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Preface

The miracle of the appropriateness of the language of mathematics for the formulation of the laws of physics is a

wonderful gift which we neither understand nor deserve. Eugene Paul Wigner

This text is an introduction to mathematics for beginner physics students. Perhaps the
first question to ask is in what sense it differs from the large number of existing books on the
subject. The short answer is that it presents the concepts and the methods of mathematics
in unison and on equal footing.

In contrast, traditional approaches mainly emphasize the training of methods. For
example, standard courses on ‘Mathematical methods for physicists' provide practical recipes
for the algebraic manipulation of vectors, the diagonalization of matrices, the computation
of Fourier transforms, or the solution of differential equations. This pragmatic approach is
motivated by the fact that a wide assortment of mathematical methods are required early on
in physics courses and that students have to learn them as quickly as possible.

Conceptual mathematical thinking, on the other hand, will emphasize connections be-
tweens vectors, matrices, Fourier transforms, and differential equations. Although these links
are very important to physics (in quantum mechanics, for example) they remain opaque in
teaching that is entirely methodological. Appreciating this shortcoming many physics curric-
ulae include lecture courses in pure mathematics — who would be better authorized to teach
mathematical concepts than mathematicians themselves? However, a downside of such out-
sourcing is that mathematical teaching emphasizes concepts somewhat different from those
which are most relevant to physics. For example, the chain of connections alluded to above is
not addressed in standard mathematics courses.

In this book, we aim to present concepts and methods of mathematics for physicists in an
integrated manner. Importantly, this approach will not be more ‘formal’ or less intuitive than
what is standard in physics. Perhaps the main difference is that somewhat more attention
is paid to the discussion of mathematical structures, and that this is done with a ‘loving
eye'. Let us illustrate this point with the example of vectors. When vectors are introduced
early in the curriculum, emphasis is usually put on three-dimensional vectors, described in
terms of components and visualized in terms of arrows. This picture is familiar to many
students from high school, and it is sufficient to follow introductory mechanics courses in
university. However, only one year later, quantum mechanics becomes part of the agenda.
The mathematics of quantum mechanics is all about vectors, but now they live in a more
abstract (Hilbert) space which is hard to visualize. This can be confusing for students who

Vii



viil Preface

have been conditioned to thinking of vectors as arrows in three-dimensional space. The problem
is avoided by emphasizing the full meaning of vector spaces from the very beginning. This
generalized approach will cover many different realizations of vector spaces in physics. From
the beginning, it draws from a larger class of examples, including those which later appear in
quantum mechanics. In this way the role played by vectors in physics becomes more tangible
(and arguably less frightening) than in approaches fixated on only one realization. At any rate,
our own teaching experience has shown that a conceptual introduction to vector spaces is well
received by beginners and makes it a lot easier to cope with the linear algebra of quantum
theory later on.

On a related note, the physics community has the habit to regard every object comprising
components as either a vector or a matrix. In reality, however, only a fraction of the index-
carrying objects encountered in physics are genuine vectors or matrices. Equally relevant
elements of linear algebra include dual vectors, bilinear forms, alternating forms, or tensors.
Depending on the field one is working in, the ‘everything—is—a—vector’ attitude can be either
tolerable or a source of confusion. The latter is the case in well established fields as par-
ticle physics and relativity, and increasingly in emerging areas such as quantum information
or topological condensed matter physics. Linear algebra as introduced in this text naturally
accommodates non-vectorial objects and the instances where these appear become more fre-
quent as we go along. It happens first when we discuss the cross product of vectors, next when
the metric of vector spaces is introduced and extensively in our discussion of tensor algebra.
The advanced parts of the text contain a self contained introduction to differential forms and
illustrate the potency of this language on the physical example of electromagnetism. In all this,
we have paid careful attention not to ‘sever the communication lines’ to traditional teaching
approaches; in this text, the extended view of linear algebra is an option, not a must, and the
standard form of vector calculus always remains in sight.

Does an increased emphasis on concepts increase the teaching load or come at the expense
of methodological training? The answer is an emphatic ‘no’. This book is based on a course
that has been taught more than ten times (at LMU Munich and Cologne university) to be-
ginner students in their first semester at university. We affirm that mathematical methods are
introduced at a pace compatible with standard physics curricula and at load levels manageable
for average students. In fact, the concept-oriented approach turned out to be a pedagogi-
cal asset, quite the opposite of an ‘abstract burden’. It supports the student’s performance,
including on the methodological level, because they have a deepened understanding of what
they are doing. Where our choice of contents or notation differs from that standard in the
physics culture, we explain the traditional views in parallel. For example, we do discuss why
the magnetic field is not a genuine vector but a differential two-form. However, we also explain
why it may be described as a vector, and point out potential pitfalls with this description.

The book is organized into three parts on linear algebra (L), calculus (C) (also known
as analysis), and vector calculus (V), respectively. Starting at high school level, each part
covers the material required in a standard bachelor curriculum and reaches out somewhat

1 . . . . . - . . ‘ i

A prominent example is the magnetic field. Unlike conventional vectors, a magnetic field ‘vector’ does not
change sign under a reflection of space. It therefore cannot be a true vector, which always causes confusion
in teaching.
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beyond that.” At the same time the writing style gradually changes from moderately paced
and colloquial at the beginning to somewhat more concise and ‘scientific’ towards the final
chapters. Due to its modular structure the text should work well as a reference covering
all elements of linear algebra, calculus and vector calculus encountered in a Bachelor physics
curriculum.

The individual parts include a wide range of material and should not be read in strict
succession. Specifically, later chapters generally rely on interconnections between linear alge-
bra, calculus and vector calculus (where this happens we indicate the required material in a
preamble). Perhaps a good way to enter the subject is to first read a few sections of part L
and C each and then move into V. This approach, alternating between subjects, actually helps
to stay organized and appreciate the individual characteristics of each field as much as the
connections between them. While it is perfectly fine for first time readers to choose a preferred
reading order themselves, Tables 1 and xx suggest reading roadmaps, based on the order in
the material has been taught in a one-semester course at LMU Munich and a two-semester
course at Cologne, respectively.

About a third of the book is devoted to problems. The tackling of these problems,
more than 200 in number, should be considered an integral part of learning the material.
Each odd-numbered problem includes a detailed solution which may be consulted if necessary.
The subsequent even-numbered problem are of similar structure but should be solved without
guidance. (A solution manual for the even-numbered problems can be obtained from the
authors on request.) All exercises have been given to students of the LMU and Cologne lecture
courses and should provide a impression of what to expect in a ‘real’ physics curriculum. In
addition to the problems we have included a small number of more expansive ‘case studies’. The
case studies are meant to give the reader an impression of how different concepts and methods
interrelate in the solution of real physics problems. For example, a case study on computer
tomography discusses how elementary geometry, line integration and Fourier transform can
be combined to extract three-dimensional images from recorded absorption data, etc. Finally,
the text includes a large number of info sections where we suggest an alternative view of a
subject, or provide background material we consider interesting and worth knowing. If time
is short, these sections can be skipped. However they are all there for a reason and reading
them at some later time may be worthwhile.

A final word for non-native English speakers: although we are non-natives ourselves (many
grammatical and stylistic issues in the text testify to that) we preferred to use English in the
lecture notes on which this text is based. English is the lingua franca of the science world and
it is important to become fluent in it at the earliest possible stage. Besides, we have observed
that even students who do not speak English well usually find it easy to read formula-heavy
texts — formulas appear to serve as anchor points aiding the navigation of text passages —
and in this way quickly advance their language skills. For the convenience of international
readers we have included translations of keywords whose meaning is not self evident” in the

* For experts: the final chapters deal with multilinear algebra, complex calculus, and differential forms,
respectively.

’ For example, German readers will have guessed that ‘vector’ translates to 'Vektor', but that ‘angular
momentum’ means ‘Drehimpuls’ may be not so obvious.
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L C V | Topic
1 1 Basic concepts: sets, maps, groups, fields, complex numbers
2 1,2 Differentiation and integration of 1-dimensional functions
3 |12 Vector spaces: definition, examples, basis
4 |3 Euclidean spaces: inner product, norm, orthogonality, metric
5 | 4 Vector product: Levi-Civita symbol, various identities
6 1 Curves, line integrals
7 3,4.1 Partial derivatives; Multi-dimensional integration (Cartesian)
8 2 Curvilinear coordinates (polar, cylindrical, spherical)
9 4.2 Multidimensional integration in curvilinear coordinates
10 3.1 | Scalar fields, gradient
11 3.2 | Vector fields: gradient fields
12 | 5.1-3 Linear maps, matrices, matrix multiplication
13 | 5.4-6 Inverse of a linear map, basis transformations
14 | 6 Determinants: definition, properties
15| 7 Diagonalization: eigenvalues, eigenvectors
16 | 8,9 Orthogonal, unitary, symmetric and Hermitician matrices
17 5.1-3 Taylor series: definition, standard examples (exp, sine, cosine)
18 7.1-3 Differential equations: typology, linear first-order equations
19 7.4-6 Systems of first-order differential equations
20 5.4-5 Perturbation expansions; higher-dimensional Taylor series
21 6.1-2 Fourier calculus: Dirac delta function, Fourier series
22 6.3-4 Fourier series for periodic functions, convolution theorem
23 7.6-8 n-th order differential equations; linearization, fixed points
24 6.3 Fourier transforms
25 6.4 Fourier transform applications
26 43 3.3 | Integration in arbitrary dimensions; flux integrals of vector fields
27 3.3 | Divergence of vector fields, Gauss' theorem
28 3.4 | Circulation of vector fields, Stokes’ theorem

Table 1: Outline of a one-semester course based on this text. Each row refers to a 90 min. lecture.
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Linear Algebra

The first part of this book is an introduction to linear algebra, the mathematical discipline of
structures that are, in a sense to be discussed, ‘straight’. No previous knowledge of the subject
is assumed. We start with an introduction to various basic structures in mathematics: sets,
groups, fields, different types of ‘numbers’, and finally vectors. This is followed by a discussion
of elementary geometric operations involving vectors, the computation of lengths, angles,
areas, volumes, etc. We then explain how to describe relations between vectorial objects via
so-called linear maps, how to represent linear maps in terms of matrices, and how to work
with these operations in practice. Part L concludes with two chapters on advanced material.
The first introduces the interpretation of functions as vectors (a view of essential importance
to quantum mechanics). In the second, we discuss linear algebra in vector spaces containing
a high level of intrinsic structure, so-called tensor spaces, which appear in disciplines such as
relativity theory, fluid mechanics, or quantum information theory.



L1 Mathematics before numbers

Many people believe that ‘numbers’ are the most basic elements of mathematics. This,
however, is an outside view which does not reflect the way mathematics herself thinks about
numbers. Numbers can be added, subtracted, multiplied and divided by, which means that
they possess considerable degree of complexity.1 Metaphorically speaking, they are high up
in the evolutionary tree of mathematics, and beneath them, there exists numerous structures
of lesser complexity. Much like a basic understanding of evolutionary heritage is important in
understanding live — reptiles, vs. mammals, vs. birds, etc. — the evolutionary ancestry of
numbers is an key element in the understanding of mathematics, and physics. We take this
as motivation to start with a synopsis of various pre-numerical structures which we will later
see play a fundamental role throughout the entire text.

Consider a two-dimensional square lattice that is invariant
under rotations by 90 degrees (deg) (i.e. if you rotate the lattice by 90
deg” it looks the same as before, see figure). Then rotations by 0, 90,
180 or 270 deg are ‘symmetry operations’' that map the lattice onto
itself. Let us denote these operations by ¢, a, b and ¢, respectively. Two
successive rotations by 90 deg are equivalent to one by 180 deg, a fact we
may express as a - a = b. Similarly, b-b = e (viewing a 360 deg rotation
equivalent to one by 0 deg). These operations are examples of mathematical objects which can be
‘combined’ with each other, but not ‘divided” by one another. Together, they form a pre-number
structure, soon to be identified as a ‘group’. Generic groups have less structure than numbers and
yet are very important in physics.

"At the end of the nineteenth century mathematicians became increasingly aware of gaps in the logical
foundations of their science. It became understood that the self-consistent definition even of natural numbers
(1,2,3,...) was more complex than was previously thought. For an excellent account of the ensuing crisis of
mathematics, including its social dimensions, we refer to the graphic novel Logicomix, A. Doxiadis, Bloomsbury
Publishing, 2009.

“In this text we use the standard abbreviation ‘deg’ for degrees.
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L1.1 Sets and maps

When we work with a complex systems of objects of any kind we better have ways to
categorize and store them. At the very least, we need containers capable of storing objects
(think of the situation in a repair shop). On top of that one may want to establish connections
between the objects of different containers (such as a table indicating what screw in the screw-
box matches what screwdriver in the screwdriver rack.) In the terminology of mathematics,
containers are called ‘sets’, and the connections between them are established by ‘maps’.
In this section we define these two fundamental structures and introduce various concepts
pertaining to them.

Sets

Perhaps the most basic mathematical structure is that of a set. (The question whether
there are categories even more fundamental than sets is in fact a subject of current research.)
As indicated above, one may think of a set as a container holding objects. In mathematical
terminology, the objects contained in a set are called its elements. Unlike the containers in a
repair shop, mathematical sets are not ‘physical’ but simply serve to group objects according
to certain categories (which implies that one object may be an element of different sets). For
example, consider the set of all your relatives. Your mother is an element of that set, and at
the same time one of the much larger set of all females on the planet, etc. More formally, the
notation a € A indicates that a is an element of the set A, and A = {a,b,¢,...} to denote
the full set.

Be careful to be exercise precision in matters of notation. For example, denoting a set
by (a,b,c,...) would be incompatible with the standard curly bracket format {a,b,c,...} and an
abuse of notation. Insistence on clean notation has nothing to do with pedantry and serves multiple
important purposes. For example, the notation B = {1, 2,3} is understood by every mathematically
educated person on the planet meaning that standardized mathematical notation makes for the most
international idiom there is. At the same time, uncertainties in matters of notation often indicate
a lack of understanding of a concept. For example, a € {a} is correct notation indicating that a
is an element of the set {a} containing just this one element. However, it would be incorrect to
write @ = {a}. The element a and the one-element set {a} are different objects. The feeling of
uncertainty in matters of notation is a sure and general indicator of a problem in ones understanding
and should always be considered a warning sign — stop and rethink.

The definition of sets and elements motivates a number of generally useful secondary defini-
tions:

> An empty set is a set containing no elements at all and denoted by A = {}, or A = ().

> A subset of A, denoted by B C A, contains some of the elements of A, for example,
{a,b} C {a,b,c,d}. The notation B C A indicates that the subset B may actually be
equal to A. On the other hand, B C A means that this is certainly not the case.



4 L1 Mathematics before numbers

> The union of two sets is denoted by U, for example, {a,b,c} U{c,d} = {a,b,c,d}. The
intersection is denoted by N, for example, {a,b,c} N{c,d} = {c}.

> The removal of a subset B C A from a set A results in the difference set, denoted by
A\B. For example, {a,b,c,d}\{c} = {a,b,d}.

> We will often define sets by conditional rules and the standard notation for this is set =
{elements|rule}. For example, with A = {1,2,3,4,5,6,7,8,9,10} the set of all even
integers up to 10 could be defined as B = {a € A|a/2 € A} ={2,4,6,8,10}.

> Given two sets A and B, the Cartesian product as’
Ax B={(a,b)|a € Abe B}, (L1)
is a set containing all pairs (a,b) formed by elements of A and B.

The number of elements of a set is called its cardinality. The cardinality can be finite (the set
of all your relatives) or infinite (the set of all natural numbers). Among the infinite sets one
distinguishes between ‘countable’ and ‘uncountable’ sets. A set is countable if one can come
up with a way to number its elements. For example, the set of even integers A = {0,2,4, ...}
is countable. The real numbers (cf. section L1.3) form an uncountable set.

It is often useful to organize sets in equivalence classes expressing the equality a ~ b of
two elements relative to a certain criterion, R. For example, let A be the set of relatives and
let the distinguishing criterion, R, be their sex. The notation Victoria ~ Erna then indicates
that the two relatives are equivalent in the sense that they are female. An equivalence relation
has the following defining properties:

> reflexivity: a ~ a, every element is equivalent to itself.
> symmetry: a ~ b implies b ~ a and vice versa.
> transitivity: a ~ b and b ~ ¢ implies a ~ c.

The subset of all elements equivalent to a given reference element « is called an equivalence
class and denoted [a] C A. In the example of relatives and their sex, there are two such
subsets, for example A = [Herbert] U [Erna]. The label used for of an equivalence class is not
unique; for example, one might relabel [Erna] = [Victoria]. The set of all equivalence classes
relative to a relation R is called its quotient set and is denoted by A/R. In the example of
relatives (A) and their sex (R), the quotient set A/R = {[Herbert], [Victoria]} would have
two elements, the class of males and that of females.

Consider the set of integers, and pick some integer q. Now view any two integers as
equivalent if they have the same remainder under division by ¢. For example, ¢ = 4 defines
0~4~ 8, 1~ 5~ 9. In this case there are four equivalence classes, denotable by [0], [1], [2] and
[3]. In general, the remainder of p divided by ¢ is denoted by pmod g (spoken ‘p-modulo-¢’, or just

*We follow a widespread convention whereby [0 = A means ‘[ is defined by A'. In the German literature,
the alternative notation [J := A is frequently used.
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‘p-mod-¢q'), e.g., 8mod4 = 0, 6mod4 = 2, or —5mod4 = 3 (by definition, remainders are taken
to be positive). The equivalence class of all integers with the same remainder r under division by
q is the set [r] = {p € Z|pmod ¢ = r}. There are ¢ such equivalence classes, and the set of these
classes is denoted by Z, = Z/qZ = {[0],[1],...,[¢ — 1]}.

Maps

Consider two sets, A and B, plus a rule, F', assigning to each element a of A an element b
of B. Such a rule, written as F(a) = b € B, is called a map. In mathematics and physics,
maps are specified by the following standard notation:

F:A— B, a— F(a). (L2)

A

Figure L1: Different types of maps. Top left: a generic map, top right: surjective map, bottom left:
injective map, bottom right: bijective map.

The set A is called the domain of the map and B is its codomain.” An element a € A fed
into the map is called an argument and F(a) is its image (element). Note that different
types of arrows are used for ‘domain — codomain’ and ‘argument — image’.

The image of A under F', denoted by F'(A), is the set containing all image elements of
F: F(A) = {F(a)la € A} C B (cf. dark shaded area in the first panel of Fig. L1). A map is
called surjective (second panel) if its image covers all of B, F'(A) = B, i.e. if any element of
the codomain is the image of at least one element of the domain. It is called injective (third
panel) if every element of the codomain is the image of at most one element of the domain.
The map is bijective if it is both surjective and injective (fourth panel), i.e. if every element
b € B of the codomain is the image of exactly one element a € A of the domain. Bijective
maps establish an unambiguous relation between the elements of the sets A and B. The
one-to-one nature of this assignment means that it can be inverted: there exists an inverse
map, F~!: B — A such that F~'(F(a)) = a for every a € A.

"The designation ‘codomain’ is standard in mathematics, but not in physics. Oddly, physics does not seem
to have an established designation for the ‘target set’ of a map.
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Given two maps, F' : A — Band G : B — (', their composition is defined by substituting
the image element of the first as an argument into the second:

GoF:A—=C, a— G(F(a)). (L3)

For example, the above statement about bijective maps means that the composition of a
bijective map F with its inverse, F'"!, yields the identity map: F~'o FF : A — A, with
a— F7Y(F(a)) =a.

Finally, a map F' defined on a Cartesian product set, A x B, is denoted as

F: AxB—C, (a,b) — ¢ = F(a,b).

This map assigns to every pair (a,b) an element of C. For example, the shape of a sand dune
can be described by a map, h: R x R — R, (x,y) — h(z,y), where for each point (z,y) in
the plane, the function h(z,y) gives the height of the dune above that point.

L1.2 Groups

Sets as such are just passive containers storing elements. Often, however, the elements of
a set are introduced with the purpose of doing something with them. As an example, consider
the set of 90 deg rotations, R = {e, a,b,c}, introduced on p. 2. A two-fold rotation by 180
deg is equivalent to a non-rotation and this fact may be described as b-b = e. Or we may say
that a - b = ¢, meaning that a 90 degree rotation following one by 180 degrees equals one by
270 degrees, etc. In this section, we define groups as the simplest category of sets endowed
with an ‘active’ operation on their elements.

Definition of groups

The minimal structure’ which brings a set to life in terms of operations between its elements

is called a group. Let A be a set and consider an operation, ', (equivalently called group
law or composition rule) assigning to every pair of elements a and b in A another element,
a-b: -

Tt AX A= A (a,b) — a - b. (L4)

This map defines a group operation provided that the following four group axioms are satis-
fied:’

" This statement is not fully accurate. There is a structure even more basic than a group, the semigroup.
A semigroup need not have a neutral element, nor inverse elements to each element. In physics, semigroups
play a less prominent role than groups, hence we will not discuss them further.

°Mathematicians often formulate statements of this type in a more compact notation. Frequently used
symbols include V, abbreviating for all, and 3, for there exists. Expressed in terms of these, the group axioms
read: (i) Va,b € A, a-b e A. (i) Va,b,c € A, a-(b-¢) = (a-b)-c (iii) Je € A such that Va € A,
a-e=e-a=a. (iv)Va € A,3b € A such that a-b =b-a = e. Although this notation is less frequently
used in physics texts, it is very convenient and we will use it at times.



L1.2 Groups 7

(i) Closure: for all a and b in A the result of the operation a - b is again in A. (Although this
condition is already implied by the definition L4, it is generally counted as one of the group
axioms.)

(ii) Associativity: for all a, b and ¢ in A we have (a-b)-c=a-(b-c).

(iii) neutral element: there exists an element e in A such that for every a in A, the equation
e-a = a-e = a holds. Depending on context, the neutral element is also called identity
element or null element.

(iv) Inverse element: For each a in A there exists an element b in A such thata-b =b-a = e.

Under these conditions, A and ‘-’ define a
group as G = (A, ). A group should always
be considered a double comprising a set, and
an operation. It is important to treat the op-
eration as an integral part of the group defi-
nition: there are numerous examples of sets,
A, which admit two different group opera-
tions, "' and 'x". The doubles G = (4,-)
and G’ = (A, x) then are different groups.
We finally note that in some cases it can be
more natural to denote the group operation

[N}

Nils Henrik Abel
(1802-1829)

Norwegian mathematician
who made  breakthrough
contributions  to  various
fields of mathematics before
dying at young age. Abel is
considered the inventor (independently with
Galois) of group theory. He also worked on
various types of special functions, and on
the solution theory of algebraic equations.

by different symbols ‘“+, %, ...".

Here are a few first examples of groups.

> The simplest group of all, G = ({e},-), contains just one element, its neutral element. Nothing
much to discuss.

> The introductory example of 90 deg rotations, R = {e, a, b, ¢}, defines a group of cardinality four.
Its neutral element is e and for each element we have an inverse, for example a-c = e. (Set up a
‘multiplication table’ specifying the group operation for all elements of R x R.) The same group,
i.e. a set of four elements with the same group law, can be realized in different contexts. For
example, for the quotient set Z4 = {[0], [1],[2], [3]} defined on p. 4, a group operation may be
defined as ‘addition modulo 4'. This means that the addition of a number with remainder 1 mod 4
to one with remainder 3mod 4, yields one with remainder 0 mod 4, for example [1] + [3] = [0].
Set up the full group operation table for this group and show that it is identical to that of the
group of 90 deg rotations discussed previously. This implies that (Z4,+) and (R, ) define the
same group. Explain in intuitive terms why this is so. The concept of different realizations of the
same group is very important in both physics and mathematics. We will see many more examples
of such correspondences throughout the text. (— L1.2.2)

> The simplest nontrivial group, which nevertheless has many important applications, contains just
two elements, Zo = {e,a}, with a-a = e. This group can be realized by rotations by 180 deg,
or as the group of integers mod 2 (— L1.2.1). The group (Zs,-) plays a very important role in
modern physics. For example, in information science, Zs is the mathematical structure used to
describe ‘bits’, objects that can assume only one of two values, ‘on’ and ‘off’, or ‘0" and ‘1.
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> Theintegers, Z={...,—2,—1,0, 1, 2, ...}, with group operation '+’ ='addition’ (e.g. 2+4 = 6)
are an example of a group of infinite cardinality. (Z,+) has neutral element 0 and the inverse of
ais —a, i.e. a+(—a) = 0. Why are the integers (Z, -) with multiplicative composition (2-3 = 6)
not a group?

> Other important examples of discrete groups include the translation group on a lattice (— L1.2.3-4)
and the group of permutations of n objects to be discussed in more detail in the next subsection.

If the group operation is commutative in the sense that it satisfies a-b =
b - a for all elements the group is called an abelian group. All examples y
mentioned so far have this property. Non-Abelian groups possess at least

some elements for which a - b # b - a. An important example is the group

formed by all rotations of three-dimensional space. This group can be

given a concrete realization by fixing three perpendicular coordinate axes in space. In other
words, R, can then be represented as a succession of rotations around the coordinate axes
(see figure) and the set of all these rotations forms a group where the group operation is the
successive application of rotations. For example, Rs - R; is the rotation obtained performing
Ry and R, in succession. This concatenation is not commutative. For example, a rotation
first around the z-axis and then around the z axis is different from the operation in reverse
order.

Groups play an important role in physics. This is because many classes of physical operations
effectively carry a group structure. Simple examples include rotations or translations in space or
time. These operations define groups because they can be applied in succession (‘composed’), are
associative, possess a neutral element (nothing is done), and can be inverted (undone). The transla-
tion and rotation groups play crucial roles in the description of momentum and angular momentum,
both in classical and quantum mechanics. While continuous translations and rotations define groups
of infinite cardinality, the physics of crystalline structures is frequently described in terms of finite
restrictions. We mentioned the group Z, of rotations by 90 deg around one axis as an example. In
the late 1960’s, group theory became important as a cornerstone of the standard model describing
the fundamental structure of matter in terms of quarks and other elementary particles.

Despite the deceptive simplicity of the group axioms, the theory of groups is of great depth and
beauty, and it remains a field of active research in modern mathematics.

Group homomorphism

Above, we have seen that the same group structure can be ‘realized’ in different ways. For
example, the group Zs can be realized as the group of rotations by 180 deg, or as addition
in Z mod 2. ldentifications of this type frequently appear in physics and mathematics, and
it is worthwhile to formulate them in a precise language. To this end, consider two groups,
(G,-) and (H,-) with a priori independent group operations. Let ¢y : G — H be a map
from G to H. If this map is such that for all a,b € G the equality ¥(a - b) = 1(a) « ¥(b)
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Figure L2: The concept of a group homomorphism: a map between two groups that is compatible
with the group operations (dashed) in that the image of the composition of two elements in the
domain group (left) equals the composition of the image elements in the target group.

holds, then 1 is called a group homomorphism (cf. Fig. L2). The defining feature of
a group homomorphism is its compatibility with the group law. As an example consider
G = H = (Z,+). Now assign to each integer its double, n — 1(n) = 2n. This map is a
group homomorphism because (n +m) = 2(n +m) = 2n+ 2m = ¥ (n) + »(m). However,
the map ¢ assigning to each integer its square, n — ¢(n) = n?, is not a group homomorphism,
because ¢(1) + ¢(2) = 1+22 # ¢(1+2) = ¢(3) = 32. As another example, consider the map
V7 — T, n+— (n) = nmod?2, assigning the number 0 or 1 to the integers, depending
on whether n is even or odd. This is a homomorphism between the infinite group (%, +) and
the two-element group Z.

A perfect identification between two groups GG and H is obtained if there exists a bijective
homomorphism between the two, a so-called a group isomorphism. In this case, we write
G = H. Mathematicians tend to not even distinguish between isomorphic groups, a view that
can be confusing to physicists. The identification Zs = (Z mod 2) = (rotations group by 180
deg) discussed above is a group isomorphism.

Consider the set Z,, = (Zmodn,+), n € Z. Show that it defines a group of cardinality
n. Show that Z,, is isomorphic to the group of rotations by 360/n deg around a fixed axis. (— L1.2.2)

Permutation group

The permutations of n objects define one of the most important finite groups, the permu-
tation group, S,,. Consider n arbitrary but distinguishable objects. For definiteness it may be
useful to think of a set of n billiard balls (see Fig. L3 for n = 4). A permutation is a rear-
rangement of these objects into a different order. For example, the reordering of four objects
indicated in the left panel of the figure leads to the new arrangement shown in the middle.
There are n—factorial, n! = n(n — 1)(n — 2)...1 different arrangements or permutations,”

7 . . . . . .
One way to understand this number is to notice that the first of n objects can be put in any of n places.
This leaves n — 1 options for the second object (one position is already occupied by the first object), n — 2
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and we consider the set, S, of cardinality n! containing all of them.

o ©

® 9 ®-9
/ [4213] \ [2134]
@\J@) @\@ ® @

Figure L3: Two permutations of four objects performed in succession.

Rearrangements can be iterated. For example, the exchange in the middle panel of the
figure leads to the final arrangement shown in the right panel. The group composition in .S,
is this iteration of permutations. Evidently, there is a trivial permutation (the one that leaves
sequences unaltered), the composition of permutations is associative, and each permutation
can be undone, such that there exists an inverse. This shows that .S,, forms a group, the per-
mutation group, or symmetric group of n objects. It is easy to verify that the permutation
group is non-abelian. (Invent examples of perturbations proving the point.)

Although the permutation group is easily defined, its mathematical structure is rather rich.
(For example, the solution of Rubik's cube amounts to a permutation of the 54 differently
colored squares covering the six faces of the cube, and the solution algorithms reflect the
mathematics of the permutation group Ss4.) Below, we will frequently work with permutations
and it will be useful to have a good notation for them. One popular labeling system denotes
the permutation shown in the left part of the figure by [4213]. This notation logs the final
configuration of the objects after a permutation (1,2,3,4) — (4,2,1,3) as a list in angular
brackets. The second permutation is thus denoted as [2134], and the composition of the two
becomes [2134] - [4213] = [4123].

Check that the permutation group of 3 objects can be represented as (— L1.2.5)

S5 = {[123],[213], [321], [231], [312], [132]}.

Alternatively, a permutation may be identified with a map P : N,, — N,,, 7 — P(j), where
N, ={1,2,...,n} is the set of n integers, and P(j) € N,, the number to which j is permuted.
Sometimes, the shorthand notation Pj = P(j) is used instead. In this language, [4213] is
represented as P1 =4, P2 =2, P3=1, P4 =3.

Note that each permutation can be reduced to a product of pair permutations, i.e. per-
mutations which exchange just two objects at a time. This statement is easy to understand:
any re-ordering of n objects can be achieved manually (with one’'s own two hands) by sequen-
tially swapping pairs of objects. For example, the permutation [4213] of the figure can be

for the third, etc. The total number of rearrangements is obtained as the product of the number of options
for object no.1,2,...,ie. n(n—1)---=nl
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effected by first exchanglng 1 <> 3, and then 3 <> 4. For any permutation P € S,, we then
have two options:” the number of pair permutations needed to arrive at P may be even or
odd (determine the even/odd attribute for the six permutations of S3). In the former/latter
case, we call P an even/odd permutation and define

+1, P even,
sgn(P) = { 1 Podd. (L5)

as the signum of a permutation. (— L1.2.6)

Define a map S, — Za, P — sgn(P), where sgn(P) = =*1 are identified with the
two elements of Zo = {+1,—1}. Show that this is a group homomorphism, between S,, and Zo,
i.e. that sgn(P - Q) = sgn(P) - sgn(Q) where the multiplication on the right is that of numbers
+1. Understand this as the educated formulation of the statement that the product of two odd
permutations is even, that of an even and an odd is odd, etc.

In this text, the signum of permutations will appear frequently and once more it will be
important to have a good notation. A convenient way to track this quantity is provided
by the Levi-Civita tensor, 651”122 Jn — 41. It is defined as the signum of the permutation
P(i;) = j, permuting the sequence of symbols (i1, 4s, ..., iy) into (1, j2, . - ., jn). For example,
€321 = —1, because a single pair permutation transmutes (2,3, 1) into (3,2,1). For the same

reason, the Levi-Civita tensor is fully antisymmetric under the exchange of any two indices,

4321 4321
€.8. €341 = —€3241-

In applications one often has situations where one of the involved permutations is the
ordered one, (i1,4,...7,) = (1,2,...,m). In such cases, it is customary to suppress the

ordered sequence in the notation and just write €/172-Jn = €l>"7" and similarly €;,;, ;. =

ei%-".  For example, €35, = 1 because reordering (1,2,3) to (3,2,1) requires two pair

1112...0n
pér2mutations. These tensors are fully antisymmetric too, e.g. €213 = —€231.

The Levi-Civita symbol is often used in contexts where two or more of its indices can be
equal. In that case, its value is defined to be zero, e.g. €115 = 0, to ensure consistency with
its antisymmetry property: ¢;;; must both change sign and remain unchanged when its first

two indices are interchanged, which is possible only if it vanishes.

L1.3 Fields

Numbers are mathematical objects that can be added, subtracted, multiplied, and divided.
Seen as composition rules, multiplication, a - b, and addition, a + b, have several features
in common (associativity, commutativity, neutral element exists, inverse elements exist). A
set for which both addition and multiplication is defined as separate operations is called a

*Notice that the even/odd attribute is not entirely innocent: there are different ways of realizing a given
P by a sequence of pair permutations. However, the ‘parity’, i.e. the even- or oddness of the number of pair
permutations, is an invariant. This makes the function sgn well defined.
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(number) field. Referring to lecture courses in mathematics for a more rigorous approach,
we here introduce the concept of fields in a quick and informal manner: a field is a triple,
F = (A, +,), comprising a set A and two composition rules, addition and multiplication.
Addition and multiplication each define their own abelian group structure, the neutral elements
being denoted by 0 and 1, respectively, i.e. a+0=aand a-1 = a.

The inverse element of a under addition is denoted by —a, i.e. a + (—a) = 0, and
the addition of the inverse is called subtraction. Likewise, the inverse element of @ under
multiplication is called @', and multiplication by the inverse is called division (alternatively
denoted by b-a' =b/a = g) The group structures defined by addition and multiplication
are independent, except for two points: (i) the neutral element of addition, 0, does not have a
multiplicative inverse. In other words, 0~! does not exist and ‘division’ by zero is not allowed.
(i) Multiplication is distributive over addition in the sense that a- (b+¢) =a-b+a-c.

It is possible to construct fields with a finite number of elements, the so-called Gallois
fields (— L1.3.7). However, most fields of relevance to physics are infinite, and the most
important ones — the rational, the real, and the complex numbers — are introduced below.

Rational and real numbers

The integers, 7, do not form a field because the operation of multiplication does not have an
inverse in Z. For example, the multiplicative inverse of 3 € 7Z, does not exist in Z. There is
no integer number that can be multiplied with three to obtain unity.’

The most elementary example of an infinite field are
the rational numbers, Q) = {I%|q,p € Z,p # 0}, i.e. the _
set of all ratios of integers. The rational numbers Q C R R
are contained in a larger number field, the real numbers. :
Heuristically, the set of real numbers may be imagined as
a continuous line extending from —oo to +o00. Each ra-
tional number can be positioned on a continuous line of
numbers which explains the ‘embedding’ of the rationals
in the reals. However, the ray of real numbers also con- , .
tains irrational numbers, r ¢ Q. Irrational numbers ' @\"
may be approximated to arbitrary precision by rational ) \
numbers but are not rational themselves. For example,
V2 has rational approximations as V2 ~ 14142 = %, etc., but /2 itself can not be
written as a ratio of two fixed integers and therefore is not rational. In mathematics courses
one learns how the reals can be defined as the union of the rational numbers with the set of
all limits of rational numbers (for example, V/2 can be viewed the limit of an infinitely refined
approximation in terms of rational fractions). However, we do not discuss this formalization
here.

In passing we note that a structure allowing addition, multiplication, subtraction but not division is called
a ring.
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The understanding of the reals as a con-
tinuous ‘line’ implies that there are more real
numbers than rational numbers. The precise
understanding of what is meant by ‘more’ is
far from trivial. Pioneering work by Georg
Cantor on the comparison of infinite sets of
different size (1874) showed where the con-

Georg Ferdinand Ludwig
Philipp Cantor (1845-
1918)

German mathematician who
did pioneering work in set
and number theory. Cantor
proved that there are ‘more’

real numbers than integer ceptual problems lie and caused consternation
numbers.  His work raised questions of among his contemporaries. However, the in-
philosophical significance and eventually |  tuitive picture is that the rationals form a sub-
triggered a crisis in the understanding of |  set of infinitely many points embedded into
the logical foundations of mathematics. the continuous line of the reals. The ‘dis-

creteness’ of these points means one can come
up with an intricate numbering numbering scheme that lists them all; much like the integer
numbers, the rationals form a countable set as defined on on p. 4. Between any two ratio-
nal numbers there are gaps corresponding to irrational numbers (see figure, where each dot
represents a rational number). Although, the set of rationals is ‘dense’ in the reals, in the
sense that any real number can be rationally approximated to any desired accuracy, there is
no way to count the real numbers lying between them; the reals are uncountable in the sense
of the definition of p. 4. For a more substantial discussion of these aspects we refer to lecture
courses in mathematics.

The complex numbers

The set of real numbers is large enough to accommodate operations which cannot be
performed in the rationals, such as taking of the square root of 2. In this sense, they represent
a ‘closure’ of the rational numbers. However, there are operations with respect to which the
real numbers lack closure themselves. We all know that the square root of a negative number,
such as \/—1, is not a real number. Similarly, some real polynomials can be factored as
2 —1= (z—1)(x+1) where the factors specify the zeros of the polynomial. However, z2+1
cannot be factorized into a product of two real factors. Somehow, it does not feel ‘right’ that
similar polynomials behave so strikingly different.
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René Descartes

(1596 - 1650)

French philosopher and math-
ematician. Descartes is not
only considered the founding
father of modern western phi-
losophy but also made impor-
tant contributions to mathematics. The
Cartesian coordinate system is named after
him and he is considered the inventor of ana-
lytical geometry, the bridge between algebra
and geometry.

Complex numbers were introduced and
used long before they were understood concep-
tually. Their first appearances can be traced to
early studies of geometric objects in the ancient
world. Complex numbers became an element of
mainstream mathematics in the early 17th cen-
tury when mathematicians worked on the solu-
tion theory of algebraic equations. The term
imaginary numbers was coined by Descartes
in 1637, who wrote “sometimes only imaginary,
that is one can imagine as many as | said in each
equation, but sometimes there exists no quantity
that matches that which we imagine.” The con-
fused wording of this sentence suggests that Descartes was ill at ease with objects that were apparently
quite useful, but hard to conceptualize within 17th century mathematics. It took almost three hun-
dred more years before the modern theory of number fields was invented, and a sound conceptual
framework for complex numbers came to existence. In the meantime, numerous mathematicians
— Euler, Gauss, Abel, Jacobi, Cauchy, Riemann, and various others more — contributed the the
applied theory of complex numbers. Interested readers are encouraged to study these developments
and sense the difficulties mathematicians had in working with an irresistibly interesting, yet hard to
grasp concept.

The complex numbers are an extension of the real numbers large enough to accommodate
all algebraic operations commonly associated with ‘numbers’. In the following we sketch the
extension from real to complex numbers in a language adjusted to the modern theory of fields.
We start by giving v/—1 a name,

V—1=i, (L6)

where i is called the imaginary unit. If we accept the existence of this object as a valid
mathematical ‘number’, the problem of taking the square root of negative reals is solved:

r>0: V—r =vV—=1r =iyr.
By squaring (L6) we also know that i* = —1. Now let us define the set,
C={z=a+1iy|z,y € R}, (L7)

and call it the ‘complex numbers’. We call z = Re(z) and y = Im(z) the real part and the
imaginary part of the complex number z, respectively. If one of these vanishes the notation
is simplified by writing 0 4+ iy = iy or x +i0 = x. Thus, real numbers are complex numbers
with vanishing imaginary part, implying the embedding R C C.

Next, define the addition and multiplication of complex numbers, as

242 = (r+iy) + (@ + 1Y) = (¢ +2) +ily + ), (L8)
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27 = (z+iy) (2’ +1iy) = (z2’ +izy + iy’ +i%yy) = (x2’ — yy) +i(xy + ya').

These definitions are such that i behaves as an ‘ordinary’ number, except for the identification
i = —1. Addition and multiplication are closed in C, i.e. both the sum and product of two
complex numbers again produce a complex number. This means that we are on the way
towards constructing a number field.

Indeed, it is straightforward to show that (C, +) forms an additive group (do it!). A little
more work is required to show that multiplication defines a group structure, too. We first
need to know how to construct the inverse of a given complex number, z =z +iy € C. To
this end, the complex conjugate, z, " of z is defined as the complex number obtained by

inverting the imaginary part of z,

Eq. (L8) then yields
2% = 2% 49 (L9)

meaning that zZ is real. If 2 is nonzero, 22 + 4% # 0 and the result can be used to construct
the inverse of z. We know that zZ/(2Z) = 1, which means that the inverse of z is given by
1 F Ty

ya —= - = —/—F
2z 1?4 y?

e C. (L10)

This expression is ‘explicit’ in the sense that for any z = x + iy the inverse is obtained as a
rational function of x and .

When encountered for the first time, these definitions may feel alien. However, complex
numbers are as easy to handle as real ones. Just keep the rule i = —1 in mind and otherwise
compute products as usual, for example,

(2+3i)(142i) = —4+7i,  i(4+6i)=—6+4i

Practice computations with complex numbers by doing problems L1.3.1-4.

It is often useful to represent the complex numbers as points in

A
fm = Tz a two-dimensional complex plane. The complex plane plays
z|.” y a role analogous to the one-dimensional line representing the
/,’gb\‘ reals. In it, a complex number z = x + iy is represented by a
Rez point with coordinates (x,y), such that its real and imaginary

parts define the abscissa and ordinate, x and y, respectively.
The horizontal axis represents the real numbers, the vertical axis the purely imaginary ones,
and generic complex numbers populate the plane. Note that z can also be written in the form

z = |z|(cos ¢ +1isin ¢), (L11)

“The complex conjugate is equivalently denoted by an asterisk, z* =z = x — iy.
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which defines the polar representation of complex numbers . Here ¢ is the angle between
the real axis and a line connecting the points (0,0) and (x,y) in the complex plane, and
|z| = V/2Z = \/22 + 92 is the length of this line. Angle and length are called the argument,
arg(z) = ¢, and modulus, modz = |z|, of z, respectively. The argument of z is only
defined modulo 27, i.e. an argument — is equivalent to +, where arg(z) € [0,27)" is
the conventional choice for its range of values. The complex conjugate, z = x — iy, is
represented by the reflection of (z,y) at the x-axis, (z,—y). This implies |z| = |z| and
arg(z) = —arg(z) mod 2.

Show that the product of two complex numbers, z; = |z;|(cos¢; + isin¢;), with
j =1,2, can be written as 2125 = |21||22|(cos(¢1 + ¢2) + isin(¢1 + ¢2)). llustrate this result with
a sketch showing z1, 22 and z1 22 in the complex plane. (— L1.3.5-6)

Complex numbers are powerful tools in physics and mathematics: algebraic operations
which are not globally defined on the real numbers — such as square roots, logarithms,
trigonometric functions, etc. — do exist as complex functions. Polynomials of degree n always
have n complex zeros and can be decomposed into n factors, for example, 22—1 = (z+1)(2—1)
or 2241 = (2+1i)(2 —1i). Throughout this text we will encounter numerous applications where
these and other features of the complex numbers are of importance. Generally speaking, one
may say that complex numbers are more frequently used in the mathematics of physics than
real numbers!

To any two real or complex numbers one may assign a real value specifying the ‘distance’
between them. In the case of real numbers, x,y € R, this is the norm |z —y| € R, i.e. the absolute
value of their difference. For two complex numbers, z,w € C, the (complex) norm |z — w| is the
modulus of their difference. Norm functions are important in different ways. Specifically, they are
used to distinguish between different types of real intervals and domains in the complex plane.

For example, we call U € IF = R, € a bounded subset of IF if there exists a positive real number
r such that Vu,v € U, |u—v| < r. The extent of U is then finite in the sense that no two elements
have a distance exceeding . A subset U is called open if any point uw € U is enclosed within a
region of nonzero extent fully included in U itself. More formally, this means that there must exist a
positive € € R such that Vv € F with |v — u| < ¢, v € U. Heuristically, one may imagine open sets
as sets with soft boundaries.

The openness of real intervals is indicated by round brackets as in (0,1) = {u € R|0 <
u < 1}. If the endpoints are included one obtains a closed interval, generally denoted by square
brackets, [0,1] = {u € R|0 < u < 1}. (Closed intervals are not open because their end points
do not contain neighborhoods fully contained in them.) The exclusion of just one endpoint, as in
[0,1) ={u e R|0 < u < 1}, defines a semi-open interval.

More generally, the closure,, cl(U), of a set is defined as the union of the set and all of its limit
points. A limit point of a set is a point for which every neighborhood contains at least one point

" Referring for a more detailed discussion to the info box below, we use notation in which [a,b) is an interval
with right boundary point excluded, b ¢ [a,b). However, the left boundary point is included, a € [a,b). The
type of the brackets indicates which situation is realized. For example, (0, 1) contains neither 0 nor 1.
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belonging to the set. For example, if the number 1 is not contained in [0, 1) but it is still one of
its limit points. This can be seen by inspection of the sequence 1 — 1/n. Every neighborhood of 1,
no matter how small, contains elements of this sequence with sufficiently large n. This shows that
cl([0,1)) = [0,1]. As an example of an open set in the complex numbers consider the open disk
D ={z¢e C||z]| < 1} C C. Thecircle |z| =1, is not included in D but it is contained in the
closure cl(D) = {z € C||z|] < 1}.

More rigorous definitions of these terms are usually discussed in introductory mathematics
courses. The more advanced discipline of mathematical topology addresses the extension of the
concepts of openness, compactness, closure, etc. to sets more general than the number fields. While
this is a very interesting subject, and not entirely irrelevant to physics, it is beyond the scope of the
present text.

L1.4 Summary and outlook

In this chapter we have introduced various fundamental structures of mathematics, notably
sets, maps, groups, and eventually fields. We gave several examples indicating that all these
structures are tailored to specific tasks, both in mathematics and physics. For example, the
set of lattice translations of a crystal — evidently a set of physical importance — realizes a
group, and this classification is a powerful aid in the understanding of crystal structures.

At the end of this chapter we have arrived at a hierarchy
of numbers, N C Z ¢ Q ¢ R C C. Starting with
(), these number sets are fields. Each new member of
the hierarchy realizes a new level of structure and admits
operations which its predecessor cannot accommodate, @)
closes under division whereas Z does not, etc. We have
seen how mathematics provides the proper structures to
describe the algebraic features of all number sets: begin-
ning with 7 the numbers were groups, and beginning with
@ fields. That this understanding is much more than a
formality is seen from the historical fact that for hundreds
of years the complex numbers remained somewhat of a mystery. The situation changed only
after the concept of the number field had been introduced.

Given the supreme potency of the complex numbers one may wonder if the ‘less powerful’
numbers can be abandoned altogether. The answer is no, they remain universally useful.
Generally speaking it is good practice to solve problems in terms of number sets just large
enough to achieve what needs to be done. For example, we do not use real numbers to count
the number of balls in a box, we use integers, etc.

We are now ready to advance to the next hierarchical level, the vector spaces. Where
numbers have a ‘norm’ specifying their magnitude, vectors are objects of a given magnitude
and direction. As we will see, this added feature makes them indispensable tools in the
mathematical description of physics.
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Many objects of physical interest can be described in terms of a single number. Examples
include the temperature of a body, its mass or volume, the energy required to move a body,
or the number of gas molecules in a container. Quantities of this type are called scalars.
However, scalars do not suffice to describe even many daily-life situations. For example,
if a person who got lost asks for guidance the answer generally includes a direction and
a distance. The two pieces of information can be combined into a ‘vector’ whose length
and geometric orientation encode distance and direction respectively. Vectorial quantities
play an important role in physics, and in this chapter we introduce their mathematics from
a perspective broad enough to include types of vectors that cannot be visualized in easy
geometric ways. Such ‘non-visual’ realizations are ubiquitous in physics — for example, they
are key to the mathematical description of quantum mechanics and the theory of relativity —
and the beauty of the overarching mathematical framework is that they can all be understood
in a unified manner.

However, before turning to the general level, let us begin by introducing a concrete real-
ization of a set of vectors. This example will anticipate the key mathematical structures of
vectors and motivate the general definition of section L2.2.

L2.1 The standard vector space R"

In this section, we will define R™ as an important class of vector spaces. (Sets of vectors
that are complete in a sense to be defined a little further down are called vector ‘spaces’.) The
spaces R™ can be looked at from two different perspectives: first they are vector spaces in their
own right, second they provide a ‘language’ in which all other vector spaces can be described.
This bridging functionality makes them important from both a fundamental and an applied
perspective. However, before turning to a mathematical formulation of these statements, let
us demonstrate the appearance of vectors and their relation to R™ on a daily life example.

A motivating example

Consider the layout of a kitchen as shown in Fig. L4. How can the information contained
in the plan be described quantitatively? The first step must be the definition of a unit of
length, such as centimeters or inches. Second, a system of coordinates has to be specified.
The latter is defined by two axes along which distances are to be measured. In a rectangular

18
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room, directions parallel to the walls would be a natural choice, cf. the axes labeled 1 and 2
in the figure. However the choice is arbitrary and the axes labeled 1 and 2" would define an
alternative and equally valid coordinate system as well.

2w

w OO w
OO

Figure L4: The layout of a kitchen described in terms of various vectors.

Given a coordinate system, a vector describing the position of two points relative to
each other is specified through two numbers fixing the separation between the points in the
coordinate directions. These numbers define the components of the vector in the chosen
system of coordinates. For example, the vector labeled x in the figure describes points shifted
relative to each other by 90cm in the 1-direction and Ocm in the 2-direction. For brevity, we
write x = (%), Likewise, w = (&), y = (1%}), etc. A vector may be graphically represented
by an arrow connecting its two defining points. The length of the arrow measures the distance
between the points and its direction their relative orientation. Note that the same arrow is
obtained for any two points that have the same relative distance and orientation, irrespective
of their actual location. For example, the arrow denoted by w in the figure describes the
separation of any two points shifted relative to each other by 90cm in the 2-direction. We
should think of a vector as an object that can be shifted (but not rotated or stretched) to any
desired point of origin.

Two vectors can be concatenated to define a new vector. For example, the vector z
in the figure is obtained by concatenation of x and y and denoted by z = x +y. The
two components of z are given by the sum of the components of x and y, respectively,
z=(P)+ (12) =(2). (Exercise: draw the vector w + x and compute its components.)
Similarly, a vector can be multiplied by a real number a € R to change its length. For example,
2w = (,3,), is a vector with doubled components and thus corresponds to a vector of doubled
length, as indicated in the figure. If a < 0, the direction of the vector is inverted, for example
—w has the same length as w but points downwards.

Suppose we had decided to use the axes labeled 1 and 2’ in Fig. L4 as coordinate axes.
Assume that the angle between 2’ and 1 is 45 deg. The component representations of the vectors
X, y, W, etc., change accordingly. Specifically, which of the following three representations of the
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vector w is correct?

(a) w =90 (\%) L) w= <405> L () w=90 (\‘é) . (L12)

A systematic way to find the answer is to represent w = wj 4+ wa as the sum of two vectors where
w1 and wo point in the direction of 1 and 2/, respectively. We then need to find out how long wy
and wy need to be if w has length 907 Compute the (1,2’) coordinate representation of the other
vectors shown in the figure.

The space of all two—componentl vectors x = (;;) is called R? (spoken r-two). Our
discussion above shows that there are different ways to look at vectors and their representation
through elements of IR?: (i) we can think of vectors as objects geometrically defined as classes
of arrows in the plane. Arrows are unique up to translation. (ii) Once a system of coordinates
has been chosen, each of these arrows is uniquely described through a two-component element
of R%. However, keep in mind that the description changes if different coordinates are chosen.
(iii) Elements of IR? are vectors in their own right in that the geometrically defined vector
operations concatenation and stretching correspond to equivalent operations in R%. The
example suggests that IR? is a ‘reference’ or standard vector space in terms of which vectors
defined in different (geometric) ways can be described. However, the concrete numerical
‘language’ in which R? represents a geometric vector depends on a choice of coordinates.
The situation is not so different from human languages which describe the identical objects
in different ways. However, before formulating the connection between component vectors to
generic vectors (which have not been defined yet) in generality, let us extend the definition of
R? to to objects containing an arbitrary number of components.

Definition of R"

The definition of R? affords an obvious generalization to vectors with an arbitrary num-
ber of components: we define the so-called standard vector space R" as the set of all
multicomponent objects,

Rr=<{x=| . ||z52%....2"€R . (L13)

The elements x of R™ are n-component vectors. In the introductory parts of this text,
vectors will generally be denoted by boldface symbols, x,y, etc.” The components of a vector
x are referred to by 2’, although the alternative notation (x)* will be occasionally used as well.

" The superscripts on o' and 2 are indices (not powers of x!) distinguishing the first from the second
component. The reason why we use superscripts rather than subscripts will be explained on p. 23.

“Since the boldface convention is inconvenient in handwriting, a variety of alternative notations for
vectors exist: physicists and engineers often write ¥. However, the repeated drawing of arrows costs time and
more time-efficient alternative notations include v, U, or v. Mathematicians often prefer an totally ‘naked’
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For example (y)! = y! = 120 in the kitchen example above. To save space we often use the
in-line notation x = (z!,...,2")T, where ‘T" is spoken ‘transpose’.” Finally, the number n is
called the dimension of R™.

Much like a group is more than a simple set of elements (it is a set plus rules of compo-
sition), R™ is more than a just set of multicomponent objects: vectors can be added to each
other and they can be multiplied by real numbers. As illustrated in our introductory discussion,

the sum z = x + y of two vectors is the vector with components z* = ¢ + 4/*. For example,

1.5 0.5 1
2 | =-3|+]{5
0 1 ~1

Likewise, the multiplication of a vector by a number is defined component-wise, i.e. the vector
ax has components az?, for example

1.5 3
212 | =14
0 0

Notice, however, that elements of R"™ cannot be multiplied with each other,4 nor divided by
each other.

The vector space is R" is just one example of many other vector spaces encountered in
physics and mathematics. In the next two sections we define vector spaces in general terms
and introduce a number of important spaces to be discussed in more depth later in the text.

L2.2 General definition of vector spaces

Above we introduced two different perspectives of vectors. The first was geometrical
(‘arrows’), the second algebraic in that it emphasized the operations that can be performed
with vectors — addition and multiplication by numbers. In this section we upgrade the
algebraic description to a definition of vector spaces in generality. The algebraic approach is
motivated by its generality and the fact that the vectors relevant to physics often do not have
a visual geometric interpretation. The situation resembles that with groups which, likewise,
were defined by the operations defined for them. That approach, too, was motivated by the
observation that identical algebraic properties describe a multitude of very different realizations
of groups.

notation as v. This is OK as long as it is made clear that v € V' is a vector and not a number. We will use
this notation in later chapters of the text when vectors belonging to different spaces are handled at the same
time. However, whichever notation is chosen, consistency and clearly stated definitions are imperative. The
convention v may be a good compromise between efficiency and explicitness.

°At this stage x = (z!,...,2™)7 is just a space-saving alternative to the column notation (L13). The
actual mathematical meaning of transposition is discussed later in Sec. L5.

"However, different types of vector ‘multiplication’ will be introduced below.
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Vector space definition

Vectors are objects that can be added to each other and multiplied by elements of a number
field . (So far, we discussed the case I' = RR). The corresponding formal definition reads as
follows:

An IF-vector space is a triple, (V, +, ), consisting of a set, V, a vector addition rule,

+ : VxV =V, (V,W) —= vV + W, (L14)
and a rule for multiplication by scalars,
- Fx V=V, (a,v) —~a-v=av, (L15)

such that the following vector space axioms hold: (i) the addition of vectors, (V,+), defines
an abelian group. The neutral element of addition, 0, is called null vector; the inverse element
of a vector is called the negative vector, —v. (ii) Scalar multiplication satisfies the following
rules, Va,b e F,v,w € V:

(a) (a+b)v=av +bv (scalar multiplication by a sum of scalars is distributive),

(b) a(v +w) = av + aw (scalar multiplication of a sum of vectors is distributive),

(c) (ab)v = a(bv) (scalar multiplication by a product of scalars is associative),

(d)lv=v (neutral element of I is neutral element of scalar multiplication).
(L16)

Comments:

> The first part of the definition, (L14), formalizes the addition of vectors. In the case of R"
the null vector is given by 0 = (0,...,0)”. We may think of it as an arrow shrunk to a
point (and hence not pointing anywhere). The negative vector, —v, can be imagined as a
vector pointing in the direction opposite to v, such that v + (—v) = 0. Equivalently, one
may think of —v as (—1)v (multiplication of v by —1 € ). Axiom (a) above then states
that Ov = (1 — 1)v = v — v = 0. Addition of this object to another vector does not do
anything.

> Relations (a) to (d) appear to be so obvious that they hardly seem worth mentioning.
However they are required to ensure that the ‘algebraic’ properties of a vector space match
the geometric understanding of directed objects (‘arrows’). Without these specifications the
definition would not be sharp enough to exclude ‘weird spaces’ outside the useful category
of vector spaces.

> The definition does not make reference to vector components, nor to the ‘dimension’ of
vectors. We conclude that these must be secondary characteristics deducible from the
general definition.

> Given a,b,c € I and u,v,w € V, the combination au + bv also lies in V. The same is
true for au + bv + cw, etc. Expressions of this sort are called linear combinations of
vectors.
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> As mentioned previously, sets fulfilling the criteria above are generally called ‘spaces’, a
space of functions, the space of matrices, etc.

The definition above introduces the concept of a vector in its most general form, including
realizations where geometric visualizations are not natural. In practice, the question whether
a given set is a vector space is always answered by checking the defining criteria above.
Geometric visualizations can, but need not be involved. In some cases they can even be
counterproductive.

Covariant notation

We conclude this section with some remarks on notation. Below, we will frequently con-
sider sums via' 4 voa® 4 ... of vectors vi, Vs, ... with coefficients a',a?,.... Notice that
we write the coefficients, a’, with superscript’ indices while the vectors, v;, carry subscript;
indices. Superscript and subscript indices are called contravariant indices and covariant
indices, respectively. Notation adopting this index positioning convention is called covariant
notation and it will be used throughout this text. At this stage, this may seem to be a
purely technical convention. However, as we progress we will see that the distinction between
co- and contravariant objects becomes more and more important both from a physical and a
mathematical perspective. (For a first motivation in this direction, see the info section below.)
Anticipating this development, we use covariant notation from the very beginning. However,
it should not go unnoted that this approach is not standard and that most introductory texts
on linear algebra prefer and all-indices—downstairs notation.

Vectors are members of a more general category of objects known as tensors (the topic of
chapter L11). For example, matrices, which are perhaps familiar from high school and which will be
discussed later in this chapter, also belong to this family of objects.

It is common practice in physics to treat every object that carries a single index (such as x <+ {z'})
as if it were a vector. However, many of the ‘vectors’ routinely encountered in physics are actually not
vectors, but objects of different structure known as tensors. Important examples of such tensors—
in—disguise include electric and magnetic fields, mechanical forces and currents, and more. In cases
where the non-vectorial nature of such quantities becomes too apparent to ignore, they are assigned
special names, such as ‘pseudo- vector' or ‘axial vector', etc. However, physicists do not easily let
go of the vector association as such. Depending on the research field one is working in, this practice
can be either harmless or a potent source of confusion. The latter is the case in a growing number
of disciplines including the theory of relativity, particle physics, topological condensed matter theory,
quantum information theory, and others. It is probably fair to say that the only reason why the
physics literature sticks to its all-is—vector culture is social inertia. The indiscriminate identification
of single-component objects with vectors does not ‘simplify’ anything. On the contrary, it obscures
connections that become clear within a more differentiated approach. On the other hand, a fully
reformed approach which, for example, would describe a magnetic field as an alternating tensor of
second degree rather than as a vector, might be too radical. Students trained in this way would not
be able to communicate with colleagues speaking a more traditional language, so this is not a viable
solution.
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In this text, we aim to strike a middle ground. Tensor calculus and the ensuing interpretation of
physical objects are explained in the advanced chapters L11 and V4 to V6 later in this text. However,
from the beginning we will pay careful attention to the consistent positioning of co- and contravariant
indices. This is done because covariant notation is an important aid in discriminating between
objects that are fundamentally vectors and others that are not. Occasionally, we will run into
trouble and realize that the use of covariant notation leads to inconsistent index positions. This is the
way by which the notation signals that an object truly different from a vector has been encountered.
Depending on the context, we will fix the situation right away or, on a few occasions, refer to a
section of chapter L11 were the origin of the problem is explained.

L2.3 Vector spaces: examples

In the following we introduce a number of examples which all play an important role as
vectors spaces in physics.

The standard vector spaces

We have already introduced R™ as the standard vector space defined over the real
numbers, ' = R. The alternative choice F = C defines the complex standard vector
space C". This is the set of all vectors, z = (2!,...,2")T, with components z* € C. At
first sight C™ may seem to be ‘more complicated’ than R" (inasmuch as complex numbers
carry more structure than real numbers). However, we will see that the opposite is true and

in many instances will prefer to work with C".

Convince yourself that the standard vector spaces fulfills the vector space axioms.

Affine and Euclidean spaces

Consider infinite d-dimensional space, for example an infinite two-dimensional plane or the
three-dimensional space we live in. The mathematical abstractions of these objects are called
affine spaces, A. Elements P € A are called points.

Affine spaces are almost, but not quite, vector spaces. To understand the difference, notice
that a vector space contains the neutral element of addition, 0, as its distinguished origin, or
null-vector. By contrast, affine spaces are the mathematical formalization of idealized infinite
space and therefore do not contain a ‘special’ point. To establish the connection between an
affine space A and a vector space V' of the same dimension one needs to pick an arbitrary
reference point, O € A, and identify it with the origin, 0 € V. For example, if the focus
is on describing our solar system (which lies in three-dimensional affine space) it would be
natural to choose the center of the sun as a reference point. Each point P € A can then be
identified with a vector, v, representing the arrow from O to P, as illustrated in Fig. L5. If
another point, () € A, is represented by the vector w then the linear combination u =w —v
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Figure L5: On the definition of affine space.

represents the arrow from P to Q.

Note that the points P and () are independent of the choice of reference point, but the
vectors representing them are not. If a different reference point O’ is chosen then P and () are
described by different vectors v/ and w’, respectively. However, the vector representing the
arrow from P to () remains the same, w' — v/ = w — v. As an example, take P = (center of
earth) and @ = (center of Venus). The vectors representing P and () depend on whether the
centers of the sun or of Jupiter are chosen as reference points. However, the vector connecting
the center of earth to that of Venus is independent of the choice of reference point.

The preceding description of affine spaces is made precise as follows: consider a set of
points, A = {P Q,...,} subject to the following three conditions: (i) there exists a vector
space V such that to any ordered pair of points (P,()) € A x A a vector u € V may be
uniquely assigned. We call u the difference vector from P to Q). (ii) For any point P € A
and any vector u € V there exists a unique point () € A such that u is the difference vector
from P to Q. (iii) For any three points P, ) and R € A, with difference vectors u from P
to ) and t from () to R, respectively, the difference vector from P to R is given by u + t.
If these conditions are met, A is called an affine space. Once a point O € A has been
chosen as reference point, A becomes identifiable with V' and there is a bijection between
points P € A and the difference vectors v € V connecting O and P. This identification is
sometimes written as V' = (A, O), and the correspondence between P and v as P = O + v.
For example, in this language criterion (iii) above assumes the foom P+u+t=0Q +t = R.

In the particular case where V = R we call A = E? d-dimensional Euclidean space.
This denotation hints at the fact that Euclidean space possesses structures that a generic affine
space need not have: to vectors of [E? lengths and angles and other elements of Euclidean
(1) geometry to be introduced in chapter L3 may be assigned. Both generic affine spaces and
Euclidean spaces play important roles in physics. Their description in terms of vector spaces is
so natural that the distinction between affine and vector spaces is easily forgotten. However,
occasionally it has to be remembered to avoid confusion!
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Function spaces

Let f: I — R, t — f(t) be a function defined over a finite interval, I (cf. Fig. L6). The
set containing all these functions is called LQ(I).5 Two functions, f, g may be added to each
other to obtain a new function f + g in the same set. That new function is defined as the
superposition of f and g, (f + g)(t) = f(t) + g(¢). Likewise, the product of a function with
a number, a € R, defines another function, af, via (af)(t) = af(t). This shows that L?*(I)
is a vector space, and that one may think of the functions contained in it as vectors. Give
yourself some time to let this message sink in! (— ?77?)

N || F i

Figure L6: The discretization of a function in terms of N discrete values yields an N-component
vector. The larger IV, the more closely the discretized function approximates the continuous one.

To make the vectorial interpretation of functions more concrete, consider storing the signal
f(t) on a computer. This may be done by discretizing the time interval into a large number,
N, of small intervals of width 7/, each centered on a time t;, i = 1,..., N (see Fig. L6).
One then samples N representative readouts of the function, f* = f(t;). These values define
an N-dimensional vector, f = (f!,..., V), which may be saved as a discrete approximation
of the function. The number of components, N, may be increased to make the approximation
of the ‘continuous’ function f as accurate as desired.”

Given two functions, f, g, with discrete representations, f, g, a discretized function, f + g,
can be defined by addition of the individual function values: (f + g)’ = (f)' + (g)’ (cf. Fig.
L7, bottom right). Similarly, the discrete function af, a € R, may be defined by component-
wise multiplication, (af)’ = a(f)® (Fig. L7 top right). This construction shows that one may
work with discretized functions just as with N-component vectors and that the set of N-step
discretized functions is identical to R”.

Heuristically, L?(I) may be interpreted as the N — oo limit of the discretization spaces
RY, and functions are ‘infinitely—high'-dimensional vectors with components f(t) < fi =
f(t;). This view of functions is very important. It makes the connection between calculus and

"The notation L2(I) for the set of functions defined on I is standard in mathematics. Its definition
requires one additional condition, namely ‘square integrability’ to be discussed in chapter L10. However, for
the moment, this additional condition is not of relevance.

* For example if f(t) represents an audio signal, sampling rates with N = 44.100 for a time interval of 1
second correspond to the resolution of standard CD recordings.
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Figure L7: Visualization of vector multiplication and addition, respectively, for two-dimensional
vectors in [E2 (left), and discretized functions (right).

linear algebra tangible and plays an important role in various fields of physics.

In the following we introduce a few more examples which may help in building familiarity
with the concept of vector spaces:

> Number fields as vector spaces: for n = 1, the vector space R reduces to the real numbers,
R! = R. (The set of vectors with just one real component is trivially equivalent to the real
numbers.) Likewise, Q' is a Q-vector space (— L2.4.1), and C! is a C-vector space. However,
one may also think of C! = € as an R-vector space (— L2.4.2): any complex number, z, can be
multiplied by a real number, a, to yield another complex number az, and complex numbers can
be added to each other. One may decompose z = x +1iy into real and imaginary parts to uniquely
describe it by a pair of real numbers, z <+ (x,y)”. This shows that C =2 R? can be identified with
R2. The identification of C? with the real vector space R? is often useful in applications. For
example, it is common practice to describe physical problems defined in two-dimensional space
in a ‘complex notation’ in which each point is represented by a complex number. This is done
because complex numbers are usually more convenient to work with than two-component vectors.

> Let P = {agz? + a1 + aplag,1,2 € R} denote the set of all polynomials in the variable = of
degree 2. For two polynomials, p(z) = a22? + a12 + ag and q(x) = baz? + byx + by, the sum,
(p+ q)(x) = (a2 + b2)x? + (a1 + b1)x + (ag + bo), is again a polynomial of degree two, and
so is the product with a real number, ap(x) = (aaz)z? + (aa1)r + (aap). This shows that P
is a vector space. Since each of these polynomials is uniquely identified by its three coefficients,
p > (a2, a1,a9) we have a bijection P, =2 R3. Exercise: think of generalizations to polynomials
of arbitrary degree (— L2.4.4), or to polynomials in more than one variable. For example, the
polynomials of degree 2 in two variables, = and y, have the form agz?y? + as12?y + ajpzy? +
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an0x? + agay?® + a1y + a10T + a1y + ago, with real coefficients a;;. How many components
are required to uniquely describe the polynomials in two variables of maximal degree five?

> For some exotic examples of vector spaces with more contrived addition and multiplication rules
see problems L2.4.5-6.

L2.4 Basis and dimension

A common property all vectors discussed above was that they could be represented through
a list of components, v < (vl, o ,v”)T. However, we also observed that the component
representation was not unique. For example, the vector x in Fig. L4 has a representation
x = (90,0)” if cm are used as a unit of length and the coordinate axes are oriented as
indicated. It would change to x ~ (35.4,0)7 if inches were used, or to x ~ (63.3,63.3) if the
coordinate axes were rotated by 45deg. However, irrespective of the chosen representation, two
numbers are needed to describe it. The number of components required to specify a vector is a
unique characteristic of each vector space, called its dimension. Notice that the dimension is
not mentioned in the fundamental definition of vector spaces given Sec. L2.2. This shows that
it must be an attribute following from the vector space axioms. In the following we discuss
how this happens.

Given a vector space V' and a set .S containing m of its vectors,

S=A{vi,..., v}, Vi€V, (L17)

the linear span (or linear hull) of S is defined as the set of linear combinations of the
elements of S:

span(S) = {via' +voa®* + -+ v,a™|a',. .. a" € F}. (L18)

For u, w € span(S) the linear combination au + bw, a,b € [ again lies in span(.S), and this
shows that span(S) is a vector space in itself.

We call a vector space, W C V, embedded in V' a subspace of V. This includes the
extremes W = {0} of the subspace containing just the null-vector, and the full space, W = V.
At any rate, the linear hull, span(.S), is a subspace of V/, non-empty if S contains at least
one non-vanishing vector. An interesting question to be addressed in the next sections is how
large a sets of vectors has to be to include the full vector space in its span, span(S) = V.

Linear independence

Suppose S = {vi,...,v,} has the property that one of its elements, say v;, can be
represented as a linear combination of the others,

vy = Vob? + -+ v,,b™. (L19)

"Readers to whom this sounds trivial may try to prove this statement. It is not as easy as one might think.
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— + completeness
" / : / :
linear
independence

Figure L8: The concepts of linear independence and completeness, illustrated for the example IE3.

In this case, the vectors defining S are called linearly dependent vectors, and S is called a
linearly dependent set. Such sets contain redundancy in that some of their elements may
be removed without diminishing the span. For example, with S" = S\{v;} we have (why?)

span(S) = span(S’). (L20)

The upper row of Fig. L8 shows linearly dependent sets containing three and four vectors of 23,
respectively. Conversely, if none of the elements of S can be obtained by linear combination
of the others, vy to v,, are called linearly independent vectors.

For later reference we note that there is an alternative way to test linear independence:
the vectors in S are linearly dependent if they can be linearly combined to form a non-trivial
representation of the zero vector, 0, i.e. if there exist non-vanishing coefficients,

{a*,...,a™} #{0,...,0}, viat +vead? + ... v,,a™ =0 (L21)

Why are the two conditions equivalent? If (L19) holds, then we have a representation 0 =
—vi+Vob® + -+ v,,,b™. Conversely, if (L21) holds we may pick a non-vanishing coefficient,
say a', to obtain the linear combination of vi = —--(vya® + - - + v,a™) through the other
vectors. This demonstrates linear dependence in the sense of Eq. (L19).

Consider the vectors

e R I

The set S = {vi,va,v3} is linearly dependent because vi = —(vy + 2v3). However, the set
S" = {v1,va} is linearly independent, because via' 4 voa? = (a' + a?,2a?)”, which equals 0 only
if a! = a? = 0. Similarly, S” = {vy,v3} is linearly independent, as is S = {va,v3}. (— L2.5.1-2)
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It is often useful to eliminate redundancy by working with linearly independent sets. This is
done by removing redundant vectors of S until one arrives at a linearly independent set of
reduced cardinality. That reduced set need not be unique, as shown by the example of S’, S”
and S above. However, its span does not depend on which of the linearly dependent vectors
are removed and S/, S” and S” all span the same vector space.

Completeness

There is another important feature which the sets like (L17) may or may not have: a set
S ={vy,...,v,} containing n vectors is called complete if

span(S) = V. (L23)

In this case, every vector v € V can be written as a linear combination of the vectors v;.
For example, the set S = {v;, vy, v3} of Eq. (L22) is complete in R? because any vector
v = (a,b)" can be represented as v = vya + vob + v3b. The reduced sets S/, S” and S,
too, are all complete in R2. Examples of sets complete in the Euclidean space £? are shown
in the second column of Fig. L8.

Basis

A set S that is both complete and linearly independent is called a basis of the vector
space V. These properties guarantee (i) that each element v € V' can be expressed as a linear
combination of basis elements (completeness),

v =via' +vya® + -+ v,ua”, (L24)

and (ii) that this linear combination is unique (linear independence). To understand how
uniqueness follows from linear independence, suppose that v could also be represented in a
different way, say v = v b + vyb? + - - - + v,,b". Subtracting the second representation from
the first, we obtain 0 = v — v = vy(a' — b') + vo(a® — V%) + -+ 4+ v, (a™ — b™). This
is a representation of the null vector and so the assumed linear independence of the basis
vectors requires that all coefficients must be zero, ¥ = a’. This in turn means that the two
representations of v have to be identical. We call the representation of a vector in a given basis
its expansion, and the corresponding coefficients the expansion coefficients with respect
to that basis.

Each vector space has a basis. For given realizations of vector spaces this statement is
usually straightforward to verify by the constructive specification of a basis. However, the
general proof is not straightforward and will not be given here.” We also note that for a given

*Whereas the proof is relatively elementary for spaces with bases of finite cardinality, in the opposite case
of infinite-dimensional vector spaces the situation is more involved. The function spaces L?(I) introduced
above are examples of this type. Fortunately, the majority of vector spaces relevant to physics are finite
dimensional, or can be made finite without significant loss of physical information. For example, we have
discussed above how L?(I) can be approximated to any desired precision by an N-dimensional vector space
RN,
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space there is infinite freedom in the choice of a basis. The expansion coefficients of vectors
depend on this choice and therefore change under changes of basis. If vectors are regarded as
invariant ‘objects’ one may think of their components as descriptions in a ‘language’ tied to
a basis. Tools for the computation of vector expansion coefficients and their transformation
under changes of bases will be introduced in section L5.6.

Show that the pair {vi,va} of vectors defined in Eq. (L22)
defines a basis of R?. Draw the two basis vectors and an arbitrary other V2
vector v of your choice. Compute its two expansion coefficients algebraically,
and represent v graphically as a linear combination of v; and vy. Repeat
the exercise, to show that {vy,vs}, and {v;,v3} are bases, too. Explain
why the pair {ej, e} defined by e; = vi = (1,0)7 and ex = (0,1)7 is a
basis more convenient to work with than the others.

If the number n of elements of a basis is finite, it is unique. Any other

basis then has the same number of elements, and n is called the dimension of the space. As
an exercise, assume the existence of two bases of different cardinality n, m and show that the
assumptions of linear independence and completeness leads to a contradiction.

Many problems in physics are described in vector spaces whose dimensionality is different
from the three dimensions of ambient space. For example, crystalline structures are often effec-
tively two-dimensional. Einstein’s theory of relativity adds ‘time’ to three-dimensional space, and is
thus formulated in four-dimensional space-time. Functions describing physical phenomena can be
discretized as N-dimensional vectors (with N > 1). Quantum mechanics is formulated in vector
spaces whose dimension is determined by the number of particles under consideration. These and
many more examples motivate the study of vector spaces of arbitrary dimensionality.

The microscopic structure of graphite is defined by stacked
two-dimensional sheets of carbon.” The carbon atoms of each sheet form
a regular hexagonal lattice, as shown in Fig. ??. Choosing the position
of an arbitrary carbon atom as a point of origin, the position of any other
atom in the plane is described by a two-dimensional vector. Convince

/

\
e
>\i

e

yourself that each of these vectors may be represented by a linear com-

_/'\“

bination of two suitably chosen ‘basis’ vectors, e.g. the vectors denoted

N N
N e

by a; and as in the figure. Work out the linear combinations represent-
ing the positions of a few atoms of your choice. Try to derive a general
formula specifying the position of all atoms as linear combinations of the basis vectors.

’As of 2005 it has become possible to isolate individual atomic layers of graphite. The ensuing two-
dimensional crystalline material is known as graphene. For its discovery, A. Geim and K. Novoselov were
awarded the 2010 Nobel prize in physics.
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Einstein summation convention

Linear combinations such as via!4vya?+- - -4v,a™ appear very frequently in the following
and it is worthwhile to discuss a few notation conventions. First, note that the summation
involves a contravariant (superscript) and a covariant (subscript) index. This structure by
itself helps to avoid errors:

> An index summation always runs over a pair of co-and contravariant indices, e.g. w =

Vla1 + V2a2 + V3a3.

> An unsummed (‘free’) index always appears at the same position on both sides of an
equation, €.g wW;, = V1A12~ + V2A2i -+ V3A3i'

Violations of either of these rules usually indicate mistakes.
Expressions of the architecture A;B' + AyB? + --- + A, B" appear so frequently that
various abbreviating notations have been introduced:

n
AB'+ A3B° 4+ A,B"=> A;B'=> AB = AB" (L25)
i=1 i
In the third representation the upper and lower limits of the sum are implicit. In the last one we
have introduced the Einstein summation convention, according to which indices occurring
pairwise on one side of an equation are to be summed over. Such index pairs are called
‘pairwise repeated indices’ or ‘dummy indices’ and their summation is called a contraction of
indices. The Einstein summation convention assumes that the summation range is specified
by the context. For example, the Einstein representation of the argument formulated after
Eq. (L24) reads: if v =v;a' = v;b' then 0 = v — v = v;(a’ — V"), implying a* = b'. We will
soon turn to using these abbreviated representations. However, to ease the transition they will
be temporarily used in parallel with a more expansive representation (— L2.5.3-7?7). We finally
note that the convention to sum over pairwise occurring indices does not require covariant
notation; texts writing all indices as subscripts frequently implement this rule as well. However
as we will see in chapter L11, the Einstein convention has a deeper meaning which becomes
visible only in covariant notation.

Vector space bases: examples

The concept of a basis is very important to the description of vector spaces. So much so
that the choice of a suitable basis usually comes first in the work with a new vector space.
Some spaces have a ‘canonical’ basis " and some do not. In the following we revisit the
examples of Sec. L2.3 to illustrate this point.

> The natural basis, {e;|j =1,...,n}, of the standard vector spaces R" and C" contains
the basis vectors

ej=(0,...,1,...,0), (L26)

""The attribute ‘canonical’ stands for ‘natural’ or ‘standard’ but does not have a mathematically precise
definition.
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where the 1 stands at position number j. (Verify linear independence and completeness of
this set.) The components of the standard basis vectors may be alternatively specified as
(e;)" = 0;, where the Kronecker delta ¢'; is defined by

. 1 fori=14
5 = ore=a (L27)
/ 0 fori##j
In the basis (L26), the expansion of a general vector x = (z!,...,2")" assumes the form

X =ezt +er?+ - +e,z" =e;z’.

This shows that the components of an R™-vector and its expansion coefficients in the
standard basis coincide. This is the defining feature of that basis.

> By contrast, the Euclidean spaces,11 E¢, do not favor particular directions over others
and therefore do not possess a ‘canonical’ basis. However, in many cases the identity of
a suitable basis is determined by the context. For example, the kitchen layout of Fig. L4
favors a basis of vectors v;, i = 1,2 parallel to the walls of the room. The representation

of generic vectors as x = 90vy, or 2w = 180v,, then defines component representations
as x = (90,0)7, 2w = (0, 180).

> The choice of a basis is particularly important in the case N
of function spaces such as L?(I). For definiteness, con-
sider the N-dimensional space obtained by discretizing func-
tions f : [0,1] — R, t — f(t) into N-component vectors,
f = (fY...,fMT € RY, where f' = f(t;). In this case
it is preferable to work with basis vectors ; = Ne;j, i.e. the
standard basis vectors {e;} of R" scaled by a factor of N. N
The basis vector ; may be viewed as a ‘discrete function’,
d; : {1,...,N} = R, i~ (9,)", vanishing for all values of 1,
except for ¢ = j, where it equals N. We can think of §, as
a discretized version of a box-shaped function §; : [0,1] — R,
t — 6;(t), which equals zero everywhere except in an interval N7
of width 1/N centered on time t;, in which it takes the constant value N. A general
function vector can now be expanded as

F= O+ 4 oY) = 8 (L28)

This shows how a discretized function can be expanded in terms of a ‘standard basis'.
However, it is less obvious what becomes of this strategy in the limit N — oco. We will
address this question later in the text, see section C6.1 and chapter L10.

"Unless stated otherwise, we assume that a point of origin has been chosen so that IE¢ can be identified
with a vector space.
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Returning to the examples discussed on p. 27, consider R as a vector space, and show
that the number {1} (or any other set containing just one non-vanishing number) is a basis. Show
that {1,1} defines a basis of C if it is interpreted as a two-dimensional IR-vector space. Why is {1,2}
not a basis? Show that the set containing three polynomials {1, z, 2%} forms a basis of the space of
polynomials P,. What would be a basis of the space of polynomials in two variables, = and y up to
degree 27

Subspaces

v o "\,

Vo W1 Vo é\ Vo

V3 Vi V3 Vi Vi

v Vv vV

Figure L9: Left: a two-dimensional subspace (plane) in three-dimensional space. Center: a one-
dimensional subspace (line) in three-dimensional space. Right: a one-dimensional subspace in two-
dimensional space.

If the span T of a set of vectors in V' is not complete, then W C V and W is called a
true true subspace of V. For example, if w; and w, are linearly independent vectors in R?,
then W = span({wy, wy}) is a two-dimensional subspace of three-dimensional space.

Subspaces of dimension one and two are called lines and planes, respectively. Exam-
ples include planes in three-dimensional space (m = 2,n = 3), lines in three-dimensional
space (m = 1,n = 3), or lines in two-dimensional space (m = 1,n = 2), as illustrated in
Fig. L9. Subspaces of higher dimension can no longer be visualized. For example, the space
of polynomials of degree 2 is a three-dimensional subspace of the infinite-dimensional space
L3(I).

As with vectors, subspaces are defined only up to parallel translation. For example, a
parallel translation of the plane shown in Fig. L9, left, would still represent the same plane.

L2.5 Vector space isomorphism

In this section, connections between vectors of a general n-dimensional real space, V,
and component vectors in R™ will be addressed. To distinguish the former from the latter, a caret
notation v € V is used for general vectors. The component vector representing v in IR" is denoted
by the same symbol without caret, v.
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Once a basis {v;} has been chosen, every vector v of an n-dimensional vector space can be
expanded as v = V0! 4 Vov2 + - - - 4+ v,,0™. This expansion assigns to v an n-tuple’ of real
numbers, v! to v, which together can be viewed as an element of R". In other words, the
basis defines a map

v
boi R, v—vii o de() = | 0 |, (L29)
v:"
where the subscript in ¢y indicates that the map is specific to the basis {vy,...,v,}. Under

this map, the basis vectors v; themselves are assigned to the standard basis vectors of R”,

QS{,(‘A’Z) = €;.

<

V R2

Figure L10: On the isomorphism between a general two-dimensional real vector space V' and R?2.

We saw above that for a given basis the assignment (vector) <> (components) is unique.
Every vector has a unique component representation and every set of components corresponds
to a unique vector. This is another way of saying that the map ¢ is bijective. However, it is
more than that: the sum of two vectors, v + W, is represented as v+ w = (V;v°) 4+ (V;w') =
v;(v" 4+ w') so that its components are given by the sum v’ + w" of the components of v and
w, respectively. The same fact may be expressed as ¢¢(V + W) = ¢4 (V) + ¢5(W). Notice
that the two ‘+' signs in this equation are defined in different vector spaces: on the left side
it acts in V/, on the right side in R (cf. Fig. L10). An analogous statement holds for scalar
multiplication, ¢¢(av) = aps (V).

In the language of section L1.2, ¢ defines a (bijective) homomorphism between the
spaces (V,+) and (R™,+), i.e. it is an isomorphism. We have argued that the existence
of an isomorphism between two spaces means that they are ‘practically identical’, V' = R".
Since this link to R™ can be established for any n-dimensional vector space V', the former is
justly called the ‘standard’ vector space. However, one always has to keep in mind that

"In mathematics an n-tuple is an ordered list of n-objects. For example (1,4, 2,6) is a 4-tuple. It is ordered
in the sense that it must be distinguished from the differently ordered list (4, 1,2, 6).
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The isomorphism V' = R"™ is not canonical.

For a different basis, V-basis, {w1,...,W,} a different isomorphism, ¢ and a different
component representation is obtained.

T 29

<>

Figure L11: Figure illustrating the isomorphism between two-dimensional Euclidean space and R2.
Geometrically defined vector addition/multiplication is compatible with the algebraic operation on
R2-component representations.

