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Preface

The miracle of the appropriateness of the language of mathematics for the formulation of the laws of physics is a

wonderful gift which we neither understand nor deserve. Eugene Paul Wigner

This text is an introduction to mathematics for beginner physics students. Perhaps the
first question to ask is in what sense it differs from the large number of existing books on the
subject. The short answer is that it presents the concepts and the methods of mathematics
in unison and on equal footing.

In contrast, traditional approaches mainly emphasize the training of methods. For
example, standard courses on ‘Mathematical methods for physicists’ provide practical recipes
for the algebraic manipulation of vectors, the diagonalization of matrices, the computation
of Fourier transforms, or the solution of differential equations. This pragmatic approach is
motivated by the fact that a wide assortment of mathematical methods are required early on
in physics courses and that students have to learn them as quickly as possible.

Conceptual mathematical thinking, on the other hand, will emphasize connections be-
tweens vectors, matrices, Fourier transforms, and differential equations. Although these links
are very important to physics (in quantum mechanics, for example) they remain opaque in
teaching that is entirely methodological. Appreciating this shortcoming many physics curric-
ulae include lecture courses in pure mathematics — who would be better authorized to teach
mathematical concepts than mathematicians themselves? However, a downside of such out-
sourcing is that mathematical teaching emphasizes concepts somewhat different from those
which are most relevant to physics. For example, the chain of connections alluded to above is
not addressed in standard mathematics courses.

In this book, we aim to present concepts and methods of mathematics for physicists in an
integrated manner. Importantly, this approach will not be more ‘formal’ or less intuitive than
what is standard in physics. Perhaps the main difference is that somewhat more attention
is paid to the discussion of mathematical structures, and that this is done with a ‘loving
eye’. Let us illustrate this point with the example of vectors. When vectors are introduced
early in the curriculum, emphasis is usually put on three-dimensional vectors, described in
terms of components and visualized in terms of arrows. This picture is familiar to many
students from high school, and it is sufficient to follow introductory mechanics courses in
university. However, only one year later, quantum mechanics becomes part of the agenda.
The mathematics of quantum mechanics is all about vectors, but now they live in a more
abstract (Hilbert) space which is hard to visualize. This can be confusing for students who

vii



viii Preface

have been conditioned to thinking of vectors as arrows in three-dimensional space. The problem
is avoided by emphasizing the full meaning of vector spaces from the very beginning. This
generalized approach will cover many different realizations of vector spaces in physics. From
the beginning, it draws from a larger class of examples, including those which later appear in
quantum mechanics. In this way the role played by vectors in physics becomes more tangible
(and arguably less frightening) than in approaches fixated on only one realization. At any rate,
our own teaching experience has shown that a conceptual introduction to vector spaces is well
received by beginners and makes it a lot easier to cope with the linear algebra of quantum
theory later on.

On a related note, the physics community has the habit to regard every object comprising
components as either a vector or a matrix. In reality, however, only a fraction of the index-
carrying objects encountered in physics are genuine vectors or matrices.

1
Equally relevant

elements of linear algebra include dual vectors, bilinear forms, alternating forms, or tensors.
Depending on the field one is working in, the ‘everything–is–a–vector’ attitude can be either
tolerable or a source of confusion. The latter is the case in well established fields as par-
ticle physics and relativity, and increasingly in emerging areas such as quantum information
or topological condensed matter physics. Linear algebra as introduced in this text naturally
accommodates non-vectorial objects and the instances where these appear become more fre-
quent as we go along. It happens first when we discuss the cross product of vectors, next when
the metric of vector spaces is introduced and extensively in our discussion of tensor algebra.
The advanced parts of the text contain a self contained introduction to differential forms and
illustrate the potency of this language on the physical example of electromagnetism. In all this,
we have paid careful attention not to ‘sever the communication lines’ to traditional teaching
approaches; in this text, the extended view of linear algebra is an option, not a must, and the
standard form of vector calculus always remains in sight.

Does an increased emphasis on concepts increase the teaching load or come at the expense
of methodological training? The answer is an emphatic ‘no’. This book is based on a course
that has been taught more than ten times (at LMU Munich and Cologne university) to be-
ginner students in their first semester at university. We affirm that mathematical methods are
introduced at a pace compatible with standard physics curricula and at load levels manageable
for average students. In fact, the concept-oriented approach turned out to be a pedagogi-
cal asset, quite the opposite of an ‘abstract burden’. It supports the student’s performance,
including on the methodological level, because they have a deepened understanding of what
they are doing. Where our choice of contents or notation differs from that standard in the
physics culture, we explain the traditional views in parallel. For example, we do discuss why
the magnetic field is not a genuine vector but a differential two-form. However, we also explain
why it may be described as a vector, and point out potential pitfalls with this description.

The book is organized into three parts on linear algebra (L), calculus (C) (also known
as analysis), and vector calculus (V), respectively. Starting at high school level, each part
covers the material required in a standard bachelor curriculum and reaches out somewhat

1

A prominent example is the magnetic field. Unlike conventional vectors, a magnetic field ‘vector’ does not
change sign under a reflection of space. It therefore cannot be a true vector, which always causes confusion
in teaching.
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beyond that.
2

At the same time the writing style gradually changes from moderately paced
and colloquial at the beginning to somewhat more concise and ‘scientific’ towards the final
chapters. Due to its modular structure the text should work well as a reference covering
all elements of linear algebra, calculus and vector calculus encountered in a Bachelor physics
curriculum.

The individual parts include a wide range of material and should not be read in strict
succession. Specifically, later chapters generally rely on interconnections between linear alge-
bra, calculus and vector calculus (where this happens we indicate the required material in a
preamble). Perhaps a good way to enter the subject is to first read a few sections of part L
and C each and then move into V. This approach, alternating between subjects, actually helps
to stay organized and appreciate the individual characteristics of each field as much as the
connections between them. While it is perfectly fine for first time readers to choose a preferred
reading order themselves, Tables 1 and xx suggest reading roadmaps, based on the order in
the material has been taught in a one-semester course at LMU Munich and a two-semester
course at Cologne, respectively.

About a third of the book is devoted to problems. The tackling of these problems,
more than 200 in number, should be considered an integral part of learning the material.
Each odd -numbered problem includes a detailed solution which may be consulted if necessary.
The subsequent even-numbered problem are of similar structure but should be solved without
guidance. (A solution manual for the even-numbered problems can be obtained from the
authors on request.) All exercises have been given to students of the LMU and Cologne lecture
courses and should provide a impression of what to expect in a ‘real’ physics curriculum. In
addition to the problems we have included a small number of more expansive ‘case studies’. The
case studies are meant to give the reader an impression of how different concepts and methods
interrelate in the solution of real physics problems. For example, a case study on computer
tomography discusses how elementary geometry, line integration and Fourier transform can
be combined to extract three-dimensional images from recorded absorption data, etc. Finally,
the text includes a large number of info sections where we suggest an alternative view of a
subject, or provide background material we consider interesting and worth knowing. If time
is short, these sections can be skipped. However they are all there for a reason and reading
them at some later time may be worthwhile.

A final word for non-native English speakers: although we are non-natives ourselves (many
grammatical and stylistic issues in the text testify to that) we preferred to use English in the
lecture notes on which this text is based. English is the lingua franca of the science world and
it is important to become fluent in it at the earliest possible stage. Besides, we have observed
that even students who do not speak English well usually find it easy to read formula-heavy
texts — formulas appear to serve as anchor points aiding the navigation of text passages —
and in this way quickly advance their language skills. For the convenience of international
readers we have included translations of keywords whose meaning is not self evident

3
in the

2

For experts: the final chapters deal with multilinear algebra, complex calculus, and differential forms,
respectively.

3

For example, German readers will have guessed that ‘vector’ translates to ‘Vektor’, but that ‘angular
momentum’ means ‘Drehimpuls’ may be not so obvious.
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index.

L C V Topic
1 1 Basic concepts: sets, maps, groups, fields, complex numbers
2 1,2 Differentiation and integration of 1-dimensional functions
3 2 Vector spaces: definition, examples, basis
4 3 Euclidean spaces: inner product, norm, orthogonality, metric
5 4 Vector product: Levi-Civita symbol, various identities
6 1 Curves, line integrals
7 3,4.1 Partial derivatives; Multi-dimensional integration (Cartesian)
8 2 Curvilinear coordinates (polar, cylindrical, spherical)
9 4.2 Multidimensional integration in curvilinear coordinates
10 3.1 Scalar fields, gradient
11 3.2 Vector fields: gradient fields
12 5.1-3 Linear maps, matrices, matrix multiplication
13 5.4-6 Inverse of a linear map, basis transformations
14 6 Determinants: definition, properties
15 7 Diagonalization: eigenvalues, eigenvectors
16 8,9 Orthogonal, unitary, symmetric and Hermitician matrices
17 5.1-3 Taylor series: definition, standard examples (exp, sine, cosine)
18 7.1-3 Differential equations: typology, linear first-order equations
19 7.4-6 Systems of first-order differential equations
20 5.4-5 Perturbation expansions; higher-dimensional Taylor series
21 6.1-2 Fourier calculus: Dirac delta function, Fourier series
22 6.3-4 Fourier series for periodic functions, convolution theorem
23 7.6-8 n-th order differential equations; linearization, fixed points
24 6.3 Fourier transforms
25 6.4 Fourier transform applications
26 4.3 3.3 Integration in arbitrary dimensions; flux integrals of vector fields
27 3.3 Divergence of vector fields, Gauss’ theorem
28 3.4 Circulation of vector fields, Stokes’ theorem

Table 1: Outline of a one-semester course based on this text. Each row refers to a 90 min. lecture.
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Linear Algebra

The first part of this book is an introduction to linear algebra, the mathematical discipline of
structures that are, in a sense to be discussed, ‘straight’. No previous knowledge of the subject
is assumed. We start with an introduction to various basic structures in mathematics: sets,
groups, fields, different types of ‘numbers’, and finally vectors. This is followed by a discussion
of elementary geometric operations involving vectors, the computation of lengths, angles,
areas, volumes, etc. We then explain how to describe relations between vectorial objects via
so-called linear maps, how to represent linear maps in terms of matrices, and how to work
with these operations in practice. Part L concludes with two chapters on advanced material.
The first introduces the interpretation of functions as vectors (a view of essential importance
to quantum mechanics). In the second, we discuss linear algebra in vector spaces containing
a high level of intrinsic structure, so-called tensor spaces, which appear in disciplines such as
relativity theory, fluid mechanics, or quantum information theory.

1



L1 Mathematics before numbers

Many people believe that ‘numbers’ are the most basic elements of mathematics. This,
however, is an outside view which does not reflect the way mathematics herself thinks about
numbers. Numbers can be added, subtracted, multiplied and divided by, which means that
they possess considerable degree of complexity.

1
Metaphorically speaking, they are high up

in the evolutionary tree of mathematics, and beneath them, there exists numerous structures
of lesser complexity. Much like a basic understanding of evolutionary heritage is important in
understanding live — reptiles, vs. mammals, vs. birds, etc. — the evolutionary ancestry of
numbers is an key element in the understanding of mathematics, and physics. We take this
as motivation to start with a synopsis of various pre-numerical structures which we will later
see play a fundamental role throughout the entire text.

EXAMPLE Consider a two-dimensional square lattice that is invariant

under rotations by 90 degrees (deg) (i.e. if you rotate the lattice by 90

deg
2

it looks the same as before, see figure). Then rotations by 0, 90,

180 or 270 deg are ‘symmetry operations’ that map the lattice onto

itself. Let us denote these operations by e, a, b and c, respectively. Two

successive rotations by 90 deg are equivalent to one by 180 deg, a fact we

may express as a · a = b. Similarly, b · b = e (viewing a 360 deg rotation

equivalent to one by 0 deg). These operations are examples of mathematical objects which can be

‘combined’ with each other, but not ‘divided’ by one another. Together, they form a pre-number

structure, soon to be identified as a ‘group’. Generic groups have less structure than numbers and

yet are very important in physics.

1

At the end of the nineteenth century mathematicians became increasingly aware of gaps in the logical
foundations of their science. It became understood that the self-consistent definition even of natural numbers
(1,2,3,. . . ) was more complex than was previously thought. For an excellent account of the ensuing crisis of
mathematics, including its social dimensions, we refer to the graphic novel Logicomix, A. Doxiadis, Bloomsbury
Publishing, 2009.

2

In this text we use the standard abbreviation ‘deg’ for degrees.

2
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L1.1 Sets and maps

When we work with a complex systems of objects of any kind we better have ways to
categorize and store them. At the very least, we need containers capable of storing objects
(think of the situation in a repair shop). On top of that one may want to establish connections
between the objects of different containers (such as a table indicating what screw in the screw-
box matches what screwdriver in the screwdriver rack.) In the terminology of mathematics,
containers are called ‘sets’, and the connections between them are established by ‘maps’.
In this section we define these two fundamental structures and introduce various concepts
pertaining to them.

Sets

Perhaps the most basic mathematical structure is that of a set. (The question whether
there are categories even more fundamental than sets is in fact a subject of current research.)
As indicated above, one may think of a set as a container holding objects. In mathematical
terminology, the objects contained in a set are called its elements. Unlike the containers in a
repair shop, mathematical sets are not ‘physical’ but simply serve to group objects according
to certain categories (which implies that one object may be an element of different sets). For
example, consider the set of all your relatives. Your mother is an element of that set, and at
the same time one of the much larger set of all females on the planet, etc. More formally, the
notation a ∈ A indicates that a is an element of the set A, and A = {a, b, c, . . . } to denote
the full set.

INFO Be careful to be exercise precision in matters of notation. For example, denoting a set

by (a, b, c, . . . ) would be incompatible with the standard curly bracket format {a, b, c, . . . } and an

abuse of notation. Insistence on clean notation has nothing to do with pedantry and serves multiple

important purposes. For example, the notation B = {1, 2, 3} is understood by every mathematically

educated person on the planet meaning that standardized mathematical notation makes for the most

international idiom there is. At the same time, uncertainties in matters of notation often indicate

a lack of understanding of a concept. For example, a ∈ {a} is correct notation indicating that a

is an element of the set {a} containing just this one element. However, it would be incorrect to

write a = {a}. The element a and the one-element set {a} are different objects. The feeling of

uncertainty in matters of notation is a sure and general indicator of a problem in ones understanding

and should always be considered a warning sign — stop and rethink.

The definition of sets and elements motivates a number of generally useful secondary defini-
tions:

. An empty set is a set containing no elements at all and denoted by A = {}, or A = ∅.

. A subset of A, denoted by B ⊂ A, contains some of the elements of A, for example,
{a, b} ⊂ {a, b, c, d}. The notation B ⊆ A indicates that the subset B may actually be
equal to A. On the other hand, B ( A means that this is certainly not the case.
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. The union of two sets is denoted by ∪, for example, {a, b, c} ∪ {c, d} = {a, b, c, d}. The
intersection is denoted by ∩, for example, {a, b, c} ∩ {c, d} = {c}.

. The removal of a subset B ⊂ A from a set A results in the difference set, denoted by
A\B. For example, {a, b, c, d}\{c} = {a, b, d}.

. We will often define sets by conditional rules and the standard notation for this is set =
{elements |rule}. For example, with A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} the set of all even
integers up to 10 could be defined as B = {a ∈ A |a/2 ∈ A} = {2, 4, 6, 8, 10}.

. Given two sets A and B, the Cartesian product as
3

A×B ≡ {(a, b) |a ∈ A, b ∈ B}, (L1)

is a set containing all pairs (a, b) formed by elements of A and B.

The number of elements of a set is called its cardinality. The cardinality can be finite (the set
of all your relatives) or infinite (the set of all natural numbers). Among the infinite sets one
distinguishes between ‘countable’ and ‘uncountable’ sets. A set is countable if one can come
up with a way to number its elements. For example, the set of even integers A = {0, 2, 4, . . . }
is countable. The real numbers (cf. section L1.3) form an uncountable set.

It is often useful to organize sets in equivalence classes expressing the equality a ∼ b of
two elements relative to a certain criterion, R. For example, let A be the set of relatives and
let the distinguishing criterion, R, be their sex. The notation Victoria ∼ Erna then indicates
that the two relatives are equivalent in the sense that they are female. An equivalence relation
has the following defining properties:

. reflexivity: a ∼ a, every element is equivalent to itself.

. symmetry: a ∼ b implies b ∼ a and vice versa.

. transitivity: a ∼ b and b ∼ c implies a ∼ c.

The subset of all elements equivalent to a given reference element a is called an equivalence
class and denoted [a] ⊂ A. In the example of relatives and their sex, there are two such
subsets, for example A = [Herbert] ∪ [Erna]. The label used for of an equivalence class is not
unique; for example, one might relabel [Erna] = [Victoria]. The set of all equivalence classes
relative to a relation R is called its quotient set and is denoted by A/R. In the example of
relatives (A) and their sex (R), the quotient set A/R = {[Herbert], [Victoria]} would have
two elements, the class of males and that of females.

EXAMPLE Consider the set of integers, and pick some integer q. Now view any two integers as

equivalent if they have the same remainder under division by q. For example, q = 4 defines

0∼ 4∼ 8, 1∼ 5∼ 9. In this case there are four equivalence classes, denotable by [0], [1], [2] and

[3]. In general, the remainder of p divided by q is denoted by pmod q (spoken ‘p-modulo-q’, or just

3

We follow a widespread convention whereby � ≡ 4 means ‘� is defined by 4’. In the German literature,
the alternative notation � := 4 is frequently used.
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‘p-mod-q’), e.g., 8 mod 4 = 0, 6 mod 4 = 2, or −5 mod 4 = 3 (by definition, remainders are taken

to be positive). The equivalence class of all integers with the same remainder r under division by

q is the set [r] = {p ∈ Z|pmod q = r}. There are q such equivalence classes, and the set of these

classes is denoted by Zq ≡ Z/qZ = {[0], [1], . . . , [q − 1]}.

Maps

Consider two sets, A and B, plus a rule, F , assigning to each element a of A an element b
of B. Such a rule, written as F (a) ≡ b ∈ B, is called a map. In mathematics and physics,
maps are specified by the following standard notation:

F : A→ B, a 7→ F (a). (L2)

Figure L1: Different types of maps. Top left: a generic map, top right: surjective map, bottom left:
injective map, bottom right: bijective map.

The set A is called the domain of the map and B is its codomain.
4

An element a ∈ A fed
into the map is called an argument and F (a) is its image (element). Note that different
types of arrows are used for ‘domain→ codomain’ and ‘argument 7→ image’.

The image of A under F , denoted by F (A), is the set containing all image elements of
F : F (A) = {F (a)|a ∈ A} ⊆ B (cf. dark shaded area in the first panel of Fig. L1). A map is
called surjective (second panel) if its image covers all of B, F (A) = B, i.e. if any element of
the codomain is the image of at least one element of the domain. It is called injective (third
panel) if every element of the codomain is the image of at most one element of the domain.
The map is bijective if it is both surjective and injective (fourth panel), i.e. if every element
b ∈ B of the codomain is the image of exactly one element a ∈ A of the domain. Bijective
maps establish an unambiguous relation between the elements of the sets A and B. The
one-to-one nature of this assignment means that it can be inverted: there exists an inverse
map, F−1 : B → A such that F−1(F (a)) = a for every a ∈ A.

4

The designation ‘codomain’ is standard in mathematics, but not in physics. Oddly, physics does not seem
to have an established designation for the ‘target set’ of a map.
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Given two maps, F : A→ B and G : B → C, their composition is defined by substituting
the image element of the first as an argument into the second:

G ◦ F : A→ C, a 7→ G(F (a)). (L3)

For example, the above statement about bijective maps means that the composition of a
bijective map F with its inverse, F−1, yields the identity map: F−1 ◦ F : A → A, with
a 7→ F−1(F (a)) = a.

Finally, a map F defined on a Cartesian product set, A×B, is denoted as

F : A×B → C, (a, b) 7→ c = F (a, b).

This map assigns to every pair (a, b) an element of C. For example, the shape of a sand dune
can be described by a map, h : R×R→ R, (x, y) 7→ h(x, y), where for each point (x, y) in
the plane, the function h(x, y) gives the height of the dune above that point.

L1.2 Groups

Sets as such are just passive containers storing elements. Often, however, the elements of
a set are introduced with the purpose of doing something with them. As an example, consider
the set of 90 deg rotations, R ≡ {e, a, b, c}, introduced on p. 2. A two-fold rotation by 180
deg is equivalent to a non-rotation and this fact may be described as b · b = e. Or we may say
that a · b = c, meaning that a 90 degree rotation following one by 180 degrees equals one by
270 degrees, etc. In this section, we define groups as the simplest category of sets endowed
with an ‘active’ operation on their elements.

Definition of groups

The minimal structure
5

which brings a set to life in terms of operations between its elements
is called a group. Let A be a set and consider an operation, ‘·’, (equivalently called group
law or composition rule) assigning to every pair of elements a and b in A another element,
a · b: ·

· : A× A→ A, (a, b) 7→ a · b. (L4)

This map defines a group operation provided that the following four group axioms are satis-
fied:

6

5

This statement is not fully accurate. There is a structure even more basic than a group, the semigroup.
A semigroup need not have a neutral element, nor inverse elements to each element. In physics, semigroups
play a less prominent role than groups, hence we will not discuss them further.

6

Mathematicians often formulate statements of this type in a more compact notation. Frequently used
symbols include ∀, abbreviating for all, and ∃, for there exists. Expressed in terms of these, the group axioms
read: (i) ∀a, b ∈ A, a · b ∈ A. (ii) ∀a, b, c ∈ A, a · (b · c) = (a · b) · c. (iii) ∃e ∈ A such that ∀a ∈ A,
a · e = e · a = a. (iv) ∀a ∈ A,∃b ∈ A such that a · b = b · a = e. Although this notation is less frequently
used in physics texts, it is very convenient and we will use it at times.
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(i) Closure: for all a and b in A the result of the operation a · b is again in A. (Although this
condition is already implied by the definition L4, it is generally counted as one of the group
axioms.)
(ii) Associativity: for all a, b and c in A we have (a · b) · c = a · (b · c).
(iii) neutral element: there exists an element e in A such that for every a in A, the equation
e · a = a · e = a holds. Depending on context, the neutral element is also called identity
element or null element.
(iv) Inverse element: For each a in A there exists an element b in A such that a·b = b·a = e.

Nils Henrik Abel
(1802–1829)
Norwegian mathematician
who made breakthrough
contributions to various
fields of mathematics before
dying at young age. Abel is
considered the inventor (independently with
Galois) of group theory. He also worked on
various types of special functions, and on
the solution theory of algebraic equations.

Under these conditions, A and ‘·’ define a
group as G ≡ (A, ·). A group should always
be considered a double comprising a set, and
an operation. It is important to treat the op-
eration as an integral part of the group defi-
nition: there are numerous examples of sets,
A, which admit two different group opera-
tions, ‘·’ and ‘∗’. The doubles G = (A, ·)
and G′ = (A, ∗) then are different groups.
We finally note that in some cases it can be
more natural to denote the group operation
by different symbols ‘+, ∗, . . . ’.

EXAMPLE Here are a few first examples of groups.

. The simplest group of all, G = ({e}, ·), contains just one element, its neutral element. Nothing

much to discuss.

. The introductory example of 90 deg rotations, R ≡ {e, a, b, c}, defines a group of cardinality four.

Its neutral element is e and for each element we have an inverse, for example a · c = e. (Set up a

‘multiplication table’ specifying the group operation for all elements of R×R.) The same group,

i.e. a set of four elements with the same group law, can be realized in different contexts. For

example, for the quotient set Z4 = {[0], [1], [2], [3]} defined on p. 4, a group operation may be

defined as ‘addition modulo 4’. This means that the addition of a number with remainder 1 mod 4

to one with remainder 3 mod 4, yields one with remainder 0 mod 4, for example [1] + [3] = [0].

Set up the full group operation table for this group and show that it is identical to that of the

group of 90 deg rotations discussed previously. This implies that (Z4,+) and (R, ·) define the

same group. Explain in intuitive terms why this is so. The concept of different realizations of the

same group is very important in both physics and mathematics. We will see many more examples

of such correspondences throughout the text. (→ L1.2.2)

. The simplest nontrivial group, which nevertheless has many important applications, contains just

two elements, Z2 = {e, a}, with a · a = e. This group can be realized by rotations by 180 deg,

or as the group of integers mod 2 (→ L1.2.1). The group (Z2, ·) plays a very important role in

modern physics. For example, in information science, Z2 is the mathematical structure used to

describe ‘bits’, objects that can assume only one of two values, ‘on’ and ‘off’, or ‘0’ and ‘1’.
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. The integers, Z ≡ {. . . ,−2,−1, 0, 1, 2, . . . }, with group operation ‘+’ =‘addition’ (e.g. 2+4 = 6)

are an example of a group of infinite cardinality. (Z,+) has neutral element 0 and the inverse of

a is −a, i.e. a+ (−a) = 0. Why are the integers (Z, ·) with multiplicative composition (2 ·3 = 6)

not a group?

. Other important examples of discrete groups include the translation group on a lattice (→ L1.2.3-4)

and the group of permutations of n objects to be discussed in more detail in the next subsection.

If the group operation is commutative in the sense that it satisfies a · b =
b · a for all elements the group is called an abelian group. All examples
mentioned so far have this property. Non-Abelian groups possess at least
some elements for which a · b 6= b · a. An important example is the group
formed by all rotations of three-dimensional space. This group can be
given a concrete realization by fixing three perpendicular coordinate axes in space. In other
words, R, can then be represented as a succession of rotations around the coordinate axes
(see figure) and the set of all these rotations forms a group where the group operation is the
successive application of rotations. For example, R2 · R1 is the rotation obtained performing
R1 and R2 in succession. This concatenation is not commutative. For example, a rotation
first around the x-axis and then around the z axis is different from the operation in reverse
order.

INFO Groups play an important role in physics. This is because many classes of physical operations

effectively carry a group structure. Simple examples include rotations or translations in space or

time. These operations define groups because they can be applied in succession (‘composed’), are

associative, possess a neutral element (nothing is done), and can be inverted (undone). The transla-

tion and rotation groups play crucial roles in the description of momentum and angular momentum,

both in classical and quantum mechanics. While continuous translations and rotations define groups

of infinite cardinality, the physics of crystalline structures is frequently described in terms of finite

restrictions. We mentioned the group Z4 of rotations by 90 deg around one axis as an example. In

the late 1960’s, group theory became important as a cornerstone of the standard model describing

the fundamental structure of matter in terms of quarks and other elementary particles.

Despite the deceptive simplicity of the group axioms, the theory of groups is of great depth and

beauty, and it remains a field of active research in modern mathematics.

Group homomorphism

Above, we have seen that the same group structure can be ‘realized’ in different ways. For
example, the group Z2 can be realized as the group of rotations by 180 deg, or as addition
in Z mod 2. Identifications of this type frequently appear in physics and mathematics, and
it is worthwhile to formulate them in a precise language. To this end, consider two groups,
(G, ·) and (H, •) with a priori independent group operations. Let ψ : G → H be a map
from G to H. If this map is such that for all a, b ∈ G the equality ψ(a · b) = ψ(a) • ψ(b)
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Figure L2: The concept of a group homomorphism: a map between two groups that is compatible
with the group operations (dashed) in that the image of the composition of two elements in the
domain group (left) equals the composition of the image elements in the target group.

holds, then ψ is called a group homomorphism (cf. Fig. L2). The defining feature of
a group homomorphism is its compatibility with the group law. As an example consider
G = H = (Z,+). Now assign to each integer its double, n 7→ ψ(n) = 2n. This map is a
group homomorphism because ψ(n+m) = 2(n+m) = 2n+ 2m = ψ(n) + ψ(m). However,
the map φ assigning to each integer its square, n 7→ φ(n) = n2, is not a group homomorphism,
because φ(1)+φ(2) = 1+22 6= φ(1+2) = φ(3) = 32. As another example, consider the map
ψ : Z → Z2, n 7→ ψ(n) = nmod 2, assigning the number 0 or 1 to the integers, depending
on whether n is even or odd. This is a homomorphism between the infinite group (Z,+) and
the two-element group Z2.

A perfect identification between two groups G and H is obtained if there exists a bijective
homomorphism between the two, a so-called a group isomorphism. In this case, we write
G ∼= H. Mathematicians tend to not even distinguish between isomorphic groups, a view that
can be confusing to physicists. The identification Z2

∼= (Zmod 2) ∼= (rotations group by 180
deg) discussed above is a group isomorphism.

EXERCISE Consider the set Zn ≡ (Zmodn,+), n ∈ Z. Show that it defines a group of cardinality

n. Show that Zn is isomorphic to the group of rotations by 360/n deg around a fixed axis. (→ L1.2.2)

Permutation group

The permutations of n objects define one of the most important finite groups, the permu-
tation group, Sn. Consider n arbitrary but distinguishable objects. For definiteness it may be
useful to think of a set of n billiard balls (see Fig. L3 for n = 4). A permutation is a rear-
rangement of these objects into a different order. For example, the reordering of four objects
indicated in the left panel of the figure leads to the new arrangement shown in the middle.
There are n–factorial, n! ≡ n(n − 1)(n − 2) . . . 1 different arrangements or permutations,

7

7

One way to understand this number is to notice that the first of n objects can be put in any of n places.
This leaves n − 1 options for the second object (one position is already occupied by the first object), n − 2
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and we consider the set, Sn, of cardinality n! containing all of them.

1

2

3

4

1

2
3

4

1

2

3

4

[4213] [2134]

Figure L3: Two permutations of four objects performed in succession.

Rearrangements can be iterated. For example, the exchange in the middle panel of the
figure leads to the final arrangement shown in the right panel. The group composition in Sn
is this iteration of permutations. Evidently, there is a trivial permutation (the one that leaves
sequences unaltered), the composition of permutations is associative, and each permutation
can be undone, such that there exists an inverse. This shows that Sn forms a group, the per-
mutation group, or symmetric group of n objects. It is easy to verify that the permutation
group is non-abelian. (Invent examples of perturbations proving the point.)

Although the permutation group is easily defined, its mathematical structure is rather rich.
(For example, the solution of Rubik’s cube amounts to a permutation of the 54 differently
colored squares covering the six faces of the cube, and the solution algorithms reflect the
mathematics of the permutation group S54.) Below, we will frequently work with permutations
and it will be useful to have a good notation for them. One popular labeling system denotes
the permutation shown in the left part of the figure by [4213]. This notation logs the final
configuration of the objects after a permutation (1, 2, 3, 4) 7→ (4, 2, 1, 3) as a list in angular
brackets. The second permutation is thus denoted as [2134], and the composition of the two
becomes [2134] · [4213] = [4123].

EXERCISE Check that the permutation group of 3 objects can be represented as (→ L1.2.5)

S3 = {[123], [213], [321], [231], [312], [132]}.

