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NC Geometry from open strings
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Replace all products by x-products in the effective action

(f+9)(x) = ™"t (x)g(y)|
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Introduction: NC theories

The x-product on a torus

(frg)(x) = e™™ %% (x)g(y)|

» On a torus, where momentum is quantized, g™ omdn g g
translation operator which shifts the argument of g(x) by integer
multiples of 6.

» Under T-duality, momentum becomes winding. The tilted torus
illustrates the shift proportional to the winding:

B
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Gauge theories from branes

D-brane actions

v

For a stack of N D-branes, open strings have labels S,y
indicating the branes the two ends are attached to

Low energy action: U(N) Yang-Mills with adjoined scalars X/,

Diagonal entries X!, denote the position of brane a in the
transverse direction

Thus $tr(X") is the center of mass position

v

v

v



Non-abelian vs. non-commutative

Gauge theories from branes

D-brane actions

For a stack of N D-branes, open strings have labels S,y
indicating the branes the two ends are attached to

» Low energy action: U(N) Yang-Mills with adjoined scalars X/,

» Diagonal entries X), denote the position of brane a in the
transverse direction

» Thus $tr(X'") is the center of mass position

» The centre of mass kinematics decouples. CM-frame:
Xt =x"— Ltr(X)1

v
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Gauge theories from branes

Non-commutative YM
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Field strength

Fmn = OmAm — OnAm +Am *Aq —AnxAm = 8mAm*anAm+[AmaAn]*

Even the U(1) theory is now interacting.
In terms of Lie algebra generators T2:

1 1
[Am, An]. = E{A?nvAll‘)l}* [Tava] + E[AﬁwAE]* {TaﬂTb}

{T23 TP} is not defined in the abstract Lie algebra.

It can either be thought of as being an element in the enveloping
algebra.

Alternatively, it is defined in terms of representation matrices
p(T#).
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Closure of the algebra

For representation matrices, in general the algebra is not closed:

{p(T2),p(T®)} = p(277)

v

It only closes for structure groups ®,U(N,,) as their adjoint
representation consist of all hermitian (block-)matrices.

What about other groups: SU(N) or SO(N) or Sp(N) or
exceptional groups?

What about the center of mass system SU(N)? (tangential B,
preserves translation invariance!)

v

v
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Not the center of mass

In the NC theory, we cannot just take the matrix trace:

» As {1,1}, # 0, the matrix trace is an interacting degree of
freedom.

> As {1,X}, # 0 and tr({X', X1},)) # 0, the matrix trace does not
decouple from the internal brane dynamics.



Non-abelian vs. non-commutative
The NC center of mass

Non-commutative torus

» Compactify non-commutative coordinates.



Non-commutative torus

» Compactify non-commutative coordinates.

» Simplest case: Non-commutative torus. x* and x? periodic with
2m.



Non-abelian vs. non-commutative

The NC center of mass

Non-commutative torus

» Compactify non-commutative coordinates.

» Simplest case: Non-commutative torus. x* and x? periodic with
2m.

» Fourier-decompose all fields

f(Xl,Xz) _ Z 1:mn&,inxleimx2 _ Z £ UMD
mn mn



Non-abelian vs. non-commutative

The NC center of mass

Non-commutative torus

» Compactify non-commutative coordinates.

» Simplest case: Non-commutative torus. x* and x? periodic with
2m.

» Fourier-decompose all fields

f(Xl,Xz) — Z fmﬂeinX1eimX2 _ Z fanmVn
mn mn

» Non-commutative algebra is expanded in terms of U = e’ and
vV =ex
UxV =V xUe 2"



Non-abelian vs. non-commutative

The NC center of mass

Non-commutative torus

» Compactify non-commutative coordinates.

v

Simplest case: Non-commutative torus. x* and x? periodic with
2m.

