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Bose-Einstein condensation in the alkali gases:
Some fundamental concepts
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Whatever can be said, can be said clearly; and whereof one cannot speak,
thereof one should keep silent.

L. Wittgenstein

(Published 24 April 2001)

The author presents a tutorial review of some ideas that are basic to our current understanding of the
phenomenon of Bose-Einstein condensation (BEC) in the dilute atomic alkali gases, with special
emphasis on the case of two or more coexisting hyperfine species. Topics covered include the
definition of and conditions for BEC in an interacting system, the replacement of the true interatomic
potential by a zero-range pseudopotential, the time-independent and time-dependent Gross-Pitaevskii
equations, superfluidity and rotational properties, the Josephson effect and related phenomena, and
the Bogoliubov approximation.
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I. INTRODUCTION. SCOPE OF THE REVIEW

The phenomenon known as Bose-Einstein condensa-
tion (hereafter abbreviated BEC) was predicted by Ein-
©2001 The American Physical Society
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stein in 1924 on the basis of ideas of Bose concerning
photons: In a system of particles obeying Bose statistics
and whose total number is conserved, there should be a
temperature below which a finite fraction of all the par-
ticles ‘‘condense’’ into the same one-particle state. Ein-
stein’s original prediction was for a noninteracting gas, a
system felt by some of his contemporaries to be perhaps
pathological, but shortly after the observation of super-
fluidity in liquid 4He below the l temperature (2.17 K),
Fritz London suggested that despite the strong inter-
atomic interactions BEC was indeed occurring in this
system and was responsible for the superfluid properties;
this suggestion has stood the test of time and is the basis
for our modern understanding of the properties of the
superfluid phase. In 1995 BEC was realized in a system
that is about as different as possible from 4He, namely,
dilute atomic alkali gases trapped by magnetic fields,
and over the last few years these systems have been the
subject of an explosion of research, both experimental
and theoretical, which in addition to drawing on estab-
lished lore in the areas of atomic collisions, quantum
optics, and condensed-matter physics has generated
problems and ideas specific to these novel systems.

Perhaps the single aspect of BEC systems that makes
them most fascinating is best illustrated by the cover of
Science magazine of December 22, 1995, in which the
Bose condensate is declared ‘‘molecule of the year’’ and
pictured as a platoon of soldiers marching in lockstep:
every atom in the condensate must behave in exactly the
same way, and this has the consequence, inter alia, that
effects which are so small as to be essentially invisible at
the level of a single atom may be spectacularly ampli-
fied. (An example is the phenomenon of superfluidity,
discussed in Sec. VI.) In addition, as we shall see by
implication, this property tests, in rather subtle ways,
our understanding of the meaning of the formalism of
quantum mechanics, the nature of ‘‘randomness,’’ and
much else.

This paper does not attempt to be a comprehensive
review of the field of BEC in the alkali gases, even as
regards its theoretical aspects. Rather, it is intended to
be tutorial in nature, and the reader I have had specifi-
cally in mind is a graduate student about to embark on
research, either experimental or theoretical, in this area.
I believe that a major difficulty such a student is likely to
face is that there are many ideas which are taken for
granted by workers in the field (or at least by a subset of
them) but for which it is difficult to give an explicit and
useful reference; this is particularly true of ideas that
were originally developed, in some cases as long ago as
the 1940s, in the context and language of liquid helium
and have not always been rephrased in the terminology
that has become standard in the BEC field. My goal
therefore has been to set out as clearly as I know how a
set of concepts which I believe are basic to our under-
standing of BEC in the alkali gases, and to discuss in at
least a schematic way how they relate to existing or con-
templated experiments.

Even given this limited goal, space and other consid-
erations dictate a severe restriction of the subject mat-
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ter. Generally speaking, I have spent a fair amount of
time on the derivation of fundamental equations such as
the Gross-Pitaevskii equation and the associated con-
ceptual issues, but much less on their applications to
specific experimental systems. This is not, of course, be-
cause I feel that such applications are any less impor-
tant, but because it is this part of the program that tends
to be discussed explicitly in the regular journal litera-
ture, while the logically prior steps are often taken for
granted. Second, I have taken advantage of the fact that
there already exist several good reviews of the field (e.g.,
Parkin and Walls, 1998; Pethick and Smith, 2000; and
several of the articles in Inguscio et al., 1999). In particu-
lar, the May 1999 issue of this journal contains an excel-
lent review by Dalfovo et al. (1999) of much of the ex-
perimental work and relevant theory of the first three
years of the subject, and I have therefore been able sim-
ply to refer the reader to that for many of the standard
applications of the ideas I shall discuss. However, one
aspect that is barely touched on by Dalfovo et al. and
that has taken center stage over the last 18 months or so
is the special class of phenomena associated with the
hyperfine degree of freedom, so I spend a fair amount of
time on this. For reasons explained in Sec. IX, I have not
attempted to cover the important subject of nonlinear
kinetics. Finally, purely for reasons of space, I have been
unable to mention at all the highly nontrivial experimen-
tal techniques required to cool the alkali gases into the
BEC regime [on this, see, for example, the Nobel lec-
tures of Chu, Cohen-Tannoudji, and Phillips (1998) and
Ketterle et al. (1999)] and have mentioned trapping and
imaging techniques (in Sec. II) only to the extent that it
is necessary to motivate the subsequent theoretical dis-
cussion. Some further material that I would have in-
cluded here had space allowed may be found in Leggett
(2000a).

The plan of the review is as follows. In Sec. II I give a
brief introduction to the experimental systems, with em-
phasis on orders of magnitude and on the role of the
hyperfine degree of freedom. Section III is devoted to
the origin, definition, and occurrence of BEC and some
related concepts such as the order parameter and super-
fluid velocity. In Sec. IV I discuss in some detail the
effective interatomic interaction (a topic that tends to be
passed over in most papers in a couple of lines), with
some attention to the infamous ‘‘factor of 2,’’ which is
liable to confuse newcomers to the field, particularly in
the multispecies case. Section V derives and discusses
the time-independent and time-dependent Gross-
Pitaevskii equations, including their generalizations to
finite temperature and to multispecies systems. Section
VI is devoted to the rotational properties of a Bose con-
densate and the associated notion of superfluidity; here,
in contrast to much of the existing alkali-gas literature, I
tend to play down ‘‘vortices’’ and concentrate on intrin-
sically multiply connected topologies, as I believe that
this permits a much clearer conceptual picture. In Sec.
VII, which is the longest in the paper, I discuss in some
detail the ‘‘toy model’’ that results when the N bosons in
question are restricted to a single two-dimensional Hil-
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bert space; this permits a discussion of various phenom-
ena (Josephson effect, phase diffusion, etc.) that have
more complicated, and in my opinion often less well-
understood, analogs in the case of an extended system.
Section VIII introduces the Bogoliubov approximation,
from a point of view that is not the majority one in the
literature, and discusses its relation to the time-
dependent Gross-Pitaevskii description. Section IX
briefly lists and comments on some further topics which
for various reasons are not covered in the main text.

The reader who compares this review with much of
the existing literature on BEC, whether in 4He or the
alkali gases, will be struck by the fact that I virtually
bend over backwards to avoid introducing the idea of
‘‘spontaneously broken gauge symmetry.’’ (I do use it
once, reluctantly, in Sec. VIII, but only for the purpose
of making contact with the formalism that has become
standard in the literature.) It would be disingenuous of
me to attempt to conceal the fact that I believe the util-
ity of this idea is outweighed by its dangers; see Sec.
III.D.1

Finally, a note on referencing policy. In these days of
automated databases, I do not believe it is particularly
useful for a review of this type to attempt to provide a
comprehensive list of papers in the literature that deal
with the various topics described, still less to grade them
according to relative significance. Generally speaking,
when I am discussing basic conceptual issues I have tried
to reference at least a selection of what I regard as the
most important discussions (which are not necessarily
the chronologically earliest ones); however, once it
comes to applications of the basic equations I have often
referenced only one or two recent papers from which I
believe most of the rest of the relevant literature can be
traced. Obviously the choice of these is highly subjective
and indeed arbitrary, and I hope that the many authors
whose papers I have failed to reference will not attribute
this to malice!

II. THE SYSTEMS

A. General

The experimental systems I shall be addressing in this
review are collections of individual neutral alkali-gas
atoms,1 with total number N ranging from a few hun-
dred up to ;1010, confined by magnetic and/or optical
means to a relatively small region of space. Their (maxi-
mum) densities range from ;1011 cm23 to ;531015

cm23, and their temperature, in the regime of interest to
us, is typically in the range of a few tens of nK–;50 mK.
It is needless to mention that such an atomic gas cannot
in fact be the stable thermodynamic state of the N at-
oms, which would at these temperatures certainly corre-
spond to a solid; however, the formation of the solid

1It is convenient for the present purpose to include H in the
alkalis. However, some of the values quoted as ‘‘typical’’ be-
low do not apply to it.
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requires as a first step the recombination of two atoms
to form a diatomic molecule, and while this process is
certainly exothermic (with formation energies typically
;0.4–1.2 eV) it is very slow in the absence of a third
atom to carry off the surplus energy, angular momen-
tum, etc. Thus in practice the dominant recombination
processes are usually ‘‘three-body’’ ones; the rate per
atom is typically ;10229–10230 cm6 sec21, giving a
sample lifetime of the order of a few seconds to a few
minutes.

An alkali atom in its ground state has a single valence
electron in an ns state outside one or more closed shells
(except for H); the electronic ground state is therefore a
doublet. Except in the case of H, the only electronic
excited state that is of much interest is the np state
(since it is overwhelmingly to this state that radiation in
the optical regime will couple the ground state); the
wavelengths l of the ‘‘fundamental’’ (ns→np) transi-
tion lie in the range 5000–7000 Å and the excited-state
lifetimes in the range 16–35 nsec (see, for example,
Weiner et al., 1999, Table II). [In the case of H (n51)
there is of course no 1p state and a single photon will
preliminarily excite the atom to the 2p state; however, a
pair of photons can excite the 1s→2s transition, and this
has played an important role in recent experiments.]

If we treat the atom for the moment as a single indi-
visible entity (see Sec. III.A) and consider the exchange
of two atoms of the same (chemical and isotopic) spe-
cies, this involves exchanging Z1A fermions, and thus
the total wave function should be symmetric or antisym-
metric under this exchange according as Z1A is even or
odd. Since Z is automatically odd for the alkali ele-
ments, this means that a system of identical odd-A iso-
topes will obey Bose-Einstein statistics (and hence has
the possibility to display BEC), while an even-A system
such as 6Li or 40K will obey Fermi-Dirac statistics. We
shall be interested from now on in the former case, al-
though the latter is also very interesting (see de Marco
and Jin, 1999). The odd-A isotopes, other than 1H, in
which BEC has been demonstrated at the time of writ-
ing, are 87Rb, 23Na, 7Li, and, very recently, 85Rb; as it
happens, each of the first three has nuclear spin 3/2, so
when discussing the effects of nuclear spin in Sec. II.C I
shall concentrate on this case. A table of the principal
stable or long-lived alkali Bose isotopes may be found in
Pethick and Smith (2000), Chap. 3.

B. Trapping potentials

For the purposes of this review it is not necessary to
go into the details of the various ingenious schemes that
have been developed over the last 15 years or so for the
trapping of neutral atoms (or, what is equally important
for the real-life experiments, for their cooling into the
mK–nK regime where BEC can occur); for these topics,
the reader is referred, for example, to Ketterle et al.
(1999) or to the 1998 Nobel lectures. However, it is im-
portant to appreciate the general features of the result-
ing effective potentials in which the atoms move, and in
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particular their dependence (or not) on the hyperfine-
Zeeman degree of freedom to be discussed in Sec. II.C.

1. Laser traps

For an excellent account of the general subject of
atom-laser interactions, the reader is referred to Cohen-
Tannoudji (1992). The effect that has been principally
exploited in the laser trapping of atoms in the BEC re-
gime (as distinct from their cooling into this regime) is
the so-called dipole effect, which relies on the (conser-
vative) interaction of the laser field with the electric di-
pole moment it induces on the atom. For the purposes of
an initial discussion, let us ignore the fine and hyperfine
structure and define the detuning of the ns→np transi-
tion frequency in the standard way:

D[\v las2~Enp2Ens!~[\v las22p\c/l!. (2.1)

It is also convenient to define the saturation intensity
Io , that is, the laser-beam intensity, which, when exactly
on resonance, will induce a population of order unity of
the excited (p) state. To within a numerical factor of
order unity which depends on polarization, etc., this is
given by

Io5e0cG2/d2, (2.2)

where d is an appropriately defined dipole matrix ele-
ment for the transition in question and G[\/t ; a typical
value of Io is of order 100 W/m2. Then a convenient
expresssion for the change in energy of the atom in the
laser field is, in the limit G!D ,

DElaser~r!5S I~r!

Io
D G2

D
. (2.3)

Note that in this formula I/Io can be larger than 1 [pro-
vided it is !(D/G)2]. A region of high laser intensity
thus provides an attractive potential for D,0 (‘‘red de-
tuning’’) and a repulsive potential for D.0 (‘‘blue de-
tuning’’). It should be borne in mind that by arranging to
have two counterpropagating laser beams, the potential
can be varied over a scale of as short as half the laser
wavelength, i.e., ;3000 Å.

An important question is the degree to which, if at all,
laser-generated potentials are sensitive to the hyperfine-
Zeeman index discussed in Sec. II.C. To the extent that
spin-orbit coupling in the excited state is neglected, it is
clear that there can be no effect at all, since the orbital
ground state (s state) is unique. Moreover, for a linearly
polarized laser beam the two electron-spin states are
clearly equivalent by time reversal, so any effect would
have to be at most of the order of the ratio of hyperfine-
Zeeman splitting to the detuning, which in most experi-
ments is &1024 (see below). The case of a circularly
polarized laser beam is more complicated, and by tuning
fairly close to the (fine-structure-split) resonance a con-
siderable sensitivity to the hyperfine index can be ob-
tained; see Corwin et al., 1999.

An important consideration in laser trapping is that
one usually wishes as far as possible to avoid spontane-
ous emission processes [note that a single optical pho-
Rev. Mod. Phys., Vol. 73, No. 2, April 2001
ton, in the (admittedly unlikely) event that its energy
were totally absorbed in the atomic gas, would be more
than enough to heat it right out of the BEC phase]. As
shown in detail by Cohen-Tannoudji (1992), for G!D
the emission probability per atom is of order
@I(r)/Io#\21G3/D2. In view of the D22 falloff by com-
parison with the D21 behavior in Eq. (2.3), it is generally
advantageous to tune the laser(s) very far off resonance.
In fact, it is quite common to detune by ;10% of the
original optical frequency,2 so that the ratio G/D is
;1027 –1026; then, even in the red-detuned case with,
say, 106 atoms in one’s sample, the spontaneous emis-
sion rate is only a fraction of a sec21 and is unlikely to
affect the experiment. When blue-detuned radiation is
used to provide a barrier, the spontaneous emission ef-
fect is obviously less important, since the atoms do not
appreciably penetrate the barrier region. The crucial
qualitative point is that it is possible in this way to pro-
vide laser-generated potentials that are of an order
greater than the thermal energy (or other characteristic
energy scales; see Sec. III) without appreciable heating
effects. Note also that the time scales over which such
potentials can be manipulated are extremely short (be-
ing in fact typically limited by the turning-on time of the
laser). For a more extended discussion of laser (optical)
confinement I refer the reader to Stenger et al. (1998b).

2. Magnetic traps

The magnetic analog of Earnshaw’s theorem forbids
the magnitude of the magnetic field B(r) to have a local
maximum in free space. However, nothing forbids the
occurrence of a local minimum, and various methods
can be used to provide such a minimum, the most widely
used being variants of the ‘‘time-orbiting potential’’ and
Ioffe-Pritchard traps; for a detailed description of these
the reader is referred to the papers of Petrich et al.
(1995) and of Pritchard (1983), respectively. Virtually all
‘‘pure’’ (i.e., non-laser-assisted) magnetic traps used in
BEC experiments to date have had axial symmetry and
a finite offset field, i.e., with an appropriate choice of
cylindrical polar coordinate system the magnitude of the
field has the form

uB~r!u5Bo1
1
2

ar21
1
2

bz2. (2.4)

One might wonder why I have not specified the direction
of the field as a function of r. The reason is that even
when this direction varies appreciably from its value at
the origin, the atoms move so slowly that it is an excel-
lent approximation to regard their magnetic moments as
following the direction of the local field adiabatically
(see Sec. V.D). Thus, if we consider a given hyperfine-
Zeeman species, its potential energy will be a function

2However, the detuning is usually still small enough relative
to the resonance frequency that the counter-rotating terms
(see Cohen-Tannoudji, op. cit.) can be neglected in the analy-
sis.
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only of the local field magnitude (2.4); in fact in the
simplest case it will be proportional to it with a constant
of proportionality m (see below).

3. Gravity

For atoms in the nK–mK temperature regime, the ef-
fect of the Earth’s gravitational field is by no means neg-
ligible: for a 87Rb atom at 100 nK the thermal energy
corresponds to a vertical displacement in this field of
only about 1.6 m, less than the extent of the thermal
cloud in a typical trap in the absence of gravity. The
effect of gravity is, crudely speaking, to shift the mini-
mum of the potential in the vertical direction; in the case
of a pure laser trap, where the original potential is
nearly independent of the hyperfine-Zeeman species,
this effect is not of great importance, but in the case of
magnetic trapping the species-independent gravitational
effect competes against a species-dependent magnetic
force, and the effect is in general to displace the mini-
mum of the potentials for different species relative to
one another, an effect sometimes called ‘‘sag.’’ How-
ever, in certain cases it is possible to eliminate this effect
by a judicious choice of field (see below).

C. The hyperfine and Zeeman interactions

For a general account of this subject, I refer the
reader to Woodgate (1970), Chap. 9. Quite generally, a
hyperfine-Zeeman3 sublevel of an atom with given total
electronic angular momentum J and nuclear spin I may
be labeled by the projection mF of total atomic spin F
[I1J on the axis of the field B (which is a good quan-
tum number for any uBu) and by the value of total
F@F2[F(F11)# which characterizes it in the limit uBu
→0: F takes value from uI2Ju to I1J . In the present
context, I shall specialize immediately to the electronic
ground state of the alkalis (J5S51/2) and approximate
the electronic-spin g factor gs by 2; moreover, since the
only experiments to date involving more than one hy-
perfine species have been done on 87Rb or 23Na, I shall
specialize to the I value characterizing both of these
(and also 7Li), namely, 3/2 (so F51 or 2). Finally, for
the moment I shall neglect the small nuclear Zeeman
energy. Then the energies of the various hyperfine sub-
levels are given as a function of the magnetic-field mag-
nitude B by the appropriate special case of the Breit-
Rabi formula [see Woodgate, 1970, Eq. (9.80)]. It is
convenient to choose the zero of energy to be the mean
of the B50 F51 and F52 energies and to define the
zero-field splitting E(F52)2E(F51) as 2A . A has the
sign of the nuclear g factor and is positive for all the I
53/2 alkali isotopes. We also introduce a characteristic
hyperfine ‘‘crossover’’ field Bhf by Bhf[A/umBu(mB
5e\/2me). Then the energies of the various levels are
given as follows:

3In the following I use ‘‘hyperfine’’ as a shorthand for
‘‘hyperfine-Zeeman’’; thus two different hyperfine species may
differ in the values of F and/or mF .
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mF F E~B !

2 2 A~11B/Bhf !

1 H 2
1J 6A@11B/Bhf1~B/Bhf!

2#1/2

0 H 2
1J 6A@11~B/Bhf!

2#1/2

21 H 2
1J 6A@12B/Bhf1~B/Bhf!

2#1/2)

22 2 A~12B/Bhf!, (2.5)

where the plus sign corresponds to F52 and the minus
sign to F51. A graph of these eigenvalues versus B is
shown in Fig. 1; note in particular (1) the inversion of
the order of the energies as a function of mF in the
lower multiplet relative to the upper one; (2) the non-
monotonic behavior of the two mF521 states; and (3)
the fact that (within this approximation) the initial slope
of E(B) is identical for the F52, mF51 and F51, mF
521 states.

Most BEC experiments have been done with fields
that are much less than Bhf in the relevant region of
space, and it is then usually legitimate, to a first approxi-
mation, to linearize Eqs. (2.5) in B :

E~B !>6H A1
1
2

umBumFBJ , (2.6)

with the 1 (2) sign referring to the upper (lower) mul-
tiplet. We see that in a field configuration of the form
(2.4), the states F52, mF522,21 and F51, mF50,
21 will be expelled from the trap (or in the case F52,
mF521 displaced to the locus B(r)5Bhf /&); these
states are usually called ‘‘high-field seekers.’’ On the
other hand, the states F52, mF5 22, 1 or 0 and F51,
mF521 (in the limit B!Bhf) are ‘‘low-field seekers’’
and will be attracted to the origin.

Now, if we start with a gas of pure F52, mF51 or
F52, mF50 atoms, it turns out that even in the neglect
of dipolar forces (which do not in general conserve the
total mF of the atoms involved), two-body collisions can

FIG. 1. The energies of the different hyperfine-Zeeman states
as a function of magnetic field.
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produce lower-energy, high-field-seeking states, and for
this reason most experiments to date on single hyperfine
species in magnetic traps have been on one of the two
‘‘maximally stretched’’ states, namely, F52, mF52 and
F51, mF521. However, multispecies experiments have
involved other states, in particular F52, mF51. We see
that given a field configuration of the form (2.4) with
B!Bhf , the potential felt by an atom in a given hyper-
fine state is in our approximation expressed in the form

V~r ,z !5const1
1
2

Mvr
2r21

1
2

Mvz
2z2, (2.7)

where the value of vr[2pnr is identical for the F52,
mF51 and F51, mF521 states but a factor of &
larger for the F52, mF52 state (and similarly for vz
[2pnz). Experimental papers reporting work on a
single hyperfine species commonly specify the trap in
terms of the relevant values of nr and nz . In practice,
typical values of each lie in the region of a few Hz to a
few kHz; there is no generic constraint on the ratio
nr /nz , which may, depending on the trap, be @1, ;1, or
!1.

Although Eq. (2.5) [and hence Eq. (2.6)] is usually an
adequate approximation for B!Bhf , it is necessary on
occasion to go beyond it. A case in point is the calcula-
tion of the relative equilibrium positions, in the presence
of gravity, of the F52, mF51 and F51, mF521 states.
The position of the minimum in each case is determined
by balancing the Earth’s gravitational field against the
gradient of the magnetic potential, and if we were to use
Eq. (2.5) it would coincide for the two species. However,
at this point it is necessary to take into account both the
nuclear Zeeman term and the term of order B2 in the
expansion of formulas (2.5) (the quadratic Zeeman ef-
fect); it turns out that these two small effects exactly
cancel when B has the special value (4/3) mnA/mB

2

(;1G). A second respect in which the quadratic Zee-
man effect plays a useful role is that by making the fre-
quencies for (say) the mF51→mF50 and mF50→mF
521 transitions unequal it permits selective population,
by an ordinary rf pulse acting on an originally purely
mF521 population, of the mF50 state without appre-
ciable population of the mF51 state—something which
is not possible so long as the (hyperfine) Zeeman energy
is purely linear in mF (on this, see Stenger et al., 1998b,
Sec. V).

D. Imaging

The raw data from which we infer the static and dy-
namic behavior of an ultracold trapped alkali gas, and in
particular of a Bose-Einstein condensate, is almost with-
out exception optical, involving the fundamental visible-
region ns→np transition. I shall treat this subject quite
briefly, simply to indicate broadly what kind of informa-
tion can be obtained and with what order of accuracy.
For further details I refer the reader to Ketterle et al.
(1999).
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The most important single point to appreciate is that
the energy interval over which both the real and the
imaginary parts of the dielectric constant of an atomic
gas show substantial variation, namely, the linewidth G,
is typically of order 0.5 mK (a few MHz) and hence
small compared to the zero-field hyperfine ground-state
splitting (100 mK–1 K). Thus there is no difficulty in
measuring by optical means not only the total density of
the gas but the density of atoms in the F52 and F51
multiplets separately. If one wishes to distinguish differ-
ent sublevels within each multiplet, the energy resolu-
tion alone may or may not be sufficient, but one can
exploit the sensitivity of a transition out of a particular
sublevel to the polarization of the probe laser to make
the distinction. In most, though not all, experiments the
quantity that is directly measured is either the total
atomic density or that of a particular species (usually
integrated along the line of the probe laser beam) as a
function of space and/or time.

The simplest optical imaging technique relies on
straight absorption: the logarithm of the intensity trans-
mitted through a column of gas is simply proportional to
the integrated atomic density (or the density of the par-
ticular species selected). This method is inherently de-
structive (since real absorption processes are followed
by spontaneous radiation and the accompanying heat-
ing), and in addition is difficult to apply at high densities
(see Andrews et al., 1996, p. 85, paragraph 2); thus in
practice one often switches off the trap and allows the
sample to expand (and thus rarefy) before switching on
the probe laser beam.

A second, nondestructive measurement technique is
dispersive (phase-contrast) imaging; this relies on the
diffracting effect of the gas and does not involve (much)
heating of the sample; it need not therefore be destruc-
tive, and it is believed that up to ;100 successive imag-
ings may be obtained by this method (Andrews et al.,
1996). The spatial resolution obtainable is typically of
the order of a few microns; as to the time resolution, it is
apparently limited only by the switching-on time of the
laser. As we shall see, this time is many orders of mag-
nitude smaller than the typical time scales of the dynam-
ics of the system, so optical measurements of density
may reasonably be regarded as instantaneous.

E. Orders of magnitude

To aid our qualitative understanding, it is useful to
compare typical orders of magnitude of various relevant
energies for a set of ultracold atoms in a single system of
units. In Table I, for definiteness we choose 106 87Rb
atoms in a ‘‘typical’’ magnetic trap; numbers for the
other heavier alkalis are generally comparable, but for
H may be different by up to two or three orders of mag-
nitude. In discussing the physical significance of some of
these quantities I anticipate some of the results to be
obtained in Secs. III–V.

It is worthwhile to note explicitly that the first three
quantities in Table I, and the recoil energy, are charac-
teristics of the isolated atom and do not depend on the
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TABLE I. Energies for a set of 106 ultracold 87Rb atoms in a typical magnetic trap.

Temperature units Frequency units

Energy of ns→np transition ;23104 K 431014 Hz
Zero-field hyperfine splitting ;0.3 K ;7 GHz
Energy width of transition (\G) ;0.3 mK ;6 MHz
Characteristic two-body energy \2/mas

2 ;0.3 mK ;6 MHz
Transition temperature kBTc ;500 nK ;10 kHz
Recoil energy \2kopt

2 /2M ;200 nK ;5 kHz
Mean-field energy nUo ;100 nK ;2 kHz
Zero-point energy in harmonic well ;5 nK ;100 Hz
conditions of confinement. The two-body energy \2/mas
2

can be tuned by adjusting the magnetic-field strength so
as to vary the scattering length as (see Sec. IV.B) but is
otherwise insensitive to the details of the trap geometry.
By contrast, not only the zero-point energy \vo but the
transition temperature and the mean-field energy de-
pend on the shape of the confining potential, as well as
(in the latter two cases) on the total number of particles
trapped; as we shall see in Sec. V.E, for a given species
with as fixed, kBTc is proportional to N1/3vo , while typi-
cal values of the mean-field energy in the condensed
phase are proportional to N2/5vo

6/5 . Thus variation in N ,
in particular, can result in substantial variations in these
two quantities around the typical values quoted. Never-
theless, under realistic conditions with ‘‘typical’’ values
of as (;50–100 Å; see Sec. IV.B) we almost always
have the set of inequalities

\2/mas
2@kBTc@nUo@\vo , (2.8)

although in the case of the second inequality the @ may
represent a ratio that is only of order 5 (see Table I).

It is useful also to note some length scales character-
istic of the BEC alkali-gas problem, and their relative
orders of magnitude. Apart from the s-wave scattering
length as , we define the (typical) mean interparticle
spacing rint , the ‘‘healing length’’ j[(2mnUo\2)21/2

(see Sec. V.A), the thermal de Broglie wavelength at
Tc , lDB , and the oscillator length aho[(\/mvo)1/2,
which is the zero-point spread of the ground-state wave
function of a free particle in the trap in question. Under
normal conditions, we then have the inequalities

as!rint;lDB&j!aho . (2.9)

Typical values might be as;50 Å, rint;2000 Å, j;4000
Å, aho;1m .