Fig. L11 illustrates the isomorphism between two-dimensional Euclidean space
and R2. In Euclidean space, vector addition and scalar multiplication are geometric operations
— the concatenation of vector—arrows and their stretching by scalar factors. These operations are
compatible with the algebraic addition and scalar multiplication of the corresponding IR? component
representations, irrespective of what basis is chosen. For example, in a basis defined by horizontal and
vertical vectors of unit length, the geometric vectors v and w have the representations v = (1) and
w = (5). Left: the geometric sum v + w has components v +w = (). Right: the geometrically
stretched vector 2v has components 2v = (2). In either case, the same results are obtained by

addition and multiplication in R2.

Thanks to the correspondence V' = R", vector calculations can be performed either in V
or in R™. In the latter case one first assigns components to vectors, v, w,..., does com-
putations with the component representations, v, w,..., and finally uses the inverse of the
map ¢y to reassign V-vectors to R™-vectors. The correspondence between vectors and their
components is so tight that the symbol ¢y is often omitted and a notation v = (v, ..., v")7
is used. Although this is illegitimate (because it equates a vector in v € V with a vector
v = (v},...,v™")T € R"), the notation is ubiquitous and one just has to accept its presence.
However, in this text we avoid it and keep using the caret to distinguish between vectors in V'
and their component representations in R™.

L2.6 Summary and outlook

In this chapter we introduced the important concept of vector spaces. Starting from a
geometric motivation, we emphasized a view in which vectors where characterized by the
operations defined on them — addition and scalar multiplication — and not so much through
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concrete realizations. We argued that this more general approach was motivated by the
frequent occurrence of vectors without visual representation in physics. Conversely it allows
one to understand very different realizations of vectors in unified terms.

We saw that the general definition of vector spaces led to various secondary definitions,
including that of the dimension of a vector space, linear dependence, completeness and that
of a basis. Vector space bases were the key to the description of vectors through component
representations, or elements of the standard space R" (or C"). The existence of a unified R"
language is very important and it implies that the mathematics of R" is a template describing
all other vector spaces at once.

So far, we have not done much other than defining vector spaces. Building on this foun-
dation there are two directions to move forward. The first is the definition of additional
structures required to perform actual geometric operations with vectors, the measurement of
lengths and angles, etc. The second will be the discussion of maps preserving the fundamental
structures of vector spaces. We will discuss these two extensions in turn, beginning with the
‘geometrization’ of vector spaces.
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In most of this chapter, we focus on the case IF = IR, section L3.4 considers I = C.

Euclid In school, vectors are usually introduced as
Often referred to as the father arrows of specified length and direction. The
of geometry. In his influen- reason why these features have not been men-
tial work Elements Euclid for- tioned so far is that they are not included in
mulated the principles of Eu- the general definition of vector spaces. There
clidean geometry (see below). are vector spaces for which the concept of

Little is known about the date length is not meaningful. Very often, how-
of his _b'rth and death, and about his per- ever, it is, and to define it an additional struc-
sonal life. He was active around 300 BC. ture known as the Euclidean scalar prod-

uct is required. In section L3.1 we introduce
a scalar product for the standard vector space R™ and discuss the ensuing geometric structures
in section L3.2. Scalar products of generic R-vector spaces will be introduced in section L3.3,
and of generic C-vector spaces in section L3.4.

When introducing mathematical concepts it is generally good practice to progress stepwise
from minimal structures to elements of higher structure. Such a hierarchical approach to, e.g.,
vector spaces is also useful from a physical perspective. Key physical theories like thermodynamics
or classical mechanics rely on vector space structures such as completeness and linear independence,
but not on the additional structure of a scalar product. For example, the so-called phase space
of classical mechanics combines the d-dimensional coordinate vector, q, of a point particle, and its
momentum, p, into a vector X = (g) of dimensionality 2d. The space defined by such vectors does
not possess a natural scalar product. (What would be the ‘length’ of a vector having coordinates
and momenta as components?) In such contexts a scalar product would not only be superfluous but
could even obscure physical contents.

L3.1 Scalar product of R"”

38
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Definition

A scalar product of a vector space is a function that takes two vectors as arguments to
produce an ([F-valued) number. Let us begin by introducing a scalar product of the standard
vector space, R". Technically, this so-called standard scalar product of R" is defined as

(,) R"xR"—> R, (v,w) = (v,w) = vlw' +0*w? + - +v"w" . (L30)

This map is bilinear map (linear in both its arguments). It assigns to each pair of vectors,
(v,w), the number (v, w) defined on the right. Notice that the indices on the right occur
in pairs that both sit upstairs. This definition thus does not conform to the conventions
of covariant notation (see p. 32), which requires index pairs in sums to occur in co- and
contravariant (downstair-upstairs) combinations. The notation thereby signifies that though
the formula is correct as written, from a general point of view ‘something is missing’ from it.
In section L3.3 we will uncover the missing object (a so-called ‘metric’), but for the moment
let us proceed with Eq. (L30) and explore its consequences.
The scalar product Eq. (L30) has a number of important properties: it is

w) = (w,v),

v,w) = a(v,w) and

(i) symmetric: (v,
(i) linear: (a

(u+v,w) = (u,w) + (v,w), and
(iii) positive definite: (v,v) > 0 for all v # 0. (L31)
All geometric structures following from a scalar product rely solely on these three properties.

This will become apparent in our discussion below, which makes repeated reference to (i-iii)
but not to the specific formula (L30).

Given a scalar product, we can define the norm of a vector as

ps
5° 3 cm

vl = V{v,v). (L32)

4 cm

"Other notations for the scalar product of R™ include vI'w or v-w. However, these ways of writing scalar
products are specific to R". We here prefer to use the general notation (v, w).
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In R™ with its standard scalar product this
quantity is the geometric length of a vec-
tor.” To see this, consider R? where || (¢) || =
va? + b? is the Pythagorean length familiar
from school. It is left as an exercise to show
that the generalization to higher dimensional

Pythagoras

(ca. 570-495 BC)

Greek philosopher and mathe-
matician. He had great influ-
ence on the philosophical and
religious teaching of the late

6th century BC. He is best space, e.g. n = 3, assigns to a vector its geo-
known for his theorem relating the length metric length, i.e. the length one would obtain
of the three sides of a right-angled triangle. with the help of a ruler.

Given a scalar product, it can be used to
introduce various features describing the geometry of vectors — ‘angles’, ‘length’, ‘parallelity’
and ‘orthogonality’, etc. These concepts are the subject of ‘Euclidean geometry’ and will be
discussed next.

Euclidean geometry

Euclidean geometry Geometric concepts based on the definition of the scalar product
(L30) are generally subsumed under the name ‘Euclidean geometry’. Euclidean geometry can
be understood graphically, i.e. in terms of geometric lengths, angles, etc., or ‘algebraically’
in terms of the criteria (i-ii). While the geometric formulation may be more intuitive, the
advantage of the algebraic approach is that it extends to general vector spaces — function
spaces, for example — in which no graphical interpretation exists.

The most fundamental relation of Euclidean geometry is the Cauchy-Schwarz inequal-
ity: Vv, weV,

(v, W) < [v][[[wll. (L33)

The proof of this inequality illustrates how nontrivial results may be derived from the general
properties of the scalar product: For w = 0 Eq. (L33) holds trivially. Suppose, then, w # 0,
define the number a = (v, w)/||w||?, and consider the vector v — aw. Since its norm is
greater or equal to zero we have 0 < (v — aw,v — aw) = ||v|? — 2a({v,w) + a*|w|]? =
Iv]|? — ({v,w))?/||w]||?>, where in the last step the definition of a was used. Multiply this
inequality by ||w]|?, rearrange terms, and take the square root to arrive at Eq. (L33). For
colinear vectors, i.e. for vectors ‘pointing in parallel directions’, v = bw with b € R, the
inequality becomes an equality.” However, if u and v are not colinear their scalar product is
strictly smaller than the product of their norms, and the inequality (L33) quantifies the degree
of ‘misalignment’.

This interpretation motivates the definition of the angle, /(v,w), between two vectors
as

/(v, W) = arccos (M) , (L34)

[ [{w]

*The more general denotation 'norm’ is used also for vector spaces with scalar products for which (L32)
does not have an interpretation as ‘length’.
3
If v =bw, then [[v]| = [b] [|w|| and (v, w) = [b] (W, w) = [b] [|w|]* = ||v|][[w].
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or the equivalent representation

(v, w) = cos(ZL(v, w)) [[v][w]]. (L35)

Before elucidating in what sense this is an ‘angle’ we note that the

definition makes mathematical sense: from Eq. (L33) we know that

(v,w)/|[v|[lw] € [—1,1], and so the inverse of the cos-function, a b
arccos, can be applied to produce a value between 0 and 7. These

two values represent the extreme limits of complete alignment and v W
anti-alignment, (v, w) = +||v||||w]|, respectively.
On this basis, let us now give the equation a geometric interpretation. Consider the triangle
in [£2 shown the figure. Its sides are defined by the vectors v, w and v — w, with side lengths
a = |vl], b = ||w|| and ¢ = ||[v — w||, and the geometric angle enclosed by v and w is 6.
If we identify the geometric angle with the one appearing in the Cauchy-Schwarz context,
0 = Z(v,w), Eq. (L35) can be written as (v,w) = abcos(f). Now consider the vector
identity (v —w),(v—w)) = (v,v) + (w,w) — 2(v,w). With the above identifications, it
assumes the form ¢ = a? 4 b* — 2abcos(f), which is the familiar ‘law of cosines’

a® +b* — ¢ = 2abcos(6). (L36)

In other words, the identification of the Cauchy-Schwarz angle of Eq. (L34) with the geometric
angle follows from basic geometric considerations in the space IE2. However, the definition
(L34) holds more generally and can be used to quantify the mismatch between two vectors
even in contexts where these vectors do not have a straightforward geometric interpretation.

Scalar products play an important role in all areas of physics. As an example, consider
mechanical work. If a constant force, F, is applied to move an object along a straight line to
induce a certain displacement, s, the force performs work, W. Both force and displacement are
vectorial quantities and the work done by the force is given by

W=F-s. (L37)

This equation can be read as the definition of force. The
norm F' = |F|| quantifies its magnitude, and the direction
of F is the direction in which the force acts. Similarly, s =
|ls|| is the length of a displacement s, whose direction may
differ from that of F by an arbitrary angle, 6 = Z(F,s) (see
figure). Only the component of force parallel to s, F cos#,
effectively performs work, and the total amount of work is
proportional to the length of the displacement. This leads to
W = Fscos(6) which can be equivalently expressed as (L37). Notice that in experiment, Eq. (L37)

"The law of cosines, which holds for arbitrary triangles in 52, is usually taught in school. It may be proven
by subdividing the triangle into two right-handed triangles and applying the Pythagorean theorem to each.
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really is applied to define forces. For example, the Coulomb force acting on charged particles can be
determined by displacing a test particle of a given charge in definite ways and measuring the required
work. If this is done for sufficiently many displacements (how many?) a force vector is determined.

L3.2 Normalization and orthogonality

Scalar products can be used to define vectors of definite length. Specifically, we call a
vector, W, unit normalized if ||[W|| = 1, and indicate this feature by a caret (*).” For a given
vector w, the associated unit vector is obtained by normalization, i.e. division through its
norm,

w

W . (L38)
[[wl

Two vectors v and w are called orthogonal if (v,w) = 0

VAV and this is indicated by v 1 w. If two vectors are parallel to
each other (in the sense that the Cauchy-Schwarz inequality
becomes an equality) we write v || w. For given w, any vector

< VI v can be decomposed as v = v + v, where the projection,

V| (spoken ‘v-parallel’), and the orthogonal complement,
v, (spoken ‘v-perpendicular’), are parallel and orthogonal to

w, respectively (see figure).

To obtain an explicit formula for this decomposition we write the projection as v = w a.
The coefficient a is determined by requiring that v, = v — v be orthogonal to w, i.e. that
0= (Ww,v,) = (W,v) — (W,w)a. Since (W, W) = 1, we obtain a = (W, v). Projection and
orthogonal complement are therefore given by

VH = W <W, V>,

vV, =v—W(W,V). (L39)

Note that the projection can also be written as v = cos(Z(v,w)) ||v|| W. This follows from
Eq. (L35) and is consistent with an elementary geometric construction. (— L3.2.1-2)

5Exceptions to this convention include unit vectors denoted by e, such as e; of Eq. (L26), for which the
caret is omitted. To be on the safe side, it is good practice to always define unit vectors explicitly.
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For later reference, let us apply the above relations to derive a use-

a ful formula for the area of a parallelogram, A(v,w), spanned by

A(v,w) \& two vectors v,w € R". From elementary geometry we know that

g / A(v,w) = ||v_||/[w]|: the area equals the length of one edge of the
parallelogram, say ||w||, multiplied by its height relative to this edge,
|v_|| (see figure). An alternative representation for the area reads as

1/2

Alv,w) E v = w(w, v)[l[w] = [IvIPIw]? = (w,v)?]"? (L40)
S v l[lwll [1 = cos*(£(v, w)]""* = vl w] sin(Z£(v, w)).
(L41)

The decomposition of vectors into perpendicular and parallel components has many appli-
cations. More generally, scalar products can be used to decompose vectors into contributions
pointing in arbitrary directions.

Let us illustrate the utility of vector de- o
compositions with an example from statics. A mass is 7 rope
suspended by rigid rod and a rope (see figure). To as- - F

2

sess the stability of the construction we need to know the
magnitude of the forces acting on rope and rod, respec-
tively. To this end we decompose the gravitational force,
F, exerted by the body as

rod
Fy

|___| body

F=F +Fy, (L42)

into contributions F1 and F5 acting in the directions par-

allel to the rope and rod, respectively. Expressing each force as unit vector times norm, F = FF,
F, = f‘lFl, and Fy = F2F2, the goal is to find the two unknowns F! and F? in terms of the
known force, F', and the given angle a.. To this end, we write Eq. (L42) as FF = F,F' + FyF?
and take scalar products with F and F5 to obtain

JE)VF = (F,F)F' 4 (F, Fy)F2,

<A
<F27F>F = <F27F1>F1 + <F2?F2>F2‘

We know that <F,F) = (Fg,Fg) = 1 and deduce by elementary geometry that <F,F1> = cos(a),
(F,F2) =0, and (F2,F1) = cos(§ + a) = —sin(a). This leads to the solutions

F

cosa’

Fl = F? = Ftana.

. . .. 1 . .. . . .
Can you explain intuitively why F'* grows indefinitely in the limit o — 57
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L3.3 Inner product spaces

In this and many later sections the caret symbol (") is used to discriminate vectors,
v € V, of generic vector spaces from their component representations, v € R, with respect to
some basis. Scalar products in V' are denoted by (v, W)y and the corresponding scalar product of
R™ by (v, w)R~. This definition of v is totally unrelated to the unit-vector notation of the previous
section.

Although our discussion so far focused on the standard scalar product of R", the algebraic
form of the formula Eq. (L30) was not essential in any way. Indeed, all results were derived
solely on the basis of its three fundamental features (i-iii) listed above. In this section we
invert the logic of the argument and define scalar products for general vector spaces as vector-
pairing operations that obey the criteria (i)-(iii). Equation (L30) then has the status of just
one of many possible realizations of scalar products on R"™. Generalized scalar products can be
rather abstract and need not have straightforward geometric interpretations. However, they
always endow a vector space with powerful computational structures which often facilitate
the solution of problems. For example, the vector spaces relevant to quantum theory all have
scalar products and operations based on these are of profound physical importance, although
these scalar products do not lend themselves to a direct geometric interpretation.

Scalar product: general definition
A scalar product6 of an R-vector space V' is a map
(,Y:VxV =R, (v, W) = (V,W) , (L43)

with the following properties (4, v,w € V,a € R):

(i) symmetry: (v, W) = (W, V),
(i) linearity: (av, W) = a(v, W),
(a4 v, w) = (a,w) + (v, w),
(iii) positive definiteness: v #0: (v,v) > 0. (L44)

A vector space, V' equipped with a scalar product, (V, (, }), is called a normed vector space,
inner product space or Euclidean vector space.

In the literature, the term Euclidean space is used in three different ways:

> A general vector space V equipped with a scalar product, (V, (, )).

> The standard space R"™ with its standard scalar product Eq. (L30).

*The general scalar product is sometimes called inner product and a vector space equipped with it an
inner product space.
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> The affine space IE" discussed on p. 24.

Although the usage of one term for seemingly different objects may seem confusing, the discussion
of this section will show that there is no contradiction and that the three definitions are equivalent
to each other.

> In Euclidean space, E?, with d = 2 or 3, lengths and angles between vectors may be determined
geometrically (by using a ruler). One may then define the scalar product of two vectors v and w
through Eq. (L35), i.e. the product of their length and the enclosed angle. It is straightforward to
check that this geometrically constructed scalar product obeys all criteria required by the general
definition.

> In the function space L?(I) (see 26), consider two functions f,g : I — R and define the map
(,):IxI— Rinterms of the integral

(f.9) = / do f(z)g(x), (La5)

where we used the shorthand [; = f;’ for I = [a,b], and a < b € R. This operation defines a
scalar product. (— L3.3.1)

> For an example of an unconventional scalar product defined on R?, see problem L3.3.2.

Identities derived from scalar products often have an intuitive or even trivial interpre-
tation. As an example, consider the triangle inequality

[l Wl = 1V = wi|. (L46)

In the Euclidean space [E? this identity states that the sum of the lengths of two sides of a triangle
exceeds the length of the third side.

However, one should also learn to think about such relations in more general terms which are
not tied to an obvious geometric picture. Practice this understanding by proving the triangle identity
from the general definition of the scalar product. Hint: Use the Cauchy-Schwarz inequality to show
that (||v]| + ||W]])®> > ||¥ — W||?, which implies (L46). Discuss the interpretation of the triangle
inequality in the case of the function space scalar product (L45).

The condition of positive definiteness is sometimes abandoned, which then leads to the
definition of positive semidefinite ((v,v) = 0 for v # 0 is allowed) or positive indefinite ((v, V) <
0 is allowed) scalar products. An indefinite scalar product of great physical significance, known as the
Minkovski metric, is defined in R*. In applications involving the Minkovski metric it is customary
to label the standard basis vectors of R* as &g, &;,&5,é3. The scalar product is defined by the
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relations’ (€0,€0) =1, (&;,€;) = —1,i=1,2,3, and (&,,€,) =0, # v.” In physics, R* equipped
with a Minkovski metric is understood as space-time, where e( represents a ‘time-like’ direction, and
e; are ‘space-like’ directions. A point with coordinates (ct, z!, 22, 3) then labels a space time-event
taking place at time ¢, and having spatial coordinates x?. Here the speed of light, c ~ 3 x 10%m/s,
is included in the definition of 20 = ¢t to give #*, = 0,...,3 all the same dimension of physical
length.

Some physical contexts require a scalar product which is not positive definite but satisfies the
weaker condition of non-degeneracy: a non-degenerate inner product has the property that
(v,w) =0, YW € V implies v = 0. For example, the Minkovski metric is indefinite and admits
vectors of vanishing norm (&p+€; is an example). However, it is non-degenerate. Indeed, if v = &, 0"
has vanishing scalar product with all other vectors, then (v,é,) = 0 certainly holds for the basis
vectors &, implying v° = (¥,&p) = 0 and v' = —(¥,&;). Hence all the expansion coefficients of the
vector v vanish, thus it was the null vector to begin with.

Metric tensor

Consider a basis {v;} of a space (V,(, )y), where the subscript on the scalar ( , )y
emphasizes that it belongs to V. Evaluating the scalar product for all possible pairs of basis
vectors yields the so-called metric (tensor), g = {g;;},

gij = <{’i, \A’j>v ) (L47)

where the symmetry of the scalar product implies the relation g;; = g¢;i. Now consider two
generic vectors X = v;z* and y = v,/ in V. Their scalar product can be expressed as

(%) = (V' V'), =2 (Vi, Vi) y't = 2t gy (L48)

This formula suggests introducing a generalized scalar product of R"™ by defining

(%, ¥)gn = 959, (L49)
where x = (z!,....2")T and y = (¢%,...,y™)T are component vectors in R™. With this
definition we obtain

(X,9)y = (X, ¥) g = 29559 (L50)

The advantage of this definition is that the scalar product of two vectors in V' is equal to the
scalar product of their component representations in R,,.

"Some texts use the opposite sign convention for the Minkovski metric, defining (&p,&é0) = —1, and
(é;,6;)=1,i=1,2,3.

“Itis customary to index the full set of four basis vectors of a Minkovski space by Greek indices, u = 0,1, 2, 3.
However, the restricted set of indices excluding zero, i = 1,2, 3, is labeled by latin letters.
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Given two vector spaces, (V,( , )v) and (W,(, )w), we call a map F' : V — W an
isometry, if VX,y € V, (X,y),, = (F(X),F(y))w, i.e. if the V-scalar product of its arguments
is equal to the W-scalar product of its images. The definition of the scalar product (L49) is such
that the component representation ¢y : V — R"™, X — x becomes an isometry of the vector spaces
(V,{, )v) and (R™, (, Yr~). Whenever possible one should aim to work with isometries to benefit
from the fact that they leave the scalar product, and hence also lengths, angles, etc. invariant.

It is customary to abbreviate the notation by introducing components with covariant indices
9
as

This index-lowering convention may be applied to represent the scalar product (L50) be-
tween two vectors compactly as

<7A<7 S’>V = <X7 Y>]Rn = xjyj‘ (L52)

Be aware, however, that the positioning of indices (upstairs vs. downstairs) has now become
crucially important: x; # ', unless g;; = 0;;.

For later reference, we note that it is often convenient to introduce an ‘inverse’ metric
tensor {¢g*} through the relation

gkjgji = 5ki7 (L53)
where 7 and k are arbitrary and the repeated index j is summed over. For example, if
_ _ _ 1
g1 = g2 = 1, G2 = 921 = 75 (L54)

it is straightforward to verify that g'! = ¢22 = 2 and ¢'2 = ¢*' = —/2."
The inverse metric can be used to define an index-raising relation analogous to Eq. (L51):

r' = 29" (L55)

The index-lowering and -raising relations (L51) are (L55) consistent with each other in the
sense that z° = x,;¢"" = (2Fg;;)g’" = 2*6," = 2.  In operations involving numerous index
summations this is a useful and important consistency check!

To summarize, a generic scalar product, (, >v' of a vector space, V, motivates the
definition of the metric tensor, Eq. (L47). Its components g;; define a non-standard scalar
product (L49) of R™. The correspondence (V,(, ),,) = (R™ (, )g.) then becomes an
isometry for which the scalar product between vectors and their component representation is
given by (L50).

’Since the metric tensor is symmetric, g;; = gji, Eq. (L51) can equivalently be written as z; = g;;2".

“In many applications, ‘off-diagonal’ elements of the metric tensor vanish, g;; = 0 for i # j. The elements
of the inverse metric tensor then also have this property, g/ = 0 for i # j, and the diagonal elements are
obtained as g = (g;;)~!. Methods for finding the inverse metric in situations with non-diagonal metric
tensors are discussed in section L5.4.
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Define a generalized scalar product of R"™ through Eq. (L49) with a priori unspecified
coefficients g;;. What conditions have to be imposed on the coefficients g;; to satisfy the criteria
(L44) defining an scalar product? Show that these conditions hold if g;; = (V;,V;),, is defined
through a scalar product of a vector space, V.

Given a basis {V;}, it can in general be difficult to determine the expansion of a general vector,
X = v;7¢, i.e. to compute the expansion coefficients z'. However, the problem becomes
a lot easier if a scalar product is available and the metric tensor, g;;, and its inverse, gY, are
known. To see this, we define a set of contravariant basis vectors with raised indices,
{¥v'}, using an index-raising relation analogous to Eq. (L55):

¥ = v, (L56)

Then we compute (V', i)y = (¢9V;, Vi)y = ¢9(V;,Vi)v = ¢“g;x = 0%. Thus, the two
sets of vectors {V'} and {V;} satisfy the orthonormality relation

(V' )y = 0 (L57)

The expansion coefficients of X can now be obtained by taking its scalar product with a
contravariant basis vector: (vl X)y = (Vi viz®)y = (Vi vi)yat = 6 2% = 2. This leads
to the result

~i oA

X = \A/Z<V >X>V- (L58)

The statement made by this formula is that the expansion coefficients of a generic vector X can
be found using a four step-program: (1) Compute the metric tensor, g;;, and (2) its inverse,
g". Then, (3) build the linear combinations v = ¢”/¥; of basis vectors, and (4) compute the
components of X using the scalar product z° = (v7,X)y. Although this may look complicated,
the steps of this program are often easy to perform, and generally are an efficient method for
of obtaining expansion coefficients. (— L3.3.5-6).

Consider the vector space V = IE? equipped with its
w s~ geometrically defined scalar product (L35). As basis we use the vectors
. {V1,V2} indicated in the figure. In coordinates corresponding to the
Vo grid they have a component representation v; = (1,0)” and vo =
%(1,1)? respectively. It is straightforward to verify (do it!) that
V1 the metric tensor defined by this basis is given by Eq. (L54). What
is the component representation of the vector w in the given basis?

Compute its norm from the component representation and check that
the result agrees with the geometrically computed length.

Orthonormal bases of inner product spaces

Given an inner product space (V,( , )v) it is natural to work with bases for which the
metric tensor {g;;} assumes a simple form. This eases all operations involving the metric, such
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as finding its inverse, taking scalar products and computing vector decompositions. A basis,
{é;}, yields maximal metric simplicity if its vectors have unit norm, ||&;|| = \/(&;,&)v = 1,
and are mutually orthogonal, (€;,€;)y = 0,7 # j. These two criteria specify the form of the
metric tensor as

(€i,&j)v = gij = 0ij. (L59)

Here, the Kronecker-0 is defined as usual, §;; = 1 for i = j and 0 otherwise. A basis obeying
these properties is called an orthonormal basis.

Before demonstrating that for any scalar product orthogonal bases can indeed by found, let
us discuss some of their properties. For an orthonormal basis, the component scalar product
representation assumes a particularly simple form, too: given two arbitrary vectors X = &;x!
and y = €,/ in V we obtain (cf. Eq. (L50))

(X,9)y = (&', &5y ), = 2" (&, &), ¥/ = 2'0; 47 = (X, ¥) o , (L60)

where in the last equality we encounter the standard scalar product (L30) of the component
representation in R"™, x'0;;u7 = 27y?. This leads to the conclusion that

The scalar product of vectors represented in an orthonormal basis equals the
standard R"-scalar product of their components.

The construction above entails a re-interpretation of the standard scalar product formula
(L30). The latter does not conform to the conventions of covariant notation (cf. 32), in
that it contains a pairwise summation over two contravariant (raised) indices. Our present
discussion suggests to rewrite (L30) as 27y’ = 274;;47. While at first sight the inclusion of
the Kronecker-o may look artificial, we now understand that it represents a particularly simple
metric, g;; = 0;;. In other words, the misalignment of indices in Eq. (L30) tells us that the
the placeholder of a metric tensor is ‘missing’ there.

Having identified this missing element, we can bring Eq. (L30) into a form consistent with
the general scalar product of Eq. (L52), by writing (x,y)r» = 27y = 2'0;;54° = ;3. Here
we used the fact that for an orthonormal basis contra- and covariant components are equal, '
Ij = 35'7'6” = Iy.

Working with orthonormal bases has many advantages. For example, the evaluation of
the expansion formula (L58) becomes particularly easy because &' = §/¢; = &;, so that the
expansion of a vector in an orthonormal basis assumes the simple form

X =& (& %), =ea, (L61)
where z' = (&',%X),, = (&;,X), is straightforwardly obtained by taking the scalar product of
X with the corresponding basis vector. (— L3.3.3-4).

To summarize, for a generic scalar product, (, )., there are two options:

"This is the reason why many introductory textbooks refrain from distinguishing co- and contravariant
notation in the first place. However, one should be aware of the fact that the corresponding material is then
strictly limited to the case of orthonormal bases.
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> If one works with a generic basis {v;} in V/, a metric tensor, gij, needs to be introduced,
and the scalar product appropriate to the description of the component representation of
vectors becomes a non-standard scalar product in R".

> If instead one works with an orthonormal basis {€;} in V, the metric tensor is trivial,
gij = 0;5, co- and contravariant components are equal, z; = 2’ and & = é;, and the
corresponding scalar product of components is the standard scalar product of R".

Obviously, the second approach is simpler and one will usually aim to work with orthonormal
bases of scalar products. However, sometimes there are compelling reasons to single out a
non-orthonormal basis. The covariant representation of the metric introduced above then is
the best way to describe the situation.

As an example for constructions using an orthonormal basis, let us represent the ge-
ometric area, A(v,w), spanned by two vectors v,w € R in terms of their components in the
standard basis, {e;}. To this end, we insert the expansions v = e;v*, w = ejw’ into Eq. (L40), and
obtain:

A v, w) = [vIPIw]? = (v, w)® =Y [(0)(w?)? = (v'w') (v w)]
ij
= Z [(v")2(w”)? + () (w")? = 2(v'w") (v w?)] = Z [v'w! — vjwi]2 : (L62)

1<J 1<J

In the sum of the first line terms with ¢ = j cancel. We split the remaining contribution into sums
>icj and 37, ;. and in the latter sum relabel indices as i <> j to arrive at the second line.
For two-dimensional vectors, n = 2, this reduces to

A(v,w) = [v'w? —v2w!|. (L63)

We will need this result when discussing area integrals with curvilinear coordinates in chapter C4.2.
It is left as an exercise to verify that for three-dimensional vectors, n = 3, Eq. (L62) reproduces the
cross product formula (L86), A(v,w) = ||v X w||, to be derived in section L4.2 below.

Orthonormalization

Given that orthonormal bases are very convenient to work with, two obvious questions
present themselves: for an arbitrary inner product space, (V,(, );,), do orthonormal bases
always exist? And if so, are there methods for obtaining them? Fortunately, the answer to
both is affirmative. By a procedure known as Gram-Schmidt orthonormalization any basis
{V;} can be constructively transformed into an orthonormal basis.

The algorithm starts by picking one of the basis vectors, say v;. By normalizing it we obtain
the first vector of the new basis, & = v /||v1]|. We next define Vo | = vy, —é;(é', vy) as the
orthogonal complement of v, with respect to €;, obtained by subtracting the component of
Vo parallel to &, (cf. Eq. (L39)). Here &' = &, as appropriate for an orthonormal basis with



L3.3 Inner product spaces 51

metric tensor §;; and &; = 5ijéj. The vector V5 | is non-vanishing. (Why? Remember linear
independence.) Moreover, it is perpendicular to &' by construction,

<é17{’2,L> - <é17‘/\,2 - é1<é17{,2>> - <é17‘72> - <é17‘72> - 07

where we wrote (, ), = (, ) for brevity. Normalization of v, | yields & = Vo | /|Va 1|. We
continue in this manner to define v3 | = V3 — &;(e!, v3) — &,(&?, V3), then normalize it, and
so on, until we arrive at &,,:

1, é1 = Vii/[[viL]l
Vo = Vo é1<é17 Va), € = Vo u/|VoLll
A . 1 4 1aj o A © e L64
o= oY e® v, & = /vl (L64)
‘A/n,L = ‘A’n - Z;L:_ll éj <éj7 ‘A’n>7 én = {,n,L/H‘Af’ﬂ,lH‘

We note that the basis resulting from a Gram-Schmidt procedure is non-canonical in that it
depends on the order in which the vectors are orthonormalized (see the example below). It
is also worth noting that the algorithm may be applied to arbitrary sets U = {vq,...,V,,}
of vectors, even if m > n exceeds the dimensionality of V' and the set is linearly dependent.
In this case, the algorithm will produce the vector O at some of its steps (why?). Vectors
whose orthonormalization vanishes will be discarded. If U contained £ linearly independent
vectors, the result of the operation will be an orthonormal basis of the k-dimensional subspace
span(U). For k = n, we obtain a basis of V.

Convince yourself that all vectors {¥; ;,i = 1,...n} are indeed mutually orthogonal!
This is best proven by induction. We know the validity of the statement for the first two vectors,
i.e. prove that € | L €1 . It remains to show that if the statement holds for the first 1,2,...,j
objects, then it will also be true for the (j + 1)th one. This proves the orthogonality statement for
the remaining vectors &3 .

Apply the Gram-Schmidt orthonormalization algorithm to the R3-basis

0 2 —4
vy = 0 , Vo = 2 , V3= 0]. (L65)
2 3 4

Before doing the calculation think a little and try to anticipate the geometric orientation of the
orthonormal basis. Show how different bases are produced depending on whether you start the
procedure with vi, vy, or vs. (— L3.3.7-8).

The Gram-Schmidt algorithm relies on the positive definiteness of a scalar product. For
semi- and indefinite scalar products, vectors of ill-defined norm can arise (the square root of a
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vector with (v,v) < 0 does not yield a real number). This would invalidate essential steps of the
normalization procedure. However, it may be adapted to obtain a basis {e;} in which the scalar
product is represented by a metric tensor g;; = n;;, with diagonal elements n; =1 fori =1,...,r
and 7;; = —1,7 = r + 1,...,n, with vanishing off-diagonal elements, 7;.; = 0. Here 7 is the
standard symbol for the representation of the metric in this form. n is the vector space dimension,
and the number r is an invariant called the signature of the metric. A positive definite metric has
signature r = n. The Minkovski metric defined on p. 45 is an example of a metric of signature 1.

L3.4 Complex scalar product

This section can be skipped at first reading. It is a prerequisite for chapters L8 and C6.

So far our focus has been on R-vectors spaces, and in particular on the standard vector space
R™. We here discuss how the concept of inner products can be generalized to complex vector
spaces. A complex inner product of a C-vector space, V, is a map

(,):VxV—=C, (v, W) = (V,W) , (L66)
with the following properties:
(i) symmetry: (v,W%) = (9.1,
(i) complex linearity: (av,w) = a(v,w),
(V,aw) = a(v, W),
(+v

(iii) positive definiteness: v #0: (v,v) > (L67)

These properties are analogous to those of Eq. (L44) for a scalar product on a R-vector space.
Notice, however, that complex conjugation is involved in the symmetry relation, and when
‘pulling out’ a scalar factor multiplying the first (but not the second!) vector. A complex
vector space, V', equipped with such an inner product, (V,{, )), is called a unitary vector
space.

Now consider the standard complex vector space, C" = {z = (z!,... 2")T|2" € C}.
As for R™ (cf. Eq. (L49)), a generic scalar product for C" is described by a metric tensor

g={9i} as

(0, w)en = wigiu’, (L68)

where the complex conjugation of the left vector components is required to satisfy the complex
linearity property (ii) of Eq. (L67). The symmetry relation of the same equation further implies
the condition

9ij = Gji- (L69)
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Eq. (L68) can also be written as
(u, w)en = uju’. (L70)

where u; = u'g;; hides the metric via index-lowering. If the metric is trivial, g;; = d;;, so that
u; = u’, we arrive at the (standard) complex scalar product,

(u, w) = uu. (L71)
Unlike in the real case of Eq. (L30), this scalar product is not usually denoted by a dot

notation (v - w). Note that the complex conjugation in Eq. (??) ensures positivity: (v,v) =
— i N |2
vt =Y " |v']* > 0.
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VX w In this chapter we focus on the Euclidean space E3 ~ R3.

7 This space is special not only because it is the space of
‘;} our daily experience but also because it admits the defi-
G/ nition of a product operation between vectors that is very
different from the scalar product discussed above. This
so-called vector product assigns to two vectors v, w € R?
another ‘vector’ which is usually denoted v x w. (The
quotation marks hint at the fact that v x w actually is
not a real vector, a point to be discussed below.) In
the followmg, we introduce the vector product from two different perspectives; the first is
geometric and the second emphasizes the algebraic features of the vector product.

vV XW

—

i

L4.1 Geometric formulation

The vector product or cross product is a map, x : E3 x E3 =V, (v,w) = v X W,
that assigns to two [E3-vectors v and w an element v X w of another three-dimensional
vector space, V. The mathematical identity of V' is discussed in precise terms in chapter L11.
For the moment we note that being three-dimensional, V' = E3 is isomorphic (in one-to-
one correspondence) to [E* and each of its elements can be described as a three-component
object. For this reason, the physics literature often does not distinguish between V' and E?
and considers the cross product to be a map

x B} x E? — %, (V,W) = Vv X W, (L72)

that assigns to two vectors v and w another [E3-vector, v x w. The image, v x w, of the
cross-product is defined implicitly by the following geometric properties:

1. Perpendicularity: By definition, v X w points in a direction perpendicular to the two-
dimensional plane spanned by v and w (unless v || w, in which case v x w = 0). In
other words, v x w is perpendicular to both v and w.

"Here we use the fact that we are operating in IE3. In TE? a direction perpendicular to a two-dimensional
plane does not exist and in and in IE®>3 a plane does not uniquely identify a perpendicular direction.

54
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2. Orientation: Perpendicularity to a plane still leaves two possible directions, ‘upwards’ or
'"downwards’. The orientation of v X w is defined according to the right-hand rule: if
index and middle finger of a right hand point in the direction of v and w, respectively,
then its thumb indicates the direction of v x w (see the figure above).

3. Norm: By definition, ||v x w|| is equal to the geometric area of the parallelogram spanned
by v and w. According to Eq. (L41), this area is given by

v > wl = [[v][[[wl|sin6, (L73)

where 6 = Z(v,w) € [0, 7| is the angle between v and w, as defined in Eq. (L35).

The vector product plays an important role in physics. Gen-

concepts ‘vector’ and ‘rotation’ meet.

Let us illustrate this point with an example from mechanics.
Consider a weight lifted by a lever (see figure). The influence of
the lever on the weight depends on three factors: (i) the point F
at which the lifting force F is applied to the lever, described by
the vector r connecting the axis of rotation to that point; (ii) the
magnitude of the force; and (iii) its direction. The applied force
will be maximally efficient if it acts in a direction perpendicular to
r (as drawn in the figure). All these factors are combined in the definition of torque,

erally speaking, vector products appear whenever the two physical / —
r

N=rxF. (L74)

The torque is defined to be perpendicular to both r and F and this defines an imaginary axis around
which it tries to induce rotational motion. (A torque acts efficiently if it is aligned with an axis
around which mechanical motion is actually possible, such as the cylindrical axis of the structure
shown in the figure.) Taking the norm, |N|| = ||r||||F||| sin Z(r, F)|, we see that the torque is largest
if r L F. The norm also expresses the ‘law of levers' (Hebelgesetz), according to which the effect of
the force depends on the product of its magnitude, ||F||, and the distance of application relative to

the rotation axis, ||r||.

From its geometric construction it follows that the vector product is

antisymmetric: VXW=—WXV, (L75a)
distributive: ux (V+w)=uxv+uxw, (L75b)
in general not associative: ux (vxw)#(uxv)xw. (L75¢)

The lack of associativity can be shown by constructing counter examples (consider, for example,
the vector product of three orthonormal basis vectors). The verification of distributivity on
the basis of the geometric definition of the product is tricky — take it as a challenging exercise
— and will not be discussed here. However, distributivity will follow as a trivial consequence of
the alternative definition of the vector product to be discussed in the next section.
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We mentioned above that the vector product,

N=rxF v X w, is not an element of the space E2 in which
v and w are defined. Though v x w does live in a
r three-dimensional vector space, called V' above, this space

is different from the E? of the argument vectors, and

F F this difference shows up in various ways. As a physically

motivated example, let us consider the torque, N = r xF,
N =r' xF

of two vectors assumed to be perpendicular for simplicity,
r L F, and study its properties under reflection” with
respect to a plane. Let us denote the image of a vector v under this reflection by v’. For reflections
with respect to the shaded plane in the figure we thus have r' = —r and F/ = F. The torque
N = r x F is parallel to the plane. If it were an element of IE3, its reflection would thus be equal
to N. However, the torque is actually an element of V', and as such its reflection is defined to be
the torque computed from the reflected argument vectors, N’ = v’ x F/ = —r x F. This points
in the direction opposite to N, showing that under planar reflections the cross product transforms

differently from an IE3-vector. In view of this oddity, the vector product of two vectors is sometimes
called a pseudo-vector or axial vector. However, the mathematically clean view, presented in
section L11.8, is that the cross-product lives in the three-dimensional vector space of ‘covariant
tensors of second degree’. In three dimensions, these objects can be described in terms of three
components, thus resembling vectors, hence it is standard practice in physics to represent them
using the same notation as used for vectors. However, the above construction shows that both
physically and mathematically, they are different from vectors, and confusion can be avoided by
keeping this point in mind.

L4.2 Algebraic formulation

The non-vectorial nature of the vector product not only shows in its geometric features
(cf. preceding info block) but also algebraically: relations involving the vector product typically
involve index positions that violate the conventions of covariant notation (cf. p. 32). This happens
because the proper algebraic formulation of the vector product, discussed in section L11.8, requires
keeping track of the metric tensor. However, one looses sight of it when employing an orthonormal
basis with g;; = d;j, such as the Cartesian basis used throughout this chapter. On the other hand,
when using an orthonormal basis inconsistencies in index position can simply be ignored, since index
position does not matter: v; = g;jv/ = §;;u7 = v'. For the sake of notational consistency, we will
nevertheless adhere to the convention introduced in chapter L2: we write the expansion of a vector
w.r.t. an orthonormal basis as v = e;v?, with lower and upper indices on basis vectors or components,
respectively.

2Forma|ly, a reflection with respect to a planeisa map E? = E3 v = V| +VvL =V =v|—vL where
v = v| + Vv is a decomposition of the argument into components parallel and perpendicular to the plane,
respectively. The reflection inverts the sign of the perpendicular component.
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17 9 The geometric definition of the vector product presented in Sec. L4.1 is intuitive
k / but cumbersome to work with. To introduce a more efficient computational
3 approach we consider an orthonormal basis, {e;, e, e3}. The vector product
makes reference to the right-hand orientation, and so it will be natural to label
the basis vectors such that e, e;, €3 point in the direction of the index finger, middle finger,
and thumb, respectively. A basis obeying this criterion is called positively oriented. Any
orthonormal basis can be converted into a positively oriented basis by a relabeling of basis
vectors.”

The positive orientation of a basis defines a cyclic ordering of basis vectors as shown in the
figure. Computing the geometrically defined vector product of any two consecutive vectors in
this sequence we obtain the third, e.g. e; x e3 = e;. Computing a product in ‘reverse order’,
we obtain the third vector with a minus sign, e.g. e; X ey = —eg3. It is convenient to introduce
notation representing these relations in compact form: we call a triple of three unequal indices
(1,7, k) cyclically ordered if they are ordered in the sequence 123, 231 or 312, as indicated in
the figure, and anti-cyclically ordered if the sequence of ordering is reversed, 213, 321 or 132.
Geometric reasoning similar to the above shows that the three basis vectors of a right-handed
orthonormal basis satisfy e; x e; = *e;, where the upper or lower sign applies if the indices
17k are ordered cyclicly or anti-cyclicly, respectively.

We will now show that these relations can be summarized in compact form using the
three-index version of the Levi-Civita symbol introduced on p. 11:

€123 = 1, €ijk = —€jik — —€ikj — —€kyji (i7j7 k€ {17273})- (L76)

By definition, it is antisymmetric under the exchange of any two of its indices. It therefore
vanishes if two indices cooincide, €110 = 0, etc. As is apparent from the two right-most
equalities in Eq. (L76), the Levi-Civita symbol is also invariant under cyclic permutations of
its indices. The reason is that cyclic permutations of three indices always involve two index
exchanges, e.g. €123 — €213 — €931, implying a sign of (—1)? = 1. The values of ¢;;; can thus
be summarized as

—_

, (4,4, k) cyclic,
€k = —1, (4,7, k) anti-cyclic, (L77)
0, else (two or three indices coincide).

Remarkably, these values perfectly match those arising in the above-mentiond relation e; xe; =
+e;. The Levi-Civita symbol can thus be used to summarize all vector products of vectors of
a right-handed basis (including the case e; x e; = 0) in a single compact equation:

€; X €; = €k €k- (L78)

Another useful result is obtained by projecting Eq. (L78) onto ey:

(ei X ej) © € = €jk- (L79)

’ For example, if {e, e2, €3} is positively oriented, then {es, e, e3} is negatively oriented.
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Although the Levi-Civita formulation of the cross product Eq. (L78) may not look very
intuitive, it is a potent aid in performing fault-proof computations. In the following, we apply
it to describe the vector product between generic vectors v = e;v* and w = e;w’ as

v xw = (e') x (eju!) = viwl(e; x ;) 'Z viwley e (L80)

This relation shows that the kth component of v x w is given by:4

(v x w)F = viwleyy. (L81)

Formulated in column-vector notation, this reads

vl w! v2w? — vdw?
v x | w? ] = [ vdw! —otwd | . (L82)
v3 w? viw? — v?w!

This relation is useful for computing a vector product explicitly. (— L4.2.1-2) However, it leads
to very tedious expressions in calculations involving more than one vector product. In such
cases, great simplifications can be achieved by employing the Levi-Civita symbol. The reason
is that this symbol obeys the contraction identity (— L4.2.3-4)

€ijk€mnk = 5zm6]n - 5in5jm7 (L83)

where, as usual with pairs of indices, k is summed over. (Verify this identity, ideally without
using the hint given in the footnote.s) In practice, this identity converts two-fold cross products
(encoded via ee) into combinations of scalar products (encoded via §6 — ). This is illustrated
in the following example, and in problems L4.3.1-2.

Let us illustrate the usage of the Levi-Civita tensor by checking that Eq. (L81) conforms
with the geometric definition of the vector product. The orthogonality v L (v x w) is verified by
taking the scalar product:

L81 ; s L76 ; ; ; ;
v (v XWw) (L8 )k v'w’ €, )k v'wegj; = —v' Ukwjeijk i (L84)

In the second equality we used the antisymmetry of the Levi-Civita symbol and in the third relabeled
the summation indices i <+ k (the dummy index in a summation can always be relabeled without

4Eq. (L81) is an example of how relations involving the vector product do not conform to consistent
covariant notation: the index k sits upstairs on the left but downstairs on the right. As mentioned on p. 56,
the reason is that we are working in an orthonormal basis with metric tensor g;; = d;; and have chosen to not
keep track of its role. If one does keep track of it, Eq. (L81) takes the form (v x w)* = \/det(g) viw’ €;;; g'*,
where det(g) denotes the ‘determinant’ of g;;, a construction introduced in chapter L6.1. This expression
does conform to consistent covariant notation, but its justification requires an extended discussion of several
more advanced concepts, which we reserve for section V6.5.

"Without loss of generality, assume (i,5) = (1,2). The sum over k in Eq. (L83) then yields nonzero only
for k = 3. For this value of k, €;pni, = 1 if (m,n) = (1,2) = (4, ) while €y = —1if (m,n) = (2,1) = (4,9).
This agrees with the value produced by the combination of Kronecker §'s on the r.h.s. of Eq. (L83).
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changing the result). Comparing the 2nd and 4th terms in (L84), we see that v - (v x w) equals
its negative, and therefore must vanish. Similarly one shows that w L (v x w). We thus confirm
that the vector product computed by (L81) is perpendicular to the plane spanned by v and w. Its
orientation (upward or downward) relative to this plane follows the right-hand rule as described by
(L78). A little more work is needed to verify Eq. (L73), according to which the norm of v x w is
equal to the area of the parallelogram spanned by v and w. Using the contraction identify, we find:

L32)

vxwl?Z (vxw) (vxw) 2 (2

= (viwjeijk)(vmw”emnk) = viwjvmw"(diméjn — 0indjm)
= viwlv'w! — vl = (v-v) (wew) — (v-w)2 (L85)

Taking the square root, we indeed obtain the area A(v,w) of the stated parallelogram:

v x wi| = [(v-v) (w-w) = (v w)?]/> v |[|w] sin(£ (v, w) = A(v, w). (L86)

L4.3 Further properties of the vector product

The algebraic definition of the vector product leads to a number of secondary relations:

Grassmann identity: ux (vxw)=v(u-w)—wu-v), (L87a)
Jacobi identity: ux (vxw)+vx(wxu)+wx(uxv)=0, (L87b)
Lagrange identity: (vxw) - (txu)=(v-t)(w-u)— (v-u)(w-t), (L87¢)

(v xw)? = [[v[P[w]* = (v - w)™ (L87d)

All of these have geometric interpretations which, however, are not entirely obvious (try to
find them as an exercise). Their algebraic proofs, utilizing the contraction identity (L83), are
more straightforward and likewise left as an exercise (— L4.3.1-2).

Given the scalar- and the vector product, we can introduce a combined product
operation, the so-called scalar triple product, as

(u,v,w) = (uxv) - wE vk e . (L88)

The German denotation ‘Spatprodukt’ refers to a class of materials known as ‘Spate’ which
mineralize into parallelepipedal’ geometries (the figure shows an example).

°A parallelepiped is the three-dimensional generalization of a parallelogram.
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The scalar triple product specifies the geometric
volume of the parallelepiped’ spanned by its three
argument vectors:

Vol(u,v,w) = [(u x v) - w|. (L89)

To see this, notice that the volume of a paral-
lelepiped is given by the area of one of its faces
times its height in the direction perpendicular to
that face. (This statement generalizes the area for-
mula for parallelograms, area = (base line) x (height), to three dimensions.) For example,
the volume of the parallelepiped shown in the figure can be computed as the product of the
shaded area, A, spanned by u and v, and the length, s, of the projection of w onto a line
perpendicular to that area. This volume, As, can conveniently be produced by a combination
of scalar- and vector products: u X v = An, where n is a unit vector perpendicular to the
base area, and n-w = 5. Thus |(u x v) - w| = As, as stated.” Finally, the volume does not
depend on which of the three different faces is chosen at the outset. This freedom is reflected
in the cyclic invariance of the scalar triple product,

(uxv)-w=(vxw)-u=(wxu)-v, (L90)

which follows from the cyclic invariance of the Levi-Civita symbol in Eq. (L88).

The triple product can be used to diagnose whether three vectors are linearly independent
or not. If they are linearly independent, they span a parallelepiped with nonzero volume, hence
(ux v)-w # 0. In contrast, if they are linearly dependent, all three lie in the same plane.
They thus span a ‘flat parallelepiped’ with zero volume, hence their triple product vanishes.
(— L4.3.3-4) This method for diagonizing linear independence can be generalized to an arbitrary
number of vectors using the notion of determinants, to be discussed in chapter L6.1.

We know from daily experience that rotating bodies resist changes of their axis of rotation.
For example it takes a strong force to change the rotation of a wheel in motion and this is what
keeps bicycles from falling. The same principle maintains the rotational axis of the planets of the
solar system in their motion around sun.

v The quantity that is ‘conserved’ in free rotational motion
L r is called angular momentum. For any body of mass m
and velocity v its angular momentum relative to a point,

O is defined as (see the figure below)

L=mr xv, (L91)
0
where r is the vector connecting O and the body. The
angular momentum vector L is perpendicular to the plane spanned by r and the direction of instan-

taneous motion specified by v. In the particular case of a body travelling along a planar orbit, e.g.

"The absolute value is needed due to the antisymmetry of the vector product, (uxv) - w=—-(vxu) w.
The scalar triple product can thus be either positive or negative, depending on whether its argument vectors
satisfy a right-hand rule or not. However, in both cases |(u X v) - w| gives the volume of the parallelepiped.
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the earth orbiting around the sun, the angular momentum relative to a point in the orbital plane
stands perpendicular to that plane.
The conservation law expressing the ‘stability’ of rotational motion reads,

dL
— =N L92
Z=N, (L92)

where N = r x F is the torque acting on the body relative to the point of definition of angular
momentum. In the absence of torque, angular momentum is conserved. Notice that the absence of
torque does not necessitate the absence of forces. For example, the earth experiences a gravitational
force, F', from the sun. However, that force is radial, F || r, i.e. directed along the line connecting the
centers of earth and sun. This means that it does not create a torque, and so the rotational motion of
our planet is (approximately) conserved. For an extended discussion of angular momentum, consult
a lecture course in classical mechanics.
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Much of the following discussion applies to both real and complex vector spaces. To avoid
excessive notation we will focus on the complex case throughout. At all stages the imaginary part
of complex numbers may be set to zero (i.e. replacing a € C by a € R) to obtain the corresponding
theory of real matrices. In the few cases where the real and the complex theory differ both variants
will be discussed in turn.

5.1 Linear maps

We now understand the structure of vector spaces. However, beyond this descriptive level
not much has really been ‘done’ with them. This will now change when we consider maps
between vector spaces. Of particular interest are maps that are compatible with the ‘linear
structure’ of the theory: a map F': V' — W between two vector spaces (this includes the case
V = W of maps acting within one vector space) is called a linear map if F(av + bw) =
aF(v)+bF(w) fora,be Rand v,we V.|

This definition states that the same result is obtained if we first add the vectors in V
and then apply F', or first apply F' and then add the resulting vectors in V'. We have
already encountered an important class of such maps, viz. the isomorphisms ¢, : V" — R" of
section L2.5, which map V-vectors onto corresponding R"™-representations for a given V-basis.

It is customary to denote linear maps by capitalized early latin letters, i.e. A, B, ... instead

of F,G,.... The brackets enclosing the argument vector are usually dropped, i.e. one writes
Av instead of A(v).

A photo is a map of 3-dimensional objects onto a 2-dimensional image. This defines
an (approximately) linear map E2 — TE2: Doubling the object size leads to an image twice as
large, and displacing the object (formally, adding a fixed vector to the vectors defining it) leads to a
proportionally displaced image. Notice, however, that it is not in general possible to reconstruct the
original object from its image: the photographic ‘map’ is not invertible. In contrast, photos taken of
two-dimensional objects do allow for reconstruction. This anticipates a point to be discussed in more
detail below: invertible linear maps, i.e. vector space isomorphisms, can exist only between vector
spaces of equal dimensionality.

"As an example of a nonlinear map consider F : V — V, v — v||v||. Why is this map not linear?

62
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V+w

Figure L12: On the definition of linear maps, F', between vector spaces, illustrated for a map that
rotates all vectors by 45deg and shrinks them by a factor of 2.  Top panels: it does not matter
whether vectors are first added and then mapped by F, or first mapped and then added. Bottom
panels: in the same sense, the map is compatible with scalar multiplication.

Before discussing the mathematics of linear maps it is worthwhile to outline the importance
of the concept to physics. First, many operations of physical significance are described by
linear maps. Examples include rotation, dilatation, the reflection of space and time, and others
more. Second, we will see that even very complicated general maps between vector spaces
can be ‘locally’ approximated by linear maps. The heuristics behind this statement is that
arbitrary smooth structures (think of a curve winding through three-dimensional space) look
‘linear’ (the curve approximately becomes a straight line) if one zooms in sufficiently closely.
The description of ‘linear structures’ and of maps between them may therefore serve as a local
(close-up) approximation to the more complicated ‘global’ picture. Third, the mathematics of
quantum mechanics is essentially one of linear maps between vector spaces known as Hilbert
spaces (see chapter L10). This list is not exhaustive but illustrates that linear maps have many
important applications in physics.

The importance of linear maps is also reflected in the physics curriculum where linear algebra
is routinely taught in the first or second terms. It was not always like this. When the ‘modern’
theory of quantum mechanics was formulated in the third decade of the last century, linear maps
and their description in terms of so-called matrices were unfamiliar to a majority of physicists.
They were certainly unknown to Werner Heisenberg when he formulated the foundations of the
operator approach to quantum mechanics. It was Max Born, together with his collaborator Pascual
Jordan, who realized that Heisenberg's theory could be formulated in the language of linear maps,
and this observation was published in the joint paper M. Born, W. Heisenberg, P. Jordan, Zur
Quantenmechanik 1l. Zeitschrift fiir Physik 35, 557 (1926). This first formulation of quantum
mechanics in terms of linear maps marked the beginning of quantum theory as it is taught to date.
Since then linear algebra has become an indispensable tool in modern physics.
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L5.2 Matrices

We begin by discussing linear maps between standard vector spaces, V = C", W = C™.
In section L5.5 we will see how this discussion includes most of the mathematics required to describe
the theory of linear maps between general spaces.
Consider the simplest of all complex vector spaces, C! = C. A general linear map acts on
‘vectors’” z € C by  — Az, multiplying them by a fixed complex number, A € C. Indeed, it
is straightforward to verify (try it) that multiplication by a number meets the linearity criterion
formulated above. The distinguishing feature of the map is that Az does not contain additive
constants, or higher powers of z (Az + B or Az**! are not allowed) . Now let us generalize
this construction to maps A : C? — C. Here, x = (2!, 2%)” has two components and Ax € C
is a number that depends on these. Again, it is not difficult to verify that the most general
linear map reads Ax = A;x! + A.2?, linear in both 2! and 22, with complex coefficients,
Ay, Ay € €. Foramap A : C? — C? the image Ax has two components which must both
be linear functions of x! and 2. Thus, the most general image vector can be parameterized

as
! Al pt + Alya?
(%)= (n i), (L93)
in terms of four complex numbers {A’;}.

Everything we have said so far also applies to linear maps between real instead of complex
vector vector spaces. In this case, of course, real instead of complex coefficients are involved.

Consider the map A : R? — R? between real vector spaces described by

s <Cos9 —smﬁ) (Lo4)

sin 6 cosf

and let it act on some simple vectors such as x = (1,0), or x = (1,1)T. Convince yourself that
A describes the rotation of vectors by an angle 0. Argue entirely in geometric terms (not using
formulas) why rotations of space are linear maps.

The generalization to maps between two vector spaces, each of arbitrary dimension, should
now be obvious. The most general linear map A : C" — C™ is specified by

:13'1 A11£U1 4 A12332 4+ 4 Alnxn Alj :Cj
I2 A21x1 + A22x2 4+t A2nxn A2j zJ

x=| . |—Ax= _ = : , (L95)
™ Amxl + A 4 AT " Amad

*For one-component vectors, we avoid the boldface convention, i.e. we write z = x = (x) for simplicity.
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i.e. the ith component of the vector Ax is given by

(Ax)' = Aljz! + Alya? - Al a" = ATjad | (L96)

n

withi=1,...,mand j =1,...,n. The coefficients {Aij} are all complex numbers, hence

A linear map A : C* — C™ is fully specified by m x n complex numbers {Aij}.

This means that linear maps are comparatively ‘simple’. To appreciate this statement, consider
the case n = m = 1. Then just a single number is needed to specify a linear function, whereas
describing a generic function F' : C — C, z — F(x) requires specifying infinitely many
function values. Similarly, m X n numbers contain much less information than required to
specify an arbitrary higher-dimensional function F': C* — C™.

In the following, arrays of sums as in Eq. (L95) will appear so often that it pays to switch
to a more efficient notation: we define the rectangular array

ALY Ay LAY
A=Ay, oA oA (L97)
Am L Am AT

called the matrix ‘representing’ the linear map A, or its matrix representation. The matrix
fully specifies the linear map and is customarily denoted by the same symbol, A. Occasionally
we want to draw a more marked distinction between a map, A, and its matrix, 4, in which
case the former will carry a caret. The entries, Aij, of a matrix A are called its components
or matrix elements. The full matrix is often denoted as A = {A’;}, where the index range
is left implicit. By convention, the left index i labels rows, the right index j columns (also
when noncovariant notation, A;;, is used for the matrix elements).

The action of this matrix on a vector x — which is more commonly called the multipli-
cation of a vector by a matrix — is now defined through the relation:

At Ay AL LAY xt
Al | = | Ay 0 A LAY . (L98)
Amxd Amp AT AT "

One may visualize how the ith component of Ax is computed by moving stepwise from left to
right along the ith row of the matrix A, and at the same time from top to bottom along the
single column of the vector representing x. At each step the corresponding matrix element
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Aij and vector element 2/ are multiplied and the results added up, Ailxl 4+ -+ Ainx", to
obtain (Ax)" = A’;27, as given in Eq. (L96).

Let us illustrate the operation of multiplying a vector by a matrix with a number of

basic examples:
1 4 2\ [(1-2+4-1\ (6
5 3 1) \b-2+3-1) \13)’

2 5 3 2:3+5-2 16
3 3 -<2>— 3:3+3-2] =115
6 1 6-3+1-2 20

2.2=4. (L99)

For an m X n matrix A = {Aij}, the jth column defines a vector,

Al

Aj - (Alja tet >Amj)T = ) (L].OO)
Am,

j
with components (A;)" = A’;. For example, the 1st column of the 2 x 2-matrix A = (2})
defines A; = (¢). A general matrix can be written as an n-tuple

A=(A,...,A,), (L101)

formed by its n column vectors. Likewise, the ith row can be identified with the transpose of
avector, AT = (A%, ... A" ). For example, the second row of the 2 x 2 matrix corresponds
to A?T = (c,d). We can think of a general matrix in terms of a stack

AlT
A= : (L102)
AnT
of n of these objects. Using this notation, Eq. (L96) can be expressed as (Ax)! = AT - x,
thus the ith element of Ax equals the scalar product of the ith row of the matrix with x.

The action of A on the jth standard basis vector, e; = (0,...,1,...,0)7 (the 1 at
the jth position, of course), is given by

AL LAY LA 0 AL,

J n J
: : : 1 :
Aej = P P ; = ’ , (L103)
Ao Aj cee A : A’j
A™oL Amj cee o AT 0 Am]-
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i.e. by the jth column of the matrix A. In the column vector notation introduced above this
can be written as

Ae;

J

— A,

J

(L104)

Linear maps are often defined by their action on the standard basis vectors, i.e. by an assign-
ment e; — v, where v, are the known image vectors of the standard basis vectors. Eq. (L104)
implies that the matrix representing the map can then be represented as A = (v, Vva,...,Vv,),
i.e. as an array containing the n image vectors v; = A as column vectors.

If A:C? — €3 is a linear map whose action on the standard basis of C? is defined by
the first two expressions in Eq. (L105), then its matrix representation A is given by the third:

. 3 . -1 3 1
(0) A 2], <1> Al o], a=[2 o]. (L105)
1 1 11

The set of all matrices containing m rows and n columns of real numbers is sometimes
called mat(C, m,n). Two matrices A, B € mat(C, m,n) may be added by adding their components,
i.e. we define A+ B € mat(C,m,n) through (A + B)ij = Aij + Bij. Similarly, we may multiply
A by a scalar, a € C, to obtain a matrix aA with matrix elements (aA4)’; = aA’;. Show that with
these definitions, mat(C, m,n) is an C-vector space. Show that the dimension of this space is given
by m - n.

The transpose and the adjoint of a matrix

We conclude our introduction of matrices by defining two operations that will become
increasingly important in our discussion below. Given an m x n matrix A we may define a
corresponding n X m matrix AT (spoken A-transpose) by exchanging rows and columns. This
is illustrated in the following examples:

2 47
(42 r (41
DR ]
1
A= (3] — AT =(130). (L106)
0

The third example shows how the extreme case of a 1 X n matrix, i.e. a vector, transposes
to a n x 1 matrix. We have used this notation before as shorthand for column vectors, e.g.
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0,17 = ((1)) For a matrix with elements Aij, the elements of the transpose matrix are
given by

(AT);" = A7, (L107)

where on both sides of the equation the left index labels rows, the right index columns. For
example, (AT),! = 3 in the first example given above. Transposing a matrix by interchanging
rows and columns can thus be memorized as an operation which slides both indices to the
respective 'other side’, (AT)ji = A;_l The prescription works in either direction, i.e. for a
matrix with elements B’ we define (B”)’; = B,*. Notice that when using covariant notation,
as we do here, upper indices stay up and lower ones down during transposition. (The rationale
behind this convention will be discussed later in section L11.4.) If instead one chooses to use
non-covariant notation, with all indices downstairs, transposition amounts to interchanging
them, (AT)ij = A]z

For a complex vector space, we define the adjoint matrix A" (spoken ‘A-adjoint’ or
‘A-dagger’) through transposition followed by complex conjugation

Al =AT (A =47, (L108)

For example

(142 5 p (1—2i 4+i
a= () S a= (1)), (L109)

L5.3 Matrix multiplication

The power of matrix calculus becomes apparent when we consider the composition of
linear maps. For example, a graphics designer might might rotate, stretch and rotate a figure
in three consecutive steps on a computer. All three operations are linear maps and the joint
operation amounts to their composition.

The composition, C = Bo A : C" — C!, of two linear maps, A : C* — C™ and
B : €™ — ' is again linear and hence described by a matrix. The [ x n matrix {ij}
representing map C' can be found from the [ x m and m x n matrices {B"} and {A";} of
B and A, respectively. To this end, observe that A maps a C"-vector with components z7
onto a C™-vector with components A’;z7. This image vector, in turn, is mapped by B onto
a Cl-vector with components B*, (Aijxj) = (BkiAij) 27, The matrix of the composite map,
C = B o A, thus has matrix elements

k k 7t
C* = BR A (L110)
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There exists an efficient scheme to compute these matrix elements directly from the rect-
angular arrays of the individual matrices:

cy oL CY o, B AL BYL A", BL A
C:’“l C@ c:kn = B’“Z.:Ail B"',;Aij B’“;Ain
oo o) \Ba, . oBa, B,
BY ... B, ... B Aty LAY LAY

= B:k1 B"‘ B;‘“m : A:i1 A:?j An (L111)
g, B o8, \an oan oam,

To compute element C’kj of the matrix C' = BA (sometimes also denoted B-A) , proceed from
left to right along row & of B and from top to bottom along column j of A. Multiply the respec-
tive elements of the matrices B and A and add up, ij = BklAlj o BkmAmj: BkiA"j,
in agreement with Eq. (L110). This amounts to taking the scalar product of row k of B and
row j of A, in other words C’“j =B" . A,

Let us illustrate the operation of matrix multiplication on a number of examples:

14\ (2 1) _(1-2+4-1 1-1+4-3\ _ (6 13

53/ \1 3/ \»-2+3-1 5-1+3-3) \13 14)°

12\ 13422 1-142-1 7 3

3 3 -(2 1): 3-3+3-2 3-1+3-1|=[15 6],

2 4 2.344-2  2.1+4-1 14 6
(2)-(2) = (4)

The take-home message of our discussion so far is:

The composition of linear maps is described by the product of the matrices
representing them, where the product operation is defined by Eq. (L111).

Of course, we can consider compositions of more than two maps. For example, if three
maps are applied in succession, say first A, then B, then ', one obtains the composite map
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Co(BoA) = (CoB)oA = CoBoA where the associativity of the composition means that we
do not need to put brackets. In the language of matrices this means C-B-A=C-(B-A) =
(C-B)-A where all " operations are matrix products. When working with products containing
more than two matrices it sometimes pays to think about the ‘most economic’ way to compute
the product; matrix multiplication is time consuming and some orders of taking products are
more efficient than others. In general, the proliferation of terms to be added /multiplied makes
higher-order multiplications cumbersome. Sometimes, however, matrix multiplication leads to
simple results, as is illustrated by the following example.

Verify that the product of the matrices A, B and A’ given below has the ‘diagonal’
form indicated on the right:

1 (11 (01 , 1 /1 -1 , (1 0
a=gmla) m=() =l ) e )
In Sec. L7 we will discuss why the product ABA’ assumes a simple form.

We finally note that it is sometimes useful to think of vectors as matrices. Indeed, you may
identify a vector

v
v=|: (L112)
,UTL
with a matrix containing n rows and 1 column. Likewise, the vector wl = (w!,...,w") is a

matrix containing 1 row and n columns. If v, w € R" are real, then their scalar product
(w,v) =w'lv, (L113)
may be identified with the matrix product between an 1 x n and an n x 1 matrix, which yields

an 1 x 1 matrix, i.e. a number.

Properties of matrix multiplication

Matrix multiplication is one of the most important operations of linear algebra. The matrix
product is (a,a’ € C)

> associative: C-(B-A)=(C-B)-A=C-B-A, (L114)
> compatible with scalar multiplication: (aB)-A = B-(aA) = aB-A, (L115)
> distributive: C-(aB+d'B')y=aC-B+dC-B' (L116)
> not commutative (except in special cases): A-B # B-A. (L117)

> The transpose of a matrix product equals the reverse product of transposed matrices:

(A-B)' = BT. AT, (L118)
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By iteration, this formula generalizes to: (A-B-C-sE)' = ET.sC".B". A",

The associativity of matrix multiplication reflects the associativity of the composition of
the corresponding linear maps. It also follows directly from the definition (L111) of matrix
multiplication: C',(B*A';) = (C', B¥;)A’;, implying Eq. (L114). The distributivity of the
matrix product and its compatibility with scalar multiplication are trivial consequences of
the definition. The lack of commutativity means that linear maps carried out in different
orders generally lead to different results. This point is illustrated in the example below. Finally,
Eq. (L118) for transposing a matrix product follows from ((A4-B)"); = (A-B)'; = A", B, =

(AT),/(BT)f = (B")*(A")," = (BT-AT),". For the next-to-last equality we used the fact
that individual matrix elements commute, since they are just numbers, not matrices. (Make
sure you understand the difference between this statement and A- B # B - A for matrices.)

Bé;

Figure L13: lllustration of the action of the maps A and B defined in Eq. (L119), and of their
compositions AB and BA in E2.

A (real) algebra is an R-vector space W with a product operation
WxW—=W, (u,v) — u- v,
subject to the following conditions (u,v,w € W, ¢ € R):
> (u+v) - w=u-w+v-w,
> u-(v+w)=u-v+u-w,
> c(v-w)=(w) w+v-(cw).

Our discussion above shows that the space of n x n matrices (mat(IR, n,n),-) forms an algebra. Its
elements are matrices, A, B,... and its product operation is the matrix multiplication A- B = C.
Due to the associativity of this operation, the matrix algebra is called an associative algebra.

Consider two maps in R? A and B, with matrix representation

A:\}iG _D B:(é 0). (L119)

N[ —
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Compute the action of these matrices act on the standard vectors (1,0)7 and (0,1)7. Convince
yourself that A describes a rotation by an angle 7/4 in the counter-clockwise direction, while B
describes stretching and shrinking by a factor two in the 1- and 2-directions, respectively (cf. Fig. L13).

Now compute the matrix products
2 1 /1 -1 1 /2 -2
BA = — =— ,
6 D0 )= )
1 /1 -1\ /2 0\ _ 1 (2 -3
-0 )6 D=6 1)

0
that describe rotating then stretching, or stretching then rotating, respectively. Let these composites
act on the standard basis vectors to explore how they are changed.

= O

L5.4 The inverse of a matrix

General remarks on invertible linear maps

In section L1.1 we learned that if a map is bijective then an inverse map exists. Specifically,
for an invertible linear map A : C"* — C™ there is an inverse map A~! : C™ — C" such that
A~1A is the identity map on C" (and AA™! the identity on C™). These statements raise a
number of questions: do invertible maps exist between spaces of arbitrary dimension n and m
(try to find an answer in advance)? How can we know if a map possesses an inverse? If it
does, how can we obtain it?

First, it turns out that

Invertible maps A : C* — C™ can exist only between vector spaces of equal
dimension n = m.

This statement is intuitively understandable. If A : C* — C™, and m > n, then the target
space is 'too big' to be surjectively covered. Conversely, if m < n then it is ‘too small" for
an injective assignment. Consider, then, maps between spaces of equal dimension, n = m.
According to our discussion of section L1.1 the bijectivity of maps depends on whether they
are both injective and surjective. Whereas for general maps these two features are independent
of each other, the situation with linear maps turns out to be simpler:

For linear maps A : C" — C™ between vector spaces of equal dimension, the
conditions of injectivity and surjectivity are equivalent.

To check the invertibility of a linear map it is therefore sufficient to test either one of the two
criteria. In practice, however, the following two turn out to be the most useful test criteria
for the invertibility of a map A : C* — C™
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> Consider a basis, for example the standard basis {e;}, and verify whether the set of image
vectors, {Ae;}, is also a basis.

> Equivalently, you may verify that no non-zero vector gets mapped to zero: Vv # 0: Av #
0.

If either one of these conditions is met, then A is invertible. (For a proof, see the next
subsection.)

We finally remark that for a general matrix, A : C* — C'™, the kernel is defined as the
set of vectors, KerA = {v € C"|Av = 0} C A, which get annihilated by A. The kernel of A
is a subspace of C™ (why?). Likewise, the image of A, Im(A) = A(C™), is a subspace of C™
(why?). The dimension of the image space, dim(Im(A)), is called the rank of the matrix.
The invertibility criteria above require that for a matrix A : C" — C" the image must span
the full space C", i.e. its dimension equals the maximal possible value, n:

‘ An invertible matrix A : C* — C™ has maximal rank n. ‘

The dimension formula

In this subsection we verify the various statements made in the previous subsection. It
can be skipped on first reading

Ker(A)

Tm(A)

Figure L14: Schematic of the one-dimensional kernel and the two-dimensional image of a linear map
A :V — V' between two three-dimensional vector spaces. For a discussion, see info section below.

Above, we introduced the kernel, Ker(A), and the image, Im(A), of a matrix A : C* — C™ as
subspaces of C™ and C™, respectively. All that we seem to know a priori about the dimensions
of these spaces, is that they are smaller or equal to n and m, respectively. However, it turns out
that they are related to each other by a stronger relation, known as the dimension formula.
A simple construction (see info section) shows that

dim Ker(A) 4+ dimIm(A) = n. (L120)

For a graphical illustration in the case n = 3, dim Ker(A) = 1, dim Im(A) = 2, see Fig. L14.
In this case, the dimension of the kernel and the image obviously add to three, i.e. the dimension
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of the space where the map is defined. Notice that the formula does not make reference to
the dimension, m, of the target space.

The proof of Eq. (L120) is straightforward. Let k£ = dimKer(4) < n = dim(C™). Now
construct a basis, {v;} of C" such that {vi,..., vy} span Ker(A). (For a degenerate kernel,
Ker(A) = {0}, containing just the null-vector, we have k& = 0 and the kernel basis is empty.)
The image of A is then spanned by the n — k vectors w; = Avpi1,..., Wy = Av,, ie.
span{wi,...,w,_r} = Im(A). It remains to be shown that these vectors are linearly indepen-
dent. For in this case, span{wi,...,w,_} = Im(A) is an n — k dimensional subspace of C™,
which in turn implies dimIm(A) + dimKer(A) = (n — k) + k = n. To show that the vectors w;
are linearly independent, assume the opposite, i.e. the existence of a nontrivial linear combination,
0 = a'w; = a'Avyy; = A(a’vi,;). This, however, is a contradiction, because the linear combination
a'vy.; does not lie in ker(A) and hence it cannot map to the null vector.

Eq. (L120) has a number of important consequences. For example, it implies that invertible
maps can exist only between spaces of equal dimension, n = m. This follows from Eq. (L120)
because an invertible map must be surjective and injective and this requires dim Im(A) = m
and dim Ker(A) = 0, respectively. Our relation thus assumes the form n = m. Moreover, the
formula also implies that if n = m, then injectivity and surjectivity are equivalent. To under-
stand this, assume surjectivity, i.e. dimIm(A) = n. Eq. (L120) then states dim Ker(A) = 0,
which means injectivity. The reverse conclusion, that injectivity implies surjectivity, is shown
in the same way.

Finally, notice that the above arguments did not rely on properties distinguishing C" from
generic n-dimensional vector spaces. For maps A : V' — V' between generic spaces, the
dimension formula assumes the form

dim Ker(A) + dimIm(A) = dim V. (L121)

All statements regarding injectivity, surjectivity, and bijectivity carry over to the general case.

Matrix inversion

A matrix A representing a map A : C™ — C" has as many rows as columns and is therefore
called a square matrix. Assume that A is invertible, i.e. that an inverse map A~! exists.
The latter will be represented by an inverse matrix, denoted by A~! as well. Its defining
property, A7'A = AA~! = 1, corresponds to a matrix equation in which 1 is the so-called
unit matrix,

(L122)

or 1*; = d*;, i.e. a matrix whose action on any vector 1v = v leaves the vector invariant.
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Recall the concept of groups introduced in section L1.2. The set of invertible maps acting
on an n-dimensional vector space forms a group: the composition of two invertible maps is again
invertible, invertible maps have inverse maps, and we have a neutral element, i.e. the identity map.
In the present context, the composition of maps is represented by matrix multiplication. The ensuing
group is called the general linear group and denoted GL(n,F), where F = R or C, depending on
whether V' is a real or complex vector space.

In explicit matrix multiplication notation, the equation defining the inverse matrix assumes the
form

(A™HY (A7h Al AL 10
A4 - (A1) (A7h)% A% A% _ 0 1
(A, an, 1
(L123)
where A™' = {(A71)%, }. This equation may be equivalently expressed as
i,j=1,...,n: (A AR =6 (L124)

For n = 2, a straightforward check shows that the matrix inverse is obtained as

fa b L1 d —b
A_(C d>:>A _ad_bc(_c ) (L125)

Notice that no inverse exists if ad = be. The reason is that the matrix A then fails the test criteria
formulated in the foregoing section. For example, Ker(A) is not empty, since the vector (_‘Z) is
annihilated by A. Equivalently, the image vectors Ae; and Aes are not linearly independent.

Unfortunately, there is no quick and painless way of computing matrix inverses for general
n. For n 2 4 matrix inversion is often done on a computer. In fact, the optimization of
matrix inversion algorithms is a field of active research in computer science which underpins
the applied relevance of the problem.

In low dimensions such as n = 2,3,4,..., a matrix may be constructively inverted as
follows: start from the column vector representation (cf. Eq. (L101)) A™! = (aj, as,...,a,).
Substituting this into the matrix equation AA~! = 1 we observe that the jth column vector,
a;, is determined by the equation

Each vector equation defines a system of n linear equations (Aa;)’ = A’ (a;)" = 0",
which need to be solved for each j. Altogether we thus need to solve n x n scalar linear
equations, or n vector equations. Once we are done with this task the n vectors a; define the
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desired A~!. An efficient scheme for solving linear systems of equations is discussed in the
info section below.

In linear algebra we often need to solve problems such as
Ax = b, (L127)

where A is an m xn matrix, b € C™ a known vector, and x € C" is sought. Written in components,
this assumes the form of a system of linear equations,

Al =1, i=1,...,m. (L128)

For b = 0 the system is called homogenous, otherwise it is called inhomogeneous. A homogeneous
system determines x only up to a multiplicative constant: if x satisfies Ax = 0 then any (¢x), c € C
does too.

There are different ways to approach problems of this type. The most straightforward one is to
proceed by iteration: pick any of the equations A’;z/ = b’ and solve for z! in terms of the unknowns

22 to 2" as 2! = _Alil (bi — > Aij:cj). (Of course, the choice of ! is arbitrary. It might
be more convenient to start with another component, ideally one for which the r.h.s. contains the
smallest number of variables 27.) Substitute this result into the remaining equations and the problem
has been reduced to one of m — 1 equations for the n — 1 variables 2% ...z™. This procedure must
now be repeated until one of the following situations occur, depending on the values of m and n:

> If there are as many equations as variables m = n, the system may or may not have a solution.
It does not if one of the equations states a contradiction (such as 0 - 2™ = 0™, where b is
non-vanishing). If no contradiction is encountered and if the system is homogeneous, b = 0,
the final equation specifies ™ only up to a multiplicative constant, see remarks above and the
example below. If the system is inhomogeneous its solution is unique, i.e. the final equation
uniquely specifies ™ = x™(A,b) in terms of the given coefficients Aij, and .  One may now
iterate backwards by expressing "~ ! in terms of z", then 2”2 in terms of "~ ! and 2", until
all 27(A, b) are specified.

> If there are fewer equations than variables, m < n, the procedure ends at a point where all
m equations have been processed but n — m variables, 2™ t5" are still unspecified. These
variables then have the status of free parameters, i.e. for each choice of {z™*1 ... 2"} one can
find a solution for all the equations, so that the system has infinitely many solutions. Such systems
of equations are called under-determined, i.e. the number of equations does not suffice to fix all
variables. For an under-determined system one may apply the procedure outlined above to express
m variables as z7(A, b, z™ 1) for j = 1,...m, i.e. as functions of the given coefficients and
the free parameters.

> If there are more equations than variables, m > n, we run out of variables to eliminate before
the last m —n equations have been processed. Such systems are over-determined and in general

. 3

have no solutions.

If the values of all variables are held fixed, the remaining m—n equations assume a purely numerical form,
like 3 =4 or 3 = 3. The former, a contradiction, would signify an over-determined system. The latter, a
redundancy, would imply that these remaining equations were actually not ‘independent’ of the first n ones.
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For an example of an underdetermined system, consider the homogeneous system Ax = 0 defined
by the matrix

6 -1 5
A= 2 o 2. (L129)
8 1 -7

Expanded into a system of three equations, this reads

6! — 22 + 523 =0,

22t + 223 = 0,
—8z! 4 2% — 723 = 0. (L130)
Start with the second equation to obtain x3 = —x1. Inserting this result into the first and third

equations, they simplify to
ot — 2% = 0,
—zt 422 =0.
The first of these equations now implies ' = 2. The fact that this is compatible with the second

equation signals that the system is solvable. Defining z® = ¢, we obtain z' = 22 = —¢ and hence

the set of solutions

parameterized by a free running variable, c. It is good practice to always substitute the result x
back into the defining equations to check that no mistakes have been made. Then, confirm by
matrix-vector multiplication that our solution indeed satisfies Ax = 0.

Let us illustrate the algorithm for computing matrix inverses with the example

1 1 -1
A= 1 0 -3 ]. (L131)
-1 -1 3

Following the general algorithm, we need to solve three systems of equations, Aa; = e;, for j =
1,2,3. Each of these is processed according to the solution scheme discussed in the info section
above. In this way we find,

1 1 1
aa=1|2], a=|-11, az= |11,
2 0 2
and this is then combined into the matrix
1 11
Al=12 -1 1]. (L132)
2 0 2

Check by matrix multiplication that AA~! = 1 indeed holds.
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L5.5 General linear maps and matrices

Throughout this section, vectors v € V of general vector spaces will carry a caret to
distinguish them from their column vector representations v € C". General linear maps A: V — W
will distinguished by the same symbol from their matrix representations A : C" — C™.

While our discussion so far was restricted to the standard vector

n . . . ES
spaces C™, we now consider linear maps between generic spaces,
V. To motivate this generalization, consider the example of Eu-
clidean space E3. Pick a vector x and consider rotating space . X
around the direction of x by an angle 6. In this way a map, A, ¥y Vi
obeying the linearity criteria is defined (why?). This raises ques- A 4

tions like how the action of A can be described in terms of formulas
or how this linear map can be included as a building block in more
complicated operations. For example, we might want to describe
a succession of two rotations around different rotation axes x and x’. Such operations are no
longer easily visualized and we need an efficient formalism for their description.

To this end, let A: V — W be an arbitrary linear map between vector spaces. In both,
V' and W, we pick (not necessarily orthonormal) bases, {v;} and {W;}, respectively. The
discussion includes the case V' = W of linear maps operating within one vector space (such as
the rotation above), V' = W, in which case identical bases may be chosen, w; = v;. We may
now apply the map A to the basis vectors v; and expand their image vectors, ; = Av; € W,
in the {w;} basis as

Y
V3

j=1,....n: ;= Av; = W, A", (L133)

where the coefficients Aij specify the action of the map. Note that for the purposes of the
present discussion it is convenient to write the coefficients describing the map behind the
vectors. This ordering is naturally suggested by the covariant notation, i.e. WiAij puts the
summation indices i next to each other and looks more natural than the (identical) expression
Aiijvi.

In our rotation example above, it would be convenient to choose a basis containing
a unit vector V1 pointing in the direction of the rotation axis. This vector can be complemented
by two mutually orthogonal ¥5 L V3 unit vectors in the plane perpendicular to ¥; to yield a basis
{V1,V2,V3}. Only one basis is needed, because our rotation map acts within one vector space. It is
then not difficult to see that the rotation acts as

Avy = vy,
Avo = V9 cosf — v3sin 6,

Avsg = Vaosinf — V3 cos 6.
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Given the basis, any V-vector, X, may be represented by a column vector x = ¢¢(X) in C" (see
section L2.5). Specifically, the basis vectors v; get mapped onto the standard basis vectors
de(Vj) =e; =(0,...,1,...,0)7. Likewise, vectors y € W get represented by column vectors
y = ¢w(y) € C™, and basis vectors w; by standard basis vectors f; = (0,...,1,...,0)7 €
C™. Eq. (L133) then states that under A a basis vector with component representation e;
gets mapped onto one with component representation u; = f;A°; = (A", A%;,... A" )T,
We thus conclude that the map A defines a unique assignment of C"-standard basis vectors
to C™-component vectors. As discussed in section L5.2, this defines an m x n matrix A =
(uy,...,u,) containing the image component vectors as columns, and the numbers A’; (cf.
Eq. (L97)) as entries. This map is defined by the equation Ae; = u;, i.e. much like e;
represents the vector v;, the matrix A : e; — u; represents the map A v; — u;. The
situation is summarized in the diagram below. However, always remember that the matrix
representation, A, is specific to a choice of basis.

V;W

vV ——=u; = AVj

Jo

e; —>u,; = Ae;

Compute the matrix representing the rotation map discussed above.

The discussion above shows how a generic linear map, fl may be described by a matrix, A.
Since these matrix representations are a powerful aid in computations, the typical workflow
for working with linear maps is as follows:

> The first step often is the choice of a basis adjusted to the action of the linear map. For
example, in the case of rotations, axes of rotation present themselves as directions of basis
vectors. For a reflection with respect to a plane one might choose vectors within that plane
and complement them by vectors perpendicular to the plane to a basis, etc.

