mu\nu}$:

$$\sim \int d(\text{moduli}) \langle e^{ik_1 X(x_1)} \cdots e^{ik_n X(x_n)} \rangle \times e^{ik_1 \theta k_2} e^{ik_2 \theta k_3} \cdots e^{ik_n \theta k_1}$$

Replace all products by *-products in the effective action

$$(f * g)(x) = \left. e^{\pi \theta^{mn} \partial_{x^m} \partial_{y^n}} f(x) g(y) \right|_{y \to y}$$

NC Geometry from open strings

With constant $B_{\mu\nu}$:

$$\sim \int d(\text{moduli}) \langle e^{ik_1 X(x_1)} \cdots e^{ik_n X(x_n)} \rangle \times e^{ik_1 \theta k_2} e^{ik_2 \theta k_3} \cdots e^{ik_n \theta k_1}$$

Replace all products by *-products in the effective action

$$(f*g)(x) = \left. e^{\pi heta^{mn} \partial_{x^m} \partial_{y^n}} f(x) g(y) \right|_{y \to x}$$

The *-product on a torus

$$(f * g)(x) = \left. e^{\pi \theta^{mn} \partial_{x^m} \partial_{y^n}} f(x) g(y) \right|_{y \to x}$$

- On a torus, where momentum is quantized, e^{πθ^{mn}∂_xm∂_yn</sub> is a translation operator which shifts the argument of g(x) by integer multiples of θ.}
- Under T-duality, momentum becomes winding. The tilted torus illustrates the shift proportional to the winding:

The *-product on a torus

$$(f*g)(x) = \left. e^{\pi \theta^{mn} \partial_{x^m} \partial_{y^n}} f(x) g(y) \right|_{y \to x}$$

- On a torus, where momentum is quantized, e^{πθ^{mn}∂_xm∂_yn</sub> is a translation operator which shifts the argument of g(x) by integer multiples of θ.}
- Under T-duality, momentum becomes winding. The tilted torus illustrates the shift proportional to the winding:

- For a stack of N D-branes, open strings have labels S_{ab} indicating the branes the two ends are attached to
- Low energy action: U(N) Yang-Mills with adjoined scalars Xⁱ_{ab}
- Diagonal entries Xⁱ_{aa} denote the position of brane a in the transverse direction
- Thus $\frac{1}{N}$ tr (X^i) is the center of mass position
- ► The centre of mass kinematics decouples. CM-frame: $\tilde{X}^i = X^i - \frac{1}{N} \operatorname{tr}(X^i) \mathbf{1}$

- ► For a stack of N D-branes, open strings have labels S_{ab} indicating the branes the two ends are attached to
- Low energy action: U(N) Yang-Mills with adjoined scalars Xⁱ_{ab}
- Diagonal entries Xⁱ_{aa} denote the position of brane a in the transverse direction
- Thus $\frac{1}{N}$ tr (X^i) is the center of mass position
- ► The centre of mass kinematics decouples. CM-frame: $\tilde{X}^i = X^i - \frac{1}{N} \operatorname{tr}(X^i) \mathbf{1}$

- ► For a stack of *N* D-branes, open strings have labels *S*_{ab} indicating the branes the two ends are attached to
- Low energy action: U(N) Yang-Mills with adjoined scalars Xⁱ_{ab}
- Diagonal entries Xⁱ_{aa} denote the position of brane a in the transverse direction
- Thus $\frac{1}{N}$ tr (X^i) is the center of mass position
- ► The centre of mass kinematics decouples. CM-frame: $\tilde{X}^i = X^i - \frac{1}{N} \operatorname{tr}(X^i) \mathbf{1}$

- ► For a stack of N D-branes, open strings have labels S_{ab} indicating the branes the two ends are attached to
- Low energy action: U(N) Yang-Mills with adjoined scalars Xⁱ_{ab}
- Diagonal entries Xⁱ_{aa} denote the position of brane a in the transverse direction
- Thus $\frac{1}{N}$ tr(X^i) is the center of mass position
- ► The centre of mass kinematics decouples. CM-frame: $\tilde{X}^i = X^i - \frac{1}{N} \operatorname{tr}(X^i) \mathbf{1}$

- ► For a stack of N D-branes, open strings have labels S_{ab} indicating the branes the two ends are attached to
- Low energy action: U(N) Yang-Mills with adjoined scalars Xⁱ_{ab}
- Diagonal entries Xⁱ_{aa} denote the position of brane a in the transverse direction
- Thus $\frac{1}{N}$ tr(X^i) is the center of mass position
- ► The centre of mass kinematics decouples. CM-frame: $\tilde{X}^i = X^i - \frac{1}{N} \operatorname{tr}(X^i) \mathbf{1}$

Non-commutative YM

Field strength

- Even the U(1) theory is now interacting.
- ▶ In terms of Lie algebra generators *T^a*:

$$[A_m, A_n]_* = \frac{1}{2} \{A_m^a, A_n^b\}_* [T^a, T^b] + \frac{1}{2} [A_m^a, A_n^b]_* \{T^a, T^b\}$$

- $\{T^a, T^b\}$ is not defined in the abstract Lie algebra.
- It can either be thought of as being an element in the enveloping algebra.
- Alternatively, it is defined in terms of representation matrices $\rho(T^a)$.

