Sheet 5: Diffuson and conductivity

Exercise 1: Diffuson in reciprocal space

In reciprocal space, the two-particle vertex function Γ_{ω} can be expressed in terms of a geometric series, which can be used to derive a particularly simple expression for the probability P_{d}.

The probability $P_{d}\left(\vec{r}, \vec{r}^{\prime}, \omega\right)$ has the following diagrammatic representation

$$
\begin{align*}
P_{d}\left(\vec{r}, \vec{r}^{\prime}, \omega\right) & =\vec{r} \underbrace{R \varepsilon \vec{r}_{1}}_{\varepsilon-\omega} \vec{r}_{1} \vec{r}_{\vec{r}_{2}} \vec{r}_{2} e_{\varepsilon-\omega}^{\varepsilon} \\
& =\frac{1}{2 \pi \rho_{0}} \int d \vec{r}_{1} d \vec{r}_{2} G_{\varepsilon}^{R}\left(\vec{r}, \vec{r}_{1}\right) G_{\varepsilon}^{R}\left(\vec{r}_{1}, \vec{r}^{\prime}\right) G_{\varepsilon-\omega}^{A}\left(\vec{r}, \vec{r}_{1}\right) G_{\varepsilon-\omega}^{A}\left(\vec{r}_{2}, \vec{r}^{\prime}\right) \Gamma_{\omega}\left(\vec{r}_{1}, \vec{r}_{2}\right), \tag{1}
\end{align*}
$$

where the two-particle vertex function Γ_{ω} can be obtained by summing up all orders of elementary collision processes of amplitude $\gamma=1 /\left(2 \pi \rho_{0} \tau_{e}\right)$:

$$
\begin{aligned}
\Gamma_{\omega}\left(\vec{r}_{1}, \vec{r}_{2}\right) & =\gamma \delta\left(\vec{r}_{1}-\vec{r}_{2}\right)+\gamma \int d \vec{r}^{\prime \prime} \Gamma_{\omega}\left(\vec{r}_{1}, \vec{r}^{\prime \prime}\right) G_{\varepsilon}^{R}\left(\vec{r}^{\prime \prime}, \vec{r}_{2}\right) G_{\varepsilon-\omega}^{A}\left(\vec{r}_{2}, \vec{r}^{\prime \prime}\right) \\
& =\gamma \delta\left(\vec{r}_{1}-\vec{r}_{2}\right)+\frac{1}{\tau_{e}} \int d \vec{r}^{\prime \prime} \Gamma_{\omega}\left(\vec{r}_{1}, \vec{r}^{\prime \prime}\right) P_{0}\left(\vec{r}^{\prime \prime}, \vec{r}_{2}, \omega\right)
\end{aligned}
$$

Here, $P_{0}\left(\vec{r}, \vec{r}^{\prime}, \omega\right)=\gamma \tau_{e} G_{\varepsilon}^{R}\left(\vec{r}, \vec{r}^{\prime}\right) G_{\varepsilon-\omega}^{A}\left(\vec{r}^{\prime}, \vec{r}\right)$ is the probability, that a particle at \vec{r} arrives at \vec{r}^{\prime} without any collision.
Show that, for a translation invariant system (i.e. after disorder averaging), the Fourier transform of the vertex function factorizes and is given by (Ω is the system's volume)

$$
\Gamma_{\omega}(\vec{q})=\gamma+\frac{1}{\tau_{e}} \Gamma_{\omega}(\vec{q}) \overbrace{\frac{\gamma \tau_{e}}{\Omega} \sum_{\vec{k}} G_{\varepsilon}^{R}(\vec{k}) G_{\varepsilon-\omega}^{A}(\vec{k}-\vec{q})}^{P_{0}(\vec{q}, \omega)}
$$

and that the vertex is given by the geometric series

$$
\Gamma_{\omega}(\vec{q})=\frac{\gamma}{1-P_{0}(\vec{q}, \omega) / \tau_{e}}
$$