> Next, one constructs the matrix representating the map, as discussed above.

> Concrete calculations are then usually performed using matrices. For example, the compo-
sition of two linear maps (represented in the same basis, of course) would be described in
terms of their matrix product, etc.

> At the end of a matrix-based computation, the map x — X may be applied to switch back
to V-vectors.

Consider the space (cf. discussion on p. 27) P, of all real-valued polynomials, p(z) =
ex* + da> + ca® + bx + a of degree equal to or less than 4. Within this space consider differentiation,
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d, : Py — Py, as a linear map acting on a polynomial as d,p(z) = 4ex® + 3dx? + 2cx + b. (Make
sure you understand why the differentiation of polynomials of finite degree, n, is a linear map acting
in the subspace of polynomials, P,.) Identify the matrix representing this map in the basis defined
by the polynomials {z*, 23, 22,z 1}.

L5.6 Matrices describing coordinate changes

Throughout this section, vectors living in general spaces will be denoted x (i.e. they
carry a caret). Their C"-component representation relative to a basis {V;} will be denoted x, and
the representation relative to a basis {\73} by x’. The formulas discussed in this section are easiest
to read if expansion coefficients are written to the right of vectors, i.e. we write X = v ;27 instead of
xjffj. However, this notation convention is not imperative.

In section L2.5 we discussed how a choice of basis {V;} of a vector space V' defines an
isomorphism, ¢¢ : V' — C", assigning to each vector X = v,;z/ € V' a component vector
x = (2',...,2™)7T. Likewise, we saw that a choice of basis assigns to any linear map,
A:V =V, a corresponding matrix representation A. If we now choose a different basis,
{\7;} the component representation of vectors changes, x +— x’, and so does the matrix

representation, A — A’, but the vectors, x, and linear maps, A themselves remain invariant,
of course. In a sense, a basis change means a change of ‘language’ by which the invariant
objects x and A are described in C". Such changes are important operations and in this
section we will learn how to describe them efficiently.

> Let us revisit the kitchen example of p. 19 to ex-
wh . emplify how the change of coefficients accompanying a change
s of bases can be computed in elementary terms. For example,
7 on p. 19 we asked how the components of a vector with rep-
- . resentation w = (0,90)7 change if we switch from coordinates
e} V2e) measured along the walls to ones in which one of the coordinate
e, directions is rotated by 45 deg (see figure, where the vector w
has been shortened for better visibility). Such questions can be
el =e) conveniently addressed in terms of basis changes. The phrase

‘coordinates along the walls’ actually means that vectors are rep-

resented in terms of two unit length basis vectors, e; and es,
parallel to the walls. Vectors may then be written as, e.g., w = €10 + €590, to identify their ex-
pansion coefficients in that basis. Suppose now we keep 1 as one coordinate direction but choose
the other coordinate direction at a 45 deg angle to the first (see figure). This defines an alternative
basis, with &) = é; and &, replaced by &, = %(él + €3) (make sure you understand this point).

To find the coefficients w” of a vector W = & w" + &,w? expanded in the new basis, we first rep-
resent the old basis vectors as linear combinations of the new ones: & = &) and &, = —& + 1/2&),
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(see the figure above). Now substitute this result into the old basis vector expansion to obtain
W = &0 +&290 = &0 + (—&} +1/2&,)90 = —&,90 + &,/290. We thus obtain W' = 90(—1, v/2)7
for the component representation in the new basis. The geometric interpretation of this expansion
is shown in the figure above.

The discussion above shows that basis changes are not really complicated operations. All
we need to do is solve linear equations, i.e. equations containing the unknowns (such as the
expansion coefficients of the old basis vectors in terms of the new ones) to linear order’ and
rearrange terms. At the same time, it should also be evident that calculations of this sort
can become cumbersome in higher dimensions where lots of coefficients are involved. In the
next subsection, we will discuss how the required operations can be streamlined to maximal
efficiency. But before doing so, it is worth understanding the change of representation
induced by a change of basis on a conceptual level. The situation is summarized in the
diagram below, where the maps ¢ and ¢ assign to vectors X the component representations
x and x/, respectively.

VAN
lT

by
o

These maps are vector space isomorphisms (i.e. invertible linear maps), which means that the
composite map,

T = ¢¢r 0 ng‘T,l Ot — O, X gzﬁc,/(gzﬁ\?,l(x)) =x, (L134)

is an isomorphism, too. The linear map 7" : C" — C", x — Tx = X/, describes how the
coordinates of the vector x change upon a change of basis. Being a linear map C"* — C",
we can think of T" as a matrix. Next we learn how to identify this transformation matrix in
practical terms.

Transformation matrix

In this subsection, we sometimes use primed indices like 27" where x’ defines the
component representation of a vector in a new basis, {\7;} While this notation does not look nice,
it serves as a reminder indicating whether a index refers to components of the new basis (j') or not
(j)- However, this notational twist is purely cosmetic (and certainly not standard), the naming of
summation indices remains completely arbitrary. It will be abandoned in later sections after some
familiarity with basis transformations has been gained.

In the old and the new basis representation, respectively, the expansion of a V-vector X assumes

‘A quantity x appears to ‘linear order' if only its first power appears, i.e. if no terms such as z“, with
a # 1, are present. For example, 2 + 1 = 0 is a linear equation, but 2/ +1 = 0 or sin(z) + 1 = 0 are not.



82 L5 Matrices |: general theory

the form

X = v;a?,

x = Va7, (L135)
which defines the representation vectors x = (2!,...,2™)7 and X' = (2'%,...,2™)T. Assume

that the expansion of the old basis vectors in terms of the new ones is given by
P j/
vi=v, T, (L136)

J

Substituting this expansion into the first of the equations above, X = v;,Tj/jxj, and comparing
with the second equation, we obtain the identification

27 = Tj/jxj. (L137)

Eq. L98 then tells us that the basis change is represented by the transformation matrix

TV ... T, . T
T=|1 ... 17, ... T |, (L138)
™ ™ ™,

as X’ = Tx. Our discussion shows that the contents of the matrix 7" can be interpreted and
used in several different ways:

> The jth column of this matrix, T;, with components Tj/j, contains the expansion coeffi-
cients of the jth old basis vector v; in terms of the new basis vectors {V/,} (Eq. (L136)).

> The basis vector v;, that used to have the representation e; in the old basis, is now
represented by the column vector T; = T'e;.

> The vectors x’ and x in C™ that represent a general vector X € V in the new and old
bases, respectively, are related by matrix multiplication, x' = T'x (see Eq. (L137)).

The transformation matrix 7" tells us how the form of a C"-vector changes as we pass from
the old to the new representation. However, it also specifies the inverse transformation,
i.e. the question of how a vector assuming a known form in the new representation looked in
the old one. To understand how, notice that a change from the old basis to the new one,
and then back to the old one amounts to the identity operation. We just discussed how
old—to—new is described by a matrix 7. The change new—-to—old must undo the effect of
this transformation, which means that it is described by the inverse of the transformation
matrix, 7-!. A transformation from the old to the new representation and then back is then
correctly described as 7! - T' = 1, i.e. an identity operation.
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Consider the Ea-bases {Vy, v} and {¥],V5} shown il IQ’/\ Tl T2
in the figure. The old basis vectors are expressed in terms of the Ve j
new ones as .
Vaf LA
~ 3/ 1A/ \ ,/l ~
V] = ZVI + §V2, 75 - . Vi
5 1o/ 15/ \A/
Vo = —gvl + §V2, (L139) —
‘ Vi
and this gives us
3 _1
4 8
r={1 1] (L140)
3 2
For example, we read off the matrix element T, = —% from the first term in the expression vy =

VT +¥4T%. Now consider a vector X = ¥;z7 with components x = (}) with respect to the old
. . . . . A . . A N 51 .
basis. According to our discussion above, the representation of X in the new basis, X = v;-,x” is

J0)- (1)

We conclude that x = 1V + 2vo = %\7’1 + %\7’2. This can be confirmed by inspection of the figure.
Let us also consider the inverse transformation
) . (L141)

(Verify by matrix multiplication that 7-!7 = 1.) We may use it, for example, to check how the

representation (%, %)T of the vector V1 in the new basis transforms under a change to the old basis:

XI—>X/:TX:<

Wl W
D= 00|

ol Dol

_ 12

-1
T 5

IN[JUNOI e

|

Wl D=

This confirms that in the old basis ¥; was represented by a standard basis vector.

Change of matrix representation

We now understand how basis changes are described by invertible transformation matrices,
T, and how they cause a change of component vectors as X' = T'x. Next we address the
related question of how matrix representations of linear maps ¥ = Ax transform under a
change of basis.

The defining property of the matrices A and A’ which represent the map A in the old and
the new basis, respectively, is that y = Ax and y’ = A’x’. Substitution of y' = Ty and
x' = Tx into the second relation yields Ty = A'Tx. We multiply this vector relation by 7"—*
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to obtain y = T1A'Tx = Ax. Since this equality holds for arbitrary x, we arrive at the
identification

A=T1AT. (L142)

This important formula affords a straightforward interpretation. The application of the map
to some vector in the old representation (A) is equivalent to the following set of steps:

1. First, pass from the vector's old representation to the new one by applying the matrix 7.
2. Then apply the map in the new representation by using the new form of the matrix, A’.

3. Finally, transform the resulting image vector back to the old representation by applying
T

Note that Eq. (L142) may be multiplied from the left and right by 7" and T, respectively,
to obtain TAT ' =T(T'A'T) T~ = A, or

A =TAT (L143)

Read: the matrix representation in the new basis is obtained from the old representation by
applying the inverse transformation matrices. The transformations (L142) and (L143) are
sometimes called similarity transformations. The name indicates that matrices related by
a similarity transformation describe the same linear map, albeit in a different representation.

Let us illustrate this transformation procedure with the example of the vectors defined in
Eq. (L139). Assume that we have a linear map which stretches all vectors in the horizontal direction
by a factor of 2. For example, the vector X would map to the dashed vector indicated in the figure.
In the language of the (‘new') ¥'-basis, this transformation assumes a simple form: v} — 2V} and
VY — V), which means that this map has the matrix representation

A = (3 ?) . (L144)

The application of the transformation matrix (L140) and its inverse (L141) yields the representation

of the map in the (‘old’) V-basis:
2 0 1 (19 -3
= — . L145

Let us check that this — awkward looking — result makes sense. Application of the matrix on the right
to the ‘old—basis—representation’ of V1, i.e. (1,0)”, produces the image vector (19/10, —6/10)7 i.e.
almost (2, —0.6)"". This tells us that ¥, is approximately mapped to 2v; — 0.6 V2. Inspect the figure
to verify that this statement is consistent with the graphical representation of the transformation.

A=TTAT = %2

D[ 0Ol

|

Wl |

Wl NI
= 0ol
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Matrix trace

The discussion above shows how the matrices representing a linear map transform under
changes of basis. However, a linear map also possesses some characteristic properties that are
independent of the choice of basis. The simplest of these (others will be discussed below) is
the trace of a matrix A defined as the sum of all matrix elements on the diagonal:

tr(A) =) A (L146)

The most important algebraic property of the trace is its so-called cyclic invariance. Given
two matrices A, B we have

tr(AB) = tr(BA). (L147)

This identity is trivially verified as tr(AB) = (AB); = A", B’; = B’ A', = (BA)’, = tr(BA).
The denotation ‘cyclic invariance’ is motivated by the obvious generalization of the exchange
identity to n matrices Ay, ..., A,:

tI‘(AlAQ e An—lAn) = tI‘(AnAlAQ N An—l), (L148)

i.e. we may ‘cyclically’ exchange matrices under the trace.

The cyclic invariance immediately implies that the trace is invariant under a change of
basis. We have seen above that under a basis change mediated by a transformation matrix
T the matrix representation of a linear transformation A changes as A s A’ = T 'AT.
However, the trace remains invariant,

tr(A") = tr(T'AT) = tr(TT ' A) = tr(A). (L149)

For example, the matrix A" of Eq. (L144) has the trace tr(A’) = 2+ 1 = 3, which equals the
trace of its transform, tr(A) = 13 + 15 = 3.
We finally notice that the matrix trace is invariant under transposition,

tr(A) = tr(AT), (L150)

where tr(A”) = Y. (A7), This follows trivially from A?, = (AT).%.

Summary

The above discussion conveys an important message: depending on the chosen basis, the
matrix representations of linear maps may be nice or ugly (cf. Eq. (L144) vs. Eq. (L145)).
We favor to work with nice representations and in the following sections will discuss how such
forms can be found. As a reminder, table L5.1 provides a summary of the essential facts about
matrix endomorphisms discussed above.
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general linear map, A:V — W
representation—matrix matrix representation, A

image of standard basis vector e; under A
matrix representation of A : x+—y

A={A"}
Jth column vector of A, A;
y = Ax

basis transformation within V'
representation—matrix matrix representation, 7'

jth old standard basis vector in new representation
relation between old and new representations of x
inverse transformation

j'th new standard basis vector in old representation
matrix representation of A in new basis

~ N j/

T = {T]j}

Jjth column vector of T', T
x =Tx

N —1\J

Vi =V (T,

j'th column vector of 771, Tj_,1

A =TAT!

Table L5.1: Formulas describing matrix representations of linear maps and their changes under basis

transformations. In the table, {V;} and {\7;,} are distinct bases of the same vector space V.
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At the end of the previous chapter we have introduced the trace of a matrix A as a number
— the sum of its diagonal elements — which does not change under changes of basis. There
exists one more basis-invariant scalar quantity, the so-called determinant, det(A) € C. The
very important role played by the determinant is somewhat difficult to describe before it has
been defined and applied. However, let us mention in advance that the determinant provides
a powerful test for the invertibility of a matrix (it is invertible if and only if the determinant is
non-vanishing), and plays a key role in obtaining the simplest possible matrix representation
of a linear map. In this chapter we will define the determinant, and discuss its characteristic
properties. In later chapters will then be applied in a number of different contexts.

L6.1 Determinant

The determinant is a function
det : mat(C, n,n) — C, A — det(A), (L151)

producing numbers from square matrices. The determinant of a matrix is sometimes denoted
by det(A) = |A|, ordet (§3) = |{ 3]

Permutations

87
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Before explaining how the determinant is com-
puted, we need to discuss some mathemati-
cal aspects of permutations (of n objects).
A permutation is a reordering of these ob-
jects. There are different notations for per-
mutations. For example, labeling the objects
as 1,2,3,4, the symbol [3,2, 4, 1] denotes the

Gottfried Wilhelm Leibniz
(1646-1716)

A German mathematician and
philosopher. Leibniz de-
veloped infinitesimal calcu-
lus independently of Newton.
Being fascinated with auto-

mated computation, he in- permutation 1 — 3, 2 — 2, 3 — 4, and
vented various types of mechanical calcula- 4 — 1. Alternatively, we may label a permu-
tors, and refined the binary number system. tation by P, where P(j) € {0,1,...,n} is
In the humanities Leibniz is known for his the number to which j is permuted. Some-
‘philosophical optimism’, e.g. the view that |  times, the shorthand notation Pj = P(j) is
our universe is the best a god could possibly used instead. In this language, [3,2,4,1] is
have created. represented as P1 = 3, P2 = 2, P3 = 4,
P4=1.

The set of all permutations of n objects (or numbers) is denoted S,,. For example,
Ss =4{[1,2,3],(2,1,3],[3,2,1],[2,3,1],[3,1,2],[1, 3, 2]} (L152)

Exercise: convince yourself that the number of permutations contained in S, equals n! =
n-(n—1)-...2-1. For example, S3 contains 3! = 6 elements.

Although permutations are easy to define, the underlying mathematics is complex. The set
Sy, forms a group, the so-called permutation group, or symmetric group. Composition in this
group is the iteration of permutations. For example, if we are given three balls, labeled 1,2, 3, we
may first exchange the first and the second ball, to obtain [2,1,3] and then the second and the
third to arrive at the ‘product’ [2,3,1]. A permutation can be undone (the inverse) and there is the
neutral or identical permutation, P = id, which permutes nothing. Beyond these simple statements,
the mathematics of permutations quickly becomes complicated. (The richness of the underlying
structures is illustrated, for example, by Rubik’s cube whose solution can be understood in terms of
the permutation of 54 differently colored squares covering the six faces of the cube.)

Each permutation can be reduced to a sequence of pair permutations, i.e. permutations which
exchange just two objects at a time. This statement is easy to understand: any re-ordering of
n objects can be achieved manually (with one’s own two hands) by sequentlally swapping pairs
of objects. Now, for a given permutation P € S,, we have two options:' the number of pair
permutations needed to arrive at P may be even or odd (determine the even/odd attribute for
the six permutations of S3). In the former/latter case, we call P an even/odd permutation
and define

+1, Peven,
sgn(P) = { _1 Podd. (L153)

"Notice that the even/odd attribute is not entirely innocent: there are different ways of realizing a given
P by a sequence of pair permutations. However, the ‘parity’, i.e. the even- or oddness of the number of pair
permutations, is an invariant. This makes the function sgn well defined.
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as the signum of a permutation.

Determinant definition and calculation

We are now in a position to define the determinant of an n x n matrix A = {A";} as

det(A) = > sgn(P)A'p A%p, . A"y, (L154)

PesS,

Let us write down the determinant for the three simplest cases, n = 1,2, 3:

n=1: det(A) = A'},
=2 det(A) = A' A%, — AL, A% (L155)
n=3: det(A) = A' A% A3, — A1, A% A3, — A1 A%, A3
— AV AR AR, + AT AR AR + AT AR AR (L156)
For example,
1 3
det (2 5> =1-5—-2-3=-1,
2 31
det [ -1 4 3| =2-4-2—-3-(-1)-2—1-4-0
0 2 2
-2:3:243:3-0+1-(—-1)-2=8. (L157)

For n = 4 the number of terms grows to 24, which illustrates that manually computing
determinants of dimension larger than three is cumbersome.

The determinants of real matrices afford a concrete geometric interpretation: the absolute
value of the determinant of an n x n matrix A, |det A|, equals the volume of the n-dimensional
parallelepiped spanned by the column vectors of A. The general proof of this identity requires
integration theory and will not be discussed here. However, for two- and three-dimensional matrices
the statement can be checked by straightforward computation: for a two-dimensional matrix A =
(A1, A2) with column vectors A; and As, Eq. (L155) gives

163)

n=2: |det(A)| = A", 4% — A1,A% |2 A(A}, A,), (L158)

where A(v, w) is the area of the parallelogram spanned by two vectors, v, w (cf. Eq. (L63)). Similarly,
for a three-dimensional matrix A = (A1, A2, A3), Eq. (L156) gives

L88

n=3: |det(A)] = ejrA AT, AR ' (A x Ag) - As| "2 V(AL Ay, Ay), (L159)

where V(u,v,w) is the volume of the parallelepiped spanned by three vectors, u,v,w, and the
Levi-Civita tensor generates the sign factors occurring in Eq. (L156).
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Eq. (L154) is known as the Leibniz rule. It defines one of several ways of computing
determinants. For completeness we mention an alternative formula, the Laplace rule. This rule is
useful in computing determinants of matrices containing rows or columns containing a large number
of zeros, so-called sparse matrices. Laplace's algorithm proceeds in three steps:

1. Choose an arbitrary matrix row, i, (or column, j) of a matrix A. Ideally, choose a row (column)
containing a maximum number of zeros.

2. If column no. j has been chosen and Aij # 0 compute the so-called minors M%7 ¢ C. It is
defined as the determinant of the (n — 1) x (n — 1) matrix obtained by crossing out column j
and row i of A. For example, with column j =1 and A the 3 x 3 matrix in (L157),

11 21 31
M det< )2, M det( )4, M det< )5.

If the rule is applied with reference to a fixed row 4, the minors M% need to be computed for
varying j.

3. Finally compute the sum

det(A) =)~ A'j(=)" MY, (L160)

where j is fixed and (—)"™/ = (—1)"™/. One can show that the result thus obtained does not
depend on j. For completeness we mention that the product (—)“*7M% is called the cofactor
of the matrix element Aij. The formula shows why only minors corresponding to non-vanishing
matrix elements enter the scheme. For our 3 x 3 matrix from Eq. (L157), the evaluation of the
sum for j =1 yields

det(A) = 2M" — (—1)M* +0M3 =2.2+4 =38,

Laplace’s rule reduces the computation of an n x n determinant to that of the computation of < n
determinants of lower order (n — 1) x (n — 1). Exercises: Apply the rule to the third row of the
matrix A.

We will not show the equivalence of Laplace’s and Leibniz' rules for computing determinants.
However, it is an instructive exercise to rearrange terms in the 3 x 3 Leibniz expression (L156) such
that the determinant assumes the form of Laplace's sum (L160). The general proof is left as a
challenging exercise in combinatorics.

There are few types of matrices for which the calculation of determinants can be
simplified. Consider, for example, the case of triangular matrices for which Aij = 0 for either all
i > j (upper triangular matrix), or all i < j (lower triangular matrix). These matrices are called
‘triangular’ because all matrix element to the lower left of the diagonal, or upper right of the diagonal,
respectively, vanish by the above condition. The determinant of a triangular matrix is simply given
by det(A) = [, A%;. Show how this is a straightforward consequence of Leibniz' rule. (Hint: think
which permutations obey the condition Pi > i for all i.)
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A matrix block structure is defined as

X - <é g>7 (L161)

where A € mat(r,r,C), D € mat(s,s,C), and r+s = n. The complementary blocks are rectangular
matrices B € mat(r,s,C) and A € mat(s,r, C) of non-quadratic form if » # s. Any matrix of
dimension n > 1 carries a block structure with blocks of arbitrary dimension r and s = n — r,
respectively. Although this is a formal statement, the distinction of blocks really makes sense if
the sub-blocks carry distinct meaning. For example, consider an atom containing r electrons and s
nucleons (the protons and neutrons forming its nucleus). Let X"j be the strength of the magnetic
interaction between these particles. The interaction strength between the electrons X*;, 4,7 < r,
or the matrix block A will be qualitatively different from that between the nucleons (block D), or
the electron-nucleon interaction B, C. The magnetic interaction matrix therefore naturally carries a
block structure.
It can be shown that

det <A B> = det(A — BD'C) det(D), (L162)
C D

i.e. the determinant of the block matrix can be represented as the product of determinants of the

s x s matrix D and the 7 x 7 matrix A — BD~'C. Whether or not this representation simplifies

the calculation of the determinant depends on the structure of the blocks A, B, C, D. A dramatic

simplification arises, e.g., if either B =0 or C' = 0. In this case the formula collapses to

det (4 0) Zdet (4 B = det(4) det(D). (L163)
(e n)=a(5 b)

Determinants appear frequently in various mathematical contexts and it is important to be
able to recognize them as such even if they are not represented exactly as in (??). In fact, there exist
various popular alternative determinant representations building on the Leibniz rule some of
which we review here for later reference.

All these re-formulations rely on the option to rearrange permutations in different orders. For
example, the matrix elements in (??) may be reordered as 3" . sgn(P)A” 'L .. AP7'"  where
P~1j is the inverse permutation acting on j. In this form, the covariant (downstairs) indices are
arranged in ascending order. (For example, A';A? A3, may be rearranged as A% Al, A3, where
the permutation appearing in the second representation downstairs is the inverse of the permutation
appearing in the first representation upstairs.) Now, sgn(P) = sgn(P~!) (why?) and ", F(P~!) =
> p F(P), i.e. the for arbitrary functions, F', the summation over all inverse group elements equals
the summation over all group elements. This allows us to rewrite the determinant as

det(A) = > sgn(P)A"! A2, A" (L164)
Pes,
with ascending contravariant indices. Also note that the index configuration (1,2,...,n) appearing

in these expressions is not ‘speicial’. It is just one (viz. the identity) permutation, and can be replaced
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by any other Q(1,2,...,n) = (i1,...,i,) with no consequence if sgn(Q) = 1 or a sign change if
sgn(Q) is odd. The formal way to see this is by writing

D> sen(P)A" gy APG, = 37 sen(P)AY T A9, =

Pes, Pes,
= ) sen(QQTIP)AY T AR —sn(Q) D sgn(QTIP)AY T L A9 =
Pesn Pes,
= sgn(Q) Z sgn(P)APY, .. AP
PeS,

The final sum equals det(A), and so we have obtained another Leibniz rule clone,
det(A) sgn(Q) = Z sgn(P)APlQlAP2Q2 . .AP”Qn (L165)
PeS,

We finally note that the formula can be written in a more compact form by introducing the fully
antisymmetric tensor

€y o = E1I20n :{ sgnlji,...,Jnls (j1,..-,7n) @ permutation of (1,...,n) (L166)

0, else.

This is the generalization of the Levi-Civita symbol (L77) to index arguments of higher order. Using
this symbol, the determinant formula assumes the compact form

det A = edzn AL A2 AN =g, AT AP, AT (L167)
With sqn([i1, ..., in]) = €,,.. 4, the generalization Eq. (L165) assumes the compact form
det Aeil,...,in = 6j1,j2,.~~,jn,Ajli1Aj2i2 e Ajnin. (L168)

Determinant properties

Much like the trace, the determinant is a ‘fingerprint’ of a linear map in that it does not
change under changes of basis. Besides, it has many other useful properties summarized below.
All of these are straightforward consequences of the definition, although in some cases the proof
may not be entirely obvious. (In such cases we refer to lecture courses in linear algebra or
mathematics textbooks for detailed discussions.) In subsequent chapters the usefulness of the
properties of the determinant function discussed below will show in concrete applications.

1. For a diagonal matrix, D = diag(\;,...,\,) Leibniz' formula implies that the deter-
minant is given by the product of the diagonal elements,”

n

det(D) = [ (L169)

=1

The determinant of a diagonal matrix containing zeroes on the diagonal vanishes.

“The symbol [] is the product analog of the sum, 3, i.e. [l @i = 1 -2 - - - Tp.
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The determinant is invariant under transposition,

det(AT) = det A. (L170)

(This can be proven by exchanging matrix indices in the Leibniz formula and using that
for any set of objects {X;;}, > o [ Xiri = >_p [[; Xrii (Why?). )
We also note that under complex conjugation it behaves as

det(A) = det(A), (L171)

where A = {A_’J} is the complex conjugate of the matrix. Combining this with Eq. (L170),
we obtain

det(A") = det A, (L172)

where the adjoint is defined in Eq. (L108).

The determinant is antisymmetric under the pairwise exchange of two rows columns
or of two rows,

det(...,Ai,...,Aj,...) = —det(...,Aj,...,Ai,...), (L173)
AiT AjjT

det : = —det : . (L174)
AjT AiT

Here, the ellipses represent rows or columns that remain unchanged. The sign change
implies that for matrices containing identical rows or columns the determinant equals its
own negative, i.e. it vanishes.

Multilinearity: The determinant is linear in each column. With r, 1’ € C,
det(...,rA;+7r"Al ) =rdet(..., Ay ...) +r'det(..., Al . .). (L175)

Similarly, the determinant is linear each row,
det | rAT + ' ATT | =rdet | AT | +7'det [ ATT | . (L176)

Notice the similar behavior of the determinant with respect to operations affecting rows
or columns, respectively. Convince yourself that this is a consequence of the invariance
of the determinant under transposition, Eq. (L170).
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For r € C, the determinant obeys the relation
det(rA) = r"det(A), (L177)

where (rA);; = rA;;. This formula can be proven by repeated application of Eq. (L175)
for ' = 0.

The determinant of a matrix vanishes if it contains linearly dependent rows or columns.
For example, if A; = >, ¢’A; Eq. (L175) may be applied to reduce det(A) to a sum of
determinants of the form det(A;, ..., A;,...). The antisymmetry relation (L173) implies
that each determinant in the sum vanishes individually. Notice that the above relation
implies the vanishing of A(e; —) 7', c'e;) = A;— > ,_, c'A;, i.e. the existence of a non-
vanishing vector that is annihilated by A. Conversely, if we have a vector v = c'e; with
this property, 0 = A(c’e;) = ¢'A;, then the column vectors of A are linearly independent
and the determinant vanishes. This leads us to the important conclusion,

The determinant vanishes if and only if a matrix is non-invertible, i.e. if it anni-
hilates a non-vanishing vector. This criterion provides a rather powerful test for the
invertibility of a matrix: compute its determinant and if a non-vanishing result is
obtained, invertibility is guaranteed.

Crucially, the determinant of a product of matrices equals the product of determi-
nants,

det(AB) = det(A) det(B), (L178)

for A, B € mat(C,n,n). The proof is based on direct algebraic manipulations of the
Leibniz formula and can be found in mathematics textbooks.

Eq. (L178) implies an important formula for the inverse of determinants. From Eq.
(L169) we know that the unit matrix has unit determinant, det(1) = 1. Now use that
1 =det(1) = det(AA™") = det(A) det(A™1) to obtain

1
~ det(A)

det(A™) : (L179)

An important consequence of Egs. (L178) and (L179) is that

the determinant of a matrix is invariant under a change of basis.

If the new representation of a matrix A after a basis change is A’ = TAT !, then we
have

(L178) (L179)

det(A") = det(TAT') "="det(T)det(A)det(T™") =" det(A). (L180)
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Above, we have seen that all invertible matrices, i.e. all elements of the matrix group GL(n, C)
have a non-vanishing determinant. The subset, SL(n, C) C GL(n,C), defined by the condi-
tion that the determinant equals unity,

SL(n,©) = {A € GL(n, ©)| det(A) = 1}, (L181)

is called the special linear group. It is a group (with matrix multiplication as composi-
tion), rather than just a subset, because the group axioms are satisfied: it contains the unit
matrix, 1 € SL(n,C), which acts as the group's unit element; if det(A) = det(B) = 1,
then det(AB) = det(A) det(B) = 1, i.e. matrix multiplication is compatible with the group
definition; and if det(A) = 1, then det(A™!) = (det(A))~! = 1, hence the inverse of A also
lies in the group. The special linear group, both in its complex and real version SL(n, C) and
SL(n,R), respectively, is one of several subgroups of GL(n,C) which are used to describe
certain linear physical transformations. However, the full meaning of these objects becomes
apparent only in the middle of the curriculum when disciplines such as relativity or particle
physics are discussed.

It is instructive to verify the properties of the determinant for the simple case of a
2 X 2 matrix

A= (‘c‘ Z) : (L182)

with determinant
det(A) = ad — be. (L183)
1. For a diagonal matrix, b = ¢ = 0, Eq. (L183) indeed reduces to det A = ad, the product of
diagonal elements.
2. Invariance under transposition follows from the invariance of (L183) under exchange ¢ <> b.

3. Column antisymmetry is illustrated by det (3 ‘CZ) = bc — ad = —det(A).
4.  Column-linearity (L175) is illustrated by det (((Ziz)) Z) =(a+d)d—blc+ )= (ad—bc) +
(a'd —bc") =det (24) 4+ det (% 4), row linearity is shown in the same way.

5. To verify Eq. (L177) consider det (rA) = det (79 7%) = (ra)(rd) — (rb)(rc) = r*(ad — bc) =
r? det(A).

6. If the determinant vanishes, this fixes one parameter of the matrix, for example a = be/d. Verify
that the same condition is required to obtain a non-trivial solution, v, of Av = 0.

7. Eq. (L178) is verified by defining two 2 x 2 matrices, A and B, computing the product AB,
and comparing its determinant with the product of the determinants of the individual matrices.

8. The inverse of the matrix (L182) is given by Eq. (L125). Taking its determinant we indeed

obtain det A" = oty (da — be) = 75 = 1/ det(A).
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For the purpose of illustration, let us discuss the proof of the exchange identity (L174). The
proofs of other identities are of comparable complexity and use similar arguments. Most proofs of
determinant properties use the Leibniz rule (L154) and the group property of permutations. To
illustrate this, let Pj; o) denote the pair permutation exchanging the first and the second elements
of a set of n numbers, e.g. P 9{3,4,2,1} = {4,3,2,1}. For an arbitrary permutation, P, the
composition P’ = PoP o) is again a permutation — the group property. The composite permutation
P’ acts as P'2 = P1, P'1 = P2, and P'l = Pl for [ > 2. We also know that sgn(P’) = —sgn(P),
because P and P’ differ by one pair permutation (if P is even P’ is odd, and vice versa). Now,
consider two matrices A and A’ differing by an exchange of the first and the second row:

AlT A2T
AQT A]T

A= AT = | AT, (L184)
A;zT A.nT

We thus know that A", = A2, and A2, = Al,, while all components taken from rows other than 1
and 2 are equal. Now let us apply the Leibniz rule to the computation of the respective determinants:

det(A) = ) sgn(P)A" p A% py AP py .. A p,
PGS’H.
= Y sen(P)A%p Al py APpy. . A"p,
Pes,
== Z sgn(P) A% po Al p APy Apry
PesS,
- — Z Sgn(P,)AIP/1A2p/2A3P/3 N AnP/n - — det(A)
pPes,

In the second equality we used the exchange relation (L184) between A’ and A; in the third the
relation between P’ and P; and in the fourth, that if P runs over all permutations in S,, so does
P’ ie Y pcg = Y.pics,- The final equality is just the definition of the determinant where the
summation ‘variable’ P’ replaces P.
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L7.1 Diagonal matrices

Next to the unit matrix, the so-called diagonal matrices are the simplest of matrices. As
is indicated by the name a diagonal matrix, D, has its only non-vanishing matrix elements on
the ‘matrix diagonal’, D’j = 6’j/\j, or

In writing such matrices it is customary to leave areas with vanishing matrix elements blank,
i.e. zeros are omitted unless they occur on the diagonal itself. An even more compact notation
reads

D= diag()\l, )\2, cey /\n) (L185)

The problem with diagonal matrices is that they are fragile objects: under a transformation of
bases represented by a transformation matrix 7', D transforms as

D M A—_1pr 1,

which will not in general be diagonal.
These observations motivate a number of questions:

> Given a general matrix, A, how can we know if it is a diagonal matrix ‘in disguise'? |.e.
does there exist a transformation such that A = T'DT~'? This would mean that the matrix
T describes the transformation to a new basis in which A assumes the particularly simple
form of a diagonal matrix.

> Can every matrix A be transformed into a diagonal matrix?

> Does there exist an algorithm to compute the matrices 7" which transform a given matrix
into a diagonal representation?

97
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At first sight these may seem like abstract questions. However, the problem of finding simple
(diagonal) representations of matrices is of great practical importance not just in physics but also
in engineering, computer science, biology, and other contexts. The reason is that many phenomena
in nature, or in statistical sciences can be approximately described in terms of matrices representing
linear maps. The generic representation especially of large matrices generally does not tell much
about their action. However, its action becomes much more transparent if we know a diagonal
representation.

The importance of the problem shows in that physicists, mathematicians and computer scientists
alike are investing a lot of effort into improving algorithms for the constructive ‘diagonalization’ of
complex linear maps.

L7.2 Eigenvectors and eigenvalues

A diagonal matrix acts on the ¢th standard basis vector, e;, by scalar multiplication:

Generally a vector, v, that remains invariant up to scalar multiplication under the application
of a matrix, A, Av = \v is called an eigenvector1 of that matrix, and A € C is called its
eigenvalue. Eq. (L186) states that the standard basis vectors e; are eigenvectors of D and
that the corresponding eigenvalues \; are given by the diagonal elements. Eigenvectors and
eigenvalues are a concept of key relevance to the diagonalization of matrices.

To understand why, assume now that we had switched to a different basis. The previously
diagonal matrix would now assume the form A = T DT~! which will be non-diagonal in
general. However, a key feature of the new representation is that it still possesses n linearly
independent eigenvectors €, = Te;. This is checked by computing Ae, = (DT~ ')(Te;) =
TDe; =T\e; = \/Te; = \;e.. While the eigenvectors change their form under the transfor-
mation (from standard basis vectors e; to Te;),

the set of eigenvalues {\;} of a matrix is not affected by a transformation of bases.

The key to matrix diagonalization, i.e. the constructive transformation of a given matrix to
diagonal form, lies in reversing the above construction: assume we were given an arbitrary
matrix A and had succeeded in finding n linearly independent eigenvectors, v;, with eigenvalues
;. As we will discuss in the rest of the chapter, A can then be transformed to a diagonal
representation and 1" = (vy,...,V,) is the matrix describing this transformation.

L7.3 Characteristic polynomial

The key to the diagonalization of a matrix, A, lies in its eigenvectors and eigenvalues. How
can these be found? An eigenvector, v, obeys the equation Av = Av or (A—Al)v = 0, where

1 “_ " ' 3 1
The word ‘eigen’, loaned from German, translates to ‘own’.
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A is its as yet unknown eigenvalue. If this equation is to have a non-vanishing solution, then
the matrix A — A1 must have a vanishing determinant, Z(\) = det(A — A1) = 0 (because
it annihilates a non-vanishing vector, v). This condition should be read as a necessary and
sufficient criterion for A\ to be an eigenvalue:

Every eigenvalue \ of a matrix A satisfies the condition det(A — A1) = 0.

We may evaluate the determinant using the Leibniz formula (L154),

ZOA) = ) sgn(P)(A—= A1) p (A= A1) py . (A= AL)"p,. (L187)

PesSy,

to notice that Z(\) is a polynomial of degree n in A. The polynomial nature of Z(\) follows
from the observation that the highest power of \ present in the product of n factors (A—A1)"p,
is given by A7 n general, the sum will contain arbitrary lower powers of A as well, so it may
be represented as

Z(\) = Z e\, (L188)

with coefficients ¢; € C depending on the matrix elements A;;.

The polynomial Z(\) is called the characteristic polynomial of A. It is a ‘characteristic’
feature of the matrix, A, in that it does not change under transformations of basis. This
follows from the fact that for A’ = T 'AT, det(A’ — A1) = det(T'AT — \T'1T) =
det(T7Y(A — A)T') = det(A — A1), where we used that T-'17 = 1 and the invariance of
the determinant Eq. (L182). The invariance of the characteristic polynomial is, of course, an
expected feature of a function determining the invariant eigenvalues.

There is not much that can be said in general about the coefficients of the characteristic
polynomial. For A = 0 we obtain Z(0) = det(A) by definition of the characteristic polynomial
and Z(0) = c¢o according to Eq. (L188). This yields the identification ¢y = det(A). The two
highest possible powers, A" and A\"~1, are obtained from the contribution [],(A% — \) = (=A\)" +
(=A)"L3°" A% +... of the unit permutation Pi = i to the sum. Here, the ellipses denote terms
of order A2 and less. We thus conclude ¢, = (=)" and ¢,—1 = — > 1| A", = —tr(A). All other
coefficients, ¢y, ..., cn—2, have a more complicated structure.

Once a value X has been found for which the characteristic polynomial vanishes, Z(\) = 0, the
corresponding eigenvector, v, is obtained by solving the system of linear equations (A—)\Il)ijvj
for the coefficients v7. This can be done by the methods discussed on p.76. Before discussing
how the program can be iterated to achieve a systematic diagonalization of matrices, let us
illustrate it on the simple example of a 2 X 2-matrix.

“To see this, consider the contribution of the unit perturbation Pi = i to the sum and evaluate (A —
AL (A= A1)2%, ... (A= A1)", = (=A\)" + ..., where the ellipses represent powers in A of lower order.
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Aeg

€2
Avy /1:,-2

€]

Ae1

Figure L15: Action of the matrix (L189) in the two dimensional plane. Discussion, see text.

Consider the 2 x 2 matrix

1 -1
A= < 1 3> . (L189)
2 2
This matrix acts on the unit vectors e 2 as shown in Fig. L15. It simultaneously stretches and rotates
the vectors, which leads to a distortion of the plane, as indicated in the figure. Now let us identify
the eigenvectors, vi 2, of the matrix. Following the above procedure the first step is to set up the

characteristic polynomial

Z(\) = det(A — A1) = det (1 ]A 3_1A> =(1-NE-N-32=XN-3+1
2

2

The ensuing equation Z(\) = 0 is quadratic and its two solutions are given by A\ =2 and \y = %
We may now find the corresponding eigenvectors by solution of

= (] ()= ()=o)
asame (] 1) ()= =)

where ¢ o are arbitrary constants which may be set, e.g., to unity, c;2 = 1. We may now verify
the eigenvector property by checking Avya = A avy 2 (try it yourself). It is easy to make mistakes
when computing eigenvectors, so a check should be a routine element of the program. Along the
direction specified by v 2 the matrix A acts by stretching by the factors 2,1/2. The two vectors
v1 and vy are linearly independent, and the matrix transforming A into a diagonal representation is
given by (cf. the general discussion of section L7.2)

1 2 1/1 —2
T:(Vl’v2)2<—1 1)’ T1:3(1 1)'

It is straightforward to verify that T-!AT = diag(2, %) assumes a diagonal form.



L7.4 Matrix diagonalization 101

Consider the matrices shown in the example of p.70 and discuss in which sense they
can be understood as part of a diagonalization program.

Consider the matrix A from Eq. (L129). Show that its characteristic polynomial is
given by

ZA) ==X = A2 420 = - AXA - 1)(A + 2), (L190)

with zeros A\g = 0, Ay = 1, Ay = —2.

L7.4 Matrix diagonalization

General structures

We are now in a good position to discuss the diagonalizability of matrices from a general
perspective. The previous section has shown that the zeros of the characteristic polynomial,
Z()), play a key role in the process. A first question to ask then is whether every characteristic
polynomial need to have zeros. The answer depends on whether we are operating in real or
complex vector spaces. For example the characteristic polynomial of the real matrix

A= (_01 é) , (L191)

is given by Z(\) = A% + 1 and does not have real zeros. This means that no real eigenvalues
can be found and that the matrix is not diagonalizable in terms of real matrices.

The situation in the complex vector space C" is different. According to the fundamental
theorem of algebra (whose proof is a subject of ‘algebra’, not ‘linear algebra’), every poly-
nomial of degree n has an equal number of complex zeros A\; € € and can hence be factorized
as

Z(\) = ﬁ(A ~ ),  MNeC. (L192)

=1

For example, the characteristic polynomial of the matrix A in Eq. (L191) can be factored as
Z(A) = A+ 1= (\—14)(\+ 1) with complex zeros \; = i and Ay = —i. Considered as
an element of mat(2, 2, C) the matrix A therefore is diagonalizable. A simple and important
corollary of Eq. (L192) is that

The determinant of a matrix det(A) = [ [, A\; equals the product of its eigenvalues.

This follows from the observation that on the one hand Z(0) = det(A) while on the other
hand Eq. (L192) states that Z(0) =[], \;.
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Show that the eigenvectors of the matrix A of Eq. (L191) are given by vi = %(—i7 nt
and vo = %(i, 1)T', where the normalization factors 1/+/2 fix the complex norm of the eigenvectors

as ||vi|| = |v} |2 + [v%4]? = 1. Verify that

1 /=i i 1 1 /11
1, v2) V2 < 1 1> V2 (‘i 1) ’
transforms the matrix to the diagonal form T AT = diag(i, —1).

We conclude that

If a real matrix cannot be diagonalized within the matrix space mat(n,n,R), it may
still be diagonalizable by complex matrices in mat(n,n, C).

The existence of n eigenvalues is a necessary but not sufficient condition for the diagonalizabil-
ity of a matrix. Complications may arise if eigenvectors coincide, \; = A;. Such eigenvalues
are called ‘degenerate’ (entartet) and the number, r, of eigenvalues \; of a given value is called
their degree of degeneracy. (For example, the unit matrix has n degenerate eigenvalues, each
equal to unity.)

Let us first discuss the simpler situation in which no degeneracies are present. In this
case, the eigenvectors, v;, of the n different eigenvalues are linearly independent and
hence form a basis, {v;}, a so-called eigenbasis of the matrix A. The transformation matrix
T = (v1,...,V,) then achieves the diagonalization as D = T~ AT.

The linear independence of eigenvectors with different eigenvalues is best shown by
induction. First take two eigenvectors, vi2 and assume that a nontrivial linear combination 0 =
c1V1 + cavy exists, with ¢ 2 # 0. Now subtract the two equations

0= A0 = A(C1V1 + CQVQ) = C1A1V] + 2 Aavo,
0 = X0 = c1 AoV + ca N9 vo,

from each other to obtain ¢;(A; — A\2)vi = 0. This is a contradiction, because all three, ¢1, A1 — A2,
and vy are non-vanishing. The two vectors vy, ve therefore cannot be linearly dependent. Now
assume that the first j eigenvectors are linearly independent, j = 1,...,n — 1, and assume that a
linear combination exists for which 0 = Zgill c;v;. Arguing as before, we then find that

Jj+1
0=A0=A <Z Cz‘VZ’> = Zci)\ivi,
A =1
Jj+1
0= )\jJrlO == Zci)‘j+lvi'
=1

Subtraction yields 0 = g:l ¢i(Ai — Aj+1)vi, which contradicts the starting assumption. We are

therefore led to the conclusion that the eigenvectors bu; are all linearly independent.
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The situation gets a little more involved if degenerate eigenvalues occur. We first notice that
the set of eigenvectors corresponding to a given eigenvalue, A, form a subspace of C" called the
eigenspace of that eigenvalue. This is because for any two eigenvectors, v, w with Av = \v
and Aw = A\w, the linear combination c¢v + dw, c¢,d € C, is again an eigenvector with the
same eigenvalue. For non-degenerate eigenvalues, \;, the eigenspaces are all one-dimensional
and are spanned by the corresponding eigenvectors, v;. Eigenvalues of degeneracy r can
have eigenspaces of higher dimensionality up to r (For an extreme example, consider the unit
matrix with its » = n degenerate eigenvalues unity where the standard unit vectors e; span
the n-dimensional eigenspace C™). If the eigenspaces of all r-fold degenerate eigenvalues have
maximal dimension, 7, then we have as many linearly independent eigenvectors as eigenvalues.
Since there are n eigenvalues in total (some of which may be degenerate) the corresponding
n eigenvectors span the full vector space and the matrix is diagonalizable. By contrast, it is
not diagonalizable if r-fold degenerate eigenvectors with eigenspaces of lower dimensionality
< 1 occur.

To illustrate the phenomenon with a simple example, consider the matrix A = (§¢). Its
characteristic polynomial is given by (check!) Z()\) = (A — 1)? with the two-fold degenerate
zero A = 1. However, for a # 0 the corresponding eigenvector equation (A—1-1)v = (J&)v
has only the solution, v = (0, ¢)?, where c is a normalization constant. The eigenspace for
A = 1 is one-dimensional and the matrix cannot be diagonalized.

In physical applications, non-diagonalizable matrices with degenerate eigenvalues do not
occur very often. Still it is good to know how the simplest possible representation of a matrix with
degenerate eigenvalues looks like. The answer is shown in the schematic below,

S >
> =

: (L193)

O O
o
T = O

where A and p are two- and three-fold degenerate eigenvalues with only one-dimensional eigenspaces.
The statement is that for each eigenvalue of degeneracy r the matrix can be reduced to one containing
r copies of the eigenvalues on the diagonal and r — 1 copies of unity on the next diagonal as shown
in the figure. Such matrices are said to be in Jordan form and the constituent blocks are known as
Jordan blocks.

For the general discussion of algorithms of transforming matrices into a Jordan form we refer to
specialized textbooks on linear algebra. However, the general idea may be illustrated using a simple

example. Consider the matrix
0 1
(). (99
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Its characteristic polynomial is obtained via Q(A) = (A + 1) with two degenerate zeros A\ = —1.
The corresponding eigenvector equation,

1 1 (%] . 0
-1 —1)\we) \O
yields (always up to normalization) only one solution, vi = (1, —1)7. We aim to transform A into

its Jordan representation A" = (}¢), where a is a parameter to be determined. To this end we

consider the ansatz for the transforming matrix T-! = (vi,w), where vy is A's eigenvector and
and w a complementing vector of the new basis which also remains to be determined. The equation
fixing w and a then is given by TAT ! = A’. It is a straightforward exercise to compute 7~! and
to write out the matrix equation above in terms of four equations for the coefficients of TAT 1. A
solution of these equations is given by a = 1, w1 = 1 and wy = 0. Substituting this into the defining

equation, we obtain
0 -1 0 1 I 1y (-1 1
1 1 -1 -2)\-1 0/ \0o -1)’

as can be checked by direct matrix multiplication. The matrix on the r.h.s. is the Jordan represen-
tation of A. The computation of general Jordan representations generalizes the above program to
the solution of systems of linear equations of higher order.

Matrix diagonalization recipe

We are now in a position to discuss the algorithm for diagonalizing a matrix A € mat(n, n, C)
in concrete terms. To diagonalize,

1.  Compute the characteristic polynomial Z()\), then

2. Find its zeros, \;. If the eigenvalues are all different then the matrix is diagonalizable. In
this case, find the eigenvectors by solving the linear systems (A — \;1)v; = 0.

3. The matrix T' = (vy,...,V,) then describes the transformation into a diagonal form
T—AT = D = diag(\y, ..., \n).

4.  Check that no mistakes have been made by explicit verification of the matrix equation of
the previous step.

Consider the 3 x 3 matrix A given in Eq. (L129). The zeros of its characteristic
polynomial (L190) are given by 2o =0, 21 =1, and 22 = =2, i.e.

D = diag(0,1, —2).
Solving the equations (A — z;1)v;, we find (check!)

1 1 -1
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and hence

T=[1 0o -
3
-1 -1 3

D=

The inverse of this matrix has been computed in the example on p. 77 (where it was called A), with
the result

1 1 1
Tl'=12 -1 1
2 0 2

It may be checked by direct matrix multiplication that TDT~! = A.

In the case of eigenvalues with degeneracy 7, the first step is to find as many eigenvectors
as possible. If r linearly independent eigenvectors v, ..., v, can be found, we include them as
part of our transformation matrix 7! and A remains diagonalizable. In the exceptional case
where only s < r eigenvectors can be found A is not diagonalizable. It then contains a Jordan
block of size » — s + 1 which must be computed by procedures similar to those exemplified on
p.L7.4.

The characteristic polynomials of real matrices often have fewer real zeros than their
rank. In such cases they are not diagonalizable in terms of real transformation matrices but
may still be complex-diagonalizable as discussed in the exercise of section L7.4.

One final remark: our discussion above has covered all possible scenarios and this may
somewhat over-emphasize the role played by non-diagonalizable matrices. In fact, most matri-
ces met in physical applications are diagonalizable and this includes the real diagonalizability
of real matrices. The point is that the matrices met in disciplines such as mechanics, electro-
dynamics, or quantum mechanics usually obey conditions which grant diagonalizability from
the outset. For example, real matrices which equal their own transpose, A = A", or which
obey the condition AT = A~! are categorically diagonalizable. The characteristic polynomials
of such matrices factorize and even degenerate eigenvalues are not harmful to diagonalizability.
Similar statements apply to complex matrices obeying the conditions A = AT or AT = A1,
In the next chapter we will discuss the mathematics and some of the applications of matrices
satisfying conditions of this type.

L7.5 Functions of matrices
This section can be skipped on first reading. It requires familiarity with Taylor series,
chapter Cb.

Given a square matrix, A € mat(C,n), the product AA € mat(C,n) is a again a square
matrix. This observation may be interpreted by saying that the complex function f : C —
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C,z ~ 2% = 2z has a natural generalization, which involves generalizing the domain of
definition from the complex numbers to the n-dimensional square matrices, f : mat(C,n) —
mat(C,n), A — AA. We denote this function by the same symbol f to keep the notation
slim.

This idea can be extended to arbitrary functions f : C — C, z — 22 possessing a Taylor
expansion around z = 0. Given the Taylor series representation,

O fn)
=30

n!

we define a function f : mat(C,n) — mat(C,n), A — f(A) by

—

. fn)
fA)y=>" nfO)An, (L195)

n=0

where A € mat(C, ¢), and

A= AA. . A, and A’ =1.
—_—

n times

For example, the exponential function of a matrix is now defined as exp(A) = > 47, etc.
In many ways, one may work with functions of matrices as with ordinary functions. However,
care must be exercised not to apply function relations which rely on the commutativity of
numbers. For example, the relation exp(z+ z') = exp(z) exp(z’) does not extend to matrices,
exp(A+ B) # exp(A)+exp(B) in general. The origin of the inequality can be understood by
separate Taylor expansion of the two sides of the (in)equality in A and B up to second order.
For the l.h.s. we have 1-+(A+B)+4(A+B)?+- -+ = 1+(A+B)+3(A*+ AB+BA+B?)+. ..,
while the r.h.s. yields (14+A+1A%+. .. )(1+B+3B%*+...) = 1+(A+B)+3(A*+2AB+B?).
The two expressions are different, unless the matrices A and B commute, AB = BA. The rule
of thumb is that functions of a single matrix, f(A), behave like ordinary functions (exp(A +
A) = exp(A) exp(A)), etc., because the commutativity issue does not arise. However, when
functions of different matrices appear, one has to be careful.

The function of a matrix becomes rather easy to evaluate if we know the matrix in diagonal
form, A = TDT~!. In this case, A» = (TDT-Y(TDT~)...(TDT~') = TD"T~!, where
D™ is a diagonal matrix containing the nth power, A, of A's eigenvalues on its diagonal. The
matrix function can now be evaluated as

f(A) =T7" (i f<">(0)D"> T =T7'f(D)T, (L196)

where f(D) = diag(f(\1),...,f(\,)) is a diagonal matrix containing on its diagonal the
complex function f(z) evaluated on the eigenvalues ;.
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In this chapter minor differences between real and complex vector spaces need to be
addressed. To avoid repetition, we discuss both cases in parallel.

In both physics and mathematics we often encounter linear maps preserving the scalar product
between vectors. Simple examples of such transformations include the rotation or reflection
of vectors. In quantum mechanics, linear maps of functions (cf. chapter L10) which do not
alter a scalar product defined on the space of functions, Eq. (L218) play a distinguished role,
etc. This chapter will introduce the mathematical features of scalar product preserving maps.
Specifically, we will see that these maps are much easier to work with than generic linear maps.

L8.1 Orthogonal and unitary maps

The defining feature of a scalar product preserving map is that

~

Vo, w eV,  (AV, AW) = (v, w). (L197)

Depending on whether V' is complex or real, maps obeying this criterion are called unitary or
orthogonal maps, respectively.

Unitary (orthogonal) maps have a trivial kernel. The reason is that for every non-vanishing
vector v we have ||AV||2 = (Av, AV) = (¥,¥) = |[V||> # 0, i.e. the image AV cannot be the
null-vector. From our discussion above we conclude that unitary (orthogonal) maps are
invertible.

Given two unitary or maps, A, B, the product AB is again unitary (orthogonal), since

where the unitarity (orthogonality) of A was used. Finally, the unit map is trivially orthogonal
(unitary). We conclude the set of unitary (orthogonal) maps define a group embedded in the
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larger group of invertible maps. These groups are denoted the unitary group, U(n), and the
orthogonal group, O(n), respectively.

We finally note that linear maps which are element of the unitary group are frequently
denoted by Latin letters starting with the UV,..€ U(n) and elements of the orthogonal
group as O, P,Q, ... € O(n).

8.2 Orthogonal and unitary matrices

Definition

Let us now explore what unitarity (orthogonality) of U (O) implies for the associated
matrices U (O). Given that we work in an inner product space, it is natural to work with an
orthonormal basis, (¢;,€;) = d;; (the generalization to a non-orthonormal basis is addressed
in the info block on p.111 below). The scalar product of two vectors is then given by (cf.
Eq. (L60)) (¥, W) = vi6;;uw. Representing the coefficients of UV as (Uv)! = Ukv*" and using
Ulvi = UL v the unitarity condition (L197) becomes

UL vt 0y U w7 = 016,507, (L198)

This condition must hold for arbitrary v and w which implies the matrix condition U_ll-c?lm um =
d;;. Recalling the definition (L108) of the adjoint matrix, (UT),! = U’ we may write it as

(UM} 6U™; = 6. (L199)

To simplify the notation, we define

(U, =" (U"),lay;.

Conceptually, this definition changes covariant indices to contravariant ones (and vice versa).
This is done by application of the index raising operation Eq. (L55) with standard metric
gi; = 0;;. Note that the index-raising operation does not affect the concrete values of matrix
elements, (U')"; = (U1)/, element-wise. For example, for

a b —T a ¢
_ T — 2z =
u=(c) w75 3)

with (U)LY, = (U"),2 = ¢, etc. (In the info section on p. 111 we will extend the definition of
unitarity to the case of non-standard scalar products, g;; # 0;;. For such scalar products, the
index-positioning becomes essential, and (U1); # (UT);”.)

"Recall that v and A refer to the C™-component representation and the matrix representation of the vector
v and the linear map A in a given basis.
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The unitarity condition now assumes the form

U, U* =6 (L200)

J

Matrices obeying this condition are called unitary matrices. In a similar manner the orthog-
onality condition of a real map, O, implies the matrix relation (O7),/ 6;;07, = &, (i.e. the
same as above, only that the complex conjugation is absent). In an analogous manner, we
raise/lower indices as (O”)"; = 6"*(O™),!d;; to obtain the condition as

(0T, OF, = &t (L201)

J J

Matrices obeying this condition are called orthogonal matrices. The essential statement
made by Egs. (L200) and (L201) is that

The adjoint, UT, and the transpose, OT, of a unitary matrix U and an orthogonal
matrix, O, respectively, equal their inverse. Conversely, a matrix whose inverse is
given by its adjoint (transpose) is unitary (orthogonal).

In other words, the inverse of a unitary (orthogonal) matrix is obtained without any elaborate
calculation. Consider, for example, the matrix U = \%(} D). It is straightforward to verify

that it is unitary: UT = —5 (1, 7') obeys the condition (L200) and the matrices are inverse

to each other, UTU = 1.
In an index-free notation the equations defining unitarity and orthogonality, respectively,

read

O orthogonal < 070 =1,

: L202
U unitary < UU =1. (L202)

These equations imply an economic way to test for the unitarity (orthogonality) of a
matrix: build the adjoint (transpose), UT (OT), and check whether UUT = 1 (OOT = 1).
While unitarity (orthogonality) cannot usually be ‘seen’ with the naked eye (is U = % (ih
unitary?) this operation can be performed with relatively little effort.

We finally mention that the non-covariant index representation of the unitarity /orthogonality
conditions reads as

US Ui = 635, 030 = 6y, (L203)
where U}, = Uj; and OF = O;;.

The group of unitary and orthogonal matrices

We have seen that the abstract unitary and orthogonal maps form subgroups U(n) and
O(n) of the group of invertible linear maps. Likewise, the sets of unitary and orthogonal
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matrices define subgroups of the group of invertible matrices, GL(n, C) and GL(n,R). These
groups are denoted by U(n) and O(n), respectively, i.e. by the same symbol as their abstract
siblings.” They are called the group of unitary and orthogonal matrices, respectively, and
defined as

U(n) = {U € GL(n,C)|U" = U},
O(n) = {0 € GL(n,R)|0T = O '}. (L204)

Their group property follows from the fact that they are matrix representations of of the
groups U(n) and O(n) introduced in the previous section (think about this point). However,
it is a good exercise to check the group criteria explicitly, i.e. that the product of two unitary
(orthogonal) matrices is again unitary (orthogonal), that the same holds for the inverse, and
that the unit matrix lies in each group.

As mentioned in the beginning of the chapter, orthogonal and unitary maps play an important
role in physics. The reason being that there are many linear transformation which preserve the norm
of vectors. Important examples include rotations of vectors, reflections of vectors at a point or at a
plane and others.

Consider, for example, the case of a two-dimensional real vector space, n = 2. The matrix

cosf —sinf

cos 0 R(0) = <sin9 cos > (L205)
€y describes a rotation of vectors by the angle 8. This can be seen by applying
sin 0 R(0) to the vector (1,0)T representing the unit basis vector in z-direction.
The inverse of this matrix is given by R~1(#) = R(—#) since it must rotate by
0 the same angle in opposite direction. Using cos(—6) = cosf and sin(—0) =

€, —sin 6 we find that

1, _ [ cos@® sin@\ o

R (0) = <_ snd  cos 9> = R"(0). (L206)

(Check by matrix multiplication that RR™! = 1.) The reflection of vectors at the origin, x — —x,
another orthogonal map, is represented by the negative of the unit matrix, —1. For example, a 90deg
rotation (6 = 7/2) followed by a reflection and another 90deg rotation is not expected to have any
effect. Show this by verifying that R(7/2)(—1)R(x/2) = 1.

The most important applications of unitary maps in physics are found in quantum mechanics.
A brief teaser introduction to the description of quantum phenomena in terms of unitary maps will
be given on pp L9.2 after a some more material has been introduced.

“Do not be confused by the double-usage of the symbol U(n). In the abstract context, it denotes the set
of linear maps of an n-dimensional complex vector space obeying the criterion (L197). In the matrix-context
it denotes a set of matrices acting in the standard space C™ and obeying the condition (L202). Once a basis
has been chosen, each element of the abstract U(n) has a corresponding element of the matrix U(n), and this
assignment is compatible with the rules of group composition. The groups are therefore ‘almost identical’,
and it is justified to denote them by the same symbol.
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In applications, we sometimes need to work with non-orthonormal bases {v;} for which the
scalar product (V;,V;) = g;; defines the elements of a metric tensor. In section L3.3 we saw that in
this case we should work with a non-standard C"-scalar product (v, w) = Egijwj.

Representing the coefficients of Uv as (Uv)! = Ukv?,”, the unitarity condition (L197) becomes
Uliﬁglm Umjwj = Egijwj. Comparison with Eq. (L198) shows that the presence of a metric tensor
amounts to a replacement d;; — ¢;5. Accordingly, the condition (L199) for the adjoint of the
transformation now reads

O 95U = gim.- (L207)

The difference to the orthonormal relation (L199) is the generalization d;; — g;;. Again we observe
that the appearance of spurious Kronecker-ds in the covariant notation signifies a formula which
generalizes as before if a metric enters the stage. This should be considered a strength of the
notation. For example, the non-covariant formulation of unitarity, Eq. (L203) does not contain any
‘hints’ as to how its generalization to a non-orthonormal basis looks like.

The simplest representative of a signature-r indefinite metric is the diagonal tensor 1 =
diag(1,...,1,—1,...,—1), containing r elements 1 and n —r elements —1 on its diagonal. Complex

matrices preserving this scalar product obey the relation (UT), 1;;U%, = nym. This is the defining

relation of the specical unitary group, U(r,n — r). The analogous relation for the real case,
(OT),i 10’ = mim, defines the special orthogonal group O(r,n —r). As an example, consider

n =2 and r = 1. The condition
AT (1 _1> A= <1 _1) (L208)

is satisfied by matrices of the form A = (gfﬁﬁg gg;%g) A group of great physical significance is the
Lorentz group, O(1,3). This is the group of real matrices satisfying ATnA = 7 for the Minkovski
metric introduced on p. 45, for which » = 1, n = 4. Elements, A € O(1, 3), of the Lorentz group

are called Lorentz transformations and play an important role in the theory of special relativity.

Eigenvalues

Unitary matrices are invertible and therefore possess non-vanishing eigenvalues. However
there is an even stronger statement constraining the eigenvalues of unitary matrices: assume
Uv = Av and use that (v,v) = (Uv,Uv) = (Av, \v) = [A]* (v, v), which requires |\|? = 1:

The n eigenvalues, \,, of a unitary matrix are complex unit-modular numbers,
A\, = €% with real ¢, € [0, 27].

The same argument applied to an orthogonal matrix, O, shows that its eigenvalues must
have unit modulus, too, |A] = 1. However, these eigenvalues need not be real, i.e. there is

’Recall that v and A refer to the C™-component representation and the matrix representation of the vector
v and the linear map A in a given basis.
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no guarantee that the characteristic polynomial of an orthogonal matrix has real zeros. For
example, the orthogonal matrix ({}) has the two imaginary unit-modular eigenvalues +i. If
an orthogonal matrix has real eigenvalues, they must equal +1, the only two real numbers
with modulus one.

L8.3 Special unitary and special orthogonal matrices

The determinant of a matrix equals the product of its eigenvalues. Above we have seen
that for unitary (orthogonal) matrices the latter are unit-modular numbers. Since the product
of unit-modular numbers is again unit-modular (why?), we know that’

The determinant of a unitary matrix is a complex number of unit modulus,
det(U) = €', where ¢ € [0,27] is real. Likewise, the determinant of an
orthogonal matrix is a real number of unit modulus, i.e. det(O) = £1.

It is instructive to prove this statement without reference to the eigenvalues. To this end, take a
unitary matrix, U, define 2 = det(U), and compute |2|? = det(U)det(U) = det(U) det(UT) =
det(UUT) = det(1) = 1 where Eq. (L172) has been used. The same construction applied to
an orthogonal matrix shows det(O) = £1.

Unitary (orthogonal) matrices possessing the special value det(U) = 1 (detO = 1) are
called special unitary (orthogonal) matrices. The unit-determinant property is preserved
under matrix multiplication, det(UV) = 1 for det(U) = det(V) = 1, the building of the
inverse, det(U~!) = 1, for det(U) = 1, and the unit-matrix of course has determinant one.
This means that the set of special unitary (orthogonal) matrices forms a subgroup of the set

of unitary (orthogonal) matrices known as the special unitary (orthogonal) group, SU(n)

(O(n)),

SU(n) = {A € U(n)|AT = A, det A = 1},
SO(n) = {A € O(n)|A" = A,det A = 1}. (L209)

We note that the special unitary group can also be understood as a subgroup of SL(n, C),
i.e. the group of unit-determinant (but not necessarily unitary) complex matrices. Similarly,
the special orthogonal group can be understood as a subgroup of SL(n,R), containing real
matrices of unit determinant, which are not necessarily orthogonal.

Special unitary matrices play an important role in physics, notably in quantum mechanics and
particle physics. For example, the quantum mechanics of spin (which is the quantum generalization
of classical angular momentum) is mathematically described in terms of SU(2). () The groups SU(2)
and SU(3) played a decisive role in the sixties of the past century when their mathematical structure

*Notice that even if an orthogonal matrix has no real eigenvalues its determinant is real by construction. At
the same time, the determinant is the product of n (possibly complex) unit modular eigenvalues. Combining
these two facts we conclude that the product must be real and unit-modular, i.e. it must equal £1.
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was linked to the properties of known elementary particles and the so-called standard model of
matter emerged.

The groups SO(2) and SO(3) feature in classical mechanics where they describe the mathe-
matics of rotations in two- and three-dimensional space, respectively. We have argued above that
rotations are mathematically represented by orthogonal matrices. In fact, they are special orthogonal
matrices. This follows from the fact that any rotation specfied in terms of a set of rotation angles
can be continuously ‘deformed’ to a unit operation by reducing the angles to zero. Consider, for
example, the rotation matrix R(#) defined in Eq. (L205). It can be deformed to the unit matrix
by a continuous reduction of 8 to zero. The unit matrix has unit determinant, and so must have
any continuous deformation of it. A sudden ‘jump’ to a determinant —1 would be in conflict with
continuity. The above rotation matrix has unit determinant, , R(6) € SO(2), and so does any other.
By contrast, matrices describing reflections, for example, R = (1 _1) describing a reflection at the
x-axis (why?) can have determinant —1.

Summarizing, the set of complex (real) matrix groups encountered so far contains mat(n,n, C) D
GL(n,C) D U(n),SL(n,C) D SU(n) (and analogously for the real case). There are a few
more groups of relevance to the physics curriculum, however, the ones above are arguably the
most important ones. The hierarchical relation between them is illustrated in Fig. L16.

SU(n)f unitary U(n)

unit determinant SL(n, C)

invertible GLL (n, (C)
mat(n,n,C)

Figure L16: The most imortant matrix subgroups of mat(n,n,C). The ‘smallest’ group SU(n) =
SL(n,C) N U(n) is the intersection of the groups of unit determinant, SL(n,C), and the unitary
group, U(n), respectively. For the real case, replace C — R and U — O.

For any unitary matrix U with determinant det(U) = e'?, a matrix of unit determinant may be
defined as U’ = e~/ U This follows from det U’ = det(e '?/"U) = (e~1¢/™)" det(U) = e 1%ei¢ =
1, where Eq.(L177) has been used. For example, the unitary matrix U = % (1 1) has determinant
e™ = —1. Multiply it by e™"/2 = —i to obtain the special unitary matrix U’ = % (% 7"). Since
matrices differing by a multiplicative factor are ‘almost equivalent’, the manipulation above is often

used to pass from a unitary matrix to its slightly simpler unit-determinant version.
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For orthogonal matrices, this prescription does not work since det(0)~1/" = (=1)~1/" is not a
real number so multiplication by it takes us outside the set of real matrices.

L8.4 Orthogonal and unitary basis changes

In section L5.6 we considered a basis transformation, T, from a basis {v;} to a new
basis {v!}, and found that finding the representing matrix of the inverse transformation,
71, generally requires inverting the matrix 1. Much less work is required if we work with
orthonormal bases, i.e. if both the old, {e;}, and the new basis {€/} are orthonormal. In this
case, the transformation matrix e; = e;TjZ- preserves the scalar product, (e;,e;) = (e}, €}) =
d;j. This means that the transformation matrix is unitary (orthogonal) and that its
inverse is obtained ‘for free’ just by building T (T7).

Apply elementary trigonometry to compute the matrix describ- €2

ing the transformation between the basis vectors shown in the figure. Verify € €
its orthogonality by building the transpose and checking that Eq. (L201) i >
holds.

To make these statements more concrete, let us write 7" = U to

emphasize the unitarity of the transform and consider the inverse relation €, = ej(U_l)ji.

Multiplication of Eq. (L200) from the right by U~ yields (U~')"; = (UT)’;, and this gives us
the transformation relations

e;j=e, U, & =e (U, (L210)

For the orthonormality preserving transformations 7' = O of a real vector space, these
relations are to be replaced by

e; =€, 0", e =e; (O7),. (L211)
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Besides the unitary (orthogonal) maps there exists a second family of

linear maps defined in relation to the scalar product. These so-called Hermitian (symmetric)
maps are of great importance to physics, notably to quantum mechanics (see the info section
on p.118 for a brief discussion). Following the same strategy as in the previous chapter we
first define the hermiticity (symmetry) of linear maps to then discuss the structure of their
associated matrices.

L9.1 Hermitian and symmetric maps

We call a linear map A : V — V of a complex (real) inner product space a Hermitian
(symmetric) linear map, if

vow eV,  (AV,w) = (v, Aw). (L212)

Unlike with unitary (orthogonal) maps the relation above does not define a group property:
if A, B are Hermitian (symmetric) then we know that (ABV W) = (BV, Aw) = (v, BAW).
However, this does not equal (v, ABW) unless AB = BA. So, in general, the composition of
two Hermitian (symmetric) maps, AB, is not Hermitian (symmetric). However, the absence
of a group structure notwithstanding, the matrices representing Hermitian (symmetric) maps
possess strong mathematical structure to be discussed in the next section:

L9.2 Hermitian and symmetric matrices

Definition

The availability of a scalar product suggests to representing Hermitian (symmetric) linear
maps in an orthonormal basis {&;}. With (Av)’ = A’;v7 the condition (Av,w) = (v, Aw)
then takes the form

A Vit = vig; Al .

115
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This must hold for arbitrary v, w which requires A_Z](Szk = 5ﬂAlk. Recalling the definition of
the adjoint matrix (L108), and multiplying with 6™ we obtain

5™ (A foy = (AT)™, = AT (L213)

The same construction carried out for a symmetric matrix acting on a real vector space shows
that (AT)™, = A™, . We have thus found that

The matrices, A, representing Hermitian (symmetric) linear maps in an orthonormal
basis are equal their adjoint (transpose), A", = (A")"; (A", = (AT)")).

The matrices
0 —i
A=|11 -1 1], B= < ), (L214)

are examples of a Hermitian and a symmetric matrix, respectively.

Eigenvalues and determinant

All n eigenvalues, A, of a Hermitian (symmetric) matrix are real. To see this, let v be the
corresponding eigenvector and compute A(v,v) = (v, A\v) = (v, Av) = (Av,v) = (Av, V) =
Mv,v). Since (v,v) # 0, the first and the last entry in this chain of equalities require
A = \. The result also implies that unlike a generic real matrix a symmetric matrix has n real
eigenvalues. We know that its characteristic polynomial has n zeros A, (which for a generic
matrix may be complex). However, the argument above shows that these solutions must be
real. To summarize,

A Hermitian (symmetric) matrix of an n-dimensional complex (real)
vector space has n real eigenvalues.

As a corollary we observe that

The determinant of a Hermitian matrix is real.

This is because it is the product of its n real eigenvalues. (Of course, if a symmetric matrix
is real, then its determinant is too.)

Show that the eigenvalues of the symmetric matrix A of Eq. (L214) are given by
(1,—2,—2) and those of the Hermitian matrix B by (1, —1).
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Diagonalization

Hermitian (symmetric) matrices have the important property that they can always be diag-
onalized. The transformation matrices effecting the diagonalization are unitary (orthogonal).
These statements are proven in the info section below.

However, not only can these be diagonalized as a matter of principle, it also turns out that
the practical diagonalization procedure is much simpler than that for generic matrices. The
key simplification lies in the fact that

Eigenvectors v; and v, corresponding to different eigenvalues \; # \; of a
Hermitian (symmetric) matrix are perpendicular to each other (vy,vs) = 0.

To show this, consider two different eigenvalues A;, A5. Then compute Ay (va, vi) = (va, \;vy) =
(va, Avy) = (Ava, V1) = Ao (va, Vi), or 0 = (A —A2)(va, V). Since Ay — A2 # 0, this equality
requires (vo,vi) = 0. This observation suggests starting the diagonalization by computing as
many eigenvectors v; of different eigenvalues \;. Choosing these vectors to be normalized, we
know that they form an orthonormal set, (v;,v;) = 0,;. If all eigenvalues are different they
form a basis and the matrix T' = (vy,...,v,) transforms A into diagonal form, D = T-'AT.
The procedure becomes a little more complicated if degenerate eigenvalues A of multiplicity
[ > 1 are present. The proven diagonalizability of A means that [ linearly independent eigen-
vectors vy, ..., V; with eigenvalue \ exist, i.e. that we do not run into the same complications
that characterize the Jordan matrices discussed on p. 103. In situations with degenerate eigen-
values we therefore need to find [ linearly independent solutions of the equation (A—A1)v =0
and then construct an orthonormal basis in the [-dimensional subspace of those solutions.

A proof of principle showing the diagonalizability of Hermitian (symmetric) matrices
goes as follows. Let A be a Hermitian matrix and pick one of its eigenvalues, A;. Denote the
corresponding (normalized) eigenvector vi. Next define V3 C V to be the subspace of V' containing
all vectors perpendicular to vy, i.e. Vw € Vi, (w, V1) = 0. The key observation now is that A acts
within V1, i.e. for w € V;, Aw € V] is perpendicular to v too. To see this, compute (v, Aw) =
(Avi,w) = (A\1V1,w) = A1 (V1, W) = 0, where in the last step the assumed orthogonality of w and
v1 was used.

We may now iterate the procedure by picking a second eigenvector Ao and computing a normalized
eigenvector Vo € V1. Then determine the subspace of Vo C Vi of all vectors in Vi perpendicular to va
(and automatically perpendicular to V1 because we are working in V}). In each step, the dimension
of the spaces V1, V5, ... reduces by one. Continue the procedure until the one-dimensional vector
space Vi1 C Vi1 C -+ C Vi C V with its unique normalized basis vector v,, and eigenvalue A\,
have been determined.

As a result of this procedure, a basis of orthonormal eigenvectors, (V;, Vj> = 0;j is obtained. This
means that the corresponding transformation matrix ' = (v, V2, ..., V,) is unitary (orthogonal), cf.
section L8.4. However, while this procedure is straightforward in principle it requires us to determine
subspaces of vectors perpendicular to a set of chosen vectors. This can be cumbersome in practice
and for this reason Hermitian (symmetric) are usually diagonalized differently, as discussed in the
main text.
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Apply the procedure above to show that the matrices given in Eq. (L214) are diagonal-

ized by
S U
B V6 V2

A=TDT", D=diag(1,-2,-2), T=|wu5 v ~5

1 2
i v Y

and

B=TDT" D = diag(1, —1) Tt 1Y), (L215)
9y 9y 9y \/§ i _i

We conclude this section by summarizing the most essential properties of Hermitian (sym-
metric) matrices:

> Every Hermitian (symmetric) matrix is diagonalizable.
> Its eigenvalues, {\;}, are real, and
> an orthonormal basis of eigenvectors can always be found.

> The transformation matrices, T, to an orthonormal basis of eigenvectors are unitary, T~! =
TT (symmetric, T~' = T7), which means that

> Hermitian (symmetric) matrices can be represented as A = TDT', D = diag(\y, ..., \y).

€;

Figure L17: Cartoon of a one-dimensional crystal. Individual atoms are labeled by n. The components
1; of a quantum mechanical state are a measure of the probability amplitude to find the state at
site n, and [¢;]? is the corresponding probability.

Although this is not the place for an in-depth discussion let us motivate the formal structures
introduced above by a brief outlook to the application of linear algebra in quantum mechanics.
We begin by formulating a few key axioms of quantum mechanics. These are all statements that
cannot be proven (much like Newton's laws of classical mechanics cannot be ‘proven’) from more
fundamental principles. They have been formulated in axiomatic terms on the basis that they
successfully explain experimental observation.
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> The physical state of a system is described in terms of a unit normalized vector ¢ € V, (¢, 9) =1
defined in a complex vector space (cf. section L3.4). The dimension of that space, NV, may be
infinite, in which case a number of extra conditions need to be imposed. Vector spaces equipped
with these properties are called Hilbert spaces (see chapter L10 for more information). For all
practical purposes we may think of a Hilbert space as a complex inner product space. Following
standard conventions we denote Hilbert space state vectors, 1, in a non-boldface (1) notation.
Their components, 1);, are generally written as subscripts, i.e. in non-covariant notation.

Consider, for example, a ‘one-dimensional crystal’ consisting of IV equally spaced atoms, as shown
schematically in the bottom of Fig. L17. We assume the crystal to be closed into a ring, i.e. atom
no IV is adjacent to atoms number N — 1 and 1. The Hilbert space representing this system then
is CN. Our ‘system’ in this context is an electron, i.e. a quantum particle which may move in
the crystal by hopping from one atom to the next.

> The components 1); are a measure for the so-called probability amplitude that the particle is
located at atom no. j, and the real number [¢/;]? gives us the actual probability to find it at
4 in a measurement. In this context the jth standard basis vector (0,...,1,...,0)T describes
a state in which the electron is found with certainty (probability one) at site no. j. A general
state describes a ‘superposition’ in which the probability to find the electron is delocalized over
different sites with probability |¢);|2. The unit normalization 1 = (¢, v) = > j|> means that
these probabilities add to unity, i.e. the particle will be found somewhere in the crystal.

> Physical observables, A, i.e. quantities which can be measured (position, momentum, angular
momentum, etc.) are described by Hermitian linear maps, A, acting in V. In the present
context these maps are called (Hilbert space) operators, and their eigenvectors, 1, are called
eigenstates (Eigenzustand). An axiom of quantum mechanics states states that a measurement
of the observable must yield an eigenvalue, \,, of A as a result.

For example, the position operator, X, describing the position of a quantum particle in the
lattice is described by a diagonal matrix

N -1
N

When we make a position measurement we find the electron at one of the IV possible sites, i.e.
we measure one of the eigenvalues j = 1,..., N of the position operator.

However, before the measurement it cannot be known with certainty where the electron will be
found — the probabilistic nature of quantum mechanics. The best we can achieve is statements
about the expected result, denoted (A), of the measurement of A. For example, an electron with
probability amplitude ¢¥1 = ¥y = % Yj~2 = 0 will be at site 1 and 2 with equal probability
|h12|%> = 1/2. In this case, we expect a position measurement to yield the result 1 or 2 with equal
probability, and the expected value of the measurement, which by definition equals the average
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over many repeated measurements, will be 1 x 5 4+ 2 x 5 = 1.5. Notice that the expected value
may take fractional values even if each measurement y|e|ds an integer result.

An axiom of quantum mechanics condenses all this into the mathematical statement that the
expectation value, (A), of the measurement of an observable, A, on a system in a state
is given by the scalar product,

(A) = (v, Ay).

The hermiticity of A guarantees that this yields a real value, <¢,A¢> = <A1/J,w> = (zp,fhp), as
we require of a probability. The meaning of the formula is easiest to interpret in a basis in which
A assumes a diagonal form. For example, the position operator acts on a state as (Xz/))j = jvj,
i.e. by multiplication of v by the diagonal matrix given above. We then obtain the expectation
value as

(X) = (v, X¢) = ZwJXw zgw

This formula expresses the fact that the result j is found with probability |¢j]2 and that the

expected value is the sum over all these contributions. For the state mentioned above, application

of this formula indeed yields (X) = 1\[2 + 2\} = 1.5.

> Another axiom of quantum mechanics states that a measurement of an observable A on a state 1
will affect that state. Assume that a the measurement yielded a particular eigenvalue \,. Quan-
tum mechanics then says that right after the measurement the system will be in the corresponding
eigenstate ¢,,. Unlike with classical physics, where measurements can be made purely observatory
and non-invasive, a quantum measurement on a state i causes a state change ¥ — .
For example, the measurement of an electron at position 7 means that after the measurement the
system is in the state described by the jth standard vector (0,...,1,...,0). This reflects that
after the measurement we know with probability one that the electron is at j.

> In classical physics the instantaneous position, x, of a particle does not contain the full information
about its motion. We also need to know its velocity, v, or momentum, p = mv, where m is the
particle mass. The pair (x,p), fully specifies the state of the particle in the sense that knowledge
of (x,p)(0) at an initial time ¢ = 0 is sufficient information to solve Newton's equations and to
predict the future motion (x,p)(%).

To discuss how these structures carry over to the quantum world we turn back to our lattice exam-
ple. Without explanation we state that the Hermitian (check!) matrix representing the Hermitian
operator P of the observable ‘momentum’ acts on quantum states as (P); = %(w‘]‘_i_l —ji_1).
The corresponding matrix reads

0 1 -1
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where all empty positions are filled with zeros.

We may now ask what values possible values a quantum measurement of momentum might
yield. According to the measurement axiom formulated above these must be eigenvalues of the
matrix P, i.e. to answer the question we need to diagonalize the latter. Let us denote the
eigenstates of the momentum operator by ¢, [ = 1,..., N i.e. Pwl = ANy, where )\; is the
eigenvalue. To find these states, let us start from an eigenvector ansatz, i) = cexp(zl), where
¢,z are complex parameters. If we substitute this into the matrix equation, we find that for
site-indices inside the system, j # 1, N, the eigenvector condition is satisfied,

> 1 C 2(7 z(j— 1 z —z .
(P)j = o (i1 = ¥j-1) = 5 (6 Ut — 20 1)) =5 (¢ —e)w,  1<j<N,

with eigenvalue A = (e* — e™%)/2i. A constraint for the parameter z follows from the condition
that the equation hold at the boundaries, too:

(PY)n = %(1&1 —Yn_1) = 2% (62 B 6z(N—l)) _ 2% (ezefz]\f — ) o

The eigenvalue equation is satisfied, provided exp(—zN) = 1. This condition is resolved by the N
different choices z = 27il /N, where [ = 1,..., N. These values lead to N different eigenvectors
and eigenvalues

1 om
Y = ﬁéT]? Ai = sin(27l/N),

where we have chosen the second free parameter, ¢ = 1/v/N to obtain normalization, Y, |4 ;|* =
1, and (e — e %)/2i = sin(2wl/N) was used. These N different states form a basis, the
eigenbasis of the momentum operator.

Physically, the axioms of quantum mechanics imply that a measurement of the momentum on
a lattice can yield only the discrete values \; = sin(27l/N), [ = 1,...,N. Unlike in classical
physics, the momentum of a quantum particle moving on a ring does not assume arbitrary values
but is quantized. The full set of real eigenvalues of an hermitean operator is called its spec-
trum.” Specifically, neighboring eigenvalues in the discrete spectrum of the momentum operator
differ by |sin(2m(l + 1)/N) — sin(27l/N)| =~ | cos(2nl/N)|27 /N = O(N 1) where a first order
Taylor expansion was applied and we used that the cosine is of order unity. This shows how the
quantization becomes more pronounced for ‘small systems'.

The above diagonalization procedure also shows that the eigenstates of the momentum operator
extend over the whole lattice, with components of uniform magnitude [¢;|> = N~!. Now
suppose we had measured the position of the quantum particle and got jo as an answer (i.e. an
eigenvalue of the position operator X) According to the collapse postulate, the state of the
particle immediately after the measurement will be described by the state vector v; = d; ., a

"The corner elements 1 and —1 appearing in the momentum matrix describe the action of P on boundary
states: (Pz/))N = %(1/)1 —1n—_1), i.e. the operator takes the difference of neighboring sites as in the ‘inner’
parts of the ring. (The neighboring sites of the terminal site N are N — 1 and 1.)

*The denotation ‘spectrum’ is physically motivated and reflects that the eigenvalues of operators carrying
physical significance are often determined by spectroscopic methods.
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state concentrated at the lattice site jy. But this is very different from any of the delocalized
momentum eigenstates! Conversely, suppose we had measured the momentum and obtained
any of the eigenvalues sin(27l/N). After the measurement the particle will then be in the
states ; which is completely smeared over the lattice. This is very different from any position
eigenstate. These observations show that the observables position and momentum cannot
be simultaneously determined with certainty. The more accurately one is determined, the
more undetermined gets the other. The degree to which the maximizing the precision of one
measurement increases the uncertainty of the other is made precise by Heisenbergs uncertainty
relation which we do not discuss here. In lecture courses of quantum mechanics it is shown how
the ‘incompatibility’ of simultaneous measurements of observables is at the root of most quantum
phenomena.