Alternatively, a permutation may be identified with a map P : Nn → Nn, j 7→ P (j), where
Nn = {1, 2, . . . , n} is the set of n integers, and P (j) ∈ Nn the number to which j is permuted.
Sometimes, the shorthand notation Pj ≡ P (j) is used instead. In this language, [4213] is
represented as P1 = 4, P2 = 2, P3 = 1, P4 = 3.

Note that each permutation can be reduced to a product of pair permutations, i.e. per-
mutations which exchange just two objects at a time. This statement is easy to understand:
any re-ordering of n objects can be achieved manually (with one’s own two hands) by sequen-
tially swapping pairs of objects. For example, the permutation [4213] of the figure can be

for the third, etc. The total number of rearrangements is obtained as the product of the number of options
for object no.1,2,. . . , i.e. n(n− 1) · · · = n!.
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effected by first exchanging 1 ↔ 3, and then 3 ↔ 4. For any permutation P ∈ Sn we then
have two options:

8
the number of pair permutations needed to arrive at P may be even or

odd (determine the even/odd attribute for the six permutations of S3). In the former/latter
case, we call P an even/odd permutation and define

sgn(P ) =

{
+1, P even,
−1, P odd.

(L5)

as the signum of a permutation. (→ L1.2.6)

EXERCISE Define a map Sn → Z2, P 7→ sgn(P ), where sgn(P ) = ±1 are identified with the

two elements of Z2 = {+1,−1}. Show that this is a group homomorphism, between Sn and Z2,

i.e. that sgn(P · Q) = sgn(P ) · sgn(Q) where the multiplication on the right is that of numbers

±1. Understand this as the educated formulation of the statement that the product of two odd

permutations is even, that of an even and an odd is odd, etc.

In this text, the signum of permutations will appear frequently and once more it will be
important to have a good notation. A convenient way to track this quantity is provided
by the Levi-Civita tensor, εj1j2...jni1,i2,...,in

= ±1. It is defined as the signum of the permutation
P (il) = jl permuting the sequence of symbols (i1, i2, . . . , in) into (j1, j2, . . . , jn). For example,
ε321

231 = −1, because a single pair permutation transmutes (2, 3, 1) into (3, 2, 1). For the same
reason, the Levi-Civita tensor is fully antisymmetric under the exchange of any two indices,
e.g. ε4321

2341 = −ε4321
3241.

In applications one often has situations where one of the involved permutations is the
ordered one, (i1, i2, . . . in) = (1, 2, . . . , n). In such cases, it is customary to suppress the
ordered sequence in the notation and just write εj1j2...jn ≡ εj1j2...jn12...n , and similarly εi1i2...in ≡
ε12...n
i1i2...in

. For example, ε321 = 1 because reordering (1, 2, 3) to (3, 2, 1) requires two pair
permutations. These tensors are fully antisymmetric too, e.g. ε213 = −ε231.

The Levi-Civita symbol is often used in contexts where two or more of its indices can be
equal. In that case, its value is defined to be zero, e.g. ε112 = 0, to ensure consistency with
its antisymmetry property: εiij must both change sign and remain unchanged when its first
two indices are interchanged, which is possible only if it vanishes.

L1.3 Fields

Numbers are mathematical objects that can be added, subtracted, multiplied, and divided.
Seen as composition rules, multiplication, a · b, and addition, a + b, have several features
in common (associativity, commutativity, neutral element exists, inverse elements exist). A
set for which both addition and multiplication is defined as separate operations is called a

8

Notice that the even/odd attribute is not entirely innocent: there are different ways of realizing a given
P by a sequence of pair permutations. However, the ‘parity’, i.e. the even- or oddness of the number of pair
permutations, is an invariant. This makes the function sgn well defined.
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(number) field. Referring to lecture courses in mathematics for a more rigorous approach,
we here introduce the concept of fields in a quick and informal manner: a field is a triple,
F ≡ (A,+, ·), comprising a set A and two composition rules, addition and multiplication.
Addition and multiplication each define their own abelian group structure, the neutral elements
being denoted by 0 and 1, respectively, i.e. a+ 0 = a and a · 1 = a.

The inverse element of a under addition is denoted by −a, i.e. a + (−a) = 0, and
the addition of the inverse is called subtraction. Likewise, the inverse element of a under
multiplication is called a−1, and multiplication by the inverse is called division (alternatively
denoted by b · a−1 ≡ b/a ≡ b

a
). The group structures defined by addition and multiplication

are independent, except for two points: (i) the neutral element of addition, 0, does not have a
multiplicative inverse. In other words, 0−1 does not exist and ‘division’ by zero is not allowed.
(ii) Multiplication is distributive over addition in the sense that a · (b+ c) = a · b+ a · c.

It is possible to construct fields with a finite number of elements, the so-called Gallois
fields (→ L1.3.7). However, most fields of relevance to physics are infinite, and the most
important ones — the rational, the real, and the complex numbers — are introduced below.

Rational and real numbers

The integers, Z, do not form a field because the operation of multiplication does not have an
inverse in Z. For example, the multiplicative inverse of 3 ∈ Z, does not exist in Z. There is
no integer number that can be multiplied with three to obtain unity.

9

The most elementary example of an infinite field are
the rational numbers, Q ≡ { q

p
|q, p ∈ Z, p 6= 0}, i.e. the

set of all ratios of integers. The rational numbers Q ⊂ R
are contained in a larger number field, the real numbers.
Heuristically, the set of real numbers may be imagined as
a continuous line extending from −∞ to +∞. Each ra-
tional number can be positioned on a continuous line of
numbers which explains the ‘embedding’ of the rationals
in the reals. However, the ray of real numbers also con-
tains irrational numbers, r /∈ Q. Irrational numbers
may be approximated to arbitrary precision by rational
numbers but are not rational themselves. For example,√

2 has rational approximations as
√

2 ' 1.4142 = 14142
10000

, etc., but
√

2 itself can not be
written as a ratio of two fixed integers and therefore is not rational. In mathematics courses
one learns how the reals can be defined as the union of the rational numbers with the set of
all limits of rational numbers (for example,

√
2 can be viewed the limit of an infinitely refined

approximation in terms of rational fractions). However, we do not discuss this formalization
here.

9

In passing we note that a structure allowing addition, multiplication, subtraction but not division is called
a ring.
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Georg Ferdinand Ludwig
Philipp Cantor (1845–
1918)
German mathematician who
did pioneering work in set
and number theory. Cantor
proved that there are ‘more’
real numbers than integer
numbers. His work raised questions of
philosophical significance and eventually
triggered a crisis in the understanding of
the logical foundations of mathematics.

The understanding of the reals as a con-
tinuous ‘line’ implies that there are more real
numbers than rational numbers. The precise
understanding of what is meant by ‘more’ is
far from trivial. Pioneering work by Georg
Cantor on the comparison of infinite sets of
different size (1874) showed where the con-
ceptual problems lie and caused consternation
among his contemporaries. However, the in-
tuitive picture is that the rationals form a sub-
set of infinitely many points embedded into
the continuous line of the reals. The ‘dis-
creteness’ of these points means one can come

up with an intricate numbering numbering scheme that lists them all; much like the integer
numbers, the rationals form a countable set as defined on on p. 4. Between any two ratio-
nal numbers there are gaps corresponding to irrational numbers (see figure, where each dot
represents a rational number). Although, the set of rationals is ‘dense’ in the reals, in the
sense that any real number can be rationally approximated to any desired accuracy, there is
no way to count the real numbers lying between them; the reals are uncountable in the sense
of the definition of p. 4. For a more substantial discussion of these aspects we refer to lecture
courses in mathematics.

The complex numbers

The set of real numbers is large enough to accommodate operations which cannot be
performed in the rationals, such as taking of the square root of 2. In this sense, they represent
a ‘closure’ of the rational numbers. However, there are operations with respect to which the
real numbers lack closure themselves. We all know that the square root of a negative number,
such as

√
−1, is not a real number. Similarly, some real polynomials can be factored as

x2−1 = (x−1)(x+1) where the factors specify the zeros of the polynomial. However, x2 +1
cannot be factorized into a product of two real factors. Somehow, it does not feel ‘right’ that
similar polynomials behave so strikingly different.
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René Descartes
(1596 - 1650)
French philosopher and math-
ematician. Descartes is not
only considered the founding
father of modern western phi-
losophy but also made impor-
tant contributions to mathematics. The
Cartesian coordinate system is named after
him and he is considered the inventor of ana-
lytical geometry, the bridge between algebra
and geometry.

INFO Complex numbers were introduced and

used long before they were understood concep-

tually. Their first appearances can be traced to

early studies of geometric objects in the ancient

world. Complex numbers became an element of

mainstream mathematics in the early 17th cen-

tury when mathematicians worked on the solu-

tion theory of algebraic equations. The term

imaginary numbers was coined by Descartes

in 1637, who wrote “sometimes only imaginary,

that is one can imagine as many as I said in each

equation, but sometimes there exists no quantity

that matches that which we imagine.” The con-

fused wording of this sentence suggests that Descartes was ill at ease with objects that were apparently

quite useful, but hard to conceptualize within 17th century mathematics. It took almost three hun-

dred more years before the modern theory of number fields was invented, and a sound conceptual

framework for complex numbers came to existence. In the meantime, numerous mathematicians

— Euler, Gauss, Abel, Jacobi, Cauchy, Riemann, and various others more — contributed the the

applied theory of complex numbers. Interested readers are encouraged to study these developments

and sense the difficulties mathematicians had in working with an irresistibly interesting, yet hard to

grasp concept.

The complex numbers are an extension of the real numbers large enough to accommodate
all algebraic operations commonly associated with ‘numbers’. In the following we sketch the
extension from real to complex numbers in a language adjusted to the modern theory of fields.
We start by giving

√
−1 a name,

√
−1 ≡ i, (L6)

where i is called the imaginary unit. If we accept the existence of this object as a valid
mathematical ‘number’, the problem of taking the square root of negative reals is solved:

r > 0 :
√
−r =

√
−1
√
r = i

√
r.

By squaring (L6) we also know that i2 = −1. Now let us define the set,

C ≡ {z = x+ iy |x, y ∈ R}, (L7)

and call it the ‘complex numbers’. We call x ≡ Re(z) and y ≡ Im(z) the real part and the
imaginary part of the complex number z, respectively. If one of these vanishes the notation
is simplified by writing 0 + iy ≡ iy or x + i0 ≡ x. Thus, real numbers are complex numbers
with vanishing imaginary part, implying the embedding R ⊂ C.

Next, define the addition and multiplication of complex numbers, as

z + z′ = (x+ iy) + (x′ + iy′) ≡ (x+ x′) + i(y + y′), (L8)
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zz′ = (x+ iy)(x′ + iy′) ≡ (xx′ + ixy′ + iyx′ + i2yy′) = (xx′ − yy′) + i(xy′ + yx′).

These definitions are such that i behaves as an ‘ordinary’ number, except for the identification
i2 = −1. Addition and multiplication are closed in C, i.e. both the sum and product of two
complex numbers again produce a complex number. This means that we are on the way
towards constructing a number field.

Indeed, it is straightforward to show that (C,+) forms an additive group (do it!). A little
more work is required to show that multiplication defines a group structure, too. We first
need to know how to construct the inverse of a given complex number, z = x + iy ∈ C. To
this end, the complex conjugate, z̄,

10
of z is defined as the complex number obtained by

inverting the imaginary part of z,

z̄ ≡ x− iy.

Eq. (L8) then yields

zz̄ = x2 + y2 (L9)

meaning that zz̄ is real. If z is nonzero, x2 + y2 6= 0 and the result can be used to construct
the inverse of z. We know that zz̄/(zz̄) = 1, which means that the inverse of z is given by

z−1 =
z̄

zz̄

(L9)
=

x− iy

x2 + y2
∈ C. (L10)

This expression is ‘explicit’ in the sense that for any z = x + iy the inverse is obtained as a
rational function of x and y.

When encountered for the first time, these definitions may feel alien. However, complex
numbers are as easy to handle as real ones. Just keep the rule i2 = −1 in mind and otherwise
compute products as usual, for example,

(2 + 3i)(1 + 2i) = −4 + 7i, i(4 + 6i) = −6 + 4i.

Practice computations with complex numbers by doing problems L1.3.1-4.

|z|
φ

y

x z
zIm

zRe

It is often useful to represent the complex numbers as points in
a two-dimensional complex plane. The complex plane plays
a role analogous to the one-dimensional line representing the
reals. In it, a complex number z = x + iy is represented by a
point with coordinates (x, y), such that its real and imaginary
parts define the abscissa and ordinate, x and y, respectively.

The horizontal axis represents the real numbers, the vertical axis the purely imaginary ones,
and generic complex numbers populate the plane. Note that z can also be written in the form

z = |z|(cosφ+ i sinφ), (L11)

10

The complex conjugate is equivalently denoted by an asterisk, z∗ ≡ z̄ ≡ x− iy.
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which defines the polar representation of complex numbers . Here φ is the angle between
the real axis and a line connecting the points (0, 0) and (x, y) in the complex plane, and
|z| ≡

√
zz̄ =

√
x2 + y2 is the length of this line. Angle and length are called the argument,

arg(z) = φ, and modulus, modz = |z|, of z, respectively. The argument of z is only
defined modulo 2π, i.e. an argument −π is equivalent to +π, where arg(z) ∈ [0, 2π)

11
is

the conventional choice for its range of values. The complex conjugate, z̄ = x − iy, is
represented by the reflection of (x, y) at the x-axis, (x,−y). This implies |z̄| = |z| and
arg(z̄) = −arg(z) mod 2π.

EXERCISE Show that the product of two complex numbers, zj = |zj |(cosφj + i sinφj), with

j = 1, 2, can be written as z1z2 = |z1||z2|
(
cos(φ1 + φ2) + i sin(φ1 + φ2)

)
. Illustrate this result with

a sketch showing z1, z2 and z1z2 in the complex plane. (→ L1.3.5-6)

Complex numbers are powerful tools in physics and mathematics: algebraic operations
which are not globally defined on the real numbers — such as square roots, logarithms,
trigonometric functions, etc. — do exist as complex functions. Polynomials of degree n always
have n complex zeros and can be decomposed into n factors, for example, z2−1 = (z+1)(z−1)
or z2 +1 = (z+i)(z− i). Throughout this text we will encounter numerous applications where
these and other features of the complex numbers are of importance. Generally speaking, one
may say that complex numbers are more frequently used in the mathematics of physics than
real numbers!

INFO To any two real or complex numbers one may assign a real value specifying the ‘distance’

between them. In the case of real numbers, x, y ∈ R, this is the norm |x−y| ∈ R, i.e. the absolute
value of their difference. For two complex numbers, z, w ∈ C, the (complex) norm |z − w| is the

modulus of their difference. Norm functions are important in different ways. Specifically, they are

used to distinguish between different types of real intervals and domains in the complex plane.

For example, we call U ∈ F = R,C a bounded subset of F if there exists a positive real number

r such that ∀u, v ∈ U , |u− v| < r. The extent of U is then finite in the sense that no two elements

have a distance exceeding r. A subset U is called open if any point u ∈ U is enclosed within a

region of nonzero extent fully included in U itself. More formally, this means that there must exist a

positive ε ∈ R such that ∀v ∈ F with |v − u| < ε, v ∈ U . Heuristically, one may imagine open sets

as sets with soft boundaries.

The openness of real intervals is indicated by round brackets as in (0, 1) ≡ {u ∈ R | 0 <

u < 1}. If the endpoints are included one obtains a closed interval, generally denoted by square

brackets, [0, 1] ≡ {u ∈ R | 0 ≤ u ≤ 1}. (Closed intervals are not open because their end points

do not contain neighborhoods fully contained in them.) The exclusion of just one endpoint, as in

[0, 1) ≡ {u ∈ R | 0 ≤ u < 1}, defines a semi-open interval.

More generally, the closure,, cl(U), of a set is defined as the union of the set and all of its limit

points. A limit point of a set is a point for which every neighborhood contains at least one point

11

Referring for a more detailed discussion to the info box below, we use notation in which [a, b) is an interval
with right boundary point excluded, b /∈ [a, b). However, the left boundary point is included, a ∈ [a, b). The
type of the brackets indicates which situation is realized. For example, (0, 1) contains neither 0 nor 1.



L1.4 Summary and outlook 17

belonging to the set. For example, if the number 1 is not contained in [0, 1) but it is still one of

its limit points. This can be seen by inspection of the sequence 1− 1/n. Every neighborhood of 1,

no matter how small, contains elements of this sequence with sufficiently large n. This shows that

cl([0, 1)) = [0, 1]. As an example of an open set in the complex numbers consider the open disk

D ≡ {z ∈ C | |z| < 1} ⊂ C. The circle |z| = 1, is not included in D but it is contained in the

closure cl(D) = {z ∈ C | |z| ≤ 1}.
More rigorous definitions of these terms are usually discussed in introductory mathematics

courses. The more advanced discipline of mathematical topology addresses the extension of the

concepts of openness, compactness, closure, etc. to sets more general than the number fields. While

this is a very interesting subject, and not entirely irrelevant to physics, it is beyond the scope of the

present text.

L1.4 Summary and outlook

In this chapter we have introduced various fundamental structures of mathematics, notably
sets, maps, groups, and eventually fields. We gave several examples indicating that all these
structures are tailored to specific tasks, both in mathematics and physics. For example, the
set of lattice translations of a crystal — evidently a set of physical importance — realizes a
group, and this classification is a powerful aid in the understanding of crystal structures.

At the end of this chapter we have arrived at a hierarchy
of numbers, N ⊂ Z ⊂ Q ⊂ R ⊂ C. Starting with
Q, these number sets are fields. Each new member of
the hierarchy realizes a new level of structure and admits
operations which its predecessor cannot accommodate, Q
closes under division whereas Z does not, etc. We have
seen how mathematics provides the proper structures to
describe the algebraic features of all number sets: begin-
ning with Z the numbers were groups, and beginning with
Q fields. That this understanding is much more than a
formality is seen from the historical fact that for hundreds
of years the complex numbers remained somewhat of a mystery. The situation changed only
after the concept of the number field had been introduced.

Given the supreme potency of the complex numbers one may wonder if the ‘less powerful’
numbers can be abandoned altogether. The answer is no, they remain universally useful.
Generally speaking it is good practice to solve problems in terms of number sets just large
enough to achieve what needs to be done. For example, we do not use real numbers to count
the number of balls in a box, we use integers, etc.

We are now ready to advance to the next hierarchical level, the vector spaces. Where
numbers have a ‘norm’ specifying their magnitude, vectors are objects of a given magnitude
and direction. As we will see, this added feature makes them indispensable tools in the
mathematical description of physics.
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Many objects of physical interest can be described in terms of a single number. Examples
include the temperature of a body, its mass or volume, the energy required to move a body,
or the number of gas molecules in a container. Quantities of this type are called scalars.
However, scalars do not suffice to describe even many daily-life situations. For example,
if a person who got lost asks for guidance the answer generally includes a direction and
a distance. The two pieces of information can be combined into a ‘vector’ whose length
and geometric orientation encode distance and direction respectively. Vectorial quantities
play an important role in physics, and in this chapter we introduce their mathematics from
a perspective broad enough to include types of vectors that cannot be visualized in easy
geometric ways. Such ‘non-visual’ realizations are ubiquitous in physics — for example, they
are key to the mathematical description of quantum mechanics and the theory of relativity —
and the beauty of the overarching mathematical framework is that they can all be understood
in a unified manner.

However, before turning to the general level, let us begin by introducing a concrete real-
ization of a set of vectors. This example will anticipate the key mathematical structures of
vectors and motivate the general definition of section L2.2.

L2.1 The standard vector space Rn

In this section, we will define Rn as an important class of vector spaces. (Sets of vectors
that are complete in a sense to be defined a little further down are called vector ‘spaces’.) The
spaces Rn can be looked at from two different perspectives: first they are vector spaces in their
own right, second they provide a ‘language’ in which all other vector spaces can be described.
This bridging functionality makes them important from both a fundamental and an applied
perspective. However, before turning to a mathematical formulation of these statements, let
us demonstrate the appearance of vectors and their relation to Rn on a daily life example.

A motivating example

Consider the layout of a kitchen as shown in Fig. L4. How can the information contained
in the plan be described quantitatively? The first step must be the definition of a unit of
length, such as centimeters or inches. Second, a system of coordinates has to be specified.
The latter is defined by two axes along which distances are to be measured. In a rectangular

18
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room, directions parallel to the walls would be a natural choice, cf. the axes labeled 1 and 2
in the figure. However the choice is arbitrary and the axes labeled 1 and 2’ would define an
alternative and equally valid coordinate system as well.

1

2

z

Figure L4: The layout of a kitchen described in terms of various vectors.

Given a coordinate system, a vector describing the position of two points relative to
each other is specified through two numbers fixing the separation between the points in the
coordinate directions. These numbers define the components of the vector in the chosen
system of coordinates. For example, the vector labeled x in the figure describes points shifted
relative to each other by 90cm in the 1-direction and 0cm in the 2-direction. For brevity, we
write x = ( 90

0 ). Likewise, w = ( 0
90 ), y = ( 120

−90 ), etc. A vector may be graphically represented
by an arrow connecting its two defining points. The length of the arrow measures the distance
between the points and its direction their relative orientation. Note that the same arrow is
obtained for any two points that have the same relative distance and orientation, irrespective
of their actual location. For example, the arrow denoted by w in the figure describes the
separation of any two points shifted relative to each other by 90cm in the 2-direction. We
should think of a vector as an object that can be shifted (but not rotated or stretched) to any
desired point of origin.

Two vectors can be concatenated to define a new vector. For example, the vector z
in the figure is obtained by concatenation of x and y and denoted by z = x + y. The
two components of z are given by the sum of the components of x and y, respectively,
z = ( 90

0 ) + ( 120
−90 ) = ( 210

−90 ). (Exercise: draw the vector w + x and compute its components.)
Similarly, a vector can be multiplied by a real number a ∈ R to change its length. For example,
2w = ( 0

180 ), is a vector with doubled components and thus corresponds to a vector of doubled
length, as indicated in the figure. If a < 0, the direction of the vector is inverted, for example
−w has the same length as w but points downwards.

EXERCISE Suppose we had decided to use the axes labeled 1 and 2′ in Fig. L4 as coordinate axes.

Assume that the angle between 2′ and 1 is 45 deg. The component representations of the vectors

x, y, w, etc., change accordingly. Specifically, which of the following three representations of the
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vector w is correct?

(a) w = 90

(
0√
2

)
, (b) w =

(
0

45

)
, (c) w = 90

(
−1√

2

)
. (L12)

A systematic way to find the answer is to represent w = w1 + w2′ as the sum of two vectors where

w1 and w2′ point in the direction of 1 and 2′, respectively. We then need to find out how long w1

and w2′ need to be if w has length 90? Compute the (1, 2′) coordinate representation of the other

vectors shown in the figure.

The space of all two-component
1

vectors x =
(
x1

x2

)
is called R2 (spoken r-two). Our

discussion above shows that there are different ways to look at vectors and their representation
through elements of R2: (i) we can think of vectors as objects geometrically defined as classes
of arrows in the plane. Arrows are unique up to translation. (ii) Once a system of coordinates
has been chosen, each of these arrows is uniquely described through a two-component element
of R2. However, keep in mind that the description changes if different coordinates are chosen.
(iii) Elements of R2 are vectors in their own right in that the geometrically defined vector
operations concatenation and stretching correspond to equivalent operations in R2. The
example suggests that R2 is a ‘reference’ or standard vector space in terms of which vectors
defined in different (geometric) ways can be described. However, the concrete numerical
‘language’ in which R2 represents a geometric vector depends on a choice of coordinates.
The situation is not so different from human languages which describe the identical objects
in different ways. However, before formulating the connection between component vectors to
generic vectors (which have not been defined yet) in generality, let us extend the definition of
R2 to to objects containing an arbitrary number of components.

Definition of Rn

The definition of R2 affords an obvious generalization to vectors with an arbitrary num-
ber of components: we define the so-called standard vector space Rn as the set of all
multicomponent objects,

Rn ≡





x =




x1

x2

...
xn




∣∣∣∣∣∣∣∣∣
x1, x2, . . . , xn ∈ R




. (L13)

The elements x of Rn are n-component vectors. In the introductory parts of this text,
vectors will generally be denoted by boldface symbols, x,y, etc.

2
The components of a vector

x are referred to by xi, although the alternative notation (x)i will be occasionally used as well.

1

The superscripts on x1 and x2 are indices (not powers of x!) distinguishing the first from the second
component. The reason why we use superscripts rather than subscripts will be explained on p. 23.

2

Since the boldface convention is inconvenient in handwriting, a variety of alternative notations for
vectors exist: physicists and engineers often write ~v. However, the repeated drawing of arrows costs time and
more time-efficient alternative notations include ~v , v, or v. Mathematicians often prefer an totally ‘naked’
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For example (y)1 = y1 = 120 in the kitchen example above. To save space we often use the
in-line notation x = (x1, . . . , xn)T , where ‘T ’ is spoken ‘transpose’.

3
Finally, the number n is

called the dimension of Rn.
Much like a group is more than a simple set of elements (it is a set plus rules of compo-

sition), Rn is more than a just set of multicomponent objects: vectors can be added to each
other and they can be multiplied by real numbers. As illustrated in our introductory discussion,
the sum z = x + y of two vectors is the vector with components zi = xi + yi. For example,




1.5
2
0


 =




0.5
−3
1


+




1
5
−1


 .

Likewise, the multiplication of a vector by a number is defined component-wise, i.e. the vector
ax has components axi, for example

2




1.5
2
0


 =




3
4
0


 .

Notice, however, that elements of Rn cannot be multiplied with each other,
4

nor divided by
each other.

The vector space is Rn is just one example of many other vector spaces encountered in
physics and mathematics. In the next two sections we define vector spaces in general terms
and introduce a number of important spaces to be discussed in more depth later in the text.

L2.2 General definition of vector spaces

Above we introduced two different perspectives of vectors. The first was geometrical
(‘arrows’), the second algebraic in that it emphasized the operations that can be performed
with vectors — addition and multiplication by numbers. In this section we upgrade the
algebraic description to a definition of vector spaces in generality. The algebraic approach is
motivated by its generality and the fact that the vectors relevant to physics often do not have
a visual geometric interpretation. The situation resembles that with groups which, likewise,
were defined by the operations defined for them. That approach, too, was motivated by the
observation that identical algebraic properties describe a multitude of very different realizations
of groups.

notation as v. This is OK as long as it is made clear that v ∈ V is a vector and not a number. We will use
this notation in later chapters of the text when vectors belonging to different spaces are handled at the same
time. However, whichever notation is chosen, consistency and clearly stated definitions are imperative. The
convention v may be a good compromise between efficiency and explicitness.

3

At this stage x = (x1, . . . , xn)T is just a space-saving alternative to the column notation (L13). The
actual mathematical meaning of transposition is discussed later in Sec. L5.

4

However, different types of vector ‘multiplication’ will be introduced below.
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Vector space definition

Vectors are objects that can be added to each other and multiplied by elements of a number
field F. (So far, we discussed the case F = R). The corresponding formal definition reads as
follows:

An F-vector space is a triple, (V,+, ·), consisting of a set, V , a vector addition rule,

+ : V × V → V, (v,w) 7→ v + w, (L14)

and a rule for multiplication by scalars,

· : F× V → V, (a,v) 7→ a · v ≡ av, (L15)

such that the following vector space axioms hold: (i) the addition of vectors, (V,+), defines
an abelian group. The neutral element of addition, 0, is called null vector; the inverse element
of a vector is called the negative vector, −v. (ii) Scalar multiplication satisfies the following
rules, ∀a, b ∈ F,v,w ∈ V :

(a) (a+ b)v = av + bv (scalar multiplication by a sum of scalars is distributive),

(b) a(v + w) = av + aw (scalar multiplication of a sum of vectors is distributive),

(c) (ab)v = a(bv) (scalar multiplication by a product of scalars is associative),

(d) 1v = v (neutral element of F is neutral element of scalar multiplication).

(L16)

Comments:

. The first part of the definition, (L14), formalizes the addition of vectors. In the case of Rn

the null vector is given by 0 = (0, . . . , 0)T . We may think of it as an arrow shrunk to a
point (and hence not pointing anywhere). The negative vector, −v, can be imagined as a
vector pointing in the direction opposite to v, such that v + (−v) = 0. Equivalently, one
may think of −v as (−1)v (multiplication of v by −1 ∈ F). Axiom (a) above then states
that 0v = (1 − 1)v = v − v = 0. Addition of this object to another vector does not do
anything.

. Relations (a) to (d) appear to be so obvious that they hardly seem worth mentioning.
However they are required to ensure that the ‘algebraic’ properties of a vector space match
the geometric understanding of directed objects (‘arrows’). Without these specifications the
definition would not be sharp enough to exclude ‘weird spaces’ outside the useful category
of vector spaces.

. The definition does not make reference to vector components, nor to the ‘dimension’ of
vectors. We conclude that these must be secondary characteristics deducible from the
general definition.

. Given a, b, c ∈ F and u,v,w ∈ V , the combination au + bv also lies in V . The same is
true for au + bv + cw, etc. Expressions of this sort are called linear combinations of
vectors.
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. As mentioned previously, sets fulfilling the criteria above are generally called ‘spaces’, a
space of functions, the space of matrices, etc.

The definition above introduces the concept of a vector in its most general form, including
realizations where geometric visualizations are not natural. In practice, the question whether
a given set is a vector space is always answered by checking the defining criteria above.
Geometric visualizations can, but need not be involved. In some cases they can even be
counterproductive.

Covariant notation

We conclude this section with some remarks on notation. Below, we will frequently con-
sider sums v1a

1 + v2a
2 + . . . of vectors v1,v2, . . . with coefficients a1, a2, . . . . Notice that

we write the coefficients, ai, with superscripti indices while the vectors, vi, carry subscripti
indices. Superscript and subscript indices are called contravariant indices and covariant
indices, respectively. Notation adopting this index positioning convention is called covariant
notation and it will be used throughout this text. At this stage, this may seem to be a
purely technical convention. However, as we progress we will see that the distinction between
co- and contravariant objects becomes more and more important both from a physical and a
mathematical perspective. (For a first motivation in this direction, see the info section below.)
Anticipating this development, we use covariant notation from the very beginning. However,
it should not go unnoted that this approach is not standard and that most introductory texts
on linear algebra prefer and all–indices–downstairs notation.

INFO Vectors are members of a more general category of objects known as tensors (the topic of

chapter L11). For example, matrices, which are perhaps familiar from high school and which will be

discussed later in this chapter, also belong to this family of objects.

