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Non-abelian vs. non-commutative

Introduction: NC theories

NC Geometry from open strings

With constant Bµν :

∼
∫

d(moduli) 〈eik1X(x1) · · ·eiknX(xn)〉 ×

× eik1θk2eik2θk3 · · ·eiknθk1

Replace all products by ∗-products in the effective action

(f ∗ g)(x) = eπθmn∂xm ∂yn f (x)g(y)
∣∣∣
y→x
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Introduction: NC theories

The ∗-product on a torus

(f ∗ g)(x) = eπθmn∂xm ∂yn f (x)g(y)
∣∣∣
y→x

I On a torus, where momentum is quantized, eπθmn∂xm ∂yn is a
translation operator which shifts the argument of g(x) by integer
multiples of θ.

I Under T-duality, momentum becomes winding. The tilted torus
illustrates the shift proportional to the winding:
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Gauge theories from branes

D-brane actions

I For a stack of N D-branes, open strings have labels Sab

indicating the branes the two ends are attached to
I Low energy action: U(N) Yang-Mills with adjoined scalars X i

ab
I Diagonal entries X i

aa denote the position of brane a in the
transverse direction

I Thus 1
N tr(X i) is the center of mass position

I The centre of mass kinematics decouples. CM-frame:
X̃ i = X i − 1

N tr(X i)1



Non-abelian vs. non-commutative

Gauge theories from branes

D-brane actions

I For a stack of N D-branes, open strings have labels Sab

indicating the branes the two ends are attached to
I Low energy action: U(N) Yang-Mills with adjoined scalars X i

ab
I Diagonal entries X i

aa denote the position of brane a in the
transverse direction

I Thus 1
N tr(X i) is the center of mass position

I The centre of mass kinematics decouples. CM-frame:
X̃ i = X i − 1

N tr(X i)1



Non-abelian vs. non-commutative

Gauge theories from branes

D-brane actions

I For a stack of N D-branes, open strings have labels Sab

indicating the branes the two ends are attached to
I Low energy action: U(N) Yang-Mills with adjoined scalars X i

ab
I Diagonal entries X i

aa denote the position of brane a in the
transverse direction

I Thus 1
N tr(X i) is the center of mass position

I The centre of mass kinematics decouples. CM-frame:
X̃ i = X i − 1

N tr(X i)1



Non-abelian vs. non-commutative

Gauge theories from branes

D-brane actions

I For a stack of N D-branes, open strings have labels Sab

indicating the branes the two ends are attached to
I Low energy action: U(N) Yang-Mills with adjoined scalars X i

ab
I Diagonal entries X i

aa denote the position of brane a in the
transverse direction

I Thus 1
N tr(X i) is the center of mass position

I The centre of mass kinematics decouples. CM-frame:
X̃ i = X i − 1

N tr(X i)1



Non-abelian vs. non-commutative

Gauge theories from branes

D-brane actions

I For a stack of N D-branes, open strings have labels Sab

indicating the branes the two ends are attached to
I Low energy action: U(N) Yang-Mills with adjoined scalars X i

ab
I Diagonal entries X i

aa denote the position of brane a in the
transverse direction

I Thus 1
N tr(X i) is the center of mass position

I The centre of mass kinematics decouples. CM-frame:
X̃ i = X i − 1

N tr(X i)1



Non-abelian vs. non-commutative

Gauge theories from branes

Non-commutative YM
I Field strength

Fmn = ∂mAm−∂nAm +Am∗An−An∗Am = ∂mAm−∂nAm +[Am, An]∗

I Even the U(1) theory is now interacting.

I In terms of Lie algebra generators T a:

[Am, An]∗ =
1
2
{Aa

m, Ab
n}∗ [T a, T b] +

1
2

[Aa
m, Ab

n]∗ {T a, T b}

I {T a, T b} is not defined in the abstract Lie algebra.

I It can either be thought of as being an element in the enveloping
algebra.

I Alternatively, it is defined in terms of representation matrices
ρ(T a).