The discussion above is meant to hint at the connections between the abstract operations discussed
earlier in the text (basis change, matrix diagonalization, etc.) and the phenomena of quantum me-
chanics. For an in-depth development of the the axiomatic of quantum mechanics and its formulation
in terms of linear algebra we refer to advanced lecture courses on quantum theory.

L9.3 Relation between Hermitian and unitary matrices

This section discusses connections between Hermitian and unitary matrices and can be
skipped at first reading.

Both Hermitian and unitary matrices were introduced with reference to a scalar product. One
may wonder if this means that they have more in common than our so far discussion revealed.
To understand the actual connection between these two sets of matrices, let A be an Hermitian
matrix and consider its exponential

U = exp(i4), (L216)

where the exponential function is defined in Eq. (L195). We claim that U is unitary. To see
this, compute the Hermitian adjoint,

. f . .
F_ (A" _ o GA) A
U=\ ) T Ty e = U
Here, we used (X™)T = (XT)?, and (iA)" = —iA. In the last equality we noted that

exp(—iA)exp(id) = 1, i.e. U™! = exp(—iA). We have thus found that

The exponential of ix(a Hermitian matrix) is unitary.
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Consider the Hermitian matrix A = 6 (i _i), where 0 is a real parameter. Multiplication
by i yields iA = 6.J, where the matrix J = (_; !). We observe that J? = —1, and J?" = (—)"1,
J? 1 = (=) J. From these identities we obtain

_ n02n+1 _ neQn

- sin(6)J + cos(9)1 = <le$§(2) zg;(((;))) '

It is straightforward to verify that the resulting matrix is unitary.

In fact, an even stronger statement can be made. A Hermitian matrix, A, of dimension n is
fixed by n? real parameters. To understand this counting, note that the relation A" = A, or
Al = A’ requires all n diagonal elements, A’; to be real. The n(n — 1)/2 elements A’
¢ > j, defining the upper right triangle of the matrix can be chosen as arbitrary complex
numbers. The elements of the lower left triangle are then fixed through the above hermiticity
condition. Noting that a complex number contains two real parameters, we conclude that
n+ 2% = n? free real parameters need to be specified to define a Hermitian matrix. For
example, a general two-dimensional Hermitian matrix is of the form A = (bfic b*jc), and thus
described by 4 = 22 real parameters a, b, ¢, d.

The unitary matrices of dimension n, too, are parameterized by n* real parameters. This

follows from the fact that the relation UTU = 1, or (U')",U* = &', can be understood as
2

2

a set of n? real equations’ constraining the n? complex or 2n? real parameters describing
an arbitrary complex matrix. Each equation effectively fixes one free parameter, so that
the set of unitary matrices is parameterizable in terms of 2n? — n? = n? real parameters.
For example, a two dimensional unitary matrix, U = (} ) is constraint by the condition
UU = (TE)(75) = (). Building the matrix product, we see that this implies the two
real equations |r|*> + [t|> = |s|* + |u| = 1 and a complex one, 7s + tu = 0. (The fourth
component relation is the complex conjugate of the third relation and does not introduce
further constraints). Since a complex relation implies two separate real equations for real and
imaginary part, we have a total of four real equations for the eight real parameters entering
the complex numbers 7,¢,s,u. This leaves 4 = 22 free real parameters determining a two-
dimensional unitary matrix.

The key observation is that unitary and hermitian matrices of the same dimension contain
equally many free real parameters. We have also seen that for a Hermitian A, U = exp(iA)
is unitary. This suggests that every unitary matrix can be expressed as the exponential of i
times a Hermitian matrix. It is non-trivial to show that this is indeed the case and that (L216)
represents a proper exponential parameterization of the group of unitary matrices.
This representation plays a rather important role in physics. For example, in quantum me-

chanics (see info section above), physical observables are represented by Hermitian matrices,

°The counting follows from the observation that for ¢ > 7, (UT)ikUkj = 0 is an equation fixing the complex
number (Uf)ikUkj. This gives a totality of twice as many, 2n(n — 1)/2 = n(n — 1), real equations. The
equations for i < j are obtained by complex conjugation of those for ¢ > j (why?) and must not be counted
separately. For i = j, (UT), U = Y, |U%|*> = 1 are n real conditions, so that we have a totality of
n+ 2n(n — 1)/2 = n? real equations.
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the evolution of observables in time is described by unitary matrices, and the exponential rep-
resentation establishes the correspondence between these two descriptions. Another important
consequence of the exponential representation is that a unitary matrix can be factorized as

U= e = NN AN, (L217)

i.e. as a product of N factors exp(iA/N). (Explain on the basis of the results of section L7.5
why this relation holds.) If N > 1 is very large, the matrices A/N (containing the matrix
elements of A divided by N) are close to zero and an expansion exp(iA/N) ~ 1+ ¢A/N is
permissible. The decomposition above represents a possibly complicated unitary matrix as a
product of a large number of relatively simple (close to the unit matrix) factors described by
‘small’ anti-hermitian matrices iA/N." For example, if U = (c%% snf) is a rotation as in
the example above, and NN is chosen asymptotically large, the decomposition is in terms of N

factors ( _91/N 0/1N ) . Convince yourself that the application of this matrix to a two-dimensional

vector, v, generates an ‘infinitesimal rotation’ of v by an angle §/N. Specifically, check that
the norm of the transformed vector equals that of v up to corrections of O(N~2) neglected
in the first order expansion in ¢A/N. The above decomposition thus describes a finite angle
rotation as a product of an infinitely large number of ‘infinitesimal’ rotations. Representations
of this type play an important role in many physical applications.

A similar relation holds between the set of antisymmetric real matrices, AT = —A, and
the orthogonal matrices O7 = O~!. It is a good exercise (try it!) to show that exp(A) = O
is orthogonal and that the sets of antisymmetric matrices and orthogonal matrices contain
the same number of parameters, namely n(n — 1)/2. However, in this case, exp(A) does
not cover the full group of orthogonal matrices. (Only the subgroup SO(n) C O(n) of unit
determinant orthogonal matrices is obtained.) This correspondence and its applications in
physics are discussed in advanced lecture courses.

“A matrix X is called anti-hermitian if XT = —X_ The matrices iA are anti-hermitian because (1A)T =
—iAT = —iA.
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This chapter looks at the mathematics of functions (i.e. mathematics commonly sub-
sumed under the roof of ‘calculus’) from a linear algebraic perspective. It should be read at a
relatively late stage and requires familiarity with major parts of chapter C. Specifically, we will make
reference to section C6.1 on the §-function and section C6.2 on Fourier series. Some familiarity with
linear differential equations is also required. Throughout this chapter we will often use a column
vector notation such as f <> v where on the I.h.s we have an object belonging to a function space,
and on the r.h.s. the analogous object of a finite dimensional vector space. Occasionally we will
consider spaces with non-trivial metrics and familiarity with section L3.3 and covariant notation is
required to understand these parts of the chapter.

Earlier in part L (cf. section L2.3) we had introduced function spaces as an example of vector
spaces. However, so far we have not discussed any of the central concepts of linear algebra
— changes of basis, linear maps, etc. — in this context. This extension will be the subject of
the present chapter. It provides important foundations for the mathematical understanding of
various physical disciplines and notably of quantum mechanics. The mathematical framework
of quantum mechanics is essentially a synthesis of analysis and linear algebra, and the most
efficient way to penetrate it is to regard functions as vectors to which all operations of linear
algebra may be applied. In the rest of this chapter, we will discuss how this works in practice.

There are two aspects in which function spaces differ from the conventional vector spaces
discussed so far. The first is different notation. For example, the ‘components’ specifying
a function f are denoted f(z) and not v’ like those of a vector v. As with any change of
notation it may take some time to get used to this, but after a while the linear-algebraic way of
handling functions will begin to feel natural. The second point is more serious: function spaces
are infinite dimensional. For example, we need infinitely many ‘components’ f(z) to fully
describe a function f, indices labeling function-bases run over infinite index-sets, etc. Infinite
dimensionality may also lead to existence problems. For example, linear maps of function
spaces can be thought of as infinitely large matrices. Determinants and traces of such matrices
then assume the form of infinite products and sums whose convergence must be checked.
All this indicates that the mathematically rigorous treatment of infinite dimensional vector
spaces requires substantial extensions of the framework of finite dimensional linear algebra,
and this is the subject of functional analysis. While a mathematically rigorous introduction
to functional analysis is beyond the scope of this text, we will point out convergence issues
where they occur and suggest pragmatic ways of handling them. This approach should be

125
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sufficient for the majority of situations encountered in physics.

Throughout, we will consider function spaces X = {f : I — C} containing functions
mapping a bounded' domain of definition I C R™ into the complex numbers. Our focus
on complex valued functions is largely motivated by applications. The choice of a compact
domain of definition eases the discussion of some of the convergence issues mentioned above.
Some of the modifications required for the treatment of unbounded domains of definition will
be listed at the end of the chapter.

Throughout this chapter we will also as-
sume square integrability f € L*(I) which
means that X is an inner product space with
the standard scalar product

. f) = / df@f(x).  (L218)

For n > 1 the integral on the right hand side
becomes a higher dimensional integral. Al-
though this generalization is straightforward,
we will mostly use n = 1 notation for simplic-
ity. In a number of applications Eq. (L218) is
replaced by the non-standard scalar product

David Hilbert (1862-1943)
One of the most influential
and versatile mathematicians
of his time. Hilbert is con-
sidered one of the last ‘uni-
versal' mathematicians, capa-
ble of overseeing the field as
a whole. He made impor-
tant contributions not only to many areas
of mathematics but also to physics, notably
to the development of general relativity and
to the mathematical foundations of quan-
tum mechanics.

(f.f) = /;dxmg(ﬂf)f'(ﬂf) — (v,v') = Zﬁgz’ﬂj = Zﬁ% (L219)

where ¢ is some positive function.” Function spaces equipped with such scalar products define
an important an important class of so-called Hilbert spaces.’

L10.1 The standard basis of a function space

In section L2.3 we established a correspondence between functions f and vectors v as

o= v

"Aset I C R™ is bounded if for any x € I and all i = 1,...,n the components z’ lie between an upper
and a lower bound @' < |z'| < b*, where a' < b" are positive real numbers.

*One might consider even more general scalar products, viz. (f, f) = [;dzdyf(x)g(z,y) f'(y) where the

weight function g(y, ) = g(z,y) assumes the role of the metric g;; = g;; (check that this defines a scalar
product if g has suitable positivity properties). However such generalizations do not often occur in practice
and we will not discuss them.

*Hilbert spaces are generalizations of the Euclidean spaces discussed earlier in this chapter. They are inner
product spaces equipped with an extra condition ensuring that the norm of a vector (L32) exists. Denoting the
components of a vector f by f, this amounts to existence conditions on sums such as (f, f) =", J? < .
In the case of finite dimensional Euclidean spaces this condition is trivially fulfilled. The detailed discussion
of the Hilbert condition for infinite dimensional spaces is beyond the scope of the present text. However, we
note that the requirement of finite (f, f) = [, dxf(x)? < oo is a condition of this sort if we understand the
integral as a generalized ‘sum’ over squared ‘components’ f(z)2.
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f(z) — v,
x — i (L220)

i.e. if f € L*(I) is thought of as a vector, then x € I would play the role of the index
i={1,...,n}, and the f(x) values would be its components.

However, when we speak of components we implicitly refer to a basis, and the function f
must be expandable as

f= /dwéxf(x) — V=) e (L221)

where now J, <> e; assumes the role of a basis function and [ dy <> >_, is a ‘sum’ over the
infinitely large number of these functions. The distinguishing property of the finite dimensional
standard basis {e;} in (L221) is its orthonormality (e;, ;) = g;; = J;;, i.e. it is a basis in which
the metric assumes the form of a unit matrix. The component representation of these basis
vectors is as simple as possible, (e;)7 = (5% has zeros everywhere except for a one at position
i. What would a basis function ¢, with analogous properties look like? A preliminary answer
to this question was given early in the text, on p. 33, where we argued that the basis function
which is to be multiplied by the coefficient f(x) in the linear expansion must be focused on
the point = with infinite precision. This is the defining property of the d-function introduced
in section C6.1. The function has ¢, has the required properties that d,(y) vanishes for y # «
in such a way that its ‘infinitely narrow’ support is compensated by the infinite amplitude
dz(x) = 00, i.e.

§y(x) = d(x —y) > (&) =, (L222)

assumes the role of the Kronecker-o valued components of a standard basis vector. The
components f(y) of a function expanded in the standard basis can then be expressed as

(o) :/dxwf(x) — =Y (L223)
5(z—y) -t

Much like the standard basis of R" is orthonormal, (e;,e;) = d;, the d-function basis {9, }
satisfies and orthonormality relation, too: (d,,d,) = [, dz0,(2)d,(2) = [, dzd(z—2)0(z—
y) = d(x — y), so we have the correspondence

(0z,0y) = 0(x —y) — (e;, ;) = dij. (L224)

The components of a vector can be obtained by taking the scalar product with a basis vector
vt = (e, v) = > (e, ej) v = 3. 6"v7, where the conventions of Eq. (L56) where used.
Likewise, the ‘components’ f(z) can be obtained as (d,, f) = [ dy d.(y)f(y), i.e.

f(x) = (5., f) — o' = (e, v). (L225)

We note that for function spaces, there is no such thing as covariant notation of indices. If
a metric enters the stage, it needs to be written in explicit form and cannot be ‘hidden’ in
raised or lowered indices.
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vector space function space
invariant ‘ components invariant components

elements v vi=(ed,v) f f(@)=(b62,F)
scalar product (u,v) Hg,/jvj E?vi (f,g9) J[dz f(z)g(x)
standard basis e el =5 5y 8y (z)=8(y—=)
alternative basis Wa (Wwa)l=(e? ,wq) b wk(z):<5m,wk):ﬁeikw
orthonormality (Wa,W5)=9gap=06aps (Wa)i(Wg)i=8ap (ks dp) =Skp L fdeellr=Re—s
expansion =wav® vi— Jye = N 1 ikz 7

p V=Wqv vl =(wa)lv F=vYrfr f(=) ﬁ%e b
coefficients v¥=(w,v) vO¥=(w); v’ Fe=w,f) fk:ﬁ [ dz e T £(2)
completeness (ej,ei)=(e;,w)(wase;) | 85=(w*);(Wa)i | 6(@—y)=(0u, k) (¥r.0y) | d@—y)=1% §eik<m—”>

Table L10.1: Summarizing the linear algebraic interpretation of basis changes in function space.
Einstein summation over the repeated indices « or k is used. For completeness, the table makes
reference to a general metric ¢ = {g;;}, and an index lowering convention v; = gijvj is used (cf.
Eq. (L51)). Similarly, wa = gapw”. Our discussion in the main text assumes orthonormal bases,
gij = 05 and gag = o3 Where v; = v’ and w, = w®. If you are not yet familiar with these index
conventions you may regard all indices as subscripts.

Non-standard bases of function space

The relations above would be of little more than pedagogical value if there were not
interesting function bases different from the standard J-basis. We have already met one
important example of non-standard bases, viz. the basis of Fourier functions discussed in
section C6.2. To understand how Fourier series representations of functions can be seen
as a change of basis, we consider the case I = [0, L] and the function space X = {f €
L*(I)|f(0) = f(L)}, i.e. the space of complex valued square integrable functions on the
interval I with ‘periodic boundary conditions’ f(0) = f(L). Now consider the set of functions
{Yr. € X|k € (2r/L)Z} where

V() = % exp(ika). (L226)
Apart from the normalization factor L~'/2, these functions coincide with the Fourier modes
exp(ikz) introduced in Sec. C6.2. As we are going to show next the set {1} defines an
orthonormal basis of L*(I) different from the standard basis {d,}. To explore these con-
nections we again refer to the analogous situation in a finite dimensional vector space: let
{wy|lae = 1,..., N} be an orthonormal system of basis vectors different from the standard
basis {e;}i=1,...,N}."

The function values

() — (Wq)’ (L227)

are the components of the new basis vectors written in terms of the old basis. In the language
of section ?? they define the entries of an ‘infinite dimensional’ transformation matrix (71), 4.

“We use different basis indices i and «, respectively, to foster comparison to the functions {04} and {v}
which, likewise, are labeled by different indices = and k.
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Thanks to the orthonormalization of the standard basis {0, } <> {e;}, we may understand the
function values, 1 (x) (i.e. the analog of vector components) as scalar products taken between
the Fourier functions, 1, (the analog of vectors) and the basis functions, ¢, of the standard
basis (cf. Eq. (L225))

V() = (02, Vi) — (Wa)! = (¢/,Wa). (L228)

It is straightforward to check the orthonormalization of the Fourier basis:

L
(W, ) = /dx Ui(@)hp(z) = %/ da P~ — Okp
I 0
—
(Wa Wg) =Y (Wa)j(Ws)! = bap. (L229)

J

The second line of Eq. (L229) states the orthonormality of the {w,} basis; the first line shows
that the Fourier modes {1} satisfy an analogous orthogonality relation.

Completeness relations

Eq. (L229) shows that the functions {1} are orthonormal and hence linearly independent.
However, we do not yet know whether they represent a complete set. Unlike an n-dimensional
vector space where n mutually orthogonal vectors will automatically form a basis, L?(I) is
infinite dimensional. But oo is not a well defined number and we cannot determine by counting
whether the infinitely many functions {1} suffice to span it. (Maybe twice as many functions
2 X 0o = 0o would be needed for that task?) Unlike with finite dimensional vector spaces,
completeness needs to be established in different ways.

It will turn out that for function bases of practical interest, completeness follows from
general principles and need not be checked ‘manually’. Occasionally, however, this needs to
be done and we here show how. A set of functions {1} is complete, if every function can
be expanded as f = >, ¥yci, where ¢, are expansion coefficients. Taking the scalar product
(¢, f) and using the orthonormality relation (L229) we obtain the identification ¢, = (Y%, f),
so completeness requires the existence of expansions

F=Y) el f) = v=) wo(w,v). (L230)

An equivalent condition is that every element of a function basis, for example those of the
standard basis {J, }, is expandable

Vo el: 5xzz¢k<¢k>(5x> — Vi=1,...,N: ei:ZWa<wo‘,ei>.
k «

(L231)
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Since a generic function can be expanded in the standard basis, Eq. (L231) suffices to guarantee
expandability in elements of the {¢;} basis. Taking scalar products (d,, ) of this relation with
generic standard basis vectors we obtain the equivalent set of relations

5y — ) “E” (6,,6.) "B S (8, 0e) (n, 6:) 20N i) in(@)
k k
<—>

5 2 (ese) 20 S ey wa) (W e) 20 S (wa), (s (L232)

[0} [e%

These relations are easy to conceptualize: in the finite dimensional case (cf. Eq. (L228))
(T, = (T"), = (e/,w,) = (W,)’ are elements of the unitary transformation matrix 7~
describing the basis change and T = (w®, e;) = (w®);. Eq. (L231) simply is a rewriting of
the unitarity relation (T'1)7 T% = 5ji with matrix elements expressed as scalar products.” In
an analogous manner, the first of the relations identifies {t.(x)} as the elements of an infinite
dimensional unitary ‘matrix’ describing the change from the standard basis to the basis {1} }.
Equations like

Oy —x) =Y tely) (), (L233)

are called completeness relations. For the specific case of the Fourier functions (L226) the
completeness has been checked by explicit construction, cf. Eq. (??). The orthonormality
relation (L229) and the completeness relation prove that

Fourier series expansion amounts to a change of basis in function space.

Below, we will introduce a few more examples of function bases and demonstrate how their
completeness follows in different ways from general criteria. However, before that we need to
adapt another key concept of linear algebra to function spaces:

L10.2 Linear operators

Linear maps A : X — X, f — Af which send functions f € X to new functions Af are
generally called linear operators. The general linearity conditions discussed in section L5.1
require that for a sum of two functions f,g € X the map act as A(f +g) = Af + Ag, and
that it be linearly compatible with scalar multiplication fl(cf) = cAf for z € R.

Consider the space X C L2([0,1]
subject to the periodicity condition f(0) = f(

of complex valued functions on the unit interval

)
1). Linear operators A:X 5 X respecting the

*To make the equivalence perfect, one may raise the index j in Eq. (L232) (by multiplication with a trivial
6%, and summation over j) to obtain 6%, = (e¥,e;) = (wq)"(w?);.
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periodicity condition are easily constructed. For example, consider the function h € X with h(x) =
cos(2mz). Multiplication by h defines the linear operator A, : X — X, f — hf, where (hf)(z) =
h(z)f(x). Like h and f the function Anf = hf is periodic, i.e. A}, acts within the space X.
Multiplication by & satisfies the linearity criteria flh(f +9) = Apf+ Apg and flh(cf) = cAyf for
f,g € X and ¢ € R and hence A, is a linear operator on the space X.

The linear operators playing the most important role in applications involve derivative operations
and are called differential operators. As an example consider the operator —i d, acting on functions
by differentiation, e.g. —id, cos(27wx) = 271 sin(27x), where the factor of —i has been introduced
for later convenience. This map, too, satisfies the periodicity condition (why?) and linearity and so
defines a linear operator in X.

Later in the chapter, we will see that this operator plays an important role in the description
of periodic functions and we will use it as a case study to illustrate various generic features of
differential operators. Sums and products of linear operators are again linear operators. For example
(—idx)? = —d2 and —d2 + cos(27z), too, act linearly in X.

L10.3 Eigenfunctions

In previous sections we have seen that the essential information on a linear map A VoV
of a finite dimensional vector space is contained in its eigenvectors v;, i.e. vectors on which
A acts as Av; = \;v; where )\, is the corresponding eigenvalue. In cases where a basis of
eigenvectors could be found, the linear map A assumed the simple form of a diagonal matrix
in that basis. Generic vectors could then be expanded in the basis of eigenvectors and the
action of the A was essentially under control.

Very similar things can be said about linear operators of function spaces. For an operator
A: X = X a function fn satisfying the relation

Afy = M fr (L234)

is called an eigenfunction with eigenvalue )\,. We attach a subscript k£ to f; because in
cases where eigenfunctions play a role we will want to number them and k plays the role of
a counting index. Unlike with finite dimensional spaces, linear operators on function spaces
generally possess infinitely many eigenfunctions so the counting index will generally run over
an infinite set. Typical examples include k € 7Z, or double-indices such as (ki, ko) € Z x Z. If
I is unbounded, dense sets of eigenvalue indices may occur, see section L10.5 the end of this
chapter.

If an eigenfunction f; has been found it will often be convenient to normalize it. As with
vectors this is done by computing the square of its norm N = (fy, fi) = [;dz | ful]®. We
may then define the unit-normalized eigenfunction f;, = \/Lﬁfk We note that the seemingly
innocent normalization operation may become tricky if I is non-compact and again refer to
section L10.5 for a discussion of this case.

As an example consider the space of periodic functions on the unit interval discussed
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in the previous section L10.2. The eigenfunction equation for the linear operator (—i)d, reads

(=i)def(z) = Af(2), (L235)

where we temporarily omitted the counting index k. We verify by substitution that this equation
is solved by the function ae'*® where a, A\ € C and ) features as the eigenvalue. Given this result,
we need to ask two follow-up questions: the first is whether there are other eigenfunctions with the
same eigenvalue. The answer to this question requires some background in the theory of differential
equations. Eq. (L235) is an ordinary first order linear differential equation. In section C7.8 we will
show that up to normalization such equations possess a unique solution. The freedom of different
choices of normalization is represented by the pre-factor a in our family of eigenfunctions, so we have
found the full set of solutions.” The second question is whether the eigenfunctions actually belong to
the function space X. They do if the periodicity condition f(0) = f(1), or a = ae* is obeyed. This
is satisfied iff A = 2rik, k € Z. What this tells us is that the proper eigenvalues of our operator in
X are given by A = A\, = 2wik and that aexp(2rwikx) are the corresponding eigenfunctions. Finally,
we verify that the norm of these functions is given by |a| and that for a = 1 or other unit-modular
constants we have unit normalization.

To summarize our results, we have found that the linear operator (—i)d, possesses the set of
eigenfunctions

fe(z) =™k e 7. (L236)

These functions are just the Fourier modes on the unit-interval. We now understand that the
Fourier basis is just the basis of eigenfunctions of the linear operator —id, : X — X.

The discussion of the example above contains a few general guiding principles for the
identification of eigenfunctions:

> Technically, the ‘eigenequations’ flf = MAf associated with a linear differential operator
are linear differential equations. Start by identifying a complete set of linearly independent
solutions. The cardinality of that set depends on both the order of the highest derivative
operator contained in A and on the dimensionality of I. If dim(7) =1 as in the example
above the order of A determines the number of linearly independent solutions. For higher
dimensional [ the situation can become more complicated (think of the Fourier expansion
of higher dimensional functions discussed in section ?? for example).

> Next check that the general solutions actually lie in the function space X, i.e. that they
satisfy the defining properties of elements of X. It may happen that some solutions have
to be disposed of (such as those with A ¢ 27i7Z discussed above). The appropriately
restricted set then defines your set of eigenfunctions.

> Finally, it may be expedient to normalize the functions as discussed above.

°The situation would be different had we considered the operator —d2 = ((—i)d,)?. Its eigenequation
—d2f = Mf is a second order differential equation with an eigenspace spanned by two linearly independent
solution functions e***. The general solution is then given by all linear combinations c,.et?* 4+ c_e™** with
constants c4. More generally an nth order differential operator has n linearly independent solutions and an
n-dimensional eigenspace.
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L10.4 Self adjoint linear operators

In section ?? we discussed the specific properties of Hermitian linear maps. We learned
that a Hermitian matrix can always be diagonalized. The diagonalizability property means
that the set of eigenvectors of a Hermitian matrix is complete. In fact, the set eigenvectors
could be conveniently chosen so as to form an orthonormal basis. All these niceties carry over
to the case of linear operators.

Definition

Assume our function space X is equipped with a scalar product (L219). For concreteness,
we may consider the space X of periodic functions on the interval [0, L] with complex standard

scalar product (f,g) = fOL dz f(x)g(x). An operator A : X — X is called self adjoint if

Vf,ge X : <Af,g>:<f,flg> — Vv,weV: <Av,w>:<v,flw>.
(L237)

We observe that a self adjoint linear operator is the analog of an Hermitian matrix. In fact, it
is common practice (in physics) to use the terminology of ‘Hermitian operators’, and we will
do so in the following.

For example, the operator (—i)d, considered above enjoys the hermiticity property:

(=D)d,f,g) = / de (D& F@g(x) = | / de d, f(2)g(x) = / da F(@) (—i)dug(x) =
= <f> (_l)dxg>>

where we integrated by parts, noting that no boundary terms arise due to the assumed peri-
odicity of the integrand.

Recapitulate the arguments of section ?? to verify that they carry over to the case of
function spaces.

As in the case of finite dimensional vector spaces, the hermiticity of a linear operator makes
strong statements about its eigenvalues and eigenfunctions: all eigenvalues A, are real, eigen-
functions v, with different eigenvalues are mutually orthogonal (¢, ¥x) = 0 if Ay # A, and
the full system of eigenfunctions is complete. The Fourier eigenfunctions of (—i)d, are a nice
example of this.

Importantly, the knowledge that an operator is Hermitian and that we have found all
of its eigenfunctions is sufficient to establish the completeness of that set of functions. In
applications, it is usually the theory of differential equations that tells us that we have found
a complete set of solutions of an operator eigenequation (L234). Once we know that all

"At this point it becomes evident why we included a factor (—i) in the definition of the differential operator:
it serves to make the latter Hermitian.
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solutions are under control, completeness is granted by the hermiticity of the operator, and
no explicit verification of completeness relations is necessary. This is why we said above that
explicit verifications of completeness are often not needed.

Hermitian differential operators play an important role both in mathematics and physics. For
example, the axioms of quantum mechanics state that to each physical ‘observable’ (position,
momentum, angular momentum, etc.) there corresponds one Hermitian operator A. The expected
state” of that observable is given by the ‘matrix element’ (1, flz/;) of A in a state vector 1 describing
the physical state of the system. Depending on the context, A and 1) may belong to a finite-
dimensional vector space or to a function space, in which case 1 is called a wave function. We can
clearly learn a great deal about a physical observable from the eigenfunctions of its corresponding
operator. Moreover, if a given operator plays an especially important role in a problem, then its
eigenfunctions will typically be a natural basis to work with. In the case of infinite-dimensional oper-
ators, the eigenequations are determined by differential equations. For example, the two differential
operators discussed in the examples below are relevant to the quantum mechanical description of the
hydrogen atom.

Example: Legendre polynomials

Consider the function space X = {f : [-1,1] — R}, i.e. the real valued functions on
the interval [—1, 1] (no boundary conditions specified), with standard scalar product (f,g) =
f_ll dz f(x)g(z). On this space, we define the second order differential operator

- d o d

It is straightforward to check, that this operator is symmetric relative to the standard scalar
product, (Af, g) = (f, Ag).

Verify the symmetry of the differential operator (L238). Do this using integration by
parts and show why no boundary terms arise.

The eigenequation of A, API = MNP, is called Legendre differential equation and the
eigenfunctions P, are known as Legendre polynomials. (We will see shortly why they are
polynomials in z.) Finding a complete set of solutions of the Legendre equation is a non-
trivial task, often discussed in lecture courses on ordinary differential equations, theoretical
electrodynamics, or quantum mechanics. Referring to the info section below for a quick
sketch of the solution strategy, here we just state the result: non-singular solutions of the
Legendre differential equation are found for eigenvalues A\, = —I(l + 1), where [ =0,1,2, ...
is a positive integer. The corresponding Legendre polynomials can be represented in different

8 . . . . ..
In quantum mechanics observables generally cannot be determined with mathematical precision, there
remains ‘quantum uncertainty’.
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ways, among them the so-called Rodrigues formula

1 d

P(z) = ﬁ@(l‘

— 1)L (L239)
A list of the first four polynomials reads,

P) =1, Piz)=z Polx)= %(3552 “1), Pya) = %(5333 _3a),

Py(z) = é(35$4 —302% + 3). (L240)

It is customary to normalize the Legendre polynomials as P;(1) = 1, i.e. by fixing their value
at z = 1. For a visual representation of a few Legendre polynomials, see Fig. L18.

Figure L18: The Legendre polynomials P;, dashed; P» dotted; P; dash-dotted, P;7, solid.

Let us sketch the derivation of the result (L239)." The fact that the differential operator
A contains a polynomial (1 — x?) suggests that polynomial solutions to the eigenequation might
exist. (This is a really weak argument, but better than none.) Indeed, we may check by direct
substitution that Py = 1 is a solution with eigenvalue \y = 0 and P; = x one with eigenvalue
A1 = 2. Encouraged by these findings, we may speculate that more complex solutions P(x) of the
equation AP(x) = AP(z) also assume the form of a series

[e.9]
P(z) = Zajx‘”j,
j=0

Here, the parameter 0 < oo < 1 has been introduced to include the option of fractional, yet positive
powers of z. If we act on this ansatz with the Legendre differential operator (try it!) we obtain a
function

AP@) =3 (ajlo+)a+j+ 12" —ajla+j)(a+j = 1)a*H72).
Jj=0

As a word of caution we note that a comprehensive discussion would need to cover various aspects of
convergence whose discussion is beyond the scope of this text. You may try to spot possible convergence
issues or consult the literature if you are interested in knowing how a watertight derivation proceeds.
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It will be convenient to combine the two contributions to this series into one. This can be done by
rearranging terms as follows:

S ajla+ )t j—1)ati? =

5=0
oo
=Y ajla+i)a+j-1)z*7? + X(x) }:mwcﬂﬂ+ﬂxa+J+l)“ﬂ+X()
7=2 7=0
where the term X (2) = aga(a—1)z* 2 4-a;(a+1)az®~!, contains the first two summands j = 0, 1

of the series and in the second line we renamed the summation index as j — j —2. Combining terms
we have

o0
Z (aj(a+j)(a+i+1)—ajra(la+j+2)(a+j+1)2*H — X(z).
7=0

This series must be equal to the series AP(z). Representing these conditions in the form of a series,
we get

0= AP(z) =3 (agj((a+ ) (a+j+1) = A) = ajrala+j+2)(a+j+1)) 2%t - X(x).
7=0
(L241)

The fact that the |.h.s vanishes everywhere demands that the coefficients of each power z®** are

individually zero (why?). We first notice that terms of O(z% 2,2~ !) are contained only in the
contribution X (z). These two must be individually zero which leads to the condition o = 0 if either
ag or ap are different from zero. The vanishing of higher powers 2%/ demands that

aj((a+j)(a+j+1) =) —ajra(a+j+2)(a+j+1) =0«
(a4 ) a+7+1)—=N)
(a+j+2)(a+j+1)

Aj+2 =

The second equation can be seen as a relation recursively fixing coefficients as ag — as — a4 — ...
and a; — a3 — as — .... To avoid the solution vanishing everywhere, at least one of its ‘anchors’
ap or a1 must be non-vanishing, which in turn requires that the fractional power o = 0 vanishes.
Turning to the termination of the series, we are after solutions of polynomial form, i.e. we require that
a; = 0 after a finite number of terms. Inspection of the recursion relation shows that this condition
requires the eigenvalue to assume the form A = [(l + 1) where | € N is a positive integer. Assume
that [ is an even/odd integer. We then observe that the series of even/odd coefficients vanishes,
while the odd/even series remains infinite. (These are the two linearly independent solutions of the
Legendre differential equation at given [, there won't be other solutions.) Closer inspection shows
that the unbounded solution has convergence issues and that we should discard it. It is an easy matter
to compute the first few good solutions by hand and as a result one obtains the list (L241). A less
easy exercise (try it!) is to verify that the recurrence relations defining the Legendre polynomials are
generated by the Rodrigues formula (L239).
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Prove the orthogonality of the Legendre polynomials
1
/ dz Py() Py () o O, (L242)
-1

for | = 2 and I’ = 3. The general proof is not easy, unless we use our linear algebraic background
knowledge: use that AP, = [(I + 1)P, and the symmetry of A, [(AP)F, = [ P(AF) to show
that the integral vanishes unless [ = I'.

In the next section we will see where the Legendre differential operator appears in a larger
framework of applications.

Exampe: spherical harmonics

Requires sections V2.4 and 77

In physics and mathematics we are often working with problems defined on a sphere, i.e. a
surface of points at fixed distance from a common origin. A convenient way to parameterize
such surfaces is in terms of spherical coordinates (6,¢). We saw that the natural ‘surface
element’ assigning a spherical surface element to a change (df, d¢) of coordinates is given by
dS = sinf df d¢ and this suggests that we should consider the scalar product

(f.g) = /0 "6 /0 " 46 sin 0709, 9)9(0, ). (L243)

defined on the space X = L?(S?) of square-integrable functions on the sphere, where the latter
is identified with S? = {(#,¢)|0 € (0,7),¢ € (0,27)} . This coordinate parameterization of
the sphere implies that for all f € X we have the periodicity condition f(60,0) = f(0,2x).

A differential operator important for the description of problems in electrodynamics and
quantum mechanics is the Laplacian on the sphere A : X — X. This operator is obtained
from the cartesian three-dimensional Laplace operator (??), A = 9% + 05 + 0% by passing to
spherical coordinates (x,y, z) — (r,0, ¢). The result of this transformation is the complicated
looking differential operator Eq. (V99) containing second derivatives w.r.t. the three coordi-
nates, 7,0, ¢. Its restriction to functions f(0,¢), i.e. functions depending on angles but not
on radial coordinates, is given by

1 , 1,
Sin@aﬁ sin 6 8@ + ma¢ (L244)

A:

This operator is Hermitian w.r.t. the scalar product defined above as can be verified by an
instructive little calculation (try it!). Conceptually, its hermiticity is inherited from that of

10 . . . . . . . .
As discussed in section V2.4 these coordinates parameterize the sphere up to a single line connecting the
north and the south pole. However, as long as the focus is on integration theory, the omission of a line out of
a two dimensional surface is not a problem.
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the Laplacian A = 07 + 9. + 07 of functions in three-dimensional space L*(IR®) relative

to the standard three dimensional scalar product (f,g) = [ dzdydz f(z,y, 2) g(z,y, z). The
hermiticity of the cartesian Laplace follows straightforwardly upon partial integration w.r.t. the
coordinates x,y, z. Since the ‘parent’ three dimensional Laplacian is Hermitian, its restriction
to the subset of spherical functions must be so too.

Let us now proceed to identify the eigenfunctions, f,, of the Laplace operator, i.e.
solutions of the second order partial (!) differential equation Af\(0,¢) = Af\(6,¢). The
solution of this problem would be tough if there were not a little trick by which the complicated
looking equation can be transformed into two simpler ones: let us start by multiplying the
equation with sin? @ and rearranging terms,

[(sin 0y sinf 9y — Asin*6) + 8;} f(6,0) =0,

where we temporarily omitted the subscript A for notational clarity. The important point now is
that the differential operator appearing in this equation is the sum of two terms each depending
only on # or on ¢. Multivariate operators separating into additive single-variate contributions
are called separable. They have the nice property that the corresponding solutions can be
obtained as products of single variate solution functions. In the present context this can be
seen as follows: we make an ansatz f(6, ¢) = g(0)h(¢). Substituting this into the equation
and multiplying from the left by ¢=(0)h~!(¢), we obtain

g~ (0) (sin B0y sin 6 9y — Asin®6) g(0) = —h_l((b)@ih(gb).

The right side of this equation does not depend on 6, which means that the right side must
be a constant independent of # too. Conversely, the left side must be a constant independent
of ¢. Since these constants are equal to each other the left and the right side individually
must be equal to the same constant, independent of both 6 and ¢. Let us call this constant
m?. Equating both the left and the right side of the equation to this constant, we obtain two
separate ordinary equations,

(sinfdgsin dy — Asin® ) g(6) = m*g(6),
Eh(6) = —m?h(g).

The second of these equations is solved by the Fourier modes h = h,, where h,,(¢)
exp(i¢m) and the periodicity condition h,,,(0) = h,,,(27) requires m € 7Z to be an integer. |
the first equation, we apply a variable substitution x = cos(f) € [—1, 1]. Defining g(0(x))
P(z) and using that (sinf)~'dy = d, and sin?*(f) = 1 — 22 a little calculation shows that the
equation assumes the form

>

(da(1 = 2*)dy = A —m?*(1 —2%)7") P(z) = 0.

For m = 0 this is just the Legendre differential equation discussed in the previous section. In
this case, we have the solutions P(x) = P,(x) with corresponding eigenvalues A = —[(l + 1).
The generalization of the solutions to arbitrary m are known as Legendre functions P".
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These functions exist for values of m € {—I[,...,l} and the corresponding eigenvalues are
given by —[(l + 1), independent of m. For positive m they are defined by

dm
P"=(-1)"(1~- $2)m/2dx—mpl($)7 (L245)

while the solutions for negative m are P/"<0 = E;;Z;:Pl_m Summarizing, we have found

that the eigenfunctions of the spherical Laplace operator are given by the so-called spherical
harmonics

Y,"(0,9) = \/214—; 1 Ei :_ Z;: e P (cos()), (L246)

where the prefactor ensures unit-normalization <Ylm, YJ”> = 0;;0™". (The proof of this is not
straightforward.)

Convince yourself of the generality of the above argument, i.e. of the fact that every
differential equation flf = 0 defined by a separable differential operator of n variables and their
derivatives A(z1,0y,...,2p,0n) = > A;(zi,0;) can be diagonalized in terms of a product ansatz
f(x1,...,zn) = [1, fi(x;), where all f; are solutions of the ordinary equation Aifi = cf; with a
common constant c.

It is instructive to write down a few of these functions explicitly

1
=0 }/(]O(Qagb):_v
4r
O 3
I=1:Y7(0,¢) =/—cosb,
T
+1 3 +ig
YT (0, 9) = —Fsmﬁe )
0 5 2
1=2:Y,(0,0) = F(?)cos 0—1),
T
+1 15 g tid
Y55 (0,0) = F 8—7Tcos€sm€e )
1 )
+2 _ L2 g 42ig
Y;2(0,0) = F 2, S 0e . (L247)

We notice a trend of increasingly complex dependence on the angular arguments at higher
(I,m). Fig. L19 shows a visual representation of the first few spherical harmonics. If these
images faintly remind you of your chemistry classes this is no accident. The spherical harmonics
are a key element of the description of atomic and molecular orbitals which is a consequence
of their central role in the solution of the Schrodinger equations of atoms. These applications
are generally discussed in lecture courses on quantum mechanics.
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Figure L19: Plot of the first few spherical harmonics, Y (first row), Yl_l’o’1 (second row),

}/'2_2’_1’0’1’2 (third row). The surfaces shown are generated by plotting the spherical-coordinate
points (r,0,¢) = (]Y;™|*(6, ¢), 0, ¢) as a function of the angles (6, ¢).

The spherical harmonics are the complete set of eigenfunctions of an hermitean differential
operator acting on functions f € L?(S?) on the sphere. From linear algebra we know that
these functions define a function basis on the sphere, i.e. that every f can be expanded in
the basis functions Y, as

00 l
f0.0) =3 > ai¥i"(0.9)
=0 m=—1
T 2
o = (Y, f) = /0 indo /0 16 Y70,9) 16, 6), (L248)

where the orthonormality of the spherical harmonics, <Ylm,Y]"> = 0;;0™", implies that the
expansion coefficients are obtained by the straightforward computation of scalar products as
indicated in the second line.
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Functions of one variable can often be approximated in terms of only a few Fourier har-
monics. Similarly, low order spherical harmonics expansions are generally sufficient to obtain
good descriptions of functions on the sphere (provided the latter do not exhibit wild vari-
ations). For an illustration of this point, consider the randomly generated function f(6, ¢)
shown in the first panel of Fig. L20. The remaining panels show the expansion of this function
in terms of spherical harmonics from [ = 0 (second panel) up to [ = 4 (last panel). The l =4
approximation already does a rather good job at describing our function in terms of the 24
expansion coefficients needed for an [ = 4 expansion. What our example shows is that the
spherical harmonics are the ‘Fourier modes of the sphere’ and play an equally useful role in
the description of functions with angular variation.

I
71\

AN

W \\‘}}
¥
\\ |
W

Figure L20: First panel: a randomly generated positive function f on the sphere plotted in the polar
representation f(6,¢),0,¢). Remaining panels: expansion of this function in terms of spherical
harmonics up to level [ = 4. For visual clarity the plots of all functions are limited to an angular
window 6 € [0.6, 7 — 0.6].

L10.5 Function spaces with unbounded support

We conclude this chapter with a few qualitative remarks on function spaces with unbounded
support, for example the space X = L?*(R) of square integrable functions on the real axis.
With few modifications, most of the concepts developed in previous sections carry over to this
case. For example, we have seen in section C6.3 how Fourier series become Fourier transforms
when functions defined on the entire real axis are considered. In practical terms this means
that sums become integrals, however, the general structure of the concept remains unchanged.
The importance one attributes to the differences between the bounded and the unbounded
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case depend a lot one one's individual perspective:

Rigorous perspective: when we pass to spaces of functions with unbounded support, a lot of
things happen. For example, the eigenfunctions i, (z) = exp(ikz) of the differential operator
(—i)d, lie outside X, which follows from the fact that |1;|?> = 1 cannot be integrated over
the whole real line.

This lack of integrability means that scalar products between the eigenfunctions cannot be
taken, unless properly ‘regularized’ (see below). Relatedly, the Fourier ‘index’ k& now becomes
a continuous variable, and we need to ask how the discrete sums over eigenfunctions turn
into integrals of sorts. There are several other elements of finite dimensional linear algebra
— traces, determinants, etc. — whose mathematically rigorous generalization to the case of
function spaces with unbounded support is far from trivial. However, being physicists we may
ask how severe these complications are from the point of view of a
Pragmatic perspective: in section C6.3 we saw that the non-integrability of the Fourier modes
Y, could be dealt with by introducing convergence generating factors. Alternatively it is
often legitimate, and in fact convenient, to consider functions on a large but finite domain of
definition [—L, L], and send L — oo in the end. (In practice this means to make L bigger
than any other length scale of the physics problem at hand.) As long as L remains finite, the
concepts discussed in previous sections may safely be applied. Provided nothing dangerous
happens as the limit L. — oo is eventually taken, the case of an unbounded integration
domain then effectively is under control. Pragmatic strategies of this sort usually work in
physics. However, it should not go unmentioned that there are important exceptions to the
rule. For example, so-called Dirac (differential) operators play a very important role in particle
physics and more recently also in condensed matter physics. Such operators are distinguished
for exceptionally poor convergence behavior and their ‘regularization’ is a delicate subject.
These issues are discussed in lecture courses on quantum field theory at a late stage of the
physics curriculum.
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In this chapter, vectors, v, matrices, A, and other objects of linear algebra will be
understood from a unified perspective. It therefore becomes pointless distinguish vectors by a boldface
notation and we will denote them as v € V throughout. Unless mentioned otherwise we will work
with real vector spaces throughout.

Linear algebra is the mathematical discipline of objects that satisfying certain linearity criteria.
So far, we have seen two representatives of these, vectors and matrices. However, there are
other classes of ‘linear objects’ and the cumulative term for all of them — including vectors
and matrices — is tensors. Much like vectors can be generalized to vector fields, one may
define tensor fields. Tensors and tensor fields play an important role in various fields of physics
including in general relativity, in hydrodynamics, quantum information and others.

In this chapter, we introduce the algebraic foundations of tensor algebra and in this way
a new and unifying approach to linear algebra. The extension to tensor fields, along with an
introductory discussion of physical applications, is the subject of the later chapters V4 to V6.

L11.1 Direct sum and direct product of vector spaces

Starting from an n-dimensional vector space, V/, multilinear algebra builds more structured
— and as we will see useful — vector spaces by hierarchical constructions. This is achieved by
two basic constructs, the direct sum and the direct product of vector spaces. In the following,
we introduce these two in turn.

Direct sum

Consider two real vector spaces, V' and W, of dimension n and m, respectively. The direct
sum V @ W is defined as the set of ordered pairs of elements of V' and W, respectively,

VeW={(vw)|veV,we W} (L249)
For these pairs, addition and scalar multiplication rules (v,v" € V, w,w’ € W, a € R):
> (v,w) + (VW) = (v+v,w+w),

143
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> a(v,w) = (av, aw), (L250)

are declared to make V' @ W a real vector space. Given bases {e;} and {f;} of V and W,
respectively, a generic element of V' @ W can be expressed as ), c'(e;, 0) + >, d’(0, f;).
This shows that the n + m vectors (e;,0) and (0, f;) form a basis of V' & W and that
dim(V @ W) = n+m. Any element of V& W can be decomposed as (v, w) = (v,0)+ (0, w)
into a contribution of V' and W, respectively. The sum V @& W can therefore be imagined
as a vector space in which V' and W are embedded as natural subspaces. For example,
R3 = R?® R may be considered as the direct sum of R? and IR, see the figure. A component
representation of vectors in V' & W is obtained by concatenating the component vectors of
V and W. In the example of R? = R? ® R, two-dimensional vectors (a,b)” € R? and one-
dimensional vectors ¢ € R are concatenated to obtain a component representation (a, b, ¢)”
of R3. Likewise, the basis vectors e; = (1,0)7 and e; = (0,1)7 of R? and that, f; =1, of R
yield the three basis vectors (e1,0) = (1,0,0)7, (e9,0) = (0,1,0)7 and (0, f;) = (0,0,1)7 of
R3.

The construction can be iterated to yield direct
sums of higher order. For example, given three vec-
tor spaces, V,W,U with bases {e;},{f;},{gx}, the
direct sum V & W @& U may be obtained as (V' &
W)yeU =VaeWeaelU)=VaeWaeU (why
is this construction associative?), with basis vectors
(:,0,0),(0, f;,0) and (0,0,gx). For example, the (e1,0)
standard vector space R"™ may be thought of as the direct sum of n copies of R.

(07 fl)

Tensor product

Besides the direct sum, there exists a second option to build a vector space from two
constituent spaces V' and W, the direct product or tensor product, V @ W (Latin: tendo —
| span). This space is defined as the set of real linear combinations ¢;v; ® w1 + cove @ Wy + . . .
of pairs v ® w, v € V,w € W. Within the set of these formal linear combinations we declare
the identifications (v,v" € V, w,w’ € W, a € C):

> v+ )@w=vw+v ®w,
> 1R (w+uw)=vw+vRu,
> (av) @ w =v ® (aw) = a(v @ w).

These rules define addition and scalar multiplication in V @ W. Given bases e; and f; of V and
W, they imply that each v ® w can be decomposed as v ® w = Zij v'wle; ® fj, for example
(61 + 362) & (5f4 + 2f5) = 561 & f4 + 261 & f5 + 1562 (02 f4 —+ 662 & f5. This decomposition may
be applied to each term in the sum, so that general elements of V @ W afford a representation

as ) . Ve ® fj:

VoW = {Zcﬁei@f]— = R}. (L251)
ij
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We conclude that {e; ® f;} defines a basis of V' ® W and that the dimension of the latter
is given by n x m. However, unlike with the direct sum, there is no natural component
representation of V ® WW. For example, for V = W = R?, the nine-dimensional space V @ W
may be represented in terms of nine-component vectors, however, the connection between
this representation and the component vectors of the spaces V' and W is not particularly
transparent. Relatedly, there is no intuitive graphical representation of V' ® W, even for low-
dimensional V' and W; it is generally preferable to work with linear combinations in terms
of basis vectors as in Eq. (L251). Finally notice — an important but easily forgotten fact —
that not every element of V ® W can be represented as a product v ® w. For example,
e1 ® fa+ ea ® fi cannot.

As with the direct sum, the tensor product can be iterated to build tensor products of
higher order: given three vector spaces, V, W, U with bases {e;},{f;}, {gr}, the tensor product
V@W ®@U may be obtained as the tensor product (VW)U =Veo(WeU)=VeWeU
(why is the product operation associative?) A basis is provided by the tensor products of basis
vectors, {e; ® f; ® g }. The extension to products of higher order is obvious.

Although tensor spaces are perhaps not easy to comprehend intuitively, they play a very
important role in physical applications, notably in quantum mechanics. To appreciate why, consider
once more the example of a particle on a lattice discussed on pp 118. There, we argued that the state
of a particle moving in an N-site lattice chain is encoded in a vector ) € V = C~. Now suppose
that the particle is a physical electron. The electron is an elementary particle with a property called
spin. Heuristically, we can think of spin in terms of a compass needle that may point only in one of
two directions, say up and down. Following the principles of quantum mechanics the two alternatives
correspond to the basis states of a two-dimensional vector space, for example spin up < s; = (1,0)7
and spin down ¢ s3 = (0,1)7. A general spin configuration of the particle is then described by a
vector y € W = C2. For example, the state y = %51 + %52 would describe a state where ‘spin
up' is realized with probability (1/1/3)2 = 1/3 and ‘spin down’ with probability 2/3.

Now consider the situation where the particle is free to move in the lattice, and may have arbitrary
spin. The joint information is contained in states ) € V@ W = CV ® C? that live in the tensor
product’ of the spaces V and W describing its position and spin, respectively. For example a spin-
up electron at site ¢ would be in state e; ® s;. However, the quantum particle may also be in a
superposition state, for example an equal probability superposition %ei ®s1+ %ej ® s9 of spin up
at ¢ and spin down at j. A general configuration is described as

Y die @, (L252)

i.e. an element of CV®C?2, where ¢/ € C. The probability of a combined position /spin measurement
is given by |¢”|2, subject to the condition > i |c|2 = 1, which enforces the requirement that with
unit probability the particle is to be found at some lattice site with some spin projection.

This example illustrates how the mathematical structure of tensor products is tailored to the de-
scription of composite quantum systems. For a discussion at much greater conceptual and method-

1 . . . . .
Tensor products of complex spaces are defined in analogy to the real case. The details are discussed in
lecture courses in quantum mechanics and not essential for the present discussion.
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ological depth we refer to lecture courses in quantum mechanics.

L11.2 Dual space

To each vector space V' of dimension n there exists an intimately related partner space
called its dual space, V*. The dual space is defined as the set of all linear maps w of V' into
the real numbers,

w:V =R, v w(v) = wo, (L253)
where linearity implies the properties (v,v' € V,a € R)

> w(v+v") = wv + wv,

w(av) = awv.

Following the general convention to omit the brackets around the arguments of linear maps,
the notation wv = w(v) is often used. Vector addition and multiplication by scalars, making
V* a vector space, are naturally defined as (w + w’)(v) = wv + w'v and (aw)(v) = awv.
The elements of V* are called dual vectors or covectors.’

To understand the ‘duality’ V' <+ V* in more concrete terms, let {e;} be a basis of V. A
corresponding basis of dual vectors, the so-called dual basis, {¢'}, (note the upper index!) is
defined by the condition that

Vi €(e;) =ce; =0 (L254)
This defines the action of e’ on a basis and hence fixes its action on a general vector v = e;v7
as e'v = e'(e;v?) = e'e;u? =07, i.e. € maps v onto its ith component,

e'v = ' (L255)

A dual vector can be expanded as w = w; €’ in this basis, and its covariant components are
given by

w; = we;. (L256)
The action of w on v then yields
wv = (wie')(e;07) = win'. (L257)

Notice the apparent visual symmetry between vectors and dual vectors in this equation. Indeed,
V* is a vector space and one may ask what its dual is. Eq. (L254) suggests an interpretation
of the vectore; € Vasamape; : V* - R, e — e'e; = 66.. In spite of the unusual notation

2 . . . . .
Alternative denotations include linear functionals or one-forms.
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in which the symbol denoting the map, ¢;, appears to the right of its argument, e’ this is a
valid interpretation. It shows that vectors v € V' afford an interpretation of linear maps of V*
into the reals, and that

(V) =V, (L258)

i.e. the dual of the dual space of VV* is V itself. The action of general vectors v € V' on
dual vectors w € V* is again given by Eq. (L257), i.e. this equation can be read both as
w-acts-on-v or v-acts-on-w.

This shows in what sense V' and VV* are ‘dual’ to each other. Importantly, however, there
exists no natural, or ‘canonical’ bijection assigning to elements v € V elements w € V*.
The construction above, which assigned dual basis vectors ¢’ to basis vectors ¢;, does define
a map V' — V*. However, this map requires the prior fixation of a basis, and hence is not
canonical. (In a different basis, {f;}, the prior basis vector e; would be mapped onto a dual
vector different from e’; think about this point!) However, on p. 148 we will discuss how the
presence of an inner product in V' defines a very useful canonical identification V' < V*.

Finally, it is sometimes useful to think about the connection between vector spaces and their
duals in a component representation, where a basis is fixed and vectors v <> (v?, ... v™)T
are identified as column vectors or n x 1 matrices. Eq. (L254) then suggest an identification
w <> (wy,...,w,) of dual vectors as row vectors (the absence of the transposition symbol),
or 1 x n matrices. In this picture, the pairing wv = w;v’ is understood as the multiplication
of an 1 X n matrix with an n x 1 matrix.

In V = R? consider a basis e; = (}) and eg = @) To find a component representation
of the dual basis vectors, e! and €2, we express Eq. (L254) in the component representation (L257),
(¢)i(ej)! = 0. If we associate (e'); = A’ with the components of an as yet unknown matrix,
then (e;)! = (A_lT)jl must be the transpose (cf. Eq. (L107)) of the inverse of that matrix, since
(eM)i(ej)t = Ail(A_lT)jl = Ail(A_l)lj = 5ij. Comparison with the given component representation
of the basis vectors e; and ey yields A=1T = (; :13) We transpose this matrix and compute the
inverse to obtain A = (73 7%) The rows of this matrix, e! = (3,—2) and €? = (—1,1) define the

1
sought-for dual vectors. Indeed one may double check to confirm that ele; = 1, eles = 0, etc.

Co- and contravariant transformation

Suppose we choose a different basis, ¢; — ¢, = e;(T~1);.

;- The corresponding vector
components transform as v +— 0" = levj, so that

v = e = (e(T Y )(Tiok) = e0f

remains invariant. The dual vectors ¢” associated with the new basis vectors ¢ are defined as
¢ (¢;) = 0%;. This condition in turn implies that the expansion of the new dual basis vectors
in the old dual basis reads as ¢ = T"¢’ (show this!). The components of a dual vector must

then transform as w; — w; = w;(T~");, so as to leave w = w;e’ = wje” invariant.
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Observe that the co- or contravariance of an index fixes the transformation behavior of
the object it refers to. Regardless of whether they represent vectors or coefficients, contravari-
ant objects transform with 7" and covariant ones with 7~!. To summarize,

Wi — ’LUj(T_l)j-.

v T, e The, vy = vy (T ; (L259)
This transformation behavior ensures the invariance of all three types of 'contractions’ encoun-
tered above, v = e;0v%, w = w;e’ and wu = w;v*. Notice that the transformation under 7T is
solely determined by the co- or contravariance of an index. Regardless of whether that index

labels a component or a vector we have (z° = €', v")

79

Tt Tijxj, z; = a (T,

s

(L260)

Although the placement of transformation matrix elements to the right of covariant objects is
most natural, one may change the order by writing x; — (T7'7)/z;.

In physics there is a tendency to indiscriminately regard objects carrying single indices —
forces, velocities, current densities, etc. — as ‘vectors’. However, many of these objects afford a more
natural interpretation as dual vectors. Consider the example of mechanical force. The force, F,
acting on a particle is determined by measuring the work required to move the particle along small
displacements. Work, W, is a scalar and displacements, s € R3, are three-dimensional vectors, and
the force is a function defined through the relation F'(s) = W. Since the work required to go along
to consecutive small segments s+ ¢’ is additive, F(s+s') = F(s)+ F(s") = W + W', this function
is linear. In other words, F'is a dual vector, F' € (1R3)*. In a basis, the assignment of force to work
reads W = Fjs', where F; are the covariant components defining the force dual vector through work
measurement. Another physics example of a dual vector is angular momentum, L. Describing
the rotational motion of a body around a rotation center by a vector w, where |w| quantifies the
frequency of the rotation, and w/|w| the direction of the rotational axis, the number £ L;w’ is the
kinetic energy (a number) stored in the rotational motion. (Consider the motion of a point particle
on a circle to convince yourself that this is so.) This shows that L is a map of vectors to numbers,
a dual vector. Other examples of dual vectors in physics include the electric and magnetic field,
FE and H, and mechanical momentum, p. In all these cases, the dual vector identification follows
from physical rather mathematical reasoning. The concept of dual vectors is as intuitive as that of
vectors themselves and the all-is-vector culture of physics likely an artifact of traditional teaching.

If we accept that forces are more naturally described by dual vectors, the question presents itself
how one may switch between the dual and the direct representation. In view of the fact that the
passage between vector spaces and their duals is not canonical, it is not obvious how to translate
from a dual F' to a vectorial representative. The answer is that additional structure (viz. a metric, see
the next section) is required. Depending on the context, the necessity to introduce extra structure
may be harmless, or seriously obscure the natural interpretation of physical quantities.

Metric provides a canonical connection between space and dual space

The fact that the physics culture does not discriminate between vectors and dual vectors
suggests that these objects must be intimately connected. A canonical identification of vectors
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with dual vectors indeed exists for vector spaces with scalar products. (In all physics contexts
where dual vectors are treated as vectors, a scalar product is available and implicitly used in
the identification.) Formally, this identification is a linear map

TV oV ue J(v), (L261)
where the dual vector J(v) is defined by through the condition,
YueV: J(v)u = g(v,u), (L262)

and g should be the scalar product of V. This condition requires that the action of the dual
vector J(v) on any u € V should yield an image equal to the scalar product g(v,u). To
obtain a concrete expression for the covariant components J(v);, we fix a basis {¢;} and its
dual {e'}.” We then have J(v); = J(v)e; = g(v,e;) = v7g;; = v;, where in the last equality
we used the index lowering convention (L51). The result

J(v)i =g = v, (L263)

affords a new interpretation of the previously formal index lowering operation:

The covariant components, v; = Ujgji, are the components of the dual vector J(v)

that is the image of the vector v with components v7 under the canonical mapping
J :V — V* induced by a metric, g, of V.

Not surprisingly, a few more index-changing operations can now be understood in more
conceptual ways. We first note that the inverse of J is defined through the condition
J(JHw))(u) = g(J H(w),u), where w € V* and v € V. The left-hand side yields wu =
w;u/ and the right-hand side J~!(w)'g;u?. This is implies the condition w; = J~!(w)'g;,
which can be inverted using g’*, the inverse of the metric tensor (with g;;¢°* = §,%), to yield

JHw) = w;g" = w'. (L264)
Thus, the contravariant components w’ obtained by raising the indices of the covariant com-

ponents w; via the inverse metric ¢7* are the components of the image vector J~*(w) to which
the dual vector w is mapped under the inverse isomorphism.

Index lowering or raising is equivalent to passing from a vector space to its dual
vector space or back, in a component language.

® The dual basis is again defined by the condition e'e; = 0';. Notice that the dual basis vector e’ assigned

to e; by this condition differs from the assignment J(e;), unless {e;} is an orthonormal basis, g;; = d;;.
Indeed, Eq. (L263) implies that J(e;) = J(e;)e! = 6,%grie! = gie!. This equals e;, iff gi; = d;;.
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We finally note that the isomorphism .J defines a metric of dual space. The latter is defined
as g* V¥ x V* = R, (w,w') — g*(w,w’) via the condition

g (w,w') = g(J~ (w), T~ (w)). (L265)

(This can be equivalently formulated as ¢*(J(v), J(v")) = g(v,v’).) Using a basis representa-
tion, and defining (g*)“ = g*(¢', ¢’), the left-hand side of Eq. (L265) yields w;(g*)“w’, and

. ) .. J
the right-hand side g(exw”, e;w") = w*gpw" = w;g™ grg"w); = wigw}, implying

(g")" = g". (L266)

Thus, the contravariant components of the canonical metric of dual space equal the compo-
nents of the inverse of the metric tensor.

In physics, the above connection between a vector space and its dual space is implicitly used
when, e.g., the work along a line segment is calculated as the scalar product between the segment
and a vector representing the force. In the previous section we argued that force is a dual vector
with covariant components F;. The work done along a segment with contravariant components
s’ is then given by W = Fjs'. Physics describes force by a vector with components F* and the
work by the scalar product W = (F,s) = g(F,s) = Fig;is’. Comparison of the two descriptions
shows that F; = g;;F7. One may reason that the dual vector approach is more natural in that it (i)
introduces force via a measurement protocol (cf. previous section), and (ii) does not require a scalar
product for the computation of work. On the other hand, the usage of a metric required by the
all-is-vector-approach is mostly harmless, which is why this tradition remains pervasive in physics.
Exceptions include cases where the metric itself plays a key role (such as in the theory of gravity), or
cases where it obscures physically important structures (such as in the understanding of topological
structures).

L11.3 Tensors

Vectors and dual vectors are the basic elements from which all objects of linear algebra can
be hierarchically built. The key to this construction is the tensor product of vector spaces
introduced above. Of particular interest are tensor products built from a real vector space V'
and its dual V*. Introducing the notation ®IV =V ® --- ® V for the product of ¢ identical
spaces we define

(V) = (@V) ® (2PV7). (L267)

This is the (tensor) product of the spaces ®?V and ®PV*, which in turn are ¢- and p-fold
tensor products of the basic spaces, V' and V*, respectively. Elements t € qu(V) are called
tensors of contravariant degree ¢ and covariant degree p. If a basis {e;} has been chosen,
elements ¢ € T can be represented by

E=t" e ®. e, R @ @ e, (L268)

MARREV]
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where t’l""’iqjh_.7jp are the coefficients of the tensor (think about this point). It is often
useful to understand tensors as multilinear maps: much like a dual vector and a vector are
maps of the vector space V' and the dual space V* into the reals, respectively, a general tensor
t € T defines a multilinear’ map assigning to ¢ dual vectors and p vectors a number,

t: (@IV") @ (V) — R,
(wh, .. w vy, v) st w e, vy). (L269)
The image t(w',...,w%vq,...,v,) € R of the action of ¢ on a set of ¢ dual vectors,
w', ..., w, and p vectors, vy,...,v,, is obtained by successive application of the ¢ vecto-

rial factors e;, in ¢ on the corresponding dual-vector arguments, w', and the p dual-vectorial
factors e’t on the corresponding vector arguments v;,, and multiplying the resulting factors:

tw', .. w0, = til’”"iqjhn_’jp (e w') ... (e, w?) (€M vy) ... (eTPvy),

For example, for a tensor ¢ € 7% (V) with component representation ¢ = 7 e ®e; @ ek we
have t(w, w',v) =t (e;w) ® (e;w) ® (e"v) = £ wwjv*. Specifically, the action of a tensor
on a set of basis/dual-basis vectors yields the components of the tensor in that basis:

til,-..,iq — t(eil, . eiq, s 7€jp>' (L270)

j17-~-7jp
Under a transformation of bases, ¢; »—>»ejTjZ-, the coefficients of a tensor transform co- and
contravariantly according to their degree.” For example, for t € T, (V),

(T,

£ Ty ti/j’k’ (T_l)j/g

We finally note that a tensor can be applied to an incomplete set of arguments to produce a
tensor of lowered rank. For example the application of t = t, ¢, ®¢;®@¢e* € T% (V) to (w, ., .)
(w € V*, second and third argument left empty) yields t(w, .,.) = (7, w;)e; @ e* € T, which
is a tensor of lower rank with components tijkw,;. This exemplifies how the procedure yields
tensors with fewer fixed co- or contravariant indices by pairing of indices with the indices of
supplied arguments. An expression like tijkwi is called a contraction of components of ¢
against those of w. For further discussion of such operations, see section L11.8 below.

L11.4 Examples of tensor classes

Tensors of degree (1,0) and (0, 1): vectors and dual vectors, respectively

The tensor spaces of lowest nontrivial degree6 are Tl0 =V and TO1 = V*, and the
coefficients of these tensors are the contra- and covariant coefficients of vectors and dual

* A multilinear map is separately linear in each of its arguments, i.e. ¢(...av+d'v',...) = at(...v,... )+
a't(...v',...), a,a’ € R. The properties of such maps define the subject of multilinear algebra.
Do not confuse matrix elements of the transformation matrix, T’J with the denotation of the tensor space
T9, =T (V).

°The tensor space of zeroth degree is defined as T = RR.
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vectors, respectively. Eq. (L268) shows how vectors and dual vectors are the building blocks
of more complex tensorial structures.

Tensors of degree (1,1): matrices

Tensors of first contra- and covariant degree, A € T, (V), can be expanded as A =
e; ® einj. Up to now, we have viewed the first degree co- and contravariant components
Aij as the components of matrices. The interpretation of A as a matrix (or linear map
V' — V') becomes apparent upon application of the tensor to an incomplete set of arguments,
(.,v), where v € V is a vector, and the dual vector slot is left unspecified. This yields
A(.,,v) = A’jv7 ¢; € V, which is a vector whose components A’;v7 are obtained by application
of the matrix A’; to the argument v. In this way, the tensor can be understood as a linear
map V — V,v — A(.,v). However, the tensor formulation affords alternative interpretations
of elements A € T", (V). For example, we can think of A as a map A(w,v) = A" w;v’ that
assigns a number to a pair comprising a dual vector and vector. In conventional language,
this would read w” Av, where w” is interpreted as a column vector with covariant components
w;. Or, we let act A on (w,.) with vectorial argument left open, to obtain the dual vector
A(w,.) = A’;wse’, which in conventional language amounts the the action of the matrix A
to the left as wA. Depending on the context, all these different views have advantages and
they illustrate the versatility of the tensor formulation of linear algebra.
Finally note that under a basis transformation, the coefficients of the tensor transform as
Al TOA (T (L271)
In an index-free notation this reads as A — TAT~!, in which we recognize the familiar
transformation behavior of matrices.

For every tensor A € V @ V*, we may define a corresponding transpose, A7 € V*®@V, as an
element of a tensor product space in which the order of V" and its dual V* have been interchanged. As
such the transpose can be expanded as AT = (AT)jiej ®e; and applied to a pair comprising a vector
and dual vector, (v,w) € V @ V*, to yield the number AT (v, w) = (AT)jivjwi. Given A e V@ V¥,
its transpose AT € V* ® V is defined by the condition that AT (v,w) = A(w,v) for arbitrary pairs
(v,w). The component representation of this (invariant) condition reads (AT)jivij- = Aijwwj,
implying (AT);* = A’;. In Eq. (L107) this relation served as a formal definition of a transposed
matrix.

Tensors of degree (0,2) or (2,0): bilinear forms of V' or V*

Tensors of second covariant degree, t € T% (V) are generally called bilinear forms. They
can be understood as bilinear maps, t : V@V — R, (u,v) — t(u,v). A prominent example
is the metric, g, of a vector space, cf. discussion in section L3.3. There, we defined a general
scalar product of a vector space as g(u,v) = u'g;;v’, through the set of coefficients g;;.
In tensor language, this is equivalent to the definition of a second-degree covariant tensor
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g= gijei ® €’. In physics, the set of coefficients {gi;} is often considered as a matrix. This
can be a potent source of confusion, because under a change of basis, ¢; — ej(Tfl)ji, the
coefficients g;; — gi/j/(Tfl)"/i(Tfl)j/j transform differently from a matrix (cf. (L271), or the
previous subsection).

Another prominent example of a bilinear form is the inertia tensor, I, of a rigid body.
Describing the rotational motion of the body by a rotation vector w, the kinetic energy stored in the
rotation is given by T' = %I(w,w) = %Iijwiwj. Likewise, the components of the angular momentum
are obtained as L; = I;;w’.

L11.5 Alternating forms

We next introduce a subclass of tensors which is very important in applications and deserves
a separate discussion: consider the space 7, i.e. the set of multilinear maps of ®”V into the

reals. Now define AP(V) C 7% as
AP(V) ={¢: @V — R | ¢ multilinear & alternating}, (L272)

where ‘alternating’ means antisymmetry w.r.t. exchange of any of its vector arguments:
Oty yv,.0) = —=¢(... v, . u,...). The elements of AP(V) are called (alternat-
ing) forms of degree p, or p-form for short. (When using the shorthand nomenclature be
aware, however, that the general bilinear forms discussed earlier need not be alternating. For
example, the metric g(u,v) = g(v,u) is a symmetric bilinear form and therefore not a 2-form.)

An example of a 2-form is ¢ = e! ® e — 2 @ e'. Applied to two vectors u and v
it yields the antisymmetric combination ¢(u,v) = u'v? — u?v!. The triple product discussed in
section L4 is a 3-form in A3(IR3): it maps three vectors onto a number and is antisymmetric under
exchange of its arguments. The matrix determinant can be interpreted as an n-form in A"(IR"):
take an n X n matrix A = (v1,...,v,) and consider it as a stack of n vectors v; € R™. We can then
write det A = det(vy,...,v,), where the latter representation is the image of the multilinear form
det, evaluated on n argument vectors v;. The determinant is linear in each entry and antisymmetric
under argument exchange, and this makes it an n-form. Expanded in a tensor basis the determinant

assumes the form

det — Z sgn(P)eP® g eP@ P, (L273)
PES,

where S, is the permutation group of n objects and the sum runs over all permutations P.

"The notation where AP(V) C Top carries the degree-index p upstairs is not ideal but standard and we will
use it here too.
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A general p-form can be expanded as

b= Z Dir,oiy Z sgn(P)e'Pt @ e'P2 .. e'Pr, (L274)

11 <ip<-<ip PeSy

in basis forms. Here P is an element of the group of permutations of p objects. By defi-
nition, the coefficients of the expansion obey the antisymmetrization condition ¢p;, . pi, =
sgn(P)¢;,,..q,- For this reason, the sum over indices in (L274) may be limited to ordered index
configurations iy < iy < --- < i,. For example, the p = 2 forms in an (n = 3)-dimensional
space afford the expansion

¢=dlel ®e? —e?@e') + oz ®ed —e? ®e?) + ga(e? ®e' — el ®e?).

Terms with coinciding indices do not contribute due to antisymmetrization, (¢1(e! ®e! —e! ®
e') = 0), and terms outside the ordering may be re-ordered to fit into the ordering scheme

(Po1(e? @ e! —e! @ e?) = ¢gra(e! ® €2 — e? ® el)), where the antisymmetry ¢g; = —¢oy
is essential. In the space A"(IR"™), where p = n, there is only one ordered configuration,
(11,...,1,) = (1,...,n), hence forms in this space are characterized by a single number,

®1....n. Applying the n-form with ¢, _,, =1 to a set of n vectors, vy, ..., v,, from R" yields

O(v1, ... ,0,) = Z sgn(P)e™ @ ...ef™(vy,...,v,) = Z sgn(P)(v)™ .. (v,)™.

PesS, PesS,

(L275)

Interpreting the n-tuple (vy,...,v,) = A as a matrix with elements A’; = (v;)’, the value
d(v1,v2, ..., v,) = ¢(A) equals the determinant of A (cf. Eq. (L154)), i.e. ¢(A) = det(A),
as mentioned above. In two and three dimensions, the corresponding top-forms are the de-
terminants det(vy,v5) and det(vy, v, v3), which yield the area of the parallelogram or the
volume of the parallelepiped spanned by their argument vectors, respectively (see p. 89). This
generalizes to arbitrary dimensions: in R" the top-form (L275) yields the geometric ‘volume’
of the n-dimensional parallelepiped spanned by its argument vectors, as will be explained in
detail in Section V5.4,

In Eq. (L274), the product of the antisymmetric factor ®i,...i, and the antisymmetric sum
over permutations is symmetric w.r.t. to all its indices. Therefore, one may choose to avoid
the ordering condition in the sum and instead sum over all index combinations as

1
o= 2

11,82,.0050

Biroosiy Z sgn(P)e'™ @ e'P> .. ', (L276)

PeS,

The terms with coinciding indices vanish, and the redundant summation over un-ordered index
pairs is compensated by the prefactor 1/p! (think about this point!).8

We conclude this section with a summary of the most important mathematical properties
of alternating forms. They all follow immediately from our general discussion above.

*For example, for p = 2 we have a 2!-fold redundancy, S bis(e'@el —el@h) = pra(et @ e —e? @el) +
do1(e? @el — et ®e?) = 2¢12(er ®e? — e? ®el), since both factors in the product are antisymmetric.
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> The sum ¢ + ¢’ of two alternating forms ¢, ¢’ € AP(V) is again an alternating form, i.e.
AP(V') is a vector space.

> AY(V) = V*, the space of one-forms, is the dual vector space. We define A°(V) = R.

> For dimV = n, AP>"(V) = {}, in other words, an n-dimensional vector space does not
support alternating p-forms if p > n. This is best seen by considering the action of forms
d(ei,,-..,e;,) on basis vectors. If p > n, identical basis vectors will appear repeatedly in
the argument (because we have only n different ones). However, ¢(...,e;, ..., ¢€;,...) =
—¢(... €5 ... €,...) =0 by antisymmetry.

> For dim V' = n, the dimension of the vector space of alternating p-forms is dim A?(V') =
(7). This follows since the number of ordered p-tuples 1 < iy < iy < --- <i,<mnis (),
and the sum in (L274) extends over as many basis forms.

L11.6 Visualization of alternating forms

n=1
— 0
'U.i.
(a) p=1
n=2

Figure L21: Visualization of alternating forms in (a) one-, (b,c) two- and (d-f) three-dimensional
space. The periodically extended sub-units defining the graphical representation of forms are indicated
in red shading. For a further discussion, see text.

Much as vectors can be visualized as arrows, alternating forms in low-dimensional spaces,
dim(V) = 1,2,3, too, afford pictorial representations. Although these are of limited use
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for computations, they support the intuitive understanding of forms and are therefore worth
discussing. Alternating p-forms in n-dimensional space are represented through periodically
repeated patterns of (n — p)-dimensional linear structures, such as lines, planes, volumes, etc.
These patterns are introduced such that they can be ‘paired’ with p vectors to yield the value
of the form on the p argument vectors.

For example, a one-form in two-dimensional space, ¢, is represented by a system of
parallel lines of specified slope and inter-line spacing (cf. Fig. L21(b)). These lines define
a pattern of strips (one is shown shaded) tiling the plane. The strips are given a sense of
‘orientation’ by choosing an ‘upside’ and a ‘downside’. In the figure, this choice is indicated
by an arrow labeled o pointing in the chosen ‘upward’ direction. The value of the form on a
vector, ¢(v), is now defined graphically as follows: The modulus, |¢(v)|, equals the (generally
fractional) number of strips cut by the arrow representing v (in the figure, this would be about
2.5). Note that this number is invariant under parallel translation of the arrow, as it should
be. The sign of sgn(¢(v)) is positive/negative if v points in the upward /downward direction.
It is straightforward to verify (do it!) that these rules are compatible with the linearity criteria
defining differential forms. The algebraic coefficients, ¢¢, defining the expansion of the form
in a given dual basis, ¢ = ¢, e! + ¢y e?, are obtained by graphical evaluation of the form on
corresponding basis vectors, ¢' = ¢(e;).

In a similar manner, a two-form in two-dimensional
space, w, is defined by a lattice of unit cells (one is shown
shaded in Fig. L21(c)) of arbitrary shape, but with a spec-
ified number of unit cells per unit area (this number can
be fractional). An orientation is chosen by discriminating
between anti-clockwise (mathematically positive) and clockwise (negative) orientated forms.
The modulus of the form acting on two vectors, |w(u,v)|, is obtained by counting the (gen-
erally fractional) number of tiles covered by the parallelogram spanned by u and v (in this
figure, this number would equal ca. 4.5). For an anti-clockwise orientated form, sgn(w(u,v))
yields a positive sign when the orientation of v relative to u is anticlockwise (left panel), and
a negative sign otherwise (right panel). For an clockwise oriented form the assignment is
opposite. These rules are consistent with the linearity and antisymmetry criteria of differential
two-forms. The algebraic coefficient, wqo, defining the expansion of the form in a dual basis,
w = wyze' A €%, is obtained by graphical evaluation of w(ey, e5) on the pair of corresponding
basis vectors.

Discuss how a one-form in one-dimensional space can be defined through a periodic
pattern of points on the real line, plus a sense of orientation, cf. Fig. L21(a). How is the value of
the form on one-dimensional vector computed, and how is its expansion in a basis obtained?

A one-form in three-dimensional space, ¢, is defined in conceptual analogy to the one-
form in two-dimensional space, only that the strips are replaced by slabs defined by a system
of equi-spaced parallel planes, cf. Fig. L21(d). As in the two-dimensional case the value of the
form on a vector, ¢(v), is obtained by determining the number of slabs pierced by v, where the
sign follows from the alignment of v relative to that of an orienting direction, 0. A two-form



L11.7 Wedge product 157

in three-dimensional space, ¢, may be represented by a lattice of parallel lines of specified
direction, density of lines per unit area and orientation (‘upwards’ or ‘downwards') along
the lines, cf. Fig. L21(e). The lines define a pattern of parallel rods, and the absolute value,
|¢(u,v)|, of the form on a pair of vectors is obtained by counting the number of parallelogram-
shaped inter-rod cross sections intersected by the parallelogram defined by u and v (about
5.5 in the figure). The sign of the form is positive/negative depending on whether the system
(0,u,v) defined by a vector, o, pointing in upward direction and the two argument vectors
define a right/left handed system. Finally a three-form in three-dimensional space, ¢,
can be defined through a lattice of points with specified density of points per unit volume,
cf. Fig. L21(f). The points define a pattern of parallelepipeds, and |¢(u, v, w)| is obtained by
counting how many of these are contained in the parallelepiped spanned by u, v and w.

In general, a p-form in n-dimensional space can be defined by pattern of identical
(n — p)-dimensional linear structures.” The value of the form is obtained by determining how
many of these are are covered by the generalized parallelepiped spanned by p vectors. For
top-forms, n — p = 0, the subunits have finite extent in all n dimensions, which explains why
top-forms measure the geometric volume of n-dimensional parallelepipeds.

Think more about the pictures in Fig. L21 and make sure you are comfortable with the
rules of assignment, the senses of orientation, the number of coefficients required to uniquely specify
a form, etc. Explain how the fractional counting of lines or grid-areas implied by the procedures above
can be avoided by reducing the separation between the points, lines or planes used to represent the
various forms, respectively. Think how a graphical procedure in terms of an ‘infinitely dense’ pattern
of lines or planes should be designed.

L11.7 Wedge product

Alternating forms can be multiplied with each other to yield alternating forms of higher
degree. Given a p-form and a ¢-form we define their so-called wedge product (exterior
product) as

A AP(V) @ ANV) — APTUV), (9,0) = @ A, (L277)
1
(¢ A ¢)(U1>---,Up+q) = WPZS: SgnPgb(”P(l)a---7”P(p))¢<UP(p+1)a---7UP(p+Q))'

Here, S,, is the permutation group of n objects and the sum runs over all permutations P.

For example, for p = ¢ =1, (¢ A)(v,w) = ¢(v)p(w) — ¢(w)p(v). Forp=0and ¢ =1, ¢
is a number and we define ¢ A ¢p(v) = ¢1b(v). Important properties of the wedge product
include (¢ € AP(V), b € AY(V), A € A"(V),c € R):

’In the present context, a structure is called (n— p)-dimensional if it has infinite extent in n— p dimensions.
Examples of one-dimensional structures are the strips used to define one-forms in two-dimensional space
(n —p=2—1), and the rods used to define two-forms in three-dimensional space (n —p = 3 — 2).
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> bilinearity, i.e. (¢1 + ¢2) A =1 Av+ do A and (chp) A = c(d AY).
> associativity, i.e. pA (VAN =(QAY)AX= AP AN
> graded commutativity, ¢ A = (—)P7 A ¢.

The fact that the wedge product changes the degree of forms is motivation to define the direct
sum of spaces

AV) = é AP(V), (L278)

i.e. a space containing all spaces of fixed degree 0 < p < n as subspaces. This vector space
has dimension dim(A(V)) = > dim(AP(V)) = >/ () = 2", where in the last equality,
we used the binomial formula. The most important feature of A(V') is that it is more than a
vector space, it is an algebra. An algebra is a vector space (W, -) endowed with a product
operation, u - v = w, u,v,w € W, i.e. an operation that produces vectors by multiplication
of other vectors (unlike the inner product which yields numbers). The space (A(V),A) is a
vector space with an (associative) product operation, A. It is therefore defines an algebra, the

so-called Grassmann algebra, in the sense of the definition of p. L5.3.

A (real) algebra is an R-vector space W with a product operation
WxW—>W, U,V = UV,
subject to the following conditions (u,v,w € W, ¢ € R):
> (utv) w=u-w+v-w,
> u-(v+w)=u-v+u-w,
> c(v-w)=(w) w+v-(cw).

For example, the space of n x n matrices (mat(IR, n), -) forms an algebra, with matrix multiplication
A - B = (C as its product operation.

A natural basis of AP(V) is given by the set of forms
A Ner, 1<ip<- - <ip<n. (L279)

To see this, notice (i) that these forms are alternating by construction, i.e. they belong to
AP(V), (ii) that they are linearly independent, and (iii) that there are () of them. For
example, for n = 3 and p = 2, we have the 3 = (3) linearly independent forms, e! A €2,
ez N 63, e A el

The three criteria (i)-(iii) guarantee the basis property. Any p-form can be represented in
the above basis as

¢ = Z Dy ETA-Ner, (L280)

i1 <<
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where the coefficients ¢;, . ;, € R are given by ¢;, _; = o€y, - .,eip) and therefore are
antisymmetric under exchange of index arguments (for example @123 = —¢o13). Alternatively
10

¢ may be represented by an unrestricted sum with a compensating factor of 1/p! (cf. (L276)):
1 i i
¢:H‘Z Gir, iy €N A (L281)

To illustrate Eq. (L280), we note that the 0, ..., 3-forms in R3 can be represented as

p=0: ¢=¢,

p=1: ¢=g¢ie' + e’ + ¢3¢’

p=2: ¢=cdae' Ne? + goze® Ne® + ps1e® Ael,

p=3: ¢= e’ Ne2 Ae. (L282)

Notice that there are 8 = 23 independent coefficients in all, and that the 1- and 2-forms
are described by three coefficients each. The formulas above illustrate the importance of the
wedge product: it allows us to build forms of arbitrary complexity from the much simpler
1-forms.

L11.8 Inner derivative

One can think of a p-form as a machine with p slots into which vectors are fed as arguments.
It is sometimes useful to feed a p-form only one vector v to produce a form of lower degree,
p — 1. The corresponding map, denoted by i, : A?(V) — AP~Y(V), is called the inner
derivative and defined by the relation

(iv¢)<U1, ce ,Upfl) = gb(?}, V1y... ,'Upfl), (L283)

where v, indicated as a subscript on the left, acts as additional argument to be supplied to
the p-form ¢, as indicated on the right. The components of i,¢ are obtained by ‘contraction’
of one of the components of ¢ with those of v (as follows from Eq. (L268)),

y P Z‘ . . .
(ZU¢)117---7'LP71 =v gblyllr--alpfl‘

Notice that in Eq. (L283) the seemingly ad hoc choice to feed v into the first argument slot of ¢
is inconsequential: due to the antisymmetry of ¢, we have, e.g., Ujﬁbj,il,.‘.,ip,l = —vjqbil,j,m,ipfl,
i.e. the contracted index can be permuted at the expense of, at most, a minus sign.