It is common practice in physics to treat every object that carries a single index (such as x↔ {xi})
as if it were a vector. However, many of the ‘vectors’ routinely encountered in physics are actually not

vectors, but objects of different structure known as tensors. Important examples of such tensors–

in–disguise include electric and magnetic fields, mechanical forces and currents, and more. In cases

where the non-vectorial nature of such quantities becomes too apparent to ignore, they are assigned

special names, such as ‘pseudo- vector’ or ‘axial vector’, etc. However, physicists do not easily let

go of the vector association as such. Depending on the research field one is working in, this practice

can be either harmless or a potent source of confusion. The latter is the case in a growing number

of disciplines including the theory of relativity, particle physics, topological condensed matter theory,

quantum information theory, and others. It is probably fair to say that the only reason why the

physics literature sticks to its all–is–vector culture is social inertia. The indiscriminate identification

of single-component objects with vectors does not ‘simplify’ anything. On the contrary, it obscures

connections that become clear within a more differentiated approach. On the other hand, a fully

reformed approach which, for example, would describe a magnetic field as an alternating tensor of

second degree rather than as a vector, might be too radical. Students trained in this way would not

be able to communicate with colleagues speaking a more traditional language, so this is not a viable

solution.
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In this text, we aim to strike a middle ground. Tensor calculus and the ensuing interpretation of

physical objects are explained in the advanced chapters L11 and V4 to V6 later in this text. However,

from the beginning we will pay careful attention to the consistent positioning of co- and contravariant

indices. This is done because covariant notation is an important aid in discriminating between
objects that are fundamentally vectors and others that are not. Occasionally, we will run into

trouble and realize that the use of covariant notation leads to inconsistent index positions. This is the

way by which the notation signals that an object truly different from a vector has been encountered.

Depending on the context, we will fix the situation right away or, on a few occasions, refer to a

section of chapter L11 were the origin of the problem is explained.

L2.3 Vector spaces: examples

In the following we introduce a number of examples which all play an important role as
vectors spaces in physics.

The standard vector spaces

We have already introduced Rn as the standard vector space defined over the real
numbers, F = R. The alternative choice F = C defines the complex standard vector
space Cn. This is the set of all vectors, z = (z1, . . . , zn)T , with components zi ∈ C. At
first sight Cn may seem to be ‘more complicated’ than Rn (inasmuch as complex numbers
carry more structure than real numbers). However, we will see that the opposite is true and
in many instances will prefer to work with Cn.

EXERCISE Convince yourself that the standard vector spaces fulfills the vector space axioms.

Affine and Euclidean spaces

Consider infinite d-dimensional space, for example an infinite two-dimensional plane or the
three-dimensional space we live in. The mathematical abstractions of these objects are called
affine spaces, A. Elements P ∈ A are called points.

Affine spaces are almost, but not quite, vector spaces. To understand the difference, notice
that a vector space contains the neutral element of addition, 0, as its distinguished origin, or
null-vector. By contrast, affine spaces are the mathematical formalization of idealized infinite
space and therefore do not contain a ‘special’ point. To establish the connection between an
affine space A and a vector space V of the same dimension one needs to pick an arbitrary
reference point, O ∈ A, and identify it with the origin, 0 ∈ V. For example, if the focus
is on describing our solar system (which lies in three-dimensional affine space) it would be
natural to choose the center of the sun as a reference point. Each point P ∈ A can then be
identified with a vector, v, representing the arrow from O to P , as illustrated in Fig. L5. If
another point, Q ∈ A, is represented by the vector w then the linear combination u = w− v
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P

Q

R

O

′O

u

t

Figure L5: On the definition of affine space.

represents the arrow from P to Q.

Note that the points P and Q are independent of the choice of reference point, but the
vectors representing them are not. If a different reference point O′ is chosen then P and Q are
described by different vectors v′ and w′, respectively. However, the vector representing the
arrow from P to Q remains the same, w′− v′ = w− v. As an example, take P = (center of
earth) and Q = (center of Venus). The vectors representing P and Q depend on whether the
centers of the sun or of Jupiter are chosen as reference points. However, the vector connecting
the center of earth to that of Venus is independent of the choice of reference point.

The preceding description of affine spaces is made precise as follows: consider a set of
points, A = {P,Q, . . . , } subject to the following three conditions: (i) there exists a vector
space V such that to any ordered pair of points (P,Q) ∈ A × A a vector u ∈ V may be
uniquely assigned. We call u the difference vector from P to Q. (ii) For any point P ∈ A
and any vector u ∈ V there exists a unique point Q ∈ A such that u is the difference vector
from P to Q. (iii) For any three points P , Q and R ∈ A, with difference vectors u from P
to Q and t from Q to R, respectively, the difference vector from P to R is given by u + t.
If these conditions are met, A is called an affine space. Once a point O ∈ A has been
chosen as reference point, A becomes identifiable with V and there is a bijection between
points P ∈ A and the difference vectors v ∈ V connecting O and P . This identification is
sometimes written as V = (A,O), and the correspondence between P and v as P = O + v.
For example, in this language criterion (iii) above assumes the form P + u + t = Q+ t = R.

In the particular case where V = Rd we call A ≡ Ed d-dimensional Euclidean space.
This denotation hints at the fact that Euclidean space possesses structures that a generic affine
space need not have: to vectors of Ed lengths and angles and other elements of Euclidean
(!) geometry to be introduced in chapter L3 may be assigned. Both generic affine spaces and
Euclidean spaces play important roles in physics. Their description in terms of vector spaces is
so natural that the distinction between affine and vector spaces is easily forgotten. However,
occasionally it has to be remembered to avoid confusion!
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Function spaces

Let f : I → R, t 7→ f(t) be a function defined over a finite interval, I (cf. Fig. L6). The
set containing all these functions is called L2(I).

5
Two functions, f, g may be added to each

other to obtain a new function f + g in the same set. That new function is defined as the
superposition of f and g, (f + g)(t) ≡ f(t) + g(t). Likewise, the product of a function with
a number, a ∈ R, defines another function, af , via (af)(t) ≡ af(t). This shows that L2(I)
is a vector space, and that one may think of the functions contained in it as vectors. Give
yourself some time to let this message sink in! (→ ??)

= 10N = 20N

τ τ

Figure L6: The discretization of a function in terms of N discrete values yields an N -component
vector. The larger N , the more closely the discretized function approximates the continuous one.

To make the vectorial interpretation of functions more concrete, consider storing the signal
f(t) on a computer. This may be done by discretizing the time interval into a large number,
N , of small intervals of width τ/N , each centered on a time ti, i = 1, . . . , N (see Fig. L6).
One then samples N representative readouts of the function, f i = f(ti). These values define
an N -dimensional vector, f ≡ (f 1, . . . , fN), which may be saved as a discrete approximation
of the function. The number of components, N , may be increased to make the approximation
of the ‘continuous’ function f as accurate as desired.

6

Given two functions, f, g, with discrete representations, f ,g, a discretized function, f + g,
can be defined by addition of the individual function values: (f + g)i = (f)i + (g)i (cf. Fig.
L7, bottom right). Similarly, the discrete function af , a ∈ R, may be defined by component-
wise multiplication, (af)i = a(f)i (Fig. L7 top right). This construction shows that one may
work with discretized functions just as with N -component vectors and that the set of N -step
discretized functions is identical to RN .

Heuristically, L2(I) may be interpreted as the N → ∞ limit of the discretization spaces
RN , and functions are ‘infinitely–high’-dimensional vectors with components f(t) ↔ f i =
f(ti). This view of functions is very important. It makes the connection between calculus and

5

The notation L2(I) for the set of functions defined on I is standard in mathematics. Its definition
requires one additional condition, namely ‘square integrability’ to be discussed in chapter L10. However, for
the moment, this additional condition is not of relevance.

6

For example if f(t) represents an audio signal, sampling rates with N = 44.100 for a time interval of 1
second correspond to the resolution of standard CD recordings.
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Figure L7: Visualization of vector multiplication and addition, respectively, for two-dimensional
vectors in E2 (left), and discretized functions (right).

linear algebra tangible and plays an important role in various fields of physics.

EXAMPLE In the following we introduce a few more examples which may help in building familiarity

with the concept of vector spaces:

. Number fields as vector spaces: for n = 1, the vector space Rn reduces to the real numbers,

R1 = R. (The set of vectors with just one real component is trivially equivalent to the real

numbers.) Likewise, Q1 is a Q-vector space (→ L2.4.1), and C1 is a C-vector space. However,

one may also think of C1 ∼= C as an R-vector space (→ L2.4.2): any complex number, z, can be

multiplied by a real number, a, to yield another complex number az, and complex numbers can

be added to each other. One may decompose z = x+iy into real and imaginary parts to uniquely

describe it by a pair of real numbers, z ↔ (x, y)T . This shows that C ∼= R2 can be identified with

R2. The identification of C2 with the real vector space R2 is often useful in applications. For

example, it is common practice to describe physical problems defined in two-dimensional space

in a ‘complex notation’ in which each point is represented by a complex number. This is done

because complex numbers are usually more convenient to work with than two-component vectors.

. Let P2 ≡ {a2x
2 + a1x + a0|a0,1,2 ∈ R} denote the set of all polynomials in the variable x of

degree 2. For two polynomials, p(x) ≡ a2x
2 + a1x + a0 and q(x) ≡ b2x

2 + b1x + b0, the sum,

(p + q)(x) = (a2 + b2)x2 + (a1 + b1)x + (a0 + b0), is again a polynomial of degree two, and

so is the product with a real number, ap(x) = (aa2)x2 + (aa1)x + (aa0). This shows that P2

is a vector space. Since each of these polynomials is uniquely identified by its three coefficients,

p ↔ (a2, a1, a0) we have a bijection P2
∼= R3. Exercise: think of generalizations to polynomials

of arbitrary degree (→ L2.4.4), or to polynomials in more than one variable. For example, the

polynomials of degree 2 in two variables, x and y, have the form a22x
2y2 + a21x

2y + a12xy
2 +
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a20x
2 + a02y

2 + a11xy + a10x + a01y + a00, with real coefficients aij . How many components

are required to uniquely describe the polynomials in two variables of maximal degree five?

. For some exotic examples of vector spaces with more contrived addition and multiplication rules

see problems L2.4.5-6.

L2.4 Basis and dimension

A common property all vectors discussed above was that they could be represented through
a list of components, v ↔ (v1, . . . , vn)T . However, we also observed that the component
representation was not unique. For example, the vector x in Fig. L4 has a representation
x = (90, 0)T if cm are used as a unit of length and the coordinate axes are oriented as
indicated. It would change to x ' (35.4, 0)T if inches were used, or to x ' (63.3, 63.3) if the
coordinate axes were rotated by 45deg. However, irrespective of the chosen representation, two
numbers are needed to describe it. The number of components required to specify a vector is a
unique characteristic of each vector space,

7
called its dimension. Notice that the dimension is

not mentioned in the fundamental definition of vector spaces given Sec. L2.2. This shows that
it must be an attribute following from the vector space axioms. In the following we discuss
how this happens.

Given a vector space V and a set S containing m of its vectors,

S ≡ {v1, . . . ,vm}, vi ∈ V, (L17)

the linear span (or linear hull) of S is defined as the set of linear combinations of the
elements of S:

span(S) ≡ {v1a
1 + v2a

2 + · · ·+ vma
m | a1, . . . , am ∈ F}. (L18)

For u,w ∈ span(S) the linear combination au + bw, a, b ∈ F again lies in span(S), and this
shows that span(S) is a vector space in itself.

We call a vector space, W ⊂ V , embedded in V a subspace of V . This includes the
extremes W = {0} of the subspace containing just the null-vector, and the full space, W = V .
At any rate, the linear hull, span(S), is a subspace of V , non-empty if S contains at least
one non-vanishing vector. An interesting question to be addressed in the next sections is how
large a sets of vectors has to be to include the full vector space in its span, span(S) = V .

Linear independence

Suppose S = {v1, . . . ,vn} has the property that one of its elements, say v1, can be
represented as a linear combination of the others,

v1 = v2b
2 + · · ·+ vmb

m. (L19)

7

Readers to whom this sounds trivial may try to prove this statement. It is not as easy as one might think.
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Figure L8: The concepts of linear independence and completeness, illustrated for the example E3.

In this case, the vectors defining S are called linearly dependent vectors, and S is called a
linearly dependent set. Such sets contain redundancy in that some of their elements may
be removed without diminishing the span. For example, with S ′ ≡ S\{v1} we have (why?)

span(S) = span(S ′). (L20)

The upper row of Fig. L8 shows linearly dependent sets containing three and four vectors of E3,
respectively. Conversely, if none of the elements of S can be obtained by linear combination
of the others, v1 to vm are called linearly independent vectors.

For later reference we note that there is an alternative way to test linear independence:
the vectors in S are linearly dependent if they can be linearly combined to form a non-trivial
representation of the zero vector, 0, i.e. if there exist non-vanishing coefficients,

{a1, . . . , am} 6= {0, . . . , 0}, v1a
1 + v2a

2 + . . .vma
m = 0 . (L21)

Why are the two conditions equivalent? If (L19) holds, then we have a representation 0 =
−v1 + v2b

2 + · · ·+ vmb
m. Conversely, if (L21) holds we may pick a non-vanishing coefficient,

say a1, to obtain the linear combination of v1 = − 1
a1 (v2a

2 + · · · + vna
n) through the other

vectors. This demonstrates linear dependence in the sense of Eq. (L19).

EXAMPLE Consider the vectors

v1 =

(
1

0

)
, v2 =

(
1

2

)
, v3 =

(
−1

−1

)
. (L22)

The set S ≡ {v1,v2,v3} is linearly dependent because v1 = −(v2 + 2v3). However, the set

S′ = {v1,v2} is linearly independent, because v1a
1 + v2a

2 = (a1 + a2, 2a2)T , which equals 0 only

if a1 = a2 = 0. Similarly, S′′ = {v1,v3} is linearly independent, as is S′′′ = {v2,v3}. (→ L2.5.1-2)
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It is often useful to eliminate redundancy by working with linearly independent sets. This is
done by removing redundant vectors of S until one arrives at a linearly independent set of
reduced cardinality. That reduced set need not be unique, as shown by the example of S ′, S ′′

and S ′′′ above. However, its span does not depend on which of the linearly dependent vectors
are removed and S ′, S ′′ and S ′′′ all span the same vector space.

Completeness

There is another important feature which the sets like (L17) may or may not have: a set
S = {v1, . . . ,vn} containing n vectors is called complete if

span(S) = V. (L23)

In this case, every vector v ∈ V can be written as a linear combination of the vectors vi.
For example, the set S = {v1,v2,v3} of Eq. (L22) is complete in R2 because any vector
v = (a, b)T can be represented as v = v1a + v2b + v3b. The reduced sets S ′, S ′′ and S ′′′,
too, are all complete in R2. Examples of sets complete in the Euclidean space E3 are shown
in the second column of Fig. L8.

Basis

A set S that is both complete and linearly independent is called a basis of the vector
space V . These properties guarantee (i) that each element v ∈ V can be expressed as a linear
combination of basis elements (completeness),

v = v1a
1 + v2a

2 + · · ·+ vna
n, (L24)

and (ii) that this linear combination is unique (linear independence). To understand how
uniqueness follows from linear independence, suppose that v could also be represented in a
different way, say v = v1b

1 + v2b
2 + · · ·+ vnb

n. Subtracting the second representation from
the first, we obtain 0 = v − v = v1(a1 − b1) + v2(a2 − b2) + · · · + vn(an − bn). This
is a representation of the null vector and so the assumed linear independence of the basis
vectors requires that all coefficients must be zero, bj = aj. This in turn means that the two
representations of v have to be identical. We call the representation of a vector in a given basis
its expansion, and the corresponding coefficients the expansion coefficients with respect
to that basis.
Each vector space has a basis. For given realizations of vector spaces this statement is
usually straightforward to verify by the constructive specification of a basis. However, the
general proof is not straightforward and will not be given here.

8
We also note that for a given

8

Whereas the proof is relatively elementary for spaces with bases of finite cardinality, in the opposite case
of infinite-dimensional vector spaces the situation is more involved. The function spaces L2(I) introduced
above are examples of this type. Fortunately, the majority of vector spaces relevant to physics are finite
dimensional, or can be made finite without significant loss of physical information. For example, we have
discussed above how L2(I) can be approximated to any desired precision by an N -dimensional vector space
RN .
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space there is infinite freedom in the choice of a basis. The expansion coefficients of vectors
depend on this choice and therefore change under changes of basis. If vectors are regarded as
invariant ‘objects’ one may think of their components as descriptions in a ‘language’ tied to
a basis. Tools for the computation of vector expansion coefficients and their transformation
under changes of bases will be introduced in section L5.6.

EXERCISE Show that the pair {v1,v2} of vectors defined in Eq. (L22)

defines a basis of R2. Draw the two basis vectors and an arbitrary other

vector v of your choice. Compute its two expansion coefficients algebraically,

and represent v graphically as a linear combination of v1 and v2. Repeat

the exercise, to show that {v2,v3}, and {v1,v3} are bases, too. Explain

why the pair {e1, e2} defined by e1 = v1 = (1, 0)T and e2 = (0, 1)T is a

basis more convenient to work with than the others.

If the number n of elements of a basis is finite, it is unique. Any other
basis then has the same number of elements, and n is called the dimension of the space. As
an exercise, assume the existence of two bases of different cardinality n,m and show that the
assumptions of linear independence and completeness leads to a contradiction.

INFO Many problems in physics are described in vector spaces whose dimensionality is different

from the three dimensions of ambient space. For example, crystalline structures are often effec-

tively two-dimensional. Einstein’s theory of relativity adds ‘time’ to three-dimensional space, and is

thus formulated in four-dimensional space-time. Functions describing physical phenomena can be

discretized as N -dimensional vectors (with N � 1). Quantum mechanics is formulated in vector

spaces whose dimension is determined by the number of particles under consideration. These and

many more examples motivate the study of vector spaces of arbitrary dimensionality.

1a
2a

EXERCISE The microscopic structure of graphite is defined by stacked

two-dimensional sheets of carbon.
9

The carbon atoms of each sheet form

a regular hexagonal lattice, as shown in Fig. ??. Choosing the position

of an arbitrary carbon atom as a point of origin, the position of any other

atom in the plane is described by a two-dimensional vector. Convince

yourself that each of these vectors may be represented by a linear com-

bination of two suitably chosen ‘basis’ vectors, e.g. the vectors denoted

by a1 and a2 in the figure. Work out the linear combinations represent-

ing the positions of a few atoms of your choice. Try to derive a general

formula specifying the position of all atoms as linear combinations of the basis vectors.

9

As of 2005 it has become possible to isolate individual atomic layers of graphite. The ensuing two-
dimensional crystalline material is known as graphene. For its discovery, A. Geim and K. Novoselov were
awarded the 2010 Nobel prize in physics.
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Einstein summation convention

Linear combinations such as v1a
1+v2a

2+· · ·+vna
n appear very frequently in the following

and it is worthwhile to discuss a few notation conventions. First, note that the summation
involves a contravariant (superscript) and a covariant (subscript) index. This structure by
itself helps to avoid errors:

. An index summation always runs over a pair of co-and contravariant indices, e.g. w =
v1a

1 + v2a
2 + v3a

3.

. An unsummed (‘free’) index always appears at the same position on both sides of an
equation, e.g. wi = v1A

1
i + v2A

2
i + v3A

3
i.

Violations of either of these rules usually indicate mistakes.
Expressions of the architecture A1B

1 + A2B
2 + · · · + AnB

n appear so frequently that
various abbreviating notations have been introduced:

A1B
1 + A2B

2 + · · ·+ AnB
n ≡

n∑

i=1

AiB
i ≡

∑

i

AiB
i ≡ AiB

i. (L25)

In the third representation the upper and lower limits of the sum are implicit. In the last one we
have introduced the Einstein summation convention, according to which indices occurring
pairwise on one side of an equation are to be summed over. Such index pairs are called
‘pairwise repeated indices’ or ‘dummy indices’ and their summation is called a contraction of
indices. The Einstein summation convention assumes that the summation range is specified
by the context. For example, the Einstein representation of the argument formulated after
Eq. (L24) reads: if v = via

i = vib
i then 0 = v − v = vi(a

i − bi), implying ai = bi. We will
soon turn to using these abbreviated representations. However, to ease the transition they will
be temporarily used in parallel with a more expansive representation (→ L2.5.3-??). We finally
note that the convention to sum over pairwise occurring indices does not require covariant
notation; texts writing all indices as subscripts frequently implement this rule as well. However
as we will see in chapter L11, the Einstein convention has a deeper meaning which becomes
visible only in covariant notation.

Vector space bases: examples

The concept of a basis is very important to the description of vector spaces. So much so
that the choice of a suitable basis usually comes first in the work with a new vector space.
Some spaces have a ‘canonical’ basis

10
and some do not. In the following we revisit the

examples of Sec. L2.3 to illustrate this point.

. The natural basis, {ej|j = 1, . . . , n}, of the standard vector spaces Rn and Cn contains
the basis vectors

ej = (0, . . . , 1, . . . , 0)T , (L26)

10

The attribute ‘canonical’ stands for ‘natural’ or ‘standard’ but does not have a mathematically precise
definition.
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where the 1 stands at position number j. (Verify linear independence and completeness of
this set.) The components of the standard basis vectors may be alternatively specified as
(ej)

i = δij, where the Kronecker delta δij is defined by

δij =

{
1 for i = j

0 for i 6= j
. (L27)

In the basis (L26), the expansion of a general vector x = (x1, . . . , xn)T assumes the form

x = e1x
1 + e2x

2 + · · ·+ enx
n = ejx

j.

This shows that the components of an Rn-vector and its expansion coefficients in the
standard basis coincide. This is the defining feature of that basis.

. By contrast, the Euclidean spaces,
11
Ed, do not favor particular directions over others

and therefore do not possess a ‘canonical’ basis. However, in many cases the identity of
a suitable basis is determined by the context. For example, the kitchen layout of Fig. L4
favors a basis of vectors vi, i = 1, 2 parallel to the walls of the room. The representation
of generic vectors as x = 90v1, or 2w = 180v2, then defines component representations
as x = (90, 0)T , 2w = (0, 180)T .

j

jδ

j

. The choice of a basis is particularly important in the case
of function spaces such as L2(I). For definiteness, con-
sider the N -dimensional space obtained by discretizing func-
tions f : [0, 1] → R, t 7→ f(t) into N -component vectors,
f = (f 1, . . . , fN)T ∈ RN , where f i = f(ti). In this case
it is preferable to work with basis vectors δj = Nej, i.e. the
standard basis vectors {ej} of RN scaled by a factor of N .
The basis vector δj may be viewed as a ‘discrete function’,
δj : {1, . . . , N} → R, i 7→ (δj)

i, vanishing for all values of i,
except for i = j, where it equals N . We can think of δj as
a discretized version of a box-shaped function δj : [0, 1]→ R,
t 7→ δj(t), which equals zero everywhere except in an interval
of width 1/N centered on time tj, in which it takes the constant value N . A general
function vector can now be expanded as

f =
1

N
(δ1f

1 + δ2f
2 + · · ·+ δNfN) =

1

N
δjf

j . (L28)

This shows how a discretized function can be expanded in terms of a ‘standard basis’.
However, it is less obvious what becomes of this strategy in the limit N → ∞. We will
address this question later in the text, see section C6.1 and chapter L10.

11

Unless stated otherwise, we assume that a point of origin has been chosen so that Ed can be identified
with a vector space.
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EXERCISE Returning to the examples discussed on p. 27, consider R as a vector space, and show

that the number {1} (or any other set containing just one non-vanishing number) is a basis. Show

that {1, i} defines a basis of C if it is interpreted as a two-dimensional R-vector space. Why is {1, 2}
not a basis? Show that the set containing three polynomials {1, x, x2} forms a basis of the space of

polynomials P2. What would be a basis of the space of polynomials in two variables, x and y up to

degree 2?

Subspaces

3v 3v

2w

1w

Figure L9: Left: a two-dimensional subspace (plane) in three-dimensional space. Center: a one-
dimensional subspace (line) in three-dimensional space. Right: a one-dimensional subspace in two-
dimensional space.

If the span W of a set of vectors in V is not complete, then W ( V and W is called a
true true subspace of V . For example, if w1 and w2 are linearly independent vectors in R3,
then W = span({w1,w2}) is a two-dimensional subspace of three-dimensional space.

Subspaces of dimension one and two are called lines and planes, respectively. Exam-
ples include planes in three-dimensional space (m = 2, n = 3), lines in three-dimensional
space (m = 1, n = 3), or lines in two-dimensional space (m = 1, n = 2), as illustrated in
Fig. L9. Subspaces of higher dimension can no longer be visualized. For example, the space
of polynomials of degree 2 is a three-dimensional subspace of the infinite-dimensional space
L2(I).

As with vectors, subspaces are defined only up to parallel translation. For example, a
parallel translation of the plane shown in Fig. L9, left, would still represent the same plane.

L2.5 Vector space isomorphism

REMARK In this section, connections between vectors of a general n-dimensional real space, V ,

and component vectors in Rn will be addressed. To distinguish the former from the latter, a caret

notation v̂ ∈ V is used for general vectors. The component vector representing v̂ in Rn is denoted

by the same symbol without caret, v.
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Once a basis {vi} has been chosen, every vector v̂ of an n-dimensional vector space can be
expanded as v̂ = v̂1v

1 + v̂2v
2 + · · ·+ v̂nv

n. This expansion assigns to v̂ an n-tuple
12

of real
numbers, v1 to vn, which together can be viewed as an element of Rn. In other words, the
basis defines a map

φv̂ :→ Rn, v̂ = v̂iv
i 7→ φv̂(v̂) ≡




v1

...
vi

...
vn



, (L29)

where the subscript in φv̂ indicates that the map is specific to the basis {v̂1, . . . , v̂n}. Under
this map, the basis vectors v̂i themselves are assigned to the standard basis vectors of Rn,
φv̂(v̂i) = ei.

V 2IR

v̂φ

Figure L10: On the isomorphism between a general two-dimensional real vector space V and R2.

We saw above that for a given basis the assignment (vector) ↔ (components) is unique.
Every vector has a unique component representation and every set of components corresponds
to a unique vector. This is another way of saying that the map φv̂ is bijective. However, it is
more than that: the sum of two vectors, v̂ + ŵ, is represented as v̂ + ŵ = (v̂iv

i) + (v̂iw
i) =

v̂i(v
i +wi) so that its components are given by the sum vi +wi of the components of v̂ and

ŵ, respectively. The same fact may be expressed as φv̂(v̂ + ŵ) = φv̂(v̂) + φv̂(ŵ). Notice
that the two ‘+’ signs in this equation are defined in different vector spaces: on the left side
it acts in V , on the right side in Rn (cf. Fig. L10). An analogous statement holds for scalar
multiplication, φv̂(av̂) = aφv̂(v̂).

In the language of section L1.2, φv̂ defines a (bijective) homomorphism between the
spaces (V,+) and (Rn,+), i.e. it is an isomorphism. We have argued that the existence
of an isomorphism between two spaces means that they are ‘practically identical’, V ∼= Rn.
Since this link to Rn can be established for any n-dimensional vector space V , the former is
justly called the ‘standard’ vector space. However, one always has to keep in mind that

12

In mathematics an n-tuple is an ordered list of n-objects. For example (1, 4, 2, 6) is a 4-tuple. It is ordered
in the sense that it must be distinguished from the differently ordered list (4, 1, 2, 6).
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The isomorphism V ∼= Rn is not canonical.

For a different basis, V -basis, {ŵ1, . . . , ŵn} a different isomorphism, φŵ and a different
component representation is obtained.

Figure L11: Figure illustrating the isomorphism between two-dimensional Euclidean space and R2.
Geometrically defined vector addition/multiplication is compatible with the algebraic operation on
R2-component representations.

EXAMPLE Fig. L11 illustrates the isomorphism between two-dimensional Euclidean space
and R2. In Euclidean space, vector addition and scalar multiplication are geometric operations

— the concatenation of vector–arrows and their stretching by scalar factors. These operations are

compatible with the algebraic addition and scalar multiplication of the corresponding R2 component

representations, irrespective of what basis is chosen. For example, in a basis defined by horizontal and

vertical vectors of unit length, the geometric vectors v̂ and ŵ have the representations v = ( 1
2 ) and

w = ( 5
2 ). Left: the geometric sum v̂ + ŵ has components v + w = ( 6

4 ). Right: the geometrically

stretched vector 2v̂ has components 2v = ( 2
4 ). In either case, the same results are obtained by

addition and multiplication in R2.

Thanks to the correspondence V ∼= Rn, vector calculations can be performed either in V
or in Rn. In the latter case one first assigns components to vectors, v̂, ŵ, . . . , does com-
putations with the component representations, v, w, . . . , and finally uses the inverse of the
map φv̂ to reassign V -vectors to Rn-vectors. The correspondence between vectors and their
components is so tight that the symbol φv̂ is often omitted and a notation v̂ = (v1, . . . , vn)T

is used. Although this is illegitimate (because it equates a vector in v̂ ∈ V with a vector
v = (v1, . . . , vn)T ∈ Rn), the notation is ubiquitous and one just has to accept its presence.
However, in this text we avoid it and keep using the caret to distinguish between vectors in V
and their component representations in Rn.

L2.6 Summary and outlook

In this chapter we introduced the important concept of vector spaces. Starting from a
geometric motivation, we emphasized a view in which vectors where characterized by the
operations defined on them — addition and scalar multiplication — and not so much through



L2.6 Summary and outlook 37

concrete realizations. We argued that this more general approach was motivated by the
frequent occurrence of vectors without visual representation in physics. Conversely it allows
one to understand very different realizations of vectors in unified terms.

We saw that the general definition of vector spaces led to various secondary definitions,
including that of the dimension of a vector space, linear dependence, completeness and that
of a basis. Vector space bases were the key to the description of vectors through component
representations, or elements of the standard space Rn (or Cn). The existence of a unified Rn

language is very important and it implies that the mathematics of Rn is a template describing
all other vector spaces at once.

So far, we have not done much other than defining vector spaces. Building on this foun-
dation there are two directions to move forward. The first is the definition of additional
structures required to perform actual geometric operations with vectors, the measurement of
lengths and angles, etc. The second will be the discussion of maps preserving the fundamental
structures of vector spaces. We will discuss these two extensions in turn, beginning with the
‘geometrization’ of vector spaces.
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REMARK In most of this chapter, we focus on the case F = R; section L3.4 considers F = C.

Euclid
Often referred to as the father
of geometry. In his influen-
tial work Elements Euclid for-
mulated the principles of Eu-
clidean geometry (see below).
Little is known about the date
of his birth and death, and about his per-
sonal life. He was active around 300 BC.

In school, vectors are usually introduced as
arrows of specified length and direction. The
reason why these features have not been men-
tioned so far is that they are not included in
the general definition of vector spaces. There
are vector spaces for which the concept of
length is not meaningful. Very often, how-
ever, it is, and to define it an additional struc-
ture known as the Euclidean scalar prod-
uct is required. In section L3.1 we introduce

a scalar product for the standard vector space Rn and discuss the ensuing geometric structures
in section L3.2. Scalar products of generic R-vector spaces will be introduced in section L3.3,
and of generic C-vector spaces in section L3.4.