Non-commutative YM

Field strength

 $F_{mn} = \partial_m A_m - \partial_n A_m + A_m * A_n - A_n * A_m = \partial_m A_m - \partial_n A_m + [A_m, A_n]_*$

• Even the U(1) theory is now interacting.

▶ In terms of Lie algebra generators *T*^a:

$$[A_m, A_n]_* = \frac{1}{2} \{A_m^a, A_n^b\}_* [T^a, T^b] + \frac{1}{2} [A_m^a, A_n^b]_* \{T^a, T^b\}$$

- $\{T^a, T^b\}$ is not defined in the abstract Lie algebra.
- It can either be thought of as being an element in the enveloping algebra.
- Alternatively, it is defined in terms of representation matrices $\rho(T^a)$.

Non-commutative YM

Field strength

- Even the U(1) theory is now interacting.
- ▶ In terms of Lie algebra generators *T*^a:

$$[A_m, A_n]_* = \frac{1}{2} \{A_m^a, A_n^b\}_* [T^a, T^b] + \frac{1}{2} [A_m^a, A_n^b]_* \{T^a, T^b\}$$

- $\{T^a, T^b\}$ is not defined in the abstract Lie algebra.
- It can either be thought of as being an element in the enveloping algebra.
- Alternatively, it is defined in terms of representation matrices $\rho(T^a)$.

Non-commutative YM

Field strength

- Even the U(1) theory is now interacting.
- ▶ In terms of Lie algebra generators *T*^a:

$$[A_m, A_n]_* = \frac{1}{2} \{A_m^a, A_n^b\}_* [T^a, T^b] + \frac{1}{2} [A_m^a, A_n^b]_* \{T^a, T^b\}$$

- $\{T^a, T^b\}$ is not defined in the abstract Lie algebra.
- It can either be thought of as being an element in the enveloping algebra.
- Alternatively, it is defined in terms of representation matrices $\rho(T^a)$.

Non-commutative YM

Field strength

- Even the U(1) theory is now interacting.
- ▶ In terms of Lie algebra generators *T*^a:

$$[A_m, A_n]_* = \frac{1}{2} \{A_m^a, A_n^b\}_* [T^a, T^b] + \frac{1}{2} [A_m^a, A_n^b]_* \{T^a, T^b\}$$

- $\{T^a, T^b\}$ is not defined in the abstract Lie algebra.
- It can either be thought of as being an element in the enveloping algebra.
- Alternatively, it is defined in terms of representation matrices $\rho(T^a)$.

Non-commutative YM

Field strength

- Even the U(1) theory is now interacting.
- ▶ In terms of Lie algebra generators *T*^a:

$$[A_m, A_n]_* = \frac{1}{2} \{A_m^a, A_n^b\}_* [T^a, T^b] + \frac{1}{2} [A_m^a, A_n^b]_* \{T^a, T^b\}$$

- $\{T^a, T^b\}$ is not defined in the abstract Lie algebra.
- It can either be thought of as being an element in the enveloping algebra.
- Alternatively, it is defined in terms of representation matrices $\rho(T^a)$.

- Closure of NC gauge groups

Closure of the algebra

For representation matrices, in general the algebra is not closed:

 $\{\rho(T^{a}),\rho(T^{b})\}=\rho(???)$

- ▶ It only closes for structure groups $\otimes_{\alpha} U(N_{\alpha})$ as their adjoint representation consist of *all* hermitian (block-)matrices.
- What about other groups: SU(N) or SO(N) or Sp(N) or exceptional groups?
- ▶ What about the center of mass system SU(N)? (tangential $B_{\mu\nu}$ preserves translation invariance!)

- Closure of NC gauge groups

Closure of the algebra

For representation matrices, in general the algebra is not closed:

 $\{\rho(T^{a}), \rho(T^{b})\} = \rho(???)$

- ► It only closes for structure groups $\bigotimes_{\alpha} U(N_{\alpha})$ as their adjoint representation consist of *all* hermitian (block-)matrices.
- ▶ What about other groups: SU(N) or SO(N) or Sp(N) or exceptional groups?
- ▶ What about the center of mass system SU(N)? (tangential $B_{\mu\nu}$ preserves translation invariance!)