It is interesting to compare the above numbers with
those characteristic of liquid helium.4 In the case of he-
lium at liquid densities, the concept of an s-wave scat-
tering length is not really meaningful, but a somewhat
similar role is played by the characteristic dimension of
the hard-core part of the interatomic potential, which is
around 2.5 Å. This should be compared with the inter-

4The numbers quoted are for 4He at saturated vapor pres-
sure; the numbers at pressures up to freezing, and for the light
isotope 3He, are similar in order of magnitude.
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particle spacing, which is about 3.5 Å; we see that the
dilute-gas condition as!rint which is so characteristic of
the BEC alkali gases is very far from satisfied for liquid
helium. As a consequence, liquid helium is, in an intui-
tive sense, a much more strongly interacting system than
the BEC gases, by many orders of magnitude, and this
leads to a number of profound differences between the
two systems. In particular, (1) in the alkali gases the
behavior is extremely sensitive to the details of the trap,
whereas in helium it is dominated by the interparticle
interactions and very insensitive to the confining poten-
tial (which is in any case typically due to a fairly rigid
‘‘box’’ and thus flat over most of the region of interest);
(2) in helium, interatomic collisions are so frequent that
any process that is energetically allowed takes place vir-
tually instantaneously, whereas in the alkali gases the
kinetics of the process may be an important bottleneck
(see Sec. VI.E); (3) on the theoretical front, quantitative
calculations based on perturbation theory in the (effec-
tive) interatomic interaction are usually believed to be
highly reliable for the alkali gases, whereas for helium
they may fail miserably. There are other important dif-
ferences between the two systems, in particular, that in
the alkali gases both the external and, at least in prin-
ciple, the interatomic potentials can be adjusted over a
time scale very short compared to the time scales char-
acterizing the dynamics of the system: this permits types
of experiment, such as the celebrated interference ex-
periment of Andrews et al. (1997; see Sec. VII.E), that,
while as it were conceptually equally viable in superfluid
4He, would in practice be totally impossible to realize.
For a more detailed discussion of the analogies and dif-
ferences between the superfluid phases5 of 4He and 3He
on the one hand, and the BEC phase of the alkali gases
on the other, see Leggett (1999a).

III. THE DEFINITION, ORIGIN, AND OCCURRENCE
OF BEC: THE ORDER PARAMETER

A. Definition of BEC

For pedagogic convenience let us start with the case in
which the hyperfine degree of freedom can be ignored.

5The Fermi system 3He is believed to become superfluid by
forming Cooper pairs, which then effectively undergo BEC;
the pairs are somewhat analogous to the alkali atoms in that
they possess a hyperfine degree of freedom.
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We thus consider a system of N identical spinless bosons
characterized by spatial coordinates ri (i 5 1, 2•••N),
with arbitrary interparticle interactions and subject to
some external potential, possibly time dependent, which
for technical reasons we shall assume is such as to con-
fine the particles in some finite region of space. We do
not assume that the system is necessarily in thermal
equilibrium, nor even in a steady state. The many-body
wave functions CN(r1r2¯rN :t) must be symmetric with
respect to the interchange ri
rj of any two particle co-
ordinates.

For any given time t we can define the one-particle
reduced density matrix r(r,r8:t) in the standard way.
We may as well go directly to the most general case, in
which the description of the system is by a statistical
mixture of mutually orthogonal many-body states CN

(s)

with probability ps : the definition is

r~r,r8:t ![N(
s

psE dr2¯drNCN*
(s)

3~rr2¯rN :t !CN
(s)~r8r2¯rN :t !

[^ĉ†~rt!ĉ~r8t !&, (3.1)

where in the last expression the quantity ĉ(r) is the
standard boson field operator, and the average indicated
by the pointed brackets is in general statistical as well as
quantum mechanical. Because of the Bose symmetry,
the fact that in writing the second expression in Eq. (3.1)
we have arbitrarily picked out the coordinate r1 as ‘‘spe-
cial’’ need not worry us.

It follows from the definition (3.1) that the quantity
r(r,r8:t), when regarded as a matrix function of its indi-
ces r and r8, is Hermitian, and can therefore be diago-
nalized with real eigenvalues. That is, it is always pos-
sible to find a complete orthonormal basis, in general
time dependent, of single-particle eigenfunctions x i(r;t)
such that we can write

r~r,r8:t !5(
i

ni~ t !x i* ~r:t !x i~r8:t !. (3.2)

It is important to note that in the general case (a) not
only the eigenfunctions x i appearing in Eq. (3.2) but
also the eigenvalues ni may be functions of time; (b) the
x i need not be eigenfunctions of any particular quantity
[other than r(rr8:t) itself] and in particular are not nec-
essarily eigenfunctions of the single-particle terms in the
Hamiltonian; and (c) if we define operators ai by

ai~ t ![E ĉ~r!x i* ~r:t !dr, (3.3)

then while the ni(t) are the expectation values of the
operators ai

†(t)ai(t), the many-body wave function is
not in general an eigenfunction of the latter operator.

We are now in a position to formulate a definition of
Bose-Einstein condensation (BEC). We shall say that at
any given time t , the system shows BEC if one or more
of the eigenvalues ni(t) is of the order of the total num-
ber of particles N ; and further that it shows simple BEC
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if one and only one eigenvalue is of order N , all the rest
being of order 1. Systems showing nonsimple BEC (i.e.,
having more than one eigenvalue of order N) are some-
times said to be fragmented. The phrase ‘‘of order
N(1)’’ is somewhat vague in a situation where there is
no simple thermodynamic limit, but in practice this does
not usually lead to difficulty.

In the case of simple BEC, we shall arbitrarily use the
value zero of the index i to refer to the unique state
which has ni(t);N ; we shall call the single-particle state
x0(r:t) the condensate wave function and the eigenvalue
N0(t) (where we use the capital to emphasize the mac-
roscopic value) the ‘‘(mean) number of particles in the
condensate.’’ A very important quantity associated with
x0 , the superfluid velocity vs(r,t), will be introduced in
Sec. III.D.

One point concerning the above definition is very im-
portant: In general, a statistical mixture of many-body
states, each of which separately possesses (simple or
general) BEC, need not itself possess BEC. (Consider,
for example, a mixture of p;N many-body states, each
of which has a condensate in a different one of p mutu-
ally orthogonal states x0 .) On the other hand, no mix-
ture of many-body states that do not individually show
BEC can itself show BEC.

Finally, let us generalize the above definitions to take
account of the hyperfine degree of freedom. We now
characterize the ith particle not just by its spatial coor-
dinate ri but by a discrete hyperfine index a i , so that CN
is a function of $ri ,a i%, (i51,2¯N). The appropriate
generalization of Eqs. (3.1) and (3.2) is then [omitting
the intermediate expression in Eq. (3.1) whose generali-
zation is obvious, and writing the field operator for hy-
perfine state a as ĉ(r,a) rather than the more conven-
tional notation ĉa(r)]

r~ra ,r8a8:t ![^ĉ†~r,a!ĉ~r8,a8!&

5(
i

ni~ t !x i* ~r,a :t !x i~r8,a8:t !. (3.4)

The definition of (simple and general) BEC is then ex-
actly as above, the only difference being that the con-
densate wave function x0(r,a :t) now has a discrete (hy-
perfine) argument a as well as a continuous (position)
one r, i.e., it can be regarded as a spinor. We shall see
below (Sec. V) that the BEC occurring in a situation
where the hyperfine degree of freedom is important is
often not of the simple variety.

B. Why BEC?

Whether or not BEC occurs in a given Bose system
depends strongly on the sign of the ‘‘effective’’ inter-
atomic interaction (a concept that will be defined pre-
cisely for the alkali gases in Sec. IV). The case of attrac-
tive interaction is rather subtle and is discussed briefly in
Sec. IX; here we confine ourselves to the case of repul-
sive (or zero) interaction. For such a case the tendency
of the system to undergo BEC, which is by no means
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confined to states of (or close to) thermal equilibrium, is
a consequence of two mutually reinforcing effects, sta-
tistical and energetic. I discuss these in turn.

The statistical consideration is a standard textbook
subject (though its generic significance is often some-
what obscured because it tends to be discussed in the
specific context of a derivation of the equilibrium ther-
mal distribution). Consider the problem of distributing
N objects (atoms) among p different boxes (states). If
the objects are distinguishable (the classical case), the
number of different ways of distributing them so that the
ith box contains ni objects is the multinomial coefficient
N!/P i51

p ni!. If on the other hand the objects in question
are indistinguishable but there are no other constraints
(the boson case), then clearly there is one and only one
way of distributing them, for a given set of $ni%. The
difference becomes important when N*p (the degen-
eracy condition), and its effect, crudely speaking, is that
in the bosonic case states in which many particles occupy
the same state have a higher relative weight than in the
classical (distinguishable) case.6 This tendency of bosons
to ‘‘cluster’’ is very generic; it is in no way restricted to
thermal equilibrium, or to the noninteracting case.

If, however, we specialize for the moment to the case
of noninteracting bosons in thermal equilibrium, and
moreover are content to use the standard grand canoni-
cal ensemble,7 the results take a very simple and stan-
dard form [see, for example, Huang (1987)]: at tempera-
ture T the formula for the mean number of particles ni
in the single-particle energy eigenstate i with energy e i
has the standard Bose-Einstein form

ni5$exp@b~e i2m!21#%21 b[1/kBT , (3.5)

where the chemical potential m is fixed by the condition

(
i

ni~m ,b!5N , (3.6)

N being the average number of particles in the grand
canonical ensemble.

The quantity m(b :N)[m(T ,N) implicitly defined by
Eq. (3.6) is very large and negative for T→` ; as T falls
it increases monotonically. If at some temperature Tc
condition (3.6) can be met with m→02, then below Tc
the occupation of the lowest single-particle state (energy
e050 by convention) is of order N , while the other ni’s
are still generally of order unity or less, i.e., BEC is re-
alized. This condition is met, in free space, for dimen-

6This tendency may be seen already in the trivial case N5p
52: for distinguishable particles, states involving double occu-
pation are 50% of the whole, while for bosons they are 66%.

7Because of the critical role in the theory of BEC played by
conservation of total particle number N , it is not entirely ob-
vious a priori that the use of the grand canonical ensemble is
justified. However, calculations using the microcanonical en-
semble give similar results for large N (see, for example, Gajda
and Rzazewski, 1997).
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sion D.2, and in a harmonic trap (isotropic or not)8 for
D.1; see, for example, Dalfovo et al. (1999) or Pethick
and Smith (2000). For each of these cases the transition
temperature Tc can of course be calculated exactly as a
function of N and the geometric parameters, but a
simple rule of thumb, valid except very close to the bor-
derline dimension, is that BEC occurs when the degen-
eracy condition N;p is satisfied, with p taken to be the
number of thermally accessible states, i.e., those with
energies &kBT . For example, in an anisitropic 3D trap
with geometrical mean frequency v̄0[(vr

2vz)1/3, where
the mean density of single-particle states per unit energy
E is E 2/(\v̄0)3, this argument gives for large N

kBTc5const \v̄0•N1/3. (3.7)

A quantitative calculation (see the cited references) con-
firms this result, with the constant fixed at 0.94.

For a noninteracting gas in any geometry in which
BEC occurs, the condensate number N0(T) increases
smoothly from zero at Tc to the total number N as T
falls to zero. In particular, for the above anisotropic 3D
trap we find

N0~T !5N@12~T/Tc!3# . (3.8)

For a comparison of this (noninteracting-gas) formula
with experiments in the alkali gases, see Hau et al.
(1998).

In addition to the above effect of statistics, there is
also an energetic effect: In a dilute Bose gas with weakly
repulsive interactions, the interactions tend to reinforce
the effect of statistics in forming BEC. To see this, we
need to anticipate a result to be proved in Sec. IV,
namely that, at least so long as we stay in the dilute
limit, the Hartree-Fock energy of two identical spinless
bosons in different orbital states is greater than that of
two such bosons in the same state, by a factor between 1
and 2. This effect not only helps us understand why even
in nonequilibrium situations fragmentation (i.e., an
order-N occupation of two or more single-particle or-
bital states) is unusual in a spinless system; rather gen-
erally it says that, other things being equal, the more
repulsive the interatomic interaction (i.e., the greater
the s-wave scattering length; see Sec. III), the stronger
the tendency to condense. (However, at some point this
tendency will be balanced by the coherent scattering of
pairs out of the condensate; see Sec. VIII.)

It is plausible that in the less common case of a nega-
tive scattering length (attractive interaction) condensa-
tion is likely to be inhibited, and we return to this point
briefly in Sec. IX.

C. Rigorous results

In the realistic case of an interacting Bose system in
more than one dimension, rigorous results concerning
the existence and degree of BEC as a function of par-
ticle number, strength of interaction, etc. are rather few

8The case D51 is rather delicate; see Dalfovo et al., 1999.



316 Anthony J. Leggett: Bose-Einstein condensation in the alkali gases
and far between (see Lieb, 1999) and to the best of my
knowledge are at present confined entirely to extended
systems in the thermodynamic limit. Of course, many
readers will no doubt take the view that in the context of
the real-life alkali gases such results are of rather minor
interest, since both experiment and theoretical prejudice
suggest that perturbation theory starting from the non-
interacting gas is likely to be a reliable description. Nev-
ertheless I feel it is worthwhile to summarize without
derivation the few rigorous results known to me for the
extended case; most of them probably could be (but to
my knowledge have not been) generalized to a realistic
trap geometry.

(a) For a 3D system in free space, Gavoret and No-
zières (1964) showed many years ago that if perturba-
tion theory starting from the noninteracting Bose gas
converges, then at T50 the system displays BEC. How-
ever, their argument allows no inference about the con-
densed fraction N0(0)/N , nor about the critical tem-
perature Tc .

(b) If the real-life continuum is replaced by a ‘‘lattice
gas’’ and the interatomic interaction modeled by a hard-
core on-site repulsion, then for the case of half filling the
existence of BEC at T50 has been proved (Kennedy
et al., 1988).

(c) The best-known theorem concerning the (non)oc-
currence of BEC in extended D-dimensional space is
due to Hohenberg (1967). Denoting by nk the average
number of particles per unit volume in the plane-wave
state k(Þ0), he demonstrates rigorously for any dimen-
sion the inequality

nk>~n0 /n !~mkBT/\2k2!21/2 ~n[N/V !. (3.9)

It then follows (Hohenberg, 1967) that for D<2, in the
thermodynamic limit, BEC cannot occur at any finite
temperature.

(d) While for D53 Hohenberg’s inequality places
no upper limit on Tc , it does place a limit on the con-
densate fraction N0(T)/N , which is nontrivial for T
*Tc

(0) , where Tc
(0) is the transition temperature of the

noninteracting gas. A simple form (not the tightest at-
tainable) of this limit is

N0~T !/N<a~TC
(0)/T !, a5F3z~3/2!

4
p1/2G2/3

>2•3.

(3.10)

This limit is completely independent of the nature and
even the sign of the interatomic potential.

(e) Finally, for a Bose gas with an interaction that is
everywhere repulsive and has a space integral V0 , it is
possible to place an upper limit on the condensate frac-
tion which for small V0 is stronger than Eq. (3.10) (Leg-
gett, 2000b). For the special case T5Tc

(0) this reads

N0 /N<const~nV0 /kBTc
(0)!1/3, (3.11)

where the current upper bound on the constant is about
2.5.
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D. The order parameter and the superfluid velocity

1. Possible definitions of the order parameter

For the purposes of the present section, let us con-
sider a spinless system9 and assume that simple BEC is
realized in the state x0(r:t), with eigenvalue N0(t).
Then the simplest and most direct definition of the order
parameter C(r,t) [do not confuse with the many-body
wave function CN(r1¯rN :t)] is

C~rt ![AN0~ t !x0~r:t !, (3.12)

that is, apart from its normalization C(rt) is simply the
(Schrödinger) wave function of the single-particle state
into which condensation occurs. Contrary to widespread
popular belief, this definition [which is to all intents and
purposes the one originally given by Penrose and On-
sager (1956)] is perfectly adequate for all the purposes
for which the concept of an order parameter has been
(correctly) used in the literature. One point needs spe-
cial emphasis: Since C(rt) is in effect simply a Schrö-
dinger wave function, it is clear that while its space and
time derivatives (and in the case of a hyperfine degree of
freedom the phase relations between its hyperfine com-
ponents) are meaningful physical quantities, the overall
phase of the order parameter has no physical significance.

Various alternative definitions of the order parameter
are to be found in the literature. Some, such as the defi-
nition explicitly based on ‘‘off-diagonal long-range or-
der’’ (Penrose and Onsager, 1956; Yang, 1962), are con-
ceptually unexceptionable but obviously inapplicable in
a trap geometry. However, there is one definition that is
sufficiently common in the alkali-gas BEC literature that
it calls for comment, namely, that based on the idea of
so-called ‘‘spontaneously broken gauge symmetry.’’ I re-
fer the reader to Anderson (1966), Leggett and Sols
(1991), and Leggett (1995a) for an extended discussion
of this concept and its difficulties, and just summarize
the basic idea here: One imagines that the superselec-
tion rule for the total particle number N is somehow
violated, so that one can write the wave function of the
system as a superposition of states corresponding to dif-
ferent N :

C5(
N

aNCN . (3.13)

This allows the single-particle destruction operator
ĉ(rt) to have (possibly) a finite expectation value, and
one then identifies the order parameter with the latter:

C~rt ![^c~rt !&. (3.14)

It should be emphasized that there are no circum-
stances in which Eq. (3.13) is the physically correct de-

9The generalization to systems with internal degrees of free-
dom is made in Sec. V.D.
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scription of the system,10 or even of a part of it, and in
the present author’s opinion the definition (3.14), while
possibly streamlining some calculations when judiciously
used, is liable to generate pseudoproblems and is best
avoided. However, the reader should be warned that
this opinion is controversial and that there are even
those who feel that Eq. (3.14) is not only a possible, but
the only legitimate, definition of the order parameter.

2. The superfluid velocity

The simplest definition of the superfluid velocity
vs(r,t) is directly in terms of the phase gradient of the
condensate wave function x0(rt): writing x0(rt)
[ux0(rt)uexp@iw(rt)# , we define

vs~r,t ![
\

m
“w~rt !. (3.15)

Clearly, since N0 is by definition not a function of posi-
tion, we could equally well have defined vs in terms of
the phase of the order parameter C(rt)[AN0x0(rt).
We see directly from its definition that vs satisfies two
important constraints, namely, the condition of irrota-
tionality

curl vs~r,t ![0 (3.16)

and the celebrated Onsager-Feynman quantization con-
dition

R vs~rt !•dl5nh/m ~n integral!. (3.17)

Obviously, in a simply connected geometry with x0(rt)
finite everywhere Eq. (3.16) implies Eq. (3.17) with n
50, but there are more general cases, e.g., involving vor-
tices, in which n can be nonzero; see Sec. VI below.

The reason the quantity defined by Eq. (3.15) is im-
portant in the theory of superfluidity, and more gener-
ally of BEC, is that on the one hand it reflects the prop-
erties of a single quantum state [unlike the
hydrodynamic velocity v(rt)[j(rt)/r(rt), which is an
average over many different states and thus fails in gen-
eral to satisfy Eq. (3.16) or Eq. (3.17)], while on the
other hand, unlike the analogous quantity in single-
particle Schrödinger quantum mechanics, which while
perfectly definable is subject to huge quantum fluctua-
tions, vs characterizes the behavior of a macroscopic
number of particles (the condensate) and can thus in
effect be regarded as a classical quantity. (For further
discussion, see Leggett, 2000a.)

Finally, I want to reemphasize that the definitions of
the order parameter and of the superfluid velocity given
in this subsection rely essentially on the assumption of
simple Bose condensation, i.e., that there is one and only
one eigenvalue of the single-particle density matrix of
order N . Generalizations to the case of multiple conden-
sates, while possible, need to be carefully defined.

10An interesting attempt to justify Eqs. (3.14) and (3.13) via
the concept of a ‘‘phase standard’’ has been made by Dunning-
ham and Burnett (1998) and is discussed in Leggett (2000a).
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IV. THE EFFECTIVE INTERACTION IN A COLD
DILUTE GAS

A. Statement of the problem: neglect of lÞ0 partial waves

In this section I consider the effect of atom-atom in-
teractions in a gas at the very low temperatures and den-
sities characteristic of the alkalis under BEC conditions;
for a much more detailed treatment of this topic, see
Dalibard (1999) and Weiner et al. (1999). For pedagogi-
cal simplicity I assume, in Secs. I–III, that two colliding
atoms can be ‘‘tagged’’ (as would be the case if they
were of different chemical and/or isotopic species); this
will allow us to postpone discussion of the effects of
indistinguishability to Sec. IV.D. However, it will turn
out that none of the results of Secs. IV.A–IV.C depend
on this assumption. Furthermore, we neglect for the mo-
ment the hyperfine degree of freedom, assuming that for
each atom its initial and final values in a collision are
equal. The only relevant variable, for a given pair of
atoms, is then their relative coordinate r, and the out-
come of a collision will be determined by the value of
the (initial) relative kinetic energy E[\2k2/2mr (here
and subsequently mr denotes the reduced mass and k
the relative wave vector).

Consider the true interatomic potential Vat(r) as a
function of the separation r of the two centers of mass
(c.m.). At short distances, of the order of molecular di-
mensions, this potential may not even be definable
(since the standard Born-Oppenheimer separation of
the c.m. and internal degrees of freedom may break
down, see Weiner et al., 1999), but at distances *5 Å
(beyond which the Born-Oppenheimer approximation
should certainly be good), Vat(r) should be well defined
and well approximated11 in the limit r→` by the lowest-
order van der Waals interaction 2C6 /r6; if we express
energies and lengths in the standard atomic units (bohrs
and hartrees, respectively), C6 ranges from ;1400 for Li
to ;6300 for Cs (see, for example, Marinescu et al.,
1994). This form of potential defines a characteristic van
der Waals length, namely, r0[(2mrC6 /\2)1/4, the physi-
cal significance of which is that it is the typical extent of
the last bound state in the potential; this length is of the
order of 50 Å, much larger than a typical molecular di-
mension, and the associated characteristic energy Ec
;\2/mrr0

2 is of order 0.1–1 mK.12

An important simplification of our problem results
from the fact that for all the alkalis (including H), the
values of thermal energy kBT characterizing BEC con-
ditions are small compared to the above energy. Since

11Strictly speaking, in the limit r→` the leading term in
Vat(r) is the electromagnetic interaction between the electron
spins, which falls off only as r23. However, for all the alkalis,
including H , the mean field due to this term may be verified to
be small compared with the ‘‘standard’’ mean field calculated
below.

12This is one respect in which H is very different: C6;6.5,
ro;5 Å, Ec;3 K.
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for lÞ0 the probability of finding the two atoms at a
distance r0 from one another in a collision process falls
off as (kr0)2l, where l is the relative orbital angular mo-
mentum, this means that for lÞ0 the effective scattering
amplitude, and hence the contribution to the effective
interaction (see below) is smaller than that arising from
s-wave scattering by a factor of order (kBT/Ec) l and
thus is normally negligible. It follows that in our subse-
quent discussion we may legitimately restrict ourselves
to l50 (s-wave) scattering.

B. The s-wave scattering length

The theory of low-energy s-wave scattering of two dis-
tinguishable particles interacting via a central potential
V(r) is a standard textbook subject; see, for example,
Landau and Lifshitz (1959), Sec. 108. The principal re-
sult we need in the present context is the following. Pro-
vided V(r) falls off, as r→` , faster than r23, then in
this limit and the limit k→0 (but for kr possibly .1),
the s-wave scattering solution to the time-independent
Schrödinger equation has, quite generically, the simple
form

c~r !5const
sin@k~r2as!#

r
, (4.1)

where the quantity as is known as the (zero-energy)
s-wave scattering length and, depending on the details of
the potential, may have either sign. In the case of posi-
tive as one can say that by comparison with the nonin-
teracting case the relative wave function is repelled from
the origin, whereas with negative as the wave function is
attracted; in the repulsive case as may be visualized as
the radius of the hard-sphere potential, which would
give rise to the same relative wave function. However, it
should be emphasized that in the real problem c(r)
does not vanish for r,as .

The general behavior of the scattering length is re-
lated to the s-wave bound states occurring in the poten-
tial. If we imagine starting from the noninteracting state
(as[0) and gradually increasing the strength of the po-
tential (whose shape is taken to be typical of a real
atomic one), then as will initially (or at any rate after a
little) take increasingly negative values. As the point at
which the potential is just enough to sustain a bound
state is approached, as will approach 2` , and when the
state is just bound, will take a large positive value (which
approaches 1` as the potential is reduced again to the
critical value). In this region (as@r0) the asymp-
totic form of the bound-state wave function is
r21 exp(2r/as) and its energy is 2\2/2mras

2 ; the form of
the zero-energy scattering state may be viewed as a con-
sequence of the need to make it orthogonal to the
bound state. This general behavior is expected near the
points where further bound states appear in the well; it
is worth bearing in mind that for the heavier alkalis
there are a large number of such l50 bound states
(;120 for 87Rb; see Mies et al., 1996). The 3( channel
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of H is an exception in this respect: as is positive even
though there are no bound states.

The value of the s-wave scattering length, which in
general is a function not only of the chemical and isoto-
pic species involved but of the hyperfine indices of the
two atoms (see Sec. IV.E) and even of the magnetic
and/or laser field, is a basic datum for the alkali-gas
problem. It may be obtained experimentally by the tech-
nique of photoassociative spectroscopy (see Tiesinga
et al., 1996) or from a knowledge of the atomic mean
free path in the gas (see Sec. IV.C). Alternatively, for
the lightest alkalis one can attempt to calculate it from
first principles. A partial list of values found in the lit-
erature is given (in atomic units) in Table III of Weiner
et al. (1999). Inspection of this table reveals two obvious
features: Except for the case of H , as is generally much
greater than a typical (vibrational-ground-state) molecu-
lar radius and is in fact typically of the order of the van
der Waals length r0 , and positive values are appreciably
more common than negative ones. Neither of these fea-
tures is an accident; see Gribakin and Flambaum (1993),
or for a concise version of the argument Pethick and
Smith (2000), Sec. 5.3.13

Although the magnitude of as is thus often large on an
atomic scale, it is very important for the theory of the
BEC alkali gases that under normal BEC conditions it is
still small compared to all the other characteristic
lengths Lc (thermal de Broglie wavelength, interparticle
spacing, and zero-point length of the trap). In particular,
if we denote the density by n , the so-called gas param-
eter nas

3 , whose significance will become clear subse-
quently, is under normal BEC conditions at most of or-
der 1024 and often much smaller. Although in principle
it is possible to make uasu tend to infinity (so that nas

3

*1) by appropriate tuning of the magnetic field (Fesh-
bach resonance), in practice very large values of as tend
to lead to rapid three-body recombination (see Stenger
et al., 1999). Very recent work, however, has indicated
that such recombination may not be inevitable (Cornish
et al., 2000).

In view of some considerations that will emerge in the
context of the Bogoliubov approximation (Sec. VIII), it
is worthwhile to close this brief discussion with a note on
the question of depletion. It is clear that even if the
asymptotic value of the relative wave vector k is zero (as
it will be if atoms are part of a spatially homogeneous
Bose condensate), the short-range interatomic interac-
tion will induce a finite probability pq of a nonzero rela-
tive wave vector q . Taking for definiteness the case as
.0, as@r0 (where r0 is a measure of the effective range
of the potential, e.g., the van der Waals length defined
above), and normalizing in volume V , we find (most eas-
ily by requiring the zero-energy scattering state to be

13It may be worthwhile to note that the zero-energy Schrö-
dinger equation can be solved explicitly for any potential of
the form 2a/rn (and in particular for the van der Waals po-
tential, n56) in terms of Bessel and Neumann functions; see
Gribakin and Flambaum, 1993, Eq. (13).
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orthogonal to the bound state; see, for example, Leggett,
1999b) that for qr0!1 we have

pq>S 4pas /V

q21as
22D 2

. (4.2)

If we assume that for N[nV atoms the contributions to
the total depletion from the various pairs are additive,
we find for the total depletion dN[(qÞ0^nq& the esti-
mate

dN/N;nas
3. (4.3)

This single-pair contribution should be carefully distin-
guished from the Bogoliubov-level depletion to be dis-
cussed in Sec. VIII, which is a genuinely collective effect
and, as we shall see, proportional to (nas

3)1/2. In fact, it
is conventional to exclude14 the contribution (4.3) from
the depletion.

C. The effective interaction

I now turn to the effects of the atom-atom scattering
on the properties of the many-body alkali-gas system.
The fundamental result is that under appropriate condi-
tions, and with appropriate qualifications, the true inter-
action potential Vat(r) of two atoms of reduced mass mr
may be replaced by a delta function of strength
2p\2as /mr , where as is the low-energy s-wave scatter-
ing length. The case of most frequent interest is that of
two similar particles each of mass m (which may or may
not be in the same hyperfine state);15 thus the commonly
quoted form of the effective interaction is

U~r!5
4pas\

2

m
d~r!. (4.4)

It is actually rather more physically meaningful to ex-
press the result (4.4), plus the necessary qualifications, in
the following alternative way: the mean interaction en-
ergy of the many-body system is given by the expression

^Eint&5
1
2
•

4pas\
2

m (
ij

uC~rij

;→ 0 !u2, (4.5)

where C is the many-body wave function and the nota-

tion rij

;→0 means that the separation rij of the two at-
oms, while large compared to as , is small compared to
any other characteristic length (thermal de Broglie
wavelength, interparticle spacing, . . . ). (An equivalent
statement is that uCu2 should be understood as averaged
over a volume @as

3.) As we shall see, the very existence
of this limit implies some conditions for the validity of
Eq. (4.5). With this understanding, it is clear that Eq.

