Übung zur Vorlesung t4p, Blatt 12

18.01.2010

1. Spezifische Wärme

Wir betrachten ein beliebiges kanonisches Ensemble mit dem Hamiltonoperator H. Zeigen Sie, dass die spezifische Wärme bei konstantem Volumen geschrieben werden kann als

$$C_V = k\beta^2 (\langle H^2 \rangle - \langle H \rangle^2) ,$$

wobei $\langle \ldots \rangle$ den üblichen Ensemblemittelwert des entsprechenden Operators bezeichnet. Folgern Sie daraus, dass im Grenzwert $N \to \infty$ Energiefluktuationen im Vergleich zur Energie selbst verschwinden.

2. Ising Paramagnet, kanonisches Ensemble.

Betrachten Sie ein System von N magnetischen Momenten, die die Werte $s_i=\pm s$ annehmen können. In einem Magnetfeld h ist der Hamiltonian gegeben durch

$$H = -\sum_{i} h s_{i}$$

Berechnen Sie

- a) die Zustandssumme Z_K und die innere Energie $U = \langle H \rangle$.
- b) die freie Energie $F = -kT \ln Z_K(T, V, N)$
- c) die durchnschnittliche Magnetisierung

$$m = \frac{1}{N} \langle \sum_{i} s_i \rangle .$$

Verifizieren Sie (mit Teil a), dass U = -Nhm.

3. Ising Modell, kanonisches Ensemble

Betrachten Sie ein Kette von N Spins (magnetischen Momenten), wobei die einzelnen Spins jeweils mit ihrem nächten Nachbarn wechselwirken.

$$H = -J \sum_{i=1}^{N-1} s_i s_{i+1}, \quad s_i = \pm 1,$$

J ist eine Kopplungskonstante.

a) Berechnen Sie die kanonische Zustandssumme. Gehen Sie hierbei rekursiv vor. Das Ergebnis ist

$$Z = 2(2\cosh\beta J)^{N-2} .$$

- b) Zeigen Sie $\langle s_i \rangle = 0$, wobei $1 \ll j \ll N$.
- c) Berechnen Sie den Korrelator $\langle s_i s_j \rangle$, wobei i < j. Ergebnis:

$$\langle s_i s_j \rangle = (\tanh \beta J)^{|j-i|}$$
.

Dies kann man umschreiben als

$$\langle s_i s_j \rangle = e^{-|j-i|/\xi} ,$$

wobei

$$\xi = -[\log \tanh \beta J]^{-1} > 0$$

Korrelationslänge heisst. ξ divergiert hier im limes $T\to 0$, was wichtig im Zusammenhang mit Phasenübergängen ist.