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Quantum Gravity

I Ultimate pinnacle of unification program
I Naively: General Relativity is not renormalisable
I Fundamentally: Space-time, the stage of quantum physics is

itself dynamical and might dissolve at small length scales
I Two major approaches: String Theory and Canonical/Loop

Quantum Gravity



Strings
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The big player:
I Origin in particle physics
I Scattering amplitudes, S-matrix
I Space-time is a secondary concept

Not just quantum gravity:
I All interactions including gauge fields
I Consistent only in higher dimensions
I More objects: Branes
I Intricate web of mathematical relations
I Usually formulated perturbatively around simple backgrounds



Loop Quantum Gravity

The Gallic village
I Origin in General Relativity
I Focus on geometric description: (Generalized) Wilson Loops as

gauge invariant variables.
I Canonical treatment of new variables for pure 4d gravity

possibly including matter
I No background assumed, operator algebraic methods.

But:
I No semi-classical expansion
I Flat space physics cannot be recovered (yet?)



The bosonic string as a testing case

As the starting points and mathematical descriptions are very
different, there is only little mutual understanding.
Thomas Thiemann proposed to study the world-sheet theory of the
bosonic string (the U(1)d current algebra) using methods from both
camps.

I Simple, 1+1 dimensional field theory
I Quadratic, thus solvable
I Classically diffeomorphism invariant



Thiemann’s results

Using an approach modelled on Loop Quantum Gravity, Thiemann
presented a quantisation with unexpected features including

I No conformal anomaly (“central charge”)
I No critical dimension
I No tachyon even in the bosonic theory



The bosonic string

The string can be described as a map X : R× S1 → Rd with action

S =
∫

dτ
∫ 2π

0
dx (−∂τX∂τX + ∂xX∂xX)

Poisson brackets: {X(x, 0), ∂τX(x′, 0)} = δ(x− x′)
Define currents j±(x) = ∂τX(x, 0)± ∂xX(x, 0) to obtain decoupled
systems {j+, j−} = 0 and

{j±(x), j±(x′)} = 2∂xδ(x− x′)

Smear with real functions f : S1 → R to obtain regular

j[f ] =
∫ 2π

0
dxf (x)j(x).

String theory conventionally use a Fourier basis f (x) =
∑

n fneinx, for
Thiemann characteristic functions f (x) = χ[a,b] model LQG
holonomies.



The symplectic structure

The Poisson brackets yield

σ(f , g) =
{

j[f ], j[g]
}

=
∫ 2π

0
dx f (x)∂xg(x) =

∫
fdg

This parametrized string is invariant under reparametrizations of the
circle:
Diffeomorphisms S : S1 → S1 act as “gauge transformations”
S : f (x) 7→ (Sf )(x) = f (S(x)) and leave the symplectic structure
invariant:

σ(Sf ,Sg) = σ(f , g)



Interlude: Quantization

It is useful to divide the quantization procedure into two parts:
I Promotion of the classical, commuting observables to a quantum

(C*) algebra (A,‖ · ‖, ∗) with commutation relations.
I Finding representations as operators on Hilbert spaces.

Stone von Neumann Theorem: In quantum mechanics there is only
one representation (up to unitary equivalence, i.e. changes of basis)
of the canonical commutation relations. In quantum field theory,
typically, there are several inequivalent representations (→
super-selection sectors).



The GNS construction

Given a C*-algebra and an expectation value functional (“state”)
ω : A → C with ω(1) = 1 and ω(A∗A) ≥ 0 one can construct a Hilbert
space on which the observables act as operators:

I Define the ideal J = {A ∈ A|ω(A∗A) = 0}
I As a vector spaceH = A/J
I There is a natural action ρ(A)|B〉 = |AB〉.
I The scalar product is given in terms of 〈A|B〉 = ω(A∗B)



Quantum mechanics: Harmonic Oscillator

From [x, p] = i~ it follows that not both x and p can be bounded
operators. Thus it is more convenient to deal with Weyl operators

W(z) = W(u + iv) = ei(ux+vp)

Analogous: Consider symplectomorphisms instead of their
generators. x and p can be recovered as derivatives of W(z) at z = 0.