14If we attempt an estimate of the kinetic energy on the basis
of Eq. (4.2), we find it is linearly divergent, so that at this point
we must go back to the true short-range (r&r0) behavior of
c(r). We return to this point in Sec. VIII.C.

15However, to avoid having to consider the effects of indis-
tinguishability at this stage we continue to assume they can be
‘‘tagged.’’
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(4.5) follows from Eq. (4.4) if (and only if) in evaluating
^Eint& we work to first order only in as .

Let us briefly list the conditions necessary for the va-
lidity of Eq. (4.5) in the time-independent case. First, l
Þ0 scattering must be negligible. Second, the very exis-
tence of the limit indicated by the notation

;→ implies
the condition kcas!1, where kc is the characteristic
wave-vector scale of the many-body wave function C
and is of the order of the inverse of the smallest of the
Lc listed in the last subsection (cf., however, below). As
we have seen, these conditions are relatively well ful-
filled for the alkali Bose gases under BEC conditions.
The question of the validity of Eq. (4.5) in a time-
dependent situation is a little more subtle, and I return
to it in Sec. VI.

Equation (4.5) [or Eq. (4.4)] is possibly the single
most important result in the whole of the physics of the
dilute ultracold alkali gases (note that it in no way re-
quires Bose statistics). While one can find many deriva-
tions of it in the literature [e.g., Huang (1987), Secs.
13.1–3 and 5, or Stoof et al. (1996)], few of them are
sufficiently general to cover the spatially and, often,
temporally inhomogeneous situations typical of the
BEC alkali gases; I therefore now sketch an argument
that, while not particularly rigorous, is at least rather
general, and indicates the justification for the above con-
ditions of validity.

Let us consider a system of N particles and arbitrarily
pick out two of them, say 1 and 2, denoting their relative
and center-of-mass coordinates, respectively, by r and R.
The most general (pure) states of the many-body system
will then be described by a wave function C(r:R,$j%,t)
where $j% schematically denotes the coordinates of the
remaining N22 particles. In the following, it is the de-
pendence on r that is crucial, and the parametric depen-
dence of C on R, j, and t will not be written out explic-
itly.

The essential question we wish to answer is: How does
the interaction Vat(r) between the pair 1 and 2 affect
the (mean) total energy of the many-body system? Ac-
tually, this question is ambiguous. One interpretation
would be: How do the energies of the exact many-body
eigenstates change when the interaction Vat(r) is
‘‘switched on?’’ This question is difficult to answer in
general, and in any case is not of very obvious physical
relevance, especially in the context of time-dependent
problems. A more physical question would seem to be:
Consider two different states of the system for which
[for all (R,$j%,t)] the form of C(r) for r greater than or
equal to some cutoff rc@as ,ro is identical; subject to this
condition they are constructed to minimize, in the first
case, the kinetic energy of relative motion, and in the
second, the sum of the latter and the potential energy
Vat(r). What is the difference in their (mean) total en-
ergies? Denote the first solution by c0(r) and the sec-
ond by c(r); in the following it is an essential assump-
tion that the relevant forms of c0(r) can be taken
constant for r>rc (which is crudely speaking equivalent
to the condition kcas!1; see above). We denote the
constant value simply by c0 .
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Define the cutoff radius rc such that as!rc!kc
21

(where kc is, as above, a characteristic wave vector for
the states described by C) and consider a trial wave
function of the form

c~r !5c0 , r>rc

c~r !5
~12as /r !

~12as /rc!
c0 , ro!r<rc

c~r !5complicated, r&ro . (4.6)

This wave function is not, strictly speaking, normalized
[if c0(r) is] but it may be checked that the effect of
correcting for this is to change the energy by a term of
order (kc

2rc
2)\2asc0

2/m , which is smaller than the result
(4.5) by a factor kc

2rc
2!1; thus we may consistently

neglect this effect. The form (4.6) of c(r) is also not a
solution of the two-particle zero-energy time-
independent Schrödinger equation (2\2/m)¹2c(r)
52Vat(r)c(r), because of the slope discontinuity at r
5rc , but it can be made so by introducing a fictitious
shell-like potential Vps(r) of the form

Vps~r !52~\2as /mrc
2!d~r2rc!. (4.7)

If we now evaluate the expectation value of Vps(r) in
the state (4.6), we find, independently of the value of rc ,

^Vps&52~4p\2as /m !uc0u2. (4.8)

Since with Vps present state (4.6) is an eigenfunction
of Schrödinger’s equations with eigenvalue zero, and
hence has ^Hps&[^H&1^Vps&50, the expectation value
^H&5^Hr&2^Vps& of the actual energy of the state (4.6)
is 2^Vps&. Thus, summing over the contributions of all
pairs i ,j , we reproduce Eq. (4.5). Note that this result is
independent of the value chosen for rc provided it lies in
the given window, and moreover should be applicable
equally to a time-dependent situation under appropriate
conditions (see Sec. IV.F). Incidentally, it is interesting
that while in the above argument the condition rc@ro is
essential, the condition rc@as is not, and thus it may be
possible to reformulate the argument so as to apply it to
the dense conditions obtaining close to a Feshbach reso-
nance (nro

3!1 but nas
3@1); I shall not attempt to discuss

this question here.
Assuming that Eq. (4.5) is indeed justified under the

conditions we consider, it is sometimes helpful to write it
in second-quantized form:

^Eint&5
1
2
•

4p\2as

m K E c†~r!c†~r!c~r!c~r!drL ,

(4.9)

where, however, in evaluating two-particle operators
like c(r)c(r), we should bear in mind that they are the

appropriate
;→ limit as r1→r2 of c(r1)c(r2). A third

form, valid to relative order N21, which is sometimes
helpful to our intuition, is

^Eint&5
1
2
•

4p\2as

m K E r2~r !dr L . (4.10)
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D. Effects of indistinguishability

In the preceding sections, it has been assumed that the
two atoms whose interactions we are considering are in
some way tagged, i.e., are distinguishable. It will turn
out (see Sec. IV.E) that this is in effect so, even for
atoms that are chemically and isotopically identical, if
their initial hyperfine indices are different. However, let
us consider a collision in which the incoming atoms are
identical in all respects including their hyperfine indices,
and thus indistinguishable (and obey Bose statistics).
What difference does this make?

Actually, as regards the results of Secs. IV.A–IV.C,
the answer is: none at all. The reason is that we have
confined the discussion to s-wave states, and for those
the wave function is automatically symmetric with re-
spect to interchange of the atomic center-of-mass coor-
dinates (r→2r). In particular, the validity of Eq. (4.5)
[or Eqs. (4.4), (4.9), or (4.10)] is completely independent
of the distinguishability or otherwise of the atoms in-
volved.

Nevertheless, there are two important relations that
are affected by the statistics. The first is the relation be-
tween as and the total elastic-scattering cross section s
as conventionally defined, that is, the ratio of the num-
ber of particles scattered per unit time to the flux inci-
dent from infinity. For distinguishable particles s can be
calculated in the standard way from the partial-wave ex-
pansion of the incoming wave (see, for example, Landau
and Lifshitz, 1959, Sec. 105), and in particular in the
limit kr0!1 of relevance to us is given by 4pas

2 . How-
ever, for indistinguishable bosons the odd partial waves
in the expansion are forbidden, so that for given incident
intensity the probability of the particles’ being in a rela-
tive s state is multiplied by 2. Consequently, for indistin-
guishable bosons one has

s58pas
2, (4.11)

twice the value for distinguishable particles.
Indistinguishability has a second effect, which will be

crucial for arguments about the metastability of super-
flow and related things (Sec. VI): As noted, the validity
of Eq. (4.5) is independent of the statistics. However,
the relation between the quantity uC(0)u2 occurring on
the right-hand side, which is the probability of finding
two particles at the origin of their relative coordinate,
and the single-particle wave functions does depend on
the statistics. As in the last subsection, we focus on a
particular pair of atoms and do not write out explicitly
the dependence on j and t, which enter only parametri-
cally; moreover, we assume for simplicity that (the r12
→` limit of) the two-particle wave function prima facie
factorizes (the Hartree-Fock approximation), i.e., that
ignoring indistinguishability we would have

C~r1 ,r2!>w~r1!x~r2!, (4.12)

where w and x are each normalized over the volume of
the system.

Suppose first that the states w and x are identical.
Then we get from Eq. (4.5) a contribution from this pair
to the total interaction energy of the form
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^Eint&125
4p\2as

m E ux~r!u4 dr. (4.13)

Now suppose that w(r) and x(r) represent different,
mutually orthogonal states. Then we must symmetrize
C(r1 ,r2) with respect to the interchange of (1) and (2),
i.e., replace Eq. (4.13) by the normalized expression

C~r1 ,r2!5221/2@w~r1!x~r2!1x~r1!w~r2!# . (4.14)

The result is that the probability density at the relative
origin is multiplied16 by a factor of 2:

uC~r12

;→ 0 !u252uw~r!u2ux~r!u2 ~r5r15r2!, (4.15)

and as a result the contribution to the interaction energy
is now

^Eint&125
8p\2as

m E uw~r!u2ux~r!u2 dr. (4.16)

Crudely speaking, Eq. (4.16), when compared with Eq.
(4.13), says that two bosons in different (but mutually
overlapping) states, e.g., two different momentum eigen-
states, interact twice as strongly as when they are in the
same state (or as they would if distinguishable).

It is clear that this result can be generalized to an
arbitrary many-body state. Expanding the field opera-
tors c(r), c†(r) in Eq. (4.9) in an orthogonal one-
particle basis x i(r), we rewrite that equation as

Eint5
4p\2as

m
•

1
2
•(

ijkl
^ai

†aj
†akal&

3E x i* ~r!x j* ~r!xk~r!x l ~r!dr, (4.17)

and a standard Hartree-Fock decoupling of the expecta-
tion value then gives

Eint5
4p\2as

m
•

1
2
•(

ij
ninj~22d ij!

3E ux i~r!u2
•ux j~r!u2 dr. (4.18)

The salient consequence of Eq. (4.18) is that a repul-
sive interaction (as.0) favors multiple occupation of a
single one-particle state—an effect that is in addition to
the statistical one of Sec. III and is sometimes called an
‘‘attraction in momentum space’’ (Huang, 1987; No-
zières, 1995).

E. Effect of the hyperfine degree of freedom

I shall assume here for simplicity that while the hyper-
fine index may be different for the two atoms involved

16By an obvious extension of the argument, the probability of
finding three particles at the same point is six times larger
when they are all in different states than when they are all in
the same one-particle state. As pointed out by Kagan et al.
(1985), this leads to a significant reduction of three-body re-
combination processes in the BEC state, a prediction verified
experimentally by Burt et al. (1997).
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in the collision of interest, the pair of outgoing levels is
the same as the pair of incoming ones (‘‘elastic’’ colli-
sion). This excludes the exothermic collision processes
that are often responsible for depopulation in magnetic
traps; it also excludes a rather delicate effect that may
occur when different pairs of levels are very nearly de-
generate (see Sec. IX).

If the two atoms in question are in the same orbital
state, the situation is straightforward; they must then be
in a symmetric state as regards their hyperfine (internal)
degrees of freedom, and this state then just factors out
of the calculation. The interaction energy is just given by
the expression (4.14) with as replaced by the generalized
scattering length aab

(s) defined below.
Consider a pair of otherwise identical Bose atoms

characterized by hyperfine labels a, b (aÞb) and occu-
pying mutually orthogonal orbital states w, x. The sim-
plest description of their collisions is obtained in terms
of the odd and even wave functions,

C1[h1z1 , C2[h2z2 , (4.19)

where h6 , z6 are, respectively, normalized spin and or-
bital wave functions of the form

h6[221/2~a1b26a2b1!, z6[221/2~w1x26x1w2!,
(4.20)

where w1[w(r1), etc. Because the antisymmetric orbital
function z2 has zero probability density at the relative
origin, it undergoes no scattering and contributes noth-
ing to the interaction. We now define a generalized
s-wave scattering amplitude aab

(s) just as in Sec. IV.B, in
terms of the asymptotic behavior of the s-wave part of
z1 ; note that this definition refers only to the phase of
z1 as r12→` and is completely independent of its mag-
nitude. We then see by the arguments of Sec. IV.D that
the energy shift associated with the (normalized) state
h1z1 is 8p\2aab

(s)/m (i.e., including the factor of 2).
Consider now what this means for a collision in which, in
the incoming state, the atom with hyperfine index a is in
orbital state i([w) and that with hyperfine index b
is in orbital state j([x), and label it for brevity ua i ,b j&;
note that this state is physically distinguishable from
ua j ,b i& . If now we write the (correctly symmetrized and
normalized) wave function of the state ua ib j& in terms of
the C1 and C2 defined in Eq. (4.19), and take into
account that C2 drops out, we find that the effective
interaction Hamiltonian is a 232 matrix in the space
spanned by ua i ,b j& and ua j ,b i& of the form

Ĥ5S 1 1

1 1 D 3
4p\2aab

(s)

m
d~r12!. (4.21)

Following Oktel and Levitov (1999), it is convenient
to call the process ua i ,b j&→ua i ,b j& a forward collision
and the process ua i ,b j&→ua j ,b i& a momentum-exchange
collision; we see from Eq. (4.21) that the matrix ele-
ments for those two processes are identical in sign and
magnitude.

A similar analysis in terms of C1 and C2 demon-
strates that the total cross section sab for (incoherent)
mutual scattering of two different hyperfine species is
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4p(aab
(s))2 (no factor of 2)—a result that could have been

obtained intuitively by the argument that the hyperfine
index is as good a ‘‘label’’ of a particular atom as a
chemical or isotopic one.

Finally, a note on the relation of the scattering lengths
aab

(s) for different pairs of hyperfine indices a, b: In some
cases an exact relation can be obtained by using rigorous
invariance principles such as rotational invariance (see
Sec. V.D). It is usually not possible to go beyond this. In
particular, the tempting idea of trying to obtain relations
between (e.g.) the three different amplitudes involving
atoms in F52, mF 5 1 and F51, mF 5 21 states by
taking purely electronic singlet and triplet amplitudes
and weighting them with the probability of finding, in
the initial (asymptotic) states, the two electrons to be in
a relative singlet or triplet usually does not work very
well (see Tiesinga et al., 1996); the near equality of these
three amplitudes for 87Rb (see Julienne et al., 1997) is
believed to be a coincidence resulting from the near van-
ishing of the electronic triplet amplitude for two 87Rb
atoms.

F. Time-dependent situations: the MIT hydrogen
experiments

How fast do the physical conditions have to change in
time before the replacement of the true interatomic po-
tential Vat(r) by the scattering-length approximation
(4.4) becomes invalid or dubious? It is, at least, ex-
tremely plausible that the answer should be the slower
of the rates \/mrro

2 and \/mras
2 (where r0 was defined in

Sec. IV.A); this is the maximum time the system needs
to adjust the relative wave function out to distances of
the order of the rc defined in Sec. IV.C. Now, it follows
from the results to be obtained in Sec. V [see Eq. (5.13)]
that if the time dependence is due to a change in the
trap potential, then even if this is itself very fast the
typical inverse time taken by the mean-field wave func-
tion to respond is at most of the order of nU0 /\
[4pn\as /m ; under BEC conditions (nas

3!1) this is
small compared to the above rates, and thus it is self-
consistent to assume that Eq. (4.4) is valid at all times.

A different situation may, however, occur when it is
Vat(r) itself that is changed in time, for example by
sweeping the system through a Feshbach resonance. In
that case it is possible in principle for the rate of change
to be large compared to \/mas

2 , and in particular in the
immediate vicinity of the resonance this will always be
true. Under these conditions the use of Eq. (4.4) may be
dubious.

An interesting real-life case in which not only the
above considerations but those of Secs. IV and V be-
come relevant is the experiment of Fried et al. (1998),
who reported the first observation of BEC in atomic
hydrogen. The authors tuned a laser to approximately
half the 1s-2s transition frequency and directed it on
trapped atomic hydrogen, arranging to have the beam
retroreflected so that it passed through the sample twice
in opposite directions; the probability of excitation of
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the 2s state as a function of laser frequency was inferred
by monitoring the prompt fluorescence produced when
the 2s state (which is highly metastable) was mixed with
the rapidly decaying 2p state by application of an elec-
tric field. Although in general the interpretation of the
data would be complicated by the Doppler effect, the
authors were able to identify the ‘‘Doppler-free’’ part of
the spectrum, which is due to absorption of two photons
traveling in opposite directions and hence not subject to
this complication. Thus one can regard the raw data as
being the probability P(Dn) of absorption at a given
value of the laser frequency, which differs by Dn from
the free-space value; Dn is interpreted as the effect of
the interatomic interactions (the cold collision frequency
shift) as follows.

The crucial point is that the interatomic potential
Vat(r) is different for two atoms both in the 1s ground
state and for a pair in which one atom is in the 2s ex-
cited state (the probability of both being in the 2s state
is negligible). Since the rate of increase of the 2s ampli-
tude, which is given by the two-photon Rabi frequency17

V, is almost certainly very tiny compared to \/mas
2 , or

even \/mr0
2 , the above considerations justify us in re-

placing Vat(r) in both cases by the appropriate s-wave
scattering length a1s21s or a1s22s (Oktel and Levitov,
1999). So, at a point r where the atomic density is n(r),
the expression for the interaction correction to the
1s-2s energy difference (i.e., for the quantity 2hDn)
should be of the form h•4p\2(a1s2a2s)n(r)/m . But is
h equal to 1, 2, or neither? The simplest argument is that
the action of the laser cannot suddenly change the value
of uC(r12.0)u2; thus for a state with 100% BEC the
quantity h should be 1, and in the normal state (where
to order N21 all atoms should be in different orbital
states) h should be 2. For a state with a fraction f of the
atoms in the condensate, a naive extension of this argu-
ment would give the result h522f . However, as
pointed out by Oktel and Levitov (1999), a given atom
may commute between the condensate and the normal
component on a time scale !V21, and under those con-
ditions it may be necessary to take careful account of the
momentum-exchange terms (Sec. IV.E); they conclude
that in this case there are two different resonance fre-
quencies for any given f. The situation is further compli-
cated by the fact that, as noted by Fried et al. (1999,
p. 3813, col. 2, paragraph 3), an analysis of their data
according to the above considerations, i.e., assuming
that a pure condensate occurs and results in a value 1 of
h, yields a total condensate that is implausibly large
from the point of view of the cryogenics; in fact, the
authors analyze their data under the assumption that h
52 everywhere. (The change in the absorption spectrum
on the onset of BEC then comes entirely from
the change in the density distribution.) At the time
of writing, this whole complex of questions remains
controversial.

17See, for example, Mandel and Wolf (1995), p. 752.
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V. THE GROSS-PITAEVSKII APPROXIMATION

The simplest possible approximation for the wave
function of a many-body system is a (correctly symme-
trized) product of single-particle states, i.e., the Hartree-
Fock ansatz. In the case of a BEC system at T50, this
approximation is usually known as the Gross-Pitaevskii
or mean-field approximation. It results in a very simple
equation or set of equations, which are very convenient
for numerical calculations and, in the case of the BEC
alkali gases, appear to give a rather good quantitative
description of the behavior in a large variety of experi-
ments. In the following I first treat, using this ansatz, a
gas of a single hyperfine species (‘‘spinless’’ gas) in equi-
librium at zero temperature, and then generalize the
treatment to finite temperature (Sec. V.B), to the time-
dependent case (Sec. V.C), and finally to the case of
more than one hyperfine species (Sec. V.D). Section
V.E briefly reviews some applications. Unless explicitly
stated otherwise, I shall assume the effective interac-
tion(s) to be all repulsive (all aab

(s).0); for the case of a
single species with attractive interaction, see Dalfovo
et al. (1999), Sec. II.C.

A. The Gross-Pitaevskii ground state of a spinless system

In this subsection I consider a gas of N atoms all of
the same hyperfine species (and will drop the associated
label), in equilibrium in some trapping potential Vext(r)
at zero temperature. The Hartree-Fock ansatz for the
ground state is simply18

CN~r1¯rN!5)
i51

N

x0~ri!, (5.1)

where x0(r) is some normalized single-particle wave
function, to be determined. With this ansatz and the
considerations of Sec. III, the expectation value of the
energy takes the form

^H&N5NE drH \2

2m
u“x0~r!u21Vext~r!ux0~r!u2J

1
1
2

N~N21 !U0E drux0~r!u4, (5.2)

where the effective interaction constant U0 is given, ac-
cording to Sec. III, by

U0[4p\2as /m . (5.3)

Since typically in BEC experiments N is at least 105, in
the following I shall neglect the difference between N
21 and N . Minimization of the right-hand side of Eq.
(5.2) subject to the constraint of normalization of x0 ,
followed by division by N , then yields the Hartree equa-
tion for condensed bosons,

18Strictly speaking this is an oversimplification: even at this
level, the many-body wave function must build in the short-
range (rij&as) correlations discussed in Sec. IV.B. In the fol-
lowing I implicitly assume that this has been done.
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2
\2

2m
¹2x0~r!1Vext~r!x0~r!1NU0ux0~r!u2x0~r!

5mx0~r!, (5.4)

where m enters as N21 times the Lagrange multiplier
associated with the normalization of x0 . Because of the
nonlinearity of Eq. (5.4), m is not in general the energy
per particle ^H&N /N ; rather, by multiplying Eq. (5.4) by
x0* (r), integrating over r, and using the fact that ^H&N is
stationary against small variations of x0(r), we see that
m is equal to d^H&N /dN , i.e., the chemical potential
(whence the notation). Note that the form of the solu-
tion x0(r) of Eq. (5.4) is itself implicitly a function of N .

In the literature it is conventional to rewrite the non-
linear Schrödinger equation (5.4) in terms of the order
parameter C(r) defined by Eq. (3.12) (with N05N at
zero temperature); it then reads

2
\2

2m
¹2C~r!1Vext~r!C~r!1U0uC~r!u2C~r!

5mC~r!, (5.5)

with C(r) normalized so that the space integral of its
squared modulus is N . Equation (5.5) is the celebrated
Gross-Pitaevskii equation;19 note that in the present
(time-independent) case this is strictly equivalent to the
one-particle equation (5.4).20

Associated with Eq. (5.4) or Eq. (5.5) is the important
concept of a healing length. Consider a situation in
which in a given region of space the particle density
r(r)5uC(r)u2 is nearly constant at a value n . Then the
(local) healing length j is defined by

j[S 2 mnU0

\2 D 21/2

5~8pnas!
21/2. (5.6)

To see the physical significance of j, consider for a
moment the case (of course unrealistic for the alkali
gases) of a gas of N[nV atoms confined to a cubic box
of volume V[L3; Vext[0 within the box, but the wave
function x0(r) [hence C(r)] must of course vanish on
the walls. For a noninteracting gas, C(r) would be a
product of sine waves with wavelength 2L . However, it
is intuitively clear that, in the presence of repulsive in-
teractions, it is energetically favorable to make r(r)
nearly constant in the bulk of the box, and in the fact
explicit solution of the Gross-Pitaevskii equation (5.4)
shows this to be the case. As we approach a wall (z
→0) C(z) falls off to zero as tanh z/(&j) (in fact, for a
half-infinite space this is the exact form of the solution).
Thus j is indeed the length over which the perturbing
effect of the wall is ‘‘healed.’’ Note that under normal
BEC conditions (nas

3!1) j is large compared to as (but
generally small compared to typical trap dimensions; see

19Strictly speaking, the T50 time-independent Gross-
Pitaevskii equation.

20Similar remarks apply to Eq. (5.9) below.
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Sec. II.E); we shall see in Sec. VIII that j is also in a
sense the length over which the gas heals from internal
collisions.

B. The spinless gas: finite-temperature equilibrium

The extension of the Gross-Pitaevskii (Hartree-Fock,
mean-field) ansatz to excited states of the many-body
system, and thus to finite temperatures, is at first sight
straightforward: We assume that the approximate en-
ergy eigenstates of the many-body system are character-
ized by specifying a complete orthonormal set of single-
particle wave functions x i(r) and occupying each of
them with ni bosons, in such a way that ( ini5N . The
form of the x i(r) must be obtained self-consistently by
generalizing the argument used in Sec. V.A for the
ground state: see below. For the case of thermal equilib-
rium at temperature T[(bkB)21, we take the expecta-
tion value of ni for iÞ0 to be given by the usual Bose
distribution:

^ni~T !&5$exp@b~e i2m!21#%21 (5.7)

and substitute this expression in the interaction term in
the energy. The number N0 of particles in the conden-
sate (if any), that is, in the special single-particle state
x0(r), is obtained from the prescription

N0~T !5N2(
iÞ0

^ni~T !&. (5.8)

In the following I shall neglect terms of relative order
ni /N , iÞ0.

Bearing in mind the expression (4.18) for the interac-
tion energy, and noting that terms with i5jÞ0 are of
order N21 relative to those with iÞjÞ0, we see that for
any particular energy eigenstate the function x0 and x j
(jÞ0) are given, respectively, by the solutions of the
equations

H 2
\2

2m
¹21Vext~r!

1
4p\2as

m S N0ux~r!u212(
iÞ0

niux i~r!u2D J x0~r!

5mx0~r!, (5.9)

H 2
\2

2m
¹21Vext~r!

1
4p\2as

m S 2N0ux~r!u212(
iÞ0

niux i~r!u2D J x j~r!

5e jx j~r! ~ jÞ0 !, (5.10)

where the chemical potential m is defined as d^E&/dN at
constant $ni%, or what comes to the same thing, constant
entropy. In thermal equilibrium Eqs. (5.9) and (5.10)
must be solved self-consistently by replacing the quanti-
ties ni and N0 by their thermal expectation values (5.7)
and (5.8), respectively.
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We note that while the effective potential felt by the
‘‘normal’’ (or ‘‘thermal’’) (iÞ0) particles is a function
only of the total density r(r) given by

r~r!5N0ux0~r!u21(
iÞ0

niux i~r!u2[nc~r!1nT~r!,

(5.11)

the potential felt by the condensate is sensitive to nc and
nT separately. This creates a small technical problem,
since it is not guaranteed that the solutions of Eq. (5.9)
are necessarily orthogonal to that of Eq. (5.10). This
point is discussed in detail by Huse and Siggia (1982),
who conclude that in realistic circumstances its correc-
tion is unlikely to change much the conclusions drawn
from Eqs. (5.9) and (5.10); however, a more satisfactory
resolution is to note that, while the finite-temperature
Gross-Pitaevskii theory is indeed not strictly internally
consistent in this respect, the next (Bogoliubov) level of
approximation (see Sec. VIII) will remove the inconsis-
tency while still in many cases leaving Eqs. (5.9) and
(5.10) as quantitatively good approximations.

C. The spinless gas: time-dependent Gross-Pitaevskii
theory

In attempting to generalize the considerations of
Secs. I and II to the time-dependent case, we encounter
a nontrivial complication: The order parameter
C(r,t) is conventionally defined, as in Eq. (3.12), as
AN0(t)•x0(rt), where N0(t) is the single macroscopic
eigenvalue of the single-particle density matrix r(rr8:t)
and x0(rt) is the associated normalized single-particle
eigenfunction. Now, we can write down the obvious
time-dependent generalizations of Eqs. (5.4) and (5.5),
respectively (neglecting for the moment terms in ni , i
Þ0),

i\
]x0~rt !

]t
52

\2

2m
¹2x0~rt !1Vext~rt !x0~rt !

1N0~ t !U0ux0~rt !u2x0~rt ! (5.12)

and

i\
]C~rt !

]t
52

\2

2m
¹2C~rt !1Vext~rt !C~rt !

1U0uC~rt !u2C~rt !. (5.13)

In the literature, one can find the term ‘‘time-dependent
Gross-Pitaevskii equation’’ used to refer either to Eq.
(5.12) or to Eq. (5.13). However, it is clear that, unlike
their time-independent analogs, Eqs. (5.12) and (5.13)
are not equivalent unless the condensate number N0(t)
is conserved in time; since this condition itself follows
from Eq. (5.13), it is clear that Eq. (5.13) implies Eq.
(5.12) but not vice versa. A very systematic analysis of
the time-dependent problem, in terms of an expansion
in a parameter that is essentially the typical value of the
quantity (nas

3)1/4, has been given by Castin and Dum
(1998); see also Gardiner (1997). In this subsection I
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adopt a less rigorous but hopefully rather intuitive ap-
proach to the question of the validity of Eqs. (5.12) and
(5.13).

We work at T50 and start from the many-body
Hamiltonian consisting of the usual kinetic and external
potential-energy terms plus the interaction term
1
2 U0( ijd(ri2rj), and insert it in the many-body Schrö-
dinger equation. We then make for the solution of the
latter the Hartree-type ansatz which is the obvious gen-
eralization of Eq. (5.1):

CN~r1r2¯rN :t !5)
i51

N

xo~ri :t !. (5.14)

Note that in making this ansatz we already explicitly
assume that N0(t)5N5const. Substituting this ansatz
into the time-dependent many-body Schrödinger equa-
tion, we obtain

i\(
i51

N
]x0~ri ,t !