Closure of NC gauge groups

Closure of the algebra

For representation matrices, in general the algebra is not closed:

 $\{\rho(T^{a}), \rho(T^{b})\} = \rho(???)$

- ► It only closes for structure groups $\bigotimes_{\alpha} U(N_{\alpha})$ as their adjoint representation consist of *all* hermitian (block-)matrices.
- What about other groups: SU(N) or SO(N) or Sp(N) or exceptional groups?
- ▶ What about the center of mass system SU(N)? (tangential $B_{\mu\nu}$ preserves translation invariance!)

Closure of NC gauge groups

Closure of the algebra

For representation matrices, in general the algebra is not closed:

 $\{\rho(T^{a}), \rho(T^{b})\} = \rho(???)$

- It only closes for structure groups ⊗_α U(N_α) as their adjoint representation consist of *all* hermitian (block-)matrices.
- What about other groups: SU(N) or SO(N) or Sp(N) or exceptional groups?
- ► What about the center of mass system SU(N)? (tangential $B_{\mu\nu}$ preserves translation invariance!)

Not the center of mass

In the NC theory, we cannot just take the matrix trace:

- As {1,1}_∗ ≠ 0, the matrix trace is an interacting degree of freedom.
- As {1, Xⁱ}_∗ ≠ 0 and tr({Xⁱ, X^j}_∗) ≠ 0, the matrix trace does not decouple from the internal brane dynamics.

Not the center of mass

In the NC theory, we cannot just take the matrix trace:

- As {1,1}_∗ ≠ 0, the matrix trace is an interacting degree of freedom.
- As {1, Xⁱ}_∗ ≠ 0 and tr({Xⁱ, X^j}_∗) ≠ 0, the matrix trace does not decouple from the internal brane dynamics.

Non-commutative torus

Compactify non-commutative coordinates.

- Simplest case: Non-commutative torus. x^1 and x^2 periodic with 2π .
- ► Fourier-decompose all fields

$$f(x^{1}, x^{2}) = \sum_{mn} f_{mn} e^{inx^{1}} e^{imx^{2}} = \sum_{mn} f_{mn} U^{m} V^{n}$$

► Non-commutative algebra is expanded in terms of $U = e^{ix^1}$ and $V = e^{ix^2}$:

$$U * V = V * Ue^{-2\pi i \theta}$$

Non-commutative torus

- Compactify non-commutative coordinates.
- Simplest case: Non-commutative torus. x^1 and x^2 periodic with 2π .
- Fourier-decompose all fields

$$f(x^1, x^2) = \sum_{mn} f_{mn} e^{inx^1} e^{imx^2} = \sum_{mn} f_{mn} U^m V^n$$

Non-commutative algebra is expanded in terms of $U = e^{ix^3}$ and $V = e^{ix^2}$:

$$U * V = V * Ue^{-2\pi i\theta}$$

Non-commutative torus

- Compactify non-commutative coordinates.
- Simplest case: Non-commutative torus. x^1 and x^2 periodic with 2π .
- Fourier-decompose all fields

$$f(x^{1}, x^{2}) = \sum_{mn} f_{mn} e^{inx^{1}} e^{imx^{2}} = \sum_{mn} f_{mn} U^{m} V^{n}$$

Non-commutative algebra is expanded in terms of $U = e^{ix^2}$ and $V = e^{ix^2}$:

$$U * V = V * Ue^{-2\pi i \theta}$$

Non-commutative torus

- Compactify non-commutative coordinates.
- Simplest case: Non-commutative torus. x^1 and x^2 periodic with 2π .
- ▶ Fourier-decompose all fields

$$f(x^{1}, x^{2}) = \sum_{mn} f_{mn} e^{inx^{1}} e^{imx^{2}} = \sum_{mn} f_{mn} U^{m} V^{n}$$

► Non-commutative algebra is expanded in terms of $U = e^{ix^1}$ and $V = e^{ix^2}$:

$$U * V = V * Ue^{-2\pi i\theta}$$

Non-commutative torus

- Compactify non-commutative coordinates.
- Simplest case: Non-commutative torus. x^1 and x^2 periodic with 2π .
- ▶ Fourier-decompose all fields

$$f(x^{1}, x^{2}) = \sum_{mn} f_{mn} e^{inx^{1}} e^{imx^{2}} = \sum_{mn} f_{mn} U^{m} V^{n}$$

Non-commutative algebra is expanded in terms of $U = e^{ix^1}$ and $V = e^{ix^2}$:

$$U * V = V * Ue^{-2\pi i \theta}$$

- From UV = VUe^{-2πip/q} we make the crucial observation that U^q and V^q are central, they *-commute with all functions.
- Therefore we can define the proper *-analogue of the matrix trace:

$$\operatorname{tr}_*(X^i) = \sum_{mn} \operatorname{tr}(X^i_{qm,qn}) U^{qm} V^{qn}$$

- ► This commutes with all other fields both in the Lie algebra and in the *-product sense: [tr_{*}(Xⁱ)1, X^j]_{*} = 0.
- Similarly, one checks $tr_*([X^i, X^j]_*) = 0$.
- ► The tr_{*}(Xⁱ) form the maximal free, decoupled, commutative U(1)-theory on a *q*-times smaller torus.