INFO When introducing mathematical concepts it is generally good practice to progress stepwise

from minimal structures to elements of higher structure. Such a hierarchical approach to, e.g.,

vector spaces is also useful from a physical perspective. Key physical theories like thermodynamics

or classical mechanics rely on vector space structures such as completeness and linear independence,

but not on the additional structure of a scalar product. For example, the so-called phase space
of classical mechanics combines the d-dimensional coordinate vector, q, of a point particle, and its

momentum, p, into a vector x =
(
q
p

)
of dimensionality 2d. The space defined by such vectors does

not possess a natural scalar product. (What would be the ‘length’ of a vector having coordinates

and momenta as components?) In such contexts a scalar product would not only be superfluous but

could even obscure physical contents.

L3.1 Scalar product of Rn

38



L3.1 Scalar product of Rn 39

Definition

A scalar product of a vector space is a function that takes two vectors as arguments to
produce an (F-valued) number. Let us begin by introducing a scalar product of the standard
vector space, Rn. Technically, this so-called standard scalar product of Rn is defined as

1

〈 , 〉 : Rn ×Rn → R , (v,w) 7→ 〈v,w〉 ≡ v1w1 + v2w2 + · · ·+ vnwn . (L30)

This map is bilinear map (linear in both its arguments). It assigns to each pair of vectors,
(v,w), the number 〈v,w〉 defined on the right. Notice that the indices on the right occur
in pairs that both sit upstairs. This definition thus does not conform to the conventions
of covariant notation (see p. 32), which requires index pairs in sums to occur in co- and
contravariant (downstair-upstairs) combinations. The notation thereby signifies that though
the formula is correct as written, from a general point of view ‘something is missing’ from it.
In section L3.3 we will uncover the missing object (a so-called ‘metric’), but for the moment
let us proceed with Eq. (L30) and explore its consequences.

The scalar product Eq. (L30) has a number of important properties: it is

(i) symmetric : 〈v,w〉 = 〈w,v〉,
(ii) linear : 〈av,w〉 = a〈v,w〉 and

〈u + v,w〉 = 〈u,w〉+ 〈v,w〉, and

(iii) positive definite : 〈v,v〉 > 0 for all v 6= 0. (L31)

All geometric structures following from a scalar product rely solely on these three properties.
This will become apparent in our discussion below, which makes repeated reference to (i-iii)
but not to the specific formula (L30).

Given a scalar product, we can define the norm of a vector as

‖v‖ =
√
〈v,v〉. (L32)

1

Other notations for the scalar product of Rn include vTw or v ·w. However, these ways of writing scalar
products are specific to Rn. We here prefer to use the general notation 〈v,w〉.
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Pythagoras
(ca. 570-495 BC)
Greek philosopher and mathe-
matician. He had great influ-
ence on the philosophical and
religious teaching of the late
6th century BC. He is best
known for his theorem relating the length
of the three sides of a right-angled triangle.

In Rn with its standard scalar product this
quantity is the geometric length of a vec-
tor.

2
To see this, considerR2 where ‖ ( ab ) ‖ =√

a2 + b2 is the Pythagorean length familiar
from school. It is left as an exercise to show
that the generalization to higher dimensional
space, e.g. n = 3, assigns to a vector its geo-
metric length, i.e. the length one would obtain
with the help of a ruler.

Given a scalar product, it can be used to
introduce various features describing the geometry of vectors — ‘angles’, ‘length’, ‘parallelity’
and ‘orthogonality’, etc. These concepts are the subject of ‘Euclidean geometry’ and will be
discussed next.

Euclidean geometry

Euclidean geometry Geometric concepts based on the definition of the scalar product
(L30) are generally subsumed under the name ‘Euclidean geometry’. Euclidean geometry can
be understood graphically, i.e. in terms of geometric lengths, angles, etc., or ‘algebraically’
in terms of the criteria (i-iii). While the geometric formulation may be more intuitive, the
advantage of the algebraic approach is that it extends to general vector spaces – function
spaces, for example – in which no graphical interpretation exists.

The most fundamental relation of Euclidean geometry is the Cauchy-Schwarz inequal-
ity: ∀v,w ∈ V ,

|〈v,w〉| ≤ ‖v‖‖w‖. (L33)

The proof of this inequality illustrates how nontrivial results may be derived from the general
properties of the scalar product: For w = 0 Eq. (L33) holds trivially. Suppose, then, w 6= 0,
define the number a ≡ 〈v,w〉/‖w‖2, and consider the vector v − aw. Since its norm is
greater or equal to zero we have 0 ≤ 〈v − aw,v − aw〉 = ‖v‖2 − 2a〈v,w〉 + a2‖w‖2 =
‖v‖2 − (〈v,w〉)2/‖w‖2, where in the last step the definition of a was used. Multiply this
inequality by ‖w‖2, rearrange terms, and take the square root to arrive at Eq. (L33). For
colinear vectors, i.e. for vectors ‘pointing in parallel directions’, v = bw with b ∈ R, the
inequality becomes an equality.

3
However, if u and v are not colinear their scalar product is

strictly smaller than the product of their norms, and the inequality (L33) quantifies the degree
of ‘misalignment’.

This interpretation motivates the definition of the angle, ∠(v,w), between two vectors
as

∠(v,w) ≡ arccos

( 〈v,w〉
‖v‖‖w‖

)
, (L34)

2

The more general denotation ’norm’ is used also for vector spaces with scalar products for which (L32)
does not have an interpretation as ‘length’.

3

If v = bw, then ‖v‖ = |b| ‖w‖ and 〈v,w〉 = |b| 〈w,w〉 = |b| ‖w‖2 = ‖v‖‖w‖.
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or the equivalent representation

〈v,w〉 = cos(∠(v,w)) ‖v‖‖w‖. (L35)

Before elucidating in what sense this is an ‘angle’ we note that the
definition makes mathematical sense: from Eq. (L33) we know that
〈v,w〉/‖v‖‖w‖ ∈ [−1, 1], and so the inverse of the cos-function,
arccos, can be applied to produce a value between 0 and π. These
two values represent the extreme limits of complete alignment and
anti-alignment, 〈v,w〉 = ±‖v‖‖w‖, respectively.
On this basis, let us now give the equation a geometric interpretation. Consider the triangle
in E2 shown the figure. Its sides are defined by the vectors v, w and v−w, with side lengths
a ≡ ‖v‖, b ≡ ‖w‖ and c ≡ ‖v − w‖, and the geometric angle enclosed by v and w is θ.
If we identify the geometric angle with the one appearing in the Cauchy-Schwarz context,
θ ≡ ∠(v,w), Eq. (L35) can be written as 〈v,w〉 = ab cos(θ). Now consider the vector
identity 〈(v −w), (v −w)〉 = 〈v,v〉 + 〈w,w〉 − 2〈v,w〉. With the above identifications, it
assumes the form c2 = a2 + b2 − 2ab cos(θ), which is the familiar ‘law of cosines’

4

a2 + b2 − c2 = 2ab cos(θ). (L36)

In other words, the identification of the Cauchy-Schwarz angle of Eq. (L34) with the geometric
angle follows from basic geometric considerations in the space E2. However, the definition
(L34) holds more generally and can be used to quantify the mismatch between two vectors
even in contexts where these vectors do not have a straightforward geometric interpretation.

INFO Scalar products play an important role in all areas of physics. As an example, consider

mechanical work. If a constant force, F, is applied to move an object along a straight line to

induce a certain displacement, s, the force performs work, W . Both force and displacement are

vectorial quantities and the work done by the force is given by

W = F · s . (L37)

This equation can be read as the definition of force. The

norm F ≡ ‖F‖ quantifies its magnitude, and the direction

of F is the direction in which the force acts. Similarly, s ≡
‖s‖ is the length of a displacement s, whose direction may

differ from that of F by an arbitrary angle, θ = ∠(F, s) (see

figure). Only the component of force parallel to s, F cos θ,

effectively performs work, and the total amount of work is

proportional to the length of the displacement. This leads to

W = Fs cos(θ) which can be equivalently expressed as (L37). Notice that in experiment, Eq. (L37)

4

The law of cosines, which holds for arbitrary triangles in E2, is usually taught in school. It may be proven
by subdividing the triangle into two right-handed triangles and applying the Pythagorean theorem to each.
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really is applied to define forces. For example, the Coulomb force acting on charged particles can be

determined by displacing a test particle of a given charge in definite ways and measuring the required

work. If this is done for sufficiently many displacements (how many?) a force vector is determined.

L3.2 Normalization and orthogonality

Scalar products can be used to define vectors of definite length. Specifically, we call a
vector, ŵ, unit normalized if ‖ŵ‖ = 1, and indicate this feature by a caret (ˆ).

5
For a given

vector w, the associated unit vector is obtained by normalization, i.e. division through its
norm,

ŵ ≡ w

‖w‖ . (L38)

Two vectors v and w are called orthogonal if 〈v,w〉 = 0
and this is indicated by v ⊥ w. If two vectors are parallel to
each other (in the sense that the Cauchy-Schwarz inequality
becomes an equality) we write v ‖ w. For given w, any vector
v can be decomposed as v = v⊥ + v‖, where the projection,
v‖ (spoken ‘v-parallel’), and the orthogonal complement,
v⊥ (spoken ‘v-perpendicular’), are parallel and orthogonal to

w, respectively (see figure).
To obtain an explicit formula for this decomposition we write the projection as v‖ = ŵ a.

The coefficient a is determined by requiring that v⊥ = v − v‖ be orthogonal to ŵ, i.e. that
0 = 〈ŵ,v⊥〉 = 〈ŵ,v〉 − 〈ŵ, ŵ〉 a. Since 〈ŵ, ŵ〉 = 1, we obtain a = 〈ŵ,v〉. Projection and
orthogonal complement are therefore given by

v‖ = ŵ 〈ŵ,v〉,
v⊥ = v − ŵ〈ŵ,v〉. (L39)

Note that the projection can also be written as v‖ = cos(∠(v,w)) ‖v‖ ŵ. This follows from
Eq. (L35) and is consistent with an elementary geometric construction. (→ L3.2.1-2)

5

Exceptions to this convention include unit vectors denoted by e, such as ei of Eq. (L26), for which the
caret is omitted. To be on the safe side, it is good practice to always define unit vectors explicitly.
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For later reference, let us apply the above relations to derive a use-
ful formula for the area of a parallelogram, A(v,w), spanned by
two vectors v,w ∈ Rn. From elementary geometry we know that
A(v,w) = ‖v⊥‖‖w‖: the area equals the length of one edge of the
parallelogram, say ‖w‖, multiplied by its height relative to this edge,
‖v⊥‖ (see figure). An alternative representation for the area reads as

A(v,w)
(L39)
= ‖v − ŵ〈ŵ,v〉‖‖w‖ =

[
‖v‖2‖w‖2 − 〈w,v〉2

]1/2
(L40)

(L35)
= ‖v‖‖w‖

[
1− cos2

(
∠(v,w)

)]1/2
= ‖v‖‖w‖ sin

(
∠(v,w)

)
.

(L41)

The decomposition of vectors into perpendicular and parallel components has many appli-
cations. More generally, scalar products can be used to decompose vectors into contributions
pointing in arbitrary directions.

EXAMPLE Let us illustrate the utility of vector de-

compositions with an example from statics. A mass is

suspended by rigid rod and a rope (see figure). To as-

sess the stability of the construction we need to know the

magnitude of the forces acting on rope and rod, respec-

tively. To this end we decompose the gravitational force,

F, exerted by the body as

F = F1 + F2 , (L42)

into contributions F1 and F2 acting in the directions par-

allel to the rope and rod, respectively. Expressing each force as unit vector times norm, F = F̂F ,

F1 = F̂1F
1, and F2 = F̂2F

2, the goal is to find the two unknowns F 1 and F 2 in terms of the

known force, F , and the given angle α. To this end, we write Eq. (L42) as F̂F = F̂1F
1 + F̂2F

2

and take scalar products with F̂ and F̂2 to obtain

〈F̂, F̂〉F = 〈F̂, F̂1〉F 1 + 〈F̂, F̂2〉F 2,

〈F̂2, F̂〉F = 〈F̂2, F̂1〉F 1 + 〈F̂2, F̂2〉F 2.

We know that 〈F̂, F̂〉 = 〈F̂2, F̂2〉 = 1 and deduce by elementary geometry that 〈F̂, F̂1〉 = cos(α),

〈F̂, F̂2〉 = 0, and 〈F̂2, F̂1〉 = cos(π2 + α) = − sin(α). This leads to the solutions

F 1 =
F

cosα
, F 2 = F tanα.

Can you explain intuitively why F 1 grows indefinitely in the limit α→ π
2 ?



44 L3 Euclidean geometry

L3.3 Inner product spaces

REMARK In this and many later sections the caret symbol ( ˆ ) is used to discriminate vectors,

v̂ ∈ V , of generic vector spaces from their component representations, v ∈ Rn, with respect to

some basis. Scalar products in V are denoted by 〈v̂, ŵ〉V and the corresponding scalar product of

Rn by 〈v,w〉Rn . This definition of v̂ is totally unrelated to the unit-vector notation of the previous

section.

Although our discussion so far focused on the standard scalar product of Rn, the algebraic
form of the formula Eq. (L30) was not essential in any way. Indeed, all results were derived
solely on the basis of its three fundamental features (i-iii) listed above. In this section we
invert the logic of the argument and define scalar products for general vector spaces as vector-
pairing operations that obey the criteria (i)-(iii). Equation (L30) then has the status of just
one of many possible realizations of scalar products on Rn. Generalized scalar products can be
rather abstract and need not have straightforward geometric interpretations. However, they
always endow a vector space with powerful computational structures which often facilitate
the solution of problems. For example, the vector spaces relevant to quantum theory all have
scalar products and operations based on these are of profound physical importance, although
these scalar products do not lend themselves to a direct geometric interpretation.

Scalar product: general definition

A scalar product
6

of an R-vector space V is a map

〈 , 〉 : V × V → R, (v̂, ŵ) 7→ 〈v̂, ŵ〉 , (L43)

with the following properties (û, v̂, ŵ ∈ V, a ∈ R):

(i) symmetry : 〈v̂, ŵ〉 = 〈ŵ, v̂〉,
(ii) linearity : 〈av̂, ŵ〉 = a〈v̂, ŵ〉,

〈û + v̂, ŵ〉 = 〈û, ŵ〉+ 〈v̂, ŵ〉,
(iii) positive definiteness : v̂ 6= 0 : 〈v̂, v̂〉 > 0. (L44)

A vector space, V equipped with a scalar product, (V, 〈 , 〉), is called a normed vector space,
inner product space or Euclidean vector space.

INFO In the literature, the term Euclidean space is used in three different ways:

. A general vector space V equipped with a scalar product, (V, 〈 , 〉).

. The standard space Rn with its standard scalar product Eq. (L30).

6

The general scalar product is sometimes called inner product and a vector space equipped with it an
inner product space.
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. The affine space En discussed on p. 24.

Although the usage of one term for seemingly different objects may seem confusing, the discussion

of this section will show that there is no contradiction and that the three definitions are equivalent

to each other.

EXAMPLE

. In Euclidean space, Ed, with d = 2 or 3, lengths and angles between vectors may be determined

geometrically (by using a ruler). One may then define the scalar product of two vectors v and w

through Eq. (L35), i.e. the product of their length and the enclosed angle. It is straightforward to

check that this geometrically constructed scalar product obeys all criteria required by the general

definition.

. In the function space L2(I) (see 26), consider two functions f, g : I → R and define the map

〈 , 〉 : I × I → R in terms of the integral

〈f, g〉 =

ˆ
I

dx f(x)g(x), (L45)

where we used the shorthand
´
I ≡
´ b
a for I = [a, b], and a < b ∈ R. This operation defines a

scalar product. (→ L3.3.1)

. For an example of an unconventional scalar product defined on R2, see problem L3.3.2.

EXERCISE Identities derived from scalar products often have an intuitive or even trivial interpre-

tation. As an example, consider the triangle inequality

‖v̂‖+ ‖ŵ‖ ≥ ‖v̂ − ŵ‖. (L46)

In the Euclidean space E3 this identity states that the sum of the lengths of two sides of a triangle

exceeds the length of the third side.

However, one should also learn to think about such relations in more general terms which are

not tied to an obvious geometric picture. Practice this understanding by proving the triangle identity

from the general definition of the scalar product. Hint: Use the Cauchy-Schwarz inequality to show

that (‖v̂‖ + ‖ŵ‖)2 ≥ ‖v̂ − ŵ‖2, which implies (L46). Discuss the interpretation of the triangle

inequality in the case of the function space scalar product (L45).

INFO The condition of positive definiteness is sometimes abandoned, which then leads to the

definition of positive semidefinite (〈v̂, v̂〉 = 0 for v̂ 6= 0 is allowed) or positive indefinite (〈v̂, v̂〉 <
0 is allowed) scalar products. An indefinite scalar product of great physical significance, known as the

Minkovski metric, is defined in R4. In applications involving the Minkovski metric it is customary

to label the standard basis vectors of R4 as ê0, ê1, ê2, ê3. The scalar product is defined by the
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relations
7 〈ê0, ê0〉 = 1, 〈êi, êi〉 = −1, i = 1, 2, 3, and 〈êµ, êν〉 = 0, µ 6= ν.

8

In physics, R4 equipped

with a Minkovski metric is understood as space-time, where e0 represents a ‘time-like’ direction, and

ei are ‘space-like’ directions. A point with coordinates (ct, x1, x2, x3) then labels a space time-event

taking place at time t, and having spatial coordinates xi. Here the speed of light, c ' 3× 108m/s,

is included in the definition of x0 = ct to give xµ, µ = 0, . . . , 3 all the same dimension of physical

length.

Some physical contexts require a scalar product which is not positive definite but satisfies the

weaker condition of non-degeneracy: a non-degenerate inner product has the property that

〈v̂, ŵ〉 = 0, ∀ŵ ∈ V implies v̂ = 0. For example, the Minkovski metric is indefinite and admits

vectors of vanishing norm (ê0+ê1 is an example). However, it is non-degenerate. Indeed, if v̂ = êµv
µ

has vanishing scalar product with all other vectors, then 〈v̂, êν〉 = 0 certainly holds for the basis

vectors êν , implying v0 = 〈v̂, ê0〉 = 0 and vi = −〈v̂, êi〉. Hence all the expansion coefficients of the

vector v̂ vanish, thus it was the null vector to begin with.

Metric tensor

Consider a basis {v̂i} of a space (V, 〈 , 〉V ), where the subscript on the scalar 〈 , 〉V
emphasizes that it belongs to V . Evaluating the scalar product for all possible pairs of basis
vectors yields the so-called metric (tensor), g ≡ {gij},

gij ≡ 〈v̂i, v̂j〉V , (L47)

where the symmetry of the scalar product implies the relation gij = gji. Now consider two
generic vectors x̂ = v̂ix

i and ŷ = v̂jy
j in V . Their scalar product can be expressed as

〈x̂, ŷ〉V =
〈
v̂ix

i, v̂jy
j
〉
V

= xi 〈v̂i, v̂j〉V yi = xi gij y
j. (L48)

This formula suggests introducing a generalized scalar product of Rn by defining

〈x,y〉
Rn
≡ xigijy

j, (L49)

where x = (x1, . . . , xn)T and y = (y1, . . . , yn)T are component vectors in Rn. With this
definition we obtain

〈x̂, ŷ〉V = 〈x,y〉
Rn

= xigijy
j. (L50)

The advantage of this definition is that the scalar product of two vectors in V is equal to the
scalar product of their component representations in Rn.

7

Some texts use the opposite sign convention for the Minkovski metric, defining 〈ê0, ê0〉 = −1, and
〈êi, êi〉 = 1, i = 1, 2, 3.

8

It is customary to index the full set of four basis vectors of a Minkovski space by Greek indices, µ = 0, 1, 2, 3.
However, the restricted set of indices excluding zero, i = 1, 2, 3, is labeled by latin letters.
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INFO Given two vector spaces, (V, 〈 , 〉V ) and (W, 〈 , 〉W ), we call a map F : V → W an

isometry, if ∀x̂, ŷ ∈ V , 〈x̂, ŷ〉V = 〈F (x̂), F (ŷ)〉W , i.e. if the V -scalar product of its arguments

is equal to the W -scalar product of its images. The definition of the scalar product (L49) is such

that the component representation φv : V → Rn, x̂→ x becomes an isometry of the vector spaces

(V, 〈 , 〉V ) and (Rn, 〈 , 〉Rn). Whenever possible one should aim to work with isometries to benefit

from the fact that they leave the scalar product, and hence also lengths, angles, etc. invariant.

It is customary to abbreviate the notation by introducing components with covariant indices
as

9

xj ≡ xigij. (L51)

This index-lowering convention may be applied to represent the scalar product (L50) be-
tween two vectors compactly as

〈x̂, ŷ〉V = 〈x,y〉
Rn

= xjy
j. (L52)

Be aware, however, that the positioning of indices (upstairs vs. downstairs) has now become
crucially important: xi 6= xi, unless gij = δij.

For later reference, we note that it is often convenient to introduce an ‘inverse’ metric
tensor {gij} through the relation

gkjg
ji = δ i

k , (L53)

where i and k are arbitrary and the repeated index j is summed over. For example, if

g11 = g22 = 1, g12 = g21 = 1√
2
, (L54)

it is straightforward to verify that g11 = g22 = 2 and g12 = g21 = −
√

2.
10

The inverse metric can be used to define an index-raising relation analogous to Eq. (L51):

xi = xjg
ji. (L55)

The index-lowering and -raising relations (L51) are (L55) consistent with each other in the
sense that xi = xjg

ji = (xkgkj)g
ji = xkδ i

k = xi. In operations involving numerous index
summations this is a useful and important consistency check!

To summarize, a generic scalar product, 〈 , 〉V , of a vector space, V , motivates the
definition of the metric tensor, Eq. (L47). Its components gij define a non-standard scalar
product (L49) of Rn. The correspondence (V, 〈 , 〉V ) ∼= (Rn, 〈 , 〉

Rn
) then becomes an

isometry for which the scalar product between vectors and their component representation is
given by (L50).

9

Since the metric tensor is symmetric, gij = gji, Eq. (L51) can equivalently be written as xj ≡ gjixi.
10

In many applications, ‘off-diagonal’ elements of the metric tensor vanish, gij = 0 for i 6= j. The elements
of the inverse metric tensor then also have this property, gij = 0 for i 6= j, and the diagonal elements are
obtained as gii = (gii)

−1. Methods for finding the inverse metric in situations with non-diagonal metric
tensors are discussed in section L5.4.
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EXERCISE Define a generalized scalar product of Rn through Eq. (L49) with a priori unspecified

coefficients gij . What conditions have to be imposed on the coefficients gij to satisfy the criteria

(L44) defining an scalar product? Show that these conditions hold if gij = 〈v̂i, v̂j〉V is defined

through a scalar product of a vector space, V .

Given a basis {v̂i}, it can in general be difficult to determine the expansion of a general vector,
x̂ = v̂ix

i, i.e. to compute the expansion coefficients xi. However, the problem becomes
a lot easier if a scalar product is available and the metric tensor, gij, and its inverse, gij, are
known. To see this, we define a set of contravariant basis vectors with raised indices,
{v̂i}, using an index-raising relation analogous to Eq. (L55):

v̂i ≡ gijv̂j. (L56)

Then we compute 〈v̂i, v̂k〉V = 〈gijv̂j, v̂k〉V = gij〈v̂j, v̂k〉V = gijgjk = δik. Thus, the two
sets of vectors {v̂i} and {v̂k} satisfy the orthonormality relation

〈v̂i, v̂k〉V = δik. (L57)

The expansion coefficients of x̂ can now be obtained by taking its scalar product with a
contravariant basis vector: 〈v̂i, x̂〉V = 〈v̂i, v̂kxk〉V = 〈v̂i, v̂k〉V xk = δikx

k = xi. This leads
to the result

x̂ = v̂i〈v̂i, x̂〉V . (L58)

The statement made by this formula is that the expansion coefficients of a generic vector x̂ can
be found using a four step-program: (1) Compute the metric tensor, gij, and (2) its inverse,
gij. Then, (3) build the linear combinations v̂i = gijv̂j of basis vectors, and (4) compute the
components of x̂ using the scalar product xi = 〈v̂j, x̂〉V . Although this may look complicated,
the steps of this program are often easy to perform, and generally are an efficient method for
of obtaining expansion coefficients. (→ L3.3.5-6).

w

EXAMPLE Consider the vector space V = E2 equipped with its

geometrically defined scalar product (L35). As basis we use the vectors

{v̂1, v̂2} indicated in the figure. In coordinates corresponding to the

grid they have a component representation v̂1 = (1, 0)T and v̂2 =
1√
2
(1, 1)T , respectively. It is straightforward to verify (do it!) that

the metric tensor defined by this basis is given by Eq. (L54). What

is the component representation of the vector w in the given basis?

Compute its norm from the component representation and check that

the result agrees with the geometrically computed length.

Orthonormal bases of inner product spaces

Given an inner product space (V, 〈 , 〉V ) it is natural to work with bases for which the
metric tensor {gij} assumes a simple form. This eases all operations involving the metric, such
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as finding its inverse, taking scalar products and computing vector decompositions. A basis,
{êi}, yields maximal metric simplicity if its vectors have unit norm, ||êi|| =

√
〈êi, êi〉V = 1,

and are mutually orthogonal, 〈êi, êj〉V = 0, i 6= j. These two criteria specify the form of the
metric tensor as

〈êi, êj〉V = gij = δij. (L59)

Here, the Kronecker-δ is defined as usual, δij = 1 for i = j and 0 otherwise. A basis obeying
these properties is called an orthonormal basis.

Before demonstrating that for any scalar product orthogonal bases can indeed by found, let
us discuss some of their properties. For an orthonormal basis, the component scalar product
representation assumes a particularly simple form, too: given two arbitrary vectors x̂ = êix

i

and ŷ = êjy
j in V we obtain (cf. Eq. (L50))

〈x̂, ŷ〉V =
〈
êix

i, êjy
j
〉
V

= xi 〈êi, êj〉V yj = xiδij y
j = 〈x,y〉

Rn
, (L60)

where in the last equality we encounter the standard scalar product (L30) of the component
representation in Rn, xiδijy

j = xjyj. This leads to the conclusion that

The scalar product of vectors represented in an orthonormal basis equals the
standard Rn-scalar product of their components.

The construction above entails a re-interpretation of the standard scalar product formula
(L30). The latter does not conform to the conventions of covariant notation (cf. 32), in
that it contains a pairwise summation over two contravariant (raised) indices. Our present
discussion suggests to rewrite (L30) as xjyi = xjδijy

j. While at first sight the inclusion of
the Kronecker-δ may look artificial, we now understand that it represents a particularly simple
metric, gij = δij. In other words, the misalignment of indices in Eq. (L30) tells us that the
the placeholder of a metric tensor is ‘missing’ there.

Having identified this missing element, we can bring Eq. (L30) into a form consistent with
the general scalar product of Eq. (L52), by writing 〈x,y〉Rn = xjyj = xiδijy

j = xjy
j. Here

we used the fact that for an orthonormal basis contra- and covariant components are equal,
11

xj = xiδij = xj.
Working with orthonormal bases has many advantages. For example, the evaluation of

the expansion formula (L58) becomes particularly easy because êi = δij êj = êi, so that the
expansion of a vector in an orthonormal basis assumes the simple form

x̂ = êi
〈
êi, x̂

〉
V

= eix
i, (L61)

where xi = 〈êi, x̂〉V = 〈êi, x̂〉V is straightforwardly obtained by taking the scalar product of
x̂ with the corresponding basis vector. (→ L3.3.3-4).

To summarize, for a generic scalar product, 〈 , 〉V , there are two options:

11

This is the reason why many introductory textbooks refrain from distinguishing co- and contravariant
notation in the first place. However, one should be aware of the fact that the corresponding material is then
strictly limited to the case of orthonormal bases.
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. If one works with a generic basis {v̂i} in V , a metric tensor, gij, needs to be introduced,
and the scalar product appropriate to the description of the component representation of
vectors becomes a non-standard scalar product in Rn.

. If instead one works with an orthonormal basis {êi} in V , the metric tensor is trivial,
gij = δij, co- and contravariant components are equal, xi = xi and êi = êi, and the
corresponding scalar product of components is the standard scalar product of Rn.

Obviously, the second approach is simpler and one will usually aim to work with orthonormal
bases of scalar products. However, sometimes there are compelling reasons to single out a
non-orthonormal basis. The covariant representation of the metric introduced above then is
the best way to describe the situation.

EXAMPLE As an example for constructions using an orthonormal basis, let us represent the ge-

ometric area, A(v,w), spanned by two vectors v,w ∈ Rn in terms of their components in the

standard basis, {ei}. To this end, we insert the expansions v = eiv
i, w = ejw

j into Eq. (L40), and

obtain:

A2(v,w) = ‖v‖2‖w‖2 − 〈v,w〉2 =
∑

ij

[
(vi)2(wj)2 − (viwi)(vjwj)

]

=
∑

i<j

[
(vi)2(wj)2 + (vj)2(wi)2 − 2(viwi)(vjwj)

]
=
∑

i<j

[
viwj − vjwi

]2
. (L62)

In the sum of the first line terms with i = j cancel. We split the remaining contribution into sums∑
i<j and

∑
j<i, and in the latter sum relabel indices as i↔ j to arrive at the second line.

For two-dimensional vectors, n = 2, this reduces to

A(v,w) = |v1w2 − v2w1| . (L63)

We will need this result when discussing area integrals with curvilinear coordinates in chapter C4.2.

It is left as an exercise to verify that for three-dimensional vectors, n = 3, Eq. (L62) reproduces the

cross product formula (L86), A(v,w) = ‖v ×w‖, to be derived in section L4.2 below.

Orthonormalization

Given that orthonormal bases are very convenient to work with, two obvious questions
present themselves: for an arbitrary inner product space, (V, 〈 , 〉V ), do orthonormal bases
always exist? And if so, are there methods for obtaining them? Fortunately, the answer to
both is affirmative. By a procedure known as Gram-Schmidt orthonormalization any basis
{v̂i} can be constructively transformed into an orthonormal basis.