]t
•L i~$rj%:t !

5(
i

F H 2
\2

2m
¹ i

21Vext~ri!1
1
2

U0

3(
jÞi

N

d~ri2rj!J •x0~ri :t !L i~$rj%:t !G , (5.15)

where L i(rj :t) is simply a shorthand for the
(ri-independent) quantity ) jÞi

N x0(rj :t). In view of the
product nature of the ansatz (5.14), it is consistent to
take the density of particles other than i at ri , ( jÞi

N d(ri
2rj), to be given by its expectation value over Eq.
(5.14), namely, the total density r(rt)[( i51

N ux0(ri :t)u2

(where as usual we ignore the difference between N
21 and N). Then it is clear that Eq. (5.15) is satisfied if
Eq. (5.12) is; moreover, since we have already assumed
that N0(t)5N5const, Eq. (5.13) also follows. The argu-
ment can clearly be generalized (with some labor) to the
case of finite temperature (i.e., ^ni&Þ0 for iÞ0), and the
result is, as we might intuitively expect, simply to replace
m in Eq. (5.9) and e i in Eq. (5.10) by the quantities
i\]x0(rt)/]t and i\]x i(rt)/]t , respectively.21

The above simple argument shows that once we have
made the ansatz (5.14) for the many-body wave func-
tion, then the unique consistent choice of x0(rt) is the
function determined by Eq. (5.12). However, it does not
of course assure us that the ansatz (5.14) is consistent,
and indeed in the presence of finite interactions it is
not—even if we start at t50 with a simple product wave
function of the type (5.14), the last term in Eq. (5.15)
will in general mix in more complicated (correlated)
many-body states. Thus we should expect Eq. (5.13) to
be valid only to lowest order in e[(nas

3)1/4, and indeed
the rigorous calculation of Castin and Dum (1998)
shows this to be so. What is less expected, but also

21The quantity ^ni& is then constant in time and determined
by its t50 value.
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emerges from their calculation, is that if we define the
condensate wave function x0(rt) in the more general
way described in Sec. III (i.e., as the wave function of
the unique ‘‘macroscopically occupied’’ single-particle
state), then it still satisfies Eq. (5.12) at the order in e
where Eq. (5.13) fails. It should be noted that the quan-
tity e may itself depend on time.

It is often useful to define a ‘‘reference’’ solution to
Eq. (5.13)—call it C0(rt)—and then study the behavior
of small deviations dC(rt) from C0 . Because of the
presence of the nonlinear term, we get a pair of coupled
equations for dC(rt) and its complex conjugate
dC* (rt):

i\
]

]t
dC~rt !52

\2

2m
¹2dC1Vext~rt !dC~rt !

1U0uC0~rt !u2dC~rt !

1U0@C0~rt !#2dC* ~rt !. (5.16)

The equation for dC* is the complex conjugate of Eq.
(5.16). A case of special interest is when Co(rt) repre-
sents the Gross-Pitaevskii ground state: in that case, to
get agreement between Eqs. (5.13) and (5.5) we write

Co~rt !5C~r!exp2imt/\ , (5.17)

where C(r) satisfies the time-independent Gross-
Pitaevskii equation (5.5). It is then convenient to write
dC(rt) in the form

dC~rt !5exp2imt/\@u~r!exp2ivt

1v* ~r!exp1ivt# , (5.18)

and some straightforward algebra then shows that the
functions u(r), v(r) satisfy the Bogoliubov–de Gennes
equations

\vu~r!5$Ĥo2m12UouC~r !u2%u~r!1UoC2~r!v~r!

(5.19)

2\vu~r!5$Ĥo2m12UouC~r !u2%v~r!

1UoC* 2~r!u~r!, (5.20)

where Ĥo is a shorthand for @2(\2/2m)¹21Vext(r)# .
We shall rederive Eqs. (5.19) and (5.20) from a different
point of view in Sec. VIII. In the special case of a weakly
interacting gas in free space @Vext[0,C(r)5Ano>An# it
is clear that u(r) and v(r) have the form of plane waves:
u(r)5A exp(ik•r),v(r)5B exp(ik•r), and moreover
from Eq. (5.5) m is simply equal to Uon . Explicit solu-
tion of Eqs. (5.19) and (5.20) then yields the dispersion
relation

\v~k !5@ek~ek12nU0!#1/2 ~ek[\2k2/2m !. (5.21)

Introducing the hydrodynamic speed of sound cs by

cs
25

n

m

]2E

]n2 5
nU0

m
, (5.22)

we can rewrite Eq. (5.21) in the form

v~k !5~cs
2k21\2k4/4m2!1/2. (5.23)
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This is the famous Bogoliubov spectrum for a dilute
Bose gas; it reduces to ek /\ for k@\/mcs [i.e., kj@1,
since j can be written from Eqs. (5.6) and (5.22), as
A2\/mcs] but in the opposite limit has the sound-wave
form csk . We return to Eq. (5.21) in Sec. VIII, just not-
ing here that regardless of the value of k the fluctuation
of the atomic density r(rt)5uC(rt)u2 around its equilib-
rium value n is given by the standard sound-wave form

dr~rt !5const cos@k•r2v~k !t# . (5.24)

D. Effects of the hyperfine degree of freedom

Introduction of an internal (hyperfine) degree of free-
dom leads immediately to at least three complications in
the picture developed above. First, the axes in the hy-
perfine space with respect to which the external poten-
tial is diagonal may vary in (real) space and, possibly, in
time. Second, the s-wave scattering amplitude will in
general have a matrix structure in the hyperfine space.
Third, ‘‘simple’’ BEC is no longer the only natural pos-
sibility (see Nozières, 1995).

In dealing with these complications we have a choice
of basis in the hyperfine space: Either we regard the axes
as fixed independently of the spatial coordinates r and
time t , or we allow them to depend on r and, possibly, t ,
for example in such a way that the local external poten-
tial is everywhere diagonal (adiabatic basis).

Let us first briefly use the latter choice to discuss the
very simplest case, in which the spinor C(r,a) describ-
ing the condensate is of the form C(r)uao& where uao& is
a fixed spinor in the adiabatic basis (e.g., that corre-
sponding to F51,mF51);22 it can be shown (Ho and
Shenoy, 1996) that this is a good approximation for the
ground state when the axes of the latter basis are suffi-
ciently slowly varying. Then it turns out that if we wish
to define a superfluid velocity vs in the natural way, so
that the local particle current is vsuC(r)u2, the appropri-
ate definition is no longer Eq. (3.15) but rather

vs~rt !5
\

m
Dw~rt !, w~rt ![arg C~rt !, (5.25)

where D is the covariant derivative introduced by the
‘‘bending’’ in space of the hyperfine axes (see Weinberg,
1972, Chap. 4). As a result, vs no longer satisfies the
irrotationality condition (3.16), and even in a simply
connected geometry the equilibrium state may sustain a
finite orbital angular momentum (Ho and Shenoy, 1996;
cf. Loss et al., 1990).

For most purposes, however, and in particular where
the effects of interactions are important, a choice of hy-
perfine axes that is independent of spatial coordinate
(and time) is much more convenient, and I shall use it
from now on. For the moment let us assume simple
BEC, so that we can define, as in Sec. III.D, a unique

22In words, the condensate atoms are in the lower hyperfine
manifold and their spins are everywhere oriented along the
direction of the local magnetic field.
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order parameter C(r,a) which is a spinor in the space of
the hyperfine axes. The kinetic-energy operator then has
the standard form 2(\2/2m)¹2, and the local external
potential is a matrix Vab(r) with respect to the hyper-
fine axes. It remains to consider the interaction energy.

By an obvious generalization of the considerations of
Sec. IV, it is intuitively plausible that the general expres-
sion for the atomic interaction energy is

Eint5
1
2 (

ab ,gd
Uabgd^ca

† ~r!cb
† ~r!cg~r!cd~r!&, (5.26)

where ca
† (r) is the creation operator for an atom at

point r and with spin (hyperfine) index a, and Uabgd is
related to the s-wave scattering length matrix aabgd by

Uabgd5
4p\2

m
aabgd . (5.27)

Note that because of the Bose statistics Uabgd may be
taken to be symmetric under the exchanges a↔b and
g↔d . In any given physical situation the possible forms
of the matrix aabgd may be constrained by symmetry
considerations. Consider, for example, the case of a
system moving in a small magnetic field B(r)
5n̂(r)uB(r)u, uB(r)u!Bhf , and suppose that all atoms
are known to be in the lower (F51) hyperfine manifold,
as in the experiments of Stenger et al. (1998a). Under
these conditions the local interaction energy can be a
function only of the only two quantities one can form
that are linear in ca

† cb
† cgcd and invariant under spin

rotation, namely, the squares of the total density r(r)
and of the spin density S(r). Expressing these quantities
as linear combinations of cm

† (r)cn(r) and using Eq.
(5.27), we find (see Ho, 1998)

aabgd5
1
2

@a1dagdbd1a2Sag•Sbd1~a↔b!# , (5.28)

where S is the (vector) spin operator for the F51 state.
The quantities a1 and a2 can be related to the scattering
amplitudes of two atoms in the K52 and K50 states,
where K is the magnitude of the (conserved) total
atomic spin K[F11F2 . By considering, for example, the
K50 state (Sag•Sbd522) and the K52,mK52 state
(Sag•Sbd51) we find

a15
1
3

~aK5012aK22! , a25
1
3

~aK522aK50!.

(5.29)

To obtain a Gross-Pitaevskii formalism in a general
choice of axes, we assume as above simple BEC, i.e.,
make the ansatz

CN5)
i51

N

xo~ri ,a i :t !, (5.30)

consider a particular point r (and time t), and use our
freedom to choose the axes arbitrarily to choose them,
temporarily, so that only a single component (call it ao)
of the spinor xo(r,a), or equivalently of the order pa-
rameter C(r,a), is nonvanishing: C(r,ao)[daao

C(r).
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Then the formulas of Sec. IV go through verbatim, and
we find for the local interaction energy density Eint(r)
within the Gross-Pitaevskii approximation the simple
expression

Eint~r!5
1
2
•

4p\2

m
āsuC~r!u4, (5.31)

where ā s denotes the component of aabgd corresponding
to a5b5g5d5ao . Transforming back to a general
frame and integrating over r, we obtain for the total
interaction energy the expression23

Eint5
1
2 (

abgd
UabgdE Ca* ~r!Cb* ~r!Cg~r!Cd~r!dr,

(5.32)

Uabgd[
4p\2

m
aabgd (5.33)

[where Ca(r) and hence Eint may also be a function of
time]. The right-hand side of Eq. (5.32) is the general
expression, within the T50 Gross-Pitaevskii approxima-
tion, for the interaction energy of a Bose system exhib-
iting simple BEC, and it is routinely used in the litera-
ture for the analysis of such a system.

We now proceed by straightforward analogy with the
arguments of Secs. V.A–V.C above. Given the ansatz
(5.30), the time-independent T50 Gross-Pitaevskii
equation is obtained by minimizing the total energy and
takes the form of a set of equations for the j spinor
components Ca(r),

2
\2

2m
¹2Ca~r !1(

b
Vab~r !Cb~r !

1(
bgd

UabgdCb* ~r!Cg~r!Cd~r!5mCa~r!

~a51¯j !. (5.34)

Similarly, the zero-temperature time-dependent Gross-
Pitaevskii equation takes the form

i\
]Ca

]t
~rt !5

\2

2m
¹2Ca~rt !1(

b
Vab~rt !Cb~rt !

1(
bgd

UabgdCb* ~rt !Cg~rt !Cd~rt !

~a51¯j !. (5.35)

Just as in the case of a simple one-particle Schrö-
dinger equation, the time-independent solution Ca(r) of

23Needless to say, if we accept the concept of spon-
taneously broken U(1) symmetry (see Sec. III.D), the
above derivation may be short-circuited by the re-
placements, in Eq. (5.26), ^ca

† (r)cb
† (r)cg(r)cd(r)&

→^ca
† (r)&^cb

† (r)&^cg(r)&^cd(r)&, ^ca(r)&→Ca(r), etc. I pre-
fer to avoid this ‘‘automatic’’ derivation both for the reasons
given in Sec. III.D and because it makes the generalization to
general (nonsimple) BEC less transparent.
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Eq. (5.34) may be regarded as related to a special case of
the solution Ca(rt) of Eq. (5.35) by

Ca~rt !5exp~2imt/\!Ca~r !. (5.36)

It is worth noting explicitly that in Eqs. (5.34) and (5.36)
the chemical potential m is common to all components
Ca(r); see below.

The generalization of even the static Gross-Pitaevskii
theory (let alone the time-dependent one) to nonzero
temperature in the multicomponent case appears not to
be entirely trivial, and to the best of my knowledge has
not been much discussed in the literature for the most
general case. The basic difficulty is that while we can
certainly define normal-component eigenfunctions
x il(r,a), we have in general no a priori guarantee that
their spinor structure will be simply related to that of the
condensate [in particular, the relevant spinors need not
be locally parallel or orthogonal to the condensate
spinor C(r,a)].24 I shall therefore discuss here only the
simplest case, namely, that in which not only does the
external potential Vab(r) have r-independent eigenval-
ues but the condensate has an r-independent spinor
structure, i.e., C(r,a)5C(r)jo(a); it is convenient to
choose the basis so that jo(a)5daao

. Then, in this basis,
the normal eigenfunctions within the Hartree-Fock ap-
proximation will also be fixed spinors: x il(r,a)
5w il(r)jl(a), where one of the jl’s is jo(a) and the
rest are orthogonal to the latter. One can then go
through the standard Hartree-Fock decoupling of the
interaction energies in Sec. IV, with the upshot that the
interaction between normal particles in states l and l8
has the factor of 2 only for l5l8, and the interaction of
the condensate with a normal particle of hyperfine index
l has it only for l50.

I now turn to the question of simple versus multiple
(general) BEC. A very important consideration here is
that the generic factor of 2, which for a spinless system
with repulsive interactions opposes simultaneous occu-
pation of two different (but spatially overlapping) or-
bital states, is absent in the case of simultaneous occu-
pation of two mutually orthogonal hyperfine states, and
thus such occupation (fragmentation) is not at all un-
common. For pedagogical convenience let us consider
the very simplest situation, that of a spatially uniform
system with only two relevant hyperfine states character-
ized by r-independent spinors ua&,ub&. (We choose the
basis to diagonalize the external potential energy.)
Then, normalizing in unit volume and setting the par-
ticle density equal to n , we see that the ground-state
Gross-Pitaevskii order parameter has the form

Ca~r!5n1/2Ca ,

Cb~r!5n1/2Cb ~ uCau21uCbu251 !, (5.37)

24The origin of this difficulty is essentially the point noted
at the end of Sec. V.B above, namely, that within the Hartree-
Fock (Gross-Pitaevskii) approximation the condensate and
the normal quasiparticles experience different effective Hamil-
tonians.
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i.e., the many-body ground state has the form [including
(part of) the time dependence]

CN5P i$~Caua i&1Cbub i&)exp2imt/\%. (5.38)

Substituting Eq. (5.37) in the time-independent Gross-
Pitaevskii equation (5.34), we find that the coefficients
Ck (k5a ,b) satisfy the equation

EkCk1 (
l ,m ,n5a ,b

nUklmnCl* CmCn5mCk ~k5a ,b!,

(5.39)

where Ek is the eigenvalue of the single-particle Hamil-
tonian (kinetic plus external potential energy) corre-
sponding to hyperfine state uk&. In general Eq. (5.39)
will have more than one solution (see below), and for
the ground state we must choose that corresponding to
the lowest value of the total energy.

Let us now consider the case in which the interaction
term commutes with the single-particle part of the
Hamiltonian, so that the numbers of particles in states a
and b are separately constant. Expressed in terms of the
matrix elements Uklmn , this means that the only allowed
terms correspond to the choices k5m , l5n or k5n , l
5m . Introducing the notation

Uaaaa[Uaa~[4p\2as
(aa)/m !, (5.40)

Ubbbb[Ubb~[4p\2as
(bb)/m !, (5.41)

Uabab~[Uabba ,etc.![
1
2

UabS [
1
2

4p\2as
(ab)/m D ,

(5.42)
we find that Eq. (5.39) reduces to

S Ea1 (
l5a ,b

nUaluClu2D Ca5mCa (5.43)

and a similar equation with a→b for Cb . It is straight-
forward to verify that the (lowest) solution of Eq. (5.42)
minimizes the total energy per particle,

E~Ca ,Cb!5 (
k5a ,b

EkuCku2

1
1
2 (

k ,l5a ,b
~nUkl!uCku2uClu2, (5.44)

with respect to arbitrary variations of Ca and Cb subject
to the normalization constraint uCau21uCbu251 [i.e., in
effect, with respect to arbitrary variation of ^na&2^nb&].

However—and here is the crunch—if processes that
change ^na&2^nb& are really absent as we have as-
sumed, then the physically interesting states of the
many-body system, even at T50, are by no means re-
stricted to states of the form (5.38). Let us in fact con-
sider states of the more general form

CN5P i$Caua i&exp2imat/\1Cbub i&exp2imbt/\%
(5.45)

where we do not assume that ma5mb . This corresponds
to an order parameter of the form
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Ca~r ,t !5n1/2Ca exp2imat/\ ,
(5.46)

Cb5n1/2Cb exp2imbt/\ .

Substituting this into the time-dependent Gross-
Pitaevskii equation (5.35) and using the form of Uabgd

given by Eqs. (5.40)–(5.42), we find that Eq. (5.46) is a
solution of Eq. (5.35) provided the mk satisfy

mk5Ek1 (
l5a ,b

nUkluClu2, k5a ,b , (5.47)

which is equivalent to the statement that (for example)
ma is the partial derivative of the total energy with re-
spect to na at constant nb . It is not difficult to see that
these results generalize to the more physical case in
which the xoa(r),xob(r) are nonuniform and in general
different (though see below). In this case we write the
order parameter in the more general form

Ca~rt !5Ca~r!exp2imat/\ ,
(5.48)

Cb~rt !5Cb~r!exp2imbt/\ ,

and the generalized form of Eq. (5.47) [obtained by a
substitution of (5.48) into (5.39)] is

S 2
\2

2m
¹21Vk~r! DCk~r!1 (

l5a ,b
UkluCl~r!u2Ck~r!

5mkCk~r! ~k5a ,b! (5.49)

—a form that is often used in the literature for cases in
which the species numbers na ,nb are separately con-
served.

It is actually possible to generalize the description
(5.45) even to cases in which the interaction term does
not commute with the single-particle Hamiltonian, since
in that case also Eq. (5.47) [or in the spatially inhomo-
geneous case (5.49)] has more than one solution, and
these can be superposed to generate a solution analo-
gous to Eq. (5.45). However, this generalization does
not appear to be of much practical interest in the con-
text of current experiments, and in view of the nota-
tional complications I do not pursue the question here.

Returning to the simple case corresponding to Eq.
(5.45), we reemphasize that this equation describes
simple BEC (in a time-dependent state). However, pro-
vided that we are at no time interested in measuring
operators that change the hyperfine state, it is clear that
in the thermodynamic limit (N→`) all experimental
properties of the state (5.45) are identical to those of
the state

CN8 [S)
i51

na

ua i& )
j5na11

N

ub j&, (5.50)

where S denotes the symmetrization operator and na is
(the nearest integer to) uCau2N . It is clear that the
single-particle density matrix corresponding to the state
(5.50) has two eigenvalues, na and nb , which are each of
order N and thus that CN8 displays multiple BEC (a frag-
mented condensate). We shall see in Sec. VII.C that CN8
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can be represented (up to an overall phase) as a super-
position of states of the generic form (5.45), i.e., of the
form

)
i51

N

$uCau•ua i&1uCbuexp iwub i&%, (5.51)

with random relative phase w. Since in the absence of
processes that change the hyperfine states no physical
quantities can depend on w, the properties of the state
(5.50) are identical (in the thermodynamic limit) to
those of Eq. (5.45).

A more general discussion of BEC in a two-state sys-
tem is given in Sec. VII.

It is clear that the above discussion recovers most of
the results of that given in Sec. IV.E (which was pre-
cisely for the case of conservation of the hyperfine in-
dex). However, even in the T50 case (and a fortiori at
finite temperatures) one might worry about the effects
of the momentum-exchange term discussed there. At T
50, in the homogeneous case or more generally where
the two condensate wave functions xoa(r),xob(r) are
identical, this term vanishes, but in general it does not:
its physical effect is, crudely, to scatter an atom initially
in state xoa(r) into the component of xob(r), which is
orthogonal to xoa(r) and vice versa. By making the
Gross-Pitaevskii (Hartree) approximation one of course
ignores such processes, and I believe that, at least at
zero temperature, if one is going to take them into ac-
count one should simultaneously take into account the
terms taken at the next (Bogoliubov) level of approxi-
mation (see Sec. VIII); indeed, they may be regarded as
simply a special case of the latter; see Sec. VIII.F. At
finite temperature the effects of momentum-exchange
collisions with the normal component may be more sig-
nificant (Oktel and Levitov, 1999, see Sec. 4.6).

E. Applications

The applications of both the time-independent and
the time-dependent Gross-Pitaevskii equation to a
single-species alkali gas in a harmonic trap are excel-
lently reviewed by Dalfovo et al. (1999), so I just reca-
pitulate here the barest essentials, confining myself for
simplicity to the isotropic case. A critical dimensionless
parameter that controls the qualitative behavior is the
quantity

l[~15Nas /aho!1/5, (5.52)

where aho[(\/mvo)1/2 is the oscillator length. In most
experiments to date l lies in the range 5–10, and in the
following I shall treat it as large compared to unity. In
this limit we can neglect, in the T50 Gross-Pitaevskii
equation, the kinetic-energy term except very close to
the edge of the condensate (the Thomas-Fermi approxi-
mation), and the form of the ground-state density distri-
bution is then an inverted parabola:

ro~r !5ro~0 !~12r2/ro
2 !. (5.53)
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The chemical potential, the central density ro(0), and
the condensate radius ro are given in terms of l by the
formulas

m5
1
2

\vo•l2, (5.54)

ro5laho , (5.55)

r~0 !5l23Naho
23. (5.56)

At finite temperatures the results for the condensate are
the same except that N is replaced by No and the defi-
nition of l is similarly modified. In practice the condi-
tion l@1 is met until temperatures quite close to
Tc , since it turns out that the free-gas formula No
5N@12(T/Tc)3# is not a bad approximation for the real
trapped gases. What of the thermal (uncondensed, nor-
mal) component? Following Dalfovo et al. (1999), let us
define a dimensionless parameter h[m(0)/kBTc
;(N1/6as /aho)2/5. Then h lies in the range 0.3–0.4 for
most existing experiments.25 At Tc , the density n of the
gas and hence the mean-field energy per atom nUo are
of the order of h3/2;0.1 of their values at T50; how-
ever, the competition of the mean field is not, as at T
50, with the zero-point energy (\vo/2) but with the
thermal energy kBTc , which is a factor ;100 larger [see
Eq. (3.7)]. Thus, in the normal phase (T.Tc) and in fact
even below Tc , the mutual interactions of the atoms of
the normal component are negligible. In fact, since at
TclDB is of order n21/3, the dilute-gas condition n!1
automatically guarantees that nU0!kT for T>Tc .
However, below Tc the interaction between the normal
component and the condensate can have a non-
negligible effect on the condensate fraction, reducing
the latter according to the estimate of Dalfovo et al. by
as much as 20% for T/Tc50.6.

The application of the time-dependent Gross-
Pitaevskii equation (5.13) to a single-species gas in a
trap has been studied by many authors, both to calculate
the collective excitation spectrum and to explore the
nonlinear behavior; I particularly draw attention to the
elegant scaling solution first constructed by Kagan and
co-workers (1996) and by Castin and Dum (1997) for a
harmonic trap with arbitrary time variation of the trap-
ping frequency vo , which is exact in the Thomas-Fermi
limit l@1 (and exact in two dimensions for all l). See
Dalfovo et al. (1999), Sec. IV.D, and for an exhaustive
discussion of the collective excitations, including effects
associated with the normal component, Griffin (2000).

Turning to the multispecies case, a number of authors
(e.g., Ho and Shenoy, 1996; Esry and Greene, 1999)
have used Eq. (5.49) to study the equilibrium of two
different hyperfine species in a trap. A rather generic
result of such calculations is that even if the external
potential is identical for the two species, phase separa-
tion will occur if, as in the case of the F52, mF
511(‘‘u2&’’) and F51, mF521(‘‘u1&’’) states of

25Note that the maximum value of nas
3 is h6/(15)3/5.
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87Rb, the scattering lengths are all positive and satisfy
the inequality a12

2 .a11a22 (or, what is approximately the
same condition for close values of the aij , a12.(1/2)
3(a111a22). In such a case, in a typical harmonic trap,
one species (in this case u1&) will form a ring or shell
around the other, while the total density behaves (for
close aij) almost identically to that of a single species.
Such behavior has been verified in the experiments of
Hall, Matthews, Ensher, et al. (1998); see their Fig. 1.

An even richer situation was realized in the experi-
ments of Stenger et al. (1998a), in which all three sub-
states of the F51 ground multiplet were simultaneously
confined in an optical trap and their distribution studied
as a function of parameters such as the (spatially vary-
ing) magnetic field. In subsequent experiments the same
group investigated metastable configurations of systems
containing two of the three species (Miesner et al., 1999)
and their relaxation by quantum tunneling of the con-
densate (Stamper-Kurn et al., 1999). It appears that a
reasonably good quantitative account of all these experi-
ments is given by calculations based on the time-
independent Gross-Pitaevskii equation (5.49). An inter-
esting difference from the case of 87Rb (with F52 and
F51 components) is that the ‘‘accidental’’ near degen-
eracy of the various scattering lengths observed in the
latter case appears to be absent: the difference in the
K52 and K50 scattering lengths in the F51 ground
multiplet (see Sec. V.D) is of order 10% relative to their
mean (see Burke et al., 1998), with a2.a0 . As a result,
phase separation apparently occurs between the 0 and
61 components, while the latter two are mutually mis-
cible (Stenger et al., 1998a).

The time-dependent equation (5.35) has similarly
been applied by a number of groups (e.g., Ho, 1998;
Ohmi et al., 1998; Ohberg and Stenholm, 1999; cf. Col-
son and Fetter, 1978) both to calculate collective excita-
tions and to study the process of achievement of equi-
librium when the relative concentration of the species is
suddenly changed. In the latter context I particularly call
attention to the analysis by Sinatra et al. (1999) of the
experiment of Hall et al. [Hall, Matthews, Ensher, et al.
(1998) and Hall, Matthews, Wieman, and Cornell
(1998)], on which see also Sec. VII.D. A salient conclu-
sion is that because of the very small difference in the
aij’s for 87Rb, equilibration will take a time (;60 msec)
long compared to that associated with the average
mean-field energy (;2 msec), as indeed observed. An-
other interesting conclusion is that the approach to equi-
librium is nonmonotonic (as observed) and that the phe-
nomenologically observed damping is a result of
strongly chaotic behavior (see Sec. IX.E).

VI. ROTATIONAL PROPERTIES: SUPERFLUIDITY

A. Phenomenology of superfluidity in liquid 4He

Fritz London’s original suggestion in 1938 that liquid
4He in its He-II phase below the l temperature exhibits
BEC was prompted primarily by the observation in that
phase of the property of superfluidity. In the original
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measurements of Kapitza and of Allen and Misener,
what was observed was the ability of the liquid to flow
without apparent friction through channels so narrow
that any ordinary liquid (including the He-I phase of
4He above the l temperature) would be almost totally
clamped by viscous effects.

