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In the twentieth century, physics underwent two ma-
jor revolutions that deeply changed our understand-
ing of the concepts of space and time: General Rel-
ativity and Quantum Theory.

General Relativity tells us that space-time is not
merely a stage for physical processes but it is dynam-
ical by itself. We perceive its curvature as gravity. If
an object of mass M is very densely compressed the
resulting curvature is so large that not even light can
escape. A horizon forms at a radius R = 2MG/c4

(where G is Newton’s constant of gravity and c is
the speed of light). The region behind the horizon
is causally decoupled from the rest of the world and
cannot influence the outside. In some sense it is
“gone”.

While originally General Relativity describes physics
at large (interstellar to cosmological) scales, Quan-



tum Theoretical concepts are needed to understand
the world at very short sub-atomic distance scales.
One of the main lessons is that at those scales there
is no longer a fundamental distinction between parti-
cles and waves. As a consequence, it is no longer pos-
sible to simultaneously determine the position and
the momentum of a particle. For example, a mass-
less particle of energy E = pc shows an uncertainty
of

∆x∆E ≥ h̄/c.

As the position of the particle is not defined more
precisely than ∆x we cannot use a particle of en-
ergy ∆E as a probe for structures smaller than h̄

c∆E .
Thus higher and higher energies are required to re-
solve smaller and smaller structures.

But combining General Relativity and quantum the-
ory leads us to a puzzle: Using E = Mc2, we see that
resolving a small ∆x causes an uncertainty in mass
∆m = h̄

2c∆x that creates a horizon of radius

R =
h̄G

c3
1

∆x
.



For ∆x < `p =
√

h̄G
c3 = 10−35m this is bigger than

the separation we were trying to resolve!

Thus, it is — in principle — impossible to resolve
distances shorter than `p. It is said, space-time dis-
solves into some kind of space-time-foam.

A fundamental description of nature should take care
of such an impossibility. We need a new structure to
replace smooth manifolds that reveals the new short
distance degrees of freedom.

Here, we will illustrate that D-geometry as sug-
gested by string-theory can be a candidate for such
a new structure.

We will demonstrate it in the most simple case: The
M(atrix)-Model.

Its degrees of freedom are nine time-dependant her-
mitian matrices Xi(t) that can be understood as
functions

X : R→ u(N)9

(actually, one should rather consider the super-sym-
metrized version of this model, but here, for the sake



of presentation, we will suppress the fermionic part-
ners).

The Hamiltonian (energy) consists of two parts, the
kinetic and the potential energy; it is given by

H =
1

2

∑
i

Tr
(
ẊiẊi

)
−
∑
i<j

Tr
(
[Xi, Xj ][Xi, Xj ]

)
.

It is minimized if for all i and j all matrices com-
mute:

[Xi, Xj ] = 0

By a global SU(N) rotation, we can thus assume the
matrices to be diagonal:

Xi(t) =

λi1(t)
. . .

λiN (t)


The equations of motion resulting from this ansatz
are λ̈ia(t) = 0. Trivially, they are solved by

λia(t) = bia + viat.

It is now important to perform a formal reassembly
of the eigenvalues into N nine-vectors as

~λa(t) = t
(
λ1
a(t), . . . , λ9

a(t)
)



and to reinterpret them as the coordinates of N par-
ticles performing a free motion in R1,9. ~ba and ~va,
the constants of integration from above, are seen to
be the impact parameters and the velocities of the
particles.

We can now perturb this ansatz by turning on some
of the off-diagonal matrix entries, say at matrix po-
sition (a, b):

Xi(t) =


λi1(t)

. µ(t)
.

µ(t) .
λiN (t)


For this perturbed ansatz, the Hamiltonian is

∆H =
1

2
µ̇2 +

1

2
‖~λa(t)− ~λb(t)‖2µ2 +O(µ4)

where we introduced the euclidian norm ‖ · ‖ in R9.

If the ~λa were constant in time, this would be the
Hamiltonian of a harmonic oscillator of frequency
ω := ‖~λa(t) − ~λb(t)‖. The oscillations would take
place on a time-scale of 1/ω. So, if the separation
of the particles is large compared to unity, this time



scale is much shorter than the time scale of the mo-
tion of the particles. Therefore, the assumption of ω
to be constant in time is approximately satisfied in
this case.

We can proceed and quantize the system. This will
result in a level spacing of ω for the oscillators. Thus,
for macroscopic separations of the particles, they will
all be frozen into their ground-states and will not
participate in the dynamics. (One should think of
this model to be written in “natural units” where
h̄ = G = c = 1 in which all distances are measured
in multiples of `p and all energies in multiples of the
Planck mass.) Thus, for distances that can be ob-
tained in “real world” physical processes, the level-
spacing of the harmonic oscillators is dramatically
large.

In this regime, the configuration of the system is
described just in terms of the ~λ’s. Realizing that our
notion of space and time is only relative to positions
of “particles” — we would conclude that a space is
R

d if we find the configuration space of N particles
to be RNd — we can conclude that in this generic
situation of macroscopic separations the space of this



model is perceived to be R9, a simple example of a
smooth manifold.

The situation changes drastically if two of the par-
ticles approach each other and get closer than the
Planck length `p: Now the level-spacing of the off-
diagonal harmonic oscillators becomes small. As a
result, the oscillatory off-diagonal degrees of free-
dom become dynamic. Energy is transferred back
an forth between the particle motion and the os-
cillators. In fact, the distinction into diagonal and
off-diagonal degrees of freedom is no longer possible.

The space of configurations is is now much more
complicated and has grown more dimensions than
just nine. But this is just the behavior we asked
for for a quantum space-time: It should be mani-
fold at generic points and at macroscopic scales but
it should dissolve at very short scales; the meaning
of coordinates is not valid any longer for such high
energy processes as close encounters of particles.

Thus, our analysis suggests to use the matrix model
as a new, indirect definition of a quantum space-
time.



The model, we have presented has its origin in string
theory. There, it fulfills further purposes: For exam-
ple, studying quantum fluctuations around the diag-
onal solution more carefully than it is possible here,
one finds induced interactions between the particles
that can for specific processes be related to the eleven
dimensional super-gravity, a theory that is believed
to play an important rôle in a to be discovered “the-
ory of everything”.

To define quantum space-times with more sophisti-
cated structure than R9 macroscopically, it is easily
possible to generalize our approach: The idea is to
start with a quantum field theory living on an auxil-
iary space, the real line in our simple example. The
auxiliary space has no direct physical significance,
generically it can be flat even if we are heading for
a curved quantum space thus circumventing concep-
tual problems of quantum field theories on curved
space-times. Then one figures out the space of low-
energy configurations, the “moduli-space of vacua”.
In most cases, quantization of the model will “lift the
valleys”, meaning that quantum physical zero-point
energies will destroy classical low-energy solutions.
Here, super-symmetry is usually of help as it tends
to protect classical low-energy solution during the



process of quantization.

Subsequently, this quantum moduli space can be in-
terpreted as configuration space of several objects
(particles in our case but possibly also extended ob-
jects with inner structure). From this configuration
space, the resulting quantum space-time is read off.
The properties we found above are typical for “D-
geometries” obtained in this way: At generic points
the spaces will resemble manifolds but for objects
that get very close, the spaces will have singularities
that go beyond the usual notion of manifolds just as
we would expect is for quantum spaces.