The inner derivative obeys the following properties, which are direct consequences of the
definition:

> 1, is a linear map, i,(¢ + ¢') = 1,0 + i, 0.

" For example, for p = 2 we have Zij Bijet Ned = prae! N e? + pore? Ael = 2¢10e! Ae?, cf. .
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> It is also linear in its ‘parametric argument’, 7,1, = ty + ty.

> i, obeys the (graded) Leibniz rule:
(@A) = () N+ (=)' O N (i)Y, e AV (L284)

Up to the minus sign, this resembles the product rule of differentiation, and because of this
resemblance i, is called a ‘derivative’.

> The inner derivative is ‘antisymmetric’ in the sense that i, o ¢, = —1,, 0 7,, in particular,
2
(1) = 0.

Gain familiarity with the Leibniz rule by computing the components of the inner
derivative of a simple form, for example i,(e! A €?).

Let us illustrate the functioning of the inner derivative on the example of the three-form
d=-¢e Ne2 Aedin R3. A quick calculation shows that

iy(¢) = vie? Ae® +vPe’ Ael +vel Al
iwiv(@) = (V*w® — v¥w?)e! + (V' —v'w?)e? + (viw? — v?w!)e?,

Tulwiy (@) = det(u, v, w).

The second of these lines contains an interesting message. The components of the one-form
iwiy (@) are those of the vector product vxw. This s in line with our earlier observation that the vector
product is not a real vector — it does not transform as a vector under linear transformation, but, as
we now understand, as a one-form. In d = 3, we actually have three different objects characterized
by three components: vectors v = v'e; + vZey + v3es, one-forms ¢ = ¢re! + Poe® + ¢ze?, and
two-forms w = wise! Ae? +waze? Ae® +wsre3 Ael. In physics, they are all indiscriminately treated as
vectors, while grudingly acknowledging the odd transformation behavior of one-forms by calling them
‘pseudovectors’. It would be better to accept one-forms as what they are, namely linear forms,
but old habits are hard to change and physics culture will likely keep adhering to the misconception
of calling them ‘pseudovectors’.

L11.9 Pullback

Given a linear map, F': V. — W, between two vector spaces, a form, ¢ € AP(W), defined
in W may be ‘pulled back’ by F' to become a form F*(¢) € A?(V') defined in V. The pullback
operation is defined as,

F*: AP(W) — AP(V), ¢ — F o,
(F*¢) (w1, ..., wp) = ¢(Fwy, ..., Fw,). (L285)
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The idea behind this definition is illustrated in the figure v w
on the example of the pullback of one-forms between two- o = F

: : _ : . _F ¢
dimensional vector spaces: the action of ¢ on vectors %/ Q{\
v € V is defined by the action of ¢ on the image Fv € N~ FTEn
W: (F*¢)(v) = ¢(Fv). (The figure uses the visualization

discussed in section ??, where the value of a one-form on two-dimensional vectors is obtained
by counting line-crossings.) Notice that the pullback operation imposes no conditions on F
(besides linearity), nor on the dimensionality of V" and .

To understand what pullback means in a component language, we first consider the case
of one-forms, ¢ € A*(W). Let {e;} and {f;} be bases of V' and W, with dual bases {e’} and
{f?}, respectively. The map F'is then described by a component matrix {F} as Fe; = fiF",.
Now consider the pullback of a dual basis vector from A'(W), say f7, to A'(V). We can find
the components of F™* f* w.r.t. the dual basis {e/} by acting with it on the basis vectors {e;}

(L285)

(cf. Eq. (L256)). We obtain (F*f*); = (F*f')(e;) = [f'(Fe;) = f'(fiF;) = FY, or

F*fi=Fiel. (L286)

Notice how this formula parallels the one for contravariant basis change. In the particular
case where W =V and F is a change of bases, the pullback formula indeed describes the
associated change of the dual basis vectors (think about this point). The action of F* on
forms of higher degree follows from the following general properties of the pullback operation:

> F*is linear: F*(¢p+ o) = F*¢ + F*.
> F (g Ap) = (F7¢) A (F™)),
> (FoG)*=G*o F™.

All three rules are immediate consequences of the definition, and the second may be applied
to compute the pullback of general forms, as given by Eq. (L280): iterated application of the

-----

F*¢: Z ¢i1 77777 ip Filjl Flp]p e‘jl /\/\6];0 (L287)

Later on in chapters V5 and V6 we will understand that this operation is implicitly used in
many routine operations of physics calculus, notably in the manipulation of integrals.

This concludes our survey of tensor algebra. Applications of the formalism will be discussed
in chaptersV4 to V6.



PL Problems: Linear Algebra

The solutions to odd-numbered problems are given in part S, chapter SL. Lecturers can obtain
the solutions to even-numbered problems from the publishers by request.

P.L1 Mathematics before numbers

The problems for chapter L1 are meant to help the reader gain familiarity with the notions of
sets, maps, groups and fields. For further introductory examples we refer to lecture courses in
mathematics.

P.L1.1 Sets and Maps

Become comfortable with the notation used to specify maps by doing the following problems
on the composition of maps.

eL1.1.1 Composition of maps

Let Ny denote the set of all natural numbers including zero, and Z the set of all integers.
Consider the following two maps:

A:Z—7Z, n— An) =n+1,
B:Z — Ny, nw— B(n)=|n|=n-sign(n).
(a) Find the composite map C' = B o A, i.e. specify its domain, image and action on n.

(b) Which of the above maps A, B and C' are surjective? Injective? Bijective?

»L1.1.2 Composition of maps

(a) Consider the set S = {—2,—1,0,1,2}. Find its image, T" = A(S), under the map
n+— A(n) =n? Is the map A: S — T surjective? Injective? Bijective?

(b) Find the image, U = B(T), of the set T from part (a) under the map n — B(n) = \/n.
(c) Find the composite map C'= B o A.
(d) Which of the above maps A, B and C' are surjective? Injective? Bijective?

162
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P.L1.2 Groups

To gain familiarity with the notion of a ‘group operation’ and the relations which it implies
among the group elements, study the following elementary examples of groups. We particularly
recommend the problems on permutations, L1.2.5 and L1.2.6, which set the stage for the
discussion of determinants in chapter L6.

eL1.2.1 The group Z, + o0 1
(a) Show that Zs = ({0,1}, 4 ), where the addition operation + is de- 00 1
fined by the adjacent composition table, is an abelian group. 111 0

(b) Construct a group isomorphic to 7y using two integers as group elements and standard
multiplication of integers as group operation. Set up the corresponding composition table.

»L1.2.2 The groups of addition modulo 5 and rotations by multiples of 72 deg
(a) Consider the set Z5; = {0,1,2,3,4}, endowed with the group operation
+ 25 xLs = Zs,  (p,p) = p+p = (p+p)mod5.

Set up the composition table for the group (Zs, +). Which element is the neutral
element? For a given n € 7, which element is the inverse of n?

(b) Let r(¢) denote a rotation by ¢ degrees about a fixed axis, with (¢ +360) = r(¢). Con-
sider the set of rotations by multiples of 72 deg, R+ = {r(0), r(72),r(144),(216),r(288)},
and the group (R72, ), where the group operation « involves two rotations in succession:

«: Rra X Rya — R, (r(¢),r(¢) = r(p) +r(¢) =r(p + ¢).

Set up the multiplication table for this group. Which element is the neutral element?
Which element is the inverse of r(¢)?
(c) Explain why the groups (Z;, +) and (R72, *) are isomorphic.

(d) Let (Z,, +) denote the group of integer addition modulo n of the elements of the set
Zn, ={0,1,...,n — 1}. Which group of discrete rotations is isomorphic to this group?

eL1.2.3 Group of discrete translations in one dimension

In this problem we show that discrete translations on an infinite, one-dimensional lattice form
a group. The lattice G has lattice constant 0 < A € R and consists of the set of all real
numbers that are integer multiples of A, thus G := M2 := {x e R|In € Z : x = X - n},
where - is the usual multiplication rule in R. Note that for any given z € (&, n is uniquely
determined. On this lattice we define ‘translation’ by the composition rule

T: GxG—-G, (r,y)—T(x,y)=z+y,
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where + denotes the usual addition of real numbers. Since this composition rule is symmetric,
it can be visualized in two equivalent ways: T'(z,y) describes (i) a ‘shift’ or a ‘translation’
of lattice point x by the distance y, or (ii) a translation of lattice point y by the distance z.
[Figure (a), where A = 3, shows both visualizations of T'(%, 2) ]

373
A=5  () T(3)

Wl

(a) Show that (G, T) forms an abelian group.

(b) For a given y € G we now define, in accordance with visualization (i), a ‘translation’ of
the lattice by ¥, i.e. each lattice point x is ‘shifted’ by y:

T,: G—=G, z-T(x)=T(v,y).

[Figure (b), where X = 3, shows 72.] Now consider the set of all such translations,

T :={7,,y € G}. Show that (T, +3) forms an abelian group, where =+ is defined as
+: TxT-=T, (T.,7)—=To+Ty=Trwy)-

Remark: the set T underlying this group consists of maps (namely translations), illus-
trating that the set underlying a group need not be ‘simple’.

»L1.2.4 Group of discrete translations on a ring

In this problem we show that discrete translations on a finite, one-dimensional lattice with
periodic boundary conditions form a group. Consider a ring with radius 0 < R € R and
lattice constant A = 27R/N with N € N, thus G := AZmodN) = {z € R|In €
{0,1,...,N—1} : x = X-n}, where - is the usual multiplication rule in R. Note that for any
given x € G, n is uniquely determined. The ring forms a ‘periodic’ structure: when counting
its sites, O\ and N\ describe the same lattice site, the same is true for 1A and (1 + N)A,
for 2\ and (2 4+ N)A\, etc. On this lattice we define a composition rule, corresponding to a
‘translation’, using addition modulo N:

T: GxG—-G, (r,y)=A-ngA-ny)—=T(z,y) =X ((ny +ny,)modN).

Here + is the usual addition of integers, and nmod N (spoken as ‘n mod N') is defined as
the integer remainder after division of n by N (e.g. 9mod8 = 1). [For N = 8, figure (a)
shows two visualizations of the translation 7'(4),5)\): as a ‘shift’ of the lattice site 4\ by the
distance 5\ along the ring, or of the site 5\ by the distance 4\.]
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(a) 4N 0\ (b) Tax

6

(a) Show that (G, T") forms an abelian group.
(b) For a given y € G we now define a ‘translation’ of the lattice by y,

T,: G—=G, z-T/(z)=T(z,y)

i.e. each site « is ‘shifted’ by y along the ring. [For N = 8, figure (b) shows the translation
T22]. Now consider the set of all such translations, T := {7,,y € G}. Show that (T, +)
forms an abelian group, where =+ is defined as

+: TxT—=T, (T..7,)= T+ Ty = Trwy-

eL1.2.5 The permutation group

A map which reorders n labelled objects is called a permutation of these objects. For example,
[4312]

1234 — 4312 is a permutation of the four numbers in the string 1234, where we use [4312]
as shorthand for the map 1 — 4, 2 — 3, 3+ 1 and 4 — 2. Similarly, if the same permutation

is applied to the string 2314, it yields 2314 -3 3142. (In general, [P(1)...P(n)] denotes the
map j — P(j), for j = 1,...,n.) Two permutations performed in succession again yield a

permutation. For example, acting on 1234 with P = [4312] followed by P’ = [2413] yields

[4312] [2413]

1234 — 4312 — 3124, thus the resulting permutation is P’ o P = [3124].

The set of all possible permutations of n numbers is denoted by .S,,. It contains n! elements.
Viewing P’ o P (perform first P, then P’) as a group operation,

0:8, xS, — Sy, (P',P)— P'oP,

we obtain a group, (S,,0), the permutation group, usually denoted simply by S,.

(a) Complete the adjacent com- P'oP |[123] [231] [312] [213] [321] [132]
position table for Sz, in | [123] [123] [231] [312] [213] [321] [132]
which the de”“iheshp ' ° P 931 312] [123] [321] [132] [213]
xiiha::g eP's.:if int tﬂi tsa(;:z [312] 231] [132] [213] [321]
row, those with fixed P in [213] [312]  [231]
the same column. [321] [312]

[132]
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(b) Which element is the neutral element of S37 How can we see from the multiplication
table that every element has a unique inverse?

(c) Is S5 an abelian group? Justify your answer.

»L1.2.6 Decomposing permutations into sequences of pair permutations

Consider the permutation group S,, defined in the previous problem. Any permutation can
be decomposed into a sequence of pair permutations, i.e. permuations which exchange just
two objects, leaving the others unchanged. Examples:

[4231] [1243] [4231

1234 224 4931 1 9431 1249 9341 2 9314 = [2314

123 224 321 &4 231 = [231] = [132] o [321].
1234 2 2134 24 2314 = [2314] = [3214] o [2134],
1234 22 3214 F2 2314 = [2314] = [1324] o [3214],

1=

The last three lines illustrate that a given permutation can be pair-decomposed in several
ways, and that these may or may not involve different numbers of pair exchanges. However,
one may convince oneselve (try it!) that all pair decompositions of a given permutation have
the same parity, i.e. the number of exchanges is either always even or always odd.

To find a ‘minimal’ (shortest possible) pair decomposition of a given permutation, say [2413],

we may start from the naturally-ordered string 1234 and rearrange it to its desired form, 2413,

one pair permutation at a time, bringing the 2 to the first slot, then the 4 to the second slot,
[2134 [3214

etc. This yields 1234 7= 2134 ¥ 2431 4 2413, hence [2413] = [3214] o [4231] o [2134].
Find a minimal pair decomposition and the parity of each of the following permutations:

(a) [132], (b) [231], (c) [3412), (d) [3421], (e) [15234], (f) [31542].

P.L1.3 Fields

The number fields of most importance in physics are the real numbers and the complex
numbers. The problems in this section focus on the latter, assuming you know the former
from high school. The section’s final problem L1.3.7 gives an example of a number field
involving just four elements, included as an amusing curiosity.

eL1.3.1 Complex numbers — elementary computations

Consider the complex numbers z; = 12 4+ 5i, zo = —3 + 2i and 23 = a — ib, with a,b € R.
Compute (a) z1, (b) 21 + 22, (¢) 21 + Z3, (d) 2122, (€) Z123, and (f) 21/22. (Present each
answer in the form z + iy.) Also compute (g) |21, (h) |21 + 22| and (i) |aze + 323].
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»L1.3.2 Complex numbers — elementary computations

Consider the complex numbers z; = 3 4 ai and 2o = b — 2i with a,b € R. Compute (a) z,
(b) 21 — 22, (c) 2122, and (d) z1/z2. (Present each answer in the form z +iy.) Also, compute
(e) |z1] and (f) |bz1 —3z2|. [Check your results for a = 2, b = 3: (a) 3—2i, (b) 4i, (c) 5+ 124,
(d) 1, () V13, (f) 12]

eL1.3.3 Algebraic manipulations with complex numbers

For z = x+1iy € C, bring each of the following expressions into standard form, i.e. write them
as (real part) + i(imaginary part):

(a) z+7, (b) z -z, () 2z, (d) z
O ) -2, () =+ (h) =

[Check your results for z = 2, y = 1: (a) 4, (b) i2, (c) 5, (d) 2 + i3, (e) 2, (f) —iZ, (g)
5415, (h) 2 +il1]]

»L1.3.4 Algebraic manipulations with complex numbers

For z = o + iy € C, bring each of the following expressions into standard form:
N2 z z
b
(a) (= +1)2 6) —. (©)

[Check your results for z = 1, y = 2: (a) =8 416, (b) 2 +i1, (c) —3 — i3]

eL1.3.5 Multiplying complex numbers — geometrical interpretation

(a) Let z; and 2, be two complex numbers, with polar representations z; = (p; cos ¢;, p; sin ¢; ).
Show that multiplying them, 23 = 2125, yields the relations p3 = pips and ¢3 =
(¢1 + ¢2)mod(27). [The mod(27) is needed if polar angles are restricted to lie in the
interval ¢ € [0,27).] To this end, the following trigonometric identities are useful:

COS (b1 COS (o —Sin ¢y sin g = cos (¢1 + P2),  sin @y coS Po+cos ¢y sin Po = sin (P1 + ¢2).
(b) For z; = /341, 2o = —2 + 21/3i, compute the product z3 = 2125, as well as z, = 1/2
and z5 = z;. Find the polar representation [with ¢ € [0, 27)] of all five complex numbers

and sketch them in the complex plane (in one diagram). Is your result for z3 consistent
with (a)?

rL1.3.6 Multiplying complex numbers — geometrical interpretation

For z; = \/Lg + \/Lgi, 20 =3 —1, compute the product z3 = 2129, as well as z4 = 1/z and
25 = z;. Find the polar representation [with ¢ € [0,27)] of all five complex numbers and
sketch them in the complex plane (in one diagram).



168 P.L2 Vector spaces

eL1.3.7 Field axioms for [F

For a field, the requirement that the addition and multiplication rules be distributive imposes
powerful constraints on both composition rules. The present problem illustrates this fact for
a discrete field involving just four elements.

Equi‘p thg _set’1F4 ={0,1, a,b} with multiplicatior? 10 1 o o1l +10 1 @ b

and ‘addition’ rules chosen such that (Fy, +, «) is 0 0 o 1 )

a field, with 0 and 1 as neutral elements of addition @
e . . 1 1 a b 1|1

and multiplication, respectively. To this end, com-

plete the given composition tables in such a way Z Z a1 e

that the properties of a field are fulfilled. b | b

Hint: Start with the multiplication table!

P.L2 Vector spaces

P.L2.4 Vector spaces: examples

eL2.4.1 Vector space axioms: rational numbers

(a) Show that the set Q* = {(%,) |#', 2% € Q}, consisting of all pairs of rational numbers,
forms a (Q-vector space over the field of rational numbers.

(a) Is it possible to construct a vector space from the set of all pairs of integers, 7Z? =
1 .
{(%,) |z, 2* € Z}? Justify your answer!

»L2.4.2 Vector space axioms: complex numbers

Show that the complex numbers € form a IR-vector space over the field of real numbers.

eL2.4.3 Vector space of real functions

Let ' ={f:R — R,z — f(x)} be the set of real functions. Show that (F, +,+) is an R
vector space, where the addition of functions, and their multiplication by scalars, are defined
as follows:

+ FxF—F (fig)—f4+g with f4+g:z- [f+g](x)=f(z)+g(2) (1)
RxF—=F (Af)—A-f,  with )\-f::vr—>[/\-ﬂ(a:) A (z) (2)

Remark regarding notation: It is important to distinguish the ‘name’ of a function, f, from
the ‘function value’, f(x), which it returns when evaluated at the argument z. The sum of
the functions f and g is a function named f+g. Eq. (1) states that its function value at z,
denoted by [f+g] (x) (square brackets indicate the function name), is by definition equal to
f(z) + g(x), the sum of the function values of f and g at x. The product of the number ¢
and the function f yields a function named ¢+ f. Eq. (2) states that its function value at z,
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denoted by [c+ f](x), is by definition equal to ¢f(z), the product of ¢ with the function value
of f at x.

»L2.4.4 Vector space of polynomials of degree n

The vector space of all real functions is infinite-dimensional. However, if only functions of a
prescribed form are considered, the corresponding vector space can be finite-dimensional. As
an example, it is shown in this problem that the set of all polynomials of degree n form a
vector space of dimension n + 1, isomorphic to R™**.

[Remark on the notation: In the context of the present problem on polynomials, z¥ means “z
to the power of k", and ay, is “the coefficient of z¥". This is in contrast to the notation that we
have adopted elsewhere when discussing vectors, where x* stands for the k-th component of
the vector x = Y, v;a" with respect to a basis of vectors {v;}. Every notational convention
has exceptions!]

Let p, denote a polynomial in the variable z € R of degree n:

Pa: R — R, x5 pa(2) = agr® + arzt + .. apa™. (1)
Pa is uniquely specified by its n+ 1 real coefficients ag, ay, . .., a,, which for notational brevity
we arrange into a (n + 1)-tuplet, a = (ag,ay,...,a,)t € R"". Let P, = {paJa € R"*!}

denote the set of all such polynomials of degree n. The natural definitions for adding such
polynomials, or multiplying them by a scalar ¢ € R, are:

Patpp: R =R, T pa(l') +pb(x) ) (2)
cpa:R— R, T+ cpalx),

(3)

where on the right side the usual addition and multiplication in R is used.

(a) Show that the above addition and scalar multiplication imply the following composition

rules in P,,
Addition of polynomials: +: P,xP,— P, (Pa, Pb) = Pa+ Db = Datb
Multiplication by a scalar: - : R x P, = P,, (¢, px) = C*Pa = Pea

where a + b and ca denote the usual addition and scalar multiplication in R+
(b) Show that (P,, +,¢) is an R vector space, and that it is isomorphic to R"*.

(c) Construct a set n + 1 of polynomials, {pa,,---,Pa,} C Pn, that forms a basis for this
vector space.
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eL2.4.5 Vector space with unusual composition rule

The axioms that define a vector space can be satisfied in many different ways. These may
involve unconventional definitions of vector addition and scalar multiplication. The purpose
of the present problem is to illustrate this point.

For any a € R, let V, = {v,} be a set whose elements v,, labelled by real numbers z € R,
satisfy the following composition rules:

Addition: +: VoxV,—=V, (Vi Vy) = Vo + vy = Vapyi,
Multiplication by a scalar: - RxV, =V, (A, Va) = A Vi = Vigda(a-1)
The a and z labels, being real numbers, satisfy the usual addition and scalar multiplication
rules of R; e.g. in V5 we have: v3+ vy = V314400 = Vg and 3+ vy = V3.4193-1) = Vig. Show
that the triple (V,, 4, -) represents an R-vector space, with v_, and 1 being the neutral

elements for addition and scalar multiplication, respectively, and v_, o, the additive inverse
of v,.

»L2.4.6 Vector space with unusual composition rule

For any a € R?, let V, = {v,} be a set whose elements v,, labelled by vectors x € R?,
satisfy the following composition rules:

Addition: + . VaxV,—V,, (Vx, Vy) > Vx +Vy = Vaiy a
Multiplication by a scalar: - RxVy—V,, (A, V) = A Vi = Vgt flan)
Here f(a, \) is a function of a and A, whose form will be determined below.

(a) Show that Vj,, endowed with the composition rule 4, forms an abelian group, and specify
the neutral element of addition and the additive inverse of vy.

(b) Find the specific form of f that ensures that the triple (V4, +,-) forms an R-vector
space.

(c) Would a similar construction work for a, x € R" (with n a positive integer) instead of
R??

P.L2.5 Basis and dimension
eL2.5.1 Linear Independence

(a) Are the vectors vi = (0,1,2)7, vo = (1,—1,1)T and v3 = (2, —1,4)7 linearly indepen-
dent?

(b) Depending on whether your answer is yes or no, find a vector v/, such that vy, v/, and
vy are linearly dependent or independent, respectively, and show explicitly that they have
this property.
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»L2.5.2 Linear independence

(a) Are the vectors vi = (1,2,3)7, vy = (2,4,6)” and v3 = (—1,—1,0)7 linearly indepen-
dent?

(b) Depending on whether your answer is yes or no, find a vector, v/, such that vy, v}, and
vy are linearly dependent or independent, respectively, and show explicitly that they have
this property.

eL2.5.3 Einstein summation convention

1
Which of the following statements involving (aq, as) and (;) formulated using the Einstein

summation convention, are true and which are false? Justify your answers!

?

(a) aibi = bjaj s (b) Cli(gijbj = akbk,
(c) aita;b* = apblad’ (d) ara;b'b" + b*ajasb’ < (a;b")?.

»L2.5.4 Einstein summation convention

1 _
Let (aq,a9) = (1,2), (Zz> = (;) Evaluate the following expressions, formulated using the

Einstein summation convention, as functions of x:
(a) aibi, (b) aiajbibj, (C) alaijbj.

[Check your results for z = 3: (a) 5, (b) 25, (c) 15.]

P.L3 Euclidean geometry
P.L3.1 Scalar product of R"

P.L3.2 Normalization and orthogonality
eL.3.2.1 Angle, orthogonal decomposition

(a) Find the angle between the vectors a = (3,4)” and b = (7,1)7.

(b) Consider the vectors ¢ = (3,1)" and d = (—1,2)". Decompose ¢ = ¢ + ¢, into
components parallel and perpendicular to d, respectively. Scetch all four vectors.

[Check your results: [|cy|| = =, e[| = J=]
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»L3.2.2 Angle, orthogonal decomposition

(a) Find the angle between the vectors a = (2,0,v/2)” and b = (v/2,1,1)".

In the figure, the points P, ) and R have coordinate vectors p = R
(-1,-1)", g=(2,)" and r = (—1,—1 + 13a)”, with a a positive real
number. The line RS is perpendicular to the line P(Q). Q

(b) Find the coordinate vector s of .S, expressed as a function of a. g
Hint: Let c denote the vector from P to (), and d the vector from
P to R, then decompose d = dj + d into components parallel and
perpendicular to c.

(c) Find the distance RS from R to S and the distance PS from P to S.

[Check your results for a = 1: (b) s = (5,3)7, (c) RS +PS = 169.]

P.L3.3 Inner product spaces
eL3.3.1 Inner product for vector space of continuous functions

This problem illustrates a particularly important example of an inner product: in the space of
continuous functions, an inner product can be defined via integration.

Let V' be the vector space of continuous real functions defined on an interval I € R, f: [ —
R, with the usual composition rules of vector addition and scalar multiplication:

VfgeV: f+g:1—=R, z = (f+9)(x) = flz) +g(x)),

VieV, eR: A f: I =R, z— (A i) =A(f(x)).

(a) Show that the following map defines an inner product on V:
(VPSR (fg) o (g = [ deflalgta).
I

(b) Now consider I = [—1,1]. Compute (f1, f2) for fi(z) =sin (£) and fo(z) = cos ().

»L.3.3.2 Unconvential inner product

The defining properties of an inner product on R™ are of course satisfied not only by the
‘standard’ definition, (x,x) = >_1" ,(z%)? there are infinitely many other bilinear forms that
do so, too. The present problem illustrate this with a simple example. Show that the following

map defines an inner product on the vector space R?:

() R* x R* = R, (X7 Y) = Ty + X1Y2 + Loy + 3Ty
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eL.3.3.3 Projection onto an orthonormal basis

(a) Show that the vectors e} = —5(1,1), e}, = 3(1, —1)" form an orthonormal basis for R*.

(b) Express the vector w = (—2,3)7 in the form w = ejw' + e,w?, by computing its
components w’ with respect to the basis {e’} through projection onto the basis vectors.
[Check your results: 377, wi = —21/2]]

»L.3.3.4 Projection onto an orthonormal basis

(a) Show that the vectors €] = 3(4,—1,8)", e, =

form an orthonormal basis in R3.

(=7,4,4)7 and €, = 1(—4,-8,1)T

1 1
9 9

(b) Let w = ejw’ be the decomposition of w = (1,2,3)” in this basis. Find the components

w. [Check your results: 37 wi = 2]

eL3.3.5 Non-orthonormal basis vectors and metric

Consider the vectors v; = ((2)) and vy = (}) written as column vectors in the standard basis
of R?. (In this problem we use the notation of section ??: vectors in the inner product space
R? carry a caret, e.g. X, and their components w.r.t. a given basis do not, e.g. x.)

(a) Write the standard basis vector &; = ((1)) as a linear combination of v; and v4. Ditto for
6y = (?) Do {V1,Vs} form a basis for R??

(b) Let x = viz! + V92? and y = Viy' + Voy® be two vectors in R?, whose components
w.rt. v; and vy are given by x = (2}, 22)T = (3,-4)T and y = (v*,y*)T = (-1,3)7
respectively. Express X and ¥ as column vectors in the standard basis of R? and compute
their scalar product (X, y)Re.

(c) If the scalar product (X,y)r: is expressed through the components 2 of X and y' of ¥
w.r.t. the non-orthogonal basis {v;,V5}, then it takes the form of an inner product with
a metric: (X,¥)r2 = (X,¥)g = 2'g;;4’, with g;; = (¥V;, V;)r2. Compute the components
of the metric explicitly (concretely: find gy;, g1, g9 @and gos).

(d) The inner product from (c) can be written as (X,y)r> = (2'g;;)y’ = 2597, with z; =
a:igij, thus “hiding” the metric by absorbing it into the definition of covariant components
(with subscript indices). Compute (X,y)rz in this manner, by first finding z; and .
[Check: is the result consistent with that from (b)?]
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»L3.3.6 Non-orthonormal basis vectors and metric

Consider the vectors vi = (2,1,2)T, ¥ = (1,0,1), and v3 = (1,1,0)”, written as column
vectors in the standard basis of R?. (In this problem we use the notation of section ??: vectors
in the inner product space R? carry a caret, e.g. X, and their components w.r.t. a given basis
do not, e.g. x.)

(a) Write the standard basis vector &, = (1,0,0)7 as a linear combination of vy, V5 and V3.
Ditto for &, = (0,1,0)7 and &3 = (0,0,1)T. Do v, V» and v3 form a basis for R3?

(b) Let x = viz! + vua? + V32 and y = viy' + Voy® + V3y® be two vectors in R?,
whose components w.r.t. Vi, Vo and V3 are given by x = (z!, 22, 2%) = (2, -5,3)" and
y = (vt v, y?) = (4,—1,—2)T, respectively. Express x and y as column vectors in the
standard basis of R? and compute their scalar product (X, y)gs.

(c) Find the components of the metric g;; = (V;, V;)rs explicitly.

(d) Now calculate the scalar product of x and y using the formula (X,¥)rs = (x,y), =
z'g;y7 = x;97, with z; = x'g;;, and carry out the sum over i and j explicitly. [Check: is
the result consistent with that from (b)?]

eL3.3.7 Gram-Schmidt orthonormalization

Apply the Gram-Schmidt procedure to the following set of linearly independent vectors {vy, va, v3}
to construct an orthonormal set {e, €}, e} with the same span and with €/||v;.

v = (1,-2,1)7, vo = (1,1, D)7, vy = (0,1,2)".

»L3.3.8 Gram-Schmidt orthonormalization

Apply the Gram-Schmidt procedure to each of the following sets of linearly independent vectors
{V1, V2, v3} to construct an orthonormal set {e}, €}, €5} with the same span and with €/||v;.

(a) v, = (—2,0,2)7, vo = (2,1,0)7, vs = (3,6,5)".
(b) vi = (1,1,0,0)", vy = (0,0,1,1)7, vs = (0,1,1,0)".

P.L3.4 Complex scalar product

P.L4 Vector product
P.L4.2 Algebraic formulation

eL4.2.1 Elementary computations with vectors

Given the vectors a = (4,3,1)" and b = (1, -1, 1).



P.L4.2 Algebraic formulation 175

(a) Calculate |bj|, a—b, a-b and a x b.
(b) Decompose a into a vector a| parallel to b and a vector a; perpendicular to b.

(c) Calculate a|-b,a; b, aj xbanda; xb. Do these results match your expectations?

[Check your results: (a) a-b+ > .(ax b)i = —4, (b) >.(a)) =2, > .(ar)" = 75.]

»L4.2.2 Elementary computations with vectors

Given the vectors a = (2,1,5)7 and b = (—4,3,0)7.

(a) Calculate |bj|, a—b, a-b and a x b.
(b) Decompose a into a vector a| parallel to b and a vector a; perpendicular to b.

(c) Calculate aj-b, a; -b, aj x b and a; x b. Do these results match your expectations?

[Check your results: (a) a-b+ > .(ax b)' = =30, (b) Y ,(a)' =%, Y ,(a1)' =73]

eL4.2.3 Levi-Civita tensor

(a) s the statement a’b/e; ;o = —a”eryb' true or false? Justify your answer,

Express the following k-sums over products of two Levi-Civita tensors in terms of Kronecker
delta functions. Check your answers by also writing out the k-sums explicitly and evaluating
each term separately.

(b) €rik€rji, () €rik€rjo.

»L4.2.4 Levi-Civita tensor

(a) s the statement a’a’e;j3 = Db €,nn true or false? Justify your answer.

Express the following k-sums over products of two Levi-Civita tensors in terms of Kronecker
delta functions.

(b) €1ik€23k, (C) €25k€ki2, (d) €1ik€E3; -
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P.L4.3 Further properties of the vector product
eL4.3.1 Grassmann identity (BAC-CAB) and Jacobi identity
(a) Prove the Grassmann (or BAC-CAB) identity for arbitrary vectors a, b, ¢ € R?:
ax(bxc)=Db(a-c)—c(a-b).
Hint: Expand the three vectors in an orthonormal basis, e.g. a = e;a’, and use the identity

€ijk€mnk = OimOjn — 0ind;m for the Levi-Civita-tensor. If you prefer, you may equally well
write all indices downstairs, e.g. a = e;a;, since in an orthonormal basis a; = a.

(b) Use the Grassmann identity to derive the Jacobi identity:

ax(bxc)+bx(cxa)+cx(axb)=0.

(c) Check both identities explicitly for a = (1,1,2)", b = (3,2,0)” and ¢ = (2,1,1)7 by
separately computing all terms they contain.

»L4.3.2 Lagrange identity

(a) Prove the Lagrange identity for arbitrary vectors a, b, ¢, d € R?:
(axb)-(cxd)=(a-c)(b-d)—(a-d)(b-c).

Hint: Work in an orthonormal basis and use the properties of the Levi-Civita tensor.

b|| and the angle

1

(b) Use (a) to compute ||a x b|| and express the result in terms of ||a
¢ between a and b.

(c) Check the Lagrange identity explicitly for the vectors a = (2,1,0)", b = (3,-1,2)7,
c=(3,0,2)T, d = (1,3,—2)T, by separately computing all its terms.

eL4.3.3 Scalar triple product

This problem illustrates an important relation between the scalar triple product and the ques-
tion whether three vectors in R? are linearly independent or not.

(a) Compute the scalar triple product S(y) of vi = (1,0,2)7, vo = (3,2,1)7 and v3 =
(—1,-2,y)" as a function of the variable y. [Check your result: S(1) = —4 ].

(b) By solving the vector equation v;a’ = 0, find that value of y for which vy, v, are v3 not
linearly independent.

(c) What is the value of S(y) for the value of y found in (b)? Interpret your result!
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»L4.3.4 Scalar triple product

Compute the volume V' (¢) of the parallelepiped spanned by
three unit vectors v, v, and vs, each pair of which encloses
a mutual angle of ¢ (with 0 < ¢ < %7?; why is this restriction
needed?).

Check your results: (i) What do you expect for V(7) and
V(ET? (i) V(5) = \/iﬁ
Hint: Choose the orientation of the parallelepiped such that v; and v, both lie in the plane
spanned by e; and e;, and that e; bisects the angle between v, and v, (see figure).

P.L5 Matrices |: general theory

P.L5.1 Linear maps

P.L5.2 Matrices

P.L5.3 Matrix multiplication
eL5.3.1 Matrix multiplication

Compute all possible products of pairs of the following matrices, including their squares, where
possible:

[Check your results: the sum of all elements of the first column of the following matrix products
is: >;(PQ)in =14, 35, (PR)s = 14, 3 2,(QR)i = 16, 3, (RP)in = 12, 3°,(QQ)a = 16/]
»L5.3.2 Matrix multiplication

Compute all possible products of pairs of the following matrices, including their squares, where
possible:

v
Il

|
w o
I

w N
[=JEEN PN JYoU
L
Il
VR
w b
=
~_
oy
Il
VR
Ls o
| |
N N
|

[N
N~

[Check your results: the sum of all elements of the first column of the following matrix products
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eL5.3.3 Spin % matrices

1.

The following matrices are used to describe quantum mechanical particles with spin 3:

s=1(l o) s=3( o) s=3( ).

(a) Compute 8* = S2 + 57 + 57

(b) Compute the commutators [S,, S,], [Sy, S.] and [S., S;], and express each result in terms
of one of the matrices given above. Remark: [A, B] = AB — BA.

c) The results from (b) can be compactly summarized in an equation of the form [5;, S;] =
J
a;kSyk for {i, 5, k} € {x,y, z} (with summation over k). Find the tensor a; ;.

»L5.3.4 Spin 1 matrices

The following matrices are used to describe quantum mechanical particles with spin 1:
—i 0 1 0 0
( 0 —i) , S, = (0 0) .
i 0 o 0 -1
(a) Compute 8* = S2 + 57 + 57

(b) Comute the commutators [S,, S|, [Sy,S:] and [S,, S;], and express each result through
one of the matrices given above. Remark: [A, B] = AB — BA.

(=)

Sy =

[}

Sl
N
oro
=
oro
N———
R
I

Sl

[}

eL5.3.5 Matrix multiplication

Let A and B be N x N matrices with matrix elements A*; = A;0°,, and B*; = B;0*;. Remark:
Since the indices ¢ and j are specified on the left, they are not summed over on the right even
though in the expression for Bij the index ¢ appears twice on the right.

(a) For N =3 and m = 2, write these matrices explicitly in the usual matrix representation
and calculate the matrix product AB explicitly.

(b) Calculate the product AB for arbitrary N € N and 1 < m < N. [Check your result: the
sum of the diagonal elements yields: S (AB);; = A, By.]

»L5.3.6 Matrix multiplication

Let A and B be N x N matrices with matrix elements A’; = A;0°y,, ; and B} = B;;.
Remark: Since the indices 7 and j are specified on the left, they are not summed over on the
right even though the index ¢ appears twice in Bij on the right.

(a) For N =3 and m = 2, write these matrices explicitly in the usual matrix representation
and calculate the matrix product AB explicitly.
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(b) Calculate the product AB for arbitrary N € N and 1 < m < N. [Check your result: if
N is odd, the sum of the diagonal elements yields: 3 (AB); = An+1 Byi1]
2 2

P.L5.4 The inverse of a matrix
eL5.4.1 Gaussian elimination and matrix inversion

(a) Solve the following system of linear equations using Gaussian elimination.

3zt 4+ 222 — 2 = 1,
20— 22 + 4b = -2
—zt + 22— 2 = 0.

2
[Check your result: the norm of x is ||x|| = 3.]
(b) How does the solution change when the last equation is removed?
(c) What happens if the last equation is replaced by —x! + %xQ — 23 =07

(d) This system of equations can also be expressed in the form Ax = b. Calculate the inverse
A~1 of the 3 x 3 Matrix A using Gaussian elimination, and verify your answer to (a) using
x = A~ 'b.

rL5.4.2 Gaussian elimination and matrix inversion

Consider the linear system of equations Ax = b, with

8—3a 2—6a 2
A=12-6a 5 —4+6a | . (1)
2 —4+4+6a 5+ 3a

(a) For a = 3, use Gaussian elimination to compute the inverse matrix A~!. (Remark: It is

advisable to avoid the occurrence of fractions until the left side has been brought into
row echelon form.) Use the result to find the solution x for b = (4,1,1)7. [Check your
result: the norm of x is ||x|| = v/117/18 ]

(b) For which values of a can the matrix A not be inverted?

(c) If A can be inverted, the system of equations Ax = b has a unique solution for every b,
namely x = A~'b. If A cannot be inverted, then either the solution is not unique, or no
solution exists at all — it depends on b which of these two cases arises. Decide this for
b = (4,1,1)" and the values for a found in (b), and determine x, if possible.
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eL5.4.3 Matrix inversion

Let M, be an n x n matrix with matrix elements (M,)"; = 6";m +¢';, with 4,5 =1,... n.

(a) Find the inverse matrices My ' and M. Verify in both cases that MM, = 1.

(b) Use the results from (a) to formulate a guess at the form of the inverse matrix M, ! for
arbitrary n. Check your guess by calculating M, ' M,,.

(c) Give a compact formula for the matrix elements (M, *)";. Check its validity by showing
that >, (M, ")",(M,)"; = &', holds, by explicitly performing the sum on [.

»L5.4.4 Matrix inversion

Let M,, be an n x n matrix with matrix elements (Mn)’j =md;;+ 06414, withi, j =1,... n.

(a) Find the inverse matrices My ' and M;!. Verify in both cases that MM, = 1.

(b) Use the results from (a) to formulate a guess at the form of the inverse matrix M, ! for
arbitrary n. Check your guess by calculating M M,,.

(c) Give a compact formula for the matrix elements (M, ")";. Check its validity by showing
that 3, (M, '), (M,)'; = 0°; holds, by explicitly performing the sum over .

P.L5.5 General linear maps and matrices
eL5.5.1 Two-dimensional rotation matrices

A rotation in two dimensions is a linear map, R : R? — IR?, that rotates every vector by a
given angle about the origin without changing its length.

(a) Find the 2 x 2 dimensional rotation matrix Ry describing a rotation by the angle 6 by

. . Ry (e; .
proceeding as follows: Make a sketch that illustrates the effect e; 9—(e>) e of the rotation

about the i axis on the three basis vectors e; (j = 1,2,3) (eg. for 6 = ). The image
vectors €’ of the basis vectors e; yield the columns of Rj.

(b) Write down the matrix Ry, for the angles 0, = 0,0, = w/4,05 = 7/2 and 0, = 7.
Compute the action of Ry, (i = 1,2,3,4) on a = (1,0)” and b = (0,1)7, and make a
scetch to visualize the results.

(c) The composition of two rotations again is a rotation. Show that RyRy = Ry .
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Hint: Utilize the following ‘addition theorems’: sin 6 cos ¢

S
2,
j@

cos(f + ¢) = cos @ cos p —sinfsin g,
sin(f + ¢) = sinf cos ¢ + cos @ sin ¢ .

cos f sin ¢
_0-°

@i | sin 0 sin ¢

cos 0 cos ¢
G

Remark: A geometric proof of these theorems (not L
requested here) follows from the figure by inspecting
the three right-angled triangles with diagonals of
length 1, cos ¢ and sin ¢.

(¢ + g)soo

sin(6 + ¢)

Show that the rotation of an arbitrary vector r = (z,y)” by the angle 6 does not change
its length, i.e. that Dyr has the same length as r.

»L5.5.2 Three-dimensional rotation matrices

Rotations in three dimensions are represented by 3 x 3 dimensional matrices. Let Ry(n) be
the rotation matrix that describes a rotation by the angle 6 about an axis whose direction is
given by the unit vector n.

(a)

Find the three rotation matrices Ry(e;) for rotations about the three coordinate axes e,

e, and e3 explicitly, by proceeding as follows: Make a separate sketch for each of j = 1,2

. Ry (e; . . .
and 3 that illustrates the effect e; 9—(e>) e; of a rotation about the 7 axis on the three

basis vectors e; (j = 1,2,3) (e.g. for @ = §). The image vectors €/ of the basis vectors
e; yield the columns of the sought rotation matrix 2.

It can be shown that for a general direction n = (n, ny, n3)” of the axis of rotation, the
matrix elements have the following form:

(Rg(n))ij = 0;; cos 0 + n;n;(1 — cosb) — € nysin (€ijx = Levi-Civita-Tensor) .
Use this formula to find the three rotation matrices Ry(e;) (i = 1,2,3) explictly. Are
your results consistent with those from (a)?

Write down the following rotation matrices explicitly, and compute and scetch their effect
on the vector v = (1,0,1)":

(I) A= Rﬂ(e:g) ) (II) B = Rg(%((%y) - el)) .
Rotation matrices form a group. Use A and B from (c) to illustrate that this group is
not commutative (in contrast to the two-dimensional case!).

Show that a general rotation matrix R satisfies the relation Tr(R) = 1 + 2 cos 6, where
the ‘trace’ of a matrix R is defined by Tr(R) = Y .(R)’,.

(2
The product of two rotation matrices is again a rotation matrix. Consider the product
C' = AB of the two matrices from (c), and find the corresponding unit vector n and
rotation angle 6. Hint: these are uniquely defined only up to an arbitrary sign, since Ry(n)
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and R_y(—n) describe the same rotation. (To be concrete, fix this sign by choosing the
component ny positive.) |f| and |n;| are fixed by the trace and the diagonal elements of
the rotation matrix, respectively; their relative sign is fixed by the off-diagonal elements.
[Check your result: ny = 1//3]]

P.L5.6 Matrices describing coordinate changes
eL5.6.1 Basis transformations and linear maps in [£2

Remark on notation: For this problem we denote vectors in euclidean space [£? using hats
(e.g. €, X, y € E?. Their components with respect to a given basis are vectors in R? and
are written without hats (e.g. x, y € R?).

Consider two bases for the Euclidean vector space E?, one old {€&,}, and one new {&.}, with

€ =

o

~/ ~/ A 1.7 ~/
€ + 36, €ey=—ge +3€,.

Wl
N

(a) The relation &; = &T" expresses the old basis in terms of the new basis. Find the
transformation matrix 7' = (TZ])

(b) Find the matrix T-', and use the inverse transformation &; = &;(T')"; to express the
new basis in terms of the old basis.

(c) Let x be a vector with components x = (1,2)7 in the old basis. Find its components x’
in the new basis. [Check your result: x' = (1, 3)7]
)

(d) Let y by a vector with components y’ = (
y in the old basis.

(e) Let A be the linear map defined by & ) 2¢| and €, ) é,. First find the matrix
representation A’ of this map in the new basis, then use a basis transformation to find
its matrix representation A in the old basis. [Check your result: (4)* = —2.

(f) Let z be the image vector onto which the vector x is mapped by A e x A . Find
its components z’ with respect to the new basis by using A’, and its components z with
respect to the old basis by using A. Are your results for z’ and z consistent?

(g) Now make the choice &, = 3é; + &, and &, = —%él + %éz for the old basis, where
é; = (1,0)T and &, = (0,1)7 are the basis vectors of the standard basis of [E%. What
are the components of &), €,, x and z in the standard basis [E?? [Check your results:

&)l = 4, [|&4]] = 3, [|X]| = 2v/5, ||2]| = 4v2]

(h) Make a sketch (with €; and €, as unit vectors in the horizontal and vertical directions
respectively), showing the old and new basis vectors, as well as the vectors x and z. Are
the coordinates of these vectors, discussed in (c) and (f), consistent with your sketch?
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»L5.6.2 Basis transformations and linear maps in 2

Remark on notation: For this problem we denote vectors in euclidean space IE? using hats
(e.g. &;, X, ¥ € E?). Their components with respect to a given basis are vectors in R? and
are written without hats (e.g. x, y € R?).

Consider two bases for the Euclidean vector space E?, one old {&,}, and one new {&.}, with

147 3a/ A 64/ 24/
e = gel+582, €y = _§e1+§e2'
(a) The relation &; = &/T" expresses the old basis in terms of the new basis. Find the
transformation matrix 7' = (T%).

(b) Find the matrix T-', and use the inverse transformation &, = &;(T')"; to express the
new basis in terms of the old basis.

(c) Let % be a vector with components x = (2, —2)T in the old basis. Find its components

2
x’ in the new basis.

(d) Lety by a vector with components y’ = (—3,1)7 in the new basis. Find its components
y in the old basis.

(e) Let A be the linear map defined by & ¥ (&, —28,) and & > —1(4&, +&,). First find
the matrix representation A of this map in the old basis, then use a basis transformation
to find its matrix representation A’ in the new basis. [Check your result: (A’)% = 2]

(f) Let z be the image vector onto which the vector X is mapped by A e x 2 . Find
its components z with respect to the old basis by using A, and its components z’' with
respect to the new basis by using A’. Are your results for z and z' consistent? [Check
your result: z’ = £(5,1)" ]

(g) Now make the choice &; = €;+¢&, and &, = 2¢; — &, for the old basis, where &, = (1,0)T
and €, = (0,1)7 are the basis vectors of the standard basis of E*2. What are the

V4l

components of &/, &), X and Z in the standard basis E*? [Check your results: ||} = ¥+,

ley]l = Y59, ||x|| = ||z]| = Y2 ]

(h) Make a sketch (with €; and €, as unit vectors in the horizontal and vertical directions
respectively), showing the old and new basis vectors, as well as the vectors X and z. Are
the coordinates of these vectors, discussed in (c) and (f), consistent with your sketch?

eL5.6.3 Basis transformations
Consider the following three transformations in R?, using the standard basis {e;, es, e3}:

A : Rotation about the third axis by the angle 63 = 7, in the right-hand positive direction.

Hint: Use the compact notation cos 3 = sinfl; = s.

B : Dilation (stretching) of the first axis by the factor s; = 3;
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C : Rotation about the second axis by the angle 0, = 7, in the right-hand positive direction.

Hint: To understand what ‘right-hand positive’ means, imagine wrapping your right hand
around the axis of rotation, with your thumb pointing in the positive direction. Your other
fingers will be curled in the direction of ‘positive rotation’.

(a) Find the matrix representations (with respect to the standard basis) of A, B and C.
(b) What is the image y = Bx of the vector x = (1,1,1)T under the dilation B?

(c) What is the image z = Dx of x under the composition of all three maps, D = C'- B - A?
[Check your result: 22 = /2]

(d) Now consider a new basis {e/}, defined by a rotation of the standard basis by 4, i.e.

A ) . . : :
e; — €. Draw the new and old basis vectors in the same figure. Find the transformation
matrix T, and specify the matrix elements of the transformation between the old and the
rotated bases using e; = €jt’;.

/00 /1,01

(e) Inthe {€}} basis let the vectors x and y be represented by x = ez’ and y = ey"*. Find
the corresponding components x’ = (z'', 2’2, 2/*)T and y' = (y'*, 4%, y'®)T. [Check your
results: 2/ = /2, i3 = 1]

(f) Let B’ denote the dilation B in the rotated basis. Find B’ by the appropriate transforma-
tion of the matrix B, and use the result to calculate the image y’ of X’ under B’. [Does
the result match that from (e)7]

»L.5.6.4 Basis transformations and linear maps

Consider the following three linear transformations in R?, using the standard basis {e;, e;, e3}.

A Rotation around the first axis by the angle §; = —% in the right-handed sense, i.e. a
left-handed rotation. Hint: Use the compact notation cosf; = ¢, sinf; = s.

B : Dilation of the first and second axes by the factors s; = 2 and sy = 4 respectively.
C : A reflection in the 2,3-plane.

(a) Find the matrix representations (using the standard basis) of A, B, C. Which of these
transformations commute with each other (i.e. for which pairs of matrices does 717> =
Y

(b) What is the image y = C'Ax of the vector x = (1,1,1)T under the transformation C'A?
(c) Find the vector z, whose image under the composition of all three transformations , D =

C-B- A, givesy. [Hint: D~! = A"'B~1C~1] [Check your result: 23 = (7 —3/3).]
(d) Now consider a new basis {€}}, defined by a rotation and reflection C'A of the standard

basis, €} ks e;. [Caution: in the sample the order was reversed!] Sketch the old and new
bases in the same picture. [Note: The new basis vectors are a left handed system! Why?]
Find the transformation matrix 7', and specify the matrix elements of the transformation
between the old and the new basis, with e; = €{T",.



(e) In the {€]}-Basis let the vectors z and y be represented by z = €]z

(f)
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“and y = ely’*. Find
the corresponding components z’ = (2’1, 22, 2"3)T and y' = ('}, v, 3®)T. [Check your
results: 23 = 2(1—+/3), y? = 3(-1+/3)]

Let D’ denote the representation of D in the new Basis. Find D’ by an appropriate
Transformation of the Matrix D, and use the result to find the image y’ of z’ under D’.
[Does the result match the one from (e)7].

P.L6 Matrices |l: determinants

P.L6.1 Determinant

eL6.1.1 Calculating determinants

Compute the determinants of the following matrices by expanding them along an arbitrary row
or column. Hint: The more zeros it contains, the easier the calculation.

(==~ N en)

a=(3 ). B:@ :§, D C=

QO 9
SO O QR
>N O Q

[Check your result: for a =1, b = 2 one has det C' = —4.]

»L6.1.2 Calculating determinants

1
(a) Compute the determinant of the matrix D = (d
2

NN O

0
3). [Check your result: for ¢ = 1,
e

d=3,e=2,one has det C' = —2]]
(i) Which values must ¢ and d have to ensure that det D = 0 for all values of ¢?
(ii) Which values must d and e have to ensure that det D = 0 for all values of ¢?

Could you have found the results of (i,ii) without explicitly calculating det D?

2 1

. . /2 -1 -3 1 [ 6 6

Now consider the two matrices A = (0 15 5) and B= | _, g
-2 -2

(b) Compute the product AB, as well as its determinant det(AB) and inverse (AB)!.

(c) Compute the product BA, as well as its determinant det(BA) and inverse (BA)™!.

Is it possible to calculate the determinant and the inverse of A and B?
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P.L7 Matrices lll: diagonalizing a matrix

P.L7.3 Characteristic polynomial
P.L7.4 Matrix diagonalization
eL7.4.1 Diagonalising real 2 x 2 matrices

For the following real matrices, find the eigenvalues )\; € R, eigenvectors v; € R? and the
similarity transformation S, as well as its inverse, S~1, for which S~ AS is diagonal:

-1 6 1 11 -8
wa- (1. masi(n ),
[Check your result: verify that ST'AS contains the eigenvalues on the diagonal.]

»L7.4.2 Diagonalising real 2 x 2 matrices

For the following real matrices, find the eigenvalues )\; € R, eigenvectors v; € R? and the
similarity transformation S, as well as its inverse, S~1, for which S~ AS is diagonal:

@a=(s2)  wasg ()

[Check your result: verify that ST'AS contains the eigenvalues on the diagonal.]

eL7.4.3 Diagonalising complex 2 x 2 matrices

For the following complex matrices, find the eigenvalues \; € C, eigenvectors v; € C? and
the similarity transformation S, as well as its inverse, S~!, for which S~'AS is diagonal:

@a=(30).  wa=(11)

[Check your result: verify that ST'AS contains the eigenvalues on the diagonal.]

»L7.4.4 Diagonalising complex 3 x 3 matrices

For the following complex matrices, find the eigenvalues )\; € C, eigenvectors v; € C? and
the similarity transformation S, as well as its inverse, S~!, for which S7'AS is diagonal:

1 0 -1 1 —i
(a) A={|o0 21 o], (b) A= 1
1 0 1 i 1

[Check your result: verify that ST'AS contains the eigenvalues on the diagonal.]
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eL7.4.5 Diagonalising a matrix that depends on a variable

x

1 0
Consider the matrix A = ( 1 2 1), which depends on the variable z € R. Find the
3—zz -1 3

eigenvalues )\; and eigenvectors v; € R? of A, with j = 1,2, 3.

Hints: One of the eigenvalues is A = z. (Of course the other results, too, can depend on
x.) Avoid fully multiplying out the characteristic polynomial; try instead to directly bring it
to a completely factorized form! [Check your results: for x = 4, two of the (unnormalized)
eigenvectors are given by (1, -2, —1)7 and (1,—1,-2)7]

»L7.4.6 Diagonalizing a matrix depending on two variables: qubit

A qubit (for “quantum bit” = quantum version of a classical bit) is a manipulable two-level

quantum systems. The simplest version of a qubit is described by the matrix H = (i _AB>,
with B e R and A € C.

(a) Calculate the eigenvalues E; (choose E; < Ej) and normalized eigenvectors v and v,
of H as a function of B, A and X = [B? + |A]?]'/2,

(b) Show that the eigenvectors can be brought to the form v, = \/% (e;j%) and vy =

NG (Ci;f/fl—y>, where € is the phase factor of A = |Ale!’. How does Y scale as a

function of B and X7 On three diagrams arranged below each other, each showing
two curves, sketch first F; and FEs, second, the square of the absolute values of the
components |v!;|? and [v%|? of the eigenvector v, and third the square of the absolute

values of the components of |v!,|? and |v%)|? of the eigenvector vy, all as functions of
B/|A| € {—00, 00} for fixed |A].

Background information: The first sketch shows the so called “avoided crossing”, a typical
trait of a quantum bit. The second and third sketches show that the eigenvectors “exchange
their roles” if B/A goes from —oo to +00. Both these properties have been detected in many
experiments.

eL7.4.7 Inertia tensor

The inertia tensor of a rigid body composed of point masses is defined as
]Nij = Zma ]Nij(ra,ra) . with ]Nij(r, r')=dr-r' — (e;-r)(e; - 1),

where m, and r, = (r',,r% 13 )T are, respectively, the mass and position of point mass a.
The eigenvalues of the inertia tensor are known as the rigid body's moments of inertia.
Consider a rigid body consisting of three point masses m; = 4, my = M and m3 = 1 at
positions r; = (1,0,0)7, ry = (0,1,2)" and r3 = (0,4, 1)T, respectively. Determine its inertia
tensor  and moments of inertia as functions of M. (Eigenvectors are not required.) [Check
your results: if M =5, then \; =42, Ay =39, A\3 = 11/]
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»L7.4.8 Inertia tensor
Consider a rigid body consisting of two point masses, m; = 2 and my, = 3, at positions

3
r; =(2,2,-1)" and ry = $(2,—1,2)", respectively.

~ 5 =2 0
(a) Show that its inertia tensor has the following form: I = (2 6 2>.
0 2 7

(b) Find the moments of inertia (eigenvalues). (Hint: One eigenvalue is A = 3.)

(c) Construct matrices S and S~! that diagonalize the inertia tensor.

eL7.4.9 Degenerate eigenvalue problem

2 -1 2
For the matrix A = (1 2 2), find the eigenvalue );, the normalized eigenvectors
2 =2 5

v, € R3, and the similarity transformation S, as well as its inverse, S, such that S7'AS
is diagonal. Hint: One eigenvalue is \; = 1. [Check your result: verify that S™'AS contains
the eigenvalues on the diagonal.]

pL7.4.10 Degenerate eigenvalue problem

Consider the following matrices:

Loy

A= 6 6 6 B =
—36157 0 2 4 0
-2i 0 0 2

(a) One of the eigenvectors v; € R? of the matrix A is vz = \/Lg(l, 1,1)T. Find all eigenvalues

A; of A. (Hint: Two of them form a degenerate pair.) Construct an orthonormal basis
{v1,va,v3} of R? consisting of eigenvectorss of A. Find a similarity transformation S,
and its inverse S, for which S~1AS is diagonal.

(b) One of the eigenvectors v; € C* of the matrix B is v3 = \%(0,1,—2,0)? Find all

eigenvalues \; of B. (Hint: Two of them form a degenerate pair.) Construct an or-
thonormal basis {vy, Vs, vs,v4} of C?* consisting of eigenvectors of B. Find a similarity
transformation .S, and its inverse S~!, for which S~1BS is diagonal.

eL7.4.11 Determinant equals product of eigenvalues

If Ais an nxn matrix with eigenvalues Ay, ..., \,, thendet A = H;LZI Aj, i.e. the determinant
is equal to the product of the eigenvalues. Prove this for the case that A is diagonalizable.
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pL7.4.12 Trace of a matrix

The trace of an n x n matrix, Tr A, is defined as the sum of all diagonal elements, Tr A =
> 51 Ajj. Show the following properties of the trace:

(a) Tr(AB) = Tr(BA) for any n x n matrices A and B.
(b) A =Tr(S7'AS) for any n X n matrices A and S, where S is invertible.
(

c) If A has the eigenvalues \y,..., A,, then Tr A = X\ + ...+ \,. You may assume that A
is diagonalizable.

P.L7.5 Functions of matrices
eL7.5.1 Functions of matrices

The purpose of this problem is to gain familiarity with the concept of a ‘function of a matrix'.
Let f be an analytic function, with Taylor series f(z) = > )2, ¢!, and A € mat(R,n,n) a
square matrix, then f(A) is defined as f(A) = > 72, A, with A% = 1.

(a) A matrix A is called ‘nilpotent’ if an [ € N exists such that A = 0. Then the Taylor
series of f(A) ends after | terms. Example: Compute e? for A = (8 g)

(b) If A% o 1, then A*™ oc 1 and A*™*! A, and the Taylor series for f(A) has the form
fol + fiA. Example: Compute e explicitly for A = 05, with 6 = (O -

1 0/"
[Check your result: if § = —%, then e = £ (‘f \/15>]

(c) If A is diagonalizable, then f(A) can be expressed in terms of its eigenvalues. Let S
be the similarity transformation that diagonalizes A, with diagonal matrix D = S~1AS
and diagonal elements D = diag(\1, A, ..., \,;). Show that the following relations then
hold:

f) 0 0

FA) =SpD)s =8| O Q) g
; 0
0 e 00 f()

Remark: Both equalities are to be established independently of each other.

(d) Now compute the matrix function e?* from (b) using diagonalization, as in (c).

»L7.5.2 Functions of matrices

Express each of the following matrix functions explicitly in terms of a matrix:

(a) e?, with A = (8 0 2)
0 o0

0
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(b) ef, with B =bo; and 0 = (? é) using the Taylor series of the exponential function.

[Check your result: if b =1In2, then e? =1 (2 i)]

(c) The same function as in (b), now by diagonalizing B.

(d) €%, with C' =i0Q, where Q = n;S;, while n = (ny,ng,n3)" is a unit vector (||n|| = 1)
and S; are the spin—% matrices: S| = % (? é) Sy = % (? _é), S3 = % (é _?).
Hint: Start by computing Q2 (for this, the property S;S; + S;5; = 36;;1 of the spin-3
matrices is useful), and then use the Taylor series of the exponential function.

[Check your result: if @ = —7/2andny; = —ny = ng = i?) then e¢ = \/ig (f: \}gji) ]

Remark: The exponential form e“ is a representation of SU(2) transformations, the

group of all special unitary transformations in C2. Its elements are characterized by
three continuous real parameters (here 6, n; and ny, with ng = /1 —n3 —n3). The
S; matrices are ‘generators’ of these transformations; they satisfy the SU(2) algebra, i.e.
their commutators yield [S;, S;] = i€;jxSk.

eL7.5.3 Exponential representation of 2-dimensional rotation matrix

sin 6 cos 6

The matrix Ry = (COS@ 75“19) describes a rotation by the angle # in R?. Use the following
‘infinite product decomposition’ to find an exponential representation of this matrix:

(a) A rotation by the angle 6 can be represented as a sequence of m rotations, each by the
angle 8/m: Ry = [Rg/m)|™. For m — oo we have §/m — 0, thus the matrix Rg/m)
can be written as Rg/m) = 1 + (6/m)6 + O((0/m)?) Find the matrix 5.

(b) Now use the identity lim,, ,.o[1 + 2/m]™ = e® to show that Ry = e%.

Remark: Justification for this identity: We have e® = [e®/™]™ = [14+z/m+O((x/m)?)]™.
In the limit m — oo the terms of order O((z/m)?) can be neglected.

[Check your result: does the Taylor series for €7 reproduce the matrix for Ry given above?]

Remark: The procedure illustrated here, by which an infinite sequence of identical, infinitesimal
transformations is exponentiated, is a cornerstone of the theory of ‘Lie groups’, whose elements
are associated with continuous parameters (here the angle 6). In this context the above matrix
o is called the ‘generator’ of the rotation.

»L7.5.4 Exponential representation 3-dimensional rotation matrix

In R3, a rotation by an angle #, about an axis whose direction is given by the unit vector
n = (ny,n9,n3), is represented by a 3 X 3 matrix that has the following matrix elements:

(Rop(n));; = 0;5 cosf + n;n;(1 — cos @) — €, ny, sin 6 (€;51 = Levi-Civita-Tensor). (1)

The goal of the following steps is to supply a justification for Eq. (1).
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Consider first the three matrices Ry(e;) for rotations by the angle 6 about the three
coordinate axes e;, with j = 1,2, 3. Elementary geometrical considerations yield:

1 0 0 cosf 0 sinf cos@ —sinf O
R@(el) = | 0 cosf —sinb s Rg(eg) = 0o 1 0 , R@(e3) — | sin#® cosf 0| .

0 sin@ cos @ —sinf 0 cosf 0 0 1

For each of these matrices, use an infinite product decomposition of the form Ry(n) =
lim,;, 00 [R9/m(n)]™ to obtain an exponential representation of the form Ry(e;) = el
Find the three 3 x 3 matrices 71, 72 and 73. [Check your results: The 7; commutators yield
[7:,7;] = €k This is the so-called SO(3) algebra, which underlies the representation
theory of 3-dimensional rotations. Moreover, 7% + 75 + 75 = —21.]

Now consider a rotation by the angle 6 about an arbitrary axis n. To find an exponential
representation for it using an infinite product decomposition, we need an approximation
for Rg/m(n) up to first order in the small angle §/m. It has the following form:

Rio/m)(0) = Rnyo/m)(€1) Rinoo/m) (€2) Ringoymy (€3) + O((0/m)?). (2)

Intuitive justification: If the rotation angle 6/m is sufficiently small, the rotation can be
performed in three substeps, each about the direction e;, by the ‘partial’ angle n;6/m.
The prefactors n; ensure that for n = e; (rotation about a coordinate axis j) only one
of the three factors in (2) is different from 1, namely the one that yields R/ (e;); for

example, for n = e, = (0,1,0)7: R0o/m)(€1) R(1ns0/m)(€2) R0o/m)(€3) = Rnoo/m)(€2).

Show that such a product decomposition of Ry(n) yields the following exponential rep-
resentation:

0 —ns N9
Rg(n) = 60Q s Q= n;, 7, = ns 0 —Nn1 s (Q)”LJ = —eijknk . (3)
—MN9 1 O

Show that €2, the ‘generator’ of the rotation, has the following properties:
Q%) = nin; — 8, =-0"2 for3<leN. [Cayley-Hamilton theorem] (4)

Hint: First compute Q2 and Q3, then the form of >3 will be obvious.

Show that the Taylor expansion of Ry(n) = ¢’ yields the following expression,
Ry(n) = 1 + Qsinf + Q*(1 — cosh), (5)

and that its matrix elements correspond to Eq. (1).
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P.L8 Orthogonality and unitarity

P.L8.1 Orthogonal and unitary maps

P.L8.2 Orthogonal and unitary matrices
eL8.2.1 Orthogonal and unitary matrices
(a) Is the matrix A as given below an orthogonal matrix? Is B unitary?

2 14+i 0
sinff cos@ 1 . +
A= . , B = 1+i -1 1
—cosf sinf 1—1 .
0 2 i

(b) Let x = (1,2)T. Calculate a = Ax explicitly, as well as the norm of x and a. Does the
action of A on x conserve its norm?

(c) Lety = (1,2,i)T. Calculate b = By explicitly, and also the norm of y and b. Does the
action of B on y conserve its norm?

»L8.2.2 Orthogonal and unitary matrices

(a) Determine if whether the following matrices are orthogonal or unitary:

0 3 0 L 12 -2 L
A=| 20 1), B==[-22 1], C:7<1 )
~1 0 2 3\ 21 2 VoA

(b) Let x = (1,2, —1)T. Calculate a = Ax and b = Bx explicitly. Also, calculate the norm
of x, a and b. Which of these norms should be equal? Why?

(c) Lety = (1,i)T. Calculate c = Cy explicitly, and also determine the norm of y and c.
Should the norms be equal? Why?

P.L8.3 Special unitary and special orthogonal matrices

P.L8.4 Orthogonal and unitary basis changes
P.L9 Hermiticity and symmetry

P.L9.2 Hermitian and symmetric matrices

P.L9.3 Relation between Hermitian and unitary matrices
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P.L10 Linear algebra in function spaces

P.L10.1 The standard basis of a function space
P.L10.2 Linear operators

P.L10.3 Eigenfunctions

P.L10.4 Self adjoint linear operators

P.L10.5 Function spaces with unbounded support
P.L11 Multilinear algebra

P.L11.1 Direct sum and direct product of vector spaces
P.L11.2 Dual space

P.L11.3 Tensors

P.L11.4 Examples of tensor classes

P.L11.5 Alternating forms

P.L11.6 Visualization of alternating forms

P.L11.7 Wedge product

P.L11.8 Inner derivative

P.L11.9 Pullback



C

Calculus

Part C of this book introduces the elements of calculus. required in the first years of the physics curriculum. We
start with a recapitulation of one-dimensional differentiation and integration. Although this may be material familiar to
many readers, we will provide interpretations of differentiation and integration not normally emphasized in school. We
then turn to higher dimensions and discuss how differentiation can be applied to understand the behavior of functions
depending on several parameters. The second part of the chapter discusses the integration of multi-dimensional
functions and functions defined on higher-dimensional geometric domains, such as spheres. The generalized concepts
of differentiation and integration are the basis for the advanced elements of calculus discussed in later parts of the
chapter, including differential equations, Fourier analysis, functional calculus, and the calculus of functions depending

on complex variables.

The mathematics of physics is all about differentiating and integrating. The reasons for
this are deeply rooted in the foundations of our science. To understand why, consider the
situation before the age of enlightenment. At that time scientific knowledge was accumulated
empirically, for example through the tabulation of the motion of celestial bodies. Although
people were aware that a complete tabulation of all planets and stars is out of the question no
alternative method was known. The situation changed when it became understood that a more
rewarding approach was to monitor small incremental changes in the motion of celestial bodies.
For example, an interesting quantity to study were the changes, v(t+ ) — v(J), accumulated
in a body’s velocity during small increments of time, 0. For sufficiently small § this change is
approximately proportional to §, and it made sense to shift the focus of attention to the study
of the rate-change, or derivative, of the velocity, v'(t) = lims 06 ! (v(t + ) — v(¢)). The
great step forward came with the observation that these incremental changes were universal
and could be described through relatively simple physical laws equally applicable to all bodies.
This realization, which found its quantitative expression in Newton's famous laws of mechanical
motion, defined the starting point of modern physics. From then on the laws of nature were
often encoded in ‘differential relations’ describing rate changes of physical quantities. From
such laws the actual behavior of a physical object, for example, the full time dependent profile,
v(t), of a planet’s velocity, could be reconstructed through the twin sister of differentiation,
integration, to be discussed in section C2.

In the next chapter we introduce the concept of differentiation on the important example
of one-dimensional functions familiar from high school. However, we will do so in a manner
that differs from the school approach in that it affords straightforward generalization to the
case of more complex function.

1
Although ‘analysis’ maytion a shade more rigorous than ‘calculus’ the almost synonymous with each other.
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C1 Differentiation of one-dimensional functions

In school, differentiation is often introduced as a tool to describe slope of a function defined
on a one-dimensional interval. However, differentiation is a concept much more general than
that: much like the surface of earth looks flat when viewed locally, even very complicated
functions assume a simple (linear) appearance if we ‘zoom in' closely and look at them from
close up. For example, what has been said above amounts to the statement that for short
time differences, d, the velocity is a function linear in 0, v(t + 0) ~ v(t) + 0 v'(t). More
generally, the overarching objective of differentiation is to describe functions locally in terms
of simple linear approximations. In this chapter we introduce this idea on the example of one-
dimensional functions familiar from high school. This will set the stage for the generalization
to more complicated functions discussed in later chapters.

C1.1 Definition of differentiability

We start by recapitulating the definition of differentiability as it is usually taught in school.
Heuristically, a function f : R — R, x — f(z) is differentiable at x if it may be approximated
by a well defined tangent, and if that tangent does not have infinite slope, see Fig. C1.

The construction of a tangent effectively monitors the changes

””””””””””””””” 3 of the function in the limit of small increments of its arguments.

R ‘ As a first step towards a more rigorous definition, we need

‘ to discuss what is meant by the term ‘limit’. Intuitively, g

) § approaches the limit g(z) = ¢, if deviations off the value ¢

become arbitrarily small for arguments y sufficiently close to x.

In this case we write lim,_,, g(y) = ¢, or lims_,o g(x +0) = g() and say that the limit exists.
An equivalent formulation is to say that g converges to g(z) = c in the limit y — .

There are various ways to turn the intuitive formulation into a rigorous definition of a limit.
Referring for in-depth discussions to lecture courses in mathematics, we mention the Weierstrass-
Jordan (also known as e-¢ criterion) which says that g converges to g(z) = c if for any € > 0 there
exists a 6 > 0 such that for all arguments y which are d-close to z, |y — x| < J the function values
g(y) are e-close to g(x), |g(y) — g(z)| < € (see the figure.)

We now define a function f : R — R, = — f(z) to be differentiable if the difference

195
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quotient }[f(z + 0) — f(x)] has a well defined limit § — 0. In this case, it probes the local
slope of f at x and the limit

df(x)
dzx

E(lsi_r%%[f(m—i—@ — f(2)], (C1)

is called the derivative of f at . The limiting form of the difference quotients on the r.h.s.
is sometimes called differential quotient. Alternative denotations of the derivative include

_df@) _ df(y)
dx dy

— if(g:) = dxf(m) = fx(.”lt)

y=x dx

f'(x)

However, all these notations are defined in the same way by the r.h.s. of Eq. (C1). Before
continuing to discuss the properties of the ‘differential quotients’ defined through Eq. (C1) it
is worthwhile to understand the conditions under which the limits 6 — 0 exist. A first, if not
sufficient existence condition is the continuity of f at x.

f

f(x+6)f ‘

xﬂc+6
() S
f(w+5)f()
f(fb')***3 ——————— S

Figure C1: Differentiation of a function. Discussion, see text.

Continuity and differentiability of functions

The existence of the differential quotient in Eq. (C1) requires that f have no ‘jumps’ at
which in mathematical terminology is called the absence of discontinuities. For example, the
function shown in the left panel of Fig. C2 has a unit jump at zero, implying the divergence
of the limit of 7 (f(0 + &) — f(0)) = 6~'. Continuity is a necessary (but not sufficient,
see discussion below) prerequisite for differentiability. Using the above terminology of limits, a
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function is continuous at z if lim,_,, f(y) = f(x), i.e. if it converges to f(x) for arguments
approaching x.

To understand that continuity does not necessarily imply differentiability consider
the second panel of Fig. C2. It shows a function which is continuous, but not differentiable at
x = 0. The reason is the presence of an ‘edge’, i.e. f(z) = +x forany z > 0 and f(z) = —x
for z < 0. For positive values of § we then have 6~ [f(d) — f(0)] = 67'[+0 — 0] = 1,
while for negative values 6~ [f(6§) — f(0)] = 6![~6 — 0] = —1. This means that the limit
is not unambiguously defined, and therefore the differentiability criterion fails. Another thing
that may go wrong is that ‘infinitely strong’ slopes appear (third panel.) For example, the
function f(z) = 323 has the derivative (see below for a summary of differentiation rules)
f'(z) = 27%? and this does not exist at z = 0 where the function crosses the x axis with
‘infinite slope’. Finally, functions such as that shown in the fourth panel have well defined
tangents everywhere and therefore are differentiable.

R

0 0 1 0 0

Figure C2: Left: a function that is not continuous at z = 0. The solid dot indicates that f(0) = 0.
For all strictly positive values = > 0, f(xz) = 1. Center: a function that is continuous but not
differentiable at x = 0. Right: a smooth function that is differentiable throughout its domain of
definition.

In this text, we often require global differentiability and for this reason we generally consider
functions defined on open intervals, / = (a,b) (cf. the discussion of openness on p. 16.)
Openness is required to safeguard the existence of the differential quotient throughout the
entire interval: by definition, an interval [ is open if any x € U C [ lies in a neighborhood
U = {ylly — x| < e} C I entirely contained in I. The differential quotient can then be
computed within U. By contrast, the differential quotient cannot be computed at the boundary
points of a closed interval, [a, b], because for any § > 0, b+ is outside [a,b] and f(b+0) is
not defined.

Interpretation of the derivative

In school it is often emphasized that the derivative, f'(x), determines the slope (Steigung)
of f at x. This view adequately applies the situation with one-dimensional functions but is
too narrow to capture the meaning of derivatives in more general contexts. A more versatile
interpretation is as follows: before taking the limit 6 — 0, consider a fixed but very small value
of §. The right-hand side of (C1) will then be a very good approximation to the derivative,

ie. +[f(z+0) — f(x)] = f'(z). Now rewrite this equation as

f@+0) ~ f(z) + f'() 6. (€2)
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This tells us that in the immediate neighborhood of z, the function f can be approximated by
a function’ which is linear in &, namely f(z) + f'(x) 0 (see Fig. C1). We may set z +0 =y
to formulate the linear approximation as

fly) = f(@) + f'(z) (y — ).

However, it has to be understood that this equation holds only for arguments y very close to
the fixed value = where the derivative is taken. Summarizing, we understand that

Derivatives provide local approximations to functions by linear functions.

We will soon see that this interpretation carries over to more general contexts, including
situations where the notion of ‘slope’ is not defined. By contrast, the approximation-by-linear-
functions view is generally valid and provides the key to understanding even the most involved
derivative operations.

The approximate equality (C2) is often applied to actually compute derivatives. To illustrate
this principle, consider the function f(x) = 2. Then f(z+0) = (z+0)3 = f(z)+322 5 +325%+5°.
Now, ¢ is assumed to be very small, hence 52 is even smaller, and &3 smaller still. For example, for
§ = 1072 we have 62 = 107* and 6% = 1076, This illustrates that for § approaching zero, terms
beyond linear order become negligible compared to the linear ones. It is standard to represent this
smallness as

f(z+06) = f(z) + 3226 + O(5?),

where the notation O(2) (spoken ‘order-62') indicates that terms of order 52 and higher are ne-
glected.” Rearranging terms we have 61 (f(z46) — f(z)) = 322+~ x O(6%). In the limit § — 0
the second term on the right hand side vanishes and comparison with (C2) leads to the identification
dya® = 322

Notice that we did not take the limit & — 0 in the expansion above — that would have yielded a
trivial equation, f(z) = f(z). Instead, we took J to be nonzero but ‘arbitrarily small’. Variables, ¢,
assuming values smaller than any other in a specific mathematical context are sometimes referred to
as infinitesimally small quantities. The attribute infinitesimal usually implies that a limit 6 — 0
will eventually be taken. Still, it can be advantageous to keep the variable temporarily finite and use
its smallness as an aid in computations (ignoring terms of O(§2), etc.)

"A function g(z) is called linear in  if it is of the form z — g(z) = az + b, a,b € R. This should be
distinguished from the slightly more restrictive definition x — ax of linear maps used in chapter L.

“The mathematically precise definition of the symbol O is as follows: given two functions, g(x), h(x), we
write g(z) = O(h(z)) in the limit z — 0, if there exists a constant, ¢, such that |g(z)| < c|h(x)| for sufficiently
small z. For example, 22 + 323 is O(x?) because |22 + 323|/|2?| < ¢, for ¢ > 1 and z sufficiently small.
The notation always makes reference to a limit which, however, need not be 0. For example, 1/(2? + 2?) is
O(z72) in the limit 2 — oo.
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As an instructive example, a geometric construction
may be applied to show that the derivative of the sine »
function is given by dysin(¢) = cos(¢). To this end,
apply geometric reasoning to verify that an infinitesimal 1
increment of the argument of the sine function changes
its value from sin(¢) to sin(¢ + ) ~ sin ¢ + § cos ¢. 5

§ cos ¢

sin ¢

Derivatives of higher order and smoothness

Derivatives of higher order are defined by the iteration of ordinary derivatives. For
example, the second derivative of a function is defined as

o2 (42). )

One sometimes says that a derivative is taken by ‘applying the derivative operator % to a
function’. The mathematical formulation of this statement reads

d"f(x) d” d [d d
= =—— = . C4
dx™ d:c”f(x) dx (dx (dxf(x))) (C4)
nf;:rtors
For example,
d . . 2
d—(x sin(x)) = 2z sin(x) + z° cos(x),
x
d2
P(JCQ sin(z)) = (2 — 2%) sin(x) + 4 cos(x),
x
d3
F(ﬁ sin(z)) = (—6z) sin(z) + (6 — ?) cos(x),
x
0.15¢ Functions that can be differentiated infinitely many
10} times are called smooth functions. Examples of
0.5/ such functions include polynomials, or trigonomet-
. : . - ric functions. By contrast, the function defined by
-0.4 0.2 0.4 — f
-0.05¢
1 422 x>0,
~0.10f flz) = 2 { 22, 2 <0,

015"

is differentiable at x = 0, but not smooth. Indeed,
f'(x) = |x| and this cannot be differentiated at zero, i.e. the function above is differentiable,
but not two-fold differentiable. Although it looks smooth the function is not smooth in the
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mathematical sense. We finally note that higher-order derivatives are sometimes represented
in terms of the alternative notation

f(@) = dpf(a) = o f(a), (C5)

which indicates the order of differentiation as a superscript. It is imperative to put the latter
in parentheses, f™, to avoid confusion with the n-th power, ", of the function f.

d’n

dan

C1.2 Differentiation rules

We here summarize the most important rules of differentiation. These identities may be
familiar from high school and they are routinely proven in introductory courses in mathematics.
In the following, f,g: R — R are smooth functions, and a € R.

> Product rule

d((f;g) _ dJ;i:x)g(I) + f(x)dg_(;) (Co)

> Chain rule

df(g(x))  df(y)

dg(x)
- 0 . (C7)

y=g(z) dx

The essence of the chain rule is that the rate of change of the function f(g(x)) is determined
by that of the function f(y) at y = g(x), multiplied by that of g(z) with z. It is worth
taking a moment to understand this statement in intuitive terms.

In particular, % = a%;y”y:ax and

d 1 1 dg(z)

deg(r) (g(x))2 dz

where the latter identity follows from the choice f(y) = 1/y, and d,(1/y) = —1/y*.

> Derivative of inverse functions. Let f~! be the inverse function’ of f,i.e. ' (f(z)) =
z. Then,

= . (C8)

z=f"1(y)

’The inverse function of a function f is usually denoted by f~! and this must not be confused with
the inverse of the function value f~'(x) = 1/f(z). (For example, f(z) = z? has the inverse function
f~Hy) = /y, different from f~!(z) = 1/2%.) Which quantity is meant should generally be evident from the
context.
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For example,
d 1 1 1
_ hl y) = = = —.
dy ) exp’(x)’ exp(x)‘ Y

a=In(y) a=In(y)

Differentiation formulae such as the chain rule, or the derivative of inverse functions can
always be derived by application of the basic rule (C2). Let us illustrate this idea on a heuristic
proof of the chain rule, Eq. (C7). Using the abbreviation g(z) = y, Eq. (C2) may be applied to
to linearize first g, then f, and obtain

flg(z+0)) ~ fg(x) + ¢'(x)6) = f(y + g'(x) 6) ~ f(y) + ['(y) ¢'(x) 6. (C9)

In the second equality we noted that for infinitesimally small ¢ the product ¢'(z)d is likewise small.
The function f may therefore be linearized in it as indicated. Rearranging terms and dividing by ¢
we obtain 6! [f(g(z +6)) — f(g(z))] = f'(y) ¢’(z). Remembering the definition of the derivative,
Eq. (C1), we arrive at the chain rule. Use similar reasoning to derive the (simpler!) product rule.

C1.3 Derivatives of selected functions

For reference we list below the derivatives of a number of functions frequently occurring
in practice.

> Power functions
dz®

E = O(l'a_l. (C].O)
The formula also applies to fractional powers, e.g. for « = 1/3 we have dfl—lw/?’ = %af?/?’.
> Trigonometric functions
1
sin’(z) = cos(z), cos'(z) = —sin(x), tan'(z) = ——. (C11)

(COS(ZE))2

> Exponential function and logarithm

1
exp’(z) = exp(x), In'(x) = —. (C12)

T

> Hyperbolic functions’
1
sinh’(z) = cosh(x), cosh’(z) =sinh(z), tanh'(z) = (cosh(2) (C14)
"The hyperbolic sine, cosine and tangent functions are defined as:

sinh(z) = $(e” —e™7), cosh(z) = $(e” +e7), tanh(x) = Sinhx. (C13)

cosh
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> Inverse trigonometric and hyperbolic functions are differentiated using (C8):

1 1 1
arcsin’(z) = VI—22 arccos'(z) = A arctan’(x) = o2 (C15)
1 1 1
arcsinh’(z) = ——, arccosh(z) = ——, arctanh’(x) = . (C16)
V14 a? Vrz—1 1 — 22

Derivatives of more complicated functions can be computed with the help of the product and
chain rules. For example,

1

2x.
2 +5 v

d d
aaﬁ exp(3x) = 2z exp(3z) + 32° exp(3z), L In(2? + 5) =
Practice computing derivatives by doing problems C1.3.1-2. Problems C1.3.3-4 deal with veri-
fying the formulas (C15) and (C16) for the derivatives of inverse trigonometric and hyperbolic
functions.

C1l.4 Summary and Outlook

In this introductory chapter we have reviewed the basic idea of differentiation on the exam-
ple of one-dimensional real valued functions. We discussed why differentiation is so important
to physics and emphasized its interpretation as a linear approximation of smooth functions.
In this way of thinking it is frequently useful to keep the infinitesimal parameter § entering
the construction of the differential quotient (C1) finite and to work with effectively linearized
representations of functions as in (C2). The utility of such representations became evident in
a number of cases, including the explicit computation of derivatives via the manipulation of
difference quotients with finite §. We also discussed various more technical aspects of differ-
entiation including continuity requirements, differentiation rules, and the derivatives of various
important classes of functions. Although these concepts have been discussed within the frame-
work of one-dimensional functions they are of general relevance and will play an important
role in our subsequent discussion of multi-dimensional functions, starting in chapter C3.1

However, before generalizing to the multi-dimensional case, we first introduce the twin-
operation of differentiation, integration. Following the same logics as above, we begin with
the case of one-dimensional functions, once more staying at a level familiar to many readers
from high school. This will allow us to keep the intimate connection between integration and
differentiation in sight when we advance to higher dimensions.
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Integration is as important to physics as differentiation. Whereas incremental changes in
physical quantities are monitored by differentiation, integration is applied to sum over small
increments. For example, once the incremental change in the coordinates of a stellar body
has been understood, an integration procedure needs to be applied to sum over increments
and obtain the change of the observable over finite time spans. This simple analogy already
indicates that, quite generally, differentiation and integration are mutually inverse operations.