As so often occurs in physics, the original experiment
is not the most conceptually clear-cut demonstration of
the phenomenon. In fact, from a modern point of view,
superfluidity is not a single phenomenon but a complex
of phenomena, and the picture becomes clearer if one
considers not a channel between two bulk reservoirs, as
in the experiments of Kapitza and Allen and Misener,
but rather an annular geometry.26 Let us then consider a
hollow cylinder of height h , inner radius R2d/2 and
outer radius R1d/2, where d!R ; for the moment we
assume that deviations from exact cylindrical symmetry
are small (but nonzero). Then, if the cylinder is filled
with 4He, we can observe two conceptually distinct
(though related) phenomena. The first is sometimes
called the Hess-Fairbank effect: the system appears to
come out of equilibrium with its rotating container. To
amplify this definition, we all know that if we take our
annulus filled with water and set it on an old-fashioned
gramophone turntable which we then set into rotation,
the water will come (after a delay of maybe '1 min)
into rotation with the annulus and will thereafter rotate
with it as long as the turntable continues to rotate. When
we stop the rotation, the water also gradually comes to
rest. Imagine now that we do the same experiment with
He, starting above the l point and rotating very slowly
(for a 1-cm-radius annulus, the angular velocity would
have to be &1024 rad/sec to see the specific behavior to
be described; in practice smaller radii are used and the
criterion is not quite so stringent). The He behaves in
exactly the same way as the water, coming into rotation
with the container. Now suppose that, while still rotating
with this low angular velocity, we cool the system
through the l temperature. The He then appears to
gradually come out of equilibrium with the container,
i.e., to cease (prima facie) to rotate even though the con-
tainer is still rotating! In fact, as T falls to zero, the He
appears at first sight to come to rest in the laboratory
frame (or, to be more precise, rather in the frame of the
fixed stars). It is clear that this behavior cannot simply
reflect very long relaxation times, since the liquid has
come out of equilibrium with the container: the‘‘nonro-
tating’’ state must be the true thermodynamic state. This
Hess-Fairbank effect is the exact analog of the Meissner
effect in a superconductor. It is conventional to define
the superfluid density rs(T) [or superfluid fraction
rs(T)/r , where r is the total density] in terms of the
experimentally observed value of the temperature-

26All the ensuing considerations have close analogs in the
theory of superconductivity, which indeed is nothing but su-
perfluidity occurring in a charged system; see, for example,
Vinen (1969) or Leggett (1995b).
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dependent moment of inertia I(T)[L/v relative to its
classical value Icl[NmR2: rs(T)/r[12I(T)/Icl .

The second phenomenon is the following: Again put
the He, above Tl , in the annulus and set the latter into
rotation, but this time much faster. This time, as we cool
through Tl , we see very little change: to all intents and
purposes the liquid continues to rotate with the con-
tainer. Now stop the container. The He continues to ro-
tate, apparently indefinitely. One can show rigorously
that for the container stationary the rotating state can-
not be the thermodynamic equilibrium one, so what we
are seeing here is an example of an extremely long-lived
metastable state. I shall refer to this phenomenon as
metastability of superflow. At first sight neither the Hess-
Fairbank effect nor the metastability of superflow is ob-
viously equivalent to the phenomenon originally ob-
served in 1938; I discuss the relation to this and yet other
possible definitions of superfluidity elsewhere (Leggett,
2000a).

A simple phenomenological understanding of both
the Hess-Fairbank effect and the stability of supercur-
rents may be obtained if we assume (a) that in analogy
to the electrons in an atom, the atoms of the condensate
(which, we recall, must all behave as one) can have only
integral values l \ of their angular momentum, corre-
sponding in the annular geometry to an angular velocity
of rotation l \/mR2[l vc , and (b) that (in distinction
to the electrons in an atom) the passage of an atom (or
rather of the condensate atoms as a whole) from one
value of l to another is impeded by a high free-energy
barrier. Then it is intuitively plausible that on cooling
through Tl with v!vc the condensate will prefer to
come to rest. On the other hand, if the angular velocity
of the container is @vc , say nvc where n is in general
not integral, then on cooling through Tc the condensate
will simply ‘‘choose’’ the value of l that most closely
matches its angular velocity to that of the container; in
particular, if the latter is @vc/2, the condensate will sim-
ply choose the integer l closest to n , and the difference
between l and n will be barely observable, so that the
liquid appears to continue to rotate with the container.
However, when the rotation stops the free-energy barri-
ers will prevent relaxation to l 50.

B. Rotating frames of reference

In order to formulate a quantitative account of super-
fluidity, whether in liquid 4He or in the BEC alkali
gases, we need to know how to do statistical mechanics
where the potential that confines the system (be it a
physical container or a set of magnetic and/or laser
fields) is rotating. This problem is discussed in textbooks
of statistical mechanics (e.g., Landau and Lifshitz, 1969,
Sec. 26), and I consider it in the specific alkali-gas con-
text elsewhere (Leggett, 2000a); here I merely quote the
standard result.
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Consider a system that, when the ‘‘container’’ is sta-
tionary in the laboratory frame,27 is described by the
generic Hamiltonian

Ĥlab5(
i

$~pi
2/2m !1Vext~ri!%1

1
2 (

ij
U~ uri2rju!.

(6.1)
We wish to know how to apply statistical mechanics
when the container is rotated at angular velocity v
around an axis which by convention we shall choose as
passing through the origin and along direction ẑ:

Vext~ri!→Vext~ri :t ![V@ri8~ t !# , (6.2)

where ri8(t)[(xi cos vt1yi sin vt,2xi sin vt1yi cos vt,zi).
In the following it is not required that Vext(r) have
exact28 or even approximate symmetry under rotation
around the axis v, but it is essential that the interparticle
interaction have this property [for which the centrality
of U specified in Eq. (6.1) is sufficient though not strictly
speaking necessary]; see below.

The standard result is now the following: Consider a
time t52pn/v (n integral) such that the instantaneous
configuration of the potential is its original stationary
one. Then the thermodynamic equilibrium state of the
system is determined by minimizing the expectation
value of the quantity Ĥeff2TS , where

Ĥeff[Ĥlab2v•L̂, (6.3)

where L̂ is the operator of total angular momentum. At
other times the density matrix of the system is modified
in such a way as to make it, and thus all physical prop-
erties of the system, time independent when viewed
from the rotating frame. (Note that this does not imply
that the system is necessarily stationary in that frame.)

The derivation of Eq. (6.3) will fail if the interatomic
potential has a part that is not invariant under rotation
around the axis of v, as is in general the case when
dipolar interactions are taken into account (assuming
the magnetic field is not rotated, as in the experiment of
Madison et al., 2000). In such a case there is strictly
speaking no frame of reference in which the Hamil-
tonian is time independent, and thus no thermodynamic
equilibrium state: in fact, the situation is similar to that
realized in Couette flow, and the best we can do is to
find a steady state. Fortunately, in realistic geometries
such as that of Madison et al. (2000) such effects appear
likely to be a small perturbation.

In the remainder of this section I shall be discussing
the spinless case unless explicitly otherwise stated; for
(other) possible effects of the hyperfine degree of free-
dom, see the last paragraph of Sec. VI.D.

C. Equilibrium of a BEC system in a rotating container

Let us first apply formula (6.3) to a free Bose gas
above the transition temperature in a nearly cylindri-

27Strictly speaking, that of the fixed stars; I shall ignore the
difference.

28In fact, the limit of exact cylindrical symmetry needs to be
approached with some care; see Leggett (2000a).
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cally symmetric annular container. With the above re-
placement, the Bose-Einstein distribution is simply

nn5@exp b~en2\vl n2m!21#21 (6.4)

and the angular momentum is

L5(
n

nn\l n5(
n

l n@exp b~en2\vl n2m!21#21.

(6.5)

Now for a cylindrically symmetric geometry in the limit
d!R n can be taken as some pair of quantum numbers
j ,k describing the transverse motion (their detailed na-
ture is irrelevant) plus the angular momentum quantum
number l : associated with the latter is an ‘‘angular’’ ki-
netic energy l 2\2/2mR2. Associating with (j ,k) the en-
ergy ẽ jk , we thus have

L5(
jk

(
l

\l H exp bF ẽ jk1S l 2\2

2mR22\vl 2m D G21J 21

.

(6.6)

The crucial point is that for any realistic geometry and
temperature the quantity b\2/mR2[\2/(mR2kBT) will
be extremely small (for example, even for Na in a 100m
annulus at 1 mK it is still only '1026), so the sum over l
can be replaced by an integral and the origin shifted:
l 85l 2mR2v\ . It is then clear from symmetry that the
result is simply

L5NmR2v[Iclv , (6.7)

where Icl[NmR2 is the classical moment of inertia.29

Thus the gas rotates exactly in pace with the container,
and rs(T)50 from its definition.

What happens below Tl? Consider for simplicity the
case T50. Now all the atoms must be condensed into
the state with lowest ‘‘effective’’ energy, i.e., into the
single-particle state that minimizes the quantity

Eang~ l !5
l 2\2

2mR2 2\vl , l integral. (6.8)

It is clear that the value of l that minimizes Eang(l )
is the nearest integer to v/vc , where vc[\/mR2. Thus
for 0,v,vc/2 the condensate stays in the original
ground state (l 50), and thus the system has zero an-
gular momentum; for vc/2,v,3vc/2 the condensate
occupies the state l 51 and the total angular momen-
tum is N\ , and so on. At finite temperatures the angular
momentum is the sum of that of the condensate, which
behaves similarly to that described but with N
→No(T), and that of the normal component, which be-
haves exactly as in the normal phase, i.e., rotates with
the container and contributes an angular momentum
@Nn(T)/N#Iclv . @Nn(T)[N2No(T).# Thus in this
simple model, rs(T)/r5No(T)/N .

We see, then, that in a cylindrically symmetric con-
tainer, even for a noninteracting Bose gas, the onset of

29There are slight complications, which I shall ignore, con-
cerning the small shift in m and the fact that (for d/R finite) a
meniscus tends to form.
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BEC leads to the Hess-Fairbank effect. Moreover, this
feature persists in more general geometries and in the
presence of interactions. To see this, let us specialize for
simplicity to the case T50 and assume that the time-
independent Gross-Pitaevskii theory will give at least a
qualitative guide to the behavior. Thus we write the
many-body wave function in the Gross-Pitaevskii (Har-
tree) form and minimize the effective Hamiltonian (6.3).
Since the angular momentum operator of the ith particle
can be written as simply 2i\]/]u i where u i is the polar
angle relative to the rotation axis, the resulting Gross-
Pitaevskii equation has the form

S 2
\2

2m
¹21i\v

]

]u DC~r!1Vext~r!

1
4p\2

M
asuC~r!u2C~r!5mC~r!, (6.9)

and this must be solved subject to the ‘‘single-
valuedness’’ boundary condition

C~u12p!5C~u!. (6.10)

The expectation value of the angular momentum is
given (at T50 within the Gross-Pitaevskii approxima-
tion) by the expression

^L̂&[ ẑ(
i

S CN ,2i\
]

]u i
CND

5 ẑE C* ~r!S 2i\
]

]u DC~r!dr. (6.11)

In general there will be more than one solution of Eq.
(6.9) that satisfies the boundary condition (6.10), and we
must then choose the one that minimizes the expecta-
tion value of ^Heff&. The above formulation applies in-
dependently of the container geometry30 and the sign
(and a fortiori the strength) of the interaction term.

For a first qualitative discussion it is convenient to
separate the cases of toroidal and simply connected ge-
ometries. In the toroidal case let us provisionally assume
that C(r) is finite and the derivatives of its phase w(r)
exist everywhere in the torus; then we can write Eqs.
(6.10) and (6.11), respectively, in the form31

R ]w~r!

]u
du52np , n50,61,62 . . . , (6.12)

^L&5 ẑ\E uC~r!u2
]w

]u
dr, (6.13)

where in Eq. (6.12) the integral is taken along any path
that goes around the torus once, staying always within it.

30However, in the following I shall implicitly assume that the
axis of rotation lies within the container cross section, at least
at some values of z (otherwise the problem becomes rather
trivial and uninteresting).

31In the He literature it is conventional to express the ensuing
argument in terms of the superfluid velocity vs(r) defined by
Eq. (3.15); the equation corresponding to Eq. (6.12) is the
Onsager-Feynman quantization condition (3.17).
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n is conventionally called the winding number. From
Eqs. (6.12) and 6.13), plus the normalization condition
on C(r) (see Sec. V.A), we see that unless the geometry
of the trap [and hence uC(r)u2] departs very far from
cylindrical symmetry, the value of ^L& in a state charac-
terized by a given value of n(Þ0) in Eq. (6.12) has the
order of magnitude

^L&;Nn\ ẑ, (6.14)

although this relation becomes an equality only for exact
cylindrical symmetry (in which case it gives rs5r at T
50, just as in the noninteracting case). A similar argu-
ment shows that the ‘‘extra’’ kinetic energy in a state
with nÞ0 [associated with the angular term in the La-
placian in Eq. (6.9)] is of order n2\2/2mR2. From these
conditions it follows that for any reasonable toroidal ge-
ometry there will be a finite range of v around v50 for
which the effective Hamiltonian Ĥeff , Eq. (6.3), is mini-
mized by the choice n50. For finite v the angular mo-
mentum of this state is not zero (except for exact cylin-
drical symmetry), but for reasonable geometries it is
substantially less than the classical value NmR2v . Thus,
very generically, we expect the system to show a Hess-
Fairbank effect.

In the simply connected case it is clear that if C(r) is
everywhere finite, the winding number n must be zero
for any closed circuit that stays within the volume occu-
pied by the system. The simplest configuration that al-
lows nonzero n is a vortex; if for illustration we consider
a single-quantized (n51) vortex centered on the axis of
rotation, then in terms of the standard cylindrical polar
coordinates r , z , u the order parameter has the generic
form

C~r![C~r ,z ,u!5f~r ,z ,u!exp@ iw~u!# , (6.15)

where the real functions f and w satisfy the conditions

f~0,z ,u!50, (6.16a)

R ~]w/]u!du52p (6.16b)

if the circuit in Eq. (6.16b) encircles the line r50 once
in the clockwise direction. [In the case of approximate
cylindrical symmetry, w(u)'u .] More complicated ar-
rays of vortices, not necessarily centered on the axis of
rotation, are also possible.32 All the generic consider-
ations given above for the toroidal geometry apply with
appropriate modifications also to the simply connected
case, and in particular one always expects a Hess-
Fairbank effect.

It should be emphasized that all the considerations
addressed in this subsection relate to the thermodynami-
cally stable state of the system, in general in the pres-
ence of rotation of the container. The quite different

32However, the case unu.1 is not of much practical interest,
since such multiply quantized vortices are rather generically
unstable against dissociation into several singly quantized
ones.
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question of the metastability or not of certain excited
states is taken up in the next subsection.

D. Metastability of superflow

1. General considerations

Let us turn at this point to the types of generic behav-
ior possible for a system described by an effective
Hamiltonian of the form (6.3). We shall take the angular
velocity v along the z axis and denote by L the expec-
tation value of the z component of angular momentum.
We first consider the effective (v-dependent) moment of
inertia I(v) defined by

I~v![]L/]v . (6.17)

By varying v around some initial vo (v[vo1dv) and
treating the term 2dv•L̂ in Eq. (6.3) as a perturbation,
we see that I is in fact the static response function cor-
responding to dv. For a mechanically stable state all
static response functions must be .0, and thus we con-
clude that I(v) is positive for any stable state of the
system.

Let us now consider the lab-frame free energy Flab
[^Hlab&2TS , whose minimization determines the pos-
sible (meta)stable states in the absence of rotation.
From the condition that L(v) is determined from the
minimum of Feff[Flab2v•L, we find ]2Flab /]L2

5]v/]L5I21(v). Now it is clear that while Flab(L)
always has a stable minimum33 at L50, the existence of
one or more metastable minima at finite values of L
requires ]2Flab /]L2 to be negative for some range of L .
If L is a continuous function of v, this cannot happen
(see above). Consequently, we conclude that a sufficient
condition for the absence of metastability is that the
function L(v) calculated by taking the (absolute) mini-
mum of Flab2v•L be continuous.

It is somewhat more difficult to prove that the condi-
tion is necessary as well as sufficient. A zeroth-order
argument is that if the function L(v) is discontinuous,
this must mean that L ‘‘jumps’’ as a function of v, i.e., a
macroscopically different state has become the ground
state. Barring pathologies (of which one case is the non-
interacting Bose gas in exactly cylindrical geometry; see
below), it seems plausible that such a macroscopically
different state will be metastable relative to the true
ground state for at least some finite range of v (though
not necessarily for v50.) This consideration is related
to the fact that the winding number n is a topological
invariant; that is, it cannot be changed unless the mag-
nitude of the order parameter C(r) is suppressed to
zero over an appropriate cross section of the terms,
something that for positive g is resisted by the interac-
tion term (see the next subsection).

33This follows, for a Bose system in arbitrary geometry, from
the fact that the many-body ground-state wave function can
always be chosen real.
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2. A toy model

These considerations may be illustrated by means of a
toy model, which, while it would be quite difficult to
realize experimentally for the BEC alkalis, is neverthe-
less quite a useful guide to the behavior in more realistic
cases. In particular, it illustrates rather straightforwardly
the fact that hysteresis appears only for a sufficiently
strong repulsion. Consider a narrow annulus with thick-
ness d! radius R , and with weak deviations from exact
symmetry, and imagine it filled with a weakly interacting
Bose gas at T50 and rotated with angular velocity v.
More specifically, let co and c1 denote, respectively, the
lowest-lying s and p states (that is, the exact eigenstates
of L̂z) of a single particle in the torus (with the depen-
dence on the azimuthal and polar coordinates self-
consistently determined). The overall phase of c1 is cho-
sen relative to c0 so as to make Vo [Eq. (6.19) below]
real and positive. Then define three characteristic ener-
gies, namely,

(a) the single-particle quantization energy

\2/mR2[\vc , (6.18)

(b) the asymmetry energy

Vo[2E c1* ~r!Vext~r!co~r!dr.0, (6.19)

where Vext(r) is the external potential, and
(c) the mean interaction energy per particle, in (say)

the s-wave state, which is given by

g[
4p\2Nas

m E druco~r!u4. (6.20)

The conditions of weak asymmetry and interaction
are then explicitly

uVou!\vc , ugu!\vc , 0,v,vc . (6.21)

Note that g can have either sign.34 Since under these
conditions the promotion of particles to any states other
than the s and p states is negligible, and since for weak
asymmetry uc1(r)u2>uc0(r)u2 almost everywhere, the ef-
fective Hamiltonian takes the form, apart from a con-
stant,

Ĥeff52\dv~a1
1a12ao

1ao!2Vo~ao
1a11H.c.!

1g~ao
1aoa1

1a1!, (6.22)

where dv[(v2 1
2 vc) (so udvu, 1

2 vc) and the last term
is the difference of the interaction term [i.e., Eq. (6.20)
with co(r) replaced by c(r)] from its value in the pure s
or p state. [Note carefully that this term enters only be-
cause of the factor of 2 (Sec. IV.D).]

We look for a solution of the Gross-Pitaevskii type:

34In general, negative values of g are apt to lead to collapse in
position space (see Dalfovo et al., 1999, Sec. III.C), but for any
given geometry it is possible to choose g small enough that this
does not occur.
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CN5S ao
1 cos

x

2
exp~ iDw/2!

1a1
1 sin

x

2
exp~2iDw/2! D N

uvac&. (6.23)

It is clear that the only term dependent on Dw is that in
Vo , and thus the optimum choice is to take Dw50 [so
that, by Eq. (6.19), C(r) is smallest, roughly speaking,
where Vext is the most repulsive]. The dependence of
the energy and angular momentum per particle on x is
then given up to terms of relative order N21 by

E~x!/N5dv cos x2Vo sin x1
g

2
sin2 x , (6.24)

L/N\5
1
2

~12cos x!. (6.25)

It is clear that the qualitative behavior of the curve
E(x), and thus the presence or absence of metastability
(hysteresis), is determined by the ratio g/Vo (see Fig. 2).
If this quantity is smaller than 1 (which of course is au-
tomatically the case for g,0) then E(x) is monotonic
for any value of v and the stable solution for dv50 is
x5p/2 (superposition of s and p states with equal
weight). In this case, if we vary dv as a function of time
and assume that the system can exchange energy and
angular momentum with its environment, it will follow
the (unique) L(v) curve smoothly. There is no difficulty
with the fact that in going from the s state to the p state
the winding number changes, because it is easily verified
that at some stage in the process (when dv50, in fact)
the condensate wave function has a node at some point
in the torus (typically where Vext is largest). Note, how-

FIG. 2. The shape of the energy curve E(x) as given by Eq.
(6.24): (a) the nonhysteretic case g,V0 ; (b) the hysteretic case
g.V0 (schematic). The zeros of energy are arbitrary. The
heavy dot indicates the position (value of x) of the system in
an experiment in which dv is swept from positive to negative
values; note that, according to Eq. (6.25), the value of x/p is a
rough qualitative measure of the angular momentum per par-
ticle.
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ever, that for small v the first term (2\vc cos x) domi-
nates the other two, so cos x.1 and L.0; we do get a
(nearly complete) Hess-Fairbank effect, though it is not
complete (i.e., rsÞr) because of the term in sin x.

The opposite case, g/Vo.1, is more interesting. In
this case, for dv50, there is still a stationary point of
E(x) at x5p/2, but it is a maximum; the minima occur
at the pair of points x5sin21 (Vo /g). If we now make dv
nonzero, one minimum is pushed up and the other
down, and the barrier between them disappears entirely
when

udvu2/35g2/32Vo
2/3 . (6.26)

Thus, if for example we start rotating with v5vc and
gradually decrease the rotation, the system will stay in
the x.p/2 minimum not only in the regime where it is
the globally stable one (v.vc/2) but also for a finite
range of v below vc/2 where it is globally unstable.
However, because of our choice (6.21) of the orders of
magnitude of the parameters, there is no metastability in
this case for v50. Note that in the context of the
present discussion the case of the noninteracting Bose
gas in an exactly cylindrical geometry (g50, Vo50) is
rather pathological: it shows a discontinuous L(v) curve
but no hysteresis.

The above argument needs to be supplemented in one
important respect: In Eq. (6.23) it is implicitly assumed
that all the relevant states of the system are of the
Gross-Pitaevskii (coherent) type, i.e., involve only
simple BEC. But what of the role of possible Fock
states, that is, those of the form

CFock;~ao
1!M~a1

1!N2Muvac&, (6.27)

where M and N2M are both macroscopic (general
BEC)? Actually it is straightforward to show that in the
limit N→` the expectation value of the interaction term
is identical to that in the Gross-Pitaevskii state with the
same value of ^ao

1ao&, while the expectation value of the
asymmetry energy corresponding to Eq. (6.19) is zero.
Thus for any given value of dv the ‘‘best’’ Gross-
Pitaevskii state [i.e., that corresponding to the choice
Dw50 and the best choice of x in Eq. (6.23)] always
does better than any Fock state. It is amusing that the
fact that the interaction energy has a nonmonotonic be-
havior not only on the coherent path (6.23) but on the
Fock path (6.27) is a direct consequence of the factor of
2 discussed at length in Sec. IV.

3. Further remarks

In real experiments with liquid helium, and probably
though not certainly future experiments with the BEC
alkali gases in a toroidal geometry, the (repulsive) inter-
action is typically strong enough that g is large com-
pared to both \vc and Vo (which may, however, be mu-
tually comparable). Under these conditions, it is
intuitively rather obvious that even for v50, not only
the p state but many higher-l states will be metastable.
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We get a rough idea of the degree of metastability by
repeating the above argument replacing the p state by
the state l 5n , so that for v50 the coefficient of cos x
in Eq. (6.24) becomes n2\2/2mR2. Then the term in Vo
can be neglected to a first approximation, and we find
(a) that the allowed values of L/N are always very close
to n\ , and (b) that the condition for metastability of the
state with winding number n when the container is sta-
tionary is g.n2\2/mR2. When rewritten in terms of the
superfluid velocity vs[n\/mR of the metastable state
and the velocity of sound cs[Ag/m , this reads vs,cs ,
which is just the famous Landau criterion for the meta-
stability of superfluid flow.

Actually, the Landau prediction has been verified ex-
perimentally in 4He only in the prima facie rather differ-
ent case of the mobility of ions moving through the liq-
uid (Allum et al., 1977; for an analogous experiment in
the alkali-gas case, see Chikkatur et al., 2000); in a tor-
oidal geometry the critical velocities observed in prac-
tice are often orders of magnitude less than the Landau
value (see Donnelly, 1967, Sec. 2.9). It is suspected that
in most cases the reason for the discrepancy has to do
with the presence of a ‘‘tangle’’ of vortices formed in
nonequilibrium processes during the quench through the
BEC transition temperature. However, under favorable
conditions it is possible to observe an apparently intrin-
sic decay of superflow even at velocities less than cs
(Kukich et al., 1968). The classic paper on the theory of
this process is that by Langer and Fisher (1967); they
postulate that the mechanism involves the formation of
a vortex ring and its thermally activated expansion (a
process that is apparently not possible for the simple toy
model discussed above). Related considerations have
been given for the alkali gases by Mueller et al. (1998).

One further question concerns the possible role of the
hyperfine degree of freedom. As regards the Hess-
Fairbank effect, there seems no reason to assume that
this makes any appreciable difference. However, as re-
gards the question of metastability of superflow, Ho
(1982) obtained the following surprising and beautiful
result: Consider a system of bosons each with total
atomic spin F and with a Hamiltonian that is invariant
under spin rotation in a toroidal geometry which is ap-
proximately cylindrically symmetric. Then for any given
value of the winding number n there exists a path that
changes n by 2F and involves no energy barrier; i.e.,
under zero rotation no state with n.F can be meta-
stable. For further discussion of this result and its pos-
sible applications to the alkali gases, and also for further
discussion of the Landau criterion, see Leggett (2000a).

E. Real-life BEC alkali gases in harmonic traps

The analysis of this section so far (which largely rests
on concepts developed in the context of liquid helium)
needs to be modified in two ways before it can be ap-
plied to a realistic alkali-gas problem (even if we neglect
the hyperfine degree of freedom, on which see above).
The first has to do with the geometry of realistic traps,
which is usually of the anisotropic simple harmonic-
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oscillator type.35 A number of papers in the literature
have studied the properties of the solutions of Eq. (6.9)
in such a geometry [with the rotation generally taken
around the axis of the (not quite exact) cylindrical sym-
metry]; the most detailed known to me is that of Butts
and Rokhsar (1999; see also, for example, Benakli et al.,
1999). In contrast to the case of a narrow annulus, in this
geometry a major role is played by centrifugal effects; in
fact, for a rotational velocity v larger than the radial
frequency vr of the trap, the gas flies apart. For v,vr
the behavior is qualitatively reminiscent of the hysteretic
regime of the toy model of Sec. VI.D: as v inreases from
zero, the equilibrium value of L jumps between different
smooth curves L l (v) characterizing different numbers
l of vortices, which in general (for l Þ1) are not situ-
ated at the center of the trap. As a result, the angular
momentum per particle is in general not integral. For
general v there is usually some degree of hysteresis in
the transitions between the states corresponding to dif-
ferent l ; however, for v50 none of the finite-l states is
metastable, because it turns out always to be energeti-
cally advantageous to move a vortex out towards the
edge of the condensate, where it eventually disappears.
For details the reader is referred to Butts and Rokhsar
(1999) and the references cited therein. For new effects
which may arise when the healing length becomes com-
parable to or larger than the cloud size, see Wilkin and
Gunn (2000).

The second respect in which the considerations devel-
oped so far in this section need qualification concerns
the effects of the kinetics (see Sec. II.E). In liquid 4He, a
strongly interacting system, the characteristic time scale
for collisions of an atom both with other atoms and (in-
elastically) with the container walls is so small that it has
very little effect on the decay of a metastable state,
which is totally dominated by energetic considerations.
By contrast, in the alkali gases it is entirely conceivable
that even though a particular process may be ‘‘downhill
all the way’’ energetically, the unstable state still appears
stable over times of the order of perhaps seconds, be-
cause of the difficulty of energy exchange (and also ex-
change of angular momentum) not just between atoms
but, even more importantly, with the container. As an
example, if we have created, by rotation, a vortex at the
center of a harmonic trap and then, by stopping the ro-
tation, rendered it unstable, it may still persist for mac-
roscopically long times (Fedichev et al., 1999; cf. Mat-
thews et al., 1999).

F. The experimental situation

Recently two experimental groups have reported the
observation of vortices in a BEC alkali gas. Matthews
et al. (1999) started with 87Rb in a pure F51, mF521
state (u1&) and used a two-photon microwave transition
to produce superpositions of u1& and the state F52,

35There are further complications when more than one hyper-
fine species is involved. See Sec. VI.F.
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mF511 (u2&) (see Sec. VII.B). As mentioned in Sec. V,
the equilibrium of such a binary combination in a har-
monic trap corresponds to a ring or shell of u1& sur-
rounding a core of u2&. Following a suggestion of Will-
iams and Holland (1999), Matthews et al. (1999) were
able by an appropriate rotation and detuning of the laser
field to produce a single vortex in an outer component
that could be either u1& or u2& at will; the presence of the
vortex was confirmed by measuring the relative phase of
the two condensates as a function of angle by an appro-
priate p/2 pulse (see Sec. VII.E). As the authors ob-
serve, it is noteworthy that in this experiment, while the
effective equilibrium geometry of the u2& species is es-
sentially that of the harmonic trap, that of the u1& species
resembles more the toroidal (annular) geometry of Sec.
VI.D. It is therefore perhaps not surprising that the ob-
served lifetime of a vortex in the u1& species was consid-
erably longer than that of one in u2&.

