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Sheet 5: Diffuson and conductivity

Exercise 1: Diffuson in reciprocal space

In reciprocal space, the two-particle vertex function Γω can be expressed in terms of a geometric
series, which can be used to derive a particularly simple expression for the probability Pd.

The probability Pd(~r, ~r
′, ω) has the following diagrammatic representation
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where the two-particle vertex function Γω can be obtained by summing up all orders of elemen-
tary collision processes of amplitude γ=1/(2πρ0τe):

Γω(~r1, ~r2) = γ δ(~r1 − ~r2) + γ
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ε−ω(~r ′, ~r) is the probability, that a particle at ~r arrives at ~r ′

without any collision.
Show that, for a translation invariant system (i.e. after disorder averaging), the Fourier trans-
form of the vertex function factorizes and is given by (Ω is the system’s volume)
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and that the vertex is given by the geometric series

Γω(~q) =
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.

Similarly, one can show that the Fourier transform of Eq.(1) factorizes as well
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Use the explicit expressions for the disorder averaged single-particle Green’s functions,
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,

and linearize the dispersion ε(~k − ~q) ' ε(k) − ~v · ~q (where ~v =∇~k ε is the group velocity) to
show that P0(~q, k) can be written as (for |k| � |q|)
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where Ωd is the solid angle in d dimensions.

Exercise 2: Conductivity

The goal of this exercise is to derive the Kubo formula for the linear response electric conduc-
tivity of a disordered metal.

Switching on an infinitesimal electrical field ~E in a metal induces a current density ~j = σ ~E,
where the tensor σ is called the conductivity. The corresponding Hamiltonian can be written
as

H =
[~p+ e ~A(t)]2

2m
+ V (~r), (3)

where the irrotational vector potential ~A generates an electric field:

~E = −∂
~A

∂t
, ∇× ~A = ~H = 0. (4)

The current density is then given by ~j = Tr{ρĵ}, where ĵ is the current density operator
and Tr{} denotes the trace over all states. The single-particle density operator ρ obeys the
Heisenberg equation of motion

i~
∂ρ
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= [H, ρ]. (5)

We write the density operator as ρ = ρ0 + δρ, where ρ0 corrsponds to ~A = 0, and regularize
the long time evolution by adding −iγ(ρ− ρeq). Hence, the time evolution now reads
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Furthermore, we introduce δρeq = ρeq−ρ0 and approximate the Hamiltonian in linear response

by H = H0 +H1, with H1 being linear in ~A. Show that in linear order of ~A the equation of
motion reads
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and that the current density operator can be written similar to the Hamiltonian as ĵ = ĵ0 + ĵ1
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which implies, that the current in linear response becomes

~j = Tr{ρ(t)ĵ} ' Tr{ρ0ĵ1}+ Tr{δρ(t)ĵ0}. (9)

Suppose, that you know the full set {|α〉, εα} of eigenstates and eigenenergies of the unperturbed
many-body Hamiltonian H0. Furthermore Fourier transform Eq.(7) and use the invariance of
the trace under basis change to get (for an electric field applied in x-direction)
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Use the so called f -sum rule
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to rewrite the conductivity as
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with spin s. Shop that in the zero temperature limit this can be written as

Reσxx(εF , ω) = s
~
πΩ

Tr
[
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which is the well known Kubo formula for conductivity.