The algorithm starts by picking one of the basis vectors, say v̂1. By normalizing it we obtain
the first vector of the new basis, ê1 ≡ v̂1/‖v̂1‖. We next define v̂2,⊥ ≡ v̂2− ê1〈ê1, v̂2〉 as the
orthogonal complement of v̂2 with respect to ê1, obtained by subtracting the component of
v̂2 parallel to ê1 (cf. Eq. (L39)). Here ê1 ≡ ê1, as appropriate for an orthonormal basis with
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metric tensor δij and êi = δij ê
j. The vector v̂2,⊥ is non-vanishing. (Why? Remember linear

independence.) Moreover, it is perpendicular to ê1 by construction,

〈
ê1, v̂2,⊥

〉
=
〈
ê1, v̂2 − ê1〈ê1, v̂2〉

〉
= 〈ê1, v̂2〉 − 〈ê1, v̂2〉 = 0,

where we wrote 〈 , 〉V ≡ 〈 , 〉 for brevity. Normalization of v̂2,⊥ yields ê2 ≡ v̂2,⊥/|v̂2,⊥|. We
continue in this manner to define v̂3,⊥ ≡ v̂3 − ê1〈ê1, v̂3〉 − ê2〈ê2, v̂3〉, then normalize it, and
so on, until we arrive at ên:

v̂1, ê1 ≡ v̂1,⊥/‖v̂1,⊥‖
v̂2,⊥ ≡ v̂2 − ê1〈ê1, v̂2〉, ê2 ≡ v̂2,⊥/‖v̂2,⊥‖

...
...

...
...

v̂i,⊥ ≡ v̂i −
∑i−1

j=1 êj〈êj, v̂i〉, êi ≡ v̂i,⊥/‖v̂i,⊥‖,
...

...
...

...

v̂n,⊥ ≡ v̂n −
∑n−1

j=1 êj〈êj, v̂n〉, ên ≡ v̂n,⊥/‖v̂n,⊥‖.

(L64)

We note that the basis resulting from a Gram-Schmidt procedure is non-canonical in that it
depends on the order in which the vectors are orthonormalized (see the example below). It
is also worth noting that the algorithm may be applied to arbitrary sets U = {v̂1, . . . , v̂m}
of vectors, even if m > n exceeds the dimensionality of V and the set is linearly dependent.
In this case, the algorithm will produce the vector 0 at some of its steps (why?). Vectors
whose orthonormalization vanishes will be discarded. If U contained k linearly independent
vectors, the result of the operation will be an orthonormal basis of the k-dimensional subspace
span(U). For k = n, we obtain a basis of V .

EXERCISE Convince yourself that all vectors {v̂i,⊥, i = 1, . . . n} are indeed mutually orthogonal!

This is best proven by induction. We know the validity of the statement for the first two vectors,

i.e. prove that ê2,⊥ ⊥ ê1,⊥. It remains to show that if the statement holds for the first 1, 2, . . . , j

objects, then it will also be true for the (j + 1)th one. This proves the orthogonality statement for

the remaining vectors ê3,...,n.

EXERCISE Apply the Gram-Schmidt orthonormalization algorithm to the R3-basis

v1 =




0

0

2


 , v2 =




2

2

3


 , v3 =



−4

0

4


 . (L65)

Before doing the calculation think a little and try to anticipate the geometric orientation of the

orthonormal basis. Show how different bases are produced depending on whether you start the

procedure with v1,v2, or v3. (→ L3.3.7-8).

INFO The Gram-Schmidt algorithm relies on the positive definiteness of a scalar product. For

semi- and indefinite scalar products, vectors of ill-defined norm can arise (the square root of a
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vector with 〈v,v〉 < 0 does not yield a real number). This would invalidate essential steps of the

normalization procedure. However, it may be adapted to obtain a basis {ei} in which the scalar

product is represented by a metric tensor gij ≡ ηij , with diagonal elements ηii = 1 for i = 1, . . . , r

and ηii = −1, i = r + 1, . . . , n, with vanishing off-diagonal elements, ηi 6=j = 0. Here η is the

standard symbol for the representation of the metric in this form. n is the vector space dimension,

and the number r is an invariant called the signature of the metric. A positive definite metric has

signature r = n. The Minkovski metric defined on p. 45 is an example of a metric of signature 1.

L3.4 Complex scalar product

REMARK This section can be skipped at first reading. It is a prerequisite for chapters L8 and C6.

So far our focus has been on R-vectors spaces, and in particular on the standard vector space
Rn. We here discuss how the concept of inner products can be generalized to complex vector
spaces. A complex inner product of a C-vector space, V , is a map

〈 , 〉 : V × V → C, (v̂, ŵ) 7→ 〈v̂, ŵ〉 , (L66)

with the following properties:

(i) symmetry : 〈v̂, ŵ〉 = 〈v̂, û〉,
(ii) complex linearity : 〈av̂, ŵ〉 = ā〈v,w〉,

〈v̂, aŵ〉 = a〈v̂, ŵ〉,
〈û + v̂, ŵ〉 = 〈û, ŵ〉+ 〈v̂, ŵ〉,

(iii) positive definiteness : v̂ 6= 0 : 〈v̂, v̂〉 > 0. (L67)

These properties are analogous to those of Eq. (L44) for a scalar product on a R-vector space.
Notice, however, that complex conjugation is involved in the symmetry relation, and when
‘pulling out’ a scalar factor multiplying the first (but not the second!) vector. A complex
vector space, V , equipped with such an inner product, (V, 〈 , 〉), is called a unitary vector
space.

Now consider the standard complex vector space, Cn = {z = (z1, . . . , zn)T |zi ∈ C}.
As for Rn (cf. Eq. (L49)), a generic scalar product for Cn is described by a metric tensor
g = {gij} as

〈u,w〉Cn = uigijw
j, (L68)

where the complex conjugation of the left vector components is required to satisfy the complex
linearity property (ii) of Eq. (L67). The symmetry relation of the same equation further implies
the condition

gij = gji. (L69)
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Eq. (L68) can also be written as

〈u,w〉Cn ≡ ujw
j. (L70)

where uj = uigij hides the metric via index-lowering. If the metric is trivial, gij = δij, so that
uj = uj, we arrive at the (standard) complex scalar product,

〈u,w〉 ≡ ujwj. (L71)

Unlike in the real case of Eq. (L30), this scalar product is not usually denoted by a dot
notation (v ·w). Note that the complex conjugation in Eq. (??) ensures positivity: 〈v,v〉 =
viv

i =
∑n

i |vi|2 ≥ 0.



L4 Vector product

θ

In this chapter we focus on the Euclidean space E3 ' R3.
This space is special not only because it is the space of
our daily experience but also because it admits the defi-
nition of a product operation between vectors that is very
different from the scalar product discussed above. This
so-called vector product assigns to two vectors v,w ∈ R3

another ‘vector’ which is usually denoted v × w. (The
quotation marks hint at the fact that v × w actually is
not a real vector, a point to be discussed below.) In

the following, we introduce the vector product from two different perspectives; the first is
geometric and the second emphasizes the algebraic features of the vector product.

L4.1 Geometric formulation

The vector product or cross product is a map, × : E3 × E3 → V , (v,w) 7→ v ×w,
that assigns to two E3-vectors v and w an element v × w of another three-dimensional
vector space, V . The mathematical identity of V is discussed in precise terms in chapter L11.
For the moment we note that being three-dimensional, V ∼= E3 is isomorphic (in one-to-
one correspondence) to E3 and each of its elements can be described as a three-component
object. For this reason, the physics literature often does not distinguish between V and E3

and considers the cross product to be a map

× : E3 ×E3 → E3, (v,w) 7→ v ×w, (L72)

that assigns to two vectors v and w another E3-vector, v × w. The image, v × w, of the
cross-product is defined implicitly by the following geometric properties:

1. Perpendicularity: By definition, v ×w points in a direction perpendicular to the two-
dimensional plane

1
spanned by v and w (unless v ‖ w, in which case v × w ≡ 0). In

other words, v ×w is perpendicular to both v and w.

1

Here we use the fact that we are operating in E3. In E2 a direction perpendicular to a two-dimensional
plane does not exist and in and in En>3 a plane does not uniquely identify a perpendicular direction.

54
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2. Orientation: Perpendicularity to a plane still leaves two possible directions, ‘upwards’ or
’downwards’. The orientation of v ×w is defined according to the right-hand rule: if
index and middle finger of a right hand point in the direction of v and w, respectively,
then its thumb indicates the direction of v ×w (see the figure above).

3. Norm: By definition, ‖v×w‖ is equal to the geometric area of the parallelogram spanned
by v and w. According to Eq. (L41), this area is given by

‖v ×w‖ = ‖v‖‖w‖ sin θ, (L73)

where θ = ∠(v,w) ∈ [0, π] is the angle between v and w, as defined in Eq. (L35).

INFO The vector product plays an important role in physics. Gen-

erally speaking, vector products appear whenever the two physical

concepts ‘vector’ and ‘rotation’ meet.

Let us illustrate this point with an example from mechanics.

Consider a weight lifted by a lever (see figure). The influence of

the lever on the weight depends on three factors: (i) the point

at which the lifting force F is applied to the lever, described by

the vector r connecting the axis of rotation to that point; (ii) the

magnitude of the force; and (iii) its direction. The applied force

will be maximally efficient if it acts in a direction perpendicular to

r (as drawn in the figure). All these factors are combined in the definition of torque,

N = r× F. (L74)

The torque is defined to be perpendicular to both r and F and this defines an imaginary axis around

which it tries to induce rotational motion. (A torque acts efficiently if it is aligned with an axis

around which mechanical motion is actually possible, such as the cylindrical axis of the structure

shown in the figure.) Taking the norm, ‖N‖ = ‖r‖‖F‖| sin∠(r,F)|, we see that the torque is largest

if r ⊥ F. The norm also expresses the ‘law of levers’ (Hebelgesetz), according to which the effect of

the force depends on the product of its magnitude, ‖F‖, and the distance of application relative to

the rotation axis, ‖r‖.

From its geometric construction it follows that the vector product is

antisymmetric : v ×w = −w × v, (L75a)

distributive : u× (v + w) = u× v + u×w, (L75b)

in general not associative : u× (v ×w) 6= (u× v)×w. (L75c)

The lack of associativity can be shown by constructing counter examples (consider, for example,
the vector product of three orthonormal basis vectors). The verification of distributivity on
the basis of the geometric definition of the product is tricky – take it as a challenging exercise
– and will not be discussed here. However, distributivity will follow as a trivial consequence of
the alternative definition of the vector product to be discussed in the next section.
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F×r=N

′F×′r=′N

INFO We mentioned above that the vector product,
v×w, is not an element of the space E3 in which
v and w are defined. Though v × w does live in a

three-dimensional vector space, called V above, this space

is different from the E3 of the argument vectors, and

this difference shows up in various ways. As a physically

motivated example, let us consider the torque, N = r×F,

of two vectors assumed to be perpendicular for simplicity,

r ⊥ F, and study its properties under reflection
2

with

respect to a plane. Let us denote the image of a vector v under this reflection by v′. For reflections

with respect to the shaded plane in the figure we thus have r′ = −r and F′ = F. The torque

N = r × F is parallel to the plane. If it were an element of E3, its reflection would thus be equal

to N. However, the torque is actually an element of V , and as such its reflection is defined to be

the torque computed from the reflected argument vectors, N′ ≡ r′ × F′ = −r × F. This points

in the direction opposite to N, showing that under planar reflections the cross product transforms

differently from an E3-vector. In view of this oddity, the vector product of two vectors is sometimes

called a pseudo-vector or axial vector. However, the mathematically clean view, presented in

section L11.8, is that the cross-product lives in the three-dimensional vector space of ‘covariant

tensors of second degree’. In three dimensions, these objects can be described in terms of three

components, thus resembling vectors, hence it is standard practice in physics to represent them

using the same notation as used for vectors. However, the above construction shows that both

physically and mathematically, they are different from vectors, and confusion can be avoided by

keeping this point in mind.

L4.2 Algebraic formulation

REMARK The non-vectorial nature of the vector product not only shows in its geometric features

(cf. preceding info block) but also algebraically: relations involving the vector product typically

involve index positions that violate the conventions of covariant notation (cf. p. 32). This happens

because the proper algebraic formulation of the vector product, discussed in section L11.8, requires

keeping track of the metric tensor. However, one looses sight of it when employing an orthonormal

basis with gij = δij , such as the Cartesian basis used throughout this chapter. On the other hand,

when using an orthonormal basis inconsistencies in index position can simply be ignored, since index

position does not matter: vi = gijv
j = δijv

j = vi. For the sake of notational consistency, we will

nevertheless adhere to the convention introduced in chapter L2: we write the expansion of a vector

w.r.t. an orthonormal basis as v = eiv
i, with lower and upper indices on basis vectors or components,

respectively.

2

Formally, a reflection with respect to a plane is a map E3 → E3,v ≡ v‖+v⊥ 7→ v′ ≡ v‖−v⊥ where
v = v‖ + v⊥ is a decomposition of the argument into components parallel and perpendicular to the plane,
respectively. The reflection inverts the sign of the perpendicular component.
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The geometric definition of the vector product presented in Sec. L4.1 is intuitive
but cumbersome to work with. To introduce a more efficient computational
approach we consider an orthonormal basis, {e1, e2, e3}. The vector product
makes reference to the right-hand orientation, and so it will be natural to label

the basis vectors such that e1, e2, e3 point in the direction of the index finger, middle finger,
and thumb, respectively. A basis obeying this criterion is called positively oriented. Any
orthonormal basis can be converted into a positively oriented basis by a relabeling of basis
vectors.

3

The positive orientation of a basis defines a cyclic ordering of basis vectors as shown in the
figure. Computing the geometrically defined vector product of any two consecutive vectors in
this sequence we obtain the third, e.g. e2 × e3 = e1. Computing a product in ‘reverse order’,
we obtain the third vector with a minus sign, e.g. e2×e1 = −e3. It is convenient to introduce
notation representing these relations in compact form: we call a triple of three unequal indices
(i, j, k) cyclically ordered if they are ordered in the sequence 123, 231 or 312, as indicated in
the figure, and anti-cyclically ordered if the sequence of ordering is reversed, 213, 321 or 132.
Geometric reasoning similar to the above shows that the three basis vectors of a right-handed
orthonormal basis satisfy ei × ej = ±ek, where the upper or lower sign applies if the indices
ijk are ordered cyclicly or anti-cyclicly, respectively.

We will now show that these relations can be summarized in compact form using the
three-index version of the Levi-Civita symbol introduced on p. 11:

ε123 = 1, εijk = −εjik = −εikj = −εkji (i, j, k ∈ {1, 2, 3}). (L76)

By definition, it is antisymmetric under the exchange of any two of its indices. It therefore
vanishes if two indices cooincide, ε112 = 0, etc. As is apparent from the two right-most
equalities in Eq. (L76), the Levi-Civita symbol is also invariant under cyclic permutations of
its indices. The reason is that cyclic permutations of three indices always involve two index
exchanges, e.g. ε123 7→ ε213 7→ ε231, implying a sign of (−1)2 = 1. The values of εijk can thus
be summarized as

εijk =





1, (i, j, k) cyclic,
−1, (i, j, k) anti-cyclic,

0, else (two or three indices coincide).
(L77)

Remarkably, these values perfectly match those arising in the above-mentiond relation ei×ej =
±ek. The Levi-Civita symbol can thus be used to summarize all vector products of vectors of
a right-handed basis (including the case ei × ei = 0) in a single compact equation:

ei × ej = εijk ek. (L78)

Another useful result is obtained by projecting Eq. (L78) onto ek:

(ei × ej) · ek = εijk. (L79)

3

For example, if {e1, e2, e3} is positively oriented, then {e2, e1, e3} is negatively oriented.
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Although the Levi-Civita formulation of the cross product Eq. (L78) may not look very
intuitive, it is a potent aid in performing fault-proof computations. In the following, we apply
it to describe the vector product between generic vectors v = eiv

i and w = ejw
j as

v ×w = (eiv
i)× (ejw

j) = viwj(ei × ej)
(L79)
= viwjεijk ek. (L80)

This relation shows that the kth component of v ×w is given by:
4

(v ×w)k = viwjεijk. (L81)

Formulated in column-vector notation, this reads


v1

v2

v3


×



w1

w2

w3


 =



v2w3 − v3w2

v3w1 − v1w3

v1w2 − v2w1


 . (L82)

This relation is useful for computing a vector product explicitly. (→ L4.2.1-2) However, it leads
to very tedious expressions in calculations involving more than one vector product. In such
cases, great simplifications can be achieved by employing the Levi-Civita symbol. The reason
is that this symbol obeys the contraction identity (→ L4.2.3-4)

εijkεmnk = δimδjn − δinδjm, (L83)

where, as usual with pairs of indices, k is summed over. (Verify this identity, ideally without
using the hint given in the footnote.

5
) In practice, this identity converts two-fold cross products

(encoded via εε) into combinations of scalar products (encoded via δδ−δδ). This is illustrated
in the following example, and in problems L4.3.1-2.

EXAMPLE Let us illustrate the usage of the Levi-Civita tensor by checking that Eq. (L81) conforms

with the geometric definition of the vector product. The orthogonality v ⊥ (v × w) is verified by

taking the scalar product:

v · (v ×w)
(L81)
= vk viwjεijk

(L76)
= −vk viwjεkji = −vi vkwjεijk . (L84)

In the second equality we used the antisymmetry of the Levi-Civita symbol and in the third relabeled

the summation indices i ↔ k (the dummy index in a summation can always be relabeled without

4

Eq. (L81) is an example of how relations involving the vector product do not conform to consistent
covariant notation: the index k sits upstairs on the left but downstairs on the right. As mentioned on p. 56,
the reason is that we are working in an orthonormal basis with metric tensor gij = δij and have chosen to not

keep track of its role. If one does keep track of it, Eq. (L81) takes the form (v×w)k =
√

det(g) viwj εijl g
lk,

where det(g) denotes the ‘determinant’ of gij , a construction introduced in chapter L6.1. This expression
does conform to consistent covariant notation, but its justification requires an extended discussion of several
more advanced concepts, which we reserve for section V6.5.

5

Without loss of generality, assume (i, j) = (1, 2). The sum over k in Eq. (L83) then yields nonzero only
for k = 3. For this value of k, εmnk = 1 if (m,n) = (1, 2) = (i, j) while εmnk = −1 if (m,n) = (2, 1) = (j, i).
This agrees with the value produced by the combination of Kronecker δ’s on the r.h.s. of Eq. (L83).
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changing the result). Comparing the 2nd and 4th terms in (L84), we see that v · (v × w) equals

its negative, and therefore must vanish. Similarly one shows that w ⊥ (v ×w). We thus confirm

that the vector product computed by (L81) is perpendicular to the plane spanned by v and w. Its

orientation (upward or downward) relative to this plane follows the right-hand rule as described by

(L78). A little more work is needed to verify Eq. (L73), according to which the norm of v × w is

equal to the area of the parallelogram spanned by v and w. Using the contraction identify, we find:

‖v ×w‖2 (L32)
= (v ×w) · (v ×w)

(L81)
= (viwjεijk)(v

mwnεmnk)
(L83)
= viwjvmwn(δimδjn − δinδjm)

= viwjviwj − viwjvjwi = (v · v) (w ·w)− (v ·w)2. (L85)

Taking the square root, we indeed obtain the area A(v,w) of the stated parallelogram:

‖v ×w‖ = [(v · v) (w ·w)− (v ·w)2]1/2
(L41)
= ‖v‖‖w‖ sin(∠(v,w) = A(v,w). (L86)

L4.3 Further properties of the vector product

The algebraic definition of the vector product leads to a number of secondary relations:

Grassmann identity : u× (v ×w) = v(u ·w)−w(u · v), (L87a)

Jacobi identity : u× (v ×w) + v × (w × u) + w × (u× v) = 0, (L87b)

Lagrange identity : (v ×w) · (t× u) = (v · t)(w · u)− (v · u)(w · t), (L87c)

(v ×w)2 = ‖v‖2‖w‖2 − (v ·w)2. (L87d)

All of these have geometric interpretations which, however, are not entirely obvious (try to
find them as an exercise). Their algebraic proofs, utilizing the contraction identity (L83), are
more straightforward and likewise left as an exercise (→ L4.3.1-2).

Given the scalar- and the vector product, we can introduce a combined product
operation, the so-called scalar triple product, as

(u,v,w) 7→ (u× v) ·w (L78)
= uivjwk εijk . (L88)

The German denotation ‘Spatprodukt’ refers to a class of materials known as ‘Spate’ which
mineralize into parallelepipedal

6
geometries (the figure shows an example).

6

A parallelepiped is the three-dimensional generalization of a parallelogram.
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The scalar triple product specifies the geometric
volume of the parallelepiped

6
spanned by its three

argument vectors:

Vol(u,v,w) = |(u× v) ·w|. (L89)

To see this, notice that the volume of a paral-
lelepiped is given by the area of one of its faces
times its height in the direction perpendicular to
that face. (This statement generalizes the area for-

mula for parallelograms, area = (base line) × (height), to three dimensions.) For example,
the volume of the parallelepiped shown in the figure can be computed as the product of the
shaded area, A, spanned by u and v, and the length, s, of the projection of w onto a line
perpendicular to that area. This volume, As, can conveniently be produced by a combination
of scalar- and vector products: u × v = An, where n is a unit vector perpendicular to the
base area, and n ·w = s. Thus |(u× v) ·w| = As, as stated.

7
Finally, the volume does not

depend on which of the three different faces is chosen at the outset. This freedom is reflected
in the cyclic invariance of the scalar triple product,

(u× v) ·w = (v ×w) · u = (w × u) · v, (L90)

which follows from the cyclic invariance of the Levi-Civita symbol in Eq. (L88).
The triple product can be used to diagnose whether three vectors are linearly independent

or not. If they are linearly independent, they span a parallelepiped with nonzero volume, hence
(u × v) · w 6= 0. In contrast, if they are linearly dependent, all three lie in the same plane.
They thus span a ‘flat parallelepiped’ with zero volume, hence their triple product vanishes.
(→ L4.3.3-4) This method for diagonizing linear independence can be generalized to an arbitrary
number of vectors using the notion of determinants, to be discussed in chapter L6.1.

INFO We know from daily experience that rotating bodies resist changes of their axis of rotation.

For example it takes a strong force to change the rotation of a wheel in motion and this is what

keeps bicycles from falling. The same principle maintains the rotational axis of the planets of the

solar system in their motion around sun.

L r
v

O

The quantity that is ‘conserved’ in free rotational motion

is called angular momentum. For any body of mass m

and velocity v its angular momentum relative to a point,

O is defined as (see the figure below)

L ≡ mr× v, (L91)

where r is the vector connecting O and the body. The

angular momentum vector L is perpendicular to the plane spanned by r and the direction of instan-

taneous motion specified by v. In the particular case of a body travelling along a planar orbit, e.g.

7

The absolute value is needed due to the antisymmetry of the vector product, (u×v) ·w = −(v×u) ·w.
The scalar triple product can thus be either positive or negative, depending on whether its argument vectors
satisfy a right-hand rule or not. However, in both cases |(u× v) ·w| gives the volume of the parallelepiped.
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the earth orbiting around the sun, the angular momentum relative to a point in the orbital plane

stands perpendicular to that plane.

The conservation law expressing the ‘stability’ of rotational motion reads,

dL

dt
= N, (L92)

where N = r × F is the torque acting on the body relative to the point of definition of angular

momentum. In the absence of torque, angular momentum is conserved. Notice that the absence of

torque does not necessitate the absence of forces. For example, the earth experiences a gravitational

force, F, from the sun. However, that force is radial, F ‖ r, i.e. directed along the line connecting the

centers of earth and sun. This means that it does not create a torque, and so the rotational motion of

our planet is (approximately) conserved. For an extended discussion of angular momentum, consult

a lecture course in classical mechanics.
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REMARK Much of the following discussion applies to both real and complex vector spaces. To avoid

excessive notation we will focus on the complex case throughout. At all stages the imaginary part

of complex numbers may be set to zero (i.e. replacing a ∈ C by a ∈ R) to obtain the corresponding

theory of real matrices. In the few cases where the real and the complex theory differ both variants

will be discussed in turn.

L5.1 Linear maps

We now understand the structure of vector spaces. However, beyond this descriptive level
not much has really been ‘done’ with them. This will now change when we consider maps
between vector spaces. Of particular interest are maps that are compatible with the ‘linear
structure’ of the theory: a map F : V → W between two vector spaces (this includes the case
V = W of maps acting within one vector space) is called a linear map if F (av + bw) =
aF (v) + bF (w) for a, b ∈ R and v,w ∈ V .

1

This definition states that the same result is obtained if we first add the vectors in V
and then apply F , or first apply F and then add the resulting vectors in V ′. We have
already encountered an important class of such maps, viz. the isomorphisms φv : V → Rn of
section L2.5, which map V -vectors onto corresponding Rn-representations for a given V -basis.

It is customary to denote linear maps by capitalized early latin letters, i.e. A,B, . . . instead
of F,G, . . . . The brackets enclosing the argument vector are usually dropped, i.e. one writes
Av instead of A(v).

EXAMPLE A photo is a map of 3-dimensional objects onto a 2-dimensional image. This defines

an (approximately) linear map E3 → E2: Doubling the object size leads to an image twice as

large, and displacing the object (formally, adding a fixed vector to the vectors defining it) leads to a

proportionally displaced image. Notice, however, that it is not in general possible to reconstruct the

original object from its image: the photographic ‘map’ is not invertible. In contrast, photos taken of

two-dimensional objects do allow for reconstruction. This anticipates a point to be discussed in more

detail below: invertible linear maps, i.e. vector space isomorphisms, can exist only between vector

spaces of equal dimensionality.

1

As an example of a nonlinear map consider F : V → V , v 7→ v‖v‖. Why is this map not linear?

62
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Figure L12: On the definition of linear maps, F , between vector spaces, illustrated for a map that
rotates all vectors by 45deg and shrinks them by a factor of 2. Top panels: it does not matter
whether vectors are first added and then mapped by F , or first mapped and then added. Bottom
panels: in the same sense, the map is compatible with scalar multiplication.

Before discussing the mathematics of linear maps it is worthwhile to outline the importance
of the concept to physics. First, many operations of physical significance are described by
linear maps. Examples include rotation, dilatation, the reflection of space and time, and others
more. Second, we will see that even very complicated general maps between vector spaces
can be ‘locally’ approximated by linear maps. The heuristics behind this statement is that
arbitrary smooth structures (think of a curve winding through three-dimensional space) look
‘linear’ (the curve approximately becomes a straight line) if one zooms in sufficiently closely.
The description of ‘linear structures’ and of maps between them may therefore serve as a local
(close-up) approximation to the more complicated ‘global’ picture. Third, the mathematics of
quantum mechanics is essentially one of linear maps between vector spaces known as Hilbert
spaces (see chapter L10). This list is not exhaustive but illustrates that linear maps have many
important applications in physics.

INFO The importance of linear maps is also reflected in the physics curriculum where linear algebra

is routinely taught in the first or second terms. It was not always like this. When the ‘modern’

theory of quantum mechanics was formulated in the third decade of the last century, linear maps

and their description in terms of so-called matrices were unfamiliar to a majority of physicists.

They were certainly unknown to Werner Heisenberg when he formulated the foundations of the

operator approach to quantum mechanics. It was Max Born, together with his collaborator Pascual

Jordan, who realized that Heisenberg’s theory could be formulated in the language of linear maps,

and this observation was published in the joint paper M. Born, W. Heisenberg, P. Jordan, Zur

Quantenmechanik II. Zeitschrift für Physik 35, 557 (1926). This first formulation of quantum

mechanics in terms of linear maps marked the beginning of quantum theory as it is taught to date.

Since then linear algebra has become an indispensable tool in modern physics.
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L5.2 Matrices

REMARK We begin by discussing linear maps between standard vector spaces, V = Cn, W = Cm.

In section L5.5 we will see how this discussion includes most of the mathematics required to describe

the theory of linear maps between general spaces.

Consider the simplest of all complex vector spaces, C1 ∼= C. A general linear map acts on
‘vectors’

2
x ∈ C by x 7→ Ax, multiplying them by a fixed complex number, A ∈ C. Indeed, it

is straightforward to verify (try it) that multiplication by a number meets the linearity criterion
formulated above. The distinguishing feature of the map is that Ax does not contain additive
constants, or higher powers of x (Ax+ B or Axα 6=1 are not allowed) . Now let us generalize
this construction to maps A : C2 → C. Here, x = (x1, x2)T has two components and Ax ∈ C
is a number that depends on these. Again, it is not difficult to verify that the most general
linear map reads Ax = A1x

1 + A2x
2, linear in both x1 and x2, with complex coefficients,

A1, A2 ∈ C. For a map A : C2 → C2 the image Ax has two components which must both
be linear functions of x1 and x2. Thus, the most general image vector can be parameterized
as

A

(
x1

x2

)
=

(
A1

1x
1 + A1

2x
2

A2
1x

1 + A2
2x

2

)
, (L93)

in terms of four complex numbers {Aij}.
Everything we have said so far also applies to linear maps between real instead of complex
vector vector spaces. In this case, of course, real instead of complex coefficients are involved.

EXERCISE Consider the map A : R2 → R2 between real vector spaces described by

A =

(
cos θ − sin θ

sin θ cos θ

)
(L94)

and let it act on some simple vectors such as x = (1, 0)T , or x = (1, 1)T . Convince yourself that

A describes the rotation of vectors by an angle θ. Argue entirely in geometric terms (not using

formulas) why rotations of space are linear maps.

The generalization to maps between two vector spaces, each of arbitrary dimension, should
now be obvious. The most general linear map A : Cn 7→ Cm is specified by

x =




x1

x2

...
xm


 7−→ Ax =




A1
1x

1 + A1
2x

2 + · · ·+ A1
nx

n

A2
1x

1 + A2
2x

2 + · · ·+ A2
nx

n

...
Am1x

1 + Am2x
2 + · · ·+ Amnx

n


 =




A1
j x

j

A2
j x

j

...
Amj x

j


 , (L95)

2

For one-component vectors, we avoid the boldface convention, i.e. we write x = x = (x) for simplicity.
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i.e. the ith component of the vector Ax is given by

(Ax)i = Ai1x
1 + Ai2x

2 + · · ·+ Ainx
n = Aijx

j , (L96)

with i = 1, . . . ,m and j = 1, . . . , n. The coefficients {Aij} are all complex numbers, hence

A linear map A : Cn → Cm is fully specified by m× n complex numbers {Aij}.

This means that linear maps are comparatively ‘simple’. To appreciate this statement, consider
the case n = m = 1. Then just a single number is needed to specify a linear function, whereas
describing a generic function F : C → C, x 7→ F (x) requires specifying infinitely many
function values. Similarly, m × n numbers contain much less information than required to
specify an arbitrary higher-dimensional function F : Cn → Cm.

In the following, arrays of sums as in Eq. (L95) will appear so often that it pays to switch
to a more efficient notation: we define the rectangular array

A =




A1
1 . . . A1

j . . . A1
n

...
...

...
Ai1 . . . Aij . . . Ain

...
...

...
Am1 . . . Amj . . . Amn



, (L97)

called the matrix ‘representing’ the linear map A, or its matrix representation. The matrix
fully specifies the linear map and is customarily denoted by the same symbol, A. Occasionally
we want to draw a more marked distinction between a map, Â, and its matrix, A, in which
case the former will carry a caret. The entries, Aij, of a matrix A are called its components
or matrix elements. The full matrix is often denoted as A = {Aij}, where the index range
is left implicit. By convention, the left index i labels rows, the right index j columns (also
when noncovariant notation, Aij, is used for the matrix elements).