A second experiment, that of Madison et al. (2000),
adopts a scheme closer to that envisaged in Secs. VI.B
and VI.C, with a single species in a slightly anisotropic
harmonic trap uniformly rotated. The vortices were de-
tected by observing (after trap expansion) the ‘‘holes’’ in
the density distribution due to their cores. As the angu-
lar velocity of rotation is varied from zero up to the
radial trap frequency, Madison et al. report observation
of first no vortices, then successively one, two, three, and
four (at higher velocities the system flies apart); the gen-
eral pattern is similar to the predictions of Butts and
Rokhsar (1999). Very recently, the same group has
made direct measurements of the angular momentum of
the system as a function of the angular velocity of the
trap (Chevy et al., 2000) and in particular confirmed that
below the critical value of v for the entry of the first
vortex the system appears to be at rest in the laboratory
frame, as the above discussion would lead us to expect.

VII. BEC IN A TWO-STATE SYSTEM: JOSEPHSON-TYPE
EFFECTS, PHASE DIFFUSION

In traditional condensed-matter physics, the term
Josephson effect is used generically to refer to a situation
in which a large number N of identical bosons are
restricted to occupy the same two-dimensional single-
particle Hilbert space. Well-known examples are
the eponymous effect,36 originally predicted by Joseph-
son (1962) for superconductors, and the related effect
which occurs when two baths of 4He (or 3He) are con-
nected through a narrow channel, or superleak (Ander-

36It is a matter of purely historical interest that in the original
realization of the Josephson effect in superconductivity (a) the
‘‘bosons’’ (Cooper pairs) are composite rather than elemen-
tary objects, and (b) the system is coupled to external current
leads and therefore cannot be described by the Hamiltonian
(7.5) as it stands. The closed problem described by Eq. (7.5) is
actually conceptually simpler than the original version (and
nowadays can be realized in a superconducting context, e.g., in
mesoscopic systems).
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son, 1966; Avenel and Varoquaux, 1988). I will call these
effects ‘‘external,’’ since the two single-particle states in
question are spatially separated. A condensed-matter
example of an ‘‘internal’’ Josephson effect, in which the
two states differ in some internal (nongeometrical)
quantum number, is the longitudinal nuclear magnetic
resonance in superfluid 3He-A (Leggett, 1975; Wheat-
ley, 1975); in this particular case the relevant quantum
number is the hyperfine (nuclear spin) index of a Coo-
per pair. A general review of the Josephson effect in
these and other physical systems is given by Barone
(1999).

In the context of the BEC alkali gases, the interest of
the generic Josephson situation is twofold: it can serve
as at least a starting model for a number of situations of
practical experimental interest (see Sec. VII.B), but per-
haps even more importantly, it provides a simple and
sometimes exactly soluble toy model for the examina-
tion of questions (such as corrections to the Gross-
Pitaevskii description, or the generation and destruction
of BEC) that arise in a less tractable form in the general
theory of BEC in a spatially nonuniform system.

A. General formulation: choice of basis

We consider a system of N identical bosons, each of
which is restricted to occupy a Hilbert space spanned by
two orthonormal eigenvectors u1& and u2&, which for the
moment we choose arbitrarily; we denote the corre-
sponding single-particle creation operators a1

1 ,a2
1 . The

Hilbert space of the N-particle system is thus N11 di-
mensional and spanned by the eigenvectors in the Fock
basis

uM&[F S N

2
1M D !S N

2
2M D !G21/2

3~a1
1!N/21M~a2

1!N/22Muvac&,

M52N/2,2N/211¯N/2, N even:

52N/221/2,2N/211/2¯N/221/2, N odd,
(7.1)

where uvac& denotes the vacuum; it is clear that M is the
(nearest integer to)37 half the difference in the numbers
of particles in states 1 and 2. This model is then isomor-
phic to the N11-dimensional representation of the
group SU(2).

It is clear that for such a system the occurrence of
BEC as defined in Sec. III.A is automatic; the only ques-
tion is whether it is simple or general. A useful invariant
measure of the degree of simplicity (coherence) of the
BEC is the quantity

37This choice of definition for M , while technically conve-
nient, means that some of the formulas below, which are writ-
ten explicitly for even N , need correction by factors ;(N21)
for odd N . This affects none of the conclusions and will not be
noted explicitly below.
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h[2N22 Tr r̂1
221, (7.2)

where r̂1 is the (232) single-particle density matrix; h
evidently takes values from 0 to 1.

A complete set of number-conserving Hermitian op-
erators describing the N-particle system is the set

M̂[
1
2

~a1
1a12a2

1a2!,

Q̂1[
1
2

~a1
1a21a2

1a1!, (7.3)

Q̂2[2
1
2

i~a1
1a22a2

1a1!

and thus the Hamiltonian can be expressed as a function
of these three operators. At this point it is convenient to
make a definite choice of basis. In most Josephson-type
problems there is an intuitively natural choice; for ex-
ample, in an extended problem the natural basis is one
in which u1& and u2& refer to the states physically local-
ized in the two bulk reservoirs, while for an internal
effect (see below) it is the two single-particle hyperfine
eigenstates in the absence of laser coupling. Formally,
we can often (though not always) select a basis by re-
quiring (a) that any terms of fourth order in the a1,2

1 that
are not simply proportional to M2 be small and not in-
volve M , and (b) that there be no term linear in Q̂2 (this
fixes the relative phase of the basis vectors u1& and u2&).
With this specification, the most general Hamiltonian
can be written in the form (up to terms that are func-
tions only of N and hence constant)

Ĥ5
1
2

KM̂22Dm•M̂2EJQ̂11f~M̂ ,Q̂1 ,Q̂2!

1 (
i ,j51,2

j ijQ̂ iQ̂ j , (7.4)

where f contains terms of third order and higher in its
arguments and all j ij are !K . In a number of cases of
practical interest the last two terms can be either ne-
glected or incorporated into a shift in the origin of M̂
(see below), and in this case I shall call the resulting
expression the ‘‘canonical Josephson Hamiltonian’’: ex-
plicitly (in the former case),

Ĥcanon5
1
8

K~a1
1a12a2

1a2!22
Dm

2
~a1

1a12a2
1a2!

2
EJ

2
~a1

1a21a2
1a1!. (7.5)

We shall see below that the canonical form (7.5) lends
itself to a particularly simple analysis, while preserving
most (though not all) of the features of the most general
problem. It is amusing that the Ĥeff used in Sec. VI.D
[Eq. (6.22)] is, up to a constant, equivalent to Eq. (7.5)
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although the interpretation of the various terms there is
different from that discussed below.

B. Realizations in the BEC alkali gases

The scheme developed in Sec. VII.A can form, at
least, a starting point for the discussion of two effects in
the BEC alkali gases that may be reasonably character-
ized, respectively, as an external and internal Josephson
effect. However, it should be emphasized that in each
case the simple canonical Hamiltonian (7.5) is appli-
cable, if at all, only for a very restricted region of the
experimentally accessible parameter space.38 Space pre-
cludes a discussion here of the issues involved in the
justification of Eq. (7.5), so I shall simply state the re-
sults and some caveats, and refer the reader to Sols
(1999), Leggett (1999a, 2000a), and references therein
for further details; see also Meier and Zwerger (2000).

Let us start with the external effect. The simplest way
to create the necessary ‘‘two-well’’ potential would seem
to be to use the initial setup of the MIT interference
experiment (Andrews et al., 1997; see Sec. 7.5), with an
elongated cylindrical trap split down the center by a
strongly detuned laser beam, and to turn the laser power
down to a value substantially less than that used in the
published experiments39 so that tunneling between the
two wells becomes non-negligible. Very crudely speak-
ing, we expect the single-particle tunneling matrix ele-
ment to be of order \vo exp2B, where vo is a typical
in-well frequency and B an appropriate WKB exponent
which is @1 for a high laser barrier. One’s immediate
instinct is that it should be possible to handle the two-
well problem by a simple application of the time-
dependent Gross-Pitaevskii equation (see, for example,
Ostrovskaya et al., 2000), and indeed for sufficiently
strong tunneling this is almost certainly a good approxi-
mation. However, it is of interest to consider also the
opposite limit B@1. In that case it is plausible to trun-
cate the possible states of the atoms to a two-
dimensional subspace corresponding to the self-
consistent ground states in the two wells separately,
which we identify with the basis states u1&,u2& of Sec.
VII.A. Then, provided that (a) any bias between the two
wells is very small compared to the barrier height, and
(b) the typical asymmetry M is very small compared to
the total number N , it is possible to justify the canonical
Hamiltonian (7.5), with EJ an appropriate single-atom
tunneling amplitude through the barrier, Dm the bias,
and K essentially the ‘‘bulk modulus’’ ]m/]N for a
single well, which up to a numerical factor is given by
\vol2/N where l is defined in Eq. (5.52). Once one
goes to larger values of the bias and/or asymmetry, the
generic two-state Hamiltonian (7.4) may still be a good

38This situation is to be contrasted with that obtained in tra-
ditional condensed-matter systems, where physical consider-
ations generally restrict the motion to the regime when Eq.
(7.5) is an excellent approximation.

39Subsequent experiments may in fact have attained this re-
gime (see Rohrl et al., 1997).
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approximation but the approximation of it by Eq. (7.5)
is likely to fail badly, both for the (relatively well-
known) reason that for the single well m is a highly non-
linear function of N and for the (less widely appreciated
but at least equally important) one that once M be-
comes comparable to N the relevant WKB integral B ,
and hence the tunneling amplitude EJ , is substantially
modified from its M50 value.40

Turning now to the internal Josephson effect, the
nearest approximation to this realized to date in the
BEC alkali gases seems to be the experiments of Hall
and co-workers (Hall, Matthews, Ensher, et al., 1998;
Hall, Matthews, Wieman, and Cornell, 1998) in which a
set of 87Rb atoms in a (single-well) magnetic trap were
driven by a microwave coupling into a linear superposi-
tion of two different hyperfine states and the degree of
phase coherence between them measured by a Ramsey-
fringe technique (see below for details). To analyze this
experiment along the lines of Sec. VII.A, we for the
moment pretend that the equilibrium condensate wave
function xo(r) is independent of the hyperfine index,
and moreover note that, since the microwave source in-
jects very large numbers of photons, the electromagnetic
field can be treated as a completely classical object.
Then we can identify the two basis states u1& and u2& of
Sec. VII.A with (say) the F51, mF521 and F52, mF
511 hyperfine states, respectively. Since the laser fields
are strongly time dependent, it is useful in this case to
consider the Hamiltonian in the rotating frame, that is,
the frame in which the laser field is constant over the
time of the pulse (see, for example, Cohen-Tannoudji,
1992). Within the standard rotating-wave approximation
(ibid.) this Hamiltonian can then be cast, for any one
pulse, into the canonical form (7.5), with the identifica-
tions

Dm52d1~4Np\2/m !h̃•~a112a22!, (7.6)

EJ5\VR , (7.7)

K5
4p\2

m
h̃~a111a2222a12!, (7.8)

where

h̃[E uxo~r !u4 dr . (7.9)

In Eqs. (7.6) d is the detuning of the lasers from reso-
nance (appropriately corrected for the laser-induced
shifts of the atomic levels), VR is the standard two-
photon Rabi frequency, and aij is the s-wave scattering
amplitude of hyperfine species i and j (see Sec. IV.E; for
details, see Leggett, 2000a).

40It may be shown that in the WKB limit (B@1) the M de-
pendence of EJ resulting from this effect is much greater than
the ‘‘kinematic’’ dependence explicitly appearing in Eq. (7.21)
below.
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The canonical Hamiltonian (7.5), with time-
independent parameters given by Eqs. (7.6)–(7.9), is ad-
equate to describe the behavior during a single mono-
chromatic laser pulse. In real life, both the amplitude of
the laser field and its phase z(t) in the rotating frame
may vary in time.41 In this case, if one wishes to use a
time-independent choice of axes, it is necessary to gen-
eralize the term in EJ in Eq. (7.4) to read

2EJ~ t !@cos z~ t !•Q̂12sin z~ t !Q̂2#

(7.10)
@[2EJ~ t !~eiz(t)a1

1a21H.c.!# .

The above schematic description is unfortunately still
too simple to apply to most existing experiments. In real
life not only is the external potential (and hence the
condensate wave function, even in the absence of inter-
actions) different for the two species, but according to
the results of Sec. V.E the condensate wave functions
will themselves be functions of M . In the adiabatic limit,
where the Rabi frequency VR is small compared to the
characteristic inverse ‘‘rearrangement time’’ of the con-
densates, it should still be possible to use the generic
two-state Hamiltonian (7.4) [but not Eq. (7.5)], with the
dependence on M given simply by that of the global
ground-state energy for that M value. However, in ex-
isting experiments (Hall, Matthews, Wieman, and Cor-
nell, 1998) we are quite far away from the adiabatic
limit.42

For completeness it should be mentioned that there is
one other experiment in the literature that is sometimes
described as being of the Josephson type (in our classi-
fication, of the external variety), namely, that of Ander-
son and Kasevich (1998), which detects the coherence
between the output beams from an array of wells at dif-
ferent heights in the Earth’s gravitational field. In this
experiment the system is not closed, so it does not fall
under the general scheme of Sec. VI.B, and I shall there-
fore not discuss it here. (The analysis is in fact quite
straightforward and is given in the cited reference.)

C. Kinematics of the Josephson effect: the Rabi,
Josephson, and Fock regimes

We first note that the three operators (7.3), which
form a complete set for our system, satisfy the commu-
tation relations of the angular momentum components
Ji , and thus we have an exact mapping to the problem
of a particle of (large) spin J in an arbitrary J-dependent
potential:

M̂→ Ĵz ,Q̂1→ Ĵx ,Q̂2→ Ĵy ,N/2→J . (7.11)

41For example, the experiments of Hall, Matthews, Wieman,
and Cornell (1998) use two pulses of approximately equal am-
plitude but shifted by a phase w in the rotating frame. In this
case EJ(t) is of course zero outside the pulses, and we can take
z(t)[0 during the first pulse and [w during the second.

42This is at least partly due to the anomalously small value of
the quantity (a111a2222a12) for 87Rb and is not necessarily a
generic characteristic of such experiments.
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With this mapping we see that in the internal Josephson
effect the laser coupling given by Eq. (7.10) is equivalent
to the application of a magnetic field along an axis in the
xy plane whose orientation angle relative to the x axis is
given by the phase z(t). This angular momentum repre-
sentation of the BEC two-state system is exact and is
sometimes quite helpful to one’s intuition. Notice in par-
ticular that in a physical situation where the quantity M
is well defined (or has small fluctuations relative to N),
the quantity Ĵx

21 Ĵy
2 is fixed at the value (N/211)2M2;

thus, while the phase angle of the xy component of an-
gular momentum may or may not be well defined (see
below), its magnitude certainly is, and in particular for
M>0 is close to N/2. This feature is a direct result of the
BEC; it is easy to see that in a system described by many
different single-particle labels l in addition to the two-
state one (e.g., a noncondensed mixture of two hyperfine
species) the angular momentum J whose components
are defined by

Ji[(
l

Jil , Jxl[
1
2

~a1l
1 a2l1a2l

1 a1l!, etc. (7.12)

does not have a corresponding property, since the differ-
ent Jl can interfere destructively.

Since the magnitude N/2 of the angular momentum is
fixed, the motion is, intuitively speaking, described by
only two variables corresponding to its direction, and it
is tempting to ask whether they can be chosen to be
canonically conjugate. The most obvious suggestion is to
try to define an operator ŵ corresponding to the relative
phase, i.e., in the angular momentum picture to the
angle of Ĵ in the xy plane, such that (a) ŵ is canonically
conjugate to Ĵz , i.e., it satisfies the commutation relation

@ Ĵz ,ŵ#52i (7.13)

and (b) the coherent (Gross-Pitaevskii) states, that is,
states of the form

CN5~N! !21/2~cos xeiw/2a1
11sin xe2iw/2a2

1!Nuvac&
(7.14)

(where we denote the polar angle by x rather than the
conventional u to avoid subsequent confusion), are as
nearly as possible eigenstates of ŵ with eigenvalue w. Is
this possible?

The difficulties that arise in defining a relative phase
operator having the above properties are closely analo-
gous to the well-known problems that arise in quantum
optics in defining an absolute phase operator for a
single-mode electromagnetic field; see, for example,
Mandel and Wolf (1995), Sec. 10.7, and references cited
therein. However, generally speaking, those problems
become acute only when one is discussing states contain-
ing no or a few photons, and in our case it is important
to remember that we are interested in large values of the
total particle number N . Thus it is plausible that we will
be able to define a satisfactory relative phase operator
provided that (i) the amplitude, in the state we are con-
sidering, of states with N/22uMu&N1/2 is small, and (ii)
we are prepared to neglect effects of relative order N21/2
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TABLE II. Correspondence between Josephson parameters in different superfluid systems.

System1effect Dm K EJ

4He/BEC gases, external gravitational/magnetic potential bulk modulus tunneling through aperture/barrie
Superconducting grains voltage Coulomb interaction tunneling through aperture/barrie
3He, internal (longitudinal NMR) external magn. field spin polarizability nuclear dipole force
BEC gases, internal (rotating frame) detuning difference in inter- and laser coupling

intra-species interaction
or smaller. Under these conditions, the most appropriate
procedure43 is probably an adaptation of that of Carru-
thers and Nieto44 for the absolute case. Namely, we de-
fine our operator Ê[exp iŵ by

Ê[@~N/22 Ĵz!~N/21 Ĵz11 !#21/2~ Ĵx1i Ĵy! (7.15)

so that

Ê1[~ Ĵx2i Ĵy!@~N/22 Ĵz!~N/21 Ĵz11 !#21/2. (7.16)

As in the quantum-optical case, the operator Ê[eiŵ so
defined is not unitary, so that ŵ cannot be Hermitian.
However, we can if desired define sine and cosine op-
erators that are Hermitian (cf. Mandel and Wolf, 1995),
and in any case the lack of unitarity in the present con-
text is not too serious; we have in fact

ÊÊ†[1, Ê†Ê[12uN/2&^N/2u2u2N/2&^2N/2&.
(7.17)

Thus, provided that the state we are considering has
only a small component of the extreme states, M5
6N/2, we may treat ŵ itself as effectively Hermitian.
Further, it may be verified by direct calculation that we
have (independent of this condition)

@ Ĵz ,Ê#[@ Ĵz ,exp iŵ#5exp iŵ , (7.18)

which is consistent with Eq. (7.13), and furthermore that
just as in quantum optics the large-amplitude coherent
states are approximate eigenstates of the (absolute)
phase operator, so in our case the coherent states of the
form (7.14) satisfy the relation

ÊCN5exp iw•CN1d•C' (7.19)

when C' is a normalized state orthogonal to CN and the
amplitude d is of order N21/2 provided that usin uu
@N21/2 [i.e., condition (i) above is fulfilled]. Thus, sub-
ject to conditions (i) and (ii), our definition (7.15) of ŵ
indeed satisfies the requirements (a) and (b). It is clear
that to the same accuracy we can write the intuitively
plausible relation

43A possible alternative approach (Javanainen and Ivanov,
1999) is to take over the definition of phase used by Pegg and
Barnett (1988) to the two-state problem. While this automati-
cally guarantees the Hermiticity of ŵ , the relation to the co-
herent state (7.14) is not so direct.

44While these authors also discuss the status of an angle vari-
able, it is the angle of a coordinate vector rather than of the
angular momentum itself, and we therefore cannot simply take
over their discussion verbatim.
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Jx6iJy5A~N/2!22 Ĵz
2
•exp6iŵ (7.20)

without worrying about the ordering of the operators Ĵz
and ŵ . While the above discussion could no doubt be
expanded, it should be adequate for the purposes of this
section. To conclude it, we note that a Fock (fixed-M)
state can be generated (up to normalization) from a co-
herent state of the form (7.14) by multiplying by
exp(2iMf) and integrating over f from zero to 2p.
That is, a Fock state can be regarded as a superposition
of coherent states with random phase.

The commutation relation (7.13) together with the
Hamiltonian Ĥ(M̂ ,ŵ) gives a complete description of
our problem, which is now one dimensional. In the most
general case the function Ĥ(M̂ ,ŵ) is arbitrary (within
certain generic constraints such as Hermiticity, etc.), but
for the canonical case described by Eq. (7.5) it takes a
relatively simple form: using Eqs. (7.3) and (7.19) we
have

Ĥ52Dm•M̂1
1
2

KM̂22EJA12
4M̂2

N2 cos ŵ ,

(7.21)EJ[NEJ .

The Hamiltonian (7.21) can be applied to a variety of
Josephson-type situations both in the traditional super-
fluids (superconductors and the two isotopes of He) and
in the BEC alkali gases. In Table II I tabulate the physi-
cal meaning of the various parameters for some of these
cases. As we saw in the last subsection, in the case of the
external Josephson effect in an alkali gas, the truncation
of the general form (7.4) to the special case described by
Eq. (7.5) and hence Eq. (7.21) is justified, if at all, only
for small values of M̂ ; the same is actually true for the
external effect in 4He, and even for the internal effect in
3He, but in these cases the physical conditions are al-
most invariably such that this is the only relevant case.

The generic behavior of an alkali-gas BEC system de-
scribed by the Hamiltonian (7.5) [or the equivalent for-
mulation via Eq. (7.14)] and the commutation relation
(7.11) has been discussed in a number of papers in the
literature.45 It is useful for our purposes to distinguish
three principal regimes, which are characterized by dif-
ferent orders of magnitude of the ratio K/EJ , and to
attach names to them (Leggett, 1999a):

45These include, for example, Milburn et al., 1997; Smerzi
et al., 1997; Javanainen and Ivanov, 1999; Leggett, 1999a;
Marino et al., 1999; Raghavan et al., 1999; Sols, 1999.
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• (1) ‘‘Rabi,’’ K/EJ!N22,
• (2) ‘‘Josephson,’’ N22!K/EJ!1,
• (3) ‘‘Fock,’’ 1!K/EJ .

We examine below the ways in which the behavior of
the system differs qualitatively in these three regimes.

First, however, it is useful to enquire in what regime
we are likely to find ourselves for the various realiza-
tions of the Josephson effect listed above. It turns out
that the traditional superfluids lie overwhelmingly in the
Josephson regime, though the Fock regime is attainable,
for instance, in ultrasmall superconducting grains; the
Rabi regime is never attainable. As regards the external
effect in the BEC alkali gases, it follows from the con-
sideration of Sec. VI.B that the Rabi regime is never
attainable under conditions in which Eq. (7.20) remains
valid. Since the order of magnitude of the quantity K is
given by the single-well bulk modulus, while the Joseph-
son energy EJ is exponentially sensitive to the barrier
height (see, for example, Zapata et al., 1998), it is rela-
tively easy to adjust the latter so as to go continuously
from the Josephson to the Fock regime; it appears prob-
able that the initial state in the MIT interference experi-
ment (Andrews et al., 1997) corresponded to the ex-
treme Fock limit (though see footnote 39).

The most interesting case is that of the internal effect
in the BEC alkali gases. Since in this case the Josephson
coupling EJ is solely due to the action of the microwave
pumps, we can trivially attain the Fock regime simply by
switching the pumps off. As to the Rabi regime, from
Eqs. (7.6) and the results of Sec. V.E we see that its
attainment requires, crudely speaking, the condition
VR*v̄(Neas /d)2/5, where e is the factor by which the
difference a111a2222a12 is reduced from a typical value
as of the aij . Unfortunately, the expression on the right-
hand side of this inequality is just of the order of the
spatial rearrangement time, so that according to the dis-
cussion in Sec. VI.B the spatial degrees of freedom can-
not be ignored. It seems that this was the situation dur-
ing the pulse sequences in the experiment of Hall et al.
(Hall, Matthews, Ensher, et al., 1998; Hall, Matthews,
Wieman, and Cornell, 1998).

Let us now examine the ways in which the behavior
differs qualitatively in the three different regimes de-
fined above, starting with the case of an unbiased sys-
tem, Dm50, and a starting value of M that is small com-
pared to N/2. We then see that the main difference
between the Rabi regime on the one hand and the Jo-
sephson (and Fock) regimes on the other lies in the
source of the principal dependence on M : for the Rabi
case this comes principally from the factor
A12(4M̂)2/N2 in the Josephson coupling energy (EJ),
while for the Josephson and Fock cases it arises mostly
from the explicit dependence of the interaction term
1
2 KM̂2. Consequently, in the extreme Rabi regime we
can neglect the latter term and the behavior will be ap-
proximately that of a simple set of Bose-condensed two-
level systems; conversely, far into the Josephson (or
Fock) regime we can neglect the M̂ dependence of the
Josephson term, and the Hamiltonian then becomes
Rev. Mod. Phys., Vol. 73, No. 2, April 2001
simply that of a simple pendulum. Within this (K/EJ
@N22) parameter regime the Josephson and Fock re-
gimes are distinguished by the relative importance of
quantum fluctuations, which may be measured (see be-
low) by the rms value of w in the ground state of Eq.
(7.14); in the Josephson limit this is !1, and as we shall
see this means that the pendulum can for most (though
not all) purposes be treated classically, while in the Fock
limit it is @1 (i.e., ;2p , since w is by definition a peri-
odic variable) and, conversely, the spread in M̂ in the
ground state is !1, i.e., the ground state corresponds
approximately to the Fock state (relative number eigen-
state) (aL

† )N/2(aR
† )N/2uvac& . Note that the simplicity pa-

rameter h defined in Eq. (7.2) is 1 in the extreme Rabi
limit and close to 1 in both the Rabi and Josephson
regimes, but 0 in the Fock limit for M50. The same
considerations may be applied qualitatively to the biased
case, where DmÞ0, or to the case uMu;N/2 [but (N/2
2uMu@N1/2)]; the obvious procedure in this case is to
replace M̂ by M̂8[M̂2Meq , where Meq is the equilib-
rium value of M defined by Dm/K ; evidently the com-
mutation relation of M8 with w is still the canonical one,
Eq. (7.11), and the Josephson coupling energy may be
expanded in M̂ around Meq rather than around zero.
The only point to watch is that if Dm/K*N/2, so that
the equilibrium value of M̂ is close to N/2 (or if we start
from such a state), then it will be impossible to neglect
the M̂ dependence of the Josephson coupling even if for
Dm50 we are well on the Josephson side.

To summarize the conclusions of the above discussion
in slightly different language: The Rabi regime corre-
sponds to a pendulum with a variable length depending
on its angular momentum (see below and Marino et al.,
1999), while in the Josephson and Fock regimes the
length is fixed. The Fock regime corresponds to a
strongly quantum pendulum, while in the Rabi and Jo-
sephson regimes the behavior is (semi)classical. Accord-
ingly, the theory of the Josephson effect in the Joseph-
son parameter regime which corresponds to most of its
traditional realizations in condensed-matter physics is
just the theory of a simple classical pendulum (though
see below). As we have seen, the external effect in the
BEC alkali gases may correspond to either the Joseph-
son or the Fock regime, and the internal effect to any of
the three regimes, although in the Rabi regime the
simple two-state model is inadequate.

The most detailed discussion known to me in the ex-
isting literature that covers the whole of the semiclassi-
cal region (Rabi and Josephson regimes) is that of
Raghavan et al. (1999), while an extended discussion of
the simple-pendulum region that allows for Fock-limit
effects such as recurrences is given by Milburn et al.
(1997). Here I shall concentrate on the Josephson and
Fock regimes and just mention the extra effects that
arise as we go towards the Rabi limit.

D. The Josephson regime: Josephson resonance and
macroscopic quantum self-trapping

The general mapping of the Josephson effect to the
problem of a pendulum is obtained by the replacements
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ŵ→ û , (7.22)

M̂→L̂/\ ,

N→2Lmax /\ ,

EJ→mgl ,

K→~ml 2!21[I21,

Dm→Au /\ ,

where l is the length of the pendulum and û the angle
made with the vertical, and Au is a fictitious ‘‘vector
potential,’’ which couples to the angular momentum.
Thus in the Josephson or Fock regimes we have in the
pendulum analogy, adding for convenience a c-number
term proportional to Au

2 ,

Ĥ→ @L̂2Au~ t !#2

2I
2mgl cos û ,

@L̂ , û #52i\ . (7.23)

We specialize to the case of the Josephson regime and
moreover assume Au!Lmax , i.e., the bias, if any, is such
that the equilibrium value of M is much less than N
(‘‘nearly symmetric’’ case). We have dropped the L̂ de-
pendence of the potential term, so that the Hamiltonian
is, as already noted, that of a simple (but in general
driven) pendulum. For the moment we do not replace
the quantum-mechanical commutator by a classical Pois-
son bracket.

Let us first put Au[0 and study the quantum-
mechanical ground state. We assume that the rms value
of u will be small and subsequently confirm that this is
consistent. In that case, the Hamiltonian effectively re-
duces to that of a simple harmonic oscillator with fre-
quency vJ , thus V(u)> 1

2 mvJ
2u2 where vJ[Ag/l , or in

the language of our original problem \vJ[AEJK ; vJ is
known (because of its original realization in the super-
conducting problem) as the ‘‘Josephson plasma reso-
nance frequency.’’ The zero-point excursion in u is of
order (\/mvJ)1/2, which in the original language is sim-
ply AK/EJ. Provided therefore that we are indeed in the
Josephson regime, the rms value of u(5w) is indeed
!1; in fact, we have wrms;(K/EJ)1/4, (M)rms
;(EJ /K)1/4; note that provided we are well out of the
Rabi regime, this latter quantity is still much smaller
than the value (;N1/2) it would have for a Bose conden-
sate of simple two-state systems—a point that is of cru-
cial importance in discussing the nonequilibrium dynam-
ics that arise when EJ changes as a function of time; see
Sec. VII.E below.

