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Sheet 5: Diffuson and conductivity

Exercise 1: Diffuson in reciprocal space

In reciprocal space, the two-particle vertex function I, can be expressed in terms of a geometric
series, which can be used to derive a particularly simple expression for the probability P,.

The probability Py(7,7’,w) has the following diagrammatic representation
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where the two-particle vertex function I'y, can be obtained by summing up all orders of elemen-
tary collision processes of amplitude y=1/(2mpgTe):
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Here, Py(7, 7', w) = y7.GE(F,7)GA (7', 7) is the probability, that a particle at 7 arrives at 7/
without any collision.

Show that, for a translation invariant system (i.e. after disorder averaging), the Fourier trans-
form of the vertex function factorizes and is given by (€2 is the system’s volume)
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and that the vertex is given by the geometric series

i
LD =R G

Similarly, one can show that the Fourier transform of Eq. factorizes as well
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Py(q,w) = 2mpoPo(q.w) Tu(q) = Po(q,w)




Use the explicit expressions for the disorder averaged single-particle Green’s functions,
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and linearize the dispersion e(k — q) ~ €(k) — ¢'- ¢ (where ¥/= V¢ is the group velocity) to
show that Py(q, k) can be written as (for |k| < |q|)

1
1 — iwT, + 10qT,

Py(q k) = e /de

where €2 is the solid angle in d dimensions.

Exercise 2: Conductivity

The goal of this exercise is to derive the Kubo formula for the linear response electric conduc-
tivity of a disordered metal.

Switching on an infinitesimal electrical field E in a metal induces a current density j = oE ,
where the tensor o is called the conductivity. The corresponding Hamiltonian can be written
as
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where the irrotational vector potential A generates an electric field:
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The current density is then given by j = Tr{pj'}, where j is the current density operator
and Tr{} denotes the trace over all states. The single-particle density operator p obeys the
Heisenberg equation of motion

dp
h— = |H, p|. 5
i = M. 5
We write the density operator as p = py + dp, where py corrsponds to A= 0, and regularize
the long time evolution by adding —iy(p — peq). Hence, the time evolution now reads

2P = [H,p) — (0~ o). (6)

Furthermore, we introduce dpeq = peq — po and approximate the Hamiltonian in linear response
by H = Ho + Hi, with H; being linear in A. Show that in linear order of A the equation of
motion reads
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and that the current density operator can be written similar to the Hamiltonian as j = jo + /1
with



which implies, that the current in linear response becomes

j=Tr{p(t)j} ~ Tr{pojr} + Tr{op(t)jo}- (%)

Suppose, that you know the full set {|a), ,} of eigenstates and eigenenergies of the unperturbed
many-body Hamiltonian H,. Furthermore Fourier transform Eq.@ and use the invariance of
the trace under basis change to get (for an electric field applied in z-direction)
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Use the so called f-sum rule
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to rewrite the conductivity as
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with spin s. Shop that in the zero temperature limit this can be written as
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which is the well known Kubo formula for conductivity.