In the following, we adopt a strategy similar to that of the previous chapter and introduce
the concept of integration on the example of one-dimensional real functions. The technical
aspects of this operation will be familiar to many readers from high school. However, we stress
an interpretation of integration which is not usually emphasized in school and which extends
to the integrals over more complex functions to be discussed in later chapters.

C2.1 The concept of integration

In school, integration is introduced as an operation to de-
termine the area under a function. However, only a small
S minority of the integrals encountered in physics can be in-
terpreted in this way. A more general view is to think of
integrals as generalized sums. Let us introduce this inter-
i oA pretation on a simple example: suppose we are given a two-
) ) - dimensional painted surface, S, and want to determine its
geometric area, A. A practical approach to solving this task
‘| would first choose a reference shape of known area A, a
S IT[F | square say. One might then count the number, N(A,), of
\‘J\ / squares fitting into the area (see figure). An estimate of A
would then be given by

Ao

where the index ¢ enumerates the squares. Of course, this estimate generally contains an error
because parts of the area remain uncovered. However, the accuracy may be refined by turning

203
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to squares of smaller area, A;, and counting the number, N; > N,, of squares required to
cover S in this refined way. This leaves less uncovered excess area and leads to the improved
estimate

In principle, the procedure may be iterated down to ‘infinitely many’ squares of infinitesimally
small area and in this limit the true value of A will be recovered. The limiting operation is
called an ‘integral’. All integrals have in common that they can be interpreted as limits of
sums conceptually similar to that considered above.
It is straightforward to generalize the above procedure to more
complicated settings. For example, consider a surface, S,
coated with an inhomogeneous distribution of a massive sub-
stance, cf. the figure where darker/lighter areas represent re-
gions of stronger/weaker coverage. We describe the system
through two cartesian coordinates (z,y) and a mass distribu-
tion function, p(z,y), defined in such a way that p(z, y)d.0,
equals the weight of the substance present in a small rectangle
of area ¢,.0, at the coordinate point (z,y).

An estimate for the total mass, M, of the substance may
be obtained by discretizing the total area, A, of the surface into a system of N (9,6,) o< A/d,0,
infinitesimal rectangles at points (xy, y¢), where the index ¢ enumerates the rectangles. Sum-
ming over the respective weights we obtain the estimate M ~ ¢,0, Zévz(f“”éy) p(xe,ye). We may
now proceed to finer and finer discretizations to generate a sequence of increasingly accurate
estimates, which in the limit of infinitely small discretization areas, 4,0, — 0,approaches the
true value of M:

N(526,)
Mzéllgﬁoéméy ; p(xe, ye) E/dedyp(lny).

Here, the symbolic notation appearing on the r.h.s. of the equation is defined by the expression
in the center: the integral symbol [ stands for an infinitely refined sum carried out over the
area S5, indicated as a subscript. That the summation is over a set of two-dimensional ‘surface
elements’ §,0,, built with reference to coordinates (x,y), is indicated by the symbol dzdy.
However, we repeat that all this notation is ‘implicit’ in the sense that the actual definition of
the integral is given by the sequence of sums on the |.h.s. of the equation. Each of these sums

"An (infinite) sequence, (an)nen = (ag,ai,...) is an infinite and sequentially ordered collection of
objects. For example, a,, = 1/n defines the sequence (1,1/2,1/3,...). The sequence converges to a limit,
lim,, o a,, = a, if for increasing n the values a,, converge to the value a. For example, the sequence a,, = 1/n
converges to 0. Convergence means that for any € > 0 there exists a threshold n, € N such that for n > n.
lan, —al < e.
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can be computed in concrete ways, either manually, or on a computer, and at any desired IeveI
of accuracy. The important and general statement conveyed by this discussion above is that”

Almost any integral encountered in physics can be represented as the limit of a
sequence of finite sums, each of which can be computed by ‘conventional techniques'.

The sequences of sums representing integrals
are generally called Riemann sums. All Rie-
mann sums have the structure

Bernhard Riemann
(1826-1866)
A German mathematician m
Riemann sum = (lsi—r>r(l)5 ZXg, (C17) | who made breakthrough con-
= tributions to analysis, number
theory and differential ge-
ometry. Riemann gave the
concept of integration a precise meaning.

where X, is the quantity to be summed and
the index ¢ enumerates subdivisions of a sum-
mation domain that has been divided into He also introduced various foundations of
N(d) oc 67 compartments. This propor- | modern geometry, including the concept of
tionality ensures that the smallness of 4 is Riemannian manifolds fundamental to the
balanced by the increase in the number of | I|ater formulation of general relativity.
summation steps. In the following we will
discuss various concrete examples of Riemann
summation procedures.

C2.2 One-dimensional integration

In this section, we apply the program outlined above to one-dimensional functions f :
R — R, y — f(y). The quantities to be summed up now are the values f(y)dy obtained
by multiplying function values with small increments in the argument variable. We observe
that f(y) plays a role analogous to that of the mass distribution discussed in the previous
section. In the present one-dimensional context the result of the summation procedure will
be the geometric area enclosed by the function graph and the abscissa (see the figure below.)
We begin by discussing how the summation procedure is made quantitative.

One-dimensional Riemann sums

In the one-dimensional case, the integration domain (i. e. the analog of the area S in our
example above) is a real interval, say [0, x]. Proceeding in analogy to the previous discussion,
the domain is partitioned into N(dy) = z/dy intervals of small width dy. For finite dy these
increment intervals are sometimes called bins and we will use this denotation for convenience.
Let fo = f(ye), with £ =1,..., N(dp), be the value of f at a point y, somewhere in the (th bin.

2 . ' , . . .
We write ‘almost any’ because there are rare cases of integrals which cannot be computed along the lines
of our construction above. For further comments on this point, see section C2.2.
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The corresponding area is then approximately given by dq f,, and summation leads to the esti-
mate

N (do)

%Ai N50 Z ff?

for the total area. Note that for finite d, the value of this
y| estimate depends on the arbitrary choice of the readout
" point y, within the /th bin — left edge, right edge, cen-
ter? — and therefore contains arbitrariness. However,
as is indicated by the figure, the dependence of the in-
dividual strip areas on the positioning of ¥, diminishes
upon passing to bins of higher resolution. In fact, this
statement holds true even for functions containing iso-
lated singularities,3 and we will revisit it in more detail
and generality on p. 430.

The limiting case of an infinitely refined sum is called

the integral of the function:

z/é

- 3= | wrw. (C18)

§—0

The interpretation in terms of sums also shows how integration and differentiation are
‘inverse’ operations. To understand this point, let us ask how F'(x) varies as a function of
x. An approximate answer can be found by considering its Riemann sum at a small but fixed
value of §:

6+1
F(z +0) —5Zfe—52fe+5f ey =F(x) +0- f(x),
/=1 /=1

where in the last step we conveniently put the readout position to the left of the bin, fz ;=
f(z). (Why is the arbitrariness of this choice inessential?) We divide by ¢ and take the limit
0 — 0 to obtain

dF(x) 1
dz _1151—1}(1)5[ (I+(5)—F<l’)j| = [(z)

’For a bin containing an isolated singularity, the value 0y fy of course depends crucially on whether the
readout coordinate lies to the left or the right of the singularity. However, no matter what is chosen, the
‘error’ will be of O(dy) and as long as the number of singularities is finite the sum will contain a finite number
of these errors. In the limit 69 — O the defective contribution goes to zero. Perhaps, think more about this
point.
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This confirms that the rate at which an integral F'(z fo dyf(y) changes under variation
of the integration boundary, z, is given by the value of the integrand at the boundary, f(z).
The reciprocity between integration and differentiation is summarized by the fundamental
theorem of calculus:

dF(x)

o= [Cavs) - S = ). (19)

Later in the text, we will see that similar relations hold for more general classes of integrals
and derivatives. They all follow from the interpretation of integrals as sums and of derivatives
as measures of small increments.

Definite and indefinite integrals

Any function, F(z), whose derivative equals f(z), L F(z) = f(z), is called a primitive
functionprimitive functions or anti-derivative of f. The terminology anti—derivative empha-
sizes that passing from f to F' is the opposite of passing from f to f’. We write ‘a’ instead of
‘the’ primitive function because for any constant C' the function F'(x) + C'is an equally valid
primitive function, L (F(z) + C) = f(x).

Even in the higher dimensional integration theory to be discussed in later sections actual
calculations come down to successions of one-dimensional integrals. Eq. (C19) indicates that
primitive functions are the key to the computation of these integrals and this explains their gen-
eral importance. The connection between integrals and the primitive function is underpinned
by the notation

/ dz f(2) = F(2) + C, (C20)

where the symbol on the |.h.s. is called an indefinite integral. The indefinite integral is just
a another denotation for the whole class of primitive functions with unspecified integration
constant, C. For example, [dza* = t2° + C, since & ( + C) x*, irrespective of the
value of C'. In integral tables the add|t|ve constant is often omitted, although its presence is
implicitly assumed.

Knowing a primitive function, the value of a definite integral, i.e. an integral over a
definite interval [a, b] is obtained as

/@M@—F@—F@EF@

= [F(x)] . (C21)

This relation follows from Eq. (C19) and the observation that f; dy f = fob dy f— [ dy [,
i.e. the summed area from a to b equals that from 0 to b minus that from 0 to a. Note that
in the difference on the r.h.s. the integration constant drops out and there is no arbitrariness
in the definite integral. The general consistency of the additivity of integrals with Eq. (C21)
is seen from relations such as f dy f(y) = [dy f(y) + f dy f(y), which is compatible with
F(b) = F(a) = [F(b) — F(c)] + [F(C) — F(a)].
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When doing an integral over a definite interval, [a, ], the first step usually is to ‘compute
the indefinite integral’ and find a primitive function of the integrand. However, unlike with the
derivative of functions, not every integral can be solved in closed form — sometimes it is just
not possible to find a suitable primitive function. Nevertheless, there exists a huge body of
solution strategies (analytical, approximate, or numerical) and satisfactory solutions to most
integration problems can be found. Some general rules and hints in this regard are summarized
in section C2.4.

We finally note that the integral over an open interval, (a,b), gives the same result
as that over its closure, [a,b]. The reason is that the estimate of the bin width entering
the Riemann sum construction does not depend on the presence or absence of the isolated
endpoints, a, b, in which the two intervals differ. (In fact, the notation fab dz f(x) does not
even distinguish between the two cases.) As mentioned previously, we will mostly work with
open intervals in this text. However, where integration is concerned the difference between
‘open’ and ‘closed’ is conveniently irrelevant.

In the formulas above on definite integrals, ff dyf(y) we tacitly assumed a < b.
However, convince yourself that all relations remain valid if we define

a b
/ dy f(y) = - / dy /() (C22)
b a

Although integrals with lower boundaries exceeding the upper boundary do not really make sense,
expressions with sign inverted boundaries sometimes appear at intermediate step, and the above
relation can be used to convert them to ‘ordinary integrals’.

Integrability

Not all integrals are well-defined. Much like a function
can vary too rapidly to be differentiable, it can diverge
too strongly to be ‘summable’. More precisely, an integral
over a specified interval is said to ‘exist’ if and only if the
Riemann sum (C18) converges to a finite value in the
limit § — 0. If it does not, we say that the integral -1
‘does not exist’ or that the integrand is not Riemann
integrable.4 For example, consider the function f(y) =
1/y, which has a singularity (i.e. a point of divergence)
at y = 0. The integral ff dyy=! = ln(y)ﬁ = In(2) exists, but f02 dyy ! = ln(y)‘i does not
because the primitive function, F(y) = In(y), diverges at zero (see figure). Note that the
divergence of an integrand at a singularity does not necessarily imply the non-existence of its

"There exist more general integration schemes — the relevant keyword is Lebesgue integrability — often
discussed in advanced lecture courses of calculus. However in view of the rarity of functions which are Lebesgue-
but not Riemann-integrable we do not address this generalization here.
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integral. For example y~'/2 has a singularity at 4 = 0, however, the integral fol dyy /2 =
2y1/2 (1) = 2 does exist. This is an example of an integrable singularity. More generally, any
power, =%, a < 1 has the primitive function ——=y~(“~Y) which is well behaved at y = 0.
However, y~“, a > 1 are examples of non-integrable singularities.

Finally, there are integrals that trick one into believing that they are Riemann-doable,
although they are not. As an example, consider the integral f_23 dyy~!. A naive evaluation
through the primitive function F'(y) = In(y) yields the result In(2) — In(—3). This looks like
the difference of two finite numbers. However, the appearance of the (ill-defined) logarithm of
a negative real number makes the result questionable. Indeed, the integrand contains a non-
integrable singularity at y = 0, whereas the application of Eq. (C18) requires integrability
throughout the entire domain of integration.

One one may make sense of an integral with an isolated singularity at y, by considering

the expression
b yo—0 b
Pl s =t ([T [ ) s
a —0 a yo+9

For finite ¢ the singularity is avoided by removal of a region of around it. If the limit 6 — 0 of an
infinitesimally small cutout region exists, Pf: dy f(y) is called the principal value integral
of the function around the singularity. This expression must not be identified with the integral
of the function f(y), which does not even exist if the limits lim;_,o fayofé f and limg_, fyl;M f

do not exist separately. (If the limits exist, then P dyf = [ dyf by construction.) Principal
value integrals can be finite if the diverging contributions to an integral from the left and the
right of a singularity almost cancel each other. For example, the principle value integral (see
the figure above for an illustration):

by, —5 b —a 1.1 b
P yzlim[/ %—l—/%]:liml—/ d—y/—i-/%}:
Ja Y =0 1), Y s Y 6—=0 s Y s Y

=lim|[—In(—a)+Ind+1Inb—Ind] =1In <|Z> :

6—0

a < 0 < b, is finite. In the second equality we used a substitution 3 = —y5 and in the third
noted that the contribution of the interval [d, 2] to the two integrals cancels. We will discuss
applications of principal value integrals in chapter C9.

As a corollary we note that a criterion for the integrability of a function, f, is the
integrability of its modulus, |f|. The integral [dy|f(y)| > ’fdyf(y)’ is an upper bound
for the modulus of an integral (why?) and if it exists, the integral of f exists with certainty.
In the integral of the modulus, potential singularities are all counted with equal sign and a
spurious cancellation mechanism as discussed above will not go undetected.

’Readers not familiar with variable substitutions in integrals from high school find the concept explained
in the next section.
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C2.3 Integration rules

The fundamental theorem of calculus Eq. (C19) is called ‘fundamental’ for a reason: from
it, other integration identities can be derived with little effort. In the following, we discuss
two important secondary identities, the rule of integration by parts, and that of substitution
of variables.

Integration by parts

Consider the function F'(x) = u(z)v(x) where u and v are differentiable functions. The
product rule of differentiation, Eq. (C6), then states that F' =« v + u v’ where we omitted
the arguments for clarity. This means that

F(b) — F(a) = / de F'(x) = / dz[u'(z) v(z) + u(z)v'(z)].

Rearranging terms we obtain the formula for integration by parts

/ab dzu(z)v'(z) = [U(x)v(x)] — /ab dz o/ (z) v(z) . (C23)

This rule is often formulated without explicit reference to boundaries:

/dx u(x)v'(x) = u(x)v(x) — /dx u'(z) v(x). (C24)

This relation is useful in cases where the integral on the right is easier to do than that on the
left (— C2.3.1-2).

Consider the integral [ dz ze”. With u(z) =  and v(z) = exp(z) we have v’ = 1 and
v = (exp(x))’. Integration by parts then yields

/dmxex:—/dxex—i—xex:ex(x—l).

As a check, we note that differentiating the result indeed reproduces the integrand, ze”.

Substitution of variables

Much like Eq. (C23) follows from the product rule of differentiation, an integration formula
for changes of variables follows from the chain rule (C7): Consider a function f(y) = d,F(y).
Let y(x) be a monotonically increasing differentiable function of the variable . Then b > a
implies y(b) > y(a), and application of the fundamental theorem yields F'(y(b)) — F(y(a)) =

fyy((f)) dyd, F(y) = fyy(ilb)) dyf(y). On the other hand, we may consider F'(y(z)) as a function
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of x. Applying the fundamental theorem once more, but this time with reference to the
variable , we obtain F(y(b)) — F(y(a)) = [, dzd,F(y(x) = [/ded,F| d.y(z) =

f: dz f(y(z))d,y(x). Equating the two results yields the rule of substitution of variables,

b T y(b)
[ ey = [ avsw) (23)

Consider the integral [ dzxe™®". Define y(z) = 2% and writeitas § [dx dzé—(;)e_y(x) =
%fdy e V= —%e_y = —%e‘xQ. Check the formula by differentiation.

For a monotonically decreasing function y the same construction yields
b (a)
dy(x Y
[ a8 gy =~ [ avs),
o dz y(b)

where now y(b) < y(a). Since the derivative of a decreasing function is negative, we may
absorb the minus sign by writing —d,y = |d,y|. Both variants may therefore be subsumed in
single equation, known as the indefinite version of the rule of substitutions of variables,

[

Consider the substitution rule (C25). Formulae describing the change of variables in integrals
generally contain derivative factors such as % above. The following dirty trick is a mnemonic for

dy(z)
dx

fmm:/@ﬂw (26)

remembering the placement of such factors: suppose dz and dy were ordinary ‘variables’ and g—g
an ordinary ratio. The structure ‘dx% = dy’ would then be an ordinary formula for fractions. The
mathematically precise formulation of this mnemonic is discussed in chapter V5.

Study problems C2.3.3-4 to gain practice with performing integrals by substitution. Prob-
lems C2.3.5-8 provide guidance to performing certain standard classes of integrals using trigono-
metric or hyperbolic substitutions.

Above we provided a formal proof of the rule of substitution of variables by application
of the fundamental theorem. However, variable substitutions appear very frequently, not just in
one-dimensional contexts, and it is well to understand the meaning of Eq. (C25) intuitively. To
this end, let us return to the description of integration as sums over increasingly fine discretization
‘grids’. The point to notice now is that these grids need not be evenly spaced. The freedom to
choose discretizations of varying width is the principle behind all variable substitution rules of
integration.
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Consider a function f : [@,b] = R, y — f(y) for which ()
regions of rapid variation alternate with ones where changes
are slow (see the figure). In this case, it might make sense to
introduce a system of bins of varying width: rapid changes
would call for a finer discretization through a large number
of narrow bins, while fewer and wider bins would suffice to
describe regions of modest variation. (On a computer such
flexible sampling leads to higher efficiency and saves memory
without sacrificing accuracy.)

A variant of the Riemann sum over N bins, [y, ys+1], of b
varying width, yy11 — yy, reads

N—
/ dyf(y Z [Yer1 — yel f (ye)- (C27)
/=0

Yo

To compute the sum (C27) in concrete terms we need to
specify the points y,. To this end, we introduce an interval ~
[a, b] and a monotonically increasing function

y : [a,b] — [a,b], x — y(x), (C28)

where y(a) = @, y(b) = b. This function is defined such that for a uniform discretization of [a, ]
into N points zy = a + £J, with 6 = (b—a)/N and £ =0,..., N — 1, the values y; = y(z,) define
the the points of the desired discretization. For example (see figure), a region of rapid variation of
y(z) leads to widely spaced points y,, and hence wide bins yp11 — ys.

Using yoi1 — ye = y(ze + 0) — y(zg) ~ 6 %, we now represent the Riemann sum as

b N—
IRTE z (2 + 6) — y(@)] Fy(a0))
N— b dy
2 Y (wie) = [ ar Lrtota)).

Here, the factor % describes the way in which the uniform z-grid gets distorted to generate the non-
uniform y-grid. For example, regions where % is large contribute to the z-integral with increased
weight because they correspond to wide grid spacings in the original y-representation. Recalling that
@ = y(a) and b = y(b) we recognize the rule of substitution of variables, Eq. (C25) above.

Later in the text, we will meet various other identities describing the change of variables in
integrals. However, all these formulae rely on constructions similar to that discussed above. It may
be a good idea to spend a little time and let the geometric interpretation sink in, both in the discrete
and the continuum representation.
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C2.4 Practical remarks on one-dimensional integration

Although there exists no general recipe to compute the primitive function for arbitrary f,
the majority of integrals encountered in the physics curriculum involve standard functions —
polynomials, exponentials, logarithms, trigonometric functions, etc. With time and practice
the integrals of these functions will become familiar. A number of important examples of such
‘basic’ integrals are implicit in the derivatives listed in section C1.3, we just need to read the
equations from right to left. For example,

(In(z))’ = % o / dx% ~ In(a).

How do we approach integrals if the solution is not immediately obvious? The following list
contains a number of useful procedures and guiding principles:

> It often helps to start from an educated guess for the primitive F'(z). Sometimes one
just needs to play around a little to improve an initially not-quite-correct guess and arrive

at a function satisfying L F'(z) = f(z).

> If the integrand contains functions whose derivative looks more inviting than the function
itself try to integrate by parts (— C2.3.1-2). For example,

/dxxln(g:) :/dx§£ln(;c) (2 §x2ln(x) _ §/da:x2 (glix)

1, 1 ,1 a? 1
=32 ln(x)—2/dxxx— 5 (ln(x)—z).

> If an integral contains terms more complicated than the elementary functions listed in
section C1.3 try substitutions (— C2.3.3-7?). An expression containing dx%, might call
for the substitution y = In(x), which results in dy = dx%. For example,

1 1 1
do-—— = [4 —1 .
/ xxa+ln(x) / ya—i—y n(a+y)

Similarly, the combination dz x suggests the substitution y = 2%, with dz o = %dy.

> There are families of functions whose integrals look complicated but are known to be doable.
An important example are the rational functions, i.e. functions f(z) = P(x)/Q(x) which
can be written as a ratio of two polynomials. These can be integrated using a technique
called partial fraction decomposition (— C2.3.0-12). Other examples of integrable fam-
ilies include rational functions of trigonometric functions (ratios of polynomials in the
functions sin(x), cos(x) and tan(z)), and polynomials in exponential functions. For
the corresponding integration strategies we refer to textbooks on calculus. Try to memorize
the families of functions mentioned above to be able to recognize their integrals as doable
when you meet them.
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> Computer algebra packages such as Mathematica® or Maple® can be powerful aids for
solving even very complex integration problems. However, we suggest not to use these
packages excessively: integrals encountered in physics often have a structure that ‘reflects’
the underlying physics, and if one lets a computer do the job one looses touch with this
structure. On the same note, the ‘manual’ struggling with an integral usually is rewarded
with added insight into the problem. It is therefore good practice to seriously try to solve
integrals by hand before turning to a computer.

> As a compromise between the manual and the fully automated solution of integrals one
may use integral tables. The primary reference in this context is |.S.Gradshteyn and .M.
Ryzhik, Table of Integrals, Series, and Products, Academic Press, 7th edition, 2007. This
book tabulates thousands of integrals.

> No matter how the primitive function has been obtained, always check it by differentiation.

> Many integrals are not expressible through elementary functions. For example, the
Gaussian function, exp(—xQ), does not have an elementary primitive. In cases where an
‘important’ function cannot be integrated to elementary functions, its primitive defines a
what is called a special function. For example, the integral of the Gaussian function
defines the so-called error function

Y 2
/ dee™ = ﬁerf(y).
0 2

Mathematica® or Maple® can be powerful aids for solving even very complex integration
problems. However, we suggest not to use these packages excessively: integrals encountered
in physics often have a structure that ‘reflects’ the underlying physics, and if one lets a
computer do the job one looses touch with this structure. On the same note, the ‘manual’
struggling with an integral usually is rewarded with added insight into the problem. It
is therefore good practice to seriously try to solve integrals by hand before turning to a
computer.

> For some types of definite integrals, there exists methods which avoid the need to find the
primitive function, and some of these will be discussed in section C9.5 on complex calculus.
Such shortcuts are helpful in cases where the indefinite integrals cannot be expressed in
elementary terms. For example, the Gaussian integral,

/ dze™ = /T, (C29)

can be computed (— C2.3.13-14) without reference to its indefinite integral, the error func-
tion. Other integrals in the same league include the exponential integrals fooo dra™e™™

(— C2.3.15) and general Gaussian integrals [, dz 22" e (— C2.3.16).

> Any (Riemann integrable) function can be integrated numerically on a computer. In this
case, a computer is employed to evaluate the Riemann discretizations. The accuracy of the
results can be increased by lowering the discretization steps, and/or turning to non-uniform
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discretizations (cf. info section on p. 211) adjusted to the profile of the integrand. For
the discussion of discretization grids tailored to obtain rapid convergence, etc., we refer to
textbooks on numerical integration.

C2.5 Summary and Outlook

In this chapter we introduced the idea of integration as a refined way of summation on
the example of one-dimensional functions. Many aspects of this discussion, notably the ‘reci-
procity’ of integration and differentiation, carry over to the generalized integrals addressed in
later chapters. For example, the substitution rule has various higher dimensional generaliza-
tions. Although these may look a little more complicated than the one-dimensional one, the
constructions principles always reflect the discussion of the info section on p. 211. We also
discussed various integration techniques specific to one-dimensional functions. These, too,
continue to play an important role in more general contexts: higher dimensional integrals are
usually broken down to successions of one-dimensional ones, which then need to be processed
by the methods reviewed above.

We have now reached a good basis to turn to the generalize the concepts of differentiation
and integration to functions defined in higher dimensional spaces, and this is the subject to
which we turn next.



C3 Partial differentiation

Consider a function depending on more than one variable, such as the water depth, D(r),
beneath a boat at position r = (x,y) on a lake, or the air pressure, P(T, V), in a container
of volume V' at temperature 1. One may ask how these quantities change if only one of the
variables is varied: how does the water depth vary if the boat moves in z-direction at fixed
y? Or how does the pressure in the container change upon increasing temperature at fixed
volume? The present chapter introduces partial derivatives as the mathematical tools to
adress such questions.

C3.1 Partial derivative

Consider a function f : R? — R, x — f(x) = f(x!,...,2%) depending on d variables
xt, ..., 2% The partial derivative of f with respect to 2’ probes how f(x) changes if only
the single variable 2% is varied. It is defined as the ordinary derivative of f w.r.t. to z* taken

at fixed values of the other variables:

of(x) _ .. 1 1 i d 1 i d
Wzg%g flar, o a0, .,2% — fla, ... 2% ... 2% . (C30)

The symbol 0 indicates that this is a partial derivative of a multi-dimensional function, in con-
trast to the ordinary derivative (written as d) of a one-dimensional function. Other frequently
used notations include’

OF(X) _ 5 iy —
e = Oy f(x) = 0, f(x).

The examples below are partial derivatives written in different notations:

o1 [(x1)2x2 + x3] = 27122,

"In covariant notation where component indices are written as superscripts (x%), the symbol d; carries
a subscript. The rationale behind this convention will be discussed in chapter V5. However, an easy way to
memorize it is to note that /0x is an object carrying a superscript symbol in the denominator. Much as with
a double fraction (1/(1/5) = 5) this corresponds to a symbol with inverted index position in the numerator,

9/t = 0.

216
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Or2 [(a:l)sz cos(z?) + x3] = (21)? [cos(:rQ) — 22 sin(:c2)],

Oy[(z® + y®) sin(z + y?)] = 3y sin(z + ¥*) + (2° + y*)2y cos(z + y?).

f(x)

1 x X + dey

Figure C3: Partial derivatives illustrated for a function f : R? — R.

It is sometimes useful to write Eq. (C30) in a vectorial notation where the variables 2
define a vector as x = 3 ¢ e;z’. We then have

0f(x) _ lim %(f(x +ée) — f(x)). (C31)

oxt 550

Fig. C3 illustrates the interpretation of the partial derivative on a two-dimensional example.
The shaded planes indicate how one variable is kept constant in the process. The variation of
the other variable yields the partial derivative as an ordinary derivative taken in the direction
of the corresponding coordinate axis.

Since partial derivatives are ordinary derivatives taken w.r.t. one out of d variables they are
as easy to take as one-dimensional derivatives (— C3.1.1-2). All differentiation rules discussed
in Section C1.2 directly carry over to partial differentiation. For example, the product rule
reads:

9 (f(x) 9(x)) = (9:f(x)) g(x) + f(x) (dig(x)).

C3.2 Multiple partial derivatives

Just as with multiple ordinary derivatives (cf. Eq. (C4)) multiple partial derivatives are
obtained by repeatedly taking single derivatives. For example, the symbols 92, ; or just 830.

indicate a double partial derivative in which one first differentiates in the variable 27, and
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then the result in z°. If i = j this is an ordinary second order derivative in 2 and generally
abbreviated as 02, ; = 0% = 07. For example, with 2! =z and 2> =y

02 (x3y2) =0, (3x2y2) = 621>, 85 (x3y2) =0, (2x3y) = 22,

Mixed derivatives in different variables generally are to be taken in the order specified by the
notation:

02, (%) = 02 4 (%) = 0,00, f(x) = 8, (90s f ().

However, for smooth functions Schwarz’ theorem states that the order in which partial
derivatives are taken does not matter:”

0;1f (%) = 00103 f(x) = 00O f(x) = 07, f(x),  (f "smooth’). (C32)
For example (— C3.2.1-2),

857?! cos(ze?) = 9, (—sin(ze?)we’) = — cos(ze?)re® — sin(ze’)e?,

02 , cos(ze’) = 9, (—sin(ze¥)e?) = — cos(ze?)we® — sin(we?)e’.

In physics, multiple partial derivatives appear frequently and changes in the order of derivatives
are applied to simplify calculations or even prove statements. However, it is important to
remember that such operations rely on the smoothness condition and that there exist (few)
treacherous functions which look smooth but are not (in the sense of the definition on p. 199).
In such cases, the exchange of derivatives may be invalid:

Consider the function

zy(z®—y?)
f(:c,y>={ T g,zim,o),

The function looks smooth and is partially differentiable every-
where. However, at (x,y) = (0,0) the partial derivatives do not
commute: 8m8yf‘(070) + 83,6,,3]‘}(070) (check this). This signifies
that the smoothness conditions required by Schwarz' theorem are
not given. In mathematics, it is good practice to check the re-
quired criteria before a derivative is carried out. Physicists tend
to be more cavalier and assume the commutativity of derivatives.
This approach becomes dangerous in the (admittedly very rare)
cases where functions look smooth, but are not in a mathematical
sense. Premature differentiation may then lead to errors, which,
however, are generally easy to track.

2Actually, Schwarz’ theorem does not require smoothness but the weaker condition that all second order
partial derivatives 8ij be continuous at x.
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C3.3 Chain rule for functions of several variables

In physics one frequently encounters situations in which a multivariate function f(g) =
f(g*, ..., g% depends on a parameter variable, z, indirectly via the dependence g' = ¢'(x)
of its arguments on x. For example, the pressure, P(V,T), of a gas in a piston depends on
the available volume, V', and temperature, T". This dependence may become time dependent,
P(t) = P(V(t),T(t)), if temperature, T'(t), and pressure, P(t), vary in time. In such cases,
it is natural to ask how the composite function f(g(x)) varies with x. The answer to this
question is provided by a generalization of the chain rule to be introduced in this section.

An auxiliary relation

A
F 5200 + 062 Fly's 621,24 622)

//f(y1+ (521792)

C 50+ O®?)

/
1,2 4
fwsy) 1 /57: (y1+5zl,y2+5z2)
y2 ~— dz5 —
' y?) (y'+ 02", 9%)

yl

Figure C4: The qualitative picture behind the relation (C35), illustrated in d = 2 dimensions.
Discussion, see text.

We first ask how a function f(y) = f(y*,...,y?) changes under the simultaneous varia-
tion of all its arguments, y — y + 6z, where z € R? is arbitrary and ¢ is infinitesimal.
Before answering this question in general, let us consider a function depending on just two
arguments, d = 2. In this case, the rate of change is described by the difference quotient,
Sfyt+ 02t y2 4+ 62%) — f(y' y?)]. We aim to reduce this expression to one containing
the more familiar difference quotients of ordinary derivatives in single variables. This can be
achieved by the insertion of 0 = — f(y' + 821, y?) + f(y' + 21, y?). In this way, the difference
quotient becomes

% fyt+020 02 +62%) — f(y' vP)]

1 1 )
=3 [f' +62" 92 +02°) — fly' + 02", 9°)] + 5 [f(y'+ 62" %) — fFy', v?)]
1 1 2 1 2 1 2 1 2
(<0 Zaaf(y +621,97) N Zlﬁf(y Y7) 50 Zzaf(y Y°) +Z1<9f(y LY )_ (C33)

0y? oyt Dy oyl
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Here, the second term probes the function’s increment when its first argument 3! changes to
yt+ 92, at fixed y2. Similarly, the first term probes the function’s increment when its second
argument y? changes to y? + §22, at fixed y' + dz!. Figure C4 visualizes this decomposition
of the full increment into two separate contributions, indicated by thick vertical lines.

In the first equality of the third line, the two increments are expressed by the corresponding
partial derivatives, taken at '+ 2! and 32, respectively. Finally, f was assumed to be smooth,
and so 0,2 f is likewise smooth. In particular, it is continuous. This implies lims_, 9,2 f (y' +
624 y%) = 0,2 f(y',y?), i.e. in the limit of infinitesimal  the slight shift in the evaluation
point of the partial derivative does not matter, and this point is made in the final equality.
Similar lines of reasoning will be applied in several other cases below. Before reading on, make
sure that you understand the logic of the construction above well.

The construction immediately generalizes to functions depending on more than two argu-
ments and the result then reads

af(y) j
” 2. (C34)

i 7ty +9) = 1] =30

This identity states that the net change of the function is obtained by computing its partial
derivatives, 0,:, in the directions of the individual variables, weighting each with the component
of the increment vector, 2%, and adding up.

A version of this formula describing the ‘linearization’ of f in small yet not necessarily
infinitesimal variations of ¢ reads

d
v +62) - fiy) = Y- W

j=1

(C35)

Notice how relation this equation embodies the essence of differentiation: the local structure
of a function, i.e. the difference of function values between nearby points on the I.h.s., can is
approximately described by a function that is linear in the argument displacements, oc 6z°. The
linearization on the r.h.s. is the higher-dimensional analogue of the straight line of figure C1.

Chain rule

Let us now turn back to the setting mentioned in the beginning of the section and consider
the composite function (cf. Fig. C5)

fog:R—R, z— f(g)=/[(s'(),....9%)) = f(a),

where g : R = R, z — g(z) = (¢*(), ..., ¢g%(z)) defines the dependence of the arguments
on a single parameter x. Notice that the dependence x +— f(x) defines an ordinary real-valued
function of a single variable and so it must be possible to compute the derivative d, f(z). We
compute this derivative by explicit linearization of the functions involved in the process:

A/ (glx) g@) = lim <[ /((z +0))  F(g(x)] = 1im [ F(a(x) + 6.(2) — £ (&(2) .

6—0 6—0
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Figure C5: Geometric description relevant to the discussion of the chain rule illustrated for n = 2.
Discussion, see text.

where in the last step we used ¢/ (z+9) = ¢’ (v )—1—6%, and introduced the shorthand notation

d,g = (%, e dx) We may now apply Eq. (C34) with the identifications y = g(z) and

z = d,g(z) to obtain

df Z agﬂ Zaf z)) 9g’(x) (C36)

0gi do

y:g(x)

where the right-most expression defines a shorthand for the middle one. This is one of various
versions of a chain rule for a function of several variables. The rationale underlying this
formula is similar to that of the ordinary chain rule Eq. (C7):

The change of a function f(g(x)) under variations of the argument x multiplica-
tively depends on both the change of f(g) with ¢/ and the change of ¢/(z) with
x. The total rate changes in the different variables, 9, f0,¢’, need to be added
to obtain the full variation as in Eq. (C36).

Chain rules appear frequently in physical applications. Consider, for example, a
mobile particle in a volume with nontrivial temperature profile, T'(x). The trajectory of the particle
is described by a curve r(t) and the instantaneous ambient temperature ‘felt’ by the particle at time
tis T'(r(t)). The rate of change in temperature with time is described by the derivative %, for

which Eq. (C36) yields

> ) drd (¢
R
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Generalized chain rules

The chain rule has two extensions which straightforwardly follow from Eq. (C36). The
first generalization replaces the scalar function f by a vectorial function

f:RT'=R",  yefly) = (), . ")

This function may be composed with the function g(x) to yield fog : R — R™, z — f(g(z)).
The chain rule (C36) applies to each component fi(g(z)) separately. Using the vectorial
notation

art o dmy! of _(oft afm\' (C37)
dx dz 7 dx ) ay;  \dy; T oy )
etc., we may the generalized chain rule as
df(g(x)) _ - OF(g) dg’ ()
de ; dgy  dx (C38)

g:R" — R, X — g(x) = (gl(xl, R O Ll (LS ,x”))T,
and compose it with f to yield
fog:R"— R™, X f(g(x)) = f(gl(ml, o ,x"),...,gd(:pl,...,x”)) .

We may now ask how the component f? changes if one variable z* is varied while all others are
kept fixed. By definition, this amounts to taking the partial derivative 0, f*. Remembering
that this is just an ordinary derivative in z* taken at fixed 2/7* Eq. (C38) may be applied to
obtain (— C3.3.1-2)

d
)) 0g’ (x)
axk Z gj oxk (C39)

As an example application consider a jet engine whose output power W (T, P) depends on
both the temperature, T, and the pressure, P, in the combustion chamber. These two quantities in
turn depend on the fuel injection rate, x, and the chamber volume, V. The task is to optimize the
function W(T'(k, V), P(k,V')) with respect to x and V. To this end, one needs to know the partial
derivatives 0,W and Oy W (here m =1, n = 2, d = 2). Application of Eq. (C39) yields

0 W = orW o, T + 0pW 9. P, OyW = orWoyT + 0pW oy P,
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where we have used shorthand notations for the partial derivatives, dp = %, etc. An optimiza-
tion procedure would now seek points where these derivatives vanish, i.e. configurations where the
adjustable parameters are such that the engine output is at an extremum.

Consider the two functions

f(yl,yQ) _ <y1 COS(?J2)> ’ g(xl’xz) _ (((fcl)z + (m2)2)1/2) '

y'sin(y?) arctan(x?/x!)

af' (¢ (=, 2%), g* (2", 2?))
oxJ

Show that = 5’3. How would you interpret this result?

C3.4 Summary and Outlook

In this chapter we introduced partial differentiation as a means to probe the variation of
multivariate functions. Partial derivatives monitor the rate at which such functions change
if just one of their arguments is varied, and all others are kept fixed. All rules of ordinary
differentiation are equally applicable to partial derivatives. The same goes for the interpretation
of derivatives as effective linearizations of functions. The application of this idea to functions
with indirect variable dependences led to higher-dimensional variants of the chain rule, the most
general one being Eq. (C39). These rules are required to describe the change of functions
depending on multiple, mutually correlated variables.

Partial derivatives are the workhorses used to break down even very complex derivatives
down to manageable ‘ordinary derivatives’ in individual scalar variables. They are easy to get
used to, not least because they appear on a daily basis in the work of any physicist. Much
like ordinary derivatives are ‘dual’ to integrals over single variables, partial derivatives are dual
to repeated integrations over several variables. In the next chapter, we introduce this first
extension of one-dimensional integrals, which will then become the basis of the more general
multi-dimensional integrals discussed in later parts of the text.



C4 Multi-dimensional integration

In physics, one often needs to integrate (‘sum’) over the values of functions defined in higher-
dimensional spaces. A cartoon of the general situation has been discussed in section C2.1
where we asked how the total mass carried by a surface coated with a substance of a given
‘mass density’ can be obtained. More generally, integration problems arise when the many
incremental changes accumulated by a function in a given context (differentiation) need to
be resummed (integration) to obtain the change of the function at large. In one dimensional
contexts, this task is achieved by the highschool variant of integration which effectively samples
the area enclosed by the graph of a function. Building on the understanding of this procedure
we here discuss the extension of integration to higher dimensions.

Higher-dimensional integration theory is a subject of considerable depth and needs to be
introduced with an appropriate level of care. At the same time, many beginning physics
students face the situation that multi-dimensional integration techniques are required early
on in the (experimental) physics curriculum. We have therefore decided to include a fast
track to integration into this chapter. It provides a pragmatic introduction to the integrals
generally required by first and second term experimental physics lecture courses, integration
over functions defined in two-dimensional and three-dimensional space, and on two-dimensional
surfaces. These integrals are under control after the reading of sections C4.1 and the first
subsection in each of C4.2, C4.3 and C4.4 respectively. However, we emphasize that these
text snippets do not treat integration at the level of depth required in later stages of the
curriculum; students should return to reading the chapter in full after they went through the
crash course.

C4.1 Cartesian area and volume integrals

Integrals over higher-dimensional structures can always be reduced to successions of one-
dimensional integrals. This reduction is best introduced on the example of ‘cuboids’ — rect-
angles in two-dimensional space, boxes in three-dimensional space, etc. Once the principles
are understood, the extension to the more complex integrals discussed in later parts of the
chapter will be straightforward.

224
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f(ze, yer)

Figure C6: On the concept of two-dimensional integration over a function.

Integration over rectangles

1

Consider a function of two variables defined on a rectangle, R = [a, b] X [c,d]
filab)x[ed cR* =R,  (x,9)" = flz,y): (C40)

In physical applications, f will usually represent some kind of ‘density’. For example, it might
be a mass density in the sense that f(z,y)0%dY represents the mass of a substance contained in
a small rectangle with area §°6 at the point (z,y)”. In this case, the integral would compute
the total mass contained in the full rectangle R. In the visualization in Fig. C6, the mass
contained in such a small is represented by the volume of the column above that rectangle,
and the total mass by the volume under the floating surface defined by f(z,y).

Following the discussion of section C2.1, we tile the rectangle R by a set of infinitesimal
rectangular cells and then sum the contributions of all cells. The summation procedure is set up
by dividing the interval [a, b] into N, bins of infinitesimal width 6* = (b—a)/N,, and similarly
for the interval [c, d], with 6Y = (d—c)/N,. Next, the function values are read out as f(z¢, yr)
where x, and y, lie in the fth x-bin and ¢'th y-bin, respectively. The exact positioning of
these coordinates within the bins is not essential (cf. the analogous discussion in section C2.2).
For example, x; = £6* with ¢ = 0,...,N,—1, and yp = ¢'6¥ with ¢/ = 0,..., N,—1, will
do the job. One may now sum over f(zy,y,)0"dY and in the limit 4%, 0¥ — 0 obtains the
two-dimensional integral as

z 6Y—0

/R dedy f(z.y) = Jim 5SS flau). (Ca)
Y4 v

1Referring to the definition of Cartesian products of sets Eq. (L1), the rectangle is defined as the set of
points [a,b] X [¢,d] = {(z,y)|z € [a,b],y € [c,d]}.
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This construction not only defines the integral but also contains the recipe for its practical
computation: In the limit 0¥ — 0, at fixed 0* and fixed first coordinate x, the integral
converges to a one-dimensional integral of the function f(xy,y) over y,

d
lim &Y E f(xe,ye) = / dy f(ze,y) = (),
o ¢

6Y—0

whose value I(z,;) depends on the value of z,. The insertion of I(x,) into the remaining
sum, followed by a Iimit 0r — O leads to another one-dimensional integral, now over z:
limge_0 6% ), I( f dz I(x). We conclude that the area integral is given by

dedyf(w):/:dx/cddyﬂx,y)=/CddyLbdxf<x,y>, (c42)

where [ dyf(z,y) means ‘integrate f(z,y) over the second argument, y, at a fixed value of
the first argument, x'. The second equality holds since the construction above could have
been formulated in the reverse order — first integrate over x, then over y.

As an example, consider the function f : [0,2] x [0,1] — R, (z,y) — f(z,y) = zy+y>.
It can be integrated in either order to obtain identical results:

2 1 2 1 2 9

_ Lo2e e L3l — Loy iz 1175

/de/O dyf(x,y)/ da;[ yx—l—gy}o /Odw<2x+3> [4:6 —i—sx}o 1

' ’ 2 ! 2 2, 23]t _5

/dy/ dwf(fcvy)z/ y[ :cy+xy} =/ dy(2y+2y)=[y +§y} =3
0 0 0 0

The fact that the order of integration does not matter is known as Fubini’s theorem. Gen-
erally speaking, integrals are defined as Riemann sums over the cells tiling the integration
domains. Due to the commutativity of addition the order in which one sums over these is
arbitrary. This statement holds for all types of integrals to be discussed in subsequent chapters.

Apart from rare exceptions, Fubini's theorem holds if the double integral over a function,
performed in either order, exists. More precisely, the condition granting Fubini interchangeability
is that fR dzdy|f(z,y)|, i.e. the integral over the modulus of the function must exist. To appre-
ciate the relevance of the modulus, consider the function f(z,y) = (22 — y?)/(2® + y?)%. It is

straightforward to verify that
x? — y T
d d =—.
/ x/ Y1422 (22 +92)2 4

However, the integral done in reverse order yields the negative value, —mw/4. To understand what is
happening here, notice that for x,y approaching zero while = > y the integrand contains a strong
positive divergence. For x < y the divergence is negative. The integrals over the respective regions,
1>2>y>0and 0 <z <y <1, do not exist. Likewise, the integral of the modulus |f(x,y)]
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over the full square, 0 < x,y < 1 does not exist either (because in this case the two singularities
add). However, doing the double integral over the function itself, we obtain a result of co — o0
type, where the two co's come from = > y and x < y, respectively. The naive evaluation of the
integral tricks one into believing that the difference of the two infinities is finite, either /4 or —m /4,
depending on the order in which the x- and y-integrals are performed. However, the sign discrepancy
is a manifestation of the fact that the difference of two co’s is actually not well defined. While the
double integrals make formal sense, they do not represent a well-defined area integral.

The general message is that before doing an integral one should check that the integral over the
modulus of the integrated function exists (cf. discussion on p. 209). If not, one is generally working
with an ill-defined expression.

The tiling construction described above can readily be generalized to integrals over higher-
dimensional cuboids. For example, consider a function f(x,y,z) on C' = [a,b] x [¢,d] X
le, f] € R3. The separate discretization along each dimension divides C' into a large number
of small cubicles. In the limit, the Riemann sum over all these leads to the triple integral

/Cdxdydzf(x,y, 2) :/abdx/cddy/efdzf(x,y,z), (C43)

where the order of integrations is again arbitrary. The extension to cuboids of higher dimension
should be obvious.

Integration over domains with spatially varying boundaries

Many functions of practical interest are defined on non-rectangular

|y domains. Integrals over such functions can often be computed by
C+('T)E mm straightforward adaption of the above strategy: the integration do-
a- a+ | main is tiled by infinitesimal rectangular cells (or boxes in three-

dimensional settings). However, the number of cells in one direction

\ /x may now depends on the cell index in other directions. For a two-
D dimensional example, consider the circular disk, D, shown in the
NN figure. In this case, the number of cells in y-direction is largest close

o (z) LT g Y g

to the center of the x-axis at x;, ~ 0. As a consequence, the lower
and upper summation thresholds for y, now depend on z,. Let us
denote them by ¢_(zy) and ¢, (z;), respectively, and the lower and upper thresholds for x, by
a_ and a,. The discrete approximation of the integral then assumes the form

Y > Sy

a—<zp<at c_(z¢)<yp<c(we)

We take the limit 6%, 0¥ — 0 to obtain the integral representation

ay ct (@)
[ awdysey=[as | At
D a_ c_(x
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Here, the integration boundaries of the ‘inner’ y-integral, I(x) = fccj((f)) dy f(z,y), depend
on the integration variable of the ‘outer’ x-integral. However, this is no cause for concern
— one simply integrates over y to find I(x), and subsequently over z to obtain [** dx I(x)
(— C4.1.1-6).

Consider a disk of radius R and let us determine its area, A, by integration. In this
case, the boundaries ay = R are set by the disk radius and cy(z) = v R? — 2. This gives

R N R ) T R
A:/ d:z:/ d 1:2/ devVR?2 —22=|2vVR2—22+R arctan()] i
“r /- Y R VR? =22/ | _g

VE—Z -

(The integral can be done using the substitution x = Rcosu. Verify the last equality by differen-
tiating the result of the integration.) For z = £R the first term on the right vanishes while the
argument of the arctan assumes the value +00. Since arctan(400) = £7 we arrive at the expected
result A = 7R?, i.e. the familiar area enclosed by a circle of radius R. Note that the computation
appears to be unwieldy; there should be easier ways to obtain the surface of a disk, and we will
introduce them in the next section.

Fubini's theorem on the interchangeability of integration orders ex-
Yy tends to non-cuboidal integration domains. For example, the above
construction for the disk could have been organized in such a way
that the integration over x is performed first and that over y second.
The freedom to choose the order of integration order becomes relevant
~— when one order is more convenient than the other. As an example,
let us apply two-dimensional integration to compute the area enclosed
between the curve y = cos(x) and the x- and y-axes (see figure).
Integrating first over g, then x, turns out to be easier than the reverse order:

w/2 cos(x) /2 /2
A= / da:/ dy = / dz cos(z) = [sin(w)] =1,
0 0 0 0

1 arccos(y) 1 1
A= / dy/ dx = / dy arccos(y) = [— 1—y2— yarccos(y)] =1.
0 0 0 0

arccos(y)

cos(x)

C4.2 Curvilinear area integrals

The integration procedure described in the preceding section uses Cartesian coordinates. How-
ever, these coordinates are not ideal for the description of integration domains possessing rota-
tional or other symmetries. This is illustrated by the above example, where the integration over
a disk in Cartesian coordinates led to cumbersome expressions. In this section we introduce
more powerful techniques and learn how to integrate over two-, three- and higher-dimensional
structures in arbitrary coordinates.
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Describing areas by curvilinear coordinates

Knowledge of sections V2.1 to V2.4 on curvilinear coordinates is required for this section.

f(pe, de)

iy VAR

s Lis
(pe, drr)
I

R

Figure C7: Integration in two dimensions using polar coordinates. A rectangular coordinate domain
U (bottom right) is used to parametrize the disk D (top right). This leads to area elements §.Syy
shaped like distorted rectangles (bottom left). The integration of a function f(p,®) over the disk
amounts to the summation over these shapes, weighted with the product of the base areas |§.Sy| and
the heights f(pg, ¢¢) (top left). The arrows shown in the bottom left panel are defined in Eq. (C46).

Let us turn back to the example of integration over a circular disk, D. Again, we
start by introducing a discretization grid, however, this time it will be defined such that the
symmetries of the integration domain are taken into account. To this end, consider the
representation of D in terms of the polar coordinates introduced in section V2.1,

r:U=(0,R) x(0,2r) —» D, y = (p, )" = r(p,¢) = (pcos d, psing)’.  (C4a4)

Observe that the circular domain of integration, D, is now parameterized by the rectangular
coordinate domain, U = (0, R) x (0, 2m).

As always with curvilinear coordinate descriptions, we take the coordinate domain to be open.
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This is done to ensure global differentiability of the map, cf. the discussion at the end of section V2.1
(p. 390). The openness of the coordinate intervals often implies that an integration domain can
be almost, but not fully covered by a single coordinate map. For example, the image of the map
above does not cover the boundary of the disk, where R = 1, nor the intersection of the disk with the
positive real axis, where ¢ = 0. However, these excluded regions are of dimension lower than two and
their exclusion does not affect a two-dimensional integral over a continuous functions. The heuristic
picture behind this statement is that an ‘infinitely thin' line does not contribute to the summation
over areas. A more formal justification of this statement will be given in the context of Eq. (C52)
below. In the following, what we mean when we say that a d-dimensional integration domain, M, is
covered by a system of coordinates is that the coordinates parameterize all of M, except perhaps for
subsets of lower dimension. For completeness, we mention that situations where the full coverage of
a domain by coordinates is essential are addressed in chapter ?7.

We now introduce a set of points, {(ps, ¢e)T}, pe = £6°, ¢p = £'6°, 0 < £ < R/6P,
0 < ¢ < 27/6%, defining the corners of a system of rectangular cells of area §°6¢ covering U.
The coordinate map r(p, ¢) sends this rectangular grid onto a ‘distorted grid" of image points,
r(pe, ¢¢), whose corners define a set of area elements, 65, in D. These have the shape of
‘distorted rectangles’ tiling D in a spider-web pattern, as illustrated in Fig. C7. The covering
generated in this fashion reflects the rotational symmetry of the disk — a key advantage
relative to the Cartesian grid of p. 227.

Geometrically distorted area elements

The strategy just described is not limited to polar coordinates. Integration over non-
rectangular domains often starts with a coverage generated by curvilinear coordinates. All
steps that follow then are of general nature and it therefore makes sense to introduce them
for a generic two-dimensional coordinate system, r : U — M, y — r(y). In the end of the
section we will turn back to polar coordinates, y = (p,#)’ and M = D, and do specific
integrals over the disk.

Let us denote the points of a tiling grid in U by yu = (y},y2)" = (06, 0'6*)" and let
r(yer) define the induced grid in M. The integral of a function, f: M — R, r — f(r) over
M is then define as the Riemann sum over the area elements,

| asse)= i (2 1550l ) (c45)

where the notation f(y) = f(r(y)) is used and 0S| is the geometric area of the surface
element 0Sy. If f represents the density of a quantity such as mass, then the summand
|0Seer| f(yer) gives the amount of this quantity associated with that area element.

Eq. (C45) remains formal as long as the dependence of the area elements |0Sy| on the
coordinate points yy has not been specified. To this end, we temporarily suppress the indices
¢,¢" and note that an element §S labeled by y is defined by the four corner points r(y*, y?),
r(y! + 6L, 9%), r(y! + 6, 9y% + 6%) and r(y',y* + 6%). These points are connected by the
corresponding coordinate lines (see Fig. C7). What simplifies the computation of the enclosed
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area is the proximity of the corner points to each other: in the limit of infinitesimally small §!
and 42, the curvature of the coordinate lines between the points becomes negligibly small and
the shape of 0.5 approaches that of a parallelogram spanned by the two vectors

r(y' + 6% y7) —r(y' y?) = 6" Our(y) = 0" vily),
r(y', 2 +6%) —r(yt, y?) ~ & Der(y) = 2 va(y). (C46)

In the last equalities of each line we noted that (cf. section V2.3) the tangent vectors to
the coordinate lines, J,ir, equal the basis vectors, v;, of the coordinate basis. The vectors
spanning 45 are thus given by the scaled basis vectors §'v; and 6*vy and [0S is the area of
the corresponding parallelogram.

There are three different ways to describe the geometric area of this particular parallel-
ogram. All have advantages and we will discuss them in turn. The first approach is based
on elementary geometry and suffices for a first introduction to the subject. The other two
formulations are more general and distinctly more powerful. They are introduced in the next
subsection, where integration in two dimensions is discussed from a general perspective.

Area element from geometric construction

€3

The first approach describes the area element by geomet-
ric construction. The area of the parallelogram spanned by
§2vy t(yl,y? + 6% two vectors v, and vy enclosing an angle Z(vy, vq) is given
S e by A(vi,ve) = [|[vi]|||vz| sin(£(vy, v2)). Using Eq. (L73),
this may be rewritten as ||v; X vy|[. (The latter notation
implicitly assumes that the vectors v; and v, span a two-
dimensional plane in three-dimensional space, see the figure.
Their cross product, v X vo, then points in the 3-direction perpendicular to the plane and its
norm gives the required parallelogram area.) In this notation, the area of 4.5 is expressed as

0S| == 6'0% A(vy, va) = §'6% ||vi X va|| = 6'6% |0,0x(y) x Der(y)]|- (C47)

(5152(V1 ><V2)

~
r(y' + 0%, y%)

It remains to substitute this expression into Eq. (C45) and perform the summation over indices
¢,¢'. In the limit of an infinitely fine discretization, each sum § y_, — [ dy becomes an integral
over a coordinate interval. The Riemann sum thus assumes the form of a double integral,

/N A8 7lr) = / Ayt dy? (|0, x(y) X ()] £(v). (C48)

Note that the final integral extends over a rectangular coordinate domain and hence falls into
the category of integrals discussed in the previous chapter. The geometric distortion of the
coordinate lines in the image domain, M, enters through the factor ||0,ir x O,2r||. This
factor mediates between the rectangular shape of the coordinate cells in U (convenient for
integration) and the distorted shape of the image cells in M (convenient for tiling a general
integration area). The formal expression

dS = dy'dy” 9, x(y) x Oer(y)l| (C49)



232 C4 Multi-dimensional integration

is sometimes called the area element or the integration measure of two-dimensional in-
tegration. The latter terminology refers to the right-hand side of the defining equation as a
‘measure’ of geometric areas in the integration domain.” In the following, we will refer to both
dS and its finite analogue dSas ‘area elements’.

The result (C48) also shows why the assumed openness of the coordinate domain
does not matter. For a rectangular open domain U = (a,b) X (¢,d), the double integral
becomes [, dy'dy* = fab dy! fcd dy?. However, as discussed in section C2.2, integrals over
open and closed intervals yield the same values, i.e. the same expression would be obtained
for the integration over product of intervals, [a,b] X [c, d| parameterizing a closed coordinate
domain.

Integration in polar coordinates

Let us now return to polar coordinates and evaluate the expressions above in that concrete
context. Eq. (C47) applied to the coordinate basis vectors (V28) of the polar coordinate
system, v, = 0,r = e, and vy = O, = eyp, yields

10,x(y) x B (¥l = [[vy x vell = p, (C50)

and the polar area element

dS = pdpde. (C51)

The proportionality to p means that the area element increases in the radial direction. The
geometric reason is that the extension of 4.5 in the ¢-direction, given by pd?, increases linearly
with the radial coordinate (see Fig. C7). Substituting this result into Eq. (C48), we obtain

[ asse = [ “ap / " 460 (0. ) (C52)

as a formula for the integration in polar coordinates over the disk D.

Turning back to the example on p. 228, the geometric area of a circular disk of
radius R is now simply obtained by integrating the constant function f(r) = 1 over the disk D:

R 2T R
A:/ pdp/ dgf)l:/ pdp2m = TR
0 0 0

This computation is simpler and more elegant than its Cartesian counterpart of p. 228. The indepen-
dence of the integration domains of ¢ and p implies that the integrals over these variables factorize.
This is the essential advantage of polar coordinates over Cartesian coordinates and it is owed to the
fact that the former are adjusted to the rotational symmetry of the disk. Polar representations are
particularly well-suited for integrating functions which are rotationally symmetric and hence depend

2 . . e . - ‘ 1
The mathematically precise definition of measures is a subject of ‘measure theory'. However, we do not
enter this discussion here.
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only on the radial coordinate, f(p, ) = f(p). Consider, for example, a surface carrying a mass den-
sity increasing quadratically with the distance from the origin, pm(p) = kp?, where & is a constant.
The total mass carried by the surface is obtained by integration:

R 21 R
M =/ dS pm(p) =/ pdp/ d¢ kp” =/ pdp (2mkp®) = jmrR".
D 0 0 0

The analogous calculation in Cartesian coordinates would be significantly harder.

The result (C52) may be straightforwardly generalized to the integration over domains
without rotational symmetry (— C4.2.1-2). For example, the integral of a function f(r)
over the quarter of a disc, parameterized as {r(p,¢) | p € (0, R), ¢ € (0,7/2)}, is given by

/Odep/oﬂ/quﬁf(Mﬁ)

As a less trivial example, consider the heart-shaped area shown
(@) in the figure. For any given angle, ¢ € (—m, ) the distance from the origin
to the boundary of the heart is given by p,(¢) = (1 — |¢|/m). This means
[ that its area is given by

\/1 Az/_ﬂdcb/opb(@pdpl:/dasz,ob(qs) ;/d¢[ W] Lo

N[

N[

Jacobian and metric representations of area element

Requires chapter L6.1 on matrix determinants.

Above we applied geometric reasoning to obtain the area of the surface element 65. We
here introduce two different approaches to the same problem which will lead to alternative
representations of the area integral. Depending on the context, application of either of these
methods can be favorable. An important feature of the procedures introduced in this section
is that they afford transparent generalizations to integrals in arbitrary dimensions.

The second method expresses the area element as a matrix determinant. To this
end assume the presence of a Cartesian basis {e,} in the integration domain. Adopting the
notation of section V2.3, the coordinate image points can then be expanded as r(y) = e,z%(y)
where the Cartesian expansion coefficients z%(y) are functions of the coordinates y. The
partial derivative of r(y) in the coordinates i’ yields the expansion of the coordinate basis
vectors as v;(y) = e,v%(y) with components v?, = g—ﬁ, cf. Eq. (V22). The advantage
of this Cartesian representation is that the area spanned by the coordinate basis vectors can
be expressed through the determinant formula Eq. (L158) (which assumes an expansion in a
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Cartesian basis): the area spanned by v; and vy is given by A(vy,vy) = |det J|, where the

2 x 2 matrix J = (vy, V) contains the components v*; = (v;)* as columns. In the present

context, where v; = giy;, this is often expressed through the suggestive notation

1 .2 da! Ozl
J5%5M5<% g_zi), (C53)

oyl  0oy?

where x; = (z',2?)7 is the component vector representing r in the Cartesian basis {e,}.
(Keep in mind that all these quantities are functions of the generalized coordinates, x = x(y),
etc.)

The matrix J is called the Jacobi matrix (or just Jacobian) of the map r : U — M,
y — r(y). (Confusingly, the determinant |det J| = |det g—;| is likewise called the Jacobian
of the map. In cases where unambiguous phrasing is required we will refer to it as the Jacobi
determinant.) Comparison with Eq. (C47) shows that the area element is given by

det (M>‘ =X

o(y', y?)

Ox' Ox? B Oxt Oz
oyl o2 Oy? oyt |’

65| = 6'62|det J| = 552

(C54)

A straightforward check shows that for polar coordinates, Eq. (C50) is indeed reproduced.

The third approach expresses the area element via the metric tensor. Here, the starting
point is Eq. (L40) for the parallelogram area,

A(V17V2) = |<V17V1><V2,V2> - <V1,V2>2‘1/2 = ’911922 - 912921|1/2 = !det(g(Y))!”z, (C55)

where in the second step we noted that the scalar products (v;,v;) (2 gi;(y) define the

metric tensor, and det(g) is the determinant of the matrix {g;;}. We thus obtain
(65| = 60| det(g(y))["*. (C56)

This formula expresses the area element through the metric tensor defined by the coordinate
basis vectors, g(y). For example, in polar coordinates, Eq. (V25) yields \/det(g(p, ®)) =
V9ppdss = p, SO that we again arrive at Eq. (C50).

Generally speaking, the metric determinant is the ‘strongest’ of the three representations
discussed above. Unlike the Jacobi determinant, it does not make reference to Cartesian
representations of the vectors v; and v,. We will also see in section C4.4 generalizes to
integrals for which no Jacobian determinant exists. On the other hand, there are situations
where the Jacobian, or the elementary geometric procedure are more convenient than others;
it is certainly good to know all three.
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Two dimensional area integrals — summary

Summarizing, we now have three representations for the area spanned by vy and vy, and
this implies three alternative representations for the integral of a function, Eq. (C48):

[0,1(y) x Opr(y)|
[ st - / dy'dy” § Jdet (5527 )| F(x(¥)). (C57)
[det(g(y))]"”

Each of these expresses the curvilinear integration of f over M in terms of
> an integral over the underlying coordinate domain, U,
> of the function evaluated in curvilinear coordinates, f(r(y)), and

> any of the rescaling factors, ||0;r x dpr|], ‘g—’; , | det(g(y))|*/2, which all represent the
geometric area in the integration domain corresponding to an infinitesimal area 2 in the
coordinate domain. This area element generally varies as a function of y.

As an instructive application of the second line of Eq. (C57), consider the integral

I= / dzdy f((:zc/a)2 + (y/b)Z) )
IRQ

The integrand depends on the Cartesian coordinates x = (z,y)” only via the combined variable
p? = (xz/a)® + (y/b)®. This suggests a coordinate transformation, x(y) = (z(y),y(y))T =

(ajcos ¢, busin @), to ‘generalized polar coordinates’, y = (1, ¢)” . Its Jacobi matrix is’
ox _ O(z,y) %’j 2—; _ [acos¢ —apsing
oy  O(u,¢) g—z % |~ \bsing  bucosg)’

with Jacobi determinant ’det(g—;‘ﬂ = pab. We may now pass to a (i, ¢) integration as

Y

BN

a

ST

o0 2 )
/ I=/ du(uab)/ do f(p”),
k 0 0
For example, consider the function f(u?) =1 for u? < 1 and 0 else, so that the integrand assumes
the value one on the ellipsoidal area shown in the figure, and vanishes elsewhere. The integral 1

should then yield the area, wab, of an ellipse with semi-axes a and b. Doing the integral, we indeed
obtain I = [ du(uab) [2™ = mab.

where the integration boundaries are chosen such that M = R? is
covered. This integral is easier to compute than the original expression.

*Notice that for generalized polar coordinates the coordinate basis vectors v, = 0ur and vg = Opr are not
orthogonal. This coordinate system thus has non-orthogonal coordinate lines.
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Jacobian vs. metric determinant

The considerations discussed above imply the equality of the Jacobian and metric
expressions for the area element,

ot (55| = aettatn 2 (cs8)

We have established this equality in two dimensions by geometric reasoning. However, the
final formula does not make visible reference to the two-dimensionality of the vectors and one
may suspect that it is of more general validity.

That this is indeed the case can be shown by algebraic reasoning: the invariance of the de-

L170 (L178)

terminant under transposition, det J ‘=" det J7, implies that (det J)2 = (det JT)(det .J)

det(J7.J). Now observe that the matrix elements of .J*.J are given by (J*J);; = (J7),*(J)% =

v v = (vi,v;) = gij(y). This shows that det(J)? = det(g). Taking the square root of the
modulus of this equation we obtain Eq. (C58). The beauty of this construction is that it does

not make reference to two dimensions and generalizes to higher-dimensional situations.

C4.3 Curvilinear volume integrals

The concepts developed above are straightforwardly generalized to higher dimensions. Of
particular importance to applications are integrals over three-dimensional space, or volume
integrals. For example, the mass of a three-dimensional structure is obtained by integrating a
mass density function over its volume. This section explain how to do integrals of this type.

Geometric representation of the volume element

Three-dimensional volumes, V' C IR3, such as balls, cylinders, or the general structure
shown in Fig. C8, can be described by a three-dimensional extension of the curvilinear coordi-
nates discussed in the previous section. We define coordinates, y = (y', 42, v*)”, on a domain,
U, and a smooth map, r: U — V,y — r(y), parameterizing the integration domain in these
coordinates. For example, the unit radius ball, B = {r € R?|||r|| < 1}, is conveniently
described in spherical coordinates, Eq. (V41a), through a map U — B,y = (r,0,¢)T —
r(r,0,9).

Once a system of good coordinates has been established, volume integrals may be constructed
in analogy to the one- and two-dimensional integrals discussed above (cf. Fig. C8). Let
us assume that the coordinate domain is given by the Cartesian product of three intervals,
U= (a',b") x (a®,b*) x (a®,b%) asin U = (0,1) x (0, 7) x (0, 2) for the spherical coordinates
(r,0,¢). The domain U is partitioned into a large number of boxes with corner points at
ye = (Wi vi,-vi)" .y, = G:6° (i = 1,2,3, no summation) and volume 6'9%6%. The indices
enumerating these points run in the ranges 0 < ¢; < (V' — a')/6", and £ is a shorthand for
£ = ({1,05,03)". Under the coordinate map r(y) these boxes get sent onto distorted volume
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Figure C8: On the definition of three-dimensional volume integrals.

elements, §V4, in V' bounded by the coordinates lines running through the corners r(y) (see
Fig. C8).

By construction, the system of volume elements {0V;} covers the target volume. The
integral of a function f : V' — R, r — f(r), may thus be defined as the sum

/V AVF = b 37 6Vl f(ve) (C59)

where f(y) = f(r(y)) and |§V,]| is the geometric volume of §V,. This formula is the three-
dimensional analogue of the two-dimensional Eq. (C45).

Next we need a formula for the volume elements. Proceeding in analogy to the two-
dimensional case, and suppressing the box index £ for brevity, we note that for small &¢, 6V
can be approximated by a parallelepiped spanned by the vectors §* d,,r(y) = 6'v; (i = 1,2, 3,
no summation), cf. Fig. C8. Its volume can be computed by a geometric construction
similar to that applied in the two-dimensional case: according to Eq. (L89), the volume of the
parallelepiped spanned by the vectors vy, vo and v3 is given by the triple product |(vy X vg)-vs].
The volume of oV thus equals

0V | = 6'6%6°|(vi X va) - va| = 6'6°0%| (8,ax(y) X Dex(y)) - Opar(y)] -

This expression is the three-dimensional analogue of Eq. (C47) for the two-dimensional area
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element [0.S]. Substituting it into the Riemann sum (C59) and taking the limit we obtain

/ dV f(r) = / dy'dy*dy’| (9,1 x Djer) - Oper| f(y), (C60)
\% U

for the three-dimensional volume integral. The combination
dV = dy'dy*dy?|(9,0r X D,er) - Dyer] (Cé61)
is called the volume element or integration measure of the integral.
The coordinate basis vectors in spher- 59
ical coordinates are given by (cf. Eq. (V42)) v, = sin of

e, Vg = ey, vy = egyrsinfl. The orthonormal- SEIzoo-\ G
ity of the local spherical basis vectors, e;, implies

| =z
|(er X ep) - eg| = 1. By Eq. (C61), the volume — 7
element in spherical coordinates is given by 0/&5;&“\ -1
i N

dV = r2dr sin 6 df d¢. (C62) -

Here, the factor 72sin@ reflects the fact that the dimensions of the distorted box §V in - and
¢-directions are given by 767 and rsin 6 6?, respectively. The factor sinf is best understood by
exploring how the volume element shrinks upon approaching the north and south pole of the sphere,
respectively (think about this point).

For example, the integral of a function over a ball, B, of radius R has the form

/Bde(r) :/ORTer/OW sinedefo%dqﬁf(r,e,@.

For f = 1 this integral yields the result %ﬂ‘RS, the well-known formula for the volume of the ball
(— C4.3.1-6).

Verify that the volume element in cylindrical coordinates is given by

AV = pdpdede. (C63)

Jacobian and metric representations of volume element

Above we applied geometric reasoning to express the volume |§V| of the element §V
as a triple product. Proceeding in analogy to section C4.2 we now introduce alternative
representations of the same quantity as a Jacobian and a metric determinant, respectively.
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As in our previous discussion the Jacobian representation of the volume element is based

. . . a .
on a Cartesian expansion of the coordinate vectors, v; = e,v®;, where v*; = 922 " Recalling

J! Jj oyl

Eq. (L159), the volume of the parallelepiped spanned by these vectors may be represented
as V(vy,va,v3) = |det J|, where the 3 x 3 matrix J = (vq, vy, Vv3) contains the Cartesian
component representations, (v;)* = v = 922 of these vectors as columns. As in the two-

ay7 !
. . . . .o . . 1.2 .3
dimensional case, this motivates the definition of the Jacobi matrix as J = & = Oz .z

dy — oyLyryd)
such that [0V] = 6'626%det ().
The third representation is based on Eq. (C58) which we saw holds in arbitrary dimensions.
Hence, | det J| = | det g|*/2, where g;;(y) = (vi,V;), is the metric tensor in the coordinate
basis. We have thus obtained two more representations for the volume element,

a(x1a$2:$3))‘ 15263 1/2
det | —————= || =469°6"|det )
(0(y1,y2,y3) [det((y))

In conceptual analogy to Eq. (C57), a volume integral can now be represented by any of the
three formulae

6V = 516%5°

|(ay11‘ X 8yzr) . 6y3r]
Javie) = [ agaras o (3am2)| ) (o)
|det(g(y))| "

For later reference we note that the determinants of the metric tensor in cylindrical and
spherical coordinates are given by (cf. Egs. (V42) and (V36))

cylindrical: det(g(p, ¢, 2)) = \/GppTo69zz = Ps
spherical: Vdet(g(r,0,6)) = \/GrrJo0ges = 7> sin 6. (C65)

These formulae lead back to Egs. (C63) and (C62), as they should. As an instructive exercise,
re-derive them from the Jacobian perspective.

C4.4 Curvilinear integration in arbitrary dimensions

Requires chapter L6.1 on matrix determinants.

In this section we consider integrals over generic d-dimensional objects embedded in n-
dimensional space. Once more, the construction of these integrals is based on a suitable
integration ‘measure’. The definition of these measures in turn relies on the metric and
the ensuing integrals will be generalized variants of the third representations in Eqgs. (C57)
and (C64), respectively.
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Consider a smooth subset of n-dimensional space, M C R™. By ‘smooth’ we mean that
M is the image of a smooth map U — M C R", r: U — M, y + r(y), where U C R?
is a d-dimensional coordinate domain.” In this case, d coordinates y = (y', ..., yHT are
required to parameterize M and we call it a ‘d-dimensional’ structure. For example, a sphere
of unit radius is a (d=2)-dimensional object embedded in (n=3)-dimensional R? which can
be parameterized by two spherical coordinates (6, ¢). Without loss of generality, we assume
U= (a',b') x -+ x (a?,b?) to be a d-dimensional cuboid.

Consider U discretized by a d-dimensional lattice of coordinate points as discussed on
p. 236, only that the index i now runs from 1 to d. The assignment y — r(y) maps this
lattice onto a distorted lattice of image points in M. These define the corners of generalized
d-dimensional volume elements covering M. Each element §V can be approximated by a
d-dimensional parallelepiped spanned by the d vectors §'0,ir(y) = 0'v; € R" (i = 1,...,d,
no summation).

Next we need formulae for the volume, |§V/|, of these generalized parallelepipeds. As a
warmup to the discussion of general n and d, let us discuss an instructive example:

3
r(yt,y? +6%) "
(52V2
gtvy 1, 51,2
r(y' 4+ 6, y%) r2
L M
r r(y)
y? U
2 a
5! y!

Figure C9: Integral over a two-dimensional surface in three-dimensional space.

Example: integration over a two-dimensional surface in three-dimensional space

In practice, one often needs to integrate over an (d = 2)-dimensional surface, M, embedded
in (n = 3)-dimensional space, R?, see Fig. C9. The ‘volume elements’ then actually are surface
elements, §S, embedded in R3. They are spanned by the pair of three-dimensional vectors
§'0,r = §'vy and 629,21 = 6*vy. We know two expressions for the geometric area of such
parallelograms: the norm of their vector product Eq. (C47), and Eq. (L40) which in the present
context assumes the form of Eq. (C55). The area of the surface element 0.5 is therefore given

4Again, we tolerate the presence of ‘defects’ of dimension < d in M which are not in the image r(U).
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as
0S| = 862|| 0,1 x Dor| = 6'0%| det(g(y))[/>. (C66)

This in turn means that the integral over a two-dimensional surface M embedded in R? is
defined as

B 1 9 H(?ylr X ayer
/ a5 f(r) = / dy'dy Fx(y)). (C67)
M v [ det(g(y))|2

The first of these two representations is often encountered in introductory texts. It utilizes the
vector product, and is therefore limited to the present situation of dimensions, d = 2, n = 3.
The second representation, however, holds for a (d = 2)-dimensional surface embedded in a
space of arbitrary dimension n > 2. This can be traced to the fact that the formula for the
area element, Eq. (C55), is valid for any n. Also notice that the surface integral does not
afford a representation in terms of a Jacobian det(0x/dy), the reason being that Jacobians
can be defined only for d = n. These observations suggest that integral formulae based on
the metric determinant may be the ‘most general’ representations. This impression will be
corroborated by the discussion of the general case below.

Let us use Eq. (C67) to compute the area of a two-dimensional sphere in three-
dimensional space. We apply (V41a) with » = R to parameterize a sphere of radius R by spherical
coordinates (y',y?) = (6, ¢). From Eq. (V42) we find d,ir = Jgr = vy = epR and d,or = Jypr =
vy = egRsin for the curvilinear velocities, and ggg = R2, gy = sin®(0) R%, ggs = ggp = 0 for the
elements of the metric tensor. Both ||vg x v/ and |det(g)|'/? yield R?sin(@). We thus obtain the
area as (— C4.4.1)

T 2
A= / do / de¢ R?sin(f) = 47 R%. (C68)
0 0

As another example consider the surface shown in the fig-
ure. It is radially symmetric in the xy-plane, and the Cartesian height
coordinate is given by z = 1(a® — (22 + y?)3/2) for 22 + y? < a®. We
aim to compute the geometric area of this surface. To this end, we in-
troduce polar coordinates, y = (p, ¢)”, in the zy-plane and obtain the
parameterization r(y) = (z,y,2)" (y) = (pcos @, psin ¢, 3(a® — p*))T.
Show that the metric determinant reads as

det(g(y))"/? = p(1 + p*)*/2.

Use this result to confirm that the area is given by A = Z(a*V/1+ a* + arcsinh(a?)). Discuss the
results in the limit @ > 1 and a < 1, respectively (— C4.4.2-4).
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Integration over objects of arbitrary dimension: metric tensor

We now turn to the generic case d < n. We need the volume of a d-dimensional paral-
lelepiped, 6V C IR", spanned by the vectors §'v;, with i = 1,...,d. Referring to section ??
for a general argument, we state that this volume is given by the metric determinant

16V = (6*...6%) det(g(y))"?, (C69)

where g;; = (v;,v;) is computed using the standard scalar product of the embedding space
R"™. The integral over M is thus defined as

/M AV f(r) = / ay .. dy? [det(g(y))] V2 £ (x(y)). (c70)

All multi-dimensional integration formulae descend from this powerful result. It holds for
arbitrary d < n and encompasses all the special cases discussed so far. To recapitulate, the
application of this formula requires

> a parameterization of the integration domain, M, by a coordinate map, r(y),

> computation of the partial derivative vectors, v; = d,:r, the elements of the metric tensor,
9i;(y) = (vi,v;), and its determinant det(g(y)), and finally

> the computation of the integral over the coordinate domain U.

Integration over d-dimensional volumes in d-dimensional space: Jacobian

In the special case d = n there exists an alternative representation of the volume element
in terms of a Jacobian. Although this case, too, is covered by Eq. (C70), the Jacobian
formulation is widely used and we discuss it for completeness. The Jacobi matrix of the
coordinate map y +— r(y) generalizes Eq. (C53): it is defined as the matrix, J(vy,...,v4),

whose columns contain the Cartesian coordinates {v%;} = {giy(; of the vectors, v; = d,r(y):
ozt Qal . Oal
8y; 8y§ 8y‘;
1 d QxZ Q= Oz
@:a(x yeeey L ) _ ayl  9y2 Oyl (C?l)
gy — Oy'....yh) [ 1 :
Y Y . . .
9zd G2t 9xd
dyl  9y? Oy?

From Eq. (C58) we know that | det (X )| = [det(g(y))["/?, and this implies the representation

/Mde(r):/Udyl...ddef(r(y)). (C72)

Notice the structural similarity of this formula to the one-dimensional substitution rule (C26).
In the next section we discuss how Egs. (C26) and (C72) can be understood as special cases
of a general formula describing variable changes in integrals of arbitrary dimensionality.
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C4.5 Changes of variables in higher-dimensional integration

Eq. (C72) affords an interesting interpretation as a generalization of the one-dimensional
substitution rule (??). To understand this, consider an integral over a d-dimensional volume,
M, in d-dimensional space. Assume that r(x) = e,x* has been parameterized by a Cartesian
coordinate system. In this case, the basic integration formulae of section C4.1 may be applied
to represent the integral as

/Mde(r):/del...d:pdf(x),

where the boundaries of the z%-integrals must be chosen so as to obtain a full coverage of M.
Alternatively we may introduce a map, x : U — M, y — x(y), to cover M by a different
system of coordinates, y, and represent the integral through Eq. (C72). The equality of the
two representations leads to the formula

/dxl...d:cdf(x):/dyl...dyd
M U

This formula is valid independent of the geometric context in which it has been derived. In
particular, it does not rely on an interpretation of x as a Cartesian coordinate vector. It
describes, rather, a change of integration variables, x — x(y), in general d-dimensional
integrals and extends the one-dimensional formula (C26) to higher dimensions. The notation
x — x(y) is a shorthand for saying: 'a reparameterization of variables, y — x(y), is applied
to convert an integral over x to an identical integral over y'. The appearance of the Jacobian
in this formula may be remembered from the dirty mnemonic dz <> dy det (8—") which has a

oy
status similar to that of the trick mentioned after Eq. (C26).

det (g—;)\ Fx(y)) (c73)

Equation Eq. (C73) motivated from a different perspective

To obtain a better understanding of the generality of for-
mula (C73), consider another change of variables (cf. the
figure),y : T'— U, z — y(z). One now has two options to ex-
press Eq. (C73) as an integral over z. The first is to parametrize
x through z via the composite map, x oy : T — M,

x(2) 7+ x(y(z)) = x(z). Application of Eq. (C73) to x — x(z)

U //_ y(2)
y \T\Z/ then yields
ox

/del...dxdf(x):/szl...dzd det (%)’ f(x(2)).

The second is to apply the variable change y — y(z) to the integral on the r.h.s. of Eq. (C73):

/Udyl...dyd det (g—;)’f(x(}’)) I/szl---dzd det (%)‘ det (g_;()

f(x(y(2))),

y(z)
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where the notation emphasizes that in the integral on the right, all functions have to be
expressed through the z-coordinates.

Since the preceding two equations represent the same integral, we conclude that the Ja-
cobian determinants occuring therein must satisfy the relation

@@ @ e

Indeed, the validity of Eq. (C74) follows from an important property of the Jacobi matrix:
application of the chain rule (C39) (with the identification f* = 2%, ¢/ = 7, 2% = 2*) gives

0'(y(z)) _ 02'(y)|  9y'(2)
0k oyJ ozk

v(2)

v(2)

Ozt _ Ozt Oy’

This formula has the suggestive short-hand notation 5% = y7 9o

or just

8x_8x8_y

92 Oy oz (C75)

Eq. (C75) states that Jacobi matrices are multiplicative: the Jacobian of the transformation
x — x(z) equals the product of those of x — x(y) and y — y(2z), respectively. The matrix
product identity for determinants, det(AB) = det(A) det(B), then directly implies Eq. (C74).

To summarize, Eq. (C73) is the generalization of the one-dimensional substitution rule
(C26) to changes of variables in generic higher-dimensional integrals.

C4.6 Summary and Outlook

In this chapter we introduced the higher dimensional integration techniques required in the
early physics curriculum. Building on the general understanding of integration as generalized
(Riemann) summation, we began with a straightforward construction of integrals over cuboidal
domains, line segments, rectangles, boxes, etc. We then moved on to the important subject
of integration over more general structures, where the usage of problem adjusted coordinates
became vital. In all cases integration turned out to be an algorithm of three consecutive
steps: i) the coverage of the integration domain by suitable coordinates, preferably defined
on a cuboidal coordinate domain. ii) Determination of the geometric distortion factors by
which the cuboidal line, surface, volume elements of the coordinate domain differ from the
distorted line, surface, volume elements defined by the coordinate map in the integration
domain. This step really is at the heart of the matter of all integration and we provided three
alternative solutions, each tailored to different situations. Finally, iii) doing the integral over
the coordinate domain weighted over a function of interest and said distortion factor.

We discussed various types of integrals distinguished by the dimension of the integration
domain (the number of coordinates required to parameterize it) and the dimensionality of
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the space in which the domain is embedded. This led to a perhaps somewhat overwhelming
multitude of integrals all of which, however, all are of granted relevance in practice. In the later
chapter V5.4 we will introduce a more geometric perspective of integration and demonstrate
that the integrals introduced above are not so different as they might seem. However, for the
time being we leave the subject of integration and turn back to the ‘local’ analysis of functions
by advanced techniques of differentiation.



C5 Taylor series

Depending on the type of information they encode, mathematical functions may be simple or
complicated. Sometimes they are defined ‘implicitly',l or they may be the results of measure-
ments in which case no analytic representation exists. While the description of a function in
full generality may be a difficult task, it is often sufficient to understand its behavior in the
vicinity of a specific point of interest.

For example, the binding potentials stabilizing a chemical molecule such as Oy are complicated
functions V' (r) of the inter-atomic distances, . However, at temperatures far below those where the
molecule disintegrates, the inter-atomic separations are close to an equilibrium value » = a. Much
of the observable physics of the molecule can then be understood from the profile of V' (r) for values
of r close to a.

In this chapter we introduce methodology capable of describing the ‘local’ structure of functions
even if the global structure is not known. In the next chapter, we then take a complementary
point of view and introduce concepts to characterize the global profile of functions.

f(@')

Figure C10: Schematic on the interpretation of a Taylor series expansion. Discussion, see text.

"For example, the function might be the result of an integral fx dz f(zx) for which no closed representation
is known.