The action of this matrix on a vector x — which is more commonly called the multipli-
cation of a vector by a matrix — is now defined through the relation:




A1
jx
j

...
Aijx

j

...
Amjx

j



≡




A1
1 . . . A1

j . . . A1
n

...
...

...
Ai1 . . . Aij . . . Ain

...
...

...
Am1 . . . Amj . . . Amn







x1

...
xj

...
xn



. (L98)

One may visualize how the ith component of Ax is computed by moving stepwise from left to
right along the ith row of the matrix A, and at the same time from top to bottom along the
single column of the vector representing x. At each step the corresponding matrix element
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Aij and vector element xj are multiplied and the results added up, Ai1x
1 + · · · + Ainx

n, to
obtain (Ax)i = Aijx

j, as given in Eq. (L96).

EXAMPLE Let us illustrate the operation of multiplying a vector by a matrix with a number of

basic examples:
(

1 4

5 3

)
·
(

2

1

)
=

(
1 · 2 + 4 · 1
5 · 2 + 3 · 1

)
=

(
6

13

)
,




2 5

3 3

6 1


 ·

(
3

2

)
=




2 · 3 + 5 · 2
3 · 3 + 3 · 2
6 · 3 + 1 · 2


 =




16

15

20




2 · 2 = 4. (L99)

For an m× n matrix A = {Aij}, the jth column defines a vector,

Aj = (A1
j, . . . , A

m
j)
T =



A1

j
...

Amj


 , (L100)

with components (Aj)
i = Aij. For example, the 1st column of the 2 × 2-matrix A = ( a bc d )

defines A1 = ( ac ). A general matrix can be written as an n-tuple

A = (A1, . . . ,An), (L101)

formed by its n column vectors. Likewise, the ith row can be identified with the transpose of
a vector, AiT = (Ai1, . . . , A

i
n). For example, the second row of the 2×2 matrix corresponds

to A2T = (c, d). We can think of a general matrix in terms of a stack

A =




A1T

...
AnT


 (L102)

of n of these objects. Using this notation, Eq. (L96) can be expressed as (Ax)i = AiT · x,
thus the ith element of Ax equals the scalar product of the ith row of the matrix with x.

The action of A on the jth standard basis vector, ej = (0, . . . , 1, . . . , 0)T (the 1 at
the jth position, of course), is given by

Aej =




A1
1 . . . A1

j . . . . . . A1
n

...
...

...
...

...
...

Ai1 . . . Aij . . . . . . Ain
...

...
...

Am1 . . . Amj . . . . . . Amn




.




0
...
1
...
...
0




=




A1
j

...

...
Aij

...
Amj




, (L103)
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i.e. by the jth column of the matrix A. In the column vector notation introduced above this
can be written as

Aej = Aj. (L104)

Linear maps are often defined by their action on the standard basis vectors, i.e. by an assign-
ment ej 7→ vj, where vj are the known image vectors of the standard basis vectors. Eq. (L104)
implies that the matrix representing the map can then be represented as A = (v1,v2, . . . ,vn),
i.e. as an array containing the n image vectors vj = Aj as column vectors.

EXAMPLE If A : C2 → C3 is a linear map whose action on the standard basis of C2 is defined by

the first two expressions in Eq. (L105), then its matrix representation A is given by the third:

(
1

0

)
A7→




3

2

1


 ,

(
0

1

)
A7→



−1

0

1


 , A =




3 −1

2 0

1 1


 . (L105)

EXERCISE The set of all matrices containing m rows and n columns of real numbers is sometimes

called mat(C,m, n). Two matrices A,B ∈ mat(C,m, n) may be added by adding their components,

i.e. we define A + B ∈ mat(C,m, n) through (A + B)ij ≡ Aij + Bi
j . Similarly, we may multiply

A by a scalar, a ∈ C, to obtain a matrix aA with matrix elements (aA)ij ≡ aAij . Show that with

these definitions, mat(C,m, n) is an C-vector space. Show that the dimension of this space is given

by m · n.

The transpose and the adjoint of a matrix

We conclude our introduction of matrices by defining two operations that will become
increasingly important in our discussion below. Given an m × n matrix A we may define a
corresponding n×m matrix AT (spoken A-transpose) by exchanging rows and columns. This
is illustrated in the following examples:

A =

(
2 3 1
2 4 7

)
−→ AT =




2 2
3 4
1 7


 ,

A =

(
4 2
1 5

)
−→ AT =

(
4 1
2 5

)
,

A =




1
3
0


 −→ AT = (1 3 0). (L106)

The third example shows how the extreme case of a 1 × n matrix, i.e. a vector, transposes
to a n × 1 matrix. We have used this notation before as shorthand for column vectors, e.g.
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(0, 1)T =
(

0
1

)
. For a matrix with elements Aij, the elements of the transpose matrix are

given by

(AT ) i
j = Aij, (L107)

where on both sides of the equation the left index labels rows, the right index columns. For
example, (AT ) 1

2 = 3 in the first example given above. Transposing a matrix by interchanging
rows and columns can thus be memorized as an operation which slides both indices to the
respective ’other side’, (AT ) i

j = A→ij←. The prescription works in either direction, i.e. for a
matrix with elements B i

j we define (BT )ij = B i
j . Notice that when using covariant notation,

as we do here, upper indices stay up and lower ones down during transposition. (The rationale
behind this convention will be discussed later in section L11.4.) If instead one chooses to use
non-covariant notation, with all indices downstairs, transposition amounts to interchanging
them, (AT )ij = Aji.

For a complex vector space, we define the adjoint matrix A† (spoken ‘A-adjoint’ or
‘A-dagger’) through transposition followed by complex conjugation

A† = AT , (A†) i
j = Aij. (L108)

For example

A =

(
1 + 2i 5
4− i 3i

)
−→ A† =

(
1− 2i 4 + i

5 −3i

)
. (L109)

L5.3 Matrix multiplication

The power of matrix calculus becomes apparent when we consider the composition of
linear maps. For example, a graphics designer might might rotate, stretch and rotate a figure
in three consecutive steps on a computer. All three operations are linear maps and the joint
operation amounts to their composition.

The composition, C ≡ B ◦ A : Cn → Cl, of two linear maps, A : Cn → Cm and
B : Cm → Cl is again linear and hence described by a matrix. The l × n matrix {Ck

j}
representing map C can be found from the l ×m and m × n matrices {Bk

i} and {Aij} of
B and A, respectively. To this end, observe that A maps a Cn-vector with components xj

onto a Cm-vector with components Aijx
j. This image vector, in turn, is mapped by B onto

a Cl-vector with components Bk
i

(
Aijx

j
)

=
(
Bk

iA
i
j

)
xj. The matrix of the composite map,

C = B ◦ A, thus has matrix elements

Ck
j = Bk

iA
i
j. (L110)
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There exists an efficient scheme to compute these matrix elements directly from the rect-
angular arrays of the individual matrices:




C1
1 . . . C1

j . . . C1
n

...
...

...
Ck

1 . . . Ck
j . . . Ck

n
...

...
...

C l
1 . . . C l

j . . . C l
n



≡




B1
iA

i
1 . . . B1

iA
i
j . . . B1

iA
i
n

...
...

...
Bk

iA
i
1 . . . Bk

iA
i
j . . . Bk

iA
i
n

...
...

...
Bl

iA
i
1 . . . Bl

iA
i
j . . . Bl

iA
i
n




≡




B1
1 . . . B1

i . . . B1
m

...
...

...
Bk

1 . . . Bk
i . . . Bk

m
...

...
...

Bl
1 . . . Bl

i . . . Bl
m



.




A1
1 . . . A1

j . . . A1
n

...
...

...
Ai1 . . . Aij . . . Ain

...
...

...
Am1 . . . Amj . . . Amn



. (L111)

To compute element Ck
j of the matrix C = BA (sometimes also denoted B ·A) , proceed from

left to right along row k of B and from top to bottom along column j of A. Multiply the respec-
tive elements of the matrices B and A and add up, Ck

j = Bk
1A

1
j + · · ·+Bk

mA
m
j= Bk

iA
i
j,

in agreement with Eq. (L110). This amounts to taking the scalar product of row k of B and
row j of A, in other words Ck

j = BkT ·Aj.

EXAMPLE Let us illustrate the operation of matrix multiplication on a number of examples:

(
1 4

5 3

)
·
(

2 1

1 3

)
=

(
1 · 2 + 4 · 1 1 · 1 + 4 · 3
5 · 2 + 3 · 1 5 · 1 + 3 · 3

)
=

(
6 13

13 14

)
,




1 2

3 3

2 4


 ·

(
3 1

2 1

)
=




1 · 3 + 2 · 2 1 · 1 + 2 · 1
3 · 3 + 3 · 2 3 · 1 + 3 · 1
2 · 3 + 4 · 2 2 · 1 + 4 · 1


 =




7 3

15 6

14 6


 ,

(2) · (2) = (4).

The take-home message of our discussion so far is:

The composition of linear maps is described by the product of the matrices
representing them, where the product operation is defined by Eq. (L111).

Of course, we can consider compositions of more than two maps. For example, if three
maps are applied in succession, say first A, then B, then C, one obtains the composite map
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C◦(B◦A) = (C◦B)◦A = C◦B◦A where the associativity of the composition means that we
do not need to put brackets. In the language of matrices this means C ·B ·A = C · (B ·A) =
(C ·B)·A where all ‘·’ operations are matrix products. When working with products containing
more than two matrices it sometimes pays to think about the ‘most economic’ way to compute
the product; matrix multiplication is time consuming and some orders of taking products are
more efficient than others. In general, the proliferation of terms to be added/multiplied makes
higher-order multiplications cumbersome. Sometimes, however, matrix multiplication leads to
simple results, as is illustrated by the following example.

EXERCISE Verify that the product of the matrices A, B and A′ given below has the ‘diagonal’

form indicated on the right:

A =
1√
2

(
1 1

−1 1

)
, B =

(
0 1

1 0

)
, A′ =

1√
2

(
1 −1

1 1

)
, ABA′ =

(
1 0

0 −1

)
.

In Sec. L7 we will discuss why the product ABA′ assumes a simple form.

We finally note that it is sometimes useful to think of vectors as matrices. Indeed, you may
identify a vector

v =



v1

...
vn


 (L112)

with a matrix containing n rows and 1 column. Likewise, the vector wT = (w1, . . . , wn) is a
matrix containing 1 row and n columns. If v,w ∈ Rn are real, then their scalar product

〈w,v〉 = wTv, (L113)

may be identified with the matrix product between an 1×n and an n× 1 matrix, which yields
an 1× 1 matrix, i.e. a number.

Properties of matrix multiplication

Matrix multiplication is one of the most important operations of linear algebra. The matrix
product is (a, a′ ∈ C)

. associative : C ·(B ·A) = (C ·B)·A = C ·B ·A, (L114)

. compatible with scalar multiplication : (aB)·A = B ·(aA) = aB ·A, (L115)

. distributive : C ·(aB + a′B′) = aC ·B + a′C ·B′. (L116)

. not commutative (except in special cases): A·B 6= B ·A. (L117)

. The transpose of a matrix product equals the reverse product of transposed matrices:

(A·B)T = BT ·AT , (L118)
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By iteration, this formula generalizes to: (A·B ·C ·sE)T = ET ·sCT ·BT ·AT .

The associativity of matrix multiplication reflects the associativity of the composition of
the corresponding linear maps. It also follows directly from the definition (L111) of matrix
multiplication: C l

k(B
k
iA

i
j) = (C l

kB
k
i)A

i
j, implying Eq. (L114). The distributivity of the

matrix product and its compatibility with scalar multiplication are trivial consequences of
the definition. The lack of commutativity means that linear maps carried out in different
orders generally lead to different results. This point is illustrated in the example below. Finally,
Eq. (L118) for transposing a matrix product follows from ((A·B)T ) i

j = (A·B)ij = AikB
k
j =

(AT ) i
k (BT ) k

j = (BT ) k
j (AT ) i

k = (BT ·AT ) i
j . For the next-to-last equality we used the fact

that individual matrix elements commute, since they are just numbers, not matrices. (Make
sure you understand the difference between this statement and A ·B 6= B ·A for matrices.)

Figure L13: Illustration of the action of the maps Â and B̂ defined in Eq. (L119), and of their
compositions ÂB̂ and B̂Â in E2.

INFO A (real) algebra is an R-vector space W with a product operation

W ×W →W, (u, v) 7→ u · v,
subject to the following conditions (u, v, w ∈W, c ∈ R):

. (u+ v) · w = u · w + v · w,

. u · (v + w) = u · v + u · w,

. c(v · w) = (cv) · w + v · (cw).

Our discussion above shows that the space of n× n matrices (mat(R, n, n), ·) forms an algebra. Its

elements are matrices, A,B, . . . and its product operation is the matrix multiplication A · B = C.

Due to the associativity of this operation, the matrix algebra is called an associative algebra.

EXERCISE Consider two maps in R2 A and B, with matrix representation

A =
1√
2

(
1 −1

1 1

)
, B =

(
2 0

0 1
2

)
. (L119)
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Compute the action of these matrices act on the standard vectors (1, 0)T and (0, 1)T . Convince

yourself that A describes a rotation by an angle π/4 in the counter-clockwise direction, while B

describes stretching and shrinking by a factor two in the 1- and 2-directions, respectively (cf. Fig. L13).

Now compute the matrix products

BA =

(
2 0

0 1
2

)
1√
2

(
1 −1

1 1

)
=

1√
2

(
2 −2
1
2

1
2

)
,

AB =
1√
2

(
1 −1

1 1

)(
2 0

0 1
2

)
=

1√
2

(
2 −1

2

2 1
2

)
,

that describe rotating then stretching, or stretching then rotating, respectively. Let these composites

act on the standard basis vectors to explore how they are changed.

L5.4 The inverse of a matrix

General remarks on invertible linear maps

In section L1.1 we learned that if a map is bijective then an inverse map exists. Specifically,
for an invertible linear map A : Cn → Cm there is an inverse map A−1 : Cm → Cn such that
A−1A is the identity map on Cn (and AA−1 the identity on Cm). These statements raise a
number of questions: do invertible maps exist between spaces of arbitrary dimension n and m
(try to find an answer in advance)? How can we know if a map possesses an inverse? If it
does, how can we obtain it?

First, it turns out that

Invertible maps A : Cn → Cm can exist only between vector spaces of equal
dimension n = m.

This statement is intuitively understandable. If A : Cn → Cm, and m > n, then the target
space is ‘too big’ to be surjectively covered. Conversely, if m < n then it is ‘too small’ for
an injective assignment. Consider, then, maps between spaces of equal dimension, n = m.
According to our discussion of section L1.1 the bijectivity of maps depends on whether they
are both injective and surjective. Whereas for general maps these two features are independent
of each other, the situation with linear maps turns out to be simpler:

For linear maps A : Cn → Cn between vector spaces of equal dimension, the
conditions of injectivity and surjectivity are equivalent.

To check the invertibility of a linear map it is therefore sufficient to test either one of the two
criteria. In practice, however, the following two turn out to be the most useful test criteria
for the invertibility of a map A : Cn → Cn:
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. Consider a basis, for example the standard basis {ei}, and verify whether the set of image
vectors, {Aei}, is also a basis.

. Equivalently, you may verify that no non-zero vector gets mapped to zero: ∀v 6= 0 : Av 6=
0.

If either one of these conditions is met, then A is invertible. (For a proof, see the next
subsection.)

We finally remark that for a general matrix, A : Cn → Cm, the kernel is defined as the
set of vectors, KerA ≡ {v ∈ Cn|Av = 0} ⊂ A, which get annihilated by A. The kernel of A
is a subspace of Cn (why?). Likewise, the image of A, Im(A) = A(Cn), is a subspace of Cm

(why?). The dimension of the image space, dim(Im(A)), is called the rank of the matrix.
The invertibility criteria above require that for a matrix A : Cn → Cn the image must span
the full space Cn, i.e. its dimension equals the maximal possible value, n:

An invertible matrix A : Cn → Cn has maximal rank n.

The dimension formula

REMARK In this subsection we verify the various statements made in the previous subsection. It

can be skipped on first reading

Figure L14: Schematic of the one-dimensional kernel and the two-dimensional image of a linear map
A : V → V ′ between two three-dimensional vector spaces. For a discussion, see info section below.

Above, we introduced the kernel, Ker(A), and the image, Im(A), of a matrix A : Cn → Cm as
subspaces of Cn and Cm, respectively. All that we seem to know a priori about the dimensions
of these spaces, is that they are smaller or equal to n and m, respectively. However, it turns out
that they are related to each other by a stronger relation, known as the dimension formula.
A simple construction (see info section) shows that

dim Ker(A) + dim Im(A) = n. (L120)

For a graphical illustration in the case n = 3, dim Ker(A) = 1, dim Im(A) = 2, see Fig. L14.
In this case, the dimension of the kernel and the image obviously add to three, i.e. the dimension
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of the space where the map is defined. Notice that the formula does not make reference to
the dimension, m, of the target space.

INFO
The proof of Eq. (L120) is straightforward. Let k ≡ dim Ker(A) ≤ n ≡ dim(Cn). Now

construct a basis, {vi} of Cn such that {v1, . . . ,vk} span Ker(A). (For a degenerate kernel,

Ker(A) = {0}, containing just the null-vector, we have k = 0 and the kernel basis is empty.)

The image of A is then spanned by the n − k vectors w1 ≡ Avk+1, . . . ,wn−k ≡ Avn, i.e.

span{w1, . . . ,wn−k} = Im(A). It remains to be shown that these vectors are linearly indepen-

dent. For in this case, span{w1, . . . ,wn−k} = Im(A) is an n − k dimensional subspace of Cm,

which in turn implies dim Im(A) + dim Ker(A) = (n − k) + k = n. To show that the vectors wj

are linearly independent, assume the opposite, i.e. the existence of a nontrivial linear combination,

0 = aiwi = aiAvk+i = A(aivk+i). This, however, is a contradiction, because the linear combination

aivk+i does not lie in ker(A) and hence it cannot map to the null vector.

Eq. (L120) has a number of important consequences. For example, it implies that invertible
maps can exist only between spaces of equal dimension, n = m. This follows from Eq. (L120)
because an invertible map must be surjective and injective and this requires dim Im(A) = m
and dim Ker(A) = 0, respectively. Our relation thus assumes the form n = m. Moreover, the
formula also implies that if n = m, then injectivity and surjectivity are equivalent. To under-
stand this, assume surjectivity, i.e. dim Im(A) = n. Eq. (L120) then states dim Ker(A) = 0,
which means injectivity. The reverse conclusion, that injectivity implies surjectivity, is shown
in the same way.

Finally, notice that the above arguments did not rely on properties distinguishing Cn from
generic n-dimensional vector spaces. For maps A : V → V ′ between generic spaces, the
dimension formula assumes the form

dim Ker(A) + dim Im(A) = dimV. (L121)

All statements regarding injectivity, surjectivity, and bijectivity carry over to the general case.

Matrix inversion

A matrix A representing a map A : Cn → Cn has as many rows as columns and is therefore
called a square matrix. Assume that A is invertible, i.e. that an inverse map A−1 exists.
The latter will be represented by an inverse matrix, denoted by A−1 as well. Its defining
property, A−1A = AA−1 = 1, corresponds to a matrix equation in which 1 is the so-called
unit matrix,

1 =




1 0 . . .
0 1
...

. . . 0
0 1


 , (L122)

or 1ij = δij, i.e. a matrix whose action on any vector 1v = v leaves the vector invariant.



L5.4 The inverse of a matrix 75

INFO Recall the concept of groups introduced in section L1.2. The set of invertible maps acting

on an n-dimensional vector space forms a group: the composition of two invertible maps is again

invertible, invertible maps have inverse maps, and we have a neutral element, i.e. the identity map.

In the present context, the composition of maps is represented by matrix multiplication. The ensuing

group is called the general linear group and denoted GL(n,F), where F = R or C, depending on

whether V is a real or complex vector space.

In explicit matrix multiplication notation, the equation defining the inverse matrix assumes the
form

A−1 · A =




(A−1)1
1 (A−1)1

2 · · ·
(A−1)2

1 (A−1)2
2

...
. . .

(A−1)nn


 ·




A1
1 A1

2 · · ·
A2

1 A2
2

...
. . .

Ann


 =




1 0 · · ·
0 1
...

. . .

1


 ,

(L123)

where A−1 ≡ {(A−1)ik}. This equation may be equivalently expressed as

i, j = 1, . . . , n : (A−1)ikA
k
j = δij. (L124)

EXAMPLE For n = 2, a straightforward check shows that the matrix inverse is obtained as

A =

(
a b

c d

)
⇒ A−1 =

1

ad− bc

(
d −b
−c a

)
. (L125)

Notice that no inverse exists if ad = bc. The reason is that the matrix A then fails the test criteria

formulated in the foregoing section. For example, Ker(A) is not empty, since the vector
(

d
−c
)

is

annihilated by A. Equivalently, the image vectors Ae1 and Ae2 are not linearly independent.

Unfortunately, there is no quick and painless way of computing matrix inverses for general
n. For n & 4 matrix inversion is often done on a computer. In fact, the optimization of
matrix inversion algorithms is a field of active research in computer science which underpins
the applied relevance of the problem.

In low dimensions such as n = 2, 3, 4, . . . , a matrix may be constructively inverted as
follows: start from the column vector representation (cf. Eq. (L101)) A−1 = (a1, a2, . . . , an).
Substituting this into the matrix equation AA−1 = 1 we observe that the jth column vector,
aj, is determined by the equation

Aaj = ej. (L126)

Each vector equation defines a system of n linear equations (Aaj)
i = Aik(aj)

k = δij,
which need to be solved for each j. Altogether we thus need to solve n × n scalar linear
equations, or n vector equations. Once we are done with this task the n vectors aj define the
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desired A−1. An efficient scheme for solving linear systems of equations is discussed in the
info section below.

INFO In linear algebra we often need to solve problems such as

Ax = b, (L127)

where A is an m×n matrix, b ∈ Cm a known vector, and x ∈ Cn is sought. Written in components,

this assumes the form of a system of linear equations,

Aijx
j = bi, i = 1, . . . ,m. (L128)

For b = 0 the system is called homogenous, otherwise it is called inhomogeneous. A homogeneous

system determines x only up to a multiplicative constant: if x satisfies Ax = 0 then any (cx), c ∈ C
does too.

There are different ways to approach problems of this type. The most straightforward one is to

proceed by iteration: pick any of the equations Aijx
j = bi and solve for x1 in terms of the unknowns

x2 to xn as x1 = − 1
Ai1

(
bi −∑n

j=2A
i
jx
j
)

. (Of course, the choice of x1 is arbitrary. It might

be more convenient to start with another component, ideally one for which the r.h.s. contains the

smallest number of variables xj .) Substitute this result into the remaining equations and the problem

has been reduced to one of m− 1 equations for the n− 1 variables x2 . . . xn. This procedure must

now be repeated until one of the following situations occur, depending on the values of m and n:

. If there are as many equations as variables m = n, the system may or may not have a solution.

It does not if one of the equations states a contradiction (such as 0 · xn = bm, where bm is

non-vanishing). If no contradiction is encountered and if the system is homogeneous, b = 0,

the final equation specifies xn only up to a multiplicative constant, see remarks above and the

example below. If the system is inhomogeneous its solution is unique, i.e. the final equation

uniquely specifies xn = xn(A, b) in terms of the given coefficients Aij , and bi. One may now

iterate backwards by expressing xn−1 in terms of xn, then xn−2 in terms of xn−1 and xn, until

all xj(A, b) are specified.

. If there are fewer equations than variables, m < n, the procedure ends at a point where all

m equations have been processed but n − m variables, xm+1,...,n, are still unspecified. These

variables then have the status of free parameters, i.e. for each choice of {xm+1, . . . , xn} one can

find a solution for all the equations, so that the system has infinitely many solutions. Such systems

of equations are called under-determined, i.e. the number of equations does not suffice to fix all

variables. For an under-determined system one may apply the procedure outlined above to express

m variables as xj(A, b, xm+1,...,n) for j = 1, . . .m, i.e. as functions of the given coefficients and

the free parameters.

. If there are more equations than variables, m > n, we run out of variables to eliminate before

the last m−n equations have been processed. Such systems are over-determined and in general

have no solutions.
3

3

If the values of all variables are held fixed, the remaining m−n equations assume a purely numerical form,
like 3 = 4 or 3 = 3. The former, a contradiction, would signify an over-determined system. The latter, a
redundancy, would imply that these remaining equations were actually not ‘independent’ of the first n ones.
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For an example of an underdetermined system, consider the homogeneous system Ax = 0 defined

by the matrix

A =




6 −1 5

2 0 2

−8 1 −7


 . (L129)

Expanded into a system of three equations, this reads

6x1 − x2 + 5x3 = 0,

2x1 + 2x3 = 0,

−8x1 + x2 − 7x3 = 0. (L130)

Start with the second equation to obtain x3 = −x1. Inserting this result into the first and third

equations, they simplify to

x1 − x2 = 0,

−x1 + x2 = 0.

The first of these equations now implies x1 = x2. The fact that this is compatible with the second

equation signals that the system is solvable. Defining x3 = c, we obtain x1 = x2 = −c and hence

the set of solutions

x = c



−1

−1

1


 ,

parameterized by a free running variable, c. It is good practice to always substitute the result x

back into the defining equations to check that no mistakes have been made. Then, confirm by

matrix-vector multiplication that our solution indeed satisfies Ax = 0.

EXAMPLE Let us illustrate the algorithm for computing matrix inverses with the example

A =




1 1 −1

1 0 −1
2

−1 −1 3
2


 . (L131)

Following the general algorithm, we need to solve three systems of equations, Aaj = ej , for j =

1, 2, 3. Each of these is processed according to the solution scheme discussed in the info section

above. In this way we find,

a1 =




1

2

2


 , a2 =




1

−1

0


 , a3 =




1

1

2


 ,

and this is then combined into the matrix

A−1 =




1 1 1

2 −1 1

2 0 2


 . (L132)

Check by matrix multiplication that AA−1 = 1 indeed holds.
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L5.5 General linear maps and matrices

REMARK Throughout this section, vectors v̂ ∈ V of general vector spaces will carry a caret to

distinguish them from their column vector representations v ∈ Cn. General linear maps Â : V →W

will distinguished by the same symbol from their matrix representations A : Cn → Cm.

θ

1v̂
2v̂

3v̂

While our discussion so far was restricted to the standard vector
spaces Cn, we now consider linear maps between generic spaces,
V . To motivate this generalization, consider the example of Eu-
clidean space E3. Pick a vector x and consider rotating space
around the direction of x by an angle θ. In this way a map, A,
obeying the linearity criteria is defined (why?). This raises ques-
tions like how the action of A can be described in terms of formulas
or how this linear map can be included as a building block in more
complicated operations. For example, we might want to describe
a succession of two rotations around different rotation axes x and x′. Such operations are no
longer easily visualized and we need an efficient formalism for their description.

To this end, let Â : V → W be an arbitrary linear map between vector spaces. In both,
V and W , we pick (not necessarily orthonormal) bases, {v̂j} and {ŵi}, respectively. The
discussion includes the case V = W of linear maps operating within one vector space (such as
the rotation above), V = W , in which case identical bases may be chosen, ŵj = v̂j. We may

now apply the map Â to the basis vectors v̂j and expand their image vectors, ûj ≡ Av̂j ∈ W ,
in the {ŵi} basis as

j = 1, . . . , n : ûj ≡ Âv̂j = ŵiA
i
j, (L133)

where the coefficients Aij specify the action of the map. Note that for the purposes of the
present discussion it is convenient to write the coefficients describing the map behind the
vectors. This ordering is naturally suggested by the covariant notation, i.e. ŵiA

i
j puts the

summation indices i next to each other and looks more natural than the (identical) expression
Aijŵi.

EXAMPLE In our rotation example above, it would be convenient to choose a basis containing

a unit vector v̂1 pointing in the direction of the rotation axis. This vector can be complemented

by two mutually orthogonal v̂2 ⊥ v̂3 unit vectors in the plane perpendicular to v̂1 to yield a basis

{v̂1, v̂2, v̂3}. Only one basis is needed, because our rotation map acts within one vector space. It is

then not difficult to see that the rotation acts as

Âv̂1 = v̂1,

Âv̂2 = v̂2 cos θ − v̂3 sin θ,

Âv̂3 = v̂2 sin θ − v̂3 cos θ.
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Given the basis, any V -vector, x̂, may be represented by a column vector x ≡ φv̂(x̂) in Cn (see
section L2.5). Specifically, the basis vectors v̂j get mapped onto the standard basis vectors
φv̂(v̂j) = ej = (0, . . . , 1, . . . , 0)T . Likewise, vectors ŷ ∈ W get represented by column vectors
y ≡ φŵ(ŷ) ∈ Cm, and basis vectors ŵi by standard basis vectors fi = (0, . . . , 1, . . . , 0)T ∈
Cm. Eq. (L133) then states that under Â a basis vector with component representation ej
gets mapped onto one with component representation uj ≡ fiA

i
j = (A1

j, A
2
j, . . . , A

m
j)
T .

We thus conclude that the map Â defines a unique assignment of Cn-standard basis vectors
to Cm-component vectors. As discussed in section L5.2, this defines an m × n matrix A =
(u1, . . . ,un) containing the image component vectors as columns, and the numbers Aij (cf.
Eq. (L97)) as entries. This map is defined by the equation Aej = uj, i.e. much like ej
represents the vector v̂j, the matrix A : ej 7→ uj represents the map Â : v̂j 7→ ûj. The
situation is summarized in the diagram below. However, always remember that the matrix
representation, A, is specific to a choice of basis.

V
Â

>W

v̂j > ûj = Âvj

ej

φv̂

∨
> uj = Aej

φŵ
∨

Cn A
> Cm

EXERCISE Compute the matrix representing the rotation map discussed above.

The discussion above shows how a generic linear map, Â, may be described by a matrix, A.
Since these matrix representations are a powerful aid in computations, the typical workflow
for working with linear maps is as follows:

. The first step often is the choice of a basis adjusted to the action of the linear map. For
example, in the case of rotations, axes of rotation present themselves as directions of basis
vectors. For a reflection with respect to a plane one might choose vectors within that plane
and complement them by vectors perpendicular to the plane to a basis, etc.

. Next, one constructs the matrix representating the map, as discussed above.

. Concrete calculations are then usually performed using matrices. For example, the compo-
sition of two linear maps (represented in the same basis, of course) would be described in
terms of their matrix product, etc.

. At the end of a matrix-based computation, the map x 7→ x̂ may be applied to switch back
to V -vectors.