- From UV = VUe^{-2πip/q} we make the crucial observation that U^q and V^q are central, they *-commute with all functions.
- Therefore we can define the proper *-analogue of the matrix trace:

$$\operatorname{tr}_*(X^i) = \sum_{mn} \operatorname{tr}(X^i_{qm,qn}) U^{qm} V^{qn}$$

- This commutes with all other fields both in the Lie algebra and in the *-product sense: [tr_{*}(Xⁱ)1, X^j]_{*} = 0.
- Similarly, one checks $tr_*([X^i, X^j]_*) = 0$.
- ► The tr_{*}(Xⁱ) form the maximal free, decoupled, commutative U(1)-theory on a *q*-times smaller torus.

- From UV = VUe^{-2πip/q} we make the crucial observation that U^q and V^q are central, they *-commute with all functions.
- Therefore we can define the proper *-analogue of the matrix trace:

$$\operatorname{tr}_*(X^i) = \sum_{mn} \operatorname{tr}(X^i_{qm,qn}) U^{qm} V^{qn}$$

- ► This commutes with all other fields both in the Lie algebra and in the *-product sense: [tr_{*}(Xⁱ)1, X^j]_{*} = 0.
- Similarly, one checks $tr_*([X^i, X^j]_*) = 0$.
- ► The tr_{*}(Xⁱ) form the maximal free, decoupled, commutative U(1)-theory on a *q*-times smaller torus.

- From UV = VUe^{-2πip/q} we make the crucial observation that U^q and V^q are central, they *-commute with all functions.
- Therefore we can define the proper *-analogue of the matrix trace:

$$\operatorname{tr}_*(X^i) = \sum_{mn} \operatorname{tr}(X^i_{qm,qn}) U^{qm} V^{qn}$$

- ► This commutes with all other fields both in the Lie algebra and in the *-product sense: [tr_{*}(Xⁱ)1, X^j]_{*} = 0.
- Similarly, one checks $tr_*([X^i, X^j]_*) = 0$.
- ► The tr_{*}(Xⁱ) form the maximal free, decoupled, commutative U(1)-theory on a *q*-times smaller torus.

- From $UV = VUe^{-2\pi i p/q}$ we make the crucial observation that U^q and V^q are central, they *-commute with all functions.
- Therefore we can define the proper *-analogue of the matrix trace:

$$\operatorname{tr}_*(X^i) = \sum_{mn} \operatorname{tr}(X^i_{qm,qn}) U^{qm} V^{qn}$$

- ► This commutes with all other fields both in the Lie algebra and in the *-product sense: [tr_{*}(Xⁱ)1, X^j]_{*} = 0.
- Similarly, one checks $\operatorname{tr}_*([X^i, X^j]_*) = 0$.
- The tr_{*}(Xⁱ) form the maximal free, decoupled, commutative U(1)-theory on a q-times smaller torus.

NC CM in terms of tr *

The non-commutative SU(N)

► The remainder $\tilde{X}^i = X^i - \frac{1}{N} \text{tr}_*(X^i) \mathbf{1}$ is the NC analogue of the SU(N) center of mass theory.

- This algebra is indeed closed.
- It decouples from the tr_{*}.
- It coincides with the image of $[\cdot, \cdot]_*$.
- Thus it is the minimal closed theory. The center of mass theory is the largest accordingly.

NC CM in terms of tr *

The non-commutative SU(N)

- ► The remainder $\tilde{X}^i = X^i \frac{1}{N} \text{tr}_*(X^i) \mathbf{1}$ is the NC analogue of the SU(N) center of mass theory.
- This algebra is indeed closed.
- It decouples from the tr_{*}.
- ► It coincides with the image of [·, ·]*.
- Thus it is the minimal closed theory. The center of mass theory is the largest accordingly.
The non-commutative SU(N)

- ► The remainder $\tilde{X}^i = X^i \frac{1}{N} \text{tr}_*(X^i) \mathbf{1}$ is the NC analogue of the SU(N) center of mass theory.
- This algebra is indeed closed.
- It decouples from the tr_{*}.
- ► It coincides with the image of [·, ·]*.
- Thus it is the minimal closed theory. The center of mass theory is the largest accordingly.

The non-commutative SU(N)

- ► The remainder $\tilde{X}^i = X^i \frac{1}{N} \text{tr}_*(X^i) \mathbf{1}$ is the NC analogue of the SU(N) center of mass theory.
- This algebra is indeed closed.
- It decouples from the tr_{*}.
- ► It coincides with the image of [·, ·]_{*}.
- Thus it is the minimal closed theory. The center of mass theory is the largest accordingly.