246
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C5.1 Approximating functions by polynomials

In chapter C1 we discussed how the derivative of a function f(z) yields a local approxima-
tion in terms of a linear function. This is made explicit in Eq. (C2), f(x+0) ~ f(z)+6 f'(z),
where the ~ sign indicates that the quality of the approximation depends on the range over
which it is applied. The reason is that even for small §, f(x + J) generally is not linear in ¢
but may depend on arbitrary powers, §, 62 ,6%,.... However, for § small, say, § = 107, these
terms rapidly decrease as 1072,107!%, 10727, and this explains why for very small § a linear
approximation may be good enough. For larger 9, however, we should consider an ‘expansion’
of the form

flx40) =co+c10+cd®+c30® + ..., (C76)

where ¢y = f(z), ¢; = f'(x), and ¢;>o are coefficients that need to be determined. Alterna-
tively, we may define 2’ = z 4+ § and write

f(@") =co+ (2 — ) + oz — 2)* 4 c3(2 — 2)3 ch ' —x)" (C77)

This equation defines a representation of the function f in the vicinity of a fixed argument z
in terms of an power series in (2’ — z). If only a finite number of terms of this series are kept,
one obtains an approximation of f in terms of a polynomial in (2’ — z) of finite order. For
increasing |/ — x| an increasing number of terms of the series needs to be kept to obtain an
accurate representation of f. The situation is illustrated in Fig. C10. On the smallest scales
(left panel), the function looks nearly linear and can be approximated by a linear polynomial
(a straight line). At somewhat larger scales (middle panel), the curvature of f becomes
noticeable and a local representation in terms of a quadratic polynomial (corresponding to
a generalized parabola) becomes appropriate. On yet larger scales (right panel), a cubic
polynomial representation is required, etc.

C5.2  Taylor expansion

The concrete values of the expansion coefficients characterizing a function f in the neigh-
borhood of a point x are easy to determine. The nth coefficient, ¢,,, is obtained by differentiat-
ing Eq. (C77) n times w.r.t. 2’ at the point 2’ = x. To see how this works, we note that on the

I.h.s. side the differentiation yields dd’;,ff) — 4°7(@) \vhich is nth derivative of the function

f at x. We assume that this derivative can be con(i:f)uted analytically (or perhaps numerically
if the function is the result of a measurement). Turning to the r.h.s., we note that only the
contribution of nth order to the series yields a non-vanishing contribution to the derivative:
for [ < n, we have d” (2’ — z)! = 0, and for [ > n, d (2’ — x)l = const X (' — )", which
vanishes at =’ = . The surviving terms yields d? (2’ — z)"¢,, = 1-2---(n — 1) - nc, = nley,,

where we defined the factorial of a number as

nl=1-2---(n—1)-n, . (C78)




248 C5 Taylor series

for positive integers n € N, and 0! = 1 We thus have the identification ¢, = %d:f;gf), and
so the expansion (C77) can be written as
— 1d"f(x)
" = —— (=)™ C79
F) =2 e =) (c79)

This series representation is called the Taylor series expansion of the function f around z.

N=1 10 N=2 10 N=3 10

N =4 10 N=5 10 N =6 10

Figure C11: The function exp(x) (red curves) and the first six approximate representations around
x = 1. For large N the approximate representation of exp(z) becomes increasingly accurate over
wider intervals around z = 1.

Examples of Taylor series

Consider, for example, the function f(x) = exp(z). The derivatives of this function are
easy to evaluate, exp™ (z) = dn%ﬂ(x) = exp(z). We thus obtain
(@ — )"

exp(a) = exp(z) 3

n=0

- (C80)

The contributions of the first few terms of this series, up to sixth order, are shown in the
panels of Fig. C11. Setting x = 0, we obtain the famous exponential series

exp(z) = S (C81)

n=0

Notice that this series converges for all z: no matter how large its value, the factorial n! in
the denominator grows more rapidly with n than the power law ™ in the numerator_ so that

*For large n, the coefficients r,, = 2™ /n! rapidly converge to zero. This is because they are ratios of products
x-x--- in the numerator, and the much larger products - (n — 1) - -+ in the denominator. Equivalently, one
may note that the ratio of two consecutive values 7,11/, = /n + 1 < 1 becomes arbitrarily small. The
sum over all these values remains finite.
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sum over n converges to a finite value. Referring for a more substantial discussion to the next
subsection, we say that the ‘radius of convergence’ of the series is infinite.

Taylor series representations are often applied to describe the local profile of functions. How-
ever, they may also contain information on global structures. To illustrate this point, let
us consider the Taylor expansion of the sine and cosine functions, sin(x) and cos(z)
at © = 0. The elementary properties sin(0) = 0, cos(0) = 1, d,sin(z) = cos(z) and
d, cos(x) = —sin(z) readily lead to the following general expressions for higher order deriva-
tives at © = 0: sin®’(0) = 0 (vanishing even-order derivatives), sin®"*9(0) = (—1)"
(odd-order derivatives), and cos®>"(0) = (—1)", cos®>"*1(0) = 0. We thus obtain the Taylor
expansions:

n

- (-1 2n+1 — (D)
sin(x) = Z ﬁx , cos(z) = Z <(2n§! " (C82)

Again, these series have coefficients of O(x™/n!) and therefore infinite radius of convergence.

If a Taylor series does exist, it need not necessarily converge for all values of z’. Consider,
1

for example, the function f(z) = =. Differentiating this function at 2 = 0 we obtain

f™(0) = n! and this leads to the so-called geometric series,

1 = .
1_1;:256 : (C83)
n=0

The convergence of the right hand side is limited to values |z| < 1. This reflects the fact that
for z ~1,” we hit the divergence of the left hand side.

As another important example, we consider the logarithm, f(z) = In(1 — x). Since
f'(z) = —(1 — xz)~', its series expansion is closely related to that of the geometric series.
Indeed, it is straightforward to verify that the logarithmic series assumes the form

In(l —z) = i 13:" (C84)
N n=0 n ‘

Again the radius of convergence is finite and convergence is lost for |z| > 1.

Complex Taylor series |: Convergence

Above we have seen that a Taylor series need not converge for all values of 2’. The interval
of values " within which a series converges is called its radius of convergence. The functions
exp, sin, and cos have infinite radius of convergence, the functions 1/(1 — z) and In(1 — )
do not. |4n the latter cases the radius of convergence depends on the point around which one
expands.

°The symbol 7 indicates that x approaches 1 from below, with z < 1 throughout the limiting process.
Similarly, z \, —1 would indicate that x approaches —1 from above, with x > —1.
*For example, for x =1+ 4, § > 0, the radius of convergence is set by 4.
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The existence of a Taylor series requires
a function to be infinitely differentiable. A
function satisfying this criterion throughout
its entire domain of definition is called an
entire function (ganze Funktion). For ex-
ample, the exponential function, and the tri-
gonometric functions sin and cos, are entire

Brook Taylor (1685-1731)
A British mathematician best
known for introducing the
concept of Taylor series to
mathematics. The series ap-
peared as part of his work on
generalizing infinitesimal cal-

culus to a calculus of finite dif- on the real axis and can be Taylor expanded
ferences (the precise description how a func- around arbitrary points. Most functions, how-
tion changes upon finite changes of the ar- ever, contain singularities (such as the func-
gument). The importance of this line of tion 1/x at « = 0), or lack differentiability
thinking remained unrecognized until four (e.g. the function |z| at x = 0), or can only
decades after Taylor's death when Lagrange |  be differentiated a finite number of times (e.g.
understood its powers. 232 at z = 0). In such cases no Taylor se-

ries representation exists around the points
violating the condition of infinite differentiability.

Compared to real functions, functions of a complex variable possess much stronger
mathematical properties which will be addressed in detail in chapter C9. At this point we
just note that the concept of Taylor series can be effortlessly extended to complex functions.
One of several benefits of that extension is that the important question of series convergence
is much better understood in that context. To construct the Taylor series of a function
f:C — C,z+ f(2) we first need to define a complex derivative, f’(z). This derivative
is defined in analogy to the derivative of a real function, Eq.(C1),

df(z) — lim i[f(z+5z) — f(2)]. (C85)

dz 5.0 0,

If the limit exists, i.e. if the same limiting value is obtained independent of the way in which
0, is sent to zero, the function is called ‘complex differentiable’. If they exist, higher-order
derivatives are defined by repeated differentiation, e.g. d%f(z) = d.f'(z), etc. For example,
the function 1/(1 — z) is complex differentiable around z = 0 and its first two derivatives are
given by d.(1/(1 — 2)) = 1/(1 — 2)% and d?(1/(1 — 2)) = 2/(1 — 2)3, respectively. This
example illustrates the general rule that complex derivatives are computed like real derivatives;
all differentiation rules familiar from the real case carry over to the complex case.

For a function which is infinitely differentiable at 2’ its complex Taylor series may now
be defined as

fen =3 Ly (ca6)

As in the real case, the validity of this representation is shown by n-fold differentiation of the
both sides at 2’ = z. For example, the complex generalization of the geometric series reads as

=) 2" (C87)
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Comparison to the real case (C83) shows that the complex series is obtained by complex
generalization x — z in the latter. Indeed it is good practice to

Always think of Taylor series as complex series. The restriction to real series is
then obtained by the substitution z = x + iy — .

0.6

As an example illustrating how complex Taylor series are

o4 superior to real ones, consider the function

0.2]

flz) =e 1/, (C88)

The function f is infinitely differentiable at = 0 and all its derivatives
vanish, f("(0) = 0. The Taylor series expansion thus predicts f(z) = 3", 0-(z"/n!) = 0. However,
this is incorrect, since f is clearly different from the zero function.

This frustrating ambiguity — whether or not one can tell in advance if the series is equal to the
function — disappears if f is interpreted as the restriction of the complex function f(z) = exp —1/22,
with z € C, to the real axis, where z = x. To see this, let us briefly digress to discuss the
differentiability of complex functions (for an in-depth discussion, see chapter C9).

At z = 0, the function exp(—1/22) is not differentiable. (To see why, explore the limiting
behavior of exp(—1/2z2) for z = § and z = i§, respectively, when the real number § is sent to zero.
Two different limiting values are obtained, in violation of the differentiability criterion which requires
the existence of a unique limiting value.) Consequently, a series representation of exp(—1/z2) around
z = (0 does not exist.

This explains why the real function exp(—1/z%) of Eq. (C88) does not have a Taylor series
expansion around x = 0, although all its derivatives w.r.t. to x do exist. The function is the real
restriction, exp(—1/22) = exp(—1/(z +iy)?) — exp(—1/2?), of a complex function which does not
have a series expansion around z = 0. Although a rigorous discussion of Taylor series convergence
is best undertaken within the framework of functions of a complex variable, pathologies such as the
one above are rare. In most cases, the convergence of a real Taylor series can be addressed within a
real framework.

1 C Complex Taylor series are defined in the plane of complex numbers. The

-1 maximum value, R, such that the Taylor series converges for all 2’ inside
the complex circle |2/ — z| < R is called its radius of convergence

M around z. For example, the complex geometric series (C87) has radius

of convergence R = 1 around z = 1. For all |2/ — 1| < R the powers
|z — 2| < r", where r < R =1 is smaller than unity. This makes the series convergent. The
‘radius of convergence' of the real series (C83) is the width of the interval |z’ — 1| < 1 defined
by the intersection of the complex disk of convergence with the real numbers.



252 C5 Taylor series

Complex Taylor series Il: Relation between functions

Complex Taylor series representations can be applied to reveal connections between func-
tions which are difficult to understand otherwise. As an example, consider the series

o0 n

exp(z) = Z %, (C89)

n=0

generalizing the real series (C81) to the complex plane. As in the real case, its radius of
convergence is infinity. Now substitute the argument z = iz, € R to obtain

) = (iz)™ N ) L o § LU
eXp(”):Z)(nl)! :ZO(@n;!x +lz%(2(n+)1)!x h

where in the second equality we split the summation into even (m = 2n) and odd (m = 2n+1)
powers of z, and used i*" = (i?)" = (—1)". Comparison with (C82) shows that the even and
odd parts of the series coincide with the cos- and the sin-series, respectively. All series involved
here have infinite radius of convergence and therefore can be considered as equivalent to the
functions they represent (i.e. substituting an arbitrary argument into exp(z) or into its series
representation leads to identical results). Equating the series to their respective functions then
leads to the conclusion

exp(ix) = cos(z) + isin(z). (C90)

Eq. (C90) is known as the Euler formula.
Remarkably, this very simple relation between
three elementary functions is not straightfor-
ward to prove by means other than series ex-
pansion. At the same time, the Euler for-
opment of modern analysis, mula is immensely useful in applications. For
but also contributed to num- example, it can be used to reformulate the
ber theory, graph theory, and ‘polar representation’ of complex numbers,
applied mathematics. In physics he worked Eq. (L11), as

on problems of mechanics, fluid dynamics,
astronomy, and others. Euler is generally

Leonhard Euler (1707-
1783)

A swiss mathematician and
physicist. Euler played a
pioneering role in the devel-

considered one of the greatest mathemati- c = \z\eld’, (Co1)
cians of all time. An exclamation by a

famous contemporary mathematician:‘Read i.e. as a decomposition in terms of the mod-
Euler, read Euler, he is the master of us ulus |z| and the phase, ¢ (i.e. the angle en-
alll closed by the point z in the complex plane).

This representation plays an important role in
numerous applications in physics and engineering.
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It is worthwhile to list a few important corollaries of the Euler formula: taking the real
and imaginary parts of the relation we obtain

1

sin(z) = i(eix - e_ix), cos(z) = (eix + e_ix). (C92)

N | =

At the particular values © = 27n, n € Z, the relation reduces to the identity
e — 1, (C93)

which we will see plays an important role within the framework of Fourier calculus, section C6.2
Similarly, inserting x = 7 into Eq. (C90) leads to

™ +1=0, (C94)

a remarkably simple relation between five of the most important numbers in mathematics, 0, 1, ,
e and i.

Compute the Taylor series expansion of the functions sinh(x) and cosh(z) around x = 0
and use the result to verify that

exp(z) = cosh(z) + sinh(z). (C95)
Formulate the complex extension of the sin- and cos-series, Eq. (C82) to verify that

sinh(x) = isin(—iz), cosh(z) = cos(—iz).

C5.3 Finite-order expansion

Taylor expansions of finite order are often applied to approximate a function f in the
neighborhood of a point = by

N ) (g
In(z') = Z LA )(:U’ —x)", (C96)

i.e. a polynomial comprising the the first N + 1 terms of the Taylor expansion of f about .
The advantage of such a representation is that the information on the local behavior of even
a very complicated function is now encoded in N + 1 numbers, the derivatives ™ (x). On
the other hand we need to understand the accuracy of the approximation, which depends on
the order, N, on the range, |z — 2’|, and on the local profile of f. It should be evident that a
rapidly varying function is less easy to approximate than slowly varying one.
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The accuracy of a finite-order Taylor expansion is determined by the magnitude of the
difference | f(z") — fn(2')|. Quantitative bounds for approximation errors are derived in lecture
courses of mathematics and we here restrict ourselves to stating a principal result: let I C R
be an interval on which the function’s nth derivative is bounded, up to a multiplicative constant
«, by the nth power of some constant C, i.e. assume that constants o and C' exist such that

\f(")(x')] < aC", Vo' € I,n € N. (C97)
The error made by approximating f(z') by fy () is then bounded as

(Cla’ =z

|f($/)—fN(fL'/)|<Oé (N+1)'

Since the factorial function grows more rapidly than the exponential function, ? the right-hand
side vanishes in the limit of large NV and the Taylor series converges to f. We also observe that
the magnitude of the function derivatives, which are a measure of the speed of its variation,
enter the estimate.

If functions violate the above convergence criterion it is often possible to find an ‘optimal’
N for which the finite series represents an approximation with the least error. For such functions,
truncating the series at either larger or smaller values of NV will produce worse results. The systematic
discussion of these so-called asymptotic expansions is beyond the scope of this text.

C5.4  Solving equations by Taylor expansion

Taylor expansions can be applied to find approximate solutions of equations which are too
complicated to be solved in closed form. To introduce the idea let us consider the example of
an equation that can be solved exactly:

y® —2ey — 1 =0. (C98)
Considered as an equation for y, this quadratic equation has the exact solution
y(e) = e+ (14 €)V2, (C99)

where the notation indicates that the solution for y depends on e¢. Now, if € is small, it is
possible to find an approximate solution for y(e) without knowing the exact solution. The
advantage of such an approximate scheme is that it also works for equations so complicated
that it is difficult or impossible to find the exact solution.

For e = 0, Eq. (C98) is trivially solved by y = +1, hence we anticipate that for |¢| < 1,
the solution y(e) will remain close to y(0) = +1. To find the solution up to and including
order O(€?), say, we thus express it in terms of a series ansatz of the form

y(€) = co + cre + cae® + O(%), (C100)
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where ¢y = 1 and the higher coefficients need to be determined. To this end we substitute
the series into Eq. (C98), retaining only terms up to O(€?), to obtain

[ + 2cocie + (] + 2coca)€®] + —2€(co + cre) — 1+ O(e?) = 0,
or, rearranged to group terms with the same power of ¢ together,
(cg — 1) + (2coc1 — 2¢p)e + (] + 2coco — 2¢1)€® + O(e?) = 0.

The left-hand side is a polynomial in €, and we require it to vanish identically for arbitrary e.
The only way to satisfy this condition is that all coefficients of the polynomial (the expressions
in brackets) vanish individually. This leads to the system of equations

cc—1=0,
20001 - 2C0 = O, (C].Ol)

c% 4+ 2coce — 2¢; = 0.

Notice that the coefficients ¢,, appear successively: the first equation contains ¢y, the second ¢y
and ¢y, the third all coefficients up to cs, etc. Also observe that each time a new coefficient ¢,,>1
appears, it enters the corresponding equation linearly. These two properties do not depend
on the particular form of our equation, but are general features of the solution strategy of
solving an equation using a series ansatz (think about this point). They allow us to solve the
equations (C101) iteratively, determining first ¢; in terms of cg, then ¢, in terms of ¢q and ¢4,
etc. This yields

Coz:l:l, C1 :1, ng:l:l
and hence
y(e) = £l + et 18+ O(°).

This agrees with the Taylor expansion of the exact solution up to quadratic order(C99).

Let us conclude with a few general remarks on the procedure. First, we built the
approach on the a priori assumption that the solution can be expanded in €. If this assumption
turns out to be illegitimate, the equations will signal it by a breakdown of the hierarchical
construction. For example, the simple equation (y(e))2 = € cannot be expanded in €. This
can be understood by inspection of its exact solution, y(¢) = 4+/¢, which cannot be Taylor
expanded around € = 0 (why?). Attempting a series ansatz as above, one readily finds that
no solvable hierarchy of equations ensues.”’

For equations whose solutions can be expanded in some small parameter, ¢, the procedure
above generally works. To repeat the three-step algorithm, consider an equation F(y,¢) =0
and assume that for € = 0 the solution of the equation F'(y,0) = 0 is known as y = ¢y. To
find an approximate solution for small € £ 0, one proceeds as follows:

"Explicitly: inserting the Ansatz y(€) = co+cre+O(e2) into y2 = € yields 2+ 2cocie+ (c16)2 + O(€2) = €.
Equating coefficients with the same power of € yields ¢y = 0 and cyc; = 1, which would imply ¢; = co.
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> Start by substituting the power series ansatz y(e) = > _,¢,€" into the equation.

> Expand the resulting expression F' (> c,€e", €) = 0 in powers of €” to obtain another power
series in €, of the form ) a,(co,...,c,)e" = 0. Here each coefficient a,, is linear in ¢,
and in general can depend on all ¢;j<,,.

> This power series must vanish for all €, implying that each of its coefficients must vanish
identically, a, = 0. Solving these equations iteratively yields the sought-after coefficients
Cn-

Iterative solution strategies of this type are called perturbative solutions. The procedure
is ‘perturbative’ in the sense that for small € the solution is weakly deformed from its ¢ = 0
value, 1.

Perturbative solutions of algebraic equations, and of the differential equations to be discussed
later, play an enormously important role in physics. The reason is that physical problems generally
present themselves in the form of equations. We often encounter situations where an equation
contains a ‘small’ parameter, ¢, and becomes simpler if it is expanded in powers of €. For example,
let y = I be the electric current flowing through a metal in response to the application of a voltage
e = V. For V.= 0 no current will flow, i.e. I = 0 in this case. Since an external electric
field is generally small in comparison to the internal fields that hold the metal together, it may be
considered a ‘small perturbation’. We may thus expand the current to linear order in this small
perturbation, writing it as I = 0+ gV, where the unknown coefficient, g, is to be interpreted as the
(linear) conductance of the system. Computing the linear coefficient g for a real solid can still be
complicated, but it is much easier than computing the full form of the function I(V') for general V.
Such perturbative expansions turn out to be very usefull — indeed, there exists a plethora of different
types of perturbation theory, which play an important role in almost all sub-disciplines of physics.
The discussion of advanced types of perturbation theory is a subject of lecture courses in theoretical
physics and beyond the scope of this text.

C5.5 Higher-dimensional Taylor expansion

Requires section ??. The physical understanding of the example contained in this section
requires basic familiarity with electrostatics.

The concept of local approximations by Taylor expansion is not limited to functions of one
argument. Its generalization to the expansion of a multi-dimensional function f : R™ — R in
the vicinity of a fixed argument x € R™ reads

| =

) =Y

n=0

(X =) - V)" f(x). (C102)

3
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Figure C12: Taylor expansions of electric and magnetic fields play an important role in applications.
For example, the focusing of particle beams in accelerators relies on magnetic fields designed in such
a way that the first-order Taylor expansions of the local magnetic field strengths vanish. Magnets for
which this is the case are called quadrupole or octupole magnets, respectively, and their construction
is a task of great importance (the image shows a quadrupole magnet employed in the Australian
synchrotron, a 3GeV synchrotron accelerator).

where y - V = > 4'0,,. For example, the expansion up to second order is given by

f(x) ~ f(x)+ Z(x' — )0 f(x) + 3 ) (& —2)' (&) — 2V 0% s f(%). (C103)

]

To prove Eq. (C102) one proceeds as in the one dimensional case Eq. (C79). An n-fold
partial derivative 0" i, o, Is applied to both the left and the right hand side, where
i1y yin € {1,. m} are arbitrarily chosen indices. On the I.h.s. of the equation this yields
ar, xnf(x) On the r.h.s. the derivatives act on the factors z”* multiplying the derivative
ope?a%ors. For n = 2 it is straightforward to verify by inspection of Eq. (C103) that the
resulting expression coincides with the l.h.s. Some more bookkeeping is required to do the
calculation for general n, however the principal procedure remains the same.

However, unlike with the infinitely-extended Taylor series discussed in the previous sections,
multi-dimensional expansions are usually truncated after the first few orders. The reason is
that the bookkeeping required to keep the variable indices 2 under control quickly becomes
unmanageably complicated.

lzn /I —

The electric potential created by a point particle at ry carrying positive charge ¢ is
given by p(r) = W (We are working in so-called CGS units here.) At the point r this potential
creates an electric field

r—TIg

=-Vo(r) = W-

Consider now an electric dipole, i.e. a system of two opposite
electric charges, £q, sitting at positions ta relative to the origin
of a coordinate system. When observed from a remote point, r,
with 7 = |r| > |a|, the electric potentials generated by these
charges, ¢+ (r) = +q/|rFa| ~ £q/|r|, largely cancel out. How-
ever, the cancellation is not perfect. The residual contribution is captured by a first-order Taylor
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expansion of the function (1/|r — al) in the offset a around a = 0. Using 9;(1/|r|) = —x;/|r|3, we
find
q q ga-r 2
p+(r) = =+t—+ + O(a?).
rFal [ e

The potential created by the two charges, ¢(r) = ¢4 (r) + ¢_(r), is thus given by

2gqa-r _d-n
tp(r) = |I‘|3 =

r2 -

Here we introduced the unit vector n = r/r, and defined the dipole moment, ¢d = ¢(2a), as a
vector connecting the positions of the two opposite charges, multiplied by their magnitude. The
contour lines of the dipole potential (i.e. lines along which the potential remains constant) are
indicated in the figure above.

Dipole fields appear in many different contexts. For example, biological membranes often com-
prise layers of molecules stacked in such a way that the membrane does not carry a net charge but
does create a dipole potential.

Verify that the dipole electric field, E = —V, is given by

3(d-n)n—d

E(r) ~ 3

Discuss the spatial profile of this field.
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In the previous chapter we have introduced tools to describe the ‘local’ profile of functions.
We now take a complementary perspective and turn to the description of ‘global’ properties.
Our first step will be the introduction of a rather special ‘function” which will later serve as a
diagnostic tool to probe the properties of generic functions.

C6.1 d-Function

For a fixed number y € IR, consider a ‘function’ J, : R — R obeying the condition that
for any continuous function f: R — R

[ a8, @05 = 100 (C104)

This so-called J-function clearly is a strange object. The condition states that for every
function f the integral of f multiplied by J, projects out the function value f(y). A moment's
thought shows that the function d,(z) must vanish for all values of x except for z = y, cf.
Fig. C13." On the other hand we may consider the particular ‘test function’ f = 1 to obtain

the normalization condition
/ dz d,(z) = 1.
R

We are thus dealing with a ‘function’ that vanishes everywhere except at one point, z =y,
and at the same time integrates to unity, i.e. has unit ‘weight’. This means that J,(y) must
be ‘infinitely large' to compensate for the ‘vanishingly narrow width’ of the ‘function’:

0 x
5,(x) = { : 7Y (C105)
00, T =7y.
This extreme behavior implies that the /-‘function’ cannot be a function in an ordinary sense.

However, much like 0 = lim._,q€ can be thought of as a limiting value, we may try to
construct a family of well-defined functions (5@(16) such that for any finite ¢, 5@(,6) is a regular
function and only in the limit lim._. 53(16) = 0, the extreme behavior of ¢, is approached. In
the next sections we introduce concrete realizations of such constructions.

“If dy(z) were non-vanishing for  # y, it would be possible to devise functions f(y) such that
[ dx,d,(x)f(x) # f(y). Think about this point.

259
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by(z)

f()

Figure C13: On the definition of the d-function. A function with the required property (C104) must
be vanishing for all values of = except for x = y where it has to be ‘infinitely large’.

Construction of the d-function
It is not difficult to define a family of functions 6(¢) satisfying the required 19
convergence criterion. Consider, for example, the Gaussian functions

1 I

O(p) = —_ o (@—y)?/e
0,7 (z) = e Y

e\
These functions are defined such that, irrespective of the value of ¢, the

normalization condition [~ dx 5\9(x) = 1 is satisfied. For decreasing

values of ¢ the support’ of (53,(,6) shrinks to a narrow region of width
e centered around y: lim. 6?(,6)@) = 0 for z # y. On the other

hand, the function values at y diverge, lim,_, 51(16)(y) = 00, in such a
manner that the normalization remains constant. The figure illustrates
this behavior for the three values ¢ = 0.2,0.07,0.02, respectively.

We conclude that we may write lim, (5@(,6) = 0y, since in this limit the defining criteria of
Eq. (C105) are all satisfied. Also notice that the parameter y and the argument = appear in
51(/6)(x) in the combination y — z, i.e. the function depends only on the distance between the

-05 0.5

argument z and the reference point y. In particular we have " (x) = 5(()6)(x—y) =6 (z—y),
where (5(()6) = 609 is centered around 0 and the reference to that special center is usually omitted
in the notation. This leads to the alternative representation

]_ 2/.2
09 (x—y) = - ﬁe—@—y) /<, (C106)

In a similar manner, we write 6,(z) = d(x — y), where §(z — y) = lim._,c 69 (z — y).
To summarize, we constructively define the J-function as the limit,

§(z) = lim 69 (), (C107)

e—0

*The support (Trager), supp(f) = {z € R|f(x) # 0}, of a function f : R — R is the subset of arguments
on which f is non-vanishing.
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€N\«
J —
a Y b

Figure C14: §-functions defined on finite intervals. Discussion, see text.

of a one-parameter family of functions defined by two conditions, unit normalization, [ dx 6 (z) =
1, and vanishing support in the limit ¢ — 0. Above we modeled a set of functions obeying
these criteria in terms of Gaussian functions. In the next section, we will introduce other
realizations of practical relevance. However, before that let us summarize two general points
relating to the definition of d-functions.

> It is no problem to restrict the definition of the §-function to finite intervals. For an
open interval I = (a,b) and y € I a finite neighborhood surrounding y is contained in I.
If the width of that neighborhood is called 6 and € < § the support of 5@(,6), too is almost
entirely contained in I (cf. Fig. C14). We then have the asymptotically exact normalization
[;dz 839 (x) ~ 1. This implies [;dzdéy(z) f(z) =1, as before.

If one needs to work with a closed interval I = [a, b] an exceptional situation arises only at
the boundaries y = a, b. It is then customary to work with families of functions 51(,6) defined
such that lim,_,g fab 594z f(z) = f: 6(z — a) = 5f(x), i.e. one half of the weight of the
d-function lies inside the interval (cf. the figure). The other half is outside and gets lost
under integration.

> The d-function categorically appears under an integral operation. Properties of inte-
grals containing J-functions may be understood by temporary substitution of the members
of a generating family, 6, application of standard rules of calculus to them, followed
by an eventual limit ¢ — 0. For example, consider the frequently occurring expression
[ dxd'(x)f(x). At first sight, this does not make sense, a function as singular as the
O-function certainly is not differentiable. However, one may make sense of this integral by
integration by parts of the differentiable members of a family §():

/dx 8 (z)f(x) =1lim [ dz 5(6)’(95)]0(3:) = —lim [ dz 5(5)(x)f’(x) = —f'(0),

e—0 e—0

which leads to the identification

/dx 8 (x)f(x) = — /dx d(x)f'(x) = —1'(0). (C108)



262 C6 Fourier calculus

Paul Adrien Maurice Dirac
(1902-84)

An english physicist who is
considered one of the found-
ing fathers of quantum me-
chanics, and of quantum field
theory. His most striking sin-
gle achievement was the for-
mulation of the Dirac equation, an exten-
sion of the Schrodinger equation of quan-
tum mechanics into the realm of relativistic
dynamics. The Dirac equation led to a va-
riety of striking predictions including that of
the existence of anti-matter. It also necessi-
tated the introduction of quantum fields, a
concept of immense importance in modern
physics.

The d-function plays an important role in ap-
plications both in mathematics and physics.
It was originally introduced by the physicist
P.A.M. Dirac as a tool for the description of
point charges. (A point charge at y is an ob-
ject whose charge density is zero everywhere,
except for the point y where it diverges, i.e. its
charge profile is described by ¢, as in (C105).)
It took several decades to capture the essence
of Dirac’s idea in precise mathematical terms.
The result was an extension of the concept of
functions, known as distributions (see info
section below).

For any nonzero €, 8(9 is a regular func-
tion, however the limit § = lim._, 3 is not.
To understand the limit one may note that for
y € I, 6, extracts the number f(y) from a func-

tion f: I — R: f(y) = [dzdy(x)f(x). This suggests that we should interpret d, as a map from
the space of functions to the real numbers. This map acts on functions as d,[f] = f(y), where we
followed the convention of enclosing the function-argument, [f], of a map acting on functions by
square brackets. For technical reasons, one has to restrict their consideration to argument functions
which are smooth and have compact support, the so-called test functions. Maps assigning numbers
to test functions are called distributions, and §, belongs to this class of objects. For this reason,
mathematicians prefer to speak of a d-distribution. However, we here follow physics parlance and

use the more sloppy terminology ‘d-function’.

Use the auxiliary identity [ dz

59 (z) =

converges to the d-function as lim,_,q 5(6)(515) =

representation of the J-function.

me2 4 22

= 7 to show that the family of functions

1+z2 —

1
¢ (C109)

0(z). Eq. (C109) is referred to as the Lorentzian
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In the next section we will need one more representation,
namely the representation of the J-function in terms

of exponential series. Consider the family of functions os o
1
5 (z) = 7 g exp(ikz — e|k]), (C110) oo+
where k is summed over all values &k = 2mn/L, n € Z, -0
and z € I = [0, L]. To heuristically understand why these
functions have a chance of converging to J(z), note that  —tol ol - -

for fixed = and arbitrary k, the ‘phase factor’ exp(ikz) is a
complex number of modulus one and phase kx. The summation over k can be interpreted
as an ‘average’ over lots of exponentials with effectively random phases, kz = 27winz/L. In
the limit of small ¢, a large number of n-values contribute to the sum”. If 2 does not equal
0 or L, the exponentials are spread across the complex plane with quasi-random phases (i.e.
quasi-random angles w.r.t. to the real axis), so that their sum essentially yields zero. [The
figure illustrates the situation for L = 100, e = 0.01, 2 = v/2 + v/3. The red points represent
the numbers exp(?wn/L(ix — e)) for n = 1,...,500, in the complex plane. For increasing
values of n the presence of the ‘damping factor’ € brings the exponentials closer to zero and
guarantees the convergence of (C110). Summation over all exponentials will yield a value
close to zero.] Conversely, for x = 0, we are summing over exp(—e|k|), and in the limit ¢ — 0
obtain an infinitely large value. This argument shows that the family of sums (C110) is a good
candidate for a d-function limit.

The sums in (C110) have the form of a geometric series, >~ (exp(C))", and can therefore
be computed in closed form. As is detailed in the info section below, application of the master
formula Eq. (C83) leads to the result

1 €
e+ a2’

69 (z) ~ 2], e < L, (C111)

i.e. when the argument, z, is small compared to L, the sum converges to the Lorentzian form
of the o-function, Eq. (C109), confirming the expected behaviour.

The proof of Eq. (C111) is an instructive exercise in series manipulation. We define z =
27 (i — €) and organize the sum (C110) as

00 0 00
59 (z) = % (Zem + Z e " — 1) = %Z (e +e"%) — %
n=0

n=—00 n=0
1 1 1 1 [1+e 1+4¢7
=— - —1) == - ). C112
L<1—62+1—ez > 2L<1—ez+1—ez) ( )
Now observe that for x nonzero and ¢ = 0 we have Z = —z. Using this identity we immediately

find lim. 06 (x) = §(x) = 0. To see what happens for z close to 0 we note that for |z|,e < L

’Due to the damping factor e~€lkl = e—<2mInl/L

tions.

, values |n| 2 L/e give only exponentially small contribu-
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the argument |z| < 1 is small, and so the numerators and denominators in (C112) may be Taylor
expanded to first order, as 1 +e* =2+ O(z) and 1 — e* = —z + O(22). This yields

1 /1 1 1 1 1 1 €
()~ (24 2) = —— - c11
(z) L<z+2> 2m <i:v—e+—iz:—e> me2 + a2’ (C113)

as stated above.

Properties of the -function

The definition (C104) implies a number of useful relations obeyed by the J-function,
which we summarize here for later reference.

> For any smooth function, we have the defining property

/ 4 (x — ) f(x) = f(y). (C114)

which implies the unit-normalization [ dx d(x) = 1.

> In applications, we often encounter d-functions whose arguments differ from the integration
variable. As a simple example, consider the integral [ dz d(cx)f(x), where c is a constant.
This integral may be computed by application of the substitution rule Eq. (C26) to change to
a new integration variable u = cz. We then obtain [ dule|™*d(u) f(u/c) = |¢| ' f(0/c) =
lc| 71 £(0), where the defining property of the d-function has been applied to compute the
u-integral. The result

/ dz 6(cx) f(z) = % £(0), (C115)
is equivalent to the scaling relation
5ex) = ri’a(x). (C116)

Remember: the defining property only applies to combinations [ dz 6(x)(...) where the
integration variable itself features as an argument of the J-function. Specifically, the -
function is inversely proportional to factors appearing in its arguments.

> Eq. (C116) implies symmetry of the J-function under changes of sign, §(z) = §(—xz).

> Another frequently occurring expression reads [ dx 6(g(x)) f(z) where g is a function.
Since 6(g(x)) = 0 for g(x) # 0 this integral receives contributions only from an (infinitesi-
mal) neighborhood of the zeros of g. Assume that x is such a zero, assume differentiability
of ¢ there, and expand g(z) = g(xo) + ¢'(z0)(x — x0) + -+ = ¢'(x0)(z — xo) +.... We
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substitute this expression into the integral, note that for x — xzy the higher order terms in
the expansion can be neglected, and apply Eq. (C115) to obtain

J (o
[ awitoton s = 2
‘dg(ﬂﬂo)
dx
In cases where g has more than one zero, xy,xy,... the contributions of all these to the

integral need to be added together. In this way we arrive at the most general representation
for the change of variables under a d-function

[ astoten ) = Y- ‘{fjjjjf (1)

For completeness we mention that integrals over functions with zeros of higher order, such
as [ dxd(x?), are ill-defined.

Consider the integral I = [ dz §(z* 4+ 3z — 10) - (22 + 1). The function g(z) =
22 + 32 — 10 has zeros at xg = 2 and x1 = —5, and at these points its derivative, ¢'(z) = 2z + 3,
gives ¢'(x9) = 7 and ¢'(x1) = —7. Eq. (C117) thus yields

1 1

4
I= ‘7’[2'2+1]+m[2.(—5)+1}:—?.

> Derivatives acting on the d-function are are defined by the relation Eq. (C108).

> Consider the integral [* dyd(y)f(y). It yields 0 if 2 < 0 (because the interval does not
contain y = 0), f(0) if x > 0, and f(0)/2 in the exceptional case where z = 0 coincides
with the center of the J-function (cf. Fig. C14 and its discussion). The frequent occurrence
of this expression motivates the definition of the Heaviside step function’

1 forxz >0,
O(x) =< 3 forz =0, (C118)
0 forz <0.
The above results may now be written as
| avssw =ewie) (C119)

“In the literature, one often finds a simplified version of the Heaviside function, ©(z) = 1 for 2 > 0 and 0
for x < 0, which is not perfectly symmetric relative to the jump point, x = 0.
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For f =1 we have

| avity) = o)
which may be considered as an alternative definition of the Heaviside function. Differenti-
ation of this relation w.r.t x yields

This formula states that the ©-function is constant almost everywhere except at the jump-
point x = 0, where its derivative is singular. Of course, neither the ©-function, nor the
o-function are truly differentiable. All the expressions above have to be understood as limits
of appropriately defined 6(9-sequences.

C6.2 Fourier series

We now turn to the principal theme of

Jean = Baptiste  Fourier this chapter, the ‘global characterization of

(1768-1830)

A French  mathematician
and physicist best known
for the invention of Fourier
calculus. Fourier applied his
new concept to the study
of physical phenomena such

functions’. To motivate the topic, suppose
an experimentalist has recorded data such as
that shown in Fig. C15. (The plot shows
oscillations of individual quantum states of a
molecule.) How can the ‘essence’ of the mea-
sured signal be described in concise terms?

as heat conduction or the physics of The data clearly contains both experimental
vibrations. He is considered the discoverer noise and a high level of repetitive redun-
of the greenhouse effect. dancy. However, just by looking at it one
can also identify ‘relevant information’, no-
tably the presence of an oscillatory pattern that fluctuates at two time scales, one of order
1ps, the other of order 10ps. Our goal is to distill such relevant information from a complicated
and largely redundant background.

The idea of Fourier calculus

The idea of Fourier calculus is to represent a given function f as a sum over many simple
functions. In most cases these are the harmonic functions exp(ikz), cos(kz), or sin(kz).’

"A function v(z) is called harmonic if it obeys the condition d2¢(x) = ¢ x (z), where c is a constant.
This states that harmonic functions reproduce themselves (up to multiplication by a constant) upon two-fold
differentiation. There exists a generalized definition of harmonic functions (and of Fourier calculus) in which
the simple two-fold derivative is replaced by a more complicated so-called Laplace operator. However, this
extension is beyond the scope of this text.
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Figure C15: Measurement of collapse and revival phenomena in a single atomic eigenstate. Image
taken from H. Goto et al., Nature Physics 7, 383385 (2011).

Here we focus on the expansion in terms of exp-functions, which play the most important role
in physical applications. The straightforward modifications needed for the closely related cos
or sin series are discussed in problems ?? and ??7, respectively.

Consider a complex valued function f : I — C,z — f(z), defined on a finite interval
I = [0, L] and obeying periodic boundary conditions f(0) = f(L). Now let us try to
‘expand’ f in terms of oscillatory exponentials as

flz) = % > e, (C120)
k

where the sum extends over all
k=—, n € 7. (C121)

These values are chosen such that each of the exponentials in (C120) satisfies exp(ikL) =
exp(0) = 1. In this way it is guaranteed that the r.h.s. of the equation respects the boundary
condition f(0) = f(L) of the l.h.s. Series such as (C120) are called Fourier series.

Fourier series are frequently applied to the analysis of periodic functions, i.e. functions f
which repeat on some interval [0, L], see Fig. C16. All the information about such a function is
contained in its restriction to a single-period interval [0, L], where f obeys the periodicity condition
f(0) = f(L). This motivates the study of functions restricted to [0, L] and obeying periodic boundary
conditions. A function defined on the full real axis may then always be reconstructed by repetition
of the restricted function. (For arbitrary y € R, determine the integer n such that y = nL + «z,
x € [0, L] and define f(y) = f(nL + x) = f(x) through the restricted function.)

It turns out that for many functions of interest, an expansion as in (C120) fails for a lack
of convergence. Since |e**| = 1 the coefficients f; are required to decay rapidly and this
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Figure C16: (Real part of a complex) function periodic on the interval [0, L]. The full ‘information’
aboout the function is stored in its restriction to a single-period interval [0, L].

condition limits the option of a series representation to only a narrow class of functions.
However, an efficient way to improve on the situation is to redefine the series as

1 : ¢ ikx—|kl|e
f(x)ZEP\r(%kaek Ikle, (C122)
k

where the notation € ™\, 0 means that € is sent to zero coming from positive values. For
any finite € the series now converges, unless the coefficients f, increase exponentially in k.
The parameter € is called a convergence generating factor. It is customary to not write
this factor explicitly even if its presence is required to render a series convergent. However,
if seemingly ill-defined series such as Y, e** (coefficients fo = 1) are encountered in the
literature, one may safely assume that the presence of a convergence generator is implicit.

Fourier modes

Eq. (C120) contains the functions exp(ikz), which in the present context are called Fourier
modes. They will play an important role throughout and it is worthwhile to summarize their
essential features: for each value of k, exp(ikz) is an oscillatory functions (cf. Fig. C17) where
the oscillation period, Az = 27 /k = L/n, decreases with n. In physical applications, Fourier
modes often appear in the context of with wave-like phenomena and the index k is called
the wave number of a wave with wave length A =27 /k. A Fourier mode of index n then
contains n oscillation periods in the interval [0, L].

Fourier modes obey a so called orthogonality relation

1 ek
z /dl‘ el(k_k ) = 5k’k’7 (C123)
1

i.e. the integral of the product, exp(i(k — k’)x), of a Fourier mode, exp(ikz), and of its
complex conjugate exp(—ik’z) vanishes unless their wave numbers are equal.
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Figure C17: Real part cos(kz) (solid) and imaginary part (sin(kx)) (dashed) part of the Fourier
mode exp(ikz), for k =2 x 2w/L and L = 1.

This relation, which we will see is of central importance, can be proven as follows: if k # £’
we have
1 . , 1 . . |L
- d i(b—k"z _ i(k—k x| _ 0
L/I re iL(k— k) © o
due to the periodic boundary conditions, exp(ikL) = exp(ik0) = 1 (and the same for £’).
However, for k = k', exp(i(k — k’)x) = 1, and the integral trivially yields unity.

In physics and engineering the notation of (C120) is often used when z is a space-like
argument. However, just as often Fourier calculus is applied to describe functions f(t), where ¢ is
time-like. (For example, Fig. C15 shows a time-like signal.) In that case the alternative notation

f(t) = % > foe (C124)

is more frequently used. Here, f(t) is defined on an interval [0,7] and w = 27n/T is called the
frequency of the Fourier mode. Also notice the sign change relative to Eq. (C120) in the exponent
of the mode. The details of the definition of Fourier modes are matters of convention and differ
from one scientific community to another. In texts involving Fourier calculus it is therefore common

practice to open with a remark such as: ‘In this text, we will define Fourier series as f(x) =...".

Fourier series construction

In view of the periodic structure of the Fourier modes it may seem surprising that most
functions which occur in practice, including aperiodic functions, afford Fourier series represen-
tations.

To understand the criteria for Fourier representability let us assume that the series exists
and ask what conditions for the function f ensue. If f has a series representation then the
Fourier coefficients f), can be easily obtained as follows: multiply f(z) by exp(—ikz) and
integrate over I:

i ik (1 W -1 L _
[faretes@ = fawets (p S fee) = S e p flanet 2 g
I I k' k! 1

where in the last step the orthogonality relation of Fourier modes was used. We thus have the
identification

- / da o= (). (C125)

I
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Figure C18: Fourier representation of the function (C127) in terms of a finite series with maximum
index nmax = 1 (long dashed), 10 (dashed) and 80 (solid).

Notice that even for real functions, f(x) € R, the coefficients fi are generally complex.
However, we have the symmetry relation,

ﬁ: /Idxe“mf(x) = fp. (C126)

Consider the function (cf. Fig. C18)

1
f(x) :{ o w€0a). (C127)

1—ux, xe(%,l)

The Fourier coefficients describing f are readily computed: for k = 0 we have fy = 0, and for k £ 0
we obtain
1 o—ik/2

3 1/2 . _
k#0: fp= / dz e ke (—g) +/ dee (1 — ) = ——, (C128)
0 1/2 ik

where partial integration was used to integrate ze F*,

The above procedure yields the coefficients f, provided the Fourier expansion exists. To
understand under which conditions this is true, we substitute Eq. (C125) into (C120), assume
that the order of the summation over k and the integration over z can be exchanged, and
obtain

s 23 (fare s ) et = [ao (% > eikw@) (@)
() / dz 6(z — y) f(2), (C129)

Where in the crucial third equality we noted that the expression in brackets is the d-function.’
The final integral yields f(y), so the ansatz of f as a sum over Fourier modes faithfully

°Do remember that there is a hidden convergence generating factor, i.e. the expression in brackets should
be read as lime_,o + 3, e*@=2)=¢l*l which is Eq. (C110)c_o = d(x).
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reproduces f as required. However, in deriving this relation, we tacitly assumed that the
Fourier coefficients, fy, are finite and that the sum over them exists. For functions obeying
the rather mild so-called Dirichlet conditions (see info section below) this is the case, and
Fourier expandability is granted.

The three Dirichlet conditions sufficient for the Fourier expandability of a function read:

> The integral of (the modulus) of the function must exist: [ |f(z)|dz < co.
> The number of local extrema of f in I must be finite.

> f must contain only finitely many discontinuities in I.

10 An example of a function failing this test is given by
0.5
|0, x € [—m, 0],
-0.10 -0.05 ! 0.10 f(w) - { sin(l/x), = (077-‘-].
-05
1o The infinitely many extrema accumulating in the vicinity of z = 0

spoil its Fourier-expandability.

In the previous example we obtained Eq. (C128) for the Fourier coefficients of the
‘sawtooth function’. Using this result, we obtain the series representation

—ik/2 1 el2mnz o—imn

f(z) = Zeik‘UeT =— Z T © = %Zsin(%mx) (—:L)"

k0 T ez o} n>0

Fig. C18 illustrates how the series models the function in terms of oscillatory (sin) contributions.
The long-dashed, dashed, and solid curves, respectively, represent finite summations truncated at
the index npax = 1, 10, 80, respectively. It is evident that the ensuing approximations are efficient in
regions where the function is smooth. However, problems arise in the neighborhood of sharp corners
where a large number of terms is required to obtain satisfactory agreement.

Notice that even for an elaborate representation of f(x) in terms of 80 Fourier contributions
the series visualized in Fig. C18 ‘overshoots’ at the corners of the function. It can be shown that the
excess peak does not diminish upon inclusion of more terms in series; it remains at a level of O(10%)
of the function value. Only the width of the excess regions shrinks at higher levels of summation
accuracy.
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This phenomenon is known as ringing. Ringing is notorious in audio and
video compression algorithms such as MP3 or AAC, or JPEG, which all rely
on Fourier signal encoding. The term ‘ringing’ alludes to the fact that in
compressed acoustic data, such overshooting becomes audible as a sharp
‘ringing’ noise, accompanying the reproduction of dynamical sound sources
(such as drums). The JPEG compressed reproduction of a star shown in the
figure illustrates how the same effect spoils the accurate reproduction of sharp edges in visual data.

The example above illustrates an important general feature of Fourier representations:
the series (C120) encodes the information carried by the function f(z). For large k the
exponential functions on the r.h.s. oscillate rapidly, i.e. functions with large k carry the
information about the ‘fine structure’ of f(z), or structures at small scales in z. Conversely,
the information on large scale structure in z is carried by slowly oscillating contributions with
small k. The appearance of k£ and z in the product k- x in the Fourier modes shows that scales
of characteristic length Az are described in terms of Fourier modes with index & ~ Axz~!.
This fact is known as Fourier reciprocity and should be remembered as follows:

Fourier modes of large/small value k describe structures at small/large scales, x ~ k1.

For functions devoid of sharp singularities, the inclusion of a few Fourier modes can
suffice to obtain excellent approximations. Consider, for example, the function

1 2+ cosx

f(z) R62+elx 5+4cosx ( 30)

on the interval = € [0, 27] (Fig. C19). The Fourier coefficients of this function are best computed
by geometric series expansion (cf. Eq. C83),

f(z) LRe— ! 'R i L)' (C131)

z) = _Re———— = -Re ——e .
2 14 gele 22

Substituting this expression into Eq. (C125) and using Eq. (C123), we obtain f;, = (—1)F/28+2.

The graphics shown in the figure illustrate how the approximation of the function in terms of a sum

over only a few Fourier modes yields excellent results.

Conceptual meaning of Fourier series representations

Eq. (C120) has the form ‘function= ), (coefficient); x (function);’, where the function
on the Lhs. is f(z), f, =(coefficient),, are the coefficients, and exp(ikz) =(function); are
k-dependent functions of x. If we think of f as an element of a vector space of periodic
functions, then this formula has the status of representing the ‘vector’ f in terms of a linear
combination of other vectors, viz. the exponential functions indexed by k. Since every function
can be expanded in this way, the set of all exponentials {exp(ikx)} can be viewed as a basis
of function space, indexed by k. This suggests that
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Figure C19: The red curve shows the function (C130) and the dashed, dash-doted, and solid black
lines are approximations by 1, 3, and 6 Fourier modes.

A Fourier series representation corresponds to a change of basis in function space.

This interpretation of Fourier representations is rather useful both conceptually and from an
applied perspective. Many of the formulae derived in this section have a background in linear
algebra and this connection is helpful for understanding and remembering their structure.
The observation that functions can be expanded in terms of exp-functions suggests that it
might be possible to construct further sets of useful function bases. Indeed there exist several
other expansion schemes relevant to physical disciplines such as electrodynamics or quantum
mechanics, and the vector space interpretation allows them to be understood in a unified
fashion. For a comprehensive discussion of these connections we refer to chapter L10.

C6.3 Fourier transform

Next we explore what happens as we extend the width of our support interval I indefinitely.

To this end, we choose an interval I = [—%, %] and send L — oo. In the limit, the function

f is defined on the entire real axis, f : R — C.

Definition of the Fourier transform

For . — oo the spacing 0k = 27” between successive Fourier series wave numbers k =
n2m /L tends to zero. The Fourier sum then assumes the form of a Riemann sum + >, (...) =
0k ank(' : L) — oL [*_dk(...). Introducing the shorthand notation [ 9% = L [dk an
writing fr — f(k) for the infinite-space Fourier coefficients we apply this replacement to the
series (C120) to obtain

fo = [ " dee (),
fw) = [ ) (C132)

The first of Eqgs. (C132) defines the Fourier transform f of the function f and the second
equation is the inverse Fourier transform.
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As with the Fourier series Eq. (C120) the definition (C132) has problematic convergence
properties: only a few functions can be integrated with an exponential function over an infinite
interval. To overcome this problem we introduce a convergence generating factor similar
to that introduced in Eq. (C122): we generalize the exponentials appearing in the definition
as

exp(ikz) — exp(ikx — €lk|),
exp(—ikz) — exp(—ikx — €|z|)
where € is positive and sent to zero, € N\, 0, after all integrals have been done. At any finite

e, functions f(x) and f(k) with less than exponential increase at || — co and |k| — oo can
now safely be integrated. The generalized transformation identities are given by

k) =tim [ dveee ),
. > dk ikx—elk| £
oy =t [ SR e, (C133)

Again, it is customary to suppress this factor in the notation in cases where it is not absolutely
required.

Consider the function
f(x) = O(z)e 11,

where ¢ € R and v € R™, and © is the Heaviside step function (C118). Its Fourier transform is
given by

- o . i 1
k :/ dpe e 1P =
Fk) 0 v +i(k—q)
The inverse Fourier transform then reads
< dk eikx
r) = e

Could you compute the integral defining the inverse transform by elementary means? (Do not try
too hard, it is not straightforward.)

Let us demonstrate that Eqs. (C133) define an integral transform, i.e. that it is possible to
reconstruct the function f(x) from its Fourier transform f(k). To this end, we substitute the
first integral without the convergence generating factor (it will not be needed) into the second
integral (where the factor does play a role), exchange the order of integrations and obtain

RIRY dk ikz—e|k| 1 —ikx’ AN 1 dk ik(z—z')—elk| /
f(:t)—ll{% 5 © de'e ™ f(z') = [ dx 11\218 5 © f@).
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We thus require that

dk k /
. v ik(z—x')—elk| _ )
lli% 5 © oz — '), (C134)

This integral owes its existence to the presence of the convergence generating factor (why?)
and can be computed as

00 0
lim % eik(az—a:’)—e\k:\ = lim / % eik(x—x’)—ek + / % eik(a}—x’)—i—ek _
e\0 27 eNO 0 2m 0o 2

o 1 1 _
~ X0 27 ( i(:c—:c’)—e+i(:c—x/)+e) B
o1 € (C113) ,
=W oepre - W)
We thus confirm Eq. (C134) and the Fourier transform identity relying on it. However, notice
that the proof relied an exchange of integrals [dk [dz(...) — [dx [dk(...). Much as
with the previous case of Fourier series this exchange operation — an application of Fubini's
theorem discussed in C4.1 — relies on the existence of the integrals involved. While generic
criteria for the existence of Fourier integrals are difficult to state, the rule of thumb is that
functions that can be integrated in the presence of a convergence generating factor can be
transformed. This includes functions which grow no faster than power laws (for the growth
of any power ™ will be compensated by a factor of exp(—e¢|z|), no matter how small ¢)
but excludes functions with exponential growth. There exist modified versions of the Fourier
transform, for example, the so-called Laplace transform that can be applied to deal with
such cases. However, we will not discuss these extensions here.

The relation,

dk .
elkac

S = 3(a), (C135)

plays an important role in various contexts beyond the Fourier transform. It is known as the
exponential representation of the J-function. Comparing this integral to the series repre-
sentation of the d-function, (C110), we notice a subtle difference: Eq. (C110) was defined for
arguments = € [0,L]. However, if we consider (C110) for general z € R then we obtain a
result periodic in = with a period L. Since k is summed over values k = n2m/L, we have
exp(ik(x +mL)) = exp(ikx + 2mnm) = exp(ikz), m € Z. The sum therefore produces a ‘comb’
of §-peaks at positions mL. This is consistent with the fact that Fourier series were designed to
describe L-periodic functions. In the limit L — oo the sum becomes an integral, the period spacing
goes to infinity, and the two definitions match.

Occasionally, it may be necessary or just more convenient to generate convergence by
a so-called Gaussian convergence generating factor,

exp(ikz) — exp(ikz — ek?), (C136)
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i.e. a generalization which is even better at convergence at large values of k. Use the general formula
for Gaussian integrals
oo
™ b2
/ dse 95" 1bs — \/7e4a7 (C137)
oo a

lim % eik(az—a:’)—ekz
e\0 27

produces a Gaussian representation of the J-function [cf. Eq. (C29)].

to verify that

Generalized definitions of Fourier integrals

In practice, one often needs to Fourier transform higher-dimensional functions f : R" —
C,x — f(x). This is achieved by separate Fourier transformation in each of the variables

contained in x = (z!,..., 2"). Defining

k... k) E/d:)?l e_ixlkl.../dx”e_imnk"f(xl,...,x"),

and combining the products of exponentials to a single exponential we obtain the Fourier
transform of multi-dimensional functions

f(k) = / det. . daz™ e R f(x),

foo = [P B gy, (C138)

21 7 2m

where k-x = 3. ka', k = (ki, ..., k,)”," and the second line contains the inverse transform.
The Fourier transform of functions f(¢) depending on time-like arguments is de-
fined as

fo= | T e f(r),

o0

o= [ ) (C139)

oo 2T

where w is a frequency-like variable. As with the definition of the Fourier series (C124),
the signs in the exponents are exchanged relative to the ‘space—like’ Fourier transform. The
rationale behind this convention becomes evident once Fourier transforms of functions f(x, )
depending on space— and time—like arguments are considered. This point is usually discussed
in texts on classical electrodynamics.

"Here we use a fact discussed in analytical mechanics (cf. V.I.Arnonld, Mathematical Methods of Classical
Mechanics, Springer Verlag 1978), viz. that k = (k1,..., k) is a covariant object whose components should
be labeled by subscripts. For the purposes of the present text it is sufficient to consider this as a notational
convention.
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Properties of the Fourier transform

The following is a list of the most important properties of the Fourier transform:

> The Fourier transform converts derivatives into multiplicative factors. To see what
is meant by this statement, consider the derivative of a function, d,f(x). The Fourier

transform, d,. f(k), of this derivative is obtained as

d, f(k) = ik f(k), (C140)

where f(k) is the transform of f(z). This is seen by partial integration as’

4 F(k) = / dze—hed, f(z) = — / dz (dye= ) f(z) — ik / da o= F(z) = ik (),

In the same way one verifies the inverse property: a Fourier transform given by dkf(k;) has
inverse Fourier transform —iz f(z), or

di f(k) = —i(zf) (k) . (C141)

The key observation here is that

Derivatives ‘simplify’ under Fourier transformation. They get
converted into multiplicative factors.

In problems involving lots of derivatives it is often convenient to pass to a Fourier represen-
tation, work for a while there, and only later transform back to the original representation.
We will discuss such strategies in the next chapter when we solve differential equations.

> Consider two functions, f,g : R — C. What is the Fourier transform of the product fg?
To answer this question we define the convolution (Faltung) of two functions f, g as

<fwmwz/m#u—wmw. (C142)

This definition applies regardless of where the functions are defined. For example, the
convolution of two functions f, g depending on the variable k is given by

G*m@»z/Hvﬂk—www»

*Keep the presence of convergence generating factors exp(—|z|e) in mind. They eliminate the boundary
terms e~ F¥e =l f(1)|>,_ generated by the partial integration.
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The Fourier convolution theorem now states that the Fourier transform of the product
of two functions (fg)(x) = f(x)g(x) is given by the convolution of the respective Fourier
transforms:

Folk) = o (7 * 3)(). (C143)

Equivalently, the Fourier transform of a convolution is given by the product of the Fourier
transforms,

(f * ) (k) = F(k)3(k), (C144)

Eq. (C143) is proven by direct calculation:

@M@—/wwwmmm
:/dxe—ikx/d_//eik”xf(k//) d—k/eik/xg(k’)

2 2
! 1 N 1 ! ~
:/C;_k /d/{:” 2—/dxe_l(k_k —Kx f(k‘”)g(k‘,) _
T m
5(h—k"— k")
dk’ -~ N
— [ 5 F=Ea(w). (C145)

The inverse relation is shown in the same way. Observe that

Upon Fourier transformation a convolution (complicated) becomes a
product (simple), and vice versa.

Convolutions appear in many different contexts. For example, in applied mathematics and
engineering they are often applied to smoothen ragged signal structures (see the exercise
below).

> The Fourier transform of the exponential function is a J-function, and vice versa

elar = (k—q), §(z —y) = e, (C146)
An important special case is ¢ =0, y =0, i.e.

1=6(k), &(z)=1 (C147)

All these relations are straightforward consequences of the definition of the transform.
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> Another useful relation connects £(0) to the integral of f(x), and f(0) to the integral of

F(h)
7(0) = / def (),
£(0) = / W F ey, (C148)

o
These relations are trivial consequences of the definition of the Fourier transform.

For later reference, we state two more properties of the Fourier transform. However, they may
be skipped at first and consulted when necessary.

> The Fourier transform preserves the scalar product on L*(RR, C), i.e.

_ dk =——_
[ s F@gto) = [ 5 FRIa) (C149)
The finite-interval version of this relation is:

/, de F()g(r) = 3 Fk)(k), (C150)

Egs. (C149) and (C150) are proven by straightforward calculation. When applied to the
case f = g Eq. (C149) assumes the form

[asira@r =5 [ vl (c151)

This equation goes by the name of the Plancherel theorem.

> Under complex conjugation the Fourier transform behaves as

(k) = F(—k), (C152)

where f is the Fourier transform of the complex conjugate function f. For real valued
functions the relation simplifies to f(k) = f(—k).

Before leaving the formal discussion of the Fourier transform it is worthwhile mentioning
that there exists various other integral transforms of similar flavor. A prominent example is the the
Laplace transform,

f(s) = /OOO dt f(t)e st (C153)

Here, f(t) is a ‘time-dependent’ function, and the complex parameter s is a ‘frequency-like’ variable.
(Imaginary parts in frequency-like variables can be interpreted as finite damping rates, see later
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Figure C20: Decomposition of a sound signal of 0.1 sec duration in terms of 500 (dashed) or 1000
(solid) Fourier modes. The latter reduces the raw data (5000 data points) by a factor 5 and already
gives a decent approximation to the full signal.

discussion in section C7.3). The required existence of the integral is an implicit part of the definition,
i.e. the Laplace transform f(s) is defined only if the integral on the right hand side exists. For
example (verify) the Laplace transform of the d-function 6(s) = 1 exists for all s, and that of the
exponential function e~, (s + 1)~ for all arguments Re(s) > —1.

The Laplace transform shares many essential properties with the Fourier trans@@. For example,
it is manifestly linear (f/—\i-/g = f + §) and satisfies relations such as (verify) tf(t) = —f'(s), or
f'(s) = —sf(s) — f(0). An important difference is that the inverse, f(t), of a Laplace represented
function f(s) is not as easily obtained as in the Fourier case. Rather, the inverse transformation
relies on complex functions integral techniques (of the sort introduced in section C223 below.) For
further discussion of the Laplace transform and the occasional applications in differential equation
solving where it outperforms the Fourier transform we refer to the literature.

C6.4 Fourier transform applications

This section illustrates the utility of the Fourier transform on concrete examples. It can
be skipped at first reading.

The Fourier transform is a powerful tool in science and engineering. Prominent areas of
applications include:

> The transformation of derivatives into multiplicative factors (cf. Eq. (C140)) makes the
Fourier transform an aid in the solution of differential equations. We will return to this
point in the next chapter.

> Fourier transformation is used to analyse, or manipulate measurement data. Consider,
for example, the data shown in Fig. C15. The signal visibly contains two superimposed
oscillations, one with period ~ 0.5 ps and a slower one with period ~ 7 ps. Temporal Fourier
transformation would make this observation quantitative in terms of pronounced peaks in
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the transform at frequencies corresponding to the two dominant oscillation frequencies.

> Fourier transformation plays an important role in the compression of acoustic or visual
data. The basic idea is to decompose data into Fourier modes and to dispose of modes
with wave numbers or frequencies exceeding a certain threshold (cf. Fig. C20). Actual
compression algorithms are refined implementations of this approach.

> Fourier transformation plays a key role in imaging algorithms (cf. the second example
below).

In the following, we illustrate the utility of the Fourier transform on two examples.
Noise reduction

In experimental physics and engineering one often records
‘ data in which a ‘signal’ is masked by noise. For example, the
“ WMWWWWWWWMH (‘ fi.gure shows the rea_dout .of a measurement device suscep-
tible to the mechanical vibrations caused by human traffic
next to the apparatus. (Notice how at nighttimes — the

"""""" center regions of the plot — the noise is reduced.)

To explore how noisy signals can be processed by Fourier
transformation, consider a function f(x) = fs(z) + f.(z), where fs(z) represents a slowly
varying ‘signal’ and f,(x) is a ‘noise’ function fluctuating rapidly on scales ~ §. The noise
contribution can be reduced by convolution of f with a suitably chosen smoothing function.
Consider, for example, the box function

1, |z < €/2,
g(x) = - { 0 else (C154)

Am [mg]
—

where € > § is large compared to the noise fluctuation rate but small compared to the variation
scales of the signal and the prefactor is chosen to obtain unit normalization [ dzg(z) =1. A
convolution

€/2

f@) = (Fx9)@) = [dugo)fe =) == [ dufe o),

€/2

effectively ‘averages’ f an interval of width ¢ around x and hence smoothens the function. It
damps out the noise but leaves the signal essentially unaffected if € is not chosen too large.
The effect of the convolution becomes even more transparent in the Fourier language. To
illustrate the principle, consider the example of the function

fo(z) = e **O(x), fn(x) =ncos(Kx), (C155)

shown in Fig. C21. Here, f, represents a ‘signal’ decaying exponentially on the scale ¢ and f,,
simulates ‘noise’ fluctuating on the scale 27 /K < (.
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Figure C21: Plot of the function (C155) for £ =1, n = 0.07, K = 507). The damped solid and flat
curve are the convolution of f against the Gaussian weight (C154) for e = 0.01 and 0.1, respectively.

The Fourier transforms of these two contributions and that of the averaging ‘weight func-
tion’ are readily computed to be
1

fs(k:) = m,
fo(k) = 7n(6(k + K) + (k — K)),

(k) = %Sin(d{:ﬂ).

Notice that §(0) = 1 which reflects the normalization [ dzg(x) = 1. In Fourier language, the
convolution f % g(k) = f(k)j(k) becomes a simple multiplication,

k~e—1

foB)g(k) "= fu(k),
Fu(K)g(K) = O(1/€K).

In the first line we noted that for k values ~ ¢! relevant to the variation of the signal
multiplication with g(k) has little effect, short range averaging does not alter the signal. The
second line states that for £ ~ K the weight function leads to a strong suppression of rapid
fluctuations.

Consider the Gaussian weight function,

1 2 2
g(zx) = e /e, (C156)

and cofirm that
(fn*xg)(z)= ef(%)2 cos(Kz),
(fs* g) (@) ~ e/ EHE/O/4 (forx>>€) .

Compute the Fourier transform
G(k) = e (%)

Discuss in what sense convolution with g has little/strong effect on signal /noise.

’The Fourier transforms of experimentally recorded data would have to be computed by numerical methods.
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Figure C22: The idea behind tomographic imaging. Discussion, see text.

Tomographic imaging

Tomographic imaging is an important tool for visualization in medicine and technology. Con-
ceptually, it relies on a variant of the Fourier transform known as the Radon transform. To
understand the idea, consider a thin slice of some substance, for example a section of a human
skull shown in Fig. C22. We choose a fixed xy-coordinate system and assume the object to
be described by a yet unknown density profile f(r), with r = (z,y). The goal is to obtain
information on f(r) by X-ray imaging techniques.

To this end, the object is exposed to spatially directed radiation. We define an angle ¢ such
that the polar unit vector e, = (cos ¢, sin ¢) is perpendicular to the direction of incidence,
and thereby parallel to the radiation wave fronts (cf. Fig. C22). At a detector oriented parallel
to ey the radiation absorbed by the substance is recorded in a spatially resolved manner. This
defines an absorption function, a(, ¢), where ¢ is the distance from the central axis of the
radiation beam (see the figure). It is evident that the profile of the function a(¢, ¢) depends on
the density distribution f(r). However, we still need to understand out how to quantitatively
reconstruct f from the knowledge of a.

Let us assume that all radiation arriving at a point specified by the coordinates (¢, &) has
traversed along the straight-line path ¢ 4 indicated in the figure. Points, r = (z,y)” € ¢4, on
this path are distinguished by the constancy of the scalar product, r-e; = z cos(¢)+ysin(¢) =
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&. We also assume that the radiation loss incurred locally along the path is proportional to
the local density of tissue, f(r). The total loss along the path can be expressed as an integral

a(&, o) = c/dxdy f(r)d(zcosd + ysing — &), (C157)

where the d-function restricts the integration variables to the line 7¢ 4 and c is a constant of
proportionality.

Eq. (C157) defines the so-called Radon transform of the function f. In a tomographic
scan it is obtained by recording the absorption profiles, a(&, ¢;), for a discrete set of incidence
angles, ¢;. (Changes in the angular direction are responsible for the infamous clicking noise
audible during a computer tomography.)

The desired density profile, f(r), is obtained from the measured signal, a(&, @), in a process
of two steps, both involving Fourier transforms. One first transforms a(¢, ¢) at fixed ¢ in the
variable £ as

a(k, o)

/ df e*igka(é, ¢) — c/dx dy efi(kcos¢z+ksin¢>y)f(r)

c / dz dy e ikemtkoy) £ (1) = ¢ f(K), (C158)

where in the second equality we substituted Eq. (C157) and did the integral over the /-
function. In the third equality we identify (k cos ¢, k sin ¢) = (k,, k,) with the polar coordinate
representation of a two-dimensional Fourier vector k = (k,, k,)”. This is appropriate because
the final equality shows that a(k, ¢) = cf (k) is just the z-Fourier transform, f(k) = f(k,, k,),
of the density function.

The second step now is the inverse Fourier transform to obtain f(r) from f(k):

dk, dk 2 -
(Cgs) i(kpz+kyy) (C158) dkk'/ d ik cos ¢px+ik sin ¢y )
oflr) 2 [ TSttt 2 o [ bk, o)e

Where in the second equality we changed from Cartesian coordinates to an integration in polar
coordinates, [ dk,dk, = [kdk [ dé.

To summarize, the two-dimensional density profile f(r) can be obtained from the absorption
signal a(&, ¢) by computing the one-dimensional Fourier transform a(k, ¢), and from there
f(r) by a double inverse transform. In essence, this is the algorithm underlying tomographic
image analysis. Our discussion was an oversimplification in that it ignored the fact that in
reality a(§, ¢) is known only for a discrete set of angles ¢;. However, a slightly modified
transform known as the discrete Fourier transform can be applied to obtain approximate
representations of f(r) from discrete data. Of course, the quality of the result will depend on
the number of discretization steps.
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C7.1 What are they and why do we need them?

A differential equation (DEQ) is an equation involving both a function and its derivatives.
A solution is a function for which the conditions defined by the DEQ are satisfied. This means
that if the solution and its derivatives are substituted into the DEQ, an equality results. For
example,

= cf(z), ceR (C159)

is a differential equation — an equation involving both f and f’. It is solved by all functions
of the form f(z) = pexp(cx),n € R. Each value of y defines a different solution, i.e. we
observe that the solution of a differential equation need not be unique.

The set of all solutions of a differential equation is called its general solution. To specify
a unique solution, additional conditions need to be imposed. For example, one might require
that the solution of Eq. (C159) obey a so-called boundary condition such as f(0) = 1. This
would fix a particular solution with p = 1.

However, before turning to a more substantial discussion of the mathematics, let us argue
why differential equations are important to physics. Physics is about making quantitative
predictions for observable phenomena. For example, in celestial mechanics one might aim to
predict the position of a planet at a specified time in the future. Such predictions are obtained
on the basis of fundamental laws which categorically are formulated in ‘differential form':
they state how a physical quantity X will change if physical quantity Y acts over a small
span of time or space. For example, Newton's second law, md;v = F, can be written as
v(t+ At) — v(t) ~ F(t)At. In this form it states how the velocity X = v of a body of mass
m changes if a force Y = F is applied over a small time At. Similar equations encode the laws
of electrodynamics, quantum mechanics, relativity, and other fields. Predictions about physical
processes extending over finite intervals of time are obtained by solving such equations, where
the uniqueness of the solution requires specifying the boundary data. For example, Newton's
equations for the motion of a planet has a unique solution specified in terms of the planet's
initial position and velocity. This exemplifies the tight connection between physical prediction
making and the solution of differential equations, summarized in general terms in Fig. C23.

285
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differential equations boundary data

physical process
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Figure C23: The role of differential equations in physics. Discussion, see text.

C7.2 Typology of differential equations

There exist many different types of differential equations: a DEQ can involve the first
derivative of a function, f’, or higher-order derivatives, f(™, it may be an equation for a one
dimensional function, f(x), or for a higher-dimensional function, f(x), it may be an equation
for more than one function f;,i = 1,..., it may depend linearly on the function (as in our
example), or it may depend on f in complicated ways, etc. Different types of differential
equations call for distinct solution strategies and in many cases the solutions are unknown.

For all these reasons, the theory of differential equations is a field difficult to make an
overview of. It is therefore all the more important to know the most important criteria
for distinguishing between different types of differential equations and their mathematical
complexity:

> There exist two major families, ordinary and partial DEQs. Ordinary differential equa-

tions contain derivatives, d,, with respect to only one variable x. Partial differential

equations involve several variables, z', 22, ... and their derivatives, 0,1, 0,2, . ..

Examples:

d.f(z) = g(x), ordinary
(0p — O) f(x,t) =0, partial.

> A differential equation of n-th order (Ordnung n) contains derivatives of nth and lower
order. The majority of differential equations relevant to physics are of order 2 or less.

Examples:

f'()

g(t, f(1)), 1st order,
AP f(t) +dif(t) =g

(t, f(t)), 2nd order

> A system of differential equations is a set of m1 coupled differential equations.
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Example:

dyz(t) = v(t),
dy(t) = f(z(t)).

> A linear differential equation contains the function in question only to linear order.
Nonlinear differential equations depend on the solution in more complicated ways.

Examples:
O2p(z) = —p(x) linear, ordinary, 2nd order (one-dimensional Poisson equation)
d?z(t) = csin(x(t)) nonlinear, ordinary, 2nd order (eq. of mathematical pendulum).

In the following, we discuss the above classes separately and introduce different types of
solution strategies. The focus will be on ordinary DEQs which are much easier to solve than
partial DEQs. A few comments on the latter are included at the end of the chapter.

C7.3 Linear first-order equations

The simplest differential equations are linear in the solution function and of first order in
derivatives. An equation of this type can always be represented as (why?)

def(t) = g(0)f(t) + (1), (C160)

where g and h are given functions, and f needs to be found. Equations of this form play an
important role in the theory of electric circuits and in signal processing. (In these applications,
f, g, h are functions of time and this is why the variable is denoted by t.)

The unique solution of a first order (not necessarily linear) DEQ requires the specification
of a single additional equation such as f(ty) = fo where ty and fy are constants. In line with
the time-like interpretation of ¢, such conditions are called initial conditions. In section C7.6
we will explain why the equation needs precisely one initial condition to be uniquely solvable.
For notational convenience we set ¢y = 0 throughout.

We first consider the so-called homogeneous equation defined by the absence of the
f-independent term, h = 0. This equation can be solved by a method known as ‘separation
of variables’ (see info section below) and the result reads

0= e | t dsg(s)) (C161)

That this is a solution is easily verified by computing f'(t) = fo exp(fot ds'g(s)) dy fot dsg(s) =
f(t)g(t). For t =0, the integral vanishes and we obtain f(0) = f; as required.
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The solution (C161) is derived by a method known as separation of variables. This scheme
is applicable to all differential equations of the form

def(t) = g(t)h(f (1)), (C162)

where g and h are arbitrary functions. For h(f(t)) = f(t) this reduces to the linear equation
Eq. (C160). To understand the terminology ‘separation of variables’ we define y = f(¢) and rewrite
the equation as

dy

— =g(t)h(y).

L g(0)h(y)
Let us now temporarily replace the derivative by a quotient of differences, i.e. think of dy and dt as
finite quantities defined in such a way that limg;_,o dy/dt = 3. We may then rearrange the equation
as

In this representation, variables have been ‘separated’ in that all y/t-dependence is on the left/right
side of the equation. In the final step, we ‘sum’ over the increments appearing on the two sides
of the equation between corresponding bounds, i.e. values between gy and y; on the I.h.s. and
corresponding time arguments ¢y and ¢1 on the L.h.s. Using the symbol ' [ to represent a sum in the
limiting case of infinitely small increments this leads to

/y y h‘z) - /t :1 g(t)dt.

In the jargon of differential equations theory this is known as a solution up to quadrature. Here,
‘quadrature’ is historical terminology for integration, and what the term means is that the problem
is solved up to an integral over functions (1/h, g) which are given.

For example, in the case of a linear differential equation, h(y) = y, the l.h.s. integrates to
In(y/y0). We may then exponentiate exp(In(y1/yo)) = exp(f(;t gdt) to obtain y; = yo exp(fti1 dt).
A final relabelling of variables t — s, tg = 0, t1 = t, yo = fo, y1 = f(t) leads to the solution (C161).

In section ?? we will show how the above cavalier treatment of the increments, dt,dy, can be
made precise. However, we also note that what counts in differential equation theory is to find
solutions. How these solutions are found is of secondary importance. One frequently has situations
where no clear solution strategy is known and ‘experimentation’ becomes necessary. Even if these
steps involve manipulations of dubious mathematical legitimacy, solutions may always be checked by
substitution into the DEQ.

We turn to the inhomogeneous differential equation (C160) with non-vanishing h. The
strategy to solve the general problem was introduced by Euler and is called variation of
constants. Euler's proposal was to ‘vary the constant’ f; of the homogeneous solution and
to replace it by a function f(¢),

f(t) = F(1)e™®, (C163)
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where we defined the abbreviation ®(¢ fo dsg(s). The question now is how to find a

function f such that the DEQ is soIved. To this end, we substitute the ansatz (C164) into
the equation and bring all f-dependence to the |.h.s. to obtain

(de = g(0)) (F1)e™®) = (F(0) + /(1) — Fol0)e™™ = F(1)e™ £ (o)

where in the last step we used that ®'(t) = g(t). This shows that fis determined by the
condition f' = e ®h, i.e. f is the principal function of e"®h: f(t) fo ds h(s)e™®®) + ¢,

where the constant c is determined by substitution of £ = 0 into the equation, ¢ = f(()). We
have thus obtained f(t) = f(0) + fot ds h(s)e™®® and substitution of this result into (C163)
yields

£(t) = F(0)e™ ¢“Admem4@

At t = 0 the integral vanishes, ®(0) = 0, and so the as yet undetermined value £(0) = £(0) =
fo is fixed by the boundary condition. This leads to the final result

t
f@=ﬁ%“mt/dw®dwwl (C164)

0

(Verify that this result solves Eq. (C160).)

Linear differential equations play an important role in applications. As an example,
consider a so-called RC-circuit containing a resistor of resistance R, a capacitor of capacitance C,
and a time dependent voltage source, V(t), in series.

R c We want to compute the time-dependent current flow, I(t), through the
circuit. According to Kirchhoff's voltage law, the sum of the voltage drops
across each of the three circuit elements equals zero. The voltage drop at
the source is V/(t), at the resistor it is RI (Ohm's law), and at the capacitor
it is C~1Q, where Q = Q(t) is the time-dependent charge on the capacitor.

We thus have C~1Q(t) + RI(t) = V(t). We also know that the rate of change of the charge on the

capacitor is equal to the current, d;Q(t) = I(t). This leads to the inhomogeneous linear differential

equation

T V(@)
@ + EQ = Rr >

for the function Q(¢). Comparing to Eq. (C160) we have the identification ¢ = —1/RC and

h = V(t)/R. The integration over the constant function g yields [dsg = —s/RC and so the
general solution (C164) assumes the form

t
Q(t) = Qoet/RC +% / ds V(s) e~ =5/ RO
0
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Differentiation w.r.t. time, t, yields

¢

I(t) = —%e*t/RC — % ; dsV(s)e (t=9)/RC V](%t),
where the first two terms come from the differentiation of the exponential functions and the third
from the differentiation w.r.t. the upper limit of the integration boundary.The exponential factors in
the solution show that the system possesses an intrinsic RC-time, to = RC. This time scale sets
the rate at which the circuit responds to changes in the external voltage changes. Also note that
for constant voltage, V' = const., the current vanishes for time scales t > ¢y (try proving it): the
presence of the capacitor forbids a static current flow along the loop.

C7.4 Systems of first order linear differential equations

A system of first order linear differential equations is a set of first order DEQ's for n
unknown functions (f!,..., f™) which is linear in all f?. Using a ‘time-like’ notation, f* =
fi(t), this constrains the system to the form

FHt) = al (O F1 () + a5 (0) () + - al () F7(1) + g1 (1),
Fr(t) = amy ()1 (1) + a5 () f2(8) + . " () (1) + 9" (1),

where the coefficient’s a’;(t) and g*(t) may be functions of ¢. Defining a matrix A = {a’;} and
combining the functions f* into a vector, f = (f,..., f")7, and likewise, g = (¢*,...,¢")7,
this assumes the compact form

f(t) = A(DE(t) + g(t). (C165)

General systems of this form can be difficult to solve. The problem becomes much easier in
cases where A(t) = A and g(t) = g are constant in time. This defines the so-called system
of first order linear differential equations with constant coefficients,

f(t) = Af(t) + g. (C166)

The problem becomes even simpler if g = 0 and we have the homogeneous equation,

f(t) = A£(t). (C167)

We next discuss how the system (C167) can be solved in closed form.

Consider the case n = 1, i.e. f = af + g. Solve this DEQ with the initial condition

f(O) = Jo
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Solution of the homogeneous linear equation Eq. (C167)

The appearance of a matrix A in the system (C197) suggests considering its eigenvectors,
v; and eigenvalues, \;. Specifically, for an initial condition f; = cv;, ¢ € C, proportional to
one of the eigenvectors, the system is solved as

f(t) = ceMlv;.

This is readily checked by substitution, d.f = \f = \cvie’t = cAv;e*t = Af. Assuming
that A is diagonalizable, i.e. that the set {v;} defines a basis of C", we may generalize this
result to a full solution of the problem:

1.  Expand an arbitrary initial condition in terms of the eigenvectors,

fo=> cvi (C168)

2. to obtain the solution

f(t) =) et (C169)

%

(Substitute Eq. (C169) into the differential equation to check that that it solves the equation
and is consistent with the initial conditions.)

(Requires section L7.5.) Systems of linear equations play an important role in physics,
for example in classical (see the next section) and quantum mechanics. In these fields it is often
preferable to work with ‘invariant’ solutions of the system (C197), that is solutions not making
explicit reference to the eigenvectors of the matrix A. The structural similarity of the system (C197),
d¢(solution) = (constant) x (solution) to the single linear equation (C159) indeed suggests that there
is an analogous solution, (solution)=exp((constant)xt), where the role of the constant must however
be taken by the matrix. Indeed, we may apply the methods of section L7.5 to define

£(t) = M £(0), (C170)

where the exponential exp(At) = Y, L (At)" acts as a matrix on the vector of initial conditions.
That this is a solution can be checked by direct computation; let us compute

dif = dye™F(0) = d; Yy | — A"F(0)
mn.
n=0

> tn—l - X n .
=> e 1)'A 0)=A) —A(0) = At (0) = Af(t),
n=1 ’ n=0 "

where in the fifth equality we relabeled the summation index, (n — 1) — n.
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Eq. (C170) does not assume the matrix A to be diagonalizable. However, if it is, A = TDT 1,
we may use (L196), to reformulate the result as

£(t) = (TP T~HE(0) = T PH(T£(0)).

This equation establishes the relationship with the previous solution (C169). To see this, recall (cf.
section ??) that 7' = (vy,...,Vy,) contains the eigenvectors of A as columns, T'e; = v;. We may
then write the expansion of the initial condition in eigenvectors as £(0) = Y, c¢/(T'e;) which shows
that 771f(0) = Y, c’e;. Substitution of this representation into the previous equation leads to

f(t) = Telt E e;c = TZe’\iteici = E e)‘itvici7

where in the second equality we used that the diagonal matrix, D, acts as De; = \;e;.

The solution of the inhomogeneous system of linear first order differential equations with
constant coefficients (C166) is left as an answered exercise.

Behavior of the solution

The behavior of the solution (C169) crucially depends on the eigenvalues \;. In the
exceptional case where all eigenvalues are imaginary, \; € iR, the vector f(t) is a superposition
of n oscillatory contributions with frequencies \; !, i.e. all factors exp(\;t) = exp(i|\|t) are
purely oscillatory in this case. More generally, if the eigenvalues are complex, the value )\;
with the largest real part Re \; dominates the solution at large times. The reason is that
| exp(Ait)| = exp((Re A;)t) is exponentially larger than all |exp(A;t)] = exp((Re\;)t),j # i
in this case. Without loss of generality, we assume that \; has the largest real part. (For
Re Aj>1 < 0 this includes the possibilities of negative or vanishing real part of A;.) In this
case we may approximate

f(t) ~ ceMv

for sufficiently large times where the superscript ‘1’ has been omitted for brevity. We now
have to discriminate between several different profiles of long-time solutions:

> For A > 0 real and positive the solution grows exponentially, and

v

For A < 0 real and negative it shrinks to zero.
> For A = iw purely imaginary the solution is oscillatory in time with frequency w.

> For A =c+iw, ¢ >0 complex with positive real part the norm of the solution vector
grows exponentially and the vector itself performs oscillatory motion, while

> For A = c+iw, ¢ < 0 complex with negative real part the vector oscillates and shrinks.

In the next section we illustrate these different types of solutions with a concrete example.
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Figure C24: A massive particle acted upon by two springs, all in a tank filled by some viscous liquid.
If the deviation, ¢, of the particle away from the force balance point is small, then the force acting on
the particle will be approximately linear in ¢g. The viscous medium acts on the particle by frictional
forces.