» Fourier-decompose all fields
f(Xl,Xz) _ Z fmneinxleimxz _ Z £ UMYD
mn mn
» Non-commutative algebra is expanded in terms of U = e*" and
V = eX’:

UxV =V xUe 27

6 is now dimensionless. We are interested in the case of rational
6 = p/q: Translations commensurate with periodicity of torus.

v
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NC CM in terms of tr

The central U(1)

» From UV = VUe27P/4 e make the crucial observation that Ud
and VY are central, they x-commute with all functions.

» Therefore we can define the proper x-analogue of the matrix

trace:
tr, (X Ztr am.qn) ATV A"

» This commutes with all other fields both in the Lie algebra and in
the x-product sense: [tr,(X")1,X!], = 0.

» Similarly, one checks tr.([X', X1].) =0

» The tr,(X') form the maximal free, decoupled, commutative
U(1)-theory on a g-times smaller torus.
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NC CM in terms of tr

The non-commutative SU(N)

» The remainder X' = X' — 1tr,(X")1 is the NC analogue of the
SU(N) center of mass theory.

» This algebra is indeed closed.
» It decouples from the tr.,.
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NC CM in terms of tr

The non-commutative SU(N)

v

The remainder X' = X' — Ltr,(X')1 is the NC analogue of the
SU(N) center of mass theory.

v

This algebra is indeed closed.

v

It decouples from the tr.,.
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NC CM in terms of tr

The non-commutative SU(N)

» The remainder X' = X' — 1tr,(X")1 is the NC analogue of the
SU(N) center of mass theory.

» This algebra is indeed closed.
» It decouples from the tr,.
» It coincides with the image of [, ‘]..

» Thus it is the minimal closed theory. The center of mass theory is
the largest accordingly.
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NC CM in terms of tr

The non-commutative lesson

» X' are not SU(N) valued functions but the restriction from U(N)
is non-local.

» This is a restriction of the gauge group rather than the structure
group.

» This resonates well with the NC shift of focus from points to
functions on a space.

» It is tempting to define the NC version of SU(N) as the image of
[, ]« in more general situations.
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NC CM in terms of tr

The (other) T-dual picture

/ ’ The D1 for6 =1/3

» The D2-brane with # = p/q is mapped to a D1 brane that wraps
p and g times the cycles of a dual torus.

» The D1 “comes around g times”.

» Only every qth mode describes the collective motion of the total
D1.
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» The operators U and V with UV = VUe27P/d have a
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e 0 1
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» Together with the original U(N) gauge group, the theory
becomes a commutative U(N) ® U(q) = U(gN) theory.
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Non-commutative vs. non-abelian

The Morita-equivalent picture

» The operators U and V with UV = VUe27P/d have a
commutative, non-abelian representation as well:

1 i 0 1
27t
e 0 1
U= ’ eV'/a v = ev?/d

eZTri (q—1) g 1

with commuting coordinates y* and y?2.
» These generate all hermitian g x g matrices on a larger torus.

» Together with the original U(N) gauge group, the theory
becomes a commutative U(N) ® U(q) = U(gN) theory.

» Our center of mass U(1) is the center of this gauge group and
the internal dynamics is in S(U(N) ® U(q)) and tr, is the trace in
U(gN).
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Non-commutative vs. non-abelian via Seiberg-Witten maps

A related problem: SU(N) for the NC deformed plane

>

In general, (varying) 6 can be treated as a formal parameter in
formal power series.

Idea: The sets of commutative and non-commutative gauge
orbits are equivalent.

There is a connection dependant map from a commutative
theory to a theory where gauge transformations A, (a,) act via
x-products.

SW-condition:
A(a) + 0N, (a) + [A(a), A ()]« = A(a+ da + [a, a]).

We can get a grip on this relation by using the Ansatz.

A@) —a+0(0)
Aa(a) =Oé+0(9)
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Non-commutative vs. non-abelian via Seiberg-Witten maps

The non-commutative gauge group

» The fact that the map depends on the commutative connection
implies for the group law in the gauge group:

Ggl(a92) & ng(a) - Gglgz(a)

» Infinitessimally

[Na(a), /\ﬁ(a)]NC = [Na(@),Ag(a)]« +6as(a) —dpMa(@) = /\[avﬁ](a)

» Again, this is a non-local modification of the gauge group rather
than the structure group.