The non-commutative SU(N)

- ► The remainder X̃ⁱ = Xⁱ ¹/_Ntr_{*}(Xⁱ)1 is the NC analogue of the SU(N) center of mass theory.
- This algebra is indeed closed.
- It decouples from the tr_{*}.
- It coincides with the image of $[\cdot, \cdot]_*$.
- Thus it is the minimal closed theory. The center of mass theory is the largest accordingly.

The non-commutative lesson

• \tilde{X}^i are *not* SU(N) valued functions but the restriction from U(N) is non-local.

- This is a restriction of the gauge group rather than the structure group.
- This resonates well with the NC shift of focus from points to functions on a space.
- It is tempting to define the NC version of SU(N) as the image of [·, ·]_∗ in more general situations.

The non-commutative lesson

- \tilde{X}^i are *not* SU(N) valued functions but the restriction from U(N) is non-local.
- This is a restriction of the gauge group rather than the structure group.
- This resonates well with the NC shift of focus from points to functions on a space.
- It is tempting to define the NC version of SU(N) as the image of [·, ·]_∗ in more general situations.

The non-commutative lesson

- \tilde{X}^i are *not* SU(N) valued functions but the restriction from U(N) is non-local.
- This is a restriction of the gauge group rather than the structure group.
- This resonates well with the NC shift of focus from points to functions on a space.
- It is tempting to define the NC version of SU(N) as the image of [·, ·]_∗ in more general situations.

The non-commutative lesson

- \tilde{X}^i are *not* SU(N) valued functions but the restriction from U(N) is non-local.
- This is a restriction of the gauge group rather than the structure group.
- This resonates well with the NC shift of focus from points to functions on a space.
- It is tempting to define the NC version of SU(N) as the image of [·, ·]_∗ in more general situations.

- The D2-brane with θ = p/q is mapped to a D1 brane that wraps p and q times the cycles of a dual torus.
- ▶ The D1 "comes around *q* times".
- Only every *q*th mode describes the collective motion of the total D1.

- The D2-brane with θ = p/q is mapped to a D1 brane that wraps p and q times the cycles of a dual torus.
- ▶ The D1 "comes around *q* times".
- Only every *q*th mode describes the collective motion of the total D1.

- The D2-brane with θ = p/q is mapped to a D1 brane that wraps p and q times the cycles of a dual torus.
- ▶ The D1 "comes around *q* times".
- Only every *q*th mode describes the collective motion of the total D1.

The Morita-equivalent picture

► The operators *U* and *V* with $UV = VUe^{-2\pi ip/q}$ have a commutative, non-abelian representation as well:

$$U = \begin{pmatrix} 1 & & & \\ & e^{2\pi i \frac{p}{q}} & & \\ & & \ddots & \\ & & & e^{2\pi i (q-1) \frac{p}{q}} \end{pmatrix} e^{iy^{1}/q}, \quad V = \begin{pmatrix} 0 & 1 & & \\ & 0 & 1 & \\ & & \ddots & \ddots \\ 1 & & & \ddots & \ddots \\ 1 & & & & \end{pmatrix} e^{iy^{2}/q}$$

- These generate all hermitian q × q matrices on a larger torus.
- ► Together with the original U(N) gauge group, the theory becomes a commutative $U(N) \otimes U(q) = U(qN)$ theory.
- Our center of mass U(1) is the center of this gauge group and the internal dynamics is in S(U(N) ⊗ U(q)) and tr_{*} is the trace in U(qN).

The Morita-equivalent picture

The operators U and V with UV = VUe^{-2πip/q} have a commutative, non-abelian representation as well:

$$U = \begin{pmatrix} 1 & & & \\ & e^{2\pi i \frac{p}{q}} & & \\ & & \ddots & \\ & & & e^{2\pi i (q-1) \frac{p}{q}} \end{pmatrix} e^{iy^{1}/q}, \quad V = \begin{pmatrix} 0 & 1 & & \\ & 0 & 1 & \\ & & \ddots & \ddots \\ 1 & & & \ddots & \ddots \\ 1 & & & & \end{pmatrix} e^{iy^{2}/q}$$

- These generate all hermitian $q \times q$ matrices on a larger torus.
- ► Together with the original U(N) gauge group, the theory becomes a commutative $U(N) \otimes U(q) = U(qN)$ theory.
- Our center of mass U(1) is the center of this gauge group and the internal dynamics is in $S(U(N) \otimes U(q))$ and tr_{*} is the trace in U(qN).