Application: Damped Oscillator

Phenomena described by linear differential equations include oscillations, damping by fric-
tional motion, or instabilities of mechanical systems. As an example, we consider a particle
of mass m attached to two springs, see Fig. C24. At the particle coordinate ¢ = 0 the
net force F'(q) exerted by the springs vanishes, F'(0) = 0. We aim to describe what happens
at moderate deviations away from ¢ = 0. For small deviations, the force acting to restore
equilibrium is linear in ¢, i.e. F' = —mw?q, where wy > 0 is a constant. To make the problem
more realistic we assume the presence of a friction (Reibungskraft) force Iy, = —2m7 ¢
where 77! is a constant and the proportionality of the force to the inverse velocity means that
friction slows fast motion. The differential equations describing the motion of the particle
then read

dtq =,
dw = —277v — wig, (C171)

where the first equation defines the velocity in terms of the particle coordinate and the second
is Newton's law, F' = ma = md;v. The equations have to be solved with an initial condition
(q(0),p(0)) = (qo,v0)- In matrix notation the problem assumes the form

d0)-(% 1))

where the 2 x 2 matrix now assumes the role of the matrix A of the previous section. lts

eigenvalues
A = —7 1 iy wg - 1 (C172)
+ T 1 0 7'2 .

are straightforwardly obtained by solution of a quadratic equation and the corresponding eigen-
vectors are given by v = (1,\:)?. The general solution of the oscillator equation then

assumes the form
y(t) = (38) —c, ( i) My ( Al_) A, (C173)

"The microscopic origin of this force is molecules of the liquid colliding with the particle and thus impeding
its motion.
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where ¢4 are constants determined by the initial conditions. For definiteness, let us consider
a situation where at time ¢ = 0 the particle is released at coordinate ¢(0) = ¢o and zero
velocity, v(0) = 0. We then have yo = (go,0)” and the expansion of this starting vector
in the eiger.wec.tors of the problem Yields. Yo = L‘I_OM.(.)\,V+ - A+v_). Substitution of this
representation into the general solution yields the specific solution

qo
)= 2~
y(t) -

It is instructive to discuss the behavior of this solution in a number of physically distinct cases:

()\_v+e’\+t — )\+V_e’\*t) .

> In the frictionless case, 77!

then find

= 0, the eigenvalues Ay = =4iwy are purely imaginary. We

y(t) = 6 ( cos(awit) ) ,

—wp sin(wot)

i.e. the particle performs oscillatory motion at a frequency set by wy. The trajectory y(?)
is shown in the bottom left panel of Fig. C25 and the corresponding ¢-coordinate in the
upper panel.

> For finite friction, 0 < 77! < wy, the eigenvalues contain a negative real part. If the
friction coefficient is weak, 77! < wy, we may approximate A\, ~ —77! £ iwy, and this
yields,

cos(wot)
—muwy sin(wyt

y(t) ~ qo (

The particle performs damped oscillations.

>> e + O(1/7uwy).

> Finally, for 77! > wy, we are in the so-called over-damped regime. The eigenvalues are
now real. Considering the case 771 > wy for simplicity, a first-order Taylor expansion of
the square root in (C172) yields (772 — w?)¥/? ~ 77! — 7w2/2 implying A\, ~ —7w?2/2
and A_ ~ —7 ! so that |\, | < |\_|. The large negative value of \_ makes contributions
proportional to exp(A_t) damp down rapidly. We thus retain only the longer-lived terms
proportional to exp(\,t), yielding

y(t) ~q L) et
—_— 0 _wo .

The damping is so strong that the particle no longer performs oscillatory motion. Instead,
it slowly ‘creeps’ from its point of origin back to the equilibrium position at ¢ = 0.

C7.5 General nth order linear differential equation

A general ordinary linear differential equation can be written as

L) f(t) = g(1),
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Figure C25: Upper panel: coordinate ¢(¢) of the particle shown in Fig. C24 in the case of no
damping (black, solid), finite damping (red, solid), and overdamping (black, dashed). Bottom: the
trajectories y(t) = (q(t), p(t))T of the particle.

- d d?

L@t)=hO0) + V() — + hP () — + ... C174
(8) = KO(t) + RO ()= + B Lo+ (C174)

where h(™(t) are functions, and the ellipses represent terms containing higher order derivatives.

A few comments on this equation: (i) the formal expression L(t) is called a linear differential

operator. It is an ‘operator’ in the sense that

L) f(t) = KO0 f) + V@) () +hD@) f () + ... (C175)

operates on a function to produce a new function. The operator is linear because ﬁ(clfl +
cafa) = clﬁfl —|—02if2, where we omitted the argument ‘t' and ¢, 5 are constants. (ii) In prac-
tice linear differential equations of higher than second order occur rarely. Most equations
of relevance to physics are of first or second order. (iii) The unique solution of an nth oder lin-
ear differential equation requires the specification of n ‘boundary conditions’. For example,
the solution of a second order equation can be made unique by fixing two values, f(t;) = f;,
i = 1,2, or by requiring f(to) = fo. f'(t1) = do, etc. (iv) Linear differential equations play a
highly important role in physics. Key physical theories such as electrodynamics of quantum
mechanics are linear in the sense that their fundamental laws — the Maxwell equations and the
Schrédinger equation, respectively — assume the form of linear differential equations. The
fundamental equations of other theories can be approximated by linear differential equations
in physically important limits. For example, the Einstein equations of general relativity afford
a ‘linearization’ and in this limit describe phenomena such as gravitational waves.

*Both the Maxwell equations and the Schrddinger equation are partial linear equations, i.e. they contain
derivatives with respect to multiple variables. However, most of our below discussion relating to the linearity
of DEQs carries over to these cases.
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Even complicated-looking linear differential equations can often be solved. The weak spot
of these equations is, in fact, their linearity. To appreciate its implications, let f; and f; be
solutions to Eq. (C174) with inhomogeneity g1 and g, respectively. The linearity of the equa-
tion then implies that c; f1 + co f2 is a solution to the equation with inhomogeneity ¢, g1 + c2go.
Of course the linear superposition of not just two but arbitrarily many inhomogeneities is given
by the corresponding superposition of the partial solutions. This feature, which is sometimes
called the superposition principle, suggests representing ‘complicated’ inhomogeneities as
sums of simpler ones, and first try to solve the equation for these. This solution strategy
goes by the name ‘Green function method' and plays an important role, both in physics and
mathematics.

The superposition principle has important physical ramifications. As an example, consider
Maxwell's equations (to be discussed in section V7) whose solutions are electromagnetic fields gen-
erated in response to charges and currents, which assume the role of inhomogeneities. If two such
sources generate two electromagnetic fields, then the combined action of the sources will be the sum
or superposition of the fields. This physical superposition principle is responsible for phenomena such
as wave interference, i.e. the formation of superimposed wave patterns resulting from the addition
of individual waves.

Green function methods

Next to the vanishing function, g = 0, d-functions arguably are the simplest of inhomo-
geneities. The function g(t) = §(t — u) vanishes everywhere except for the point ¢t = u, i.e. it
has minimal mathematical structure. For historical reasons, the solution of Eq. (C174) with a
d-inhomogeneity

LG(t,u) = 0(t — u), (C176)

is called a Green function. Of course, the Green function depends on the position of the
singularity of the d-inhomogeneity (i.e. for each u we have a different function) and its second
argument keeps track of this dependence.

Assume we had managed to compute the
Green functions for all values of u. The dif-
ferential equation for general g is then es-
sentially under control. To understand why,
notice that any function g(¢) may be repre-
sented as a superposition of d-functions as

g(t) = [ dust - ug(w).

George Green 1793-1841

He owned and worked a Nottingham wind-
mill. His only schooling consisted of four
terms in 1801/1802, and where he learned
his mathematical skills remains a mys-
tery. Green published only ten mathemat-
ical works, the first and most important at
his own expense in 1828, “An essay on the

(C177)

application of mathematical analysis to the
theories of electricity and magnetism.” He
left his mill, became an undergraduate at
Cambridge in 1833 at the age of 40, then a
Fellow of Gonville and Caius College in 1839.

In this formula, the function ¢ is represented
by a ‘sum’ (an integral, in fact) over all val-
ues of u. The constant, t-independent coef-
ficients in this sum are the values g(u), and
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the functions entering the superposition are
the o-functions, 6(t — u).
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Figure C26: A function, g, can be approximately represented as a sum over unit height functions,
h;, of narrow width e around the coordinates ¢ = ie. In the limit of a large number of discretization
steps, the sum g(t) ~ 3. h;(t)g(i€) is a good approximation of the continuous function g(t). In the
limit € — 0, the scaled functions e ~1h; turn into functions §(t —u), and the scaled sum €Y, — [ du
becomes an integral. This illustrates how the formal expression (C177) can be understood as a ‘sum’
over functions §(t — u) with ‘weights’ g(u).

Formally, Eq. (C177) identity is proven by doing the integral over u and using the
defining property of the d-function. However, in the present context, it is more useful to think of it
in the spirit of the discrete representation shown in the figure ??. Before reading the caption of that
figure discuss in what sense it shows a discrete representation of the continuum Eq. (C177).

The representation of the inhomogeneity, g, as a sum over d-functions with ‘coefficients’, g(u),
implies that the solution of the differential equation, too, assumes the form of a sum,

f(t) = /duG(t,u)g(u), (C178)

with the same coefficients, g(u). That this is a solution can be verified by direct computation.
Using that the differential operator, L(t), acts on functions of ¢, and is linear we obtain

A

Lt () = / du (L()G(t, u)) g(u) ‘2 / dud(t — u)g(u) = g(t).
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However, as mentioned above, this solution is not unique unless boundary conditions are
provided. To an arbitrary solution, f, a solution f, of the homogeneous differential equation,
L(t) fo(t) = 0, may be added to obtain another solution f(t) + fo(t) of the inhomogeneous
equation (ﬁ(f + fo) = Lf+Lfy=g+0 = g.) Conversely, two solutions f; 5 of the
inhomogeneous equation” differ by a solution of the homogeneous equation (j}(fl — fa) =
g — g = 0). This means that the general solution of the inhomogeneous equation can
be written as f + fy, where f is a fixed but arbitrary solution of the inhomogeneous equation,
and fy runs through all solutions of the homogeneous problem. For a differential operator of
nth degree, the specification of n boundary conditions then selects a uniquely defined specific
solution.”

Of course, the solution (C178) remains a formal expression as long as the Green functions
G(t,u) are not known. In the theory of inhomogeneous linear differential equations, the
computation of the Green functions is more or less equivalent to the solution of the problem.
Accordingly, sophisticated machinery for the computation of Green functions, both exactly and
approximately, have been developed, and their teaching is a standard subject of theoretical
physics courses. In the next section, we will discuss how Green functions of certain classes of
linear DEQs can be computed on a simple yet important example.

— ¢ —

Figure C27: An oscillating particle subject to friction and external driving. Discussion, see text.

Application: Driven damped oscillator

Requires familiarity with chapter C6 on Fourier calculus.

Consider the damped oscillator problem described by Eq. (C171) extended to the presence of
an external driving force, £(t), cf. Fig. (C27). The external driving adds to the balance of
forces which means that the second of Eqs. (C171) generalizes to dyv = —277! — wiq + &
We substitute the first equation, d;¢ = v into the second to obtain the second order linear

3Eq. (C178) does not specify a unique solution because prior to the fixation of boundary conditions the
Green function is not uniquely defined either. The addition of an arbitrary solution of the homogeneous
equation to the Green function then defines another valid Green function.

"For a detailed discussion of why n conditions are required we refer to the specialized literature. Heuris-
tically, the statement follows from the fact that an nth order linear differential equation, can be transformed
to a system of n first order equations (cf. section C7.7 below for a general discussion of this statement).
In section (C7.6) we will show that a single first order equation requires the specification of one boundary
condition. A system of n equations, equivalent to a single equation of nth order therefore need n conditions.



C7.5 General nth order linear differential equation 299

equation
(df + %dt + w@) q(t) = £(t). (C179)

Comparison with Eq. (C174) shows that the differential operator governing this equation,
L = d? + 277'd; + w? is of second order. Its weight functions, h(® = w2, RV = 2771
h® =1 are coefficients, i.e. they do not depend on time, ¢, and this facilitates the solution
of the problem .

The equation Eq. (C179) finds many applications in the natural sciences. Depending on
the context, it describes mechanical, electrical, chemical, or biological systems in which a quantity
of interest (g) is subject to effective forces restoring equilibrium (w?), friction (7~1), and external
influence (§). In the mechanical context, this situation is realized for the majority of ‘realistic’ systems
performing oscillatory motion. As an example of an electrical system described by these equations,
we mention a resonator, where the role of ¢ is played by a time dependent voltage, oscillatory motion
is caused by the interplay of a capacitor (Kondensator) and a coil (Spule), friction by a resistor
(Widerstand), and the external forcing is due to an external voltage. For the discussion of this and
other applications we refer to specialized courses.

The Green function of the oscillator problem obeys the equation
2
(df + —d¢ + wg) G(t —u) =0(t —u).
T

Its heuristic meaning is that of a solution of the problem in the presence of a §-function force
acting only at time t = u. Due to the absence of time dependent coefficients we anticipate
the existence of a solution G(t,u) = G(t — u) depending only on the difference between the
time ¢ at which the solution is evaluated and the time w at which the force acts (think about
this point). From this function, the desired ¢(t) is obtained as

q(t) = /du G(t — u)é(u). (C180)

The key to the computation of the Green function lies in the Fourier transform iden-

tity (C138). Applied to a time dependent function it states that d,F(t) = —iwF(w). (The
relative minus sign is due to the fact that the Fourier transform of a time dependent func-
tion (C139) is defined with an exponent +iwt rather than the —ikx of the spatial transform.)

—_—

Repeated application of this identity leads to d?F'(t) = (—iw)"F(w), i.e. under the Fourier
transform derivatives d; can be converted to algebraic factors —iw. To make use of this
feature, we substitute t — t + u into the equation for the Green function to rewrite it as
(d? + 277, + w?)G(t) = 6(t). In a second step we Fourier transform both the left and the
right hand side to obtain

<—w2 2w —|—w§> Glw) =1,
T
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where we noted that the Fourier transform of a J-function equals unity, Eq. (C147). The
expression in parenthesis now has become an algebraic factor. We divide by it to obtain the
result

~ 1

Gw) = (C181)

42 _ 2w 2°
w T W

This has been the most important step in the solution of the equation. We now know the
Fourier transform of the Green function, and this reduces the solution of the problem to the
computation of integrals. Depending on the type of the driving force, however, these integrals
may be non-trivial and one of three different strategies may be favorable:

> One may first compute the inverse Fourier transform of the Green function to obtain
(cf. Eq. (C139))

dw

G(t) = / Ee—iwfe(w). (C182)

The solution is then obtained by substitution of the result into Eq. (C180). For complete-
ness, we discuss the behavior of the function G(t) in the info section below.

> Alternatively one may observe that the solution of the problem has the form of a convo-
lution ¢(t) = [ duG(t — u)§(u) = (G = £)(t) of the Green function and the driving force.
Eq. (C144) then implies that §(w) = G(w)&(w): the Fourier transform of the solution is
obtained as the product of the Green function (C181) and the Fourier transform, &(w) of
the driving force (which needs to be computed from the given £(¢)). In a final step, one
computes ¢(t) from G(w).

> For driving forces with simple time dependence it may be preferable to compute the result
by direct substitution of the formal representation Eq. (C182) into Eq. (??). We give an
example of this strategy in the second info section below.

= e —

Figure C28: Green function of the harmonic oscillator for the underdamped configuration, w/7 = 1/4.

Let us discuss the temporal behavior of the harmonic oscillator Green function. The
inverse Fourier integral Eq. (C182) leading from G(w) to G(t) actually is hard to do, unless one
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computes it by the complex function techniques introduces in chapter C9. As shown in the example
on p. 336, the result in the underdamped regime, |wo| > 77! is given by

w

G(t—u)= isin(@(t —u))exp (—j_) O(t — u) + Go(t — u), = (w?—7"HY2 (C183)

where O(t) is the Heaviside step function (C118), and Gq(t) is an arbitrary solution of the ho-
mogeneous equation. In Eq. (??7) these have been identified as the g-component of the general
homogeneous solution Eq. (C173), which in the presently used notation assumes the form

Go(t) = exp <—j_> (cyet ¢ e7i9h),

The two undetermined constants of the general solution, c4, are sitting in the homogeneous solution.
Notice that, regardless of the choice of these constants, it decays exponentially in time. A very natural
choice of boundary conditions would be G(t — +00) = 0, i.e. the vanishing of the oscillatory motion
at both negative infinity, prior to the action of the d-function, and at positive infinity when the
damped oscillation has fully relaxed. This requires the choice ¢+ = 0, and consequently Gy = 0.
In this case, the Green function is given by the first term in Eq. (C183), and affords an intuitive
interpretation: prior to the action of the d-function force at ¢ = w the oscillator is at rest, G(t—u) = 0.
At t = u it starts to perform oscillatory motion, attenuated by the damping rate 7.

As an example of the third solution strategy mentioned above, let us consider an harmonic
oscillator subject to periodic driving £(t) = &y cos(wqgt). We use the Euler formula Eq. (C92),
substitute Eq. (C182) into Eq. (C180) and obtain

d —jwqu iwau) ,—iw(t—u)
Q(t):&]/du/ = +e2‘ e =
2 27 —w? — ;_“" + w%

= &)/dw@(w—wd) + 0(w + wq))e Wt

2) 2m —w? — 2 )2
e*iwdt 2W .
= —Re 2 0 2iwg 2 — 2 2502 w? <(w3 - w?i) COS(wdt) + = Sln(wdt)>
N R U oo !

where in the second line Eq. (C134) was used in its frequency/time incarnation, [ du exp(ieu) =
270 (€). The subsequent integral of the d-function over the frequency argument leads to the stated
result.

For an in-depth discussion of this result we refer to lecture courses in mechanics. Notice, however,
that time dependence of the forced oscillations is periodic (sin / cos) in the driving frequency, and that
the amplitude becomes largest when the driving frequency wq = wp equals the intrinsic frequency
of the oscillator. This observation is at the root of all resonance phenomena. In the limit of
small damping, w — 0, the response may actually diverge at the resonance frequency. Resonance
phenomena may occur in the presence of even moderate forcing (the strength of the prefactor, &)
if only the damping is weak enough. As an example, we mention the evacuation of TechnoMart, a
37 story high rise in Seoul, in 2011, which became necessary due to a resonance building up when a
group of only 17 aerobic enthusiasts performed a rhythmic exercise.
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Linear algebraic interpretation of the Green function

Requires chapter L10

Although the construction of the Green function solution scheme follows a well motivated logic,
it may look somewhat alien to first time readers. It turns out, however, that the formalism
becomes rather transparent when interpreted from the perspective of linear algebra. To this
end, let us consider the functions f and g in (C174) as infinite dimensional limits of finite
dimensional vectors f and g. The linear operator, L, then acts as finite dimensional linear
map, L, and the linear DEQ assumes the form of a matrix equation Lf = g. When written in
this form, it is evident how to solve the equation: multiply from the left by the inverse of the
linear map (assuming that it exists), to obtain f = L~'g, or f* = (L7')";¢’. In the infinite
dimensional limit, vector components become function values, f* — f(t), and sums become
integrals. The solution equation will therefore assume the form

7(0) = [ du(Z )t ulg(w)
Comparison with Eq. (C178) shows that

G(t,u) = (LYY (t,u), (C184)

The Green function is the inverse of the operator defining a linear differential equation.

To connect this general view with the concrete formulae used to compute the Green function
above, recall that the inverse of a matrix is defined as L';G”, = &% In the limit, 6", — d(t—u)

becomes a d-function, and so the equation should assume the form [ dv L(t,v)G(v,u) =
d(t—wu). This looks almost, but not quite like Eq. (C176), the seeming discrepancy being that
the latter does not contain an integral over the running variable, v. The reason for this is that
L is not a totally generic linear operator in function space but one that is ‘almost diagonal’
(see info block below). Much like the application of a diagonal matrix, D*; = d'¢"; to a generic
matrix, (DA)"; = d'A’; does not contain an index summation, (Lf)(t) = L(t)f(t) does not
contain an integral over a running variable. Likewise, the defining equation for the continuum
inverse assumes the form, L(t)G(t,u) = &(¢,u), and this completes the identification of the
Green function as an operator inverse.

There remains one unexplained subtlety, though. In our discussion above we talked a lot
about ‘homogeneous solutions’ of the equation, ﬁf = 0. In the finite dimensional context
this becomes Lf = 0, i.e. the existence of a non-vanishing homogeneous solution would be
equivalent to the existence of a zero eigenvalue, in conflict with the assumed invertibility of
the operator. There is, however, no reason for concern: prior to fixing the boundary conditions
the operator L is indeed not invertible. In our discussion above this showed in the absence
of a uniquely defined Green function. After fixing boundary conditions, invertibility is granted
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and G is uniquely specified.’

Let us try to understand in what sense a differential operator corresponds to an almost
diagonal matrix. A derivative acts on a function as d¢f(t) = lims_,o(f(t + J) — f(¢)). In a
representation discretized as t = i this corresponds to the ‘discrete derivative’ (df)’ = fit! — f%
The matrix representing d is given contains 1 on the main diagonal and —1 on its neighboring
diagonal: dij = 5i+1j — 6ij. Upon multiplying this matrix with a function, (df)! = dijfj =
i1 — £ the j-index summation collapses to just two terms. Likewise, the continuum representation
(df)(t) = [dud(t,u)f(u) = d¢f(t) does not contain an integral over an intermediate variable. If
we multiply matrices to represent higher derivatives, d” <+ d}’, the diagonals ‘shift’, for example,
(d2f); = firo — 2fix1 + fi, however the fact remains that in the limit of very large dimensions, the
representing matrices look almost diagonal. The multiplication of derivatives with time dependent
functions, h(t)d; < hi(é”lj - 5“3-) does not change this structure, either. This explains the absence

of integrals in the product LG.

Importantly, however, the inverse of an almost diagonal matrix need not be almost diagonal at
all. This is exemplified by the fact that G, the inverse of the almost diagonal L, has non-vanishing
‘matrix elements’, G(t,u) even for large separations |t —wu/|. As an instructive exercise, try to compute
the inverse of dij for low matrix dimensions (or even general matrix dimension, if you are feeling
ambitious) to explore this point.

C7.6 General first-order differential equation

Consider the first-order differential equation

dtf(t) = g(f(t>7t)7 (C185)

where ¢ = g(z,t) may be a general function. If that function does not depend on the
argument, t, i.e. if g = g(z) the DEQ

def(t) = g(f (1)) (C186)

is called an autonomous differential equation.

*In this argument we tacitly assume that the assumed boundary conditions define a function space. For
example, the conditions f(+oo) = 0 satisfy this criterion: the linear combination of two functions vanishing
at infinity again vanishes at infinity. However, the f(¢;) = f(t2) = 1 is an example of boundary conditions
not defining a function space. For the rigorous algebraic interpretation of this situation we refer to specialized
courses on differential equations.
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Figure C29: Left: Logistic growth for system parameters I' = 100, fo = 1, and ¢ = 0.01,0.02,0.03,
where the largest value of ¢ corresponds to the steepest growth. Notice that the vertical axis is in
logarithmic units. Right: Demographic predictions of world population growth.

Solution of the autonomous equation

The autonomous equation can be solved by separation of variables (cf. info section on
p. 287):

df _ ar _ WAf
_g(f):g(f)_dt:/f0 g(f>_/0dt_t. (C187)

The integral defines a solution of Eq. (C186) with initial condition f(0) = f,. That it is a
solution may be checked by differentiating the left and the right hand side w.r.t. t. Application
of the chain rule gives d, ff g(f = (df Jf;gd? )|f ) d f(t) = f(t dtf which should be
equal to d;t = 1. Equating the two results, we get back to the dlfFerentlaI equation. To obtain
f(t) in more explicit terms, the integral in Eq. (C187) needs to be done. Denoting the result
by F(f) = fdfﬁ one then obtains the algebraic equation ° F(f(t)) — F(0) = t. The
solution of this equation for f(t) finally leads to the solution of Eq. (C186)

0= Fra PG, RO - | % (C188)

where F~1 is the inverse function of F.’

Consider the so-called logistic differential equation

dtf:Cf(F_f),

6 . . . . .
An algebraic equation contains no derivatives.
"The existence of an inverse of F is equivalent to the solvability of the differential equation.
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where c and I are positive constants. This equation is often employed to model population growth.
The rationale is that a small population of individuals will initially grow at a constant rate. Denoting
the population size by f and the growth rate by cI this is described by the linear equation d; f = cI' f.
This equation predicts exponential growth, f(t) = foexp(cl'). The logistic equation takes into
account that at some point the host medium will reach its load capacity and the exponential growth
must come to an end. In the equation this is described by a diminishing of the growth rate d;f as
f 7 T'. Applying the procedure outlined above, we compute

F(f):/cf(I(‘if—f)zclrln<Fif>‘

The function f(t) is then obtained by solution of F'(f(t)) — F'(fo) =t which readily leads to

I fo
(T — fo)e=Ft + fo

ft) =

A plot of f for different growth rates, ¢, is shown in the left panel of Fig. C29. The right panel
shows predictions for the population growth on various continents. Can we interpret these as logistic
growth profiles?

For the solution theory of the non-autonomous first order DEQ we refer to the specialized
literature.

Existence of solution

The general first order equation is important in its own right, but also features as a building
block in the solution of more complex equations. An important question to ask, therefore, is
whether the DEQ (C185) always possesses a solution and if yes whether its solutions are unique.
In the following, we explore this question for the autonomous equation. (The construction for
its non-autonomous generalization is similiar.)

The answer is that Eq. (C185) does possess a unique

g L 9(y) + K(z —y) solution provided that an initial condition f(0) = f,
/ at the ‘left end’ of the interval I = [0, L] is specified
g and g(f,t) does not vary too rapidly as a function of

f. To formulate the latter condition in more precise
terms we need to introduce the notion of Lipschitz
continuity.

A function g : I — R is called Lipschitz contin-
y A uous, if

dK e RY: Va,yel: |g(z)—g(y)| < Kl|z—y|

The visual interpretation of this statement is shown in the figure: the graph, {(vy, g(v))|y € I},
of a Lipschitz continuous function, g, with Lipschitz constant, K, is such that for all points
(y,9(y)) it lies outside a cone bounded by two lines with slope K and —K, respectively,
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intersecting at that point. The function g in the figure satisfies this criterion whereas g
does not. In essence, the condition states that nowhere does the derivative of g become
infinitely large. For example, the function \/m is not Lipschitz continuous at x = 0, where
lim, o v/2' = ﬁ diverges.

Lipschitz continuity is required for the existence and uniqueness of solutions of DEQs. The
idea of the existence proof is that the differential equation (C186) becomes equivalent to the
At — 0 limit of the discrete equations

ft+At) = f(t) + At g(f(1)).

provided the function g does not fluctuate too wildly. Under this condition ¢ € [t,t + At]
may be chosen arbitrarily and in the limit At — 0 the discrete expression converges to
the differential equation. The degree of continuity required to grant the existence of the
limit is expressed by the Lipschitz condition. To see this, we define £ = t + € and write

g(f(D) = g(f(t) + (1)) = g(F(£) + X where |X| < Kelf/(t)] < K|f'(1)|At, and K is a
Lipschitz constant for g. The error X introduced by the ambiguity in choosing the evaluation
point # is of O(At), so we have

ft+At) = f(t) + Atg(f(t)) + O(A),

where the abbreviated notation g(f) = g(f,t) has been used. We conclude that f(t + At)
may be obtained from f(t) up to an error vanishing in the limit At — 0, provided g is Lipschitz
continuous. Under this condition the full solution may be constructed iteratively, starting from
t=0:

f(0) = fo,
F(AL) = fo+ Atg(fo),
f(2At) = f(At) + At g(f(At) = fo+ Atg(fo) + At g(f(Al))
f(3At) = f(2At) + Atg(f(2At) = fo + At g(fo) + At g(f(At)) + At g(f(2A1))

Notice that in the limit At — 0 this expression converges to the integral equation f(t) = fo+
fg dt g(f(t)). Differentiation of the left and the right hand side makes the equivalence of the
integral equation to the DEQ (C186) explicit. However, the main point of the discussion is that
for Lipschitz continuous ¢ a unique solution is constructible by iteration. The mathematically
precise formulation of these statements is made by the Picard-Lindelof theorem discussed
in mathematics courses on differential equations.

C7.7 nth-order differential equation

We next consider DEQs of higher order in the number of derivatives. For example, the
Newton equation ¢ = #F(q) is an equation relating second derivatives of the coordinate
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function ¢ to a force F'(q). The generalization to a generic nth-order differential equation
is often expressed in the form

G0, 00, f020), . O, ) =0, (C189)

with an arbitrary function G(y, ... ,yn+1,t).8 (The Newton equation fits into this scheme

as ¢ — ~F(q) = 0, i.e. G(y',y?) = y* — LF(y?)).) It is often convenient to transform

m
this equation into an equivalent system of first order equations. To this end, a set of n

functions 2'(t) = f(t),2%(t) = fO@1) = d2'(t),...,2"(t) = fO () = d" ' (t) is
defined. The differential equation (C189) then becomes equivalent to the system of n first-
order differential equations,

dyxt = 22,
dyz? = 23,
diz" ! = 2",
G(dgz™, 2™ 2™t .. 2t 1) =0, (C190)
for the vector of functions x = (z!,...,2™)T. Once x(t) is found, the function of interest,

f = a', is given by the first component of the solution vector. Although the system of

n first order equations amounts to just a rewriting of the original problem this change of
representation is often advantageous. Specifically, we will see in the next section that systems
of first order differential equations can be handled using powerful geometric methods.

Turning back to the one-dimensional Newton equation,
.1

m

T

we define the vector xI = (q,p) comprising the particle’s coordinate, z! = ¢, and the particle’s

momentum, 22 = p = mv = md;q.” The Newton equation can now be equivalently expressed as
1
diqg = —p,
m
dip = F(q).

This representation appeared before in section ??. In an analogous manner, Newton's equation in
d-dimensional space, q = %F(q) assumes the form

1
dtq = —Pp,
m

dtp = F(q)a

*The first equation discussed in the previous section is a special case of this structure, i.e. f/(t) =
g(f(1),1) = G(f'(2), f(1),1) = 0 where G(y", 5%, y%) = y' — gy, 9°).
Slightly deviating from the general scheme, a constant, m, is included in the definition of 22 = md;x".
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which is a first-order equation for the 2d-component vector x = (3). The 2d-dimensional space
hosting the vectors x is called the phase space (Phasenraum) of a mechanical system. It plays an
important role in the modern theory of mechanical systems.

Systems of first-order equations

In the previous section we have seen how an nth-order differential equation can be trans-
formed to a particular system of first-order equations (C190). The general system of coupled
first-order differential equations is defined by "’

dert = fi(2t, 2%, ... 2™,
dr? = fo(at, 2%, 2™ ),
dez™ = fo(zt 2%, ... 2" 1), (C191)
where z° = z'(t) are the desired solutions. We introduce a compact vector notation x =
(2t ..Mt £ =(fY, ..., f")T, to represent the system as
dex(t) = f(x(t),1). (C192)

This notation suggests an interpretation of x(¢) as a curve. The curve is defined by the
condition that at every instant of time, ¢, its velocity, d;x(t), equals the given vector function
f(x(t)). If the function f does not carry explicit time dependence, f(x,t) = f(x), the system
is called autonomous.

Systems of first-order differential equations play an important role not only in physics but
also in biology, chemistry, engineering, and the social sciences. They are used to describe the
time evolution of multi-component quantities (the coordinates and momenta of a mechani-
cal system, the concentrations of chemical compounds, the population numbers describing a
multi-species habitat, the stock market value of a system of companies, etc.) in response to
‘forces’ driving that evolution (generalized forces, chemical reactions, environmental changes,
economic market forces, etc.). The connection between cause and effect is then represented in
terms of a system of differential equations where the coupling between the equations expresses
the interaction between the agents of the systems.

Let us illustrate the application of coupled first order DEQs with a toy model for eco-
logical inter-dependence, the Lotka-Volterra (LV) system.” The LV system describes a population
of f predators (foxes) r prey (rabbits), x = (r, f)7. It is assumed that the number of rabbits
proliferates at a constant rate, «, and diminishes at a rate 3f due to the presence of the f foxes.

"Eq. (C191) fits into this scheme by defining fi(z',...,2",t) = #'t1, i = 1,...,n — 1 and solving the
algebraic equation G(d;z", 2", ...,z t) = 0 for dya™ as dyz™ = f*(x!,..., 2" t).

11A.J. Lotka, Elements of Physical Biology, Williams and Wilkins, (1925); V. Volterra, Variazioni e flut-
tuazioni del numero dindividui in specie animali conviventi, Mem. Acad. Lincei Roma 2, 31 (1926).
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Conversely, the population of the foxes is controlled by a mortality rate, «, and a proliferation rate,
or, proportional to the available food ressources, i.e. the rabbit population. Cast in the form of a
system of two differential equations, this model assumes the form

f

2
dtT’ = (a - Bf)Tv
def = (—y+or)f. (C193)
The analytic solution of this system of equations is possible but com-
1 plicated. The plot of numerically computed solutions shows a periodic

pattern in the population balance: an abundance of rabbits causes a
O flourishing of the fox population which leads to a decimation of the rab-
bits. This in turn suppresses the fox population, and the cycle starts
. again.

0 05 1 19 Observe that the system possesses a so-called fixed point, where
the populations remain stationary: for f = f* = a/B,r =r* =~/0
the right hand side of the system vanishes, which means that d;r = d;f = 0. Consequently the
populations remain stationary. Fixed points are important characteristics of systems of DEQs in
general. Methods of finding them and exploring what happens in their vicinity will be introduced in

the next section.

Although the LV system is based on oversimplifying assumptions it describes important aspects
of population fluctuations. More complicated models of ecological systems are often constructed
by generalization of LV-type differential equations. Generally speaking, finite systems of equations
can never faithfully describe ‘reality’. The goal of modeling nature or society in terms of systems
of differential equations is to reduce real world processes down to a manageable level of complexity
which is still sufficiently ‘realistic’ to have predictive power.

Only in exceptional cases can systems of DEQs be solved in
closed form and this motivates the development of qualita-
tive methods for their description. One frequently employs
a language in which t is considered as a time-like variable,
and the system (C191) interpreted as a ‘dynamical sys-
tem’. For a given x, the curve x(t) solving the system with
initial condition x(0) = x is called a trajectory of the
DEQ. The full information on all trajectories is carried by
the flow of the DEQ. Mathematically, the flow is a map

®:1x M- M,
(t,x) = 4(x), (C194)

where [ a time interval and M the domain of definition of the functions x, is often called the
phase space of the system.”” The flow map obeys the condition ®((x) = x. For finite ¢, the

“The phase space defined by the time dependent coordinates and momenta (q,p)? of a mechanical
system is an important example of this notion. In fact, physicists tend to reserve the term ‘phase space’ for
this particular realization.
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flow ®,(x) = x(¢) is defined by the trajectory through x. As such it obeys the composition
rule,

D, (x) = x(t + 5) = B,(P,(x)),

i.e. the trajectory point x(f + s) can be understood as the endpoint of a trajectory of duration
t starting at x(s) = ®4(x). This composition rule can be used to extend the definition of flow
to negative times: x = ®((x) = B, (_y(x) = P_(P;(x)). Also notice that

di®y(x) = dix(t) = £(x(t)) = £(P4(x)),

i.e. considered as a function of ¢ the flow is a solution of the DEQ. Plotting the flow lines ®,(x)
for a set of initial points x gives the trajectories starting at these points. In the exceptional
case of a stationary flow, ®,(x*) = x*, we call the point x* a stationary point, or a fixed
point of the system. The fixed-point property is equivalent to the condition d;x* = f(x*) = 0.
Finding the fixed points is, thus, equivalent to finding the zeros of f, and this is usually the
first step in the analysis of a system of DEQs. In a second step, one then analyses the behavior
of the system in the vicinity of its stationary points.

Deterministic chaos: introduction in a nutshell

Before turning to the discussion of near-fixed-point dynam- P, (1)
ics, let us stay for a moment at the global level. In the
previous section we argued that a DEQ possesses a unique
solution provided the defining function g is sufficiently well-
behaved. That existence criterion can be generalized to
systems of DEQs: we are granted unique solutions if initial
conditions have been specified and f obeys a generalized
Lipschitz criterion. \id X0+ 6
Often, however, the formal existence criterion is of only X0
limited practical usefulness. The reason is that the flows
of many systems of DEQs exhibit the phenomenon of deterministic chaos. A defining
feature of chaotic flows is their exponential sensitivity to initial conditions: consider two initial
configurations x¢ and xo + dx where |[0x| is ‘infinitesimally’ small. If the flow is chaotic
the trajectories @, (t) and Py, 5x(t) starting from these configurations will deviate strongly
from each other no matter how small the initial displacement |0x|. The deviation grows
exponentially in time, i.e. there exists a so-called Lyapunov exponent, )\, such that

(I)x(;+6 (t)

[ @scrax(t) — Pu(t)] ~ [0%] exp(AL). (C195)

This means that for times ¢ > \~! even tiny changes in the initial conditions take a drastic
effect on the course of the trajectory. The mathematician and meteorologist Edward Lorenz
described this phenomenon by saying that the flap of a butterfly’s wings in Brazil could set
off a tornado in Texas.
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Figure C30: A single component (x) of two trajectories (black and red) of the Lorenz system (C196).
Both trajectories are computed for the parameters o = 10,p = 28,3 = 8/3, but are started using
slightly different initial conditions xg = (x0,v0,20) = (1,1,1) and (1.01,1,1), respectively. While
for short times the trajectories are visually indistinguishable, the uncontrolled growth of the relative
deviation becomes apparent at times ¢ ~ 2 (arbitrary units).

The phenomenon of chaos occurs even in very simple systems. For example, the
n = 3 system

dx

=oly—a),

dy

E - .’L'(p - Z) - Y,

dz

- _ 1
TR AEEt (C196)

with constants o, p, 8 was proposed by Lorenz~ as a model of atmospheric convection phenomena.
In spite of its relatively simple form — three functions f* of quadratic order in the variables (z,, 2)
— it cannot be solved analytically. However, a numerical solution reveals its sensitivity to variations
in the boundary conditions, as shown in Fig. C30.

The structure of a typical trajectory in the three dimensional space of variables is illustrated in
Fig. C31. The panels of the figure show the curve ®«, (t) at times ¢t = 0.1,0.3,1.5,5. These values
correspond to different dynamical stages of the dynamics, also visible in Fig. C30: an initial sweep
from the starting point to a center region ¢t < 0.1, followed by a spiraling motion (¢ < 1.5). At
larger times, the trajectory traces out a two-winged structure known as the Lorenz attractor. This
is an example of a strange attractor, a region in space which binds trajectories to it. The attribute
‘strange’ is well deserved. Trajectories captured by the Lorenz attractor perform perpetual motion
about it and their flow traces an infinitely filigree pattern of ‘fractal geometry’. This defines an
object that looks almost, but not quite, like a ‘surface’ in space. In mathematics, these structures are
characterized in terms of a fractal dimension (d ~ 2.05 for the Lorenz attractor). The fascinating
physics and mathematics of chaotic dynamics is explored in fields including chaos theory, nonlinear
dynamics, and turbulence and for further discussion we refer to texts introducing these disciplines.

"E.N. Lorenz, Deterministic non-periodic flow. Journal of the Atmospheric Sciences 20, 130 (1963).
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Figure C31: A trajectory of the Lorenz system with boundary condition (1,1, 1), as in Fig. C30. The
inset figures illustrate different stages of the dynamics, as discussed in the text.

C7.8 Linearizing differential equations

Consider a set of differential equations for a solution vector x = (z!,...,2"). It may be

expedient to think of x as the vector of coordinates specifying a complex mechanical system,
or that of populations in a biological context. Let us assume that the system is initially at
rest. In mathematical terms, this means that it is initialized at a stationary point x* of a
differential equation d;x = f(x) where f is the vector of generalized forces describing the
evolution. A ‘perturbation’ of the system will cause a deviations away from the stationary
point, x* — x* +y. Since x4y no longer is a stationary point, y(¢) now becomes a function
of time. For example, it may perform a damped oscillatory motion describing the vibrational
relaxation, y(t) N\, 0, of an elastic mechanical system. However, the perturbation may also
cause more dramatic effects. For example, the small perturbation of a spherical body initially
at rest on the top a hill may cause accelerated motion away from the initial configuration.

Even if the full equation, d;x = f(x), describing the system is complicated, motion in
the vicinity of fixed points can generally be described analytically. To understand how, we
substitute x = x* + y into the equation and obtain

d(x* +y) =diy = f(x" +y),

where d;x* = f(x*) = 0 was used. For sufficiently small y we may Taylor expand the r.h.s.
to first order in the small increment y. Eq. (C103) then tells us that

P +y) = P 4y Ve = 30 200

where the fixed-point condition f*(x*) = 0 was used again. From these equations we obtain
the system of linear differential equations with constant coefficients

. LI . df(x*
diy' = ZAZJ- v, A = —J;;J )>
=1
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for the deviations 3*. The constancy (i.e. independence of time) of the coefficient matrix A
follows from its definition as a fixed point property. Formulated in vector/matrix notation, the

equation assumes the compact form
diy = Ay. (C197)

We may now relate back to our discussion of section C7.4 to predict the different types
of dynamics in the vicinity of fixed points. The structure of the general solution (C169)
implies that everything depends on the structure of A's eigenvalues, );. These eigenvalues are
generally complex and depending on their value one may observe either:

> Oscillatory motion around the fixed point: all eigenvalues purely imaginary, Re()\;) =0,
> Damped oscillatory motion: eigenvalues have finite negative real part, Re();) < 0,

> Attenuated motion back to the fixed point: eigenvalues real and negative, Re();) < 0,

> Instability: the exist eigenvalues with positive real part, Re()\;) > 0, for at least one i.

In the latter case the system is unstable, and will diverge from its fixed point. In such cases,
the condition that the deviation y is small holds only for short timescales and different solution
methods must be applied to describe the dynamics at longer timescales.

C7.9 Partial differential equations

Partial differential equations are differential equations involving derivatives w.r.t. several
variables. A simple example is the wave equation in one dimension,

(v20? — OP)u(w,t) = 0, (C198)

where = and t are a spatial and temporal coordinate, respectively, v is a constant and u(x,t)
is a function representing the medium undergoing wave-like motion (the pressure of a gas, the
height of a water wave, etc.).

From a physical perspective, the two most important facts about differential equations are:

> They are of profound importance to all disciplines of physics. This follows from our rea-
soning in section C7.1: the laws of physics are naturally expressed in terms of differential
equations and most involve more than one variable.

> Their solution theory is much more complex than that of ordinary differential equations.

Partial differential equations take center stage in the physics curriculum, examples include the
Hamilton equations (mechanics), the Maxwell equations (electrodynamics), the Schrodinger
equation (quantum mechanics), or the Einstein equations (general relativity). Due to the
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mathematical complexity of these equations, lecture courses generally invest a lot of effort
into discussing solution schemes for the families of DEQs relevant to them.

The typology of partial DEQs, too, is much richer than that of ordinary DEQs. Again,
we have to discriminate between linear and non-linear equations, or equations of different
order. On top of that, however, there exist other criteria classifying different types of partial
DEQs whose discussion is beyond the scope of this text. Also, the question of existence
and uniqueness of solutions becomes more complicated. For example, it is straightforward
to verify that for arbitrary one-dimensional functions f and g, u(z,t) = f(x — vt) and
ug(z,t) = g(x + vt) solve equation (C198). This illustrates that it is not enough to specify
an ‘initial condition’: for f = g, the two solutions obey the same initial condition wu;(z,0) =
ua(x,0) = f(x), but for finite times they are clearly distinct. In the case of the wave equation,
different information is required to fix a solution."”

How do we know that ‘all’ general solutions of a partial DEQ have been found? How much
additional information is required to uniquely specify a unique solution and in what ‘form’ can
this information be provided? These are questions of considerable depth which are addressed
in mathematics lecture courses on partial DEQs and, from a more applied perspective, in all
lecture courses of theoretical physics.

"In the case of the wave equation, unique solutions may be fixed by providing ‘initial conditions’ in the
form u(x,0) = g(z) and dyu(x,t) = h(x), or ‘boundary data’ such as u(0,t) = u(L,t) = 0. For a discussion
of these statements we refer to lecture courses in mechanics and electrodynamics.
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In standard calculus, one deals with functions F'(v) that take vectors v € R"™ as arguments.
Functional calculus generalizes standard calculus, in that one considers ‘functions’ F'[f] taking
functions as arguments. Now, ‘function of a function’ does not sound nice, and for this reason
F'is called a functional. Likewise, it is customary to indicate the argument of a functional in
square brackets. To understand why functionals have a lot in common with ordinary functions,
recall that their argument functions can always be discretized as f — {f'[i=1,..., N}, i.e.
they may be interpreted as N — oo limits of N-dimensional vectors. This indicates that
one may work with functionals much like one would with ordinary functions. In particular, we
anticipate that standard operations of calculus must have a generalization to functionals.

(a) Consider the set of functions {f : [0,1] — R} mapping the interval [0, 1] into
the reals. For 0 < a < 1, we may define a functional 0,[f] = f(a), i.e. we simply read out the
value of the argument function at a fixed argument to produce a number. (b) We may also define
Av[f] = fol f(x)dz, i.e. a functional yielding the average value of f over the domain of definition.
(c) Consider the set of curves I' = {~ : curve in three-dimensional space}. Curves are a particular
class of functions, so a map assigning function values to individual curves will be a functional. For
example, we may define the functional L[y]=(Length of 7) to be discussed in some detail below.

C8.1 Definitions

For the sake of concreteness, we will focus on functionals taking
curves as arguments throughout. (This choice is motivated by
the fact that functionals of curves are the first encountered in the
physics curriculum. Most concepts relevant to generic functionals
are already realized with this subclass.) Let I' be the set of all
smooth curves v in RY. A real valued functional on I is then a
i smooth map

FI— R,
Fb) u— (C199)

assigning to individual curves a real number. (Of course, we may imagine functionals mapping

315



316 C8 Functional calculus

into target spaces different from the reals ... ) In many applications, the value a functional
takes on a curve is encoded in local properties of that curve, its curve velocity, local curvature,
etc. If we parameterize the curve as v : I — R%, ¢t — r(#), its local properties at r(t) are
encoded in the instantaneous derivatives, d;r(t), d?r(¢),... This observation motivates the
definition of a local functional as one whose value is described by an integral,

Fly] = / dt L(x(t), dir(t), d2e(2), .. ). (C200)

where L : RT@R*@® --- — R, (x,y,...) = L(x,y,...) is a function.” By contrast, an
example of a non-local functional would be

X[y = /dtdsri(t)Kij(t,s) r(s), (C201)

where K;;(t, s) is some function depending on ¢ and s in some manner.

Notice one important point: to define a local functional, we need an explicit coordinate
representation r(¢) of our curves. (How else would we compute derivatives?) However, the
functional as such is an object assigning to the curve 7, i.e. an object existing independently
of concrete coordinate representations, a number. This entails the coordinate invariance
of local functionals: parameterizing the same curve ~ in terms of two different coordinate
representations r(t) and n(s), the value of F'[y] must not change, although the form of the
corresponding functions L(r(t),...) and K(n(s),...) will in general be different. All these
features are illustrated by the curve-length example discussed below.

The length of a curve v : I — R% t — r(t) is defined as

L[] E/ldtL(r'-(t)), LG = (77%) % = i, (C202)

to

The functional L[] (not to be confused with its representing function L(r)) assigns to each curve
its euclidean length.

It is instructive to check that the functional does not change under reparameterization. For
example, we may parameterize the curve in terms of a different parameter s(¢). Assuming a Cartesian
coordinate system for notational simplicity, we then have L(dsr) = |dsr(t(s))| = |dst(s) dr(t)] =
|dst(s)|L(d¢r). Changing variables in the integral, we then obtain

Ll = / ds L(d,r) = / at |dys(t)] [dut(s)] L(dsr) = / at L(dir). (C203)
— .
1
"More generally, L(r(t),dsr(t),d?r(t), ..., t) may explicitly depend on the curve parameter, t. However,

to keep the notation simple, we do not discuss this complication here. As an exercise you may ask yourself
what changes (not much) if such an explicit dependence is present.
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C8.2 Functional derivative

Much like ordinary functions, functionals are characterized by their local extrema. Formu-
lated in the language of the curve functional, the first question we will ask is on what curve(s)
~v € T" does F'[y] assume extremal values. Judging from the analogy with functions, we expect
the extremal condition to be equivalent to the vanishing of some kind of ‘functional derivative'.
These considerations motivate the following definitions:

Consider two curves «,v’ € T" that lie ‘close’ to each other. For example, we may require
that |r(t) — r/(t)| < € for all t and some positive €. We are interested in the increment
F[y] — F[+']. Defining 4/ =~ + h, the functional is called differentiable iff

Fly+h] = Fly] = dF|_[1] + O(h?), (C204)

where dF| | is a linear functional of h, i.e. a functional obeying dF‘V[clhl + cohs] =
cldF’ ]+ CQdF’ [ho] for ¢1,c2 € R and hyiy € T. In (C204), O(h?) indicates residual
contrlbutlons of order hZ. For example, if |h(t)| < € for all ¢, these terms would be of O(¢?).
The functional dF'|, is called the differential of the functional F" at . Notice that dF|,
need not depend linearly on . Comparison with Eq. (C2) shows that the differential generalizes
the notion of a derivative to functionals (for a more comprehensive discussion of differentials,
see section ??). Alternatively, we may think of F[y + h] = F[y] + dF|,[h] + O(h?) as a
generalized Taylor expansion. The linear functional F'|, describes the behavior of F' in the
vicinity of the reference curve . A curve 7 is called an extremal curve of F if F'|, = 0.

Consider the length functional L[y| restricted to all curves r(ty) = rg, r(t1) = r1
beginning and ending at fixed initial and final points ry and r;. To obtain the differential of that
functional, we denote the parameterization of y(t) and v + h by r(¢) and r(¢) + y(¢), and consider
the variation

L[fy+h]—L[7]:/t:ldt (\i«+y\—\ry)=/ dt <T|y| + Oy 2)) _

= [ (5 () v +owm) (€209

where in the second line we integrated by parts. (Why does the integration by parts not generate
boundary terms?) This identifies the differential of the length functional as

dF|,[h] = /t:] dti <T> Y. (C206)

|7

The differential vanishes at ~, if for all smooth ‘test curves’ curves h, F|,[h] = 0. Inspection of the
integral representation shows that this is equivalent to the condition

d [ ,

7]
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For example, let us consider Cartesian coordinates, g;; = d;; in which a straight connection between
the initial and final point reads

1
ot —to

r(t)

[—I‘o(t - tl) + rl(t - to)] . (C208)

We then have 7/ = const., so that the above stationarity condition is trivially fulfilled. The straight
connection has extremal (shortest) length. More generally, we may consider a straight connection of
the two points,

r'(t) =ro + f(t)(r1 — ro), (C209)

where f : [to,t1] — R is a function with boundary condition f(¢p) = 0 and f(t1) = 1. We may think
of this as a reparameterization of the straight curve, or as the same curve traversed at inhomogeneous
velocity f(t)(ry —rg). (A car performing accelerated motion along a straight line still moves along
the shortest possible track.) Substitute this form into the extremal condition to verify that the latter
is still satisfied — the reparameterization invariance of functional extrema conditions.

Re-familiarize yourself with the definition of the derivative f’(x) of higher dimensional
functions f : R* — R. Interpret the functional F[y] as the limit of a function F : RN — R, {y'} —
F({7'}) where the vector {y!|i = 1,..., N} is a discrete approximation of the curve v. Think how
the definition (C204) generalizes the notion of differentiability and how F|, <+ f'(x) generalizes the
definition of a derivative.

C8.3 Euler-Lagrange equations

Calculating extrema of local functionals by explicit manipulation of the corresponding
integrals is always an option, but can be tedious in practice. It is therefore good to know that
there exist ways to derive extremal conditions which hold regardless of the specific form of the
functional. To illustrate the principle, consider the the set of smooth curves

Lroosey = {71 [to, t1] = Rt = r(t)|r(ty) = ro,r(t)) = 11}, (C210)
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connecting two fixed points ry and ry. On

Joseph-Louis Lagrange this set, we define the class of functionals

1736-1813

A mathematician who ex-
celled in all fields of analysis,
number theory, and celestial
mechanics. In 1788 he pub-
lished Mécanique Analytique,
which formulated Newtonian mechanics in
the then modern language of differential
equations.

Sly] = / L. (), (C211)

to

where L : R"@®R"™ — R is a function. These
are local functionals depending only on the
instantaneous positions of the curves, and on
their velocities. We adopt notation standard
in physics, where S is called an action (func-
tional) and L is called a Lagrangian func-

tion.
We can now prove that the local functional S[| is differentiable and that its derivative is
. 2
given by

t1
dF| [h] = / dt (0L — d,0x: L) o/, (C212)

to

where we use coordinate vectors r and y to parameterize the curves v and h, respectively.
Eq. (C212) is verified by straightforward Taylor series expansion:

Sly+ h] = S[y] = /t1 dt (L(r +y,r+y,t) — L(r,1,t)) =

to

t1
:/ dt [8rL'y+ai-L'h]+O(y2):

to

t1
- / 0t (0,1 — dy(OhL)] -y + 0L - y|' + O(),

to

where in the last step, we have integrated by parts. The boundary term vanishes due the
condition that all curves begin and end at the same point. Applied to the original curve, r(t),
and the shifted one, r(t) + y(¢), this means r(t;) = (r + y)(t;) = r;,7 = 0, 1, which enforces
y(to) = y(t1) = 0. Comparison with the definition (C204) leads to the identification (C212).

Eq. (C212) may now be read as follows: the local functional S is extremal on all curves
obeying the so-called Euler-Lagrange equations

i oL B oL
dtort  Ort

=0, i=1,...,d. (C213)

The reason is that if and only if these d conditions hold, will the linear functional (C212)
vanish on arbitrary curves h.

“Do not be confused by the notation 0;: L. It simply means the partial derivative of the function L w.r.t.
its second set of arguments: 0;: L = 0yi L(X,y)|y=¢-
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Compute the Euler-Lagrange equations of the length functional (C202) to re-establish
the results discussed above.

Above we have argued that the extremal condition is an intrinsic property of a curve,
and not tied to a specific coordinate representation. This means that if we parameterize a given
curve -y in two different coordinate representations r(t) and q(t), the Euler-Lagrange equations must
hold for both sets of coordinates, r* and ¢, i.e.

~ extremal =,
d o 0 .
(maw - a> Lr.5)=0,

d 0 0 )

Where L(q,q) = L(r(q),1(q)) is the r-Lagrange function expressed in g-coordinates. To show the

coordinate invariance of the Euler-Lagrange equations, i.e. that the second line above follows

from the first, use the chain rule, i.e. 94 L = Zj (")ijg—’qu. To compute the partial derivative on the
ort _ ort

right use that #(q) = dyr’ = P g—;;dtqj, and the resulting equation &7 = 555

Figure C32: Parameterization of a two-dimensional curve in terms of Cartesian (r!,72) and polar

(p, @) coordinates.

Let us illustrate the coordinate invariance of the variational formalism with the ex-
ample of the length functional C202 in the case d = 2, i.e. the functional measuring the length
of planar curves. This functional depends only on first order time derivatives, i.e. it is described
by the Lagrangian function L(r*, 7% it 7%) = ((#1)% + (7"2)2)1/2, depending only on the derivatives
7', but not on the coordinates r* themselves. Compute the explicit form of the Euler-Lagrange
equations (C213) for this functional to rediscover our earlier extremal condition (C207).

Let us now reparameterize the two dimensional (7!, 72)-plane in terms of polar coordinates (for a
comprehensive discussion of non-Cartesian coordinates, see chapter V2) 7! = pcos(¢),r? = psin(¢).



(C8.3 Euler-Lagrange equations 321

Each curve has now two alternative descriptions, (ri(t),72(t)) and (p(t), #(t)), see Fig. C32. Sub-
stituting 1 = pcos(¢) — psin(¢)¢ and 72 = psin(¢) + pcos(¢)¢ into the Euler-Lagrange equation,
we obtain the representation

: /
L(pv ¢a pv ¢) = (,02 + P2¢2)1 i ) (C215)

It is now straightforward to compute the Euler-Lagrange equations

doL 0L !
doL oL !

Here, the notation gb() indicates that we are getting a lengthy list of terms which, however,
are all multiplied by qu Putting the initial point into the origin, i.e. a point with radial coordinate
p(to) = 0 and the final point somewhere into the plane, (p(t1), #(t1)) = (p1, ¢1), we conclude that
curves connecting the origin along a straight line, i.e. one without variation in the angular coordinate,
¢(t) = ¢1 = const., are solutions of the Euler-Lagrange equations; they have vanishing derivative

¢ = 0, implying that both equations are satisfied. (It is less straightforward to show that these are
the only solutions.)
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Although the complex number field C may be superficially more complicated than the real
one we have frequently seen in this text that the ‘complex’ description of problems can be a
lot simpler than a ‘real one’ — think of Fourier calculus as an example. However, so far we
have not really harvested the full potential of complex numbers. We will do so in this chapter
where we introduce the complex version of calculus, complex differentiation, integration, etc.
The ensuing complex calculus will turn out to be much more powerful than real calculus. For
example, we will discuss integration theorems so strong that one often chooses to ‘complexify’
real integrals (in a manner to be discussed) to benefit from them.

At first sight, the above remarks may be surprising: hadn’t we said that the complex
numbers z = x 4 iy can be parameterized in terms of two real coordinates =,y and therefore
may be regarded as a two dimensional real vector space, Z ~ IR?*? Which would then suggest
that complex calculus is more or less equivalent to two-dimensional real calculus. What this
argument misses is that complex numbers can be multiplied with each other. Staying with the
vector space picture this means that we are dealing with a variant of R? in which vectors can
be multiplied to produce new vectors (which is the defining feature of an algebra, cf. p. 71,
i.e. the complex numbers are equivalent to a two-dimensional real algebra). It is this added
feature which gives complex calculus its strength.

C9.1 Holomorphic functions

Definition

Complex calculus addresses the properties of differentiable complex functions f : U —
C,z — f(x), where U C C is an open subset of C. In analogy to Eq. (C1) we call f
complex differentiable at z € U if the limit

= lim ~(f(z+Az) — £(2)) (C216)

exists. If f is differentiable for all z € U we call it holomorphic in U. Examples of functions
for which holomorphy in all of C can be established by explicit construction of the limit (i.e. as
with real functions) include the monomials 2!, | € N, convergent power series, or the functions
exp(z),sin(z), cos(z) (by virtue of their power series representations).

322



C9.1 Holomorphic functions 323

Recall that the two most important rules of real differentiation, the product rule and the
chain rule, follow directly from the limit definition Eq. (C1). Since Eq. (C216) has the same
structure, complex generalizations of these rules follow in an analogous manner:

product rule:  <-(£9)(2) = f(:)g(2) + f()/(2),

chain rule: - (f(g(=))) = I'(9(=))g'(2), (cor7)

where the existence of all derivatives is assumed.

Cauchy-Riemann differential equations

Is holomorphy equivalent to the condition of real differentiability of the function f(z,y)
when z = = + iy is interpreted as a two-dimensional real variable? No it is not, holomorphy
is a much stronger condition and this follows from the above mentioned algebraic structure
of the complex numbers. To understand this point let us represent z = (z,y)7 as as a
two component vector containing its real and imaginary part. Now consider another complex
number w = r + is and build the product 2’ = 2’ + iy’ = wz = re — sy +i(ry + sx). In
matrix representation this reads

Auguistin-Louis Cauchy

'\ _ (r —s\ (% (1789-1857)
(y/)_ (S 7’) (y) (C218) A French mathematician

generally considered as one
of the fathers of modern
_ _ _ analysis and in particular of
dimensional function complex analysis. However,
9 9 Cauchy also contributed to

f:R*— R, _

many other areas of mathematics and

AN 7 (C219) physics |nc|uq|ng algebra,. .number theory,
Yy v (z,) wave mechanics, and elasticity.

We split f = w + iv into real and imaginary
part and temporarily interpret it as a real two-

where the argument is indicated as a subscript

for notational convenience. This function is

differentiable in the real sense if all partial derivatives d,u,0,u, d,v,0,v exist and a small
increment of the function can be represented as

O O 5., () om0
(e+Az,y+AY) (@) eV U/ gy \2Y

By contrast, complex differentiability calls for the condition
f(z+A2) = f(2) + fl(2) Az + O(AZ?),

where on the r.h.s. we have the multiplication of complex numbers. If we write out this relation
in a real two-component representation we understand that (i) f'(z) is to be identified with
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the 2 x 2 in the real derivative. At the same time, f’(z)Az is the multiplication of two complex
numbers and Eq. (C218) requires that

Ozu = Oy, Oyu = —0,0. (C220)

These equations are known as Cauchy-Riemann differential equations and they express
the condition of complex differentiability in the language of real numbers.

Analyticity

One can show that a function is holomorphic in U iff it can be
expanded in a complex Taylor series around each zy € U, i.e.
if there exists a representation

f(z) = Z an(z — 20)", ap =

n=0

: (C221)

where the identification of the coefficients, a,, = f™(z)/n! fol-
lows from n-fold differentiation of the left and the right hand side of the equation at 2y, as in
the case of real Taylor series. The series exists (converges) in a disk with radius p around z.
A lower bound for p is the radius of the maximal disk centered at z, and contained in U (see
figure). Functions having this property are called analytic in U. The attributes ‘analytic in
U’ and ‘holomorphic in U" are synonymous and both in widespread use.

Here are a few examples of functions along with their analyticity properties:

> exp(z),sin(z), cos(z) — power series expandable around any z € C' and therefore globally
analytic.

> Z = x — iy — not analytic, because it violates Egs. (C220).
> |z| — also not analytic, for the same reason.

1 .
> ——— — analytic on C\{w}.

A point zy € C where a function f is not analytic is called the point of a singularity. Notice
that a singularity need not imply diverging behavior. For example z = 0 is a singularity of the
function |z|, which vanishes at the singular point.

Geometric interpretation of holomorphy

Let us turn back to the R2-interpretation of complex functions to give the concept of holomor-
phy a geometric meaning. Consider the map (C219) and in particular the set of curves in the
uv-plane generated by keeping one of the coordinates x,y constant, e.g. (u,v)(x,yo), where
yo = const.. We may think of this as a map from a perpendicular grid of parameter lines in
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Figure C33: Image curves of the holomorphic functions (left to right) log(z),sinh(z),exp(z) and
tanh(z). For arguments z = z + iy with € [—1,1] and y € [0, 27| discretized into an argument
grid with 20 x 20 lines. The arrows are the tangents at arguments (xq,yo) = (0.6, 7/5).

the xy-plane to a distorted grid of image lines in the uv-plane, see. Fig. C34. A key feature
of that image-grid is that its lines still cross at 90deg angles, like those of the argument-grid.
We say that the map (z,9)? — (u,v)T is conformal or angle preserving, and this feature
is a direct consequence of holomorphy.

: 4

Figure C34: A holomorphic map f(x+iy) = (u+iv)(x+iy) sends a perpendicular grid of coordinate
lines in the xy-plane to a distorted but angle-preserving grid in the uv-plane.

To understand this connection, consider a curve (u,v)T(z) = (u,v)(z + iyo) in the uv-
plane obtained by keeping vy, constant. Its tangent vector at the point zy + iyg is given by

(Ozu, 8$v)%;0+iy0). Likewise, the tangent vector of the curve with constant xy passing through
xo + iyo reads (Oyu, va)%;OJriyo). The scalar product of these two tangents is given by

Oz u0yu + 0,v0,v (€20 Oz udyu — Oyud,u = 0.

The fact that it vanishes means that the parametric curves intersect at a 90deg angle, just like
those of the xy-argument grid, i.e. the image grid locally preserves the angular structure of the
argument grid. (Think why the local preservation of the angle is not tied to the perpendicularity
of the argument grid used in the construction above.) For illustration, Fig. C33 shows image
grids for a number of specific conformal maps.
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C9.2 Complex integration

Requires section ?77.

The Cauchy-Riemann differential equations are at the root one side of a coin whose other are
strong theorems applying to the integrals of complex functions. These theorems are instru-
mental in most applications of complex functions in physics, mathematics, and engineering.

Definition of complex integrals

As before with differentiation, we may approach complex integration by interpreting the
complex quantities involved as elements in R?. To this end, consider a curve 7y in IR? begin-
ning and ending at (zg,vo)” and (z1,y1)7, respectively. Assume v to be parameterized as
v:[0,1] = Rt (x(8),y(1)". Let (u, —v)(,,, and (v,u)(, ) be the component represen-
tation of two vector fields, where u, ) and v(,,) are real functions. We then know that the
line integral of the fields along the curve are given by the integral of the scalar product of the
curve-velocity (,9)” with the vector fields (u, —v)T and (v, u)?, respectively, cf. Eq. (V12).
In a component representation this leads to the two results

I= / 0t ((t)u(t) — §(6)0 (1)),
J= /O dt (#(8)o(t) + §(L)u(t)). (C222)

These formulae can be cast into a convenient complex represenation. To this end we interpret
as a curve in the complex numbers with representation z(t) = x(¢)+iy(¢). In a similar manner
we combine the vector field components to define a complex function f(z) = (u + iv)(2).
Now let us define the complex line integral along v as

/ F(2)ds = /0 dt 2(8)F(2(1)). (C223)

As always with line integrals, notations such as fﬂ/ fdz are symbolic representations for a
concrete definition through a time-like parameter integral, here given by the expression on the
r.h.s.

Defining the complex number K = f7 fdz and using that 2f = tu — yv +i(Zv + gu), we
realize that K = I +1J, i.e. the real and imaginary parts of our complex definition are just the
two real line integrals introduced above. This is an important observation as it connects the
complex definition to the two-dimensional geometry of conventional vector field integration.
For example, this correspondence tells us that the complex integral does not depend on the
choice of the representation z(t) of the complex curve (because the corresponding real vector
field integrals don't, still you may want to verify this by explicit computation).
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Let 2o = R, R € R* be a point on the positive real axis and z; = Re'? a terminal
point at the same distance R from the origin. Consider a circular arc S connecting the two points
according to the parameterization z(t) = exp(it¢),t € [0,1]. Let us compute the complex line
integral of the function z" along this curve:

1 . . n+1 .
/ dz 2" = / dt(ique‘¢t)(Re1¢t)” = R (el(n+1)¢ _ 1> _
Se

0 (n+1)

Suppose we close the curve by choosing ¢ = 2, i.e. we now integrate around a closed curve S,
of constant radius R around the origin. In this case, exp(i27(n + 1)) = 1, and the integrals all
vanish as long as n > 0. This is a remarkable result. It tells us that the line integral of any
function holomorphic at z = 0, i.e. any function that can be represented in terms of a Taylor series

f(z) = >, a"z" (whose radius of convergence exceeds R) has a vanishing line integral along the
circle. In fact, the closed line integral vanishes even for all negative powers n < 0, i.e. for functions
singular at the origin, unless n = 1. Only in this case we obtain the finite result fS% dzz7! = 2mi.
For later reference, we summarize these findings as

/ dz(z — 20)" = 27y, -1, (C224)
S

where S is a curve surrounding 2y at constant radius.
Clearly something is going on here, and in the next section we discuss what it is.

The result above implies a useful representation of the coefficients, ¢,, of the complex
series, Eq. (C221) of holomorphic functions: let S be a circle of radius smaller than the series of
convergence around a zg where a function is holomorphic. For any given n consider the line integral
of f(2)/(z — 20)"*! along that circle:

95 dz(z 20) n+1 Zam§£ dz(z — zo)m_"_l = 2mian,
S _

where in the last step Eq. (C224) was used. We thus have the representation

_ ! f(z)
an =5 &é dzm. (C225)

This representation can be used to obtain non-trivial results, cf. the proof of Liouville's theorem
below.

C9.3 Cauchy theorem
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Let U be a simply connected domain in the complex plane. We recall
(cf. section V3.2) that a domain is called simply connected if it is
connected (any two points 21,20 € U can be connected by a curve
in U) and any closed curve in U can be shrunk to a point (see the
figure, where the upper domain is simply connected while the lower one
is not). Let 7 be a closed curve in U and f a function holomorphic in
U. Cauchy’s theorem then states that

/dz f(z) =0, (C226)

v

i.e. the line integral of a holomorphic function along a closed curve is zero. Before proving
this important fact, we note the equally important consequence that

The integral of a holomorphic function f along a curve connecting two points
21,2 in a simply connected domain does not depend on the choice of the curve.

This follows from the fact' that if you have two curves 71,2 connecting the two points, you
may concatenate them to form a closed curve v, U~ going from z; to 25 (along 71) and back
(along 72). But then we have f% f - fw f= fwm f = 0, where the last equality is due to
Cauchy. This feature gives us the freedom to ‘deform’ integration contours at will. As long
as we don't hit any points where the function is non-holomorphic the value of an integral will
not change.

To prove Cauchy’s theorem, we turn back to the real interpretation of the complex
line integral. Both, I,.J in (C222) are line integrals of vector fields in the two-dimensional
zy-plane. We may apply Stoke's theorem (V104) to convert them to integrals of the curl
of our fields over the the bounded by the integration curve in the xy-plane. Embedding
the integration plane into a three-dimensional space with third coordinate z, the integral [
can then be represented as the integral of (V x (u, —v,0)"), = 9,(—v) — 9,u. However,
this combination of derivatives vanishes because our function is analytic and hence obeys the
Cauchy-Riemann equations (C220). By the same token, the curl of the second vector field
(V x (v,u,0)T), = d,u — d,v vanishes as well. We therefore conclude that both I = .J =0
and this means that the complex line integral K = I 4 iJ vanishes.

The vanishing of the integrals of 2™ along the circular contour discussed in the example
of the previous section is now understood as a manifestation of Cauchy’s theorem. The
theorem also tells us that the integration contour might have been deformed to any other one
surrounding the origin, and the holomorphy of 2™ (outside the origin for n < 0) would ensure
the invariance of the integral.

Cauchy's theorem and a a few of its cousins which we are going to discuss are powerful
allies in both complex and real integration theory. Integrals over real functions can often be

"Recall the very similar reasoning employed in section V3.2 to show the path independence of integrals of
gradient fields.
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processed by interpreting the integral as a complex one, followed by application of a complex
integration theorem. In the following example, we apply this strategy to the computation of
a real integral over a rational function.

Suppose we wanted to compute the integral I = ffooo dz r(x) over the rational function
r(z) = (;jﬁ Integrals of this type can generally be computed by elementary yet somewhat
laborious variable substitutions (do the above integral in this way). However, one may often proceed
in more efficient and certainly more elegant ways by complex integration methods. To illustrate this
strategy let us define the function f(z) = ﬁ Consider the integral of this function along the real

axis, i.e. from —oo +i0 to +o00 + i0. Using the real variable x as an integration parameter, we find
z f(z) = T = T — .
R e (1?2 (z2+1)*  (22+1)2

We observe that the real part of the line integral is just the integral
we are interested in. We now compute the complex integral by a
commonly played trick: we imagine the integration contour closed by
a giant semicircle of radius — oo through the upper complex plane
(see figure). Does this operation change the result of the integral?
The answer is no, and this is because the integrand decays as ~ 272 for |z| — oo. However, the
circumference of the circle grows only as ~ |z|. So the contribution from the semicircle to the line

integral decays as ~ |z|~1. (If you feel uneasy about this argument, inspect the line integral more
closely.) We now have transformed our integral to one along a closed contour, and one that runs
through a simply connected part of the complex plane. Furthermore, the function f has only one
singularity at z = —i (the cross in the figure), and so it is analytic everywhere inside the contour.
Cauchy’s theorem then tells us that the integral equals 0 = 0 + i0, i.e. I = 0 as a consequence of
the complex integration theorem.

C9.4 Singularities

Most functions of interest are not holomorphic throughout all of C. For example, one can
prove (Liouville’s theorem) that every function f that is bounded |f(z)| < M, for some
M > 0, and holomorphic in all of ©C must necessarily be constant. This means that interesting
bounded functions (of which there are many) contain singularities.

The proof of Liouville’s theorem nicely illustrates the power of series expansions in complex
calculus: let f: C' — C,z — f(z) be holomorphic in all of C and bounded, |f(z)| < R for some
R > 0. Holomorphy in all of C implies the existence of a series representation (C221) centered
around any point in C, say zp = 0, and unlimited radius of convergence, f(z) = > 7 anz".
Consider a circle S of radius R centered around z = 0, and represent the coefficients of f's series as
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in Eq. (C225). We then obtain the estimate,

1
|M§¢w
27'(' S

where the factor 27 R in the numerator comes from the circumference of the integration contour.
(If you feel uneasy about this estimate, use a parameterization z(t) = Re' to formulate an explicit
representation of the line integral and count the factors of R then.) This means that |a,| < MR™"
for arbitrary R, which in turn implies a,, = 0, unless n = 0. The series thus collapses to f(z) = ay,
showing the constancy of f.

f(2)

Zn—l—l

1
< —(27R) =MR™, (C227)
2T

Rn+1

As we will see below, complex singularities are interesting objects which can be potent allies,
especially when it comes to the integration of functions. However, before we turn to the
discussion of this point we need to classify them according to their severity. We first need
to discriminate between isolated singularities and extended singularities. A function has an
isolated singularity at z, € U if it is holomorphic on U\{zy}, where U is some open
neighborhood of z;. For example, the function 2! has an isolated singularity at z = 0
because it can be expanded (is analytic) around any point different from zero. The square
root function z'/2, has a singularity at z = 0, too, but it is not an isolated one. As we will
discuss in more detail below, one cannot even define a continuous square root function on a
punctured neighborhood U\{0} of the origin. (As you may have guessed, this is related to
the notorious sign ambiguity, e.g. V4 = £2.)

Turning to the isolated singularities, the ‘least singular’ of those is a removable singularity
(hebbare Singularitdt). This is an isolated singularity at some z, where a function f(z) just
is not properly defined. However it is ‘removable’ in the sense that a holomorphic extension
covering z is possible. The canonical example in this context is the function sinc(z) =
sin(z)/z which has a problem at z; = 0 where it shows a 0/0 ambiguity. However, we
may define sinc(0) = 1 to remove the singularity and obtain a globally holomorphic function.
(Discuss the function now is holomorphic and construct a Taylor series representation centered
around z = 0. )

A pole is an example of a more serious singularity. The function f(z) has a pole at z if
it is analytic on U\{z}, but not at z, and if there exists a holomorphic function g : U — C
with non-vanishing g(zo) such that for all z # z,

f(Z)==(;%¥§ly; (C228)

The smallest n for which such a representation exists is called the order of the pole. A few
examples:

> The function f(z) = ﬁ has a pole of order 2 at z = i.
> The function f(2) = —z5qy has a pole of order 2 at z = 1 and one of order 1 at

z=—1.
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> The function f(z) = ﬁ has a pole of order 1 at z = 7. This is best seen by expanding
the exponential function in the vicinity of im as ¢ = —1 — 2 — 22/2 — .. .. Substitution
into f(z) leads to f(z) ~ 1/(—2z — 2%) = —1/z(z + 1) which is of the form Eq. (C228)

with g(z) ~ —1/(1 + z).

An isolated singularity which is neither removable, nor a pole is called an essential singularity.
For example, z = 0 is an essential singularity of the function |z| (but notice the absence of
divergences!) This wording suggests that poles are somehow considered ‘non-essential’. But
why is this? The answer lies in the analyticity of the function g in (C228) which in turn implies
the existence of a Taylor series expansion g(z) = > - ,bm(z — 20)™. If we substitute this
into the pole expression, we obtain the series representation

[e.9]

)= am(z—2)" (C229)

m=—-n

where the coefficients a,,, = by, are determined by the expansion of g. Series of this type,
i.e. power series starting at some finite negative exponent —n are called Laurent series. The
singularity of the function f is now encoded in finitely many simple functions (z — zy)™<?, and
in this sense is non-essential. Functions that are holomorphic except for finitely many points
where they afford Laurent expansions (i.e. contain poles) are called meromorphic functions.
The terminology (inspired by the Greek word meros="'part’) suggests that they stand halfway
between the holomorphic and the truly singular functions. The coefficient a_; = Res(f, 2o)
of the expansion is called the residue (Residuum) of f at z;. We will see in a moment how
the residue plays an important role in the complex integration of f.

Figure C35: A one-dimensional cartoon of function singularities in ascending order of severity.

For example, the second function in the list above f(z) = is meromorphic in C. In

1
(2=1)?(z+1)
the vicinity of its second order pole at z = 1, the second factor (z + 1)~! may be expanded as

zi1 N (z_i)mz—gj(—%)mﬂ(z—l)m,

=0

and from there we obtain the Laurent series representation

o

1 z~1 1 m3 m
(z—12(z+1) 22 (‘5) (z=1)", (C230)

with a residue of —1/4. To conclude, we have seen that the severity of singularities can be
classified according to the hierarchy removable — essential indicated in Fig. C35.
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C9.5 Residue theorem

Deforming integration contours

Suppose we want to integrate a meromorphic function f around a path ~ encircling one
or more of its poles (cf. Fig. C36, first panel) in mathematically positive, counter-clockwise
direction. What can we say in general about the outcome of the integration? Of course, one
would suspect not much — should the result of the integration not depend on the choice of
the integration curve?

However, it is one of the marvels of complex calculus that the choice of the curve is
inessential to the value of the integral, all what matters is how many point-singularities of f it
encircles. To see this, consider the composite curve y'Uc;U(—S)Uc, shown in the second panel,
where ¢;, are parallel stretches from some point of v to the neighborhood of the singularity
and back, +' is a cut version of v and —S a small circular curve surrounding the singularity in
mathematically negative, clockwise direction. We indicate the sense of orientation by a minus
sign in the notation. This new curve surrounds a region in which f is holomorphic and so
Cauchy'’s theorem tells us that

/ dzf:/dzf+/dzf+/ dzf+/dzf:0.
~¥'UcU(—S)Ucr 5 cr —S a

The integrals along ¢;, mutually cancel out because they are along geometrically identical
§tretches traversed in opposite direction, fc,« —l—_fq = ch —i—ffcr = 0. We.also know that the
integral over 4" equals that over v because cutting a curve at a single point does not change
the va.Iu.e of an integral. Finally, f—s <.izf = — fs df, where S is the positively traversed circle.
Combining these observations we arrive at the result

/Wdzf: /Sdzf. (C231)

Figure C36: First panel: integration of a meromorphic function along a contour encircling singular-
ities. Second panel: the contour can be deformed (without changing the value of the integral) to
one encircling the residues along small circles. Those integrals in turn yield 27wix the corresponding
residues of the function at the singular points. Third panel: the method works for an arbitrary
number of singularties inside the contour.
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If there are several singularities the construction may be generalized as shown in the right
panel of the figure, i.e.

[ydzf:Z/Si dzf, (C232)

where the sum is over all singular points, and the S;'s are small circles surrounding these
points.

A good way to think about the construction is to imagine v as a
\\ rubber band and the singularities as nails. Outside the nail's po-
sitions the rubber band can be deformed arbitrarily without chang-
ing the integral over holomorphic functions. If there is just one

nail, the band may be shrunk to an arbitrarily small one encir-

cling its position. Think how to rationalize the multi-singularity
generalization (C232) within the rubbery analogy.

The residue theorem

Now imagine a meromorphic f expanded in a Laurent series (C229) around one of its
singularities. The formula Eq. (C224) then tells us that the integration along the corresponding
circle will yield 271 times the coefficient of order m = —1, i.e. the coefficient termed residue
of the function at the singularity:

/5- dzf(z) = 2miRes(f, z;). (C233)

K3

Combining this formula with Eq. (C232) we arrive at the residue theorem,

/dzf(z) = 27riZRes(f, i) (C234)

The integral of a meromorphic function along a curve equals 27i times the sum over the
residues of all the singular points enclosed by the curve.

As we will see momentarily, the theorem of residues is a powerful aid, both in real and complex
integration. This being so it is expedient to know recipes for the efficient computation of residues
of meromorphic functions. One approach is to start from a representation as in Eq. (C228),
followed by Taylor series expansion of the function g. In practice, the function g is often easy to
guess and this method works reasonably well. Alternatively, one may compute the derivative

Lo (- w0 )| (C235)

ReS(f, ZO) - (n — 1)' 2=2o
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where n is the order of the pole of f at zy5. To understand this formula consider the Laurent series
of f and notice that

(n+m)!

m+1
m! ’

(2= 2)" @) = S am(z— )= Y

m=—-n m=—1

am(z — 20)

where in the second step we noted that powers of (z — zy) of order smaller than n — 1 vanish under
the derivative. If we now set z = zg all contributions to the series except the lowest, m = —1 vanish.
So we are left with a_; x (n — 1)! and that explains why Eq. (C235) picks out the residue of the
function at zj.

Examples

im S

Figure C37: Three examples of contour integration aided by the theorem of residues. Discussion,
see text.

Example 1: like Chauchy's theorem the theorem of residues may be applied to the computation
of real integrals. Consider, for example, the integral

o 1
1= de —.
/_oo T me

We proceed as in the example of p C9.3 and interpret I as an integral of the complex function
1/(2* + m?) over the real axis. A semicircle closing the contour either in the upper or lower
complex plane at distance — oo may be added without altering the value of the integral. Now
we have a closed contour and the theorem of residues instructs us to inspect the singularities
of Zgjmg = (Z_im)l(z+im), where we assume m > 0. There are two poles of order unity at
2o = +im, with residue £1/2m, see left panel of Fig. C37. If we close the contour in the
upper complex plane we encircle the pole at +im and the theorem of residues immediately
gives I = . Verify this result from the fact that arctan’(z) = 5. Check that the closure
of the integration contour in the lower complex plane yields the same result. (In doing so keep
an eye on the direction of travel, clockwise or anti-clockwise, of contours.)

A generalized variant of the above integral which plays an important role in both electro-

dynamics and quantum mechanics reads

00 eikm
I = de ——
/ L 2 +m2’

oo
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where k& > 0 for concreteness. Calculate the integral by the same method as above to verify
[ = Zelkim
m
Discuss why the choice of the upper contour now is required by the sign of k.
Example 2: occasionally, one encounters integrals over complex functions which do not yet
have the canonical form of a complex line integral Eq. (C223). As an example, consider the
integral (which again plays a role in some areas of quantum mechancis)

2T 1
I = dp—F—
/0 ¢1—e5e1¢”

where § > 0. Defining z = ¢'® and noting that d,z = iz, we realize that the integral can be

written as
1
[ / Aot
L 2(1—e%%)

where the integral is along a unit circle around the complex origin, and ¢ was used as a curve
parameter (cf. Fig. C37), center. This integral has two poles of order unity at zo = 0 and
2 = e~ with residues 1 and —1, resp. Application of the theorem of residues thus yields
1 =0.

An alternative way to obtain this result is to expand the ¢-representation of the integral
in a power series in €' and to show that each term in the expansion vanishes (try it!) As an
exercise you may explore what happens if § < 0. Does the integral still vanish? Compute its
value by an explicit expansion and by the theorem of residues.

Example 3: as a final example consider the integration

[= /Oo SPRAC) (C236)

o T —1id

of the product of a function f(z) analytic in a strip around the real axis and the factor —,
where § > 0 is assumed to be infinitesimally small, along the real axis. As a concrete example
we may consider f(z) = leg which is analytic for |Im(z)| < 1.

The function lew has a pole at z = id, see Fig. C37, right panel. This means that if
we close our integration contour as shown in the figure, we have a closed loop integral over
an analytic function, i.e. an integral that yields a vanishing result. The infinitesimally short
pieces connecting the two parallel integration stretches along the real axis R and the backward

contour R + id do not contribute to the integral, so we may write

O:/dzf(z,)—/ dzf(z,):l—/ 1.1
r Z—10 WUSUy, 2 — 10 WUSUy, 2 — 10

where v, = (—00, —€)+id, v, = (€, 00)+id, and S is an semicircle of infinitesimally small radius
¢ around the point id, 0 < € < 4. Parameterizing these contours as 7; <> (x + 16,z < —e¢),
Y <> (x +1i6,2 > €), and S «> (10 — ee, ¢ € [0,7]), we obtain

flz) [, flatieg [ fl@)
[ndzz_ia—/oodﬁ . _/Oodx s
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[/r dzji?d = /:O dx—f(x;i'g) o~ /:O dx@,

/Sdz /) —/Owdt(—ieeit)M ~ ir£(0),

z —10 —eeit

where the last equalities are based on the assumed continuity of f, i.e. the assumption that f
does not vary noticeably over scales §,e. We combine these results to obtain

/00 dycM = P/OO dx@ +im f(0), (C237)

o T —1i0 o

where we have defined the so-called principal value integral (Hauptwertintegral)

P/_deg(:c) = lim </_;da:+/eoodx) o). (C238)

The result above is often abbreviated in symbolic notation as

1
= P+ ind(2). (C239)

However, this formula makes sense only under an integral, and in the limit 6 — 0. For example,

with f(z) = 15, we have

1 1 o0 1 . [ d(x) .
d P e d —
/]R vz i /_Oo xx(1+x2)+l7r/_oo Tyae2 T

where we used that the principal value integral vanishes due to the evenness of the integrand
under x <> (—x).

Compute the imaginary part Im(z—i6)~! and convince yourself that in the limit § — 0 a
representation of the d-function is obtained. This is an alternative way to understand the appearance
of imd(x) in Eq(C239).

As a concrete and final example let us compute<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>