
Self-adjoint extentions of momentum on the interval

Notes for Robert Helling’s MQM lecture of October 17, 2008

Let A be a symmetric operator with domain D(A) dense in a Hilbert space H. Then
the domain of the adjoint is D(A∗) = {w ∈ H: v 7→ 〈w, Av〉 bounded for all v ∈ D(A)}.
Symmetry implies D(A) ⊂ D(A∗) but eventually we want to obtain a self-adjoint operator,
that is D(A) = D(A∗). To this end, we have to enlarge D(A) in D(A∗). The value of A
on the additional vectors is then determined by the requirement of symmetry.

When we include more vectors in D(A), the condition of boundedness in the definition of
D(A∗) becomes stricter, therefore we expect D(A∗) to shrink at the same time.

We want to discuss this procedure in the case of the momentum operator on the interval.
Thus we take H = L2([0, 2π]) and p = i d

dx
the usual momentum operator in position

representation. For its domain of definition, our discussion of the uncertainty principle
had let us to consider only functions that vanish at the ends of the interval.

Here, we don’t want to be concerned with the problem that the derivative might not
exist. In the lecture, I therefore suggested that p should only act on differentiable func-
tions. Unfortunately, this set is too small and we should better generalise the derivative
a bit. So we better define Ca := {f ∈ H|fabsolutely continious with derivative in H} = 0
(see http://en.wikipedia.org/wiki/Absolutely continuous) and take D(p) = {f ∈
Ca|f(0) = f(2π) = 0}. But the question of differentiability is not really our concern, it is
the boundary condition.

Integration by parts shows that p is symmetric:

〈pf, g〉 =

∫ 2π

0

dx if ′(x)g(x) =

∫ 2π

0

dx f(x)ig′(x) − if(x)g(x)
∣

∣

2π

0
= 〈f, pg〉 − if(x)g(x)

∣

∣

2π

0
,

as for g ∈ D(p) the last term vanishes. This happens without any assumption on the
boundary values of f . Therefore, we find that for the adjoint we have at least Ca ⊂ D(p∗).
For the choice of Ca above we have here in fact equality.

Our next observation is that on Ca, the operator p∗ has eigenvalues ±i, that is the differen-
tial equation (p∗f)(x) = if ′(x) = ±if(x) has solutions f(x) = ce±x for c ∈ C. Self-adjoint
operators have a real spectrum. Thus these imaginary eigenvalues are at odds with self-
adjointness. It is not hard to see that here in fact D(p∗)/D(p) is two dimensional and thus
the two imaginary eigen-spaces span the difference.

This is true in general: For symmetric A one finds D(A∗) = D(A) ⊕ D+ ⊕ D− where
D± = ker(A∗ ∓ i) are the eigenspaces of eigenvalues ±i. The dimensions n± = dimD±

are called “deficiency indices” and there exists a self-adjoint extension of A if and only if
n+ = n−.

Our aim is to find a subspace De ⊂ D+ ⊕ D− such that A is self-adjoint on D(A) ⊕ De.
Since there should be no imaginary numbers in the spectrum we need De ∩ D± = {0}.
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Hence, the non-zero elements of De are of the form w+ + w− with non-zero w± ∈ D±.
For each w+ there can only be one w− with w+ + w− ∈ De since otherwise the difference
would also both be in De and in D−. Thus there is a linear function S:D+ → D− such that
only elements w+ + Sw+ are in De. A similar argument shows that S has to be injective.
Indeed, one finds that S has to be bijective for A self-adjoint on D(A)⊕De. Let us check
the symmetry of A∗ on De:

〈A∗(v+ + Sv+), w+ + Sw+〉 − 〈v+ + Sv+, A∗(w+ + Sw+)〉

= 〈(iv+ − iSv+, w+ + Sw+〉 − 〈v+ + Sv+, iw+ − iSw+〉

= −2i(〈v+, w+〉 − 〈Sv+, Sv+〉)

Therefore, S has to be an isometry in order for A to have a chance to be self-adjoint. This
condition is in fact also sufficient: For n+ = n−, each choice of an isometry S : D+ → D−

determines a domain D(A) ⊕ {w+ + Sw+|w+ ∈ D+} on which A = A∗ is a self-adjoint
operator.

Let’s see how this works in our example. We had D± = {x 7→ ce±x|c ∈ C} both one
dimensional. Therefore, the freedom in the choice of S is a phase eiα:

S(x 7→ ex) = x 7→ eiαe2π−x

for α ∈ [0, 2π). Hence all f ∈ De are multiples of x 7→ ex + eiαe2π−x. All these have

∣

∣

∣

∣

f(0)

f(2π)

∣

∣

∣

∣

=
1 + e2π+iα

e2π + eiα
·
1 + e2π−iα

e2π + e−iα
=

1 + e2π+iα + e2π−iα + e4π2

e4π2 + e2π−iα + e2π+iα + 1
= 1

and thus f(0) = eiβf(2π) for some phase eiβ : They are quasi-periodic.

We have found that p is self-adjoint on quasi-periodic functions with fixed twist eiβ . Note
well that this choice of phase has observable consequences since this p has eigenvaluesZ+ β/2π which are the possible outcomes of measurements of the observable p.

We will later see that only self-adjoint operators A can be integrated to unitary operators
U(t) that informally have the form U(t) = eitA. We have seen that if A is symmetric
but not unitary the adjoint A∗ has eigenvectors to the eigenvalues ±i. Acting on those
such a U(t) would not be unitary and would in fact change the norm. For the momentum
operator p, U(t) is the translation operator (U(t)f)(x) = f(x − t). This obviously does
not make sense unitarily for functions on the interval [0, 2π]. Only if we glue together the
ends via f(0) = eiβf(2π) such a shift operator can make sense (taking into account the
twist as (U(t)f)(x) = eikβf(x− t + 2kπ) for the integer k such that x− t + 2kπ ∈ [0, 2π]).

A physical interpretation of the twist eiβ can be given in terms of the Aharonov-Bohm
effect: The interval with quasi-periodic boundary conditions can be identified with a circle
S1. Assume there is now a magnetic field B with flux β =

∫

Σ
B through a surface bounded

by the circle ∂Σ = S1 such that B vanishes in a neighbourhood of S1. Then locally, the
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vector potential ~A can be gauged away as ~A + ~∇Λ = 0. Globally, however, going around
the circle we have (in a somewhat symbolic notation)

Λ(2π) − Λ(0) =

∫ 2π

0

~∇Λ · d~s = −

∫ 2π

0

~A · d~x = −

∫

S1

A =

∫

Σ

B = −β

However, under such a gauge transformation, the wave function f(x) is transformed to
eiΛ(x)f(x). Thus, we see that the twist eiβ can be viewed as the global obstruction to
gauge away the effect of the magnetic field.

B

S
1

Fig. 1: A particle on a circe S1 around a solenoid
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