Non-abelian vs. non-commutative

Gauge theories from branes

Non-commutative YM
I Field strength

Fmn = ∂mAm−∂nAm +Am∗An−An∗Am = ∂mAm−∂nAm +[Am, An]∗

I Even the U(1) theory is now interacting.

I In terms of Lie algebra generators T a:

[Am, An]∗ =
1
2
{Aa

m, Ab
n}∗ [T a, T b] +

1
2

[Aa
m, Ab

n]∗ {T a, T b}

I {T a, T b} is not defined in the abstract Lie algebra.

I It can either be thought of as being an element in the enveloping
algebra.

I Alternatively, it is defined in terms of representation matrices
ρ(T a).



Non-abelian vs. non-commutative

Gauge theories from branes

Non-commutative YM
I Field strength

Fmn = ∂mAm−∂nAm +Am∗An−An∗Am = ∂mAm−∂nAm +[Am, An]∗

I Even the U(1) theory is now interacting.

I In terms of Lie algebra generators T a:

[Am, An]∗ =
1
2
{Aa

m, Ab
n}∗ [T a, T b] +

1
2

[Aa
m, Ab

n]∗ {T a, T b}

I {T a, T b} is not defined in the abstract Lie algebra.

I It can either be thought of as being an element in the enveloping
algebra.

I Alternatively, it is defined in terms of representation matrices
ρ(T a).



Non-abelian vs. non-commutative

Gauge theories from branes

Non-commutative YM
I Field strength

Fmn = ∂mAm−∂nAm +Am∗An−An∗Am = ∂mAm−∂nAm +[Am, An]∗

I Even the U(1) theory is now interacting.

I In terms of Lie algebra generators T a:

[Am, An]∗ =
1
2
{Aa

m, Ab
n}∗ [T a, T b] +

1
2

[Aa
m, Ab

n]∗ {T a, T b}

I {T a, T b} is not defined in the abstract Lie algebra.

I It can either be thought of as being an element in the enveloping
algebra.

I Alternatively, it is defined in terms of representation matrices
ρ(T a).



Non-abelian vs. non-commutative

Gauge theories from branes

Non-commutative YM
I Field strength

Fmn = ∂mAm−∂nAm +Am∗An−An∗Am = ∂mAm−∂nAm +[Am, An]∗

I Even the U(1) theory is now interacting.

I In terms of Lie algebra generators T a:

[Am, An]∗ =
1
2
{Aa

m, Ab
n}∗ [T a, T b] +

1
2

[Aa
m, Ab

n]∗ {T a, T b}

I {T a, T b} is not defined in the abstract Lie algebra.

I It can either be thought of as being an element in the enveloping
algebra.

I Alternatively, it is defined in terms of representation matrices
ρ(T a).



Non-abelian vs. non-commutative

Gauge theories from branes

Non-commutative YM
I Field strength

Fmn = ∂mAm−∂nAm +Am∗An−An∗Am = ∂mAm−∂nAm +[Am, An]∗

I Even the U(1) theory is now interacting.

I In terms of Lie algebra generators T a:

[Am, An]∗ =
1
2
{Aa

m, Ab
n}∗ [T a, T b] +

1
2

[Aa
m, Ab

n]∗ {T a, T b}

I {T a, T b} is not defined in the abstract Lie algebra.

I It can either be thought of as being an element in the enveloping
algebra.

I Alternatively, it is defined in terms of representation matrices
ρ(T a).



Non-abelian vs. non-commutative

Closure of NC gauge groups

Closure of the algebra

I For representation matrices, in general the algebra is not closed:

{ρ(T a), ρ(T b)} = ρ(???)

I It only closes for structure groups ⊗αU(Nα) as their adjoint
representation consist of all hermitian (block-)matrices.

I What about other groups: SU(N) or SO(N) or Sp(N) or
exceptional groups?

I What about the center of mass system SU(N)? (tangential Bµν

preserves translation invariance!)
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The NC center of mass

Not the center of mass

In the NC theory, we cannot just take the matrix trace:

I As {1,1}∗ 6= 0, the matrix trace is an interacting degree of
freedom.