EXERCISE Consider the space (cf. discussion on p. 27) P4 of all real-valued polynomials, p(x) =

ex4 +dx3 + cx2 + bx+a of degree equal to or less than 4. Within this space consider differentiation,
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dx : P4 → P4, as a linear map acting on a polynomial as dxp(x) = 4ex3 + 3dx2 + 2cx+ b. (Make

sure you understand why the differentiation of polynomials of finite degree, n, is a linear map acting

in the subspace of polynomials, Pn.) Identify the matrix representing this map in the basis defined

by the polynomials {x4, x3, x2, x, 1}.

L5.6 Matrices describing coordinate changes

REMARK Throughout this section, vectors living in general spaces will be denoted x̂ (i.e. they

carry a caret). Their Cn-component representation relative to a basis {v̂j} will be denoted x, and

the representation relative to a basis {v̂′j} by x′. The formulas discussed in this section are easiest

to read if expansion coefficients are written to the right of vectors, i.e. we write x̂ = v̂jx
j instead of

xjv̂j . However, this notation convention is not imperative.

In section L2.5 we discussed how a choice of basis {v̂j} of a vector space V defines an
isomorphism, φv̂ : V → Cn, assigning to each vector x̂ = v̂jx

j ∈ V a component vector
x = (x1, . . . , xn)T . Likewise, we saw that a choice of basis assigns to any linear map,
Â : V → V , a corresponding matrix representation A. If we now choose a different basis,
{v̂′j}, the component representation of vectors changes, x 7→ x′, and so does the matrix

representation, A 7→ A′, but the vectors, x̂, and linear maps, Â, themselves remain invariant,
of course. In a sense, a basis change means a change of ‘language’ by which the invariant
objects x̂ and Â are described in Cn. Such changes are important operations and in this
section we will learn how to describe them efficiently.

w

EXAMPLE Let us revisit the kitchen example of p. 19 to ex-

emplify how the change of coefficients accompanying a change

of bases can be computed in elementary terms. For example,

on p. 19 we asked how the components of a vector with rep-

resentation w = (0, 90)T change if we switch from coordinates

measured along the walls to ones in which one of the coordinate

directions is rotated by 45 deg (see figure, where the vector w

has been shortened for better visibility). Such questions can be

conveniently addressed in terms of basis changes. The phrase

‘coordinates along the walls’ actually means that vectors are rep-

resented in terms of two unit length basis vectors, e1 and e2,

parallel to the walls. Vectors may then be written as, e.g., ŵ = ê10 + ê290, to identify their ex-

pansion coefficients in that basis. Suppose now we keep 1 as one coordinate direction but choose

the other coordinate direction at a 45 deg angle to the first (see figure). This defines an alternative

basis, with ê′1 = ê1 and ê2 replaced by ê′2 = 1√
2
(ê1 + ê2) (make sure you understand this point).

To find the coefficients wi′ of a vector ŵ = ê′1w
1′ + ê′2w

2′ expanded in the new basis, we first rep-

resent the old basis vectors as linear combinations of the new ones: ê1 = ê′1 and ê2 = −ê′1 +
√

2ê′2
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(see the figure above). Now substitute this result into the old basis vector expansion to obtain

ŵ = ê10 + ê290 = ê′10 + (−ê′1 +
√

2ê′2)90 = −ê′190 + ê′2
√

2 90. We thus obtain ŵ′ = 90(−1,
√

2)T

for the component representation in the new basis. The geometric interpretation of this expansion

is shown in the figure above.

The discussion above shows that basis changes are not really complicated operations. All
we need to do is solve linear equations, i.e. equations containing the unknowns (such as the
expansion coefficients of the old basis vectors in terms of the new ones) to linear order

4
and

rearrange terms. At the same time, it should also be evident that calculations of this sort
can become cumbersome in higher dimensions where lots of coefficients are involved. In the
next subsection, we will discuss how the required operations can be streamlined to maximal
efficiency. But before doing so, it is worth understanding the change of representation
induced by a change of basis on a conceptual level. The situation is summarized in the
diagram below, where the maps φv̂ and φv̂′ assign to vectors x̂ the component representations
x and x′, respectively.

V
φv̂

> Cn

Cn,

T

∨φv̂′ >

These maps are vector space isomorphisms (i.e. invertible linear maps), which means that the
composite map,

T = φv̂′ ◦ φ−1
v̂ : Cn → Cn, x 7→ φv̂′(φ

−1
v̂ (x)) = x′, (L134)

is an isomorphism, too. The linear map T : Cn → Cn, x 7→ Tx = x′, describes how the
coordinates of the vector x̂ change upon a change of basis. Being a linear map Cn → Cn,
we can think of T as a matrix. Next we learn how to identify this transformation matrix in
practical terms.

Transformation matrix

REMARK In this subsection, we sometimes use primed indices like x′j
′
, where x′ defines the

component representation of a vector in a new basis, {v̂′j′}. While this notation does not look nice,

it serves as a reminder indicating whether a index refers to components of the new basis (j′) or not

(j). However, this notational twist is purely cosmetic (and certainly not standard), the naming of

summation indices remains completely arbitrary. It will be abandoned in later sections after some

familiarity with basis transformations has been gained.

In the old and the new basis representation, respectively, the expansion of a V -vector x̂ assumes

4

A quantity x appears to ‘linear order’ if only its first power appears, i.e. if no terms such as xα, with
α 6= 1, are present. For example, x+ 1 = 0 is a linear equation, but x2/3 + 1 = 0 or sin(x) + 1 = 0 are not.
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the form

x̂ = v̂jx
j,

x̂ = v̂′j′x
′j′ , (L135)

which defines the representation vectors x = (x1, . . . , xn)T and x′ = (x′1, . . . , x′n)T . Assume
that the expansion of the old basis vectors in terms of the new ones is given by

v̂j = v̂′j′ T
j′
j. (L136)

Substituting this expansion into the first of the equations above, x̂ = v′j′T
j′
jx
j, and comparing

with the second equation, we obtain the identification

x′j
′
= T j

′
jx
j. (L137)

Eq. L98 then tells us that the basis change is represented by the transformation matrix

T =




T 1
1 . . . T 1

j . . . T 1
n

...
...

...

T j
′
1 . . . T j

′
j . . . T j

′
n

...
...

...
T n1 . . . T nj . . . T nn



, (L138)

as x′ = Tx. Our discussion shows that the contents of the matrix T can be interpreted and
used in several different ways:

. The jth column of this matrix, Tj, with components T j
′
j, contains the expansion coeffi-

cients of the jth old basis vector v̂j in terms of the new basis vectors {v̂′j′} (Eq. (L136)).

. The basis vector v̂j, that used to have the representation ej in the old basis, is now
represented by the column vector Tj = Tej.

. The vectors x′ and x in Cn that represent a general vector x̂ ∈ V in the new and old
bases, respectively, are related by matrix multiplication, x′ = Tx (see Eq. (L137)).

The transformation matrix T tells us how the form of a Cn-vector changes as we pass from
the old to the new representation. However, it also specifies the inverse transformation,
i.e. the question of how a vector assuming a known form in the new representation looked in
the old one. To understand how, notice that a change from the old basis to the new one,
and then back to the old one amounts to the identity operation. We just discussed how
old–to–new is described by a matrix T . The change new–to–old must undo the effect of
this transformation, which means that it is described by the inverse of the transformation
matrix, T−1. A transformation from the old to the new representation and then back is then
correctly described as T−1 · T = 1, i.e. an identity operation.
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EXAMPLE Consider the E2-bases {v̂1, v̂2} and {v̂′1, v̂′2} shown

in the figure. The old basis vectors are expressed in terms of the

new ones as

v̂1 = 3
4 v̂′1 + 1

3 v̂′2,

v̂2 = −1
8 v̂′1 + 1

2 v̂′2, (L139)

and this gives us

T =

(
3
4 −1

8
1
3

1
2

)
. (L140)

For example, we read off the matrix element T 1
2 = −1

8 from the first term in the expression v̂2 =

v̂′1T
1
2 + v̂′2T

2
2. Now consider a vector x̂ = v̂jx

j with components x =
(

1
2

)
with respect to the old

basis. According to our discussion above, the representation of x̂ in the new basis, x̂ = v̂′j′x
′j′ is

obtained as

x 7→ x′ = Tx =

(
3
4 −1

8
1
3

1
2

)(
1

2

)
=

(
1
2
4
3

)
.

We conclude that x̂ = 1v̂1 + 2v̂2 = 1
2 v̂′1 + 4

3 v̂′2. This can be confirmed by inspection of the figure.

Let us also consider the inverse transformation

T−1 =
12

5

(
1
2

1
8

−1
3

3
4

)
. (L141)

(Verify by matrix multiplication that T−1T = 1.) We may use it, for example, to check how the

representation (3
4 ,

1
3)T of the vector v̂1 in the new basis transforms under a change to the old basis:

T−1

(
3
4
1
3

)
=

(
1

0

)
.

This confirms that in the old basis v̂1 was represented by a standard basis vector.

Change of matrix representation

We now understand how basis changes are described by invertible transformation matrices,
T , and how they cause a change of component vectors as x′ = Tx. Next we address the
related question of how matrix representations of linear maps ŷ = Âx̂ transform under a
change of basis.

The defining property of the matrices A and A′ which represent the map Â in the old and
the new basis, respectively, is that y = Ax and y′ = A′x′. Substitution of y′ = Ty and
x′ = Tx into the second relation yields Ty = A′Tx. We multiply this vector relation by T−1
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to obtain y = T−1A′Tx
!

= Ax. Since this equality holds for arbitrary x, we arrive at the
identification

A = T−1A′T. (L142)

This important formula affords a straightforward interpretation. The application of the map
to some vector in the old representation (A) is equivalent to the following set of steps:

1. First, pass from the vector’s old representation to the new one by applying the matrix T .

2. Then apply the map in the new representation by using the new form of the matrix, A′.

3. Finally, transform the resulting image vector back to the old representation by applying
T−1.

Note that Eq. (L142) may be multiplied from the left and right by T and T−1, respectively,
to obtain TAT−1 = T (T−1A′T )T−1 = A′, or

A′ = TAT−1. (L143)

Read: the matrix representation in the new basis is obtained from the old representation by
applying the inverse transformation matrices. The transformations (L142) and (L143) are
sometimes called similarity transformations. The name indicates that matrices related by
a similarity transformation describe the same linear map, albeit in a different representation.

EXAMPLE Let us illustrate this transformation procedure with the example of the vectors defined in

Eq. (L139). Assume that we have a linear map which stretches all vectors in the horizontal direction

by a factor of 2. For example, the vector x̂ would map to the dashed vector indicated in the figure.

In the language of the (‘new’) v̂′-basis, this transformation assumes a simple form: v̂′1 7→ 2v̂′1 and

v̂′2 7→ v̂′2, which means that this map has the matrix representation

A′ =
(

2 0

0 1

)
. (L144)

The application of the transformation matrix (L140) and its inverse (L141) yields the representation

of the map in the (‘old’) v̂-basis:

A = T−1A′T =
12

5

(
1
2

1
8

−1
3

3
4

)(
2 0

0 1

)(
3
4 −1

8
1
3

1
2

)
=

1

10

(
19 −3

2

−6 11

)
. (L145)

Let us check that this – awkward looking – result makes sense. Application of the matrix on the right

to the ‘old–basis–representation’ of v̂1, i.e. (1, 0)T , produces the image vector (19/10,−6/10)T , i.e.

almost (2,−0.6)T . This tells us that v̂1 is approximately mapped to 2v̂1− 0.6 v̂2. Inspect the figure

to verify that this statement is consistent with the graphical representation of the transformation.
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Matrix trace

The discussion above shows how the matrices representing a linear map transform under
changes of basis. However, a linear map also possesses some characteristic properties that are
independent of the choice of basis. The simplest of these (others will be discussed below) is
the trace of a matrix A defined as the sum of all matrix elements on the diagonal:

tr(A) ≡
∑

i

Aii. (L146)

The most important algebraic property of the trace is its so-called cyclic invariance. Given
two matrices A,B we have

tr(AB) = tr(BA). (L147)

This identity is trivially verified as tr(AB) = (AB)ii = AijB
j
i = Bj

iA
i
j = (BA)jj = tr(BA).

The denotation ‘cyclic invariance’ is motivated by the obvious generalization of the exchange
identity to n matrices A1, . . . , An:

tr(A1A2 . . . An−1An) = tr(AnA1A2 . . . An−1), (L148)

i.e. we may ‘cyclically’ exchange matrices under the trace.
The cyclic invariance immediately implies that the trace is invariant under a change of

basis. We have seen above that under a basis change mediated by a transformation matrix
T the matrix representation of a linear transformation A changes as A 7→ A′ = T−1AT .
However, the trace remains invariant,

tr(A′) = tr(T−1AT ) = tr(TT−1A) = tr(A). (L149)

For example, the matrix A′ of Eq. (L144) has the trace tr(A′) = 2 + 1 = 3, which equals the
trace of its transform, tr(A) = 19

10
+ 11

10
= 3.

We finally notice that the matrix trace is invariant under transposition,

tr(A) = tr(AT ), (L150)

where tr(AT ) ≡∑i(A
T ) ii . This follows trivially from Aii = (AT ) ii .

Summary

The above discussion conveys an important message: depending on the chosen basis, the
matrix representations of linear maps may be nice or ugly (cf. Eq. (L144) vs. Eq. (L145)).
We favor to work with nice representations and in the following sections will discuss how such
forms can be found. As a reminder, table L5.1 provides a summary of the essential facts about
matrix endomorphisms discussed above.
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general linear map, Â : V → W Â(v̂j) = ŵiA
i
j

representation matrix matrix representation, A A = {Aij}
image of standard basis vector ej under A jth column vector of A, Aj

matrix representation of Â : x̂ 7→ ŷ y = Ax

basis transformation within V v̂j = v̂′j′T
j′
j

representation matrix matrix representation, T T = {T j′j}
jth old standard basis vector in new representation jth column vector of T , Tj

relation between old and new representations of x̂ x′ = Tx

inverse transformation v̂′j′ = v̂j(T
−1)jj′

j′th new standard basis vector in old representation j′th column vector of T−1, T−1
j′

matrix representation of Â in new basis A′ = TAT−1

Table L5.1: Formulas describing matrix representations of linear maps and their changes under basis
transformations. In the table, {v̂j} and {v̂′j′} are distinct bases of the same vector space V .
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At the end of the previous chapter we have introduced the trace of a matrix A as a number
— the sum of its diagonal elements — which does not change under changes of basis. There
exists one more basis-invariant scalar quantity, the so-called determinant, det(A) ∈ C. The
very important role played by the determinant is somewhat difficult to describe before it has
been defined and applied. However, let us mention in advance that the determinant provides
a powerful test for the invertibility of a matrix (it is invertible if and only if the determinant is
non-vanishing), and plays a key role in obtaining the simplest possible matrix representation
of a linear map. In this chapter we will define the determinant, and discuss its characteristic
properties. In later chapters will then be applied in a number of different contexts.

L6.1 Determinant

The determinant is a function

det : mat(C, n, n)→ C, A 7→ det(A), (L151)

producing numbers from square matrices. The determinant of a matrix is sometimes denoted
by det(A) ≡ |A|, or det ( 1 2

0 3 ) ≡ | 1 2
0 3 |.

Permutations

87
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Gottfried Wilhelm Leibniz
(1646-1716)
A German mathematician and
philosopher. Leibniz de-
veloped infinitesimal calcu-
lus independently of Newton.
Being fascinated with auto-
mated computation, he in-
vented various types of mechanical calcula-
tors, and refined the binary number system.
In the humanities Leibniz is known for his
‘philosophical optimism’, e.g. the view that
our universe is the best a god could possibly
have created.

Before explaining how the determinant is com-
puted, we need to discuss some mathemati-
cal aspects of permutations (of n objects).
A permutation is a reordering of these ob-
jects. There are different notations for per-
mutations. For example, labeling the objects
as 1, 2, 3, 4, the symbol [3, 2, 4, 1] denotes the
permutation 1 → 3, 2 → 2, 3 → 4, and
4→ 1. Alternatively, we may label a permu-
tation by P , where P (j) ∈ {0, 1, . . . , n} is
the number to which j is permuted. Some-
times, the shorthand notation Pj ≡ P (j) is
used instead. In this language, [3, 2, 4, 1] is
represented as P1 = 3, P2 = 2, P3 = 4,

P4 = 1.
The set of all permutations of n objects (or numbers) is denoted Sn. For example,

S3 = {[1, 2, 3], [2, 1, 3], [3, 2, 1], [2, 3, 1], [3, 1, 2], [1, 3, 2]}. (L152)

Exercise: convince yourself that the number of permutations contained in Sn equals n! ≡
n · (n− 1) · . . . 2 · 1. For example, S3 contains 3! = 6 elements.

INFO Although permutations are easy to define, the underlying mathematics is complex. The set

Sn forms a group, the so-called permutation group, or symmetric group. Composition in this

group is the iteration of permutations. For example, if we are given three balls, labeled 1, 2, 3, we

may first exchange the first and the second ball, to obtain [2, 1, 3] and then the second and the

third to arrive at the ‘product’ [2, 3, 1]. A permutation can be undone (the inverse) and there is the

neutral or identical permutation, P = id, which permutes nothing. Beyond these simple statements,

the mathematics of permutations quickly becomes complicated. (The richness of the underlying

structures is illustrated, for example, by Rubik’s cube whose solution can be understood in terms of

the permutation of 54 differently colored squares covering the six faces of the cube.)

Each permutation can be reduced to a sequence of pair permutations, i.e. permutations which
exchange just two objects at a time. This statement is easy to understand: any re-ordering of
n objects can be achieved manually (with one’s own two hands) by sequentially swapping pairs
of objects. Now, for a given permutation P ∈ Sn we have two options:

1
the number of pair

permutations needed to arrive at P may be even or odd (determine the even/odd attribute for
the six permutations of S3). In the former/latter case, we call P an even/odd permutation
and define

sgn(P ) =

{
+1, P even,
−1, P odd.

(L153)

1

Notice that the even/odd attribute is not entirely innocent: there are different ways of realizing a given
P by a sequence of pair permutations. However, the ‘parity’, i.e. the even- or oddness of the number of pair
permutations, is an invariant. This makes the function sgn well defined.
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as the signum of a permutation.

Determinant definition and calculation

We are now in a position to define the determinant of an n× n matrix A = {Aij} as

det(A) =
∑

P∈Sn
sgn(P )A1

P1A
2
P2 . . . A

n
Pn. (L154)

Let us write down the determinant for the three simplest cases, n = 1, 2, 3:

n = 1 : det(A) = A1
1,

n = 2 : det(A) = A1
1A

2
2 − A1

2A
2
1, (L155)

n = 3 : det(A) = A1
1A

2
2A

3
3 − A1

2A
2
1A

3
3 − A1

3A
2
2A

3
1

− A1
1A

2
3A

3
2 + A1

2A
2
3A

3
1 + A1

3A
2
1A

3
2 (L156)

For example,

det

(
1 3
2 5

)
= 1 · 5− 2 · 3 = −1,

det




2 3 1
−1 4 3

0 2 2


 = 2 · 4 · 2− 3 · (−1) · 2− 1 · 4 · 0

− 2 · 3 · 2 + 3 · 3 · 0 + 1 · (−1) · 2 = 8. (L157)

For n = 4 the number of terms grows to 24, which illustrates that manually computing
determinants of dimension larger than three is cumbersome.

INFO The determinants of real matrices afford a concrete geometric interpretation: the absolute

value of the determinant of an n × n matrix A, |detA|, equals the volume of the n-dimensional

parallelepiped spanned by the column vectors of A. The general proof of this identity requires

integration theory and will not be discussed here. However, for two- and three-dimensional matrices

the statement can be checked by straightforward computation: for a two-dimensional matrix A =

(A1,A2) with column vectors A1 and A2, Eq. (L155) gives

n = 2 : | det(A)| = |A1
1A

2
2 −A1

2A
2
1|

(L63)
= A(A1,A2), (L158)

where A(v,w) is the area of the parallelogram spanned by two vectors, v,w (cf. Eq. (L63)). Similarly,

for a three-dimensional matrix A = (A1,A2,A3), Eq. (L156) gives

n = 3 : |det(A)| = |εijkAi1Aj2Ak3|
(L88)
= |(A1 ×A2) ·A3| (L89)

= V (A1,A2,A3), (L159)

where V (u,v,w) is the volume of the parallelepiped spanned by three vectors, u,v,w, and the

Levi-Civita tensor generates the sign factors occurring in Eq. (L156).
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INFO Eq. (L154) is known as the Leibniz rule. It defines one of several ways of computing

determinants. For completeness we mention an alternative formula, the Laplace rule. This rule is

useful in computing determinants of matrices containing rows or columns containing a large number

of zeros, so-called sparse matrices. Laplace’s algorithm proceeds in three steps:

1. Choose an arbitrary matrix row, i, (or column, j) of a matrix A. Ideally, choose a row (column)

containing a maximum number of zeros.

2. If column no. j has been chosen and Aij 6= 0 compute the so-called minors M ij ∈ C. It is

defined as the determinant of the (n− 1)× (n− 1) matrix obtained by crossing out column j

and row i of A. For example, with column j = 1 and A the 3× 3 matrix in (L157),

M11 = det

(
4 3

2 2

)
= 2, M21 = det

(
3 1

2 2

)
= 4, M31 = det

(
3 1

4 3

)
= 5.

If the rule is applied with reference to a fixed row i, the minors M ij need to be computed for

varying j.

3. Finally compute the sum

det(A) =
∑

i

Aij(−)i+jM ij , (L160)

where j is fixed and (−)i+j ≡ (−1)i+j . One can show that the result thus obtained does not

depend on j. For completeness we mention that the product (−)i+jM ij is called the cofactor
of the matrix element Aij . The formula shows why only minors corresponding to non-vanishing

matrix elements enter the scheme. For our 3× 3 matrix from Eq. (L157), the evaluation of the

sum for j = 1 yields

det(A) = 2M11 − (−1)M21 + 0M31 = 2 · 2 + 4 = 8.

Laplace’s rule reduces the computation of an n× n determinant to that of the computation of ≤ n
determinants of lower order (n − 1) × (n − 1). Exercises: Apply the rule to the third row of the

matrix A.

We will not show the equivalence of Laplace’s and Leibniz’ rules for computing determinants.

However, it is an instructive exercise to rearrange terms in the 3× 3 Leibniz expression (L156) such

that the determinant assumes the form of Laplace’s sum (L160). The general proof is left as a

challenging exercise in combinatorics.

INFO There are few types of matrices for which the calculation of determinants can be
simplified. Consider, for example, the case of triangular matrices for which Aij = 0 for either all

i > j (upper triangular matrix), or all i < j (lower triangular matrix). These matrices are called

‘triangular’ because all matrix element to the lower left of the diagonal, or upper right of the diagonal,

respectively, vanish by the above condition. The determinant of a triangular matrix is simply given

by det(A) =
∏
iA

i
i. Show how this is a straightforward consequence of Leibniz’ rule. (Hint: think

which permutations obey the condition Pi ≥ i for all i.)
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A matrix block structure is defined as

X =

(
A B

C D

)
, (L161)

where A ∈ mat(r, r,C), D ∈ mat(s, s,C), and r+s = n. The complementary blocks are rectangular

matrices B ∈ mat(r, s,C) and A ∈ mat(s, r,C) of non-quadratic form if r 6= s. Any matrix of

dimension n > 1 carries a block structure with blocks of arbitrary dimension r and s = n − r,

respectively. Although this is a formal statement, the distinction of blocks really makes sense if

the sub-blocks carry distinct meaning. For example, consider an atom containing r electrons and s

nucleons (the protons and neutrons forming its nucleus). Let Xi
j be the strength of the magnetic

interaction between these particles. The interaction strength between the electrons Xi
j , i, j ≤ r,

or the matrix block A will be qualitatively different from that between the nucleons (block D), or

the electron-nucleon interaction B,C. The magnetic interaction matrix therefore naturally carries a

block structure.

It can be shown that

det

(
A B

C D

)
= det(A−BD−1C) det(D), (L162)

i.e. the determinant of the block matrix can be represented as the product of determinants of the

s × s matrix D and the r × r matrix A − BD−1C. Whether or not this representation simplifies

the calculation of the determinant depends on the structure of the blocks A,B,C,D. A dramatic

simplification arises, e.g., if either B = 0 or C = 0. In this case the formula collapses to

det

(
A 0

C D

)
= det

(
A B

0 D

)
= det(A) det(D). (L163)

INFO Determinants appear frequently in various mathematical contexts and it is important to be

able to recognize them as such even if they are not represented exactly as in (??). In fact, there exist

various popular alternative determinant representations building on the Leibniz rule some of

which we review here for later reference.

All these re-formulations rely on the option to rearrange permutations in different orders. For

example, the matrix elements in (??) may be reordered as
∑

P∈Sn sgn(P )AP
−11

1 . . . A
P−1n

n, where

P−1j is the inverse permutation acting on j. In this form, the covariant (downstairs) indices are

arranged in ascending order. (For example, A1
2A

2
1A

3
3 may be rearranged as A2

1A
1
2A

3
3 where

the permutation appearing in the second representation downstairs is the inverse of the permutation

appearing in the first representation upstairs.) Now, sgn(P ) = sgn(P−1) (why?) and
∑

P F (P−1) =∑
P F (P ), i.e. the for arbitrary functions, F , the summation over all inverse group elements equals

the summation over all group elements. This allows us to rewrite the determinant as

det(A) =
∑

P∈Sn
sgn(P )AP1

1A
P2

2 . . . A
Pn

n, (L164)

with ascending contravariant indices. Also note that the index configuration (1, 2, . . . , n) appearing

in these expressions is not ‘speicial’. It is just one (viz. the identity) permutation, and can be replaced
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by any other Q(1, 2, . . . , n) ≡ (i1, . . . , in) with no consequence if sgn(Q) = 1 or a sign change if

sgn(Q) is odd. The formal way to see this is by writing
∑

P∈Sn
sgn(P )AP1

Q1 . . . A
Pn

Qn =
∑

P∈Sn
sgn(P )AQ

−1P1
1 . . . A

Q−1Pn
n =

=
∑

P∈Sn
sgn(QQ−1P )AQ

−1P1
1 . . . A

Q−1Pn
n = sgn(Q)

∑

P∈Sn
sgn(Q−1P )AQ

−1P1
1 . . . A

Q−1Pn
n =

= sgn(Q)
∑

P∈Sn
sgn(P )AP1

1 . . . A
Pn

n.

The final sum equals det(A), and so we have obtained another Leibniz rule clone,

det(A) sgn(Q) =
∑

P∈Sn
sgn(P )AP1

Q1A
P2
Q2 . . . A

Pn
Qn (L165)

We finally note that the formula can be written in a more compact form by introducing the fully

antisymmetric tensor

εj1,j2,...,jn ≡ εj1,j2,...,jn ≡
{

sgn[j1, . . . , jn], (j1, . . . , jn) a permutation of (1, . . . , n)

0, else.
(L166)

This is the generalization of the Levi-Civita symbol (L77) to index arguments of higher order. Using

this symbol, the determinant formula assumes the compact form

detA = εj1,j2,...,jnA1
j1A

2
j2 . . . A

n
jn = εj1,j2,...,jnA

j1
1A

j2
2 . . . A

jn
n. (L167)

With sqn([i1, . . . , in]) = εi1,...,in the generalization Eq. (L165) assumes the compact form

detAεi1,...,in = εj1,j2,...,jnA
j1
i1
Aj2i2 . . . A

jn
in
. (L168)

Determinant properties

Much like the trace, the determinant is a ‘fingerprint’ of a linear map in that it does not
change under changes of basis. Besides, it has many other useful properties summarized below.
All of these are straightforward consequences of the definition, although in some cases the proof
may not be entirely obvious. (In such cases we refer to lecture courses in linear algebra or
mathematics textbooks for detailed discussions.) In subsequent chapters the usefulness of the
properties of the determinant function discussed below will show in concrete applications.

1. For a diagonal matrix, D = diag(λ1, . . . , λn) Leibniz’ formula implies that the deter-
minant is given by the product of the diagonal elements,

2

det(D) =
n∏

i=1

λi. (L169)

The determinant of a diagonal matrix containing zeroes on the diagonal vanishes.
2

The symbol
∏

is the product analog of the sum,
∑

, i.e.
∏n
i=1 xi = x1 · x2 · · · · · xn.
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2. The determinant is invariant under transposition,

det(AT ) = detA. (L170)

(This can be proven by exchanging matrix indices in the Leibniz formula and using that
for any set of objects {Xij},

∑
P

∏
iXi P i =

∑
P

∏
iXPi i (why?). )

We also note that under complex conjugation it behaves as

det(A) = det(A), (L171)

where A = {Aij} is the complex conjugate of the matrix. Combining this with Eq. (L170),
we obtain

det(A†) = detA, (L172)

where the adjoint is defined in Eq. (L108).

3. The determinant is antisymmetric under the pairwise exchange of two rows columns
or of two rows,

det(. . . ,Ai, . . . ,Aj, . . . ) = − det(. . . ,Aj, . . . ,Ai, . . . ), (L173)

det




...
AiT

...
AjT

...




= − det




...
AjT

...
AiT

...



. (L174)

Here, the ellipses represent rows or columns that remain unchanged. The sign change
implies that for matrices containing identical rows or columns the determinant equals its
own negative, i.e. it vanishes.

4. Multilinearity: The determinant is linear in each column. With r, r′ ∈ C,

det(. . . , rAj + r′A′j, . . . ) = r det(. . . ,Aj, . . . ) + r′ det(. . . ,A′j, . . . ). (L175)

Similarly, the determinant is linear each row,

det




...
rAiT + r′Ai′T

...


 = r det




...
AiT

...


+ r′ det




...
Ai′T

...


 . (L176)

Notice the similar behavior of the determinant with respect to operations affecting rows
or columns, respectively. Convince yourself that this is a consequence of the invariance
of the determinant under transposition, Eq. (L170).
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5. For r ∈ C, the determinant obeys the relation

det(rA) = rn det(A), (L177)

where (rA)ij ≡ rAij. This formula can be proven by repeated application of Eq. (L175)
for r′ = 0.

6. The determinant of a matrix vanishes if it contains linearly dependent rows or columns.
For example, if A1 =

∑n
i=2 c

iAi Eq. (L175) may be applied to reduce det(A) to a sum of
determinants of the form det(Ai, . . . ,Ai, . . . ). The antisymmetry relation (L173) implies
that each determinant in the sum vanishes individually. Notice that the above relation
implies the vanishing of A(e1−

∑n
i=2 c

iei) = Ai−
∑

i=2 c
iAi, i.e. the existence of a non-

vanishing vector that is annihilated by A. Conversely, if we have a vector v = ciei with
this property, 0 = A(ciei) = ciAi, then the column vectors of A are linearly independent
and the determinant vanishes. This leads us to the important conclusion,

7. The determinant vanishes if and only if a matrix is non-invertible, i.e. if it anni-
hilates a non-vanishing vector. This criterion provides a rather powerful test for the
invertibility of a matrix: compute its determinant and if a non-vanishing result is
obtained, invertibility is guaranteed.