Similarly, one can show that the Fourier transform of Eq.(1) factorizes as well

$$
\begin{equation*}
P_{d}(\vec{q}, \omega)=2 \pi \rho_{0} P_{0}(\vec{q}, \omega)^{2} \Gamma_{\omega}(\vec{q})=P_{0}(\vec{q}, \omega) \frac{P_{0}(\vec{q}, \omega) / \tau_{e}}{1-P_{0}(\vec{q}, \omega) / \tau_{e}} . \tag{2}
\end{equation*}
$$

Use the explicit expressions for the disorder averaged single-particle Green's functions,

$$
G_{\varepsilon}^{R / A}(\vec{k})=\frac{1}{\varepsilon-\varepsilon(\vec{k}) \pm \frac{i}{2 \tau_{e}}}
$$

and linearize the dispersion $\varepsilon(\vec{k}-\vec{q}) \simeq \varepsilon(k)-\vec{v} \cdot \vec{q}$ (where $\vec{v}=\nabla_{\vec{k}} \varepsilon$ is the group velocity) to show that $P_{0}(\vec{q}, k)$ can be written as (for $\left.|k| \ll|q|\right)$

$$
P_{0}(\vec{q}, k)=\tau_{e} \int d \Omega_{d} \frac{1}{1-i \omega \tau_{e}+i \vec{v} \vec{q} \tau_{e}},
$$

where Ω_{d} is the solid angle in d dimensions.

Exercise 2: Conductivity

The goal of this exercise is to derive the Kubo formula for the linear response electric conductivity of a disordered metal.

Switching on an infinitesimal electrical field \vec{E} in a metal induces a current density $\vec{j}=\sigma \vec{E}$, where the tensor σ is called the conductivity. The corresponding Hamiltonian can be written as

$$
\begin{equation*}
\mathcal{H}=\frac{[\vec{p}+e \vec{A}(t)]^{2}}{2 m}+V(\vec{r}), \tag{3}
\end{equation*}
$$

where the irrotational vector potential \vec{A} generates an electric field:

$$
\begin{equation*}
\vec{E}=-\frac{\partial \vec{A}}{\partial t}, \nabla \times \vec{A}=\vec{H}=0 \tag{4}
\end{equation*}
$$

The current density is then given by $\vec{j}=\operatorname{Tr}\{\rho \hat{j}\}$, where \hat{j} is the current density operator and $\operatorname{Tr}\}$ denotes the trace over all states. The single-particle density operator ρ obeys the Heisenberg equation of motion

$$
\begin{equation*}
i \hbar \frac{\partial \rho}{\partial t}=[\mathcal{H}, \rho] . \tag{5}
\end{equation*}
$$

We write the density operator as $\rho=\rho_{0}+\delta \rho$, where ρ_{0} corrsponds to $\vec{A}=0$, and regularize the long time evolution by adding $-i \gamma\left(\rho-\rho_{\text {eq }}\right)$. Hence, the time evolution now reads

$$
\begin{equation*}
i \hbar \frac{\partial \rho}{\partial t}=[\mathcal{H}, \rho]-i \gamma\left(\rho-\rho_{\mathrm{eq}}\right) . \tag{6}
\end{equation*}
$$

Furthermore, we introduce $\delta \rho_{\text {eq }}=\rho_{\text {eq }}-\rho_{0}$ and approximate the Hamiltonian in linear response by $\mathcal{H}=\mathcal{H}_{0}+\mathcal{H}_{1}$, with \mathcal{H}_{1} being linear in \vec{A}. Show that in linear order of \vec{A} the equation of motion reads

$$
\begin{equation*}
i \hbar \frac{\partial \delta \rho}{\partial t}=\left[\mathcal{H}_{0}, \delta \rho\right]+\left[\mathcal{H}_{1}, \rho_{0}\right]-i \gamma\left(\delta \rho-\delta \rho_{\mathrm{eq}}\right) \tag{7}
\end{equation*}
$$