» One can restrict the map A(a) to a € SU(N)

» Here as well, the NC SU(N) is defined in terms of a new
‘commutator”.

» This so far only generalises the tracelessness condition. Possibly
the generalization of the trace itself exists.
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Wrapping up

SU(N) in two NC theories

» Both definitions define the restriction in terms of the gauge
group.

» Both use an expansion (grading) for their definition: U" and V™
viz. 6 (or h).

» There is a difference in the number of local degrees of freedom:
sz%vs.szl.

» The definition in terms of tr, works directly only for To but it sees

q
“global effects” like [U9,V].. = [U,V Y], = 0.
Prospect: Apply the non-commutative vs. non-abelian strategy to

more problems. E.g. non-abelian DBI actions, NC string
compactification, non-abelian gerbes and membranes, etc.
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» o/p? < 1. This means, it is exact only for 9F = 0.
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NC DBI and non-abelian vs. non-commutative

Yang-Mills and Dirac-Born-Infeld

The description in terms of Dirac-Born-Infeld-Theory is good for
o’ — 0. More precisely

» o'Farbitrary.
» o/p? < 1. This means, it is exact only for 9F = 0.



Non-abelian vs. non-commutative

NC DBI and non-abelian vs. non-commutative

Non-abelian DBI

In the non-abelian version F is not gauge invariant. The condition
OF = 0 has to be replaced by DF = 0.



Non-abelian vs. non-commutative

NC DBI and non-abelian vs. non-commutative

Non-abelian DBI

In the non-abelian version F is not gauge invariant. The condition
OF = 0 has to be replaced by DF = 0.

— DDF =0



Non-abelian vs. non-commutative

NC DBI and non-abelian vs. non-commutative

Non-abelian DBI

In the non-abelian version F is not gauge invariant. The condition
OF = 0 has to be replaced by DF = 0.

— DDF =0 = [D,DJF =0



Non-abelian vs. non-commutative

NC DBI and non-abelian vs. non-commutative

Non-abelian DBI

In the non-abelian version F is not gauge invariant. The condition
OF = 0 has to be replaced by DF = 0.

— DDF =0 = [D,DJF =0 = [F,F] =0



Non-abelian vs. non-commutative

NC DBI and non-abelian vs. non-commutative

Non-abelian DBI

In the non-abelian version F is not gauge invariant. The condition
OF = 0 has to be replaced by DF = 0.
— DDF =0= [D,D]JF =0 = [F,F] =0

We are effectively back in the abelian case. This is the symmetrized
trace prescription.



Non-abelian vs. non-commutative

NC DBI and non-abelian vs. non-commutative

Non-abelian DBI

In the non-abelian version F is not gauge invariant. The condition
OF = 0 has to be replaced by DF = 0.

— DDF =0 = [D,DJF =0 = [F,F] =0

We are effectively back in the abelian case. This is the symmetrized
trace prescription.
Of course, one can in principle compute corrections in o/p?.
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More non-commutative vs. non-abelian

» The - — x prescription is exact. We can apply it to the diagrams
that give the abelian DBI theory yielding a non-commutative DBI
action.
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More non-commutative vs. non-abelian

» The - — x prescription is exact. We can apply it to the diagrams
that give the abelian DBI theory yielding a non-commutative DBI
action.

» On arational torus, we can again Fourier expand all the fields
and replace e* and e¥ by matrices. The theory becomes a
commutative non-abelian theory.
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More non-commutative vs. non-abelian

» The - — x prescription is exact. We can apply it to the diagrams
that give the abelian DBI theory yielding a non-commutative DBI
action.

» On a rational torus, we can again Fourier expand all the fields
and replace e* and e¥ by matrices. The theory becomes a
commutative non-abelian theory.

» Here we can use the non-commutative theory to learn about
(define) the non-abelian theory.
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