CCR now read W(z1)W(z2) = e
i
2 Im(z1 z̄2)W(z1 + z2). Ground state of

harmonic oscillator is the Fock state ωF(W(z)) = e−
1
4 |z|

2



Weyl operators for the string

We can copy this procedure for the string and define operators W(f )
that obey

W(f )W(g) = e
i
2σ(f ,g)W(f + g).

As the symplectic structure σ is invariant under diffeomorphisms,
these can be promoted to automorphisms of the quantum algebra:

αS(W(f )) = W(Sf )

These obey αS1 ◦ αS2 = αS1◦S2 .



Implementing the symmetries

As physics is invariant under reparametrizations S of the circle, these
have to implemented as unitary operators U(S) on the Hilbert space:

U(S)−1ρ(W(f ))U(S) = ρ(W(S−1f ))

This would lead to the physical Hilbert space as the invariant
subspace. If the GNS state ω is invariant ω ◦ αS = ω the existence of
the unitary operators is automatic: U(S)|a〉 = |αS(a)〉
If the state is not invariant, these operators fail to be unitary.
There might be other unitary implementers, but in general they do
not obey the group property U(S1)U(S2) = U(S1 ◦ S2).



Gupta Bleuler and the Fock state for the string

To write down the ground state for the string, we have to introduce
extra structure that encodes the difference between positive and
negative energies (particles and anti-particles).
This is done with a complex structure J : f 7→ Jf that obeys J2 = −1,
σ(Jf , g) = −σ(f , Jg) and σ(f , Jf ) ≥ 0.
In our case we take (Jf )(x) = 1

2π

∫ 2π
0 dy f (y) cot 1

2 (y− x).
After a Fourier transform one sees that this multiplies positive
frequency modes by i and negative frequency modes by (−i).
With J we can define the Fock state

ωF(W(f )) = e−
1
4σ(f ,Jf )

This state is only invariant under diffeomorphisms S that commute
with J.



Properties of ωF

I This state is differentiable with respect to f . Thus the field and
creation/annihilation operators can exist in the Hilbert space.

I For S = eA, the problematic part of A is A2 = 1
2 (A + JAJ).

I U(eA2) can still be defined but does not obey the group property:
There is a phase that infinitesimally reads
[dU(A), dU(B)] = dU([A,B]) + Tr([A2,B2])1

I This is the manifestation of the conformal anomaly (central
charge). The invariant Hilbert space is only {0}.

I This can be repaired by tensoring 26 of these X-theories with a
bc-Fadeev-Popov ghost system which has central charge −26.
This is the technical reason that the bosonic string lives in 1+25
dimensions.



The Polymer State

Thiemann, motivated by the usual choice in loop quantum gravity
(the “Ashtekar-Lewandowsky-measure”), however uses the state

ωP(W(f )) =

{
1 if f = 0
0 else

I This state is trivially invariant under all reparametrizations of
the circle, there is no anomaly and all dimensions are critical.

I However, the Hilbert space representation is not continuous,
thus the field operators cannot be defined as derivatives.

I Furthermore the vectors |W(f )〉 become orthogonal for different
f ’s, there is no overlap.



The polymer state of the harmonic oscillator

To understand the physical consequences, let us treat the harmonic

oscillator analogously ωP(W(z)) =

{
1 if z = 0
0 else

I The Hilbert space is the non-separable Bohr compactification of
C, wave functions vanish nearly everywhere.

I The time evolution U(t)|W(z)〉 = |W(eitz)〉 has only the ground
state as eigenstate.

I The Hamiltonian is not defined, but we can “approximate” it by
the hermitian

Hε =
U(ε)−U(−ε)

2iε
I For generic ε > 0 and wave functions |φ〉 this has expectation

values 〈φ|Hε|φ〉 = 0 and 〈φ|H2
ε |φ〉 ∼ 1

ε2 .
I Thus the spectrum of Hε is unbounded from below and all states

contain contributions of arbitrarily large energies.



Conclusions

I We treated the usual Fock and the Loop inspired quantization of
the string in a common framework.

I The difference lays in the choice of state.
I Diffeomorphisms can be implemented in the Fock space but lead

to a central charge that is only cancelled in 1+25 dimensions.
I The polymer state is always invariant under diffeomorphisms

but it is non continuous.
I Thus the field and creation/annihilation operators do not exist in

the too singular Hilbert space.
I The case of the harmonic oscillator shows that this state is so

singular that is has unphysical properties.
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