and that the current density operator can be written similar to the Hamiltonian as $\hat{j}=\hat{j}_{0}+\hat{j}_{1}$ with

$$
\begin{gather*}
\left.\hat{j}_{0}=-\frac{e}{2 m}(\hat{n}(\vec{r}) \vec{p}+\vec{p} \hat{n}(\vec{r}))\right), \\
\left.\hat{j}_{1}=-\frac{e^{2}}{2 m}(\hat{n}(\vec{r}) \vec{A}+\vec{A} \hat{n}(\vec{r}))\right), \tag{8}
\end{gather*}
$$

which implies, that the current in linear response becomes

$$
\begin{equation*}
\vec{j}=\operatorname{Tr}\{\rho(t) \hat{j}\} \simeq \operatorname{Tr}\left\{\rho_{0} \hat{j}_{1}\right\}+\operatorname{Tr}\left\{\delta \rho(t) \hat{j}_{0}\right\} . \tag{9}
\end{equation*}
$$

Suppose, that you know the full set $\left\{|\alpha\rangle, \varepsilon_{\alpha}\right\}$ of eigenstates and eigenenergies of the unperturbed many-body Hamiltonian \mathcal{H}_{0}. Furthermore Fourier transform Eq. (77) and use the invariance of the trace under basis change to get (for an electric field applied in x-direction)

$$
\begin{equation*}
\left.\sigma_{x x}=\left.\frac{i}{\omega}\left[\frac{n e^{2}}{m}+\frac{e^{2}}{m^{2} \Omega} \sum_{\alpha \beta} \frac{f\left(\varepsilon_{\alpha}\right)-f\left(\varepsilon_{\beta}\right)}{\varepsilon_{\alpha}-\varepsilon_{\beta}} \frac{\varepsilon_{\alpha}-\varepsilon_{\beta}-i \gamma}{\varepsilon_{\alpha}-\varepsilon_{\beta}-\hbar \omega-i \gamma}\left|\langle\alpha| p_{x}\right| \beta\right\rangle\right|^{2}\right] . \tag{10}
\end{equation*}
$$

Use the so called f-sum rule

$$
\begin{equation*}
\left.n+\frac{1}{m \Omega} \sum_{\alpha \beta} \frac{f\left(\varepsilon_{\alpha}\right)-f\left(\varepsilon_{\beta}\right)}{\varepsilon_{\alpha}-\varepsilon_{\beta}}\left|\langle\alpha| p_{x}\right| \beta\right\rangle\left.\right|^{2}=0 \tag{11}
\end{equation*}
$$

to rewrite the conductivity as

$$
\begin{equation*}
\sigma_{x x}(\omega)=-s \frac{\pi \hbar}{\Omega} \sum_{\alpha \beta} \frac{f\left(\varepsilon_{\alpha}\right)-f\left(\varepsilon_{\beta}\right)}{\varepsilon_{\alpha}-\varepsilon_{\beta}} \frac{\left.\frac{e^{2}}{m^{2}}\left|\langle\alpha| p_{x}\right| \beta\right\rangle\left.\right|^{2}}{\varepsilon_{\alpha}-\varepsilon_{\beta}-\hbar \omega-i \gamma} \tag{12}
\end{equation*}
$$

with spin s. Shop that in the zero temperature limit this can be written as

$$
\begin{equation*}
\operatorname{Re} \sigma_{x x}\left(\varepsilon_{F}, \omega\right)=s \frac{\hbar}{\pi \Omega} \operatorname{Tr}\left[\hat{j}_{x} \operatorname{Im} G_{\varepsilon_{f}}^{R} \hat{j}_{x} \operatorname{Im} G_{\varepsilon_{F}-\hbar \omega}^{R}\right] \tag{13}
\end{equation*}
$$

which is the well known Kubo formula for conductivity.