I As {1, X̃ i}∗ 6= 0 and tr({X̃ i , X̃ j}∗) 6= 0, the matrix trace does not
decouple from the internal brane dynamics.
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The NC center of mass

Non-commutative torus

I Compactify non-commutative coordinates.

I Simplest case: Non-commutative torus. x1 and x2 periodic with
2π.

I Fourier-decompose all fields

f (x1, x2) =
∑
mn

fmneinx1
eimx2

=
∑
mn

fmnUmV n

I Non-commutative algebra is expanded in terms of U = eix1
and

V = eix2
:

U ∗ V = V ∗ Ue−2πiθ

I θ is now dimensionless. We are interested in the case of rational
θ = p/q: Translations commensurate with periodicity of torus.
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NC CM in terms of tr ∗

The central U(1)

I From UV = VUe−2πip/q we make the crucial observation that Uq

and V q are central, they ∗-commute with all functions.

I Therefore we can define the proper ∗-analogue of the matrix
trace:

tr∗(X i) =
∑
mn

tr(X i
qm,qn) UqmV qn

I This commutes with all other fields both in the Lie algebra and in
the ∗-product sense: [tr∗(X i)1, X j ]∗ = 0.

I Similarly, one checks tr∗([X i , X j ]∗) = 0.

I The tr∗(X i) form the maximal free, decoupled, commutative
U(1)-theory on a q-times smaller torus.
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NC CM in terms of tr ∗

The non-commutative SU(N)

I The remainder X̃ i = X i − 1
N tr∗(X i)1 is the NC analogue of the

SU(N) center of mass theory.

I This algebra is indeed closed.

I It decouples from the tr∗.

I It coincides with the image of [·, ·]∗.
I Thus it is the minimal closed theory. The center of mass theory is

the largest accordingly.
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NC CM in terms of tr ∗

The non-commutative lesson

I X̃ i are not SU(N) valued functions but the restriction from U(N)
is non-local.

I This is a restriction of the gauge group rather than the structure
group.

I This resonates well with the NC shift of focus from points to
functions on a space.

I It is tempting to define the NC version of SU(N) as the image of
[·, ·]∗ in more general situations.
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NC CM in terms of tr ∗

The (other) T-dual picture

The D1 for θ = 1/3

I The D2-brane with θ = p/q is mapped to a D1 brane that wraps
p and q times the cycles of a dual torus.

I The D1 “comes around q times”.

I Only every qth mode describes the collective motion of the total
D1.
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Non-commutative vs. non-abelian

The Morita-equivalent picture

I The operators U and V with UV = VUe−2πip/q have a
commutative, non-abelian representation as well:

U =


1

e2πi p
q

. . .

e2πi(q−1) p
q

 eiy1/q , V =


0 1

0 1
. . .

. . .
1

 eiy2/q

with commuting coordinates y1 and y2.

I These generate all hermitian q × q matrices on a larger torus.

I Together with the original U(N) gauge group, the theory
becomes a commutative U(N)⊗ U(q) = U(qN) theory.

I Our center of mass U(1) is the center of this gauge group and
the internal dynamics is in S(U(N)⊗ U(q)) and tr∗ is the trace in
U(qN).



Non-abelian vs. non-commutative

Non-commutative vs. non-abelian

The Morita-equivalent picture

I The operators U and V with UV = VUe−2πip/q have a
commutative, non-abelian representation as well:

U =


1

e2πi p
q

. . .

e2πi(q−1) p
q

 eiy1/q , V =


0 1

0 1
. . .

. . .
1

 eiy2/q

with commuting coordinates y1 and y2.

I These generate all hermitian q × q matrices on a larger torus.

I Together with the original U(N) gauge group, the theory
becomes a commutative U(N)⊗ U(q) = U(qN) theory.

I Our center of mass U(1) is the center of this gauge group and
the internal dynamics is in S(U(N)⊗ U(q)) and tr∗ is the trace in
U(qN).



Non-abelian vs. non-commutative

Non-commutative vs. non-abelian

The Morita-equivalent picture

I The operators U and V with UV = VUe−2πip/q have a
commutative, non-abelian representation as well:

U =


1

e2πi p
q

. . .

e2πi(q−1) p
q

 eiy1/q , V =


0 1

0 1
. . .