The Morita-equivalent picture

► The operators *U* and *V* with $UV = VUe^{-2\pi i p/q}$ have a commutative, non-abelian representation as well:

$$U = \begin{pmatrix} 1 & & & \\ & e^{2\pi i \frac{p}{q}} & & \\ & & \ddots & \\ & & & e^{2\pi i (q-1) \frac{p}{q}} \end{pmatrix} e^{iy^{1}/q}, \quad V = \begin{pmatrix} 0 & 1 & & \\ & 0 & 1 & \\ & & \ddots & \ddots \\ 1 & & & \ddots & \ddots \\ 1 & & & & \end{pmatrix} e^{iy^{2}/q}$$

- These generate all hermitian $q \times q$ matrices on a larger torus.
- ► Together with the original U(N) gauge group, the theory becomes a commutative U(N) ⊗ U(q) = U(qN) theory.
- Our center of mass U(1) is the center of this gauge group and the internal dynamics is in S(U(N) ⊗ U(q)) and tr_{*} is the trace in U(qN).

The Morita-equivalent picture

► The operators *U* and *V* with $UV = VUe^{-2\pi ip/q}$ have a commutative, non-abelian representation as well:

$$U = \begin{pmatrix} 1 & & & \\ & e^{2\pi i \frac{p}{q}} & & \\ & & \ddots & \\ & & & e^{2\pi i (q-1) \frac{p}{q}} \end{pmatrix} e^{iy^{1}/q}, \quad V = \begin{pmatrix} 0 & 1 & & \\ & 0 & 1 & \\ & & \ddots & \ddots \\ 1 & & & \ddots & \ddots \\ 1 & & & & \end{pmatrix} e^{iy^{2}/q}$$

- These generate all hermitian $q \times q$ matrices on a larger torus.
- ► Together with the original U(N) gauge group, the theory becomes a commutative U(N) ⊗ U(q) = U(qN) theory.
- Our center of mass U(1) is the center of this gauge group and the internal dynamics is in S(U(N) ⊗ U(q)) and tr_{*} is the trace in U(qN).

A related problem: SU(N) for the NC deformed plane

- In general, (varying) θ can be treated as a formal parameter in formal power series.
- Idea: The sets of commutative and non-commutative gauge orbits are equivalent.
- There is a connection dependant map from a commutative theory to a theory where gauge transformations Λ_α(a_µ) act via *-products.
- SW-condition:
 - $A(a) + \partial \Lambda_{\alpha}(a) + [A(a), \Lambda_{\alpha}(a)]_{*} = A(a + \partial \alpha + [a, \alpha]).$
- ▶ We can get a grip on this relation by using the Ansatz.

$$A(a) = a + O(\theta)$$

 $\Lambda_{\alpha}(a) = \alpha + O(\theta)$

A related problem: SU(N) for the NC deformed plane

- In general, (varying) θ can be treated as a formal parameter in formal power series.
- Idea: The sets of commutative and non-commutative gauge orbits are equivalent.
- There is a connection dependant map from a commutative theory to a theory where gauge transformations Λ_α(a_µ) act via *-products.
- SW-condition:
 - $A(a) + \partial \Lambda_{\alpha}(a) + [A(a), \Lambda_{\alpha}(a)]_{*} = A(a + \partial \alpha + [a, \alpha]).$
- ▶ We can get a grip on this relation by using the Ansatz.

$$A(a) = a + O(\theta)$$

 $\Lambda_{\alpha}(a) = \alpha + O(\theta)$

A related problem: SU(N) for the NC deformed plane

- In general, (varying) θ can be treated as a formal parameter in formal power series.
- Idea: The sets of commutative and non-commutative gauge orbits are equivalent.
- There is a connection dependant map from a commutative theory to a theory where gauge transformations Λ_α(a_µ) act via *-products.
- SW-condition:
 - $A(a) + \partial \Lambda_{\alpha}(a) + [A(a), \Lambda_{\alpha}(a)]_{*} = A(a + \partial \alpha + [a, \alpha]).$
- We can get a grip on this relation by using the Ansatz.

$$A(a) = a + O(\theta)$$

 $\Lambda_{\alpha}(a) = \alpha + O(\theta)$

A related problem: SU(N) for the NC deformed plane

- In general, (varying) θ can be treated as a formal parameter in formal power series.
- Idea: The sets of commutative and non-commutative gauge orbits are equivalent.
- There is a connection dependant map from a commutative theory to a theory where gauge transformations Λ_α(a_µ) act via *-products.
- SW-condition:

 $A(a) + \partial \Lambda_{\alpha}(a) + [A(a), \Lambda_{\alpha}(a)]_{*} = A(a + \partial \alpha + [a, \alpha]).$

We can get a grip on this relation by using the Ansatz.