The latter point may be put in a different way: The
ground state of the interacting system is not a simple
Gross-Pitaevskii state. Such a state may be written in the
general case in the form (7.14), that is,

CN5@a1
† cos x exp~ iw/2!1a2

† sin x exp~2iw/2!#Nuvac&

[uw&. (7.24)
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The ground state of the pendulum problem is not of this
nature; rather, it is a coherent superposition of states
ux ,w& with x approximately p/4 but w varying over a
range of order wrms , i.e.,

CN5E c~w!uw&dw ,

(7.25)
c~w!;exp2

1
4

~w2/wrms
2 !.

We see therefore that once we introduce interactions
the simple Gross-Pitaevskii description of the ground
state cannot, strictly speaking, be consistent. Of course,
provided we are well on the Josephson side of the
Josephson-Fock boundary (so that wrms!1) this does
not usually matter very much, because typically physical
quantities depend on w only on the scale of unity (or p)
and so the spread in w does not affect them. However, as
we have seen above, replacement of the true CN by the
Gross-Pitaevskii form (7.24) (with x ,w 5 0) would lead
to a serious overestimate of ^M̂2& and thus of quantities
such as the dephasing rate, which may depend on the
latter (see Sec. VII.E).

The same remarks apply to the dynamics generated
by the Hamiltonian (7.21). In the Josephson-Fock re-
gime with Au50, the quantum-mechanical equations of
motion for the operators L̂ and û are

L6 52]H/]û52mgl sin û , (7.26)

uN5]H/]L̂5L̂/2I . (7.27)

Generally speaking, a necessary (and usually suffi-
cient) condition to replace the operators L̂ and û by the
corresponding classical variables is that ^sin û&>sin^û&,
where the pointed brackets indicate averages over the
quantum-mechanical wave function c(u) [i.e., c(w)].
Provided only that the spread of w is not much greater in
order of magnitude than the ground-state rms spread
wrms , this condition is automatically fulfilled in the Jo-
sephson regime, and thus we can usually treat the dy-
namics semiclassically in this regime. However, this ar-
gument does not, as it stands, cover the case in which,
for instance, the initial state is nearly a pure Fock state
(eigenstate of M̂) and thus has a spread ;2p in w, and
further arguments are necessary in such a case to justify
a semiclassical approximation; see Sec. IX.E.

Once we have established that in the Josephson re-
gime the dynamics are (usually) those of a simple clas-
sical pendulum, we can immediately apply our classical
intuition. However, because the most directly observ-
able quantity in the BEC case (the quantity M , which
can be measured, for example, by optical absorption
techniques; see Sec. II) corresponds to the angular mo-
mentum rather than the displacement of the pendulum,
the results are sometimes quite striking. Consider first
the small oscillations about equilibrium; if for present
purposes we neglect quantum fluctuations, the latter
corresponds to w50 (u50). Taking the classical version
of Eqs. (7.26) and (7.27), we see that the small oscilla-
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tions are sinusoidal with the Josephson frequency vJ
[(KEJ)1/2; they should in principle be observable as a
sinusoidal oscillation of the atomic density between the
two wells (or two hyperfine states).

A more interesting experiment is one in which we ini-
tially hold Dm fixed at a small but finite value and then,
at time zero, reduce it to zero. It is easy to verify that the
equilibrium ground state for t<0 has w50 but M
52Dm/KÞ0, i.e., in the pendulum analogy, it has finite
canonical angular momentum [but zero angular velocity
v, since we recall that in the presence of a finite Auv is
given not by L/I but by (L2Au)/I]. For t>0 the dy-
namics are given by the classical version of the (un-
forced, that is Au50) Eqs. (7.26) and (7.27), i.e., the
simple pendulum equations, but the initial condition is
that L(t501)5Au (so that the pendulum is given an
impulsive torque at t50), or in the original BEC lan-
guage M(t501)52Dm/K . It is clear from our intu-
ition regarding the classical pendulum that there is a
critical value of L(t501) or equivalently a critical
value Mc of M , given by Mc5A2EJ /K [note that in the
Josephson region, by definition, this value is much
greater than 1, and in fact much greater than Mrms
;(EJ /K)1/4, but much smaller than N .] For M,Mc
(L,Lc) the pendulum performs simple librational (os-
cillatory) motion, which for L!Lc is nearly simple har-
monic at the Josephson plasma frequency vJ . As M
approaches Mc from below the motion becomes strongly
anharmonic, and for M.Mc the pendulum rotates in-
stead of librating. It is clear that in the rotating state the
angular momentum stays always positive definite,46 and
analogously, for the Josephson system M does the same,
i.e., the system never reaches the equilibrium value
(zero) of M (in the absence of damping). This behavior
has been seen spectacularly in the longitudinal nuclear
magnetic resonance of 3He-A (Wheatley, 1975, Sec.
VIII). In the case of the BEC alkali gases, it has not at
the time of writing been seen experimentally but has
been analyzed in the theoretical literature under the
name ‘‘macroscopic quantum self-trapping.’’

There are a number of other interesting phenomena
that can be seen in the semiclassical regime of the Jo-
sephson effect, particularly near the Rabi-Josephson
boundary: see Smerzi et al. (1997) and Marino et al.
(1999).

The question of dissipation in the Josephson effect is
of considerable interest, both in its own right and as a
possible guide to the more general characteristics of re-
laxation in a BEC system. However, to discuss it we
clearly have to go beyond the simple conservative
Hamiltonian (7.4), for instance, by introducing extra de-
grees of freedom corresponding to the normal compo-
nent (see, for example, Ruostekoski and Walls, 1998;
Zapata et al., 1998; Meier and Zwerger, 2000). I shall
therefore not attempt to discuss it here.

46In the classical approximation.
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E. The Fock regime: phase diffusion

One advantage of studying BEC in a two-state system
is that it allows us to formulate, in a very clean and
unambiguous way, the problem of phase diffusion. In
this context ‘‘phase’’ always means relative phase. For
present purposes I shall consider only the very simplest
possible case, a system that is for the duration of the
relevant part of the experiment in the extreme Fock
limit (i.e., the Josephson coupling EJ is simply set to
zero) and where the initial (and conserved) expectation
value of the relative number M is zero. The dispersion
in M is for the moment taken to be !N but otherwise
arbitrary. Such a situation is realized in the ‘‘Ramsey-
fringe’’ experiment of Hall, Matthews, Wieman, and
Cornell (1998); in this case, the two states in question
are two different hyperfine states of 87Rb. A superposi-
tion state of the type (7.28) below is created by the ini-
tial p/2 two-photon pulse47; the system is then allowed to
evolve freely (EJ50) until a second p/2 pulse, arbi-
trarily phased with respect to the first. Finally, the num-
ber of atoms in each of the two hyperfine states is mea-
sured.

Consider initially a normalized Gross-Pitaevskii-type
state of the form [a special case of Eq. (7.14)]

CN5
@221/2~eiw/2a1

11e2iw/2a2
1!#N

AN!
uvac&

[(
M

AN

2
1M!

N

2
2M!

N!
exp iMwuM&. (7.28)

In this state the dispersion of M is clearly of order N1/2.
It is convenient to introduce the operator

Q̂[
2
N

~Q̂11iQ̂2![a1
1a2 /~N/2! ~> exp iŵ !.

(7.29)

The Gross-Pitaevskii state (7.28) is an approximate
eigenstate of Q̂ , with eigenvalue exp iw; equivalently, in
the 3D angular momentum picture of Eqs. (7.11), the
angular momentum lies in the xy plane at an angle w
with respect to the x axis (for example, if the magnetic
field corresponding to the initial p/2 pulse lies along the
x axis, J lies initially along the y axis).

Before proceeding to calculate the subsequent devel-
opment of the expectation value ^Q(t)& of Q̂ , it is im-
portant to discuss the relation of this quantity to what is
actually measured experimentally. At this point it may
be helpful to make a brief digression to discuss the cel-
ebrated MIT interference experiment (Andrews et al.,
1997), since although the latter involves some complica-
tions that are not present in the toy version of the
Ramsey-fringe experiments that I shall consider, the is-
sues concerning the relation of what is calculated to

47As discussed in Sec. VII.C, during the pulse itself the sys-
tem is in the Rabi limit.
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what is actually measured is essentially identical. The
ensuing discussion is highly schematic and is essentially
a synopsis of considerations already thoroughly dis-
cussed in the existing literature on this experiment (e.g.,
Javanainen and Yoo, 1996; Naraschewski et al., 1996;
Castin and Dalibard, 1997; Hegstrom, 1998); it makes no
claim to any originality.

At the initial stage of the experiment, BEC is pro-
duced separately in two sets of atoms, confined in two
separate traps; the number in each trap is macroscopic
(;53106) and approximately, though in practice not
exactly, equal. In the published experiments the (laser-
induced) energy barrier between the two traps is so high
that the probability of tunneling between them should
be completely negligible, so that the system is firmly in
the extreme Fock limit according to the classification of
Sec. VII.C and, if we denote the single-atom ground
state in the left and right wells by cL and cR , respec-
tively, the initial many-body state should be schemati-
cally of the form

CN;@cL~r!#NL@cR~r!#NR, NL1NR5N , (7.30)

corresponding to a definite number NL or NR of atoms
in the left or right well, or in the language of Sec. VII.A
to a Fock state. The overlap of cL(r) and cR(r) is com-
pletely negligible. Next, the barrier is removed, so that
the atoms can expand freely into the region between the
two traps where they can overlap. At this stage, and
before any measurement is made, a natural schematic
description is of the form

CN;@cL~r,t !#NL@cR~r,t !#NR, (7.31)

where cL(r,t) is the time-dependent state that evolves
from cR(r) under the action of the time-dependent
Gross-Pitaevskii equation.48 In general, cL(r,t) and
cR(r,t) will both be nonzero in the overlap region be-
tween the wells. The final step is to measure, by optical
means, the atomic density r(r,t) in this region, and the
interesting question is: Do we see fringes (density oscil-
lations) corresponding to interference between the two
condensates?

If we had started not from the Fock state (7.30) but
from a coherent state of the form

CN;@acL~r!1bcR~r!#N ~ uau;ubu!, (7.32)

then after the expansion we would have schematically
instead of Eq. (7.31) the state

CN;@acL~r,t !1bcR~r,t !#N. (7.33)

In such a state the expectation value of the density
r(r,t) is

^r~r,t !&coh5uN@ uau2ucL~r,t !u21ubu2ucR~r,t !u2

12 Re$abcL* ~r,t !cR~r,t !%# , (7.34)

48This result is of course only approximate, and in particular
ignores important questions concerning the effect of inter-
atomic interactions in the overlap region (which fortunately
turns out to be fairly negligible), but it will be adequate for our
present purpose.
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and since the functions cL(r,t) (obtained by solving the
time-dependent Gross-Pitaevskii equation) correspond
approximately, at least locally, to oppositely propagating
plane waves of relatively well-defined wavelength l, the
last term in Eq. (7.34) produces density oscillations of
period l/2, leading to the corresponding fringes in the
optical transmission pattern. Note that if the initial con-
ditions on each run of the experiment are identical
(something that would be difficult to achieve in practice)
then not only the spacing but the ‘‘offset’’ (absolute po-
sition) of the fringe pattern should be reproducible from
run to run.

Now, what happens if the initial state is (as it almost
certainly was in the published experiments) the Fock
state (7.30)? If we carry out a direct calculation of
^r(r,t)& on the basis of the many-body wave function
(7.31), we find the rather disappointing result

^r~r,t !&Fock5NLucL~r,t !u21NRucR~rt !u2 (7.35)

with no interference term. Yet the photographs ob-
tained in the experiments show spectacular interference
fringes! (See Andrews et al., 1997, Fig. 2.)

The resolution of the apparent paradox lies in the ob-
servation that the predictions of quantum mechanics al-
ways refer to statistical averages over many experimen-
tal runs. In condensed-matter physics one is used to the
idea that when the quantity one is measuring is macro-
scopic and is the sum of contributions from many micro-
scopic entities (in this case, the atoms) then it is usually
adequate to replace averages over runs by averages over
atoms, i.e., to assume that the result obtained on any
one run will be close to the run-averaged result. But this
assumption may fail spectacularly if there is a strong
degree of correlation between the atoms—and the phe-
nomenon of BEC represents in some sense the strongest
correlation conceivable, since every atom must be doing
exactly the same thing at the same time! Indeed, when
applied to the experiment of Andrews et al. (1997) the
quantum-mechanical prediction (7.35) is entirely
correct—but all that it tells us is that if we take a pho-
tograph of the density distribution on each individual
run of many runs and then lay the photographs on top of
one another, the pattern will be correctly described by
Eq. (7.35). It tells us nothing (much) about what we will
see in each individual photograph, and to find this out it
is necessary to calculate higher-order correlation func-
tions such as the quantity

P~rr8:t ![^r~r,t !r~r8,t !&. (7.36)

If we calculate P on the basis of the wave function
(7.31), we find that it has strong oscillations as a function
of z2z8, with period l/2 (where z is the relevant coor-
dinate, roughly speaking that corresponding to the axis
separates the two wells). Thus the conditional probabil-
ity that if one sees a high atomic density at position z
one will also see a high density at a point nl/2 away
[and a low one at (n11/2)l/2] is high. One can evi-
dently extend the argument to higher correlation func-
tions, and the net result is that quantum mechanics
makes a unique prediction about the fringe spacing but
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no prediction about the offset. What this means is that
on each run we expect to see a definite fringe pattern,
with spacing l/2 but with random offset. This is exactly
what is seen in the experiments. When the photographs
from many different experiments are superimposed, the
randomness of the offsets means that the average den-
sity thus seen conforms to Eq. (7.35), i.e., shows no
fringes. An alternative way of describing the situation
that may make the analogy to the Ramsey-fringe case
clearer is that any Fock state of the form (7.30) may be
represented as a linear superposition of coherent states
of the form (7.32) with equal amplitudes for each value
of the relative phase of a and b, and that according to
Eq. (7.34) measurement of the atomic density consti-
tutes a measurement of this relative phase; then accord-
ing to the measurement axioms of quantum mechanics
such a measurement must have a definite outcome, but
that outcome is random from run to run and unpredict-
able in advance. [For a further discussion of this point in
the general Josephson context, see Hegstrom and Sols
(1995), and for the specific application to BEC alkali
gases see the references cited above.]

Returning now to the Ramsey-fringe experiment, the
second p/2 pulse, at time t , corresponds to application
of a pulsed magnetic field along some axis in the xy
plane rotated relative to that of the first pulse by some
phase shift d, and this is then followed by a measure-
ment (by optical absorption) of the relative population
of states u1& and u2&, i.e., of Jz . Suppose first that at time
t the system is still in an eigenstate of Q̂ with eigenvalue
exp i@w1u(t)#, i.e., the angular momentum has simply
precessed around the z axis through an angle u(t). Then
it is clear that on each run of an ensemble of experi-
ments involving the same initial conditions and the same
time difference t , the measured value of Jz will be re-
producible and equal to cos@w(t)2d#, @w(t)[w1u(t)#
[cf. the predictions above for the coherent case de-
scribed by Eq. (7.32)].

However, in general we shall find that the behavior of
^Q̂(t)& does not correspond to a unique precession.
What does this mean for the expected experimental re-
sults? We have seen in Sec. VII.C that provided the sys-
tem behaves as a simple BEC two-state system, the op-
erator Jx

21Jy
2 always has under these conditions a value

of approximately (N/2)2, which means that the magni-
tude of Q(t), could it be directly observed in the experi-
ment, should always be 1:

^Q̂†~ t !Q̂~ t !&51. (7.37)

On the other hand, the calculation below will show that
in general

u^Q̂~ t !&u25h~ t !,1, (7.38)

where to obtain the equality we used the definition (7.2)
of the degree of coherence h(t), Eq. (7.29), and the fact
that ^Jz&50. What this means is that on any given run of
the experiment the system behaves ‘‘as if’’ the (vector)
angular momentum lies in the xy plane and has its full
magnitude N/2, but with a phase angle u(t) that is not
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necessarily well defined and whose apparent value may
therefore vary from run to run (see the discussion above
of the MIT interference experiment). Then, if the prob-
ability of the system realizing a given value of u at time
t is Pt(u), the probability of obtaining a given value of
Jz@[ 1

2 (n12n2)# after a second pulse at time t with
phase angle d relative to the first will be proportional to
Pt(uo) where cos(uo2d)5Jz , and the expectation value
of Jz will be

^Jz&5const E du Pt~u!cos~u2d!. (7.39)

Consider a series of experiments such that we first select
a given value of t and of d, measure the value of Jz on
each of an ensemble of runs with this t and thus a value
of ^Jz&(t), then choose a new value of t (but the same d)
and repeat the procedure, and so on. The possible be-
havior varies between two extreme cases:

(a) If u(t) is well defined and processes with angular
frequency v, then the value Jz[ 1

2 i^(n12n2)& mea-
sured on each run of the ensemble of experiments
conducted with time delay t is unique and given by
the expression

Jz~ t ![^Jz~ t !&5~N/2!cos~vt2d!. (7.40)

(b) If u(t) is completely random (ill defined), then the
value of Jz measured on a given run of the relevant
ensemble should vary at random from 2N/2 to
1N/2, and the run-averaged value of ^Jz&(t) should
be zero. In the intermediate case ^Jz&(t) should be
given, crudely speaking, by a formula of the type
A(t)(N/2)cos(vt2d) where the envelope function
A(t), which under appropriate conditions is slowly
varying over a period 2p/v , is less than 1 and is
equal under the stated conditions to u^Q̂(t)&u
5h1/2(t).

Let us now turn to the calculation of ^Q̂(t)& , and thus
of h(t). Consider an initial state that is a generalization
of Eq. (7.22), namely,

CN~0 !5(
M

lM exp~ iMw!uM& , (7.41)

where the coefficients lM are real, positive, slowly vary-
ing between neighboring values of M , such that the dis-
persion in M is !N , and satisfy the normalization con-
dition (MlM

2 51. These conditions are satisfied, for
example, by a normalized Gaussian distribution with
width !N (but @1). Because of the slow variation con-
dition, CN(0) is an approximate eigenstate of Q̂ with
eigenvalue exp iw , and h(0)51.

Consider now the time evolution of ^Q̂& and hence of
h. For orientation let us first consider the case in which
all interactions are small, so that the Hamiltonian is
simply 2Dm•M . In the following, it is convenient to
work in the rotating frame as defined by the initial and
final p/2 pulses, so that Dm is fairly small. It is immedi-
ately clear that the phase accumulated over time t by the
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state uM& is just Dm•Mt , so that the many-body state at
time t is just of the form (7.28) with w replaced by
w1Dm•t . Thus we have

^Q̂~ t !&5exp i~w1Dmt ! (7.42)

and h(t) stays equal to unity for all t .
Next let us consider the effect of a term in Ĥ of the

form 1
2 KM̂2. The effect of this is to add to the evolution

of the state uM& an extra phase 2 1
2 KM2t . However,

since all contributions to ^Q̂& come from the matrix el-
ements between states uM& and uM11&, it is the deriva-
tive of this expression that enters ^Q̂(t)&:

^Q̂~ t !&5exp i~w1Dmt !(
M

lM
2 exp2iKMt . (7.43)

Suppose the initial packet is a Gaussian of width
(DM)o , i.e.,

lM;
1

DMo
exp2M2/4~DM !o

2 . (7.44)

Then the initial time dependence of ^Q̂(t)& can be ob-
tained by replacing the sum over M by an integral:

^Q~ t !&5exp i~w1Dm•t !exp2K2~DM !o
2 t2 (7.45)

and so

h~ t !5exp22K2~DM !o
2 t2. (7.46)

Thus the degree of coherence h(t) falls to zero over a
time scale (call it tdecoh) of the order of \/(K•DMo).
Since in an experiment of the JILA type DMo;N1/2

and K is proportional, in a harmonic trap, to N23/5,
[see Eq. (7.7)], we see that tdecoh actually increases with
N , though only as N1/10. Since, as we have seen, K is of
order E times the mean-field energy, which is typically
of order 20 kHz, we see that for a sample of, say,
106 atoms tdecoh can be of the order of a few seconds.49

The transition from a sum over M to an integral, how-
ever, obscures one phenomenon that is of potential in-
terest, namely, that of recurrences. We see from Eq.
(7.43) that at times which are exact multiples of \/K
[trec all the different states uM& come back into phase,
and h(t) recovers its original value of unity. The quan-
tity trec is longer than tdecoh by a factor (DMo)21, and
thus for the JILA experiment would be of the order of
hours and almost certainly unobservable.50

All the above assumes not only isolation of the system
from any ‘‘environment’’ but neglect of processes such

49Note that had we started with a wave packet (such as the
ground state of a harmonic well) that had a finite spread in w
and hence a value of (DM)o much smaller than N1/2, the de-
coherence time would have been much longer. Cf. Leggett and
Sols, 1998; Javanainen and Wilkins, 1997.

50Inclusion in Ĥ of cubic and higher terms in M̂ will tend to
reduce the amplitude of the recurrences even for an isolated
system, but a dimensional estimate shows that the effect is at
most of order unity and may be smaller.
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as recombination and trap evaporation. What happens if
we relax these assumptions?

To the extent that the environment can be modeled
by a classical random field which couples linearly to M̂

@Hsys2env;M̂V(t), where V(t) is random], it is clear
that it gives rise to dephasing such that

h~ t !5Uexp2iE
o

t
V~ t !dt/\U2

, (7.47)

where the bar indicates an average over the form of
V(t); the same should be true within a quantum-
mechanical description of the environment, if the cou-

pling is of the form M̂V̂ with V̂ some operator of the
latter and the average is replaced by a trace. A second
example of dephasing that may be important in practice
is the uncertainty, in a given experimental run, in the
value of N and hence in the constant K . Finally, a more
subtle example is recombination (Sinatra and Castin,
1998). Let us suppose for the moment that a single
l -body recombination process takes place at definite
time t2T (where t is, as above, the time of the second
p/2 pulse and is fixed by the experimenter). The effect
of this recombination is to replace each of the coeffi-
cients CM(t2T) of the state uM& by CM1m(t2T). This
means that the relative phase of neighboring CM at time
t is of the form

DwM5~Dm2KM !~ t2T !1@Dm2K~M2l !#T

5~Dm2KM !t1l KT , (7.48)

i.e., it adds an M-independent term to DmM , whose
value is determined by the unknown time T . The argu-
ment can obviously be generalized to the case of many
recombinations; although it is classical in the sense that
the decays are conceived as taking place at definite (but
random) times, it seems extremely probable that a fully
quantum-mechanical treatment would give the same re-
sult.

All the above considerations are confirmed quantita-
tively in an elegant calculation due to Sinatra and Castin
(1998). If l21 is the characteristic time for the first re-
combination to occur, they find, for the quantity we have
called Q̂(t), the result for t!tc [their Eq. (64)]

u^Q̂~ t !&u5exp2
x2t2

8 S 1

~Dw!0
2 1

4
3

l 2lt D , (7.49)

where (Dw)0
2 is the mean-square spread in relative

phase (as they define it) in the initial state. Since this
quantity is proportional to (DM)0

22 and the x in Eq.
(7.49) is proportional to our K , it is clear that the first
factor in the brackets is identical in structure to that in
Eq. (7.45), while the second indicates the effect of aver-
aging over the recombination processes. Note that since
in a JILA-type experiment (Dw)o

2;N1/2, the second
term becomes comparable to the first only at times
(;Nl21) so long that the whole sample has already
decayed appreciably.
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In the real-life JILA experiments, an important role is
played by the spatial rearrangement processes following
the initial p/2 pulse. These processes are discussed by
Sinatra et al. (1999) and their effect on the phase coher-
ence is noted by Sinatra and Castin (1998); the latter
conclude that an important role is played by the dephas-
ing due to uncertainty in the initial value of N , and that
when this is taken into account the agreement of theory
and experiment is reasonable.

VIII. THE BOGOLIUBOV APPROXIMATION

Let us confine ourselves for the moment to the case of
a spinless gas at zero temperature. Then we have seen in
Sec. V that in the dilute limit appropriate to the alkalis a
very reasonable description of most of the properties,
whether time dependent or not, is given by the Gross-
Pitaevskii (Hartree) ansatz (5.14) for the many-body
wave function, i.e., a simple product of single-particle
functions with no two-particle or higher correlations
(though see footnote 18). Now in fact it is clear that Eq.
(5.14) can be regarded as the first of a sequence of trial
functions, of which the next is one that builds in two- but
not three-particle or higher correlations:

CN~ri¯rN :t !5S)
i,j

N

w~ri ,rj :t !, (8.1)

where S denotes the operation of symmetrization be-
tween the particles. Just as in the Gross-Pitaevskii ap-
proximation all particles occupy the same single-particle
state, in the approximation (8.1) all pairs of particles
occupy the same two-particle state. Equation (8.1) is
nothing but the particle-number-conserving version of
the celebrated Bogoliubov approximation. In the litera-
ture this approximation is, almost without exception, in-
troduced either by explicitly relaxing the constraint of
particle number conservation, as in the original work of
Bogoliubov (1947), or by writing down and analyzing
operator equations of motion. In my view neither of
these techniques adequately exhibits the simple under-
lying structure (8.1) of the many-body wave function, so
I shall take in this section a more direct approach. First,
however, I give some motivation for going beyond the
Gross-Pitaevskii approximation for the many-body
ground state.

A. Inconsistency of the Gross-Pitaevskii approximation

Consider a system of N spinless bosons in free space.
A direct way of seeing that the Gross-Pitaevskii ground
state cannot be the true ground state of the system is to
use the sum rules obeyed by the density fluctuation op-
erator

rq[V21(
i

e iq•ri[V21(
p

ap1q/2
† ap2q/2 . (8.2)

The potential term in the Hamiltonian can be written
in the form const (qrqr2q , and thus commutes with rq ;
this allows us to derive the ‘‘f-sum rule’’
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(
l

~E l 2E0!u^l urqu0&u25n\2q2/2m (8.3)

(n[N/V). Moreover, since the energy per unit volume
in the Gross-Pitaevskii ground state is simply 1

2 U0n2,
the compressibility x0 is just U0

21; writing out the
second-order perturbation-theory expression for x0 , we
have

(
l

u^l urqu0&u2~E l 2E0!215n/2U0 . (8.4)

We can now use the Cauchy-Schwartz inequality to
derive from Eqs. (8.3) and (8.4) the result

^rqr2q&0[(
l

u^l urqu0&u2<~n2\2q2/2mU0!1/2[nqj

(8.5)

[where we used definition (5.6) of the healing length j].
However, we can also evaluate the quantity ^rqr2q&0
directly:

^rqr2q&0[(
pp8

^ap1q/2
† ap2q/2ap82q/2

† ap81q/2&0

5(
p

^np1q/2&0^12np2q/2&05n . (8.6)

For qj<1 the relations (8.4) and (8.5) are clearly mutu-
ally inconsistent, and the only possible conclusion is that
the Gross-Pitaevskii ground state cannot be the true
ground state of the many-body system.

Some insight as to what has gone wrong may be ob-
tained from our experience in Sec. VII.D with the two-
state system in the Josephson regime. We saw there that
in the presence of a term in the energy proportional to
M2, it is energetically advantageous to allow the relative
phase of the condensate to fluctuate somewhat around
its mean value, thereby lowering ^M2&, which would
otherwise be ;N . In a similar way, in the bulk system,
one would like to build in fluctuations so as to reduce
the value of ^rqr2q&.

Another way of looking at what is essentially the same
point is that, as we saw in Sec. IV.C, the total interaction
energy is proportional to the sum over i and j of the

quantity uC(rij

;→ 0)u2, and it is therefore energetically
favored to reduce the latter. It is intuitively plausible to
expect that the distance in uriju over which the distortion
from the simple Gross-Pitaevskii ansatz occurs will be,
just as in the case of repulsion by a single-particle poten-
tial such as a hard wall, of the order of the healing length
j, and we shall see that this is correct.