. . .
1

 eiy2/q

with commuting coordinates y1 and y2.

I These generate all hermitian q × q matrices on a larger torus.

I Together with the original U(N) gauge group, the theory
becomes a commutative U(N)⊗ U(q) = U(qN) theory.

I Our center of mass U(1) is the center of this gauge group and
the internal dynamics is in S(U(N)⊗ U(q)) and tr∗ is the trace in
U(qN).
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Non-commutative vs. non-abelian via Seiberg-Witten maps

A related problem: SU(N) for the NC deformed plane

I In general, (varying) θ can be treated as a formal parameter in
formal power series.

I Idea: The sets of commutative and non-commutative gauge
orbits are equivalent.

I There is a connection dependant map from a commutative
theory to a theory where gauge transformations Λα(aµ) act via
∗-products.

I SW-condition:
A(a) + ∂Λα(a) + [A(a),Λα(a)]∗ = A(a + ∂α + [a, α]).

I We can get a grip on this relation by using the Ansatz.

A(a) = a + O(θ)

Λα(a) = α + O(θ)
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Non-commutative vs. non-abelian via Seiberg-Witten maps

The non-commutative gauge group
I The fact that the map depends on the commutative connection

implies for the group law in the gauge group:

Gg1(ag2) ∗Gg2(a) = Gg1g2(a)

I Infinitessimally

[Λα(a),Λβ(a)]NC = [Λα(a),Λβ(a)]∗+δαΛβ(a)−δβΛα(a) = Λ[α,β](a)

I Again, this is a non-local modification of the gauge group rather
than the structure group.

I One can restrict the map A(a) to a ∈ SU(N)

I Here as well, the NC SU(N) is defined in terms of a new
“commutator”.

I This so far only generalises the tracelessness condition. Possibly
the generalization of the trace itself exists.
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Non-abelian vs. non-commutative

Wrapping up

SU(N) in two NC theories

I Both definitions define the restriction in terms of the gauge
group.

I Both use an expansion (grading) for their definition: Un and V m

viz. θ (or ~).

I There is a difference in the number of local degrees of freedom:
N2 − 1

q vs. N2 − 1.

I The definition in terms of tr∗ works directly only for T p
q

but it sees

“global effects” like [Uq , V ]∗ = [U, V q]∗ = 0.

Prospect: Apply the non-commutative vs. non-abelian strategy to
more problems. E.g. non-abelian DBI actions, NC string
compactification, non-abelian gerbes and membranes, etc.
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Non-abelian vs. non-commutative

NC DBI and non-abelian vs. non-commutative

Yang-Mills and Dirac-Born-Infeld

The description in terms of Yang-Mills-Theory is good for α′ → 0.
More precisely

I α′F� 1

I α′p2 � 1. This means, it is exact only for ∂F = 0.
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NC DBI and non-abelian vs. non-commutative

Yang-Mills and Dirac-Born-Infeld

The description in terms of Dirac-Born-Infeld-Theory is good for
α′ → 0. More precisely

I α′Farbitrary.

I α′p2 � 1. This means, it is exact only for ∂F = 0.
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NC DBI and non-abelian vs. non-commutative

Non-abelian DBI

In the non-abelian version F is not gauge invariant. The condition
∂F = 0 has to be replaced by DF = 0.

=⇒ DDF = 0 =⇒ [D, D]F = 0 =⇒ [F , F ] = 0

We are effectively back in the abelian case. This is the symmetrized
trace prescription.
Of course, one can in principle compute corrections in α′p2.
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NC DBI and non-abelian vs. non-commutative

More non-commutative vs. non-abelian

I The · 7→ ∗ prescription is exact. We can apply it to the diagrams
that give the abelian DBI theory yielding a non-commutative DBI
action.

I On a rational torus, we can again Fourier expand all the fields
and replace eix and eiy by matrices. The theory becomes a
commutative non-abelian theory.

I Here we can use the non-commutative theory to learn about
(define) the non-abelian theory.
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