 $A(a) = a + O(\theta)$ $\Lambda_{\alpha}(a) = \alpha + O(\theta)$

A related problem: SU(N) for the NC deformed plane

- In general, (varying) θ can be treated as a formal parameter in formal power series.
- Idea: The sets of commutative and non-commutative gauge orbits are equivalent.
- There is a connection dependant map from a commutative theory to a theory where gauge transformations Λ_α(a_µ) act via *-products.
- SW-condition:

 $A(a) + \partial \Lambda_{\alpha}(a) + [A(a), \Lambda_{\alpha}(a)]_{*} = A(a + \partial \alpha + [a, \alpha]).$

We can get a grip on this relation by using the Ansatz.

$$egin{array}{rll} {\sf A}({m a}) &= {m a} + {\sf O}(heta) \ {\sf A}_lpha({m a}) &= lpha + {\sf O}(heta) \end{array}$$

The non-commutative gauge group

The fact that the map depends on the commutative connection implies for the group law in the gauge group:

$$G_{g_1}(ag_2)*G_{g_2}(a)=G_{g_1g_2}(a)$$

Infinitessimally

- Again, this is a non-local modification of the gauge group rather than the structure group.
- One can restrict the map A(a) to $a \in SU(N)$
- ► Here as well, the NC SU(N) is defined in terms of a new "commutator".
- ► This so far only generalises the tracelessness condition. Possibly the generalization of the trace itself exists.

The non-commutative gauge group

The fact that the map depends on the commutative connection implies for the group law in the gauge group:

$$G_{g_1}(ag_2)*G_{g_2}(a)=G_{g_1g_2}(a)$$

Infinitessimally

- Again, this is a non-local modification of the gauge group rather than the structure group.
- One can restrict the map A(a) to $a \in SU(N)$
- ► Here as well, the NC *SU*(*N*) is defined in terms of a new "commutator".
- ► This so far only generalises the tracelessness condition. Possibly the generalization of the trace itself exists.

The non-commutative gauge group

The fact that the map depends on the commutative connection implies for the group law in the gauge group:

$$G_{g_1}(ag_2) * G_{g_2}(a) = G_{g_1g_2}(a)$$

Infinitessimally

- Again, this is a non-local modification of the gauge group rather than the structure group.
- One can restrict the map A(a) to $a \in SU(N)$
- ► Here as well, the NC *SU*(*N*) is defined in terms of a new "commutator".
- ► This so far only generalises the tracelessness condition. Possibly the generalization of the trace itself exists.

The non-commutative gauge group

The fact that the map depends on the commutative connection implies for the group law in the gauge group:

$$G_{g_1}(ag_2) * G_{g_2}(a) = G_{g_1g_2}(a)$$

Infinitessimally

- Again, this is a non-local modification of the gauge group rather than the structure group.
- One can restrict the map A(a) to $a \in SU(N)$
- ► Here as well, the NC *SU*(*N*) is defined in terms of a new "commutator".
- ► This so far only generalises the tracelessness condition. Possibly the generalization of the trace itself exists.

The non-commutative gauge group

The fact that the map depends on the commutative connection implies for the group law in the gauge group:

$$G_{g_1}(ag_2) * G_{g_2}(a) = G_{g_1g_2}(a)$$

Infinitessimally

- Again, this is a non-local modification of the gauge group rather than the structure group.
- One can restrict the map A(a) to $a \in SU(N)$
- Here as well, the NC SU(N) is defined in terms of a new "commutator".
- This so far only generalises the tracelessness condition. Possibly the generalization of the trace itself exists.

The non-commutative gauge group

The fact that the map depends on the commutative connection implies for the group law in the gauge group:

$$G_{g_1}(ag_2)*G_{g_2}(a)=G_{g_1g_2}(a)$$

Infinitessimally

- Again, this is a non-local modification of the gauge group rather than the structure group.
- One can restrict the map A(a) to $a \in SU(N)$
- ► Here as well, the NC SU(N) is defined in terms of a new "commutator".
- This so far only generalises the tracelessness condition. Possibly the generalization of the trace itself exists.

SU(N) in two NC theories

- Both definitions define the restriction in terms of the gauge group.
- Both use an expansion (grading) for their definition: U^n and V^m viz. θ (or \hbar).
- ► There is a difference in the number of local degrees of freedom: $N^2 \frac{1}{q}$ vs. $N^2 1$.
- ▶ The definition in terms of tr_{*} works directly only for $T_{\frac{p}{q}}$ but it sees "global effects" like $[U^q, V]_* = [U, V^q]_* = 0$.

SU(N) in two NC theories

- Both definitions define the restriction in terms of the gauge group.
- Both use an expansion (grading) for their definition: Uⁿ and V^m viz. θ (or ħ).
- ► There is a difference in the number of local degrees of freedom: $N^2 \frac{1}{a}$ vs. $N^2 1$.
- ▶ The definition in terms of tr_{*} works directly only for $T_{\frac{p}{q}}$ but it sees "global effects" like $[U^q, V]_* = [U, V^q]_* = 0$.

SU(N) in two NC theories

- Both definitions define the restriction in terms of the gauge group.
- Both use an expansion (grading) for their definition: Uⁿ and V^m viz. θ (or ħ).
- ► There is a difference in the number of local degrees of freedom: $N^2 \frac{1}{a}$ vs. $N^2 1$.
- ▶ The definition in terms of tr_{*} works directly only for $T_{\frac{p}{q}}$ but it sees "global effects" like $[U^q, V]_* = [U, V^q]_* = 0$.