B. The Bogoliubov ground state in the
translation-invariant case

Consider the case of a system moving in a constant
external potential and subject to periodic boundary con-
ditions, so that the ground-state wave function of the
condensate is simply a zero-momentum plane wave (i.e.,
x05const). The upshot of the arguments of Sec. VIII.A
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is that we need to modify the Gross-Pitaevskii ground
state so as to build in the effects of long-wavelength
(qj&1) density fluctuations. Now, the simplest way (in-
deed the only way) of creating a density fluctuation of
wave vector q starting from the Gross-Pitaevskii ground
state is to take a particle out of the state 0 ([x0) and
put it into a state q . However, a single process of this
kind would violate conservation of momentum. The sim-
plest momentum-conserving procedure is to create pairs
of density fluctuations of opposite momentum, i.e., to
operate on the Gross-Pitaevskii ground state with the
operator aq

†a2q
† a0a0[L̂q . Thus we should expect that a

good approximation to the true many-body ground state
might be of the generic form

CN;const (
$nj%

c $nj%)j
L̂qj

nju0&, (8.7)

where u0& is the Gross-Pitaevskii ground state and the
c $nj%

are arbitrary complex coefficients.
Actually, however, the ansatz (8.7) turns out to be

more general than we need; it can in fact be proved
(Leggett, 1999b: the proof is too cumbersome to be
given here) that in the limit N→` and small depletion
(see below) the member of the class (8.7) that minimizes
the energy is actually a member of a subclass, namely,
the subclass of states corresponding to the ansatz (8.1).
In second-quantized notation the latter reads in general,
apart from normalization,

CN5~N! !21/2S E E dr dr8

3K~rr8!c†~r!c†~r8! D N/2

uvac&, (8.8)

and for the translation-invariant case we must have
K(rr8)5K(r2r8). Then, taking out the macroscopically
occupied zero-momentum state explicitly and taking
Fourier transforms, we have (still apart from normaliza-
tion)

CN5N!21/2S a0
†a0

†2 (
q.0

cqaq
†a2q

† D N/2

uvac&, (8.9)

where the minus sign is introduced for subsequent con-
venience. Equation (8.9) is the ground state of a
translation-invariant Bose system with fixed particle
number N in the Bogoliubov approximation.51

It remains only to determine the coefficients cq . To
do this, we argue as follows: It is clear that the only
terms in the second-quantized Hamiltonian that have
nonzero expectation values in the state (8.9) are (ignor-
ing terms of relative order N21)

(a) the kinetic-energy terms

51For related number-conserving formulations see, for ex-
ample, Girardeau et al. (1959) and Gardiner (1997), and for
the standard (number-nonconserving) approach see Huang
(1987), Chap. 13.
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K5 (
qÞ0

eqaq
†aq , (8.10a)

(b) the Hartree terms

HH5
1
2

U0

V (
qq8

aq
†aq8

† aq8aq5
1
2

N2

V
Uo , (8.10b)

(c) the Fock terms

HF5
1
2

U0

V (
qÞq8

aq
†aq8

† aq8aq , (8.10c)

(d) the ‘‘pairing’’ terms

HP5
1
2

U0

V (
qÞq8

aq
†a2q

† a2q8aq8 . (8.10d)

In the following I shall assume that the total ‘‘deple-
tion’’ of the condensate, that is, the quantity
N21(qÞ0^aq

†aq&, is much smaller than 1 (this will be
confirmed below); this then allows us consistently to ne-
glect, in Eqs. (8.10c) and (8.10d), all terms except those
in which either q or q8 is zero. Then if we take the zero
of energy at the Gross-Pitaevskii value 1

2 N2U0 /V , the
Hamiltonian reduces to a sum of contributions from dif-
ferent values of q:

Ĥ5(
q

Ĥq , (8.11)

Ĥq[Eqaq
†aq1

1
2

U0

V
~aq

†a2q
† a0a01H.c.!, (8.12)

where

Eq[eq1n0U0 , n0[N0 /V'N/V . (8.13)

To calculate ^Hq& over the wave function (8.9) for any
given q, we make a binomial expansion of Eq. (8.9):

CN5N!21/2 (
m50

N/2

Cm
N/2~a0

†a0
†2cqaq

†a2q
† !m

3S (
kÞq ,0

2ckak
†a2kD N/22m

uvac&, (8.14)

with Cm
N/2 the binomial coefficient, and note that the sec-

ond factor contributes only an overall probability factor
to ^Hq&. Moreover, we can check that the only values of
m contributing appreciably in Eq. (8.14) are close to N .
Since the value of ^Hq& for the normalized state corre-
sponding to m is only weakly sensitive to m (see below),
it follows that it is legitimate, in calculations of ^Hq& , to
replace the full wave function (8.9) by the expression,
now correctly normalized,

C(q)5~N! !21/2~12ucqu2!1/2~a0
†a0

†2cqaq
†a2q

† !N/2uvac&

~ ucqu,1 !. (8.15)

It is now extremely straightforward to calculate the
quantity ^Hq&[^C(q)uĤquC(q)& , where Ĥq is given by
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Eq. (8.12). Omitting the simple algebra, I just quote the
result52 for the total Hamiltonian Ĥ :

^H&5 (
qÞ0

$Eq sinh2 uq2n0U0 sinh uq cosh uq%,

(8.16)

where I have introduced the notation cq[tanh uq . Mini-
mization of Eq. (8.16) with respect to uq gives
tanh(2uq)5n0U0 /Eq , or equivalently

cq5
1

n0U0
~Eq2Eq! ~.0 !, (8.17)

where for subsequent convenience we introduced the
notation

Eq[~Eq
22n0

2U0
2!1/2[@eq~eq12n0U0!#1/2

[F\2cs
2q21S \2q2

2m D 2G1/2

. (8.18)

Insertion of Eq. (8.17) into Eq. (8.9) completely deter-
mines the many-body ground state, which, moreover,
from Eq. (8.16) has the energy (relative to the Gross-
Pitaevskii ground state)

^H&05 (
qÞ0

1
2

~Eq2Eq!. (8.19)

The expression (8.19) is actually linearly divergent as it
stands for large q ; for the resolution of this difficulty, see
below.

The above derivation, which is simply the particle-
conserving version of Bogoliubov’s original argument,
relies on the pairing of the plane-wave states q,2q,
which are not identical but are related by time reversal.
With a view to the generalization to inhomogeneous sys-
tems (Sec. VIII.D), it is interesting to note that we could
equally well have paired atoms in the same state (in this
case sine or cosine waves). In fact, an alternative way of
writing the ansatz (8.9) for the many-body wave function
is

CN5N!21/2S a†
0a0

†2 (
q.0

cq~aqc
† aqc

† 1aqs
† aqs

† ! D N/2

uvac&,

(8.20)

where aq ,s
† and aq ,c

† create particles in sine and cosine
states; e.g., the normalized amplitude of aq ,c

† uvac& at r is
21/2 cos q•r. The algebra then proceeds exactly as above,
the only difference being that if one considers, in the
formula analogous to Eq. (8.15), only (say) the sine con-
tribution, the normalization factor is (12ucqu2)1/4 rather
than (12ucqu2)1/2. However, Eq. (8.16) and all subse-
quent formulas follow unchanged, with the sum over
(all) q replaced by a sum over the positive half-space.
The coefficients cq are numerically equal to those in Eq.
(8.9), and, needless to say, the results of Sec. III.C are
unaffected.

52To obtain Eq. (8.13) we replaced matrix elements such as
AN0(N011) by N0 . Note that the sum over q now goes over
all nonzero q.
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C. Properties of the Bogoliubov ground state: elementary
excitations

Once one has the correct form (8.17) of the coeffi-
cients cq in the many-body ground state (8.9), the calcu-
lation of the correlations and the elementary excitations
is straightforward and the algebra involved is closely
parallel to that encountered in the ‘‘textbook’’ (particle-
nonconserving) approach (see, for example, Huang,
1987, Chap. 13); I therefore simply quote the results be-
low without derivation.

[Note added in proof. At a very late stage in the pro-
cessing of this manuscript, I have realized that because
of ambiguities in the precise definition of the ‘‘Gross-
Pitaevskii’’ state (cf. footnote 18), both the (counterin-
tuitive) sign of the right-hand side of Eq. (8.23) and the
precise interpretation of Eq. (8.24) deserve considerably
more detailed discussion than given here. (For some of
the issues involved, see e.g., Cherny and Shanenko,
2000.) I thank Willi Zwerger for correspondence which
drew my attention to this.]

(1) The depletion of the Gross-Pitaevskii ground
state, that is, the quantity z[N21(q^aq

†aq&, is
given by the formula

z5
8

3Ap
~n0as

3!1/2. (8.21)

Since in published experiments on the alkali gases
the right-hand side of Eq. (8.21) has never been
much greater than 0.01, it is for most purposes an
excellent approximation to ignore the depletion,
i.e., set n05n .

(2) In evaluating ^H0& one must beware of double-
counting that part of the two-particle interaction
energy that has already been taken into account
in defining the s-wave scattering length (see Sec.
IV.C). The result of this consideration is to sub-
tract from the summation in Eq. (8.19) a term
2n0

2U0
2/2eq , after which the sum is convergent

and equal to the expression

^H&05
64

15Ap
N~n0U0!•~n0as

3!1/2. (8.22)

Thus the correction (8.19) to the Gross-Pitaevskii
ground-state energy is a fraction of order the
depletion z of the latter, and thus again negligible
in the alkali gases under most current conditions.

(3) The correction to the two-particle correlation

^r(r)r(r8)&;uC(rij

;→ 0)u2 also involves a sub-
traction to avoid double-counting the single-pair
effects. Once this is done, the result is

d^r~r!r~r8!&
n0

2 52const~n0as
3!1/2F~ ur2r8u/j!,

(8.23)

where F(x) tends to 1 for x→0 and to zero for

x→` . Thus the quantity uC(rij

;→ 0)u2 is reduced
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by a factor of order z from its Gross-Pitaevskii
value n('n0) and the effect on the two-particle
wave function extends out to a distance of the
order of the healing length j, as anticipated.

(4) Consider the operator aq
1 defined by

aq
†[N0

21/2~uqaq
†a01vqa0

†a2q!, (8.24)

uq[cosh uq , vq[sinh uq , ~tanh uq[cq!.
(8.25)

It may be verified by direct calculation that when
applied to the ground state (8.15) [with the cq
given their ground state values (8.25)], aq

1 gener-
ates an excited state with momentum \q and en-
ergy Eq given by Eq. (8.15), while its Hermitian
conjugate aq gives zero. Consequently, for weak
excitation the Hamiltonian can be written, rela-
tive to the Bogoliubov ground-state value (8.19),
in the simple form (Bogoliubov, 1946)

Ĥ5(
q

Eqaq
†aq . (8.26)

In the particle-nonconserving approach the quan-
tities N0

21/2a0 , N0
21/2a0

† are commonly replaced
by 1.

(5) Finally, consider the superfluid density rs(0) (see
Sec. VI). This quantity is no longer simply related
to the condensate number No ; in fact, inspection
of the arguments of Sec. VI.C indicates that since,
in the Hess-Fairbank effect in a cylindrical geom-
etry for small but finite v, the condensate remains
in its original (s) state and the virtual Bogoliubov
excitations are created out of it with zero total
(angular) momentum, the latter contribute noth-
ing to the circulating current, which remains zero.
If so, then according to the definition in Sec. VI
the superfluid fraction rs /r should remain unity
even though No is no longer equal to N . This re-
sult is in fact correct, not only within the Bogoliu-
bov approximation but for arbitrary interaction
strength, provided only that perturbation theory
starting from the free Bose gas converges (Ga-
voret and Nozières, 1964; see also Leggett, 1998).

At finite but low temperature @T[(kBb)21!Tc# the
condensate is still not much depleted and the number
^nq&[^aq

†aq& of Bogoliubov quasiparticles is given by
the Bose distribution with Eq given by Eq. (8.15),

^nq&5@exp~bEq!21#21, (8.27)

and a famous argument due to Landau (see Huang,
1987, Chap. 13) gives for the normal density rn(T) [r
2rs(T)

rn~T !5
1
3 (

q
~\q !2~dnq /dEq!. (8.28)

For T!nUo this expression is proportional to T4, while
for nUo!T!Tc it has the same temperature depen-
dence as (12No /N), namely T3/2. For T;Tc the deple-
tion is substantial and the theory becomes more compli-
cated.
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D. The inhomogeneous case

The case of a system moving in a spatially varying
potential is considerably more complicated, because (a)
there is no a priori choice for the condensate wave func-
tion x0(r) and one cannot assume a priori that it will
retain its original (Gross-Pitaevskii-level) form in the
presence of pairing, and (b) there is in general no simple
analog of the orthogonality of the states k and 2k to
one another and to 0. As a result of (a), the class of wave
functions for the many-body system that is considered in
the Bogoliubov approximation is actually a subclass of
the general class (8.1) of paired states, and thus may not
correspond to the absolute minimum of the energy
within this class; however, this effect may be shown to
be of higher order in nas

3 than the (nas
3)1/2-level effects

considered in the Bogoliubov approximation and will
therefore not be discussed here.

As regards point (b), it is important to realize53 that
despite those complications the many-body ground state
can still be written54 in a form that is the obvious gener-
alization of Eq. (8.17), namely,

CN5~N! !21/2S ao
†ao

†2(
m

1
2

cmam
† am

† D N/2

uvac&,

(8.29)

where the single-particle states m are orthogonal to one
another and to the state 0, and, if one were interested in
the ground-state energy and the structure of CN , one
could proceed by a generalized version of the argument
of Sec. VIII.B.55 However, it turns out that in general
there is no simple relationship between the basis vectors
m appearing in Eq. (8.29) and the elementary excita-
tions of the system, and an alternative approach is there-
fore standard in the literature. For the details of the
derivation I refer the reader to Fetter (1999) and merely
quote the principal results.

Relaxing (for the only time in this review) our insis-
tence on exact particle number conservation,56 we write
the Bose destruction operator in the form ĉ(r)
5 â0x0(r)1ŵ(r), expand the Hamiltonian up to second
order in ŵ(r), and treat the quantity â0â0 as a c number
with a value equal to N0 . In this way we obtain an ef-
fective Hamiltonian that is bilinear in ŵ and ŵ† and of
the general form

53To my knowledge, the first place in the literature where this
is (implicitly) pointed out is a paper by Fetter (1972), which is
probably less well known in the BEC community than it de-
serves to be.

54Provided it is real, which will be true if the Hamiltonian is
invariant under time reversal.

55I hope to discuss this question further elsewhere.
56For explicitly number-conserving formulations of the ensu-

ing argument and that of Sec. VIII.E, see Gardiner (1996) or
Castin and Dum (1997).
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Ĥ5E dr ŵ†~r!H 2
\2

2m
¹21Vext~r!

12N0ux0~r!u2J ŵ~r!

1~N0U0@x0~r!#2ŵ†~r!ŵ†~r!1H.c.!. (8.30)

One then shows that the expression (8.30) can be di-
agonalized (and minimized) by the substitution

ŵ~r !5(
j

@a juj~r!1a j
†v j~r!# (8.31)

where the functions uj(r), v j(r) satisfy the celebrated
Bogoliubov–de Gennes equations

S 2
\2

2m
¹21Vext~r!12N0ux0~r!u22m Duj~r!

1N0U0x0
2~r!v j* ~r!5Ejuj~r!, (8.32a)

S 2
\2

2m
¹21Vext~r!12N0ux0~r!u22m D v j~r!

1N0U0@x0* ~r!#2uj~r!52Ejv j~r!. (8.32b)

Equations (8.32) do not specify the normalization of
the uj and v j , and it is convenient to choose the latter so
that

E @ uuj~r!u22uv j~r!u2#dr51. (8.33)

With this choice the operators a j ,a j
† satisfy the standard

Bose commutation relations,

@a j ,ak#5@a j
† ,ak

† #50, @a j ,ak
† #5d jk , (8.34)

and the effective Hamiltonian takes the form

Ĥ5(
j

Eja j
†a j1E0 , (8.35)

E052(
j

EjE uv j~r !u2 dr . (8.36)

The uj’s and v j’s satisfy the orthogonality properties
[with the normalization (8.33)]

E dr@uj* ~r!uk~r!2v j* ~r!vk~r!#5d jk , (8.37a)

E dr@uj* ~r!vk~r!2uk* ~r!v j~r!#50, (8.37b)

E dr@uj~r!x0~r!2v jx0* ~r!#50. (8.37c)

Note that in general a given uj is not orthogonal to the
corresponding v j , nor are either of them separately to
x0 . However, there are many cases of practical interest
in which this is likely to be true to a good approxima-
tion; for example, if x0(r) is slowly varying in the semi-
classical limit one can choose u and v to have the ap-
proximate forms
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uj~r!;Aj~r!expS iE kj~r!drD , (8.38a)

v j~r!;Bj~r!expS 2iE kj~r!drD , (8.38b)

where the functions Aj , Bj , and kj are slowly varying
functions of r, and the fast oscillation of the phase then
means that uj and v j are indeed approximately orthogo-
nal to one another and to the slowly varying function
x0(r).

E. Time-dependent Bogoliubov–de Gennes equations:
connection with the time-dependent
Gross-Pitaevskii equation

In accordance with the considerations of Sec. VIII.B,
it is convenient at this stage to redefine the Bogoliubov
quasiparticle operators a j

1 [currently defined simply by
the inversion of Eq. (8.31) and its Hermitian conjugate]
so as to make them explicitly particle conserving:

a j
†[N0

21/2S a0E dr uj~r!ŵ†~r!1a0
1E dr v j~r!ŵ~r! D .

(8.39)

According to Eq. (8.35), states of the general form (up
to normalization)

)
j

~a j
†!nju0& , (8.40)

where u0& is the Bogoliubov ground state, are energy
eigenstates and thus time independent. However, super-
positions of such states will in general have a nontrivial
time dependence. In particular, consider a linear super-
position of the ground state and a small admixture of
different states each containing a single quasiparticle of
index j . The time-dependent wave function has the gen-
eral form

CN~ t !5l21/2S 11(
j

e ja j
†e2iEjt/\D u0& , (8.41)

l[11(
j

ue ju2, ~e j!1,;j !. (8.42)

On the other hand, let us go back to the time-
dependent Gross-Pitaevskii equation (5.13), which we
recall describes (in the case N05const) the evolution of
the condensate wave function x0(rt). As we saw in Sec.
V.C, if we linearize this equation around the static
Gross-Pitaveskii ground state, we find that we get Eq.
(5.16), with C0(rt)[exp2imt/\•C0(r), where Co(r)
[ANoxo(r) is the ground-state form of the order pa-
rameter. But it is now a straightforward exercise (see,
for example, Castin and Dum, 1998; Dalfovo et al., 1999)
to show that quite generally Eq. (5.16) is diagonalized by
expanding dC(rt) and dC* (rt), respectively, in terms
of the Bogoliubov functions uj(r), v j(r). In fact,

dC~rt !5(
j

ẽj@uj~r!e2iEjt/\1v j* ~r!eiEjt/\# , (8.43)
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suggesting a close relation with Eq. (8.41). [Equations
(5.19) and (5.20) correspond to the special case of Eq.
(8.42) with only one pair uj , v j nonzero.] In fact, if on
the wave function (8.41) we evaluate the quantity
^w†(r)a0&(t) [where w†(r) is the part of the field opera-
tor c†(r) orthogonal to x0], we find an expression iden-
tical to Eq. (8.43) (with e j→ ẽ j ; Castin and Dum, 1998).
Thus there is a one-one correspondence between the
single-quasiparticle Bogoliubov eigenstates and the small
oscillations of the condensate. [In the free-space case we
could already see this by a comparison of Eqs. (5.23)
and (8.18).]

This correspondence should not surprise us: it is a
characteristic feature of systems that are in some sense
‘‘quasiclassical.’’ Consider, for example, our old friend
the simple harmonic oscillator. We can do one of two
things: (a) starting from a classical-approximation
ground state, c0(x);d(x), we can replace the argument
x by x2x0(t), where x0(t) satisfies the classical equa-
tion of motion with a small amplitude [much less than
(\/mv0)1/2]; (b) we can start from the true quantum-
mechanical ground state c0(x) and mix in a small
amount of the first excited state c1(x). With a suitable
correspondence of the parameters, these two proce-
dures, which are the analogs of Eqs. (5.13) and (8.41),
respectively, give precisely the same value for the physi-
cal observable ^x(t)& [namely, A cos(vt)]. However, it is
clear that they correspond to quite different assumptions
about the actual form of the wave functions. In the same
way, despite the coincidence of their predictions for the
quantity ^w†(r)a0& , the ansätze (5.13) and (8.41) corre-
spond to totally different assumptions about the actual
many-body wave function (and hence different predic-
tions for other possibly observable quantities).

The above discussion refers to small disturbances
around the ground state. The question of the application
of the Bogoliubov approximation to situations in which
the condensate wave function is itself strongly time de-
pendent is a good deal more delicate, and for the rea-
sons sketched in Sec. IX.E, I shall not attempt to discuss
it here.

F. The multicomponent case

In view of the weight given in the first seven sections
of this review to the case of several co-existing hyperfine
species, it seems appropriate to sketch very briefly the
generalization of the considerations of the present sec-
tion to this case. In fact, this generalization is rather
obvious: one simply starts from the Hamiltonian

Ĥ5(
ab

E dr ca
† ~r!S 2dab

\2

2m
1Vab

(ext)~r! Dcb~r!

(8.44)

1
1
2 (

abgd
UabgdE ca

† ~r!cb
† ~r!cg~r!cd~r!dr

(8.45)
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and expands about the Gross-Pitaevskii solution dis-
cussed in Sec. V.D, similarly to what is done in Sec.
VIII.D:

ĉa~r!→Ca~r!1ŵa~r!. (8.46)

Note that when we do this, the terms of the form, for
example,

Ca* ~r!Cb* ~r!ŵb~r!ŵa~r! (8.47)

contain inter alia the zero-temperature momentum-
exchange contributions mentioned at the end of Sec.
V.D.

Of course, if we are interested only in obtaining the
elementary excitation spectrum, it is probably easier
simply to linearize the time-dependent Gross-Pitaevskii
equation (5.35) around the ground state (since we ex-
pect that the correspondence between the solutions of
this equation and the elementary excitations will go
through just as in the spinless case discussed in the last
subsection). This is done for example by Ho (1998) and
Ohmi and Machida (1998). Discussion of the Bogoliu-
bov theory as such for the multicomponent case has, to
the best of my knowledge, been limited to the spatially
uniform case (Colson and Fetter, 1978; Huang and Gou,
1999).

IX. FURTHER TOPICS

In this section I very briefly list and comment on a
number of topics in the theory of the BEC alkali gases
that I have had to omit from the main body of this re-
view, either for sheer lack of space or because I believe
the theory is still in a state of flux and therefore feel
unable to say anything definitive. The list is not com-
plete, and in particular does not include some important
topics, such as the collective excitations of a gas in a
harmonic trap, which are extensively discussed in the
review of Dalfovo et al. (1999; see also Griffin, 2000).

A. Attractive interactions

For some systems, in particular 7Li and 85Rb in low
magnetic fields, the s-wave scattering length is negative
and thus, by the arguments of Sec. IV, the effective in-
teratomic interaction is attractive. Under these condi-
tions it is believed that the system will be unstable
against collapse in real space not only in free space but
in a harmonic trap provided that the total number of
atoms exceeds a critical value (see Dalfovo et al., 1999,
Sec. III.C); this seems consistent with existing experi-
ments on 7Li (Bradley et al., 1997) and on 85Rb (Cornish
et al., 2000). However, the kinetics of the collapse pro-
cess and the nature of the final state are controversial.
See, for a theoretical consideration, Kagan et al. (1998)
and Sackett et al. (1998).

B. Optical properties

Most of the properties of the BEC alkali gases that
are associated with genuinely ‘‘optical’’ transitions (i.e.,
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visible-wavelength, as distinct from the microwave tran-
sitions discussed in Sec. VII.D) are believed to be sensi-
tive primarily to the behavior of the local atomic den-
sity, and therefore do not require separate
consideration. However, we have already seen one ex-
ception (Sec. IV.F). A second involves the phenomenon
of super-radiance (see Inouye et al., 1999). There may
be other phenomena associated with spontaneous emis-
sion, which as we have seen is usually totally negligible
for microwave transitions but need not be so in the op-
tical regime. In this context some intriguing proposals
related to the considerations of Sec. VII.E have been
made (Javanainen, 1996); to date there has been no ex-
perimental realization.

C. Coexistence of three hyperfine species

Under very special circumstances it is possible to tune
the parameters in a trap so that not only can three or
more different hyperfine species coexist in it (Stenger
et al., 1998a) but collisions of the type u1&1u21&→u0&
1u0&, in which the initial and final hyperfine states are
different, can exactly or approximately conserve energy.
Law et al. (1998) pointed out that in the case of exact
degeneracy the ground state need not necessarily be of
the simple Gross-Pitaevskii type but could represent a
sort of spatially extended pseudomolecule, in which
pairs of atoms condense into a state with, for example,
total spin zero but no definite single-atom spin. How-
ever, it was subsequently pointed out by Ho and Yip
(2000) that this kind of state is extremely fragile and that
even tiny perturbations, such as magnetic field gradients,
would be likely to restabilize the Gross-Pitaevskii
ground state. This is currently a very active area of dis-
cussion.

D. The ‘‘atom laser’’

While the experiment of Andrews et al. (1997) dem-
onstrates that it is certainly possible to produce two
beams of atoms that either have a definite relative phase
or acquire one on measurement, there has been to date
no realization of the precise atomic analog of an optical
laser, that is, roughly speaking, a continuous-output
beam with a well-defined direction, frequency, intensity,
and phase. Many theoretical papers have been devoted
to the design of such an atom laser and an analysis of its
likely properties; for an up-to-date review, see Ballagh
and Savage (2000). It should be noted that the discus-
sion of the phase coherence properties of an atom laser
does not require us to introduce the concept of absolute
phase (though this is often done in the literature), any
more than does the discussion of, for instance, weak-
localization effects in solids in the context of the simple
one-electron Schrödinger equation; in each case it is the
relative phase at different times that is at issue. The
points raised in these discussions have much in common
with the problem of diffusion of relative phase discussed
in Sec. VII.D, and are also closely connected with the
next issue.
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E. Kinetics, damping, relaxation, etc.

Probably the most glaring omission in the main body
of this review has been any discussion of the strongly
nonequilibrium dynamics of a Bose-Einstein condensate
(except in the special case of the two-state system dis-
cussed in Secs. VII.D and VII.E); this despite the fact
that this problem is ubiquitous in the interpretation of
experimental work (e.g., on the kinetics of the conden-
sation process, the damping of collective excitations, and
the decay of vortex states). The reason for the omission
is partly sheer lack of space, but partly also that despite
a proliferation of theoretical work in this area in the last
four years, I still do not feel that the situation is entirely
clear. The problem is not just one of uncertainty about
how well particular approximation schemes work in
practice for particular experimental setups; there also
seem to me to be major conceptual issues that are not
completely resolved. One particularly glaring issue is
how far it is necessary to maintain the conceptual dis-
tinction between a situation in which one has complete
or nearly complete Bose condensation but the state is
highly chaotic and thus fluctuates randomly from run to
run, and one in which there is genuinely no condensa-
tion. In neither case does the single-particle density ma-
trix, as calculated by the standard techniques, possess an
eigenvalue of order N (in the first case because it essen-
tially predicts the average behavior over runs), and it is
therefore tempting to assume that in practice the distinc-
tion is meaningless; however, the analysis of the MIT
interference experiments shows that in that context an
analysis based on the single-particle density matrix can
be highly misleading (Javanainen and Yoo, 1996; see
also Hegstrom, 1998). This issue is rendered increasingly
urgent by the increasing popularity in the BEC field of
the so-called ‘‘phase-space technique,’’ in which the den-
sity matrix of an arbitrary initial state is expressed as a
sort of pseudomixture of Gross-Pitaevskii-type states,
each individually possessing BEC but with wildly vary-
ing condensate wave functions, the time evolution of the
latter calculated, and the results put together to describe
the behavior of the real system (see Steel et al., 1999,
and for an early application of similar ideas to the kinet-
ics of condensation, Kagan et al., 1994). My suspicion is
that, as so often happens in physics, we are dealing here
with a trick that is extremely computationally conve-
nient and gives physically correct results provided our
measurements are in some sense sufficiently coarse
grained, but may be subtly misleading under special cir-
cumstances. However, I feel at present unable to say
anything clearly on this topic, and thus in accordance
with the motto on my title page must ‘‘keep silent’’ and
merely refer the reader to what I regard as some of the
most important recent papers on this general question
(as distinct from applications to specific experimental
situations): Castin and Dum (1998), Kagan and Svis-
tunov (1998), Lopez-Arias and Smerzi (1998), Drum-
mond and Corney (1999), Steel et al. (1999), Stoof
(1999), Walser et al. (1999), Carusotto et al. (2000), and
Gardiner and Zoller (2000).
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F. Late-breaking developments

The first draft of this review was completed in January
2000, and over the intervening year there have been a
number of interesting developments, some but not all of
which are mentioned in the main text. Of these develop-
ments, probably the one that will most obviously require
us to extend the conceptual basis outlined in this review
is the attainment of unprecedentedly high values of the
‘‘gas parameter’’ na3 in experiments conducted close to
a Feshbach resonance (Cornish et al., 2000) and the pro-
duction of diatomic molecules in an alkali-gas conden-
sate by photoassociation (Wynar et al., 2000). These two
developments, which from a theoretical standpoint are
closely related, pose a major challenge to theory and will
very likely require us to go considerably beyond the
simple contact-interaction approximation of Sec. IV. For
some relevant considerations, see Holland et al. (2000)
and Heinzen et al. (2000) and references cited therein.
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