SU(N) in two NC theories

- Both definitions define the restriction in terms of the gauge group.
- Both use an expansion (grading) for their definition: Uⁿ and V^m viz. θ (or ħ).
- ► There is a difference in the number of local degrees of freedom: $N^2 \frac{1}{a}$ vs. $N^2 1$.
- ► The definition in terms of tr_{*} works directly only for $T_{\frac{p}{q}}$ but it sees "global effects" like $[U^q, V]_* = [U, V^q]_* = 0$.

SU(N) in two NC theories

- Both definitions define the restriction in terms of the gauge group.
- Both use an expansion (grading) for their definition: Uⁿ and V^m viz. θ (or ħ).
- ► There is a difference in the number of local degrees of freedom: $N^2 \frac{1}{a}$ vs. $N^2 1$.
- ► The definition in terms of tr_{*} works directly only for $T_{\frac{p}{q}}$ but it sees "global effects" like $[U^q, V]_* = [U, V^q]_* = 0$.

Yang-Mills and Dirac-Born-Infeld

The description in terms of Yang-Mills-Theory is good for $\alpha' \to 0.$ More precisely

- $\alpha' p^2 \ll 1$. This means, it is exact only for $\partial F = 0$.

Yang-Mills and Dirac-Born-Infeld

The description in terms of Dirac-Born-Infeld-Theory is good for $\alpha' \to {\rm 0.}~{\rm More}~{\rm precisely}$

- α' *F*arbitrary.
- $\alpha' p^2 \ll 1$. This means, it is exact only for $\partial F = 0$.

Non-abelian DBI

In the non-abelian version *F* is not gauge invariant. The condition $\partial F = 0$ has to be replaced by DF = 0.

$\Longrightarrow DDF = 0 \Longrightarrow [D, D]F = 0 \Longrightarrow [F, F] = 0$

We are effectively back in the abelian case. This is the symmetrized trace prescription.

Non-abelian DBI

In the non-abelian version *F* is not gauge invariant. The condition $\partial F = 0$ has to be replaced by DF = 0.

$\implies DDF = 0 \implies [D, D]F = 0 \implies [F, F] = 0$

We are effectively back in the abelian case. This is the symmetrized trace prescription.

Non-abelian DBI

In the non-abelian version *F* is not gauge invariant. The condition $\partial F = 0$ has to be replaced by DF = 0.

$$\implies DDF = 0 \implies [D, D]F = 0 \implies [F, F] = 0$$

We are effectively back in the abelian case. This is the symmetrized trace prescription.

Non-abelian DBI

In the non-abelian version *F* is not gauge invariant. The condition $\partial F = 0$ has to be replaced by DF = 0.

$$\implies DDF = 0 \implies [D, D]F = 0 \implies [F, F] = 0$$

We are effectively back in the abelian case. This is the symmetrized trace prescription.
Non-abelian DBI

In the non-abelian version *F* is not gauge invariant. The condition $\partial F = 0$ has to be replaced by DF = 0.

$$\implies DDF = 0 \implies [D, D]F = 0 \implies [F, F] = 0$$

We are effectively back in the abelian case. This is the symmetrized trace prescription.

Of course, one can in principle compute corrections in $\alpha' p^2$.

Non-abelian DBI

In the non-abelian version *F* is not gauge invariant. The condition $\partial F = 0$ has to be replaced by DF = 0.

$$\implies DDF = 0 \implies [D, D]F = 0 \implies [F, F] = 0$$

We are effectively back in the abelian case. This is the symmetrized trace prescription.

Of course, one can in principle compute corrections in $\alpha' p^2$.

More non-commutative vs. non-abelian

- The · → * prescription is exact. We can apply it to the diagrams that give the abelian DBI theory yielding a non-commutative DBI action.
- On a rational torus, we can again Fourier expand all the fields and replace e^{ix} and e^{iy} by matrices. The theory becomes a commutative non-abelian theory.
- Here we can use the non-commutative theory to learn about (define) the non-abelian theory.

More non-commutative vs. non-abelian

- ► The · → * prescription is exact. We can apply it to the diagrams that give the abelian DBI theory yielding a non-commutative DBI action.
- On a rational torus, we can again Fourier expand all the fields and replace e^{ix} and e^{iy} by matrices. The theory becomes a commutative non-abelian theory.
- Here we can use the non-commutative theory to learn about (define) the non-abelian theory.

More non-commutative vs. non-abelian

- The · → * prescription is exact. We can apply it to the diagrams that give the abelian DBI theory yielding a non-commutative DBI action.
- On a rational torus, we can again Fourier expand all the fields and replace e^{ix} and e^{iy} by matrices. The theory becomes a commutative non-abelian theory.
- Here we can use the non-commutative theory to learn about (define) the non-abelian theory.