8. Crucially, the determinant of a product of matrices equals the product of determi-
nants,

det(AB) = det(A) det(B), (L178)

for A,B ∈ mat(C, n, n). The proof is based on direct algebraic manipulations of the
Leibniz formula and can be found in mathematics textbooks.

9. Eq. (L178) implies an important formula for the inverse of determinants. From Eq.
(L169) we know that the unit matrix has unit determinant, det(1) = 1. Now use that
1 = det(1) = det(AA−1) = det(A) det(A−1) to obtain

det(A−1) =
1

det(A)
. (L179)

10. An important consequence of Eqs. (L178) and (L179) is that

the determinant of a matrix is invariant under a change of basis.

If the new representation of a matrix A after a basis change is A′ = TAT−1, then we
have

det(A′) = det(TAT−1)
(L178)
= det(T ) det(A) det(T−1)

(L179)
= det(A). (L180)
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Above, we have seen that all invertible matrices, i.e. all elements of the matrix group GL(n,C)
have a non-vanishing determinant. The subset, SL(n,C) ⊂ GL(n,C), defined by the condi-
tion that the determinant equals unity,

SL(n,C) = {A ∈ GL(n,C)| det(A) = 1}, (L181)

is called the special linear group. It is a group (with matrix multiplication as composi-
tion), rather than just a subset, because the group axioms are satisfied: it contains the unit
matrix, 1 ∈ SL(n,C), which acts as the group’s unit element; if det(A) = det(B) = 1,
then det(AB) = det(A) det(B) = 1, i.e. matrix multiplication is compatible with the group
definition; and if det(A) = 1, then det(A−1) = (det(A))−1 = 1, hence the inverse of A also
lies in the group. The special linear group, both in its complex and real version SL(n,C) and
SL(n,R), respectively, is one of several subgroups of GL(n,C) which are used to describe
certain linear physical transformations. However, the full meaning of these objects becomes
apparent only in the middle of the curriculum when disciplines such as relativity or particle
physics are discussed.

EXAMPLE It is instructive to verify the properties of the determinant for the simple case of a

2× 2 matrix

A =

(
a b

c d

)
, (L182)

with determinant

det(A) = ad− bc. (L183)

1. For a diagonal matrix, b = c = 0, Eq. (L183) indeed reduces to detA = ad, the product of

diagonal elements.

2. Invariance under transposition follows from the invariance of (L183) under exchange c↔ b.

3. Column antisymmetry is illustrated by det
(
b a
d c

)
= bc− ad = −det(A).

4. Column-linearity (L175) is illustrated by det
( (a+a′) b

(c+c′) d

)
= (a + a′)d − b(c + c′) = (ad − bc) +

(a′d− bc′) = det
(
a b
c d

)
+ det

(
a′ b
c′ d

)
, row linearity is shown in the same way.

5. To verify Eq. (L177) consider det (rA) = det
(
ra rb
rc rd

)
= (ra)(rd) − (rb)(rc) = r2(ad − bc) =

r2 det(A).

6. If the determinant vanishes, this fixes one parameter of the matrix, for example a = bc/d. Verify

that the same condition is required to obtain a non-trivial solution, v, of Av = 0.

7. Eq. (L178) is verified by defining two 2 × 2 matrices, A and B, computing the product AB,

and comparing its determinant with the product of the determinants of the individual matrices.

8. The inverse of the matrix (L182) is given by Eq. (L125). Taking its determinant we indeed

obtain detA−1 = 1
(ad−bc)2 (da− bc) = 1

ad−bc = 1/det(A).
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INFO For the purpose of illustration, let us discuss the proof of the exchange identity (L174). The

proofs of other identities are of comparable complexity and use similar arguments. Most proofs of
determinant properties use the Leibniz rule (L154) and the group property of permutations. To

illustrate this, let P[1,2] denote the pair permutation exchanging the first and the second elements

of a set of n numbers, e.g. P[1,2]{3, 4, 2, 1} = {4, 3, 2, 1}. For an arbitrary permutation, P , the

composition P ′ = P ◦P[1,2] is again a permutation — the group property. The composite permutation

P ′ acts as P ′2 = P1, P ′1 = P2, and P ′l = Pl for l > 2. We also know that sgn(P ′) = −sgn(P ),

because P and P ′ differ by one pair permutation (if P is even P ′ is odd, and vice versa). Now,

consider two matrices A and A′ differing by an exchange of the first and the second row:

A =




A1T

A2T

A3T

...

AnT



, A′ =




A2T

A1T

A3T

...

AnT



. (L184)

We thus know that A′1i = A2
i and A′2i = A1

i, while all components taken from rows other than 1

and 2 are equal. Now let us apply the Leibniz rule to the computation of the respective determinants:

det(A′) =
∑

P∈Sn
sgn(P )A′1P1A

′2
P2A

′3
P3 . . . A

′n
Pn

=
∑

P∈Sn
sgn(P )A2

P1A
1
P2A

3
P3 . . . A

n
Pn

= −
∑

P∈Sn
sgn(P ′)A2

P ′2A
1
P ′1A

3
P ′3 . . . A

n
P ′n

= −
∑

P ′∈Sn
sgn(P ′)A1

P ′1A
2
P ′2A

3
P ′3 . . . A

n
P ′n = −det(A).

In the second equality we used the exchange relation (L184) between A′ and A; in the third the

relation between P ′ and P ; and in the fourth, that if P runs over all permutations in Sn so does

P ′, i.e.
∑

P∈Sn =
∑

P ′∈Sn . The final equality is just the definition of the determinant where the

summation ‘variable’ P ′ replaces P .
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L7.1 Diagonal matrices

Next to the unit matrix, the so-called diagonal matrices are the simplest of matrices. As
is indicated by the name a diagonal matrix, D, has its only non-vanishing matrix elements on
the ‘matrix diagonal’, Di

j = δijλj, or

D =




λ1

λ2

. . .

λn


 .

In writing such matrices it is customary to leave areas with vanishing matrix elements blank,
i.e. zeros are omitted unless they occur on the diagonal itself. An even more compact notation
reads

D = diag(λ1, λ2, . . . , λn). (L185)

The problem with diagonal matrices is that they are fragile objects: under a transformation of
bases represented by a transformation matrix T , D transforms as

D
(L143)7−→ A = TDT−1,

which will not in general be diagonal.
These observations motivate a number of questions:

. Given a general matrix, A, how can we know if it is a diagonal matrix ‘in disguise’? I.e.
does there exist a transformation such that A = TDT−1? This would mean that the matrix
T describes the transformation to a new basis in which A assumes the particularly simple
form of a diagonal matrix.

. Can every matrix A be transformed into a diagonal matrix?

. Does there exist an algorithm to compute the matrices T which transform a given matrix
into a diagonal representation?

97
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INFO At first sight these may seem like abstract questions. However, the problem of finding simple

(diagonal) representations of matrices is of great practical importance not just in physics but also

in engineering, computer science, biology, and other contexts. The reason is that many phenomena

in nature, or in statistical sciences can be approximately described in terms of matrices representing

linear maps. The generic representation especially of large matrices generally does not tell much

about their action. However, its action becomes much more transparent if we know a diagonal

representation.

The importance of the problem shows in that physicists, mathematicians and computer scientists

alike are investing a lot of effort into improving algorithms for the constructive ‘diagonalization’ of

complex linear maps.

L7.2 Eigenvectors and eigenvalues

A diagonal matrix acts on the ith standard basis vector, ei, by scalar multiplication:

Dei = λi ei (L186)

Generally a vector, v, that remains invariant up to scalar multiplication under the application
of a matrix, A, Av = λv is called an eigenvector

1
of that matrix, and λ ∈ C is called its

eigenvalue. Eq. (L186) states that the standard basis vectors ei are eigenvectors of D and
that the corresponding eigenvalues λi are given by the diagonal elements. Eigenvectors and
eigenvalues are a concept of key relevance to the diagonalization of matrices.

To understand why, assume now that we had switched to a different basis. The previously
diagonal matrix would now assume the form A = TDT−1, which will be non-diagonal in
general. However, a key feature of the new representation is that it still possesses n linearly
independent eigenvectors e′i ≡ Tei. This is checked by computing Ae′i = (TDT−1)(Tei) =
TDei = Tλiei = λiTei = λie

′
i. While the eigenvectors change their form under the transfor-

mation (from standard basis vectors ei to Tei),

the set of eigenvalues {λi} of a matrix is not affected by a transformation of bases.

The key to matrix diagonalization, i.e. the constructive transformation of a given matrix to
diagonal form, lies in reversing the above construction: assume we were given an arbitrary
matrix A and had succeeded in finding n linearly independent eigenvectors, vi, with eigenvalues
λi. As we will discuss in the rest of the chapter, A can then be transformed to a diagonal
representation and T = (v1, . . . ,vn) is the matrix describing this transformation.

L7.3 Characteristic polynomial

The key to the diagonalization of a matrix, A, lies in its eigenvectors and eigenvalues. How
can these be found? An eigenvector, v, obeys the equation Av = λv or (A−λ1)v = 0, where

1

The word ‘eigen’, loaned from German, translates to ‘own’.
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λ is its as yet unknown eigenvalue. If this equation is to have a non-vanishing solution, then
the matrix A − λ1 must have a vanishing determinant, Z(λ) ≡ det(A − λ1) = 0 (because
it annihilates a non-vanishing vector, v). This condition should be read as a necessary and
sufficient criterion for λ to be an eigenvalue:

Every eigenvalue λ of a matrix A satisfies the condition det(A− λ1) = 0.

We may evaluate the determinant using the Leibniz formula (L154),

Z(λ) =
∑

P∈Sn
sgn(P )(A− λ1)1

P1(A− λ1)2
P2 . . . (A− λ1)nPn. (L187)

to notice that Z(λ) is a polynomial of degree n in λ. The polynomial nature of Z(λ) follows
from the observation that the highest power of λ present in the product of n factors (A−λ1)iP i
is given by λn.

2
In general, the sum will contain arbitrary lower powers of λ as well, so it may

be represented as

Z(λ) =
n∑

i=0

cnλ
n, (L188)

with coefficients ci ∈ C depending on the matrix elements Aij.
The polynomial Z(λ) is called the characteristic polynomial of A. It is a ‘characteristic’

feature of the matrix, A, in that it does not change under transformations of basis. This
follows from the fact that for A′ = T−1AT , det(A′ − λ1) = det(T−1AT − λT−11T ) =
det(T−1(A − λ1)T ) = det(A − λ1), where we used that T−11T = 1 and the invariance of
the determinant Eq. (L182). The invariance of the characteristic polynomial is, of course, an
expected feature of a function determining the invariant eigenvalues.

INFO There is not much that can be said in general about the coefficients of the characteristic
polynomial. For λ = 0 we obtain Z(0) = det(A) by definition of the characteristic polynomial

and Z(0) = c0 according to Eq. (L188). This yields the identification c0 = det(A). The two

highest possible powers, λn and λn−1, are obtained from the contribution
∏
i(A

i
i − λ) = (−λ)n +

(−λ)n−1
∑n

i=1A
i
i + . . . of the unit permutation Pi = i to the sum. Here, the ellipses denote terms

of order λn−2 and less. We thus conclude cn = (−)n and cn−1 = −∑n
i=1A

i
i = −tr(A). All other

coefficients, c1, . . . , cn−2, have a more complicated structure.

Once a value λ has been found for which the characteristic polynomial vanishes, Z(λ) = 0, the
corresponding eigenvector, v, is obtained by solving the system of linear equations (A−λ1)ijv

j

for the coefficients vj. This can be done by the methods discussed on p.76. Before discussing
how the program can be iterated to achieve a systematic diagonalization of matrices, let us
illustrate it on the simple example of a 2× 2-matrix.

2

To see this, consider the contribution of the unit perturbation Pi = i to the sum and evaluate (A −
λ1)1

1(A− λ1)2
2 . . . (A− λ1)nn = (−λ)n + . . . , where the ellipses represent powers in λ of lower order.
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Figure L15: Action of the matrix (L189) in the two dimensional plane. Discussion, see text.

EXAMPLE Consider the 2× 2 matrix

A =

(
1 −1

−1
2

3
2

)
. (L189)

This matrix acts on the unit vectors e1,2 as shown in Fig. L15. It simultaneously stretches and rotates

the vectors, which leads to a distortion of the plane, as indicated in the figure. Now let us identify

the eigenvectors, v1,2, of the matrix. Following the above procedure the first step is to set up the

characteristic polynomial

Z(λ) = det(A− λ1) = det

(
1− λ −1

−1
2

3
2 − λ

)
= (1− λ)(3

2 − λ)− 1
2 = λ2 − 5

2λ+ 1.

The ensuing equation Z(λ) = 0 is quadratic and its two solutions are given by λ1 = 2 and λ2 = 1
2 .

We may now find the corresponding eigenvectors by solution of

(A− λ11)v1 =

(
−1 −1

−1
2 −1

2

)(
v1

1

v2
1

)
=

(
0

0

)
⇒ v1 = c1

(
1

−1

)
,

(A− λ21)v2 =

(
1
2 −1

−1
2 1

)(
v1

2

v2
2

)
=

(
0

0

)
⇒ v2 = c2

(
2

1

)
,

where c1,2 are arbitrary constants which may be set, e.g., to unity, c1,2 = 1. We may now verify

the eigenvector property by checking Av1,2 = λ1,2v1,2 (try it yourself). It is easy to make mistakes

when computing eigenvectors, so a check should be a routine element of the program. Along the

direction specified by v1,2 the matrix A acts by stretching by the factors 2, 1/2. The two vectors

v1 and v2 are linearly independent, and the matrix transforming A into a diagonal representation is

given by (cf. the general discussion of section L7.2)

T = (v1,v2) =

(
1 2

−1 1

)
, T−1 =

1

3

(
1 −2

1 1

)
.

It is straightforward to verify that T−1AT = diag(2, 1
2) assumes a diagonal form.
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EXERCISE Consider the matrices shown in the example of p.70 and discuss in which sense they

can be understood as part of a diagonalization program.

EXERCISE Consider the matrix A from Eq. (L129). Show that its characteristic polynomial is

given by

Z(λ) = −λ3 − λ2 + 2λ = −λ(λ− 1)(λ+ 2), (L190)

with zeros λ0 = 0, λ1 = 1, λ2 = −2.

L7.4 Matrix diagonalization

General structures

We are now in a good position to discuss the diagonalizability of matrices from a general
perspective. The previous section has shown that the zeros of the characteristic polynomial,
Z(λ), play a key role in the process. A first question to ask then is whether every characteristic
polynomial need to have zeros. The answer depends on whether we are operating in real or
complex vector spaces. For example the characteristic polynomial of the real matrix

A =

(
0 1
−1 0

)
, (L191)

is given by Z(λ) = λ2 + 1 and does not have real zeros. This means that no real eigenvalues
can be found and that the matrix is not diagonalizable in terms of real matrices.

The situation in the complex vector space Cn is different. According to the fundamental
theorem of algebra (whose proof is a subject of ‘algebra’, not ‘linear algebra’), every poly-
nomial of degree n has an equal number of complex zeros λi ∈ C and can hence be factorized
as

Z(λ) =
n∏

i=1

(λ− λi), λi ∈ C. (L192)

For example, the characteristic polynomial of the matrix A in Eq. (L191) can be factored as
Z(λ) = λ2 + 1 = (λ − i)(λ + i) with complex zeros λ1 = i and λ2 = −i. Considered as
an element of mat(2, 2,C) the matrix A therefore is diagonalizable. A simple and important
corollary of Eq. (L192) is that

The determinant of a matrix det(A) =
∏

i λi equals the product of its eigenvalues.

This follows from the observation that on the one hand Z(0) = det(A) while on the other
hand Eq. (L192) states that Z(0) =

∏
i λi.
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EXERCISE Show that the eigenvectors of the matrix A of Eq. (L191) are given by v1 = 1√
2
(−i, 1)T

and v2 = 1√
2
(i, 1)T , where the normalization factors 1/

√
2 fix the complex norm of the eigenvectors

as ‖vi‖ ≡ |v1
i|2 + |v2

i|2 = 1. Verify that

T = (v1,v2) =
1√
2

(
−i i

1 1

)
⇒ T−1 =

1√
2

(
i 1

−i 1

)
,

transforms the matrix to the diagonal form T−1AT = diag(i,−i).

We conclude that

If a real matrix cannot be diagonalized within the matrix space mat(n, n,R), it may
still be diagonalizable by complex matrices in mat(n, n,C).

The existence of n eigenvalues is a necessary but not sufficient condition for the diagonalizabil-
ity of a matrix. Complications may arise if eigenvectors coincide, λi = λj. Such eigenvalues
are called ‘degenerate’ (entartet) and the number, r, of eigenvalues λi of a given value is called
their degree of degeneracy. (For example, the unit matrix has n degenerate eigenvalues, each
equal to unity.)

Let us first discuss the simpler situation in which no degeneracies are present. In this
case, the eigenvectors, vi, of the n different eigenvalues are linearly independent and
hence form a basis, {vi}, a so-called eigenbasis of the matrix A. The transformation matrix
T = (v1, . . . ,vn) then achieves the diagonalization as D = T−1AT .

INFO The linear independence of eigenvectors with different eigenvalues is best shown by

induction. First take two eigenvectors, v1,2 and assume that a nontrivial linear combination 0 =

c1v1 + c2v2 exists, with c1,2 6= 0. Now subtract the two equations

0 = A0 = A(c1v1 + c2v2) = c1λ1v1 + c2λ2v2,

0 = λ20 = c1λ2v1 + c2λ2v2,

from each other to obtain c1(λ1−λ2)v1 = 0. This is a contradiction, because all three, c1, λ1−λ2,

and v1 are non-vanishing. The two vectors v1,v2 therefore cannot be linearly dependent. Now

assume that the first j eigenvectors are linearly independent, j = 1, . . . , n − 1, and assume that a

linear combination exists for which 0 =
∑j+1

i=1 civi. Arguing as before, we then find that

0 = A0 = A

(∑

i

civi

)
=

j+1∑

i=1

ciλivi,

0 = λj+10 =

j+1∑

i=1

ciλj+1vi.

Subtraction yields 0 =
∑j

i=1 ci(λi − λj+1)vi, which contradicts the starting assumption. We are

therefore led to the conclusion that the eigenvectors bvi are all linearly independent.
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The situation gets a little more involved if degenerate eigenvalues occur. We first notice that
the set of eigenvectors corresponding to a given eigenvalue, λ, form a subspace ofCn called the
eigenspace of that eigenvalue. This is because for any two eigenvectors, v,w with Av = λv
and Aw = λw, the linear combination cv + dw, c, d ∈ C, is again an eigenvector with the
same eigenvalue. For non-degenerate eigenvalues, λi, the eigenspaces are all one-dimensional
and are spanned by the corresponding eigenvectors, vi. Eigenvalues of degeneracy r can
have eigenspaces of higher dimensionality up to r (For an extreme example, consider the unit
matrix with its r = n degenerate eigenvalues unity where the standard unit vectors ei span
the n-dimensional eigenspace Cn). If the eigenspaces of all r-fold degenerate eigenvalues have
maximal dimension, r, then we have as many linearly independent eigenvectors as eigenvalues.
Since there are n eigenvalues in total (some of which may be degenerate) the corresponding
n eigenvectors span the full vector space and the matrix is diagonalizable. By contrast, it is
not diagonalizable if r-fold degenerate eigenvectors with eigenspaces of lower dimensionality
< r occur.

To illustrate the phenomenon with a simple example, consider the matrix A = ( 1 a
0 1 ). Its

characteristic polynomial is given by (check!) Z(λ) = (λ− 1)2 with the two-fold degenerate
zero λ = 1. However, for a 6= 0 the corresponding eigenvector equation (A−1 ·1)v = ( 0 a

0 0 ) v
has only the solution, v = (0, c)T , where c is a normalization constant. The eigenspace for
λ = 1 is one-dimensional and the matrix cannot be diagonalized.

INFO In physical applications, non-diagonalizable matrices with degenerate eigenvalues do not

occur very often. Still it is good to know how the simplest possible representation of a matrix with

degenerate eigenvalues looks like. The answer is shown in the schematic below,




. . .

λ 1

0 λ

µ 1 0

0 µ 1

0 0 µ
. . .




, (L193)

where λ and µ are two- and three-fold degenerate eigenvalues with only one-dimensional eigenspaces.

The statement is that for each eigenvalue of degeneracy r the matrix can be reduced to one containing

r copies of the eigenvalues on the diagonal and r− 1 copies of unity on the next diagonal as shown

in the figure. Such matrices are said to be in Jordan form and the constituent blocks are known as

Jordan blocks.

For the general discussion of algorithms of transforming matrices into a Jordan form we refer to

specialized textbooks on linear algebra. However, the general idea may be illustrated using a simple

example. Consider the matrix

A =

(
0 1

−1 −2

)
. (L194)
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Its characteristic polynomial is obtained via Q(λ) = (λ + 1)2 with two degenerate zeros λ = −1.

The corresponding eigenvector equation,
(

1 1

−1 −1

)(
v1

v2

)
=

(
0

0

)

yields (always up to normalization) only one solution, v1 = (1,−1)T . We aim to transform A into

its Jordan representation A′ = ( 1 a
0 1 ), where a is a parameter to be determined. To this end we

consider the ansatz for the transforming matrix T−1 = (v1,w), where v1 is A’s eigenvector and

and w a complementing vector of the new basis which also remains to be determined. The equation

fixing w and a then is given by TAT−1 = A′. It is a straightforward exercise to compute T−1 and

to write out the matrix equation above in terms of four equations for the coefficients of TAT−1. A

solution of these equations is given by a = 1, w1 = 1 and w2 = 0. Substituting this into the defining

equation, we obtain
(

0 −1

1 1

)(
0 1

−1 −2

)(
1 1

−1 0

)
=

(
−1 1

0 −1

)
,

as can be checked by direct matrix multiplication. The matrix on the r.h.s. is the Jordan represen-

tation of A. The computation of general Jordan representations generalizes the above program to

the solution of systems of linear equations of higher order.

Matrix diagonalization recipe

We are now in a position to discuss the algorithm for diagonalizing a matrix A ∈ mat(n, n,C)
in concrete terms. To diagonalize,

1. Compute the characteristic polynomial Z(λ), then

2. Find its zeros, λi. If the eigenvalues are all different then the matrix is diagonalizable. In
this case, find the eigenvectors by solving the linear systems (A− λi1)vi = 0.

3. The matrix T = (v1, . . . ,vn) then describes the transformation into a diagonal form
T−1AT = D ≡ diag(λ1, . . . , λn).

4. Check that no mistakes have been made by explicit verification of the matrix equation of
the previous step.

EXAMPLE Consider the 3 × 3 matrix A given in Eq. (L129). The zeros of its characteristic

polynomial (L190) are given by z0 = 0, z1 = 1, and z2 = −2, i.e.

D = diag(0, 1,−2).

Solving the equations (A− zi1)vi, we find (check!)

v1 =




1

1

−1


 , v2 =




1

0

−1


 , v3 =



−1

−1
2

3
2


 ,
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and hence

T =




1 1 −1

1 0 −1
2

−1 −1 3
2


 .

The inverse of this matrix has been computed in the example on p. 77 (where it was called A), with

the result

T−1 =




1 1 1

2 −1 1

2 0 2


 .

It may be checked by direct matrix multiplication that TDT−1 = A.

In the case of eigenvalues with degeneracy r, the first step is to find as many eigenvectors
as possible. If r linearly independent eigenvectors v1, . . . ,vr can be found, we include them as
part of our transformation matrix T−1 and A remains diagonalizable. In the exceptional case
where only s < r eigenvectors can be found A is not diagonalizable. It then contains a Jordan
block of size r− s+ 1 which must be computed by procedures similar to those exemplified on
p.L7.4.

The characteristic polynomials of real matrices often have fewer real zeros than their
rank. In such cases they are not diagonalizable in terms of real transformation matrices but
may still be complex-diagonalizable as discussed in the exercise of section L7.4.

One final remark: our discussion above has covered all possible scenarios and this may
somewhat over-emphasize the role played by non-diagonalizable matrices. In fact, most matri-
ces met in physical applications are diagonalizable and this includes the real diagonalizability
of real matrices. The point is that the matrices met in disciplines such as mechanics, electro-
dynamics, or quantum mechanics usually obey conditions which grant diagonalizability from
the outset. For example, real matrices which equal their own transpose, A = AT , or which
obey the condition AT = A−1 are categorically diagonalizable. The characteristic polynomials
of such matrices factorize and even degenerate eigenvalues are not harmful to diagonalizability.
Similar statements apply to complex matrices obeying the conditions A = A† or A† = A−1.
In the next chapter we will discuss the mathematics and some of the applications of matrices
satisfying conditions of this type.

L7.5 Functions of matrices

REMARK This section can be skipped on first reading. It requires familiarity with Taylor series,

chapter C5.

Given a square matrix, A ∈ mat(C, n), the product AA ∈ mat(C, n) is a again a square
matrix. This observation may be interpreted by saying that the complex function f : C →
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C, z 7→ z2 = zz has a natural generalization, which involves generalizing the domain of
definition from the complex numbers to the n-dimensional square matrices, f : mat(C, n)→
mat(C, n), A 7→ AA. We denote this function by the same symbol f to keep the notation
slim.

This idea can be extended to arbitrary functions f : C → C, z 7→ z2 possessing a Taylor
expansion around z = 0. Given the Taylor series representation,

f(z) =
∞∑

n=0

f (n)(0)

n!
zn,

we define a function f : mat(C, n)→ mat(C, n), A 7→ f(A) by

f(A) =
∞∑

n=0

f (n)(0)

n!
An, (L195)

where A ∈ mat(C, c), and

An ≡ AA . . . A︸ ︷︷ ︸
n times

, and A0 ≡ 1.

For example, the exponential function of a matrix is now defined as exp(A) =
∑

n
An

n!
, etc.

In many ways, one may work with functions of matrices as with ordinary functions. However,
care must be exercised not to apply function relations which rely on the commutativity of
numbers. For example, the relation exp(z+z′) = exp(z) exp(z′) does not extend to matrices,
exp(A+B) 6= exp(A)+exp(B) in general. The origin of the inequality can be understood by
separate Taylor expansion of the two sides of the (in)equality in A and B up to second order.
For the l.h.s. we have 1+(A+B)+ 1

2
(A+B)2+· · · = 1+(A+B)+ 1

2
(A2+AB+BA+B2)+. . . ,

while the r.h.s. yields (1+A+ 1
2
A2+. . . )(1+B+ 1

2
B2+. . . ) = 1+(A+B)+ 1

2
(A2+2AB+B2).

The two expressions are different, unless the matrices A and B commute, AB = BA. The rule
of thumb is that functions of a single matrix, f(A), behave like ordinary functions (exp(A +
A) = exp(A) exp(A)), etc., because the commutativity issue does not arise. However, when
functions of different matrices appear, one has to be careful.

The function of a matrix becomes rather easy to evaluate if we know the matrix in diagonal
form, A = TDT−1. In this case, An = (TDT−1)(TDT−1) . . . (TDT−1) = TDnT−1, where
Dn is a diagonal matrix containing the nth power, λni , of A’s eigenvalues on its diagonal. The
matrix function can now be evaluated as

f(A) = T−1

( ∞∑

n=0

f (n)(0)Dn

)
T = T−1f(D)T, (L196)

where f(D) = diag(f(λ1), . . . , f(λn)) is a diagonal matrix containing on its diagonal the
complex function f(z) evaluated on the eigenvalues λi.
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REMARK In this chapter minor differences between real and complex vector spaces need to be

addressed. To avoid repetition, we discuss both cases in parallel.

In both physics and mathematics we often encounter linear maps preserving the scalar product
between vectors. Simple examples of such transformations include the rotation or reflection
of vectors. In quantum mechanics, linear maps of functions (cf. chapter L10) which do not
alter a scalar product defined on the space of functions, Eq. (L218) play a distinguished role,
etc. This chapter will introduce the mathematical features of scalar product preserving maps.
Specifically, we will see that these maps are much easier to work with than generic linear maps.

L8.1 Orthogonal and unitary maps

The defining feature of a scalar product preserving map is that

∀v̂, ŵ ∈ V, 〈Âv̂, Âŵ〉 = 〈v̂, ŵ〉. (L197)

Depending on whether V is complex or real, maps obeying this criterion are called unitary or
orthogonal maps, respectively.

Unitary (orthogonal) maps have a trivial kernel. The reason is that for every non-vanishing
vector v̂ we have ‖Âv̂‖2 = 〈Âv̂, Âv̂〉 = 〈v̂, v̂〉 = ‖v̂‖2 6= 0, i.e. the image Âv̂ cannot be the
null-vector. From our discussion above we conclude that unitary (orthogonal) maps are
invertible.

Given two unitary or maps, Â, B̂, the product ÂB̂ is again unitary (orthogonal), since

〈ÂB̂v̂, ÂB̂ŵ〉 = 〈Â(B̂v̂), Â(B̂ŵ)〉 = 〈B̂v̂, B̂ŵ〉 = 〈v̂, ŵ〉.

Similarly, the inverse of an unitary (orthogonal) map Â is also unitary (orthogonal);

〈Â−1v̂, Â−1ŵ〉 = 〈Â(Â−1v̂), Â(Â−1ŵ)〉 = 〈v̂, ŵ〉,

where the unitarity (orthogonality) of Â was used. Finally, the unit map is trivially orthogonal
(unitary). We conclude the set of unitary (orthogonal) maps define a group embedded in the

107
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larger group of invertible maps. These groups are denoted the unitary group, U(n), and the
orthogonal group, O(n), respectively.

We finally note that linear maps which are element of the unitary group are frequently
denoted by Latin letters starting with the Û , V̂ , ... ∈ U(n) and elements of the orthogonal
group as Ô, P̂ , Q̂, ... ∈ O(n).

L8.2 Orthogonal and unitary matrices

Definition

Let us now explore what unitarity (orthogonality) of Û (Ô) implies for the associated
matrices U (O). Given that we work in an inner product space, it is natural to work with an
orthonormal basis, 〈êi, êj〉 = δij (the generalization to a non-orthonormal basis is addressed
in the info block on p.111 below). The scalar product of two vectors is then given by (cf.
Eq. (L60)) 〈v̂, ŵ〉 = viδijw

j. Representing the coefficients of Û v̂ as (Uv)l = U l
iv
i1 and using

U l
iv
i = U l

i v
i the unitarity condition (L197) becomes

U l
i v

i δlm U
m
jw

j = viδijw
j. (L198)

This condition must hold for arbitrary v and w which implies the matrix condition U l
i δlm U

m
j =

δij. Recalling the definition (L108) of the adjoint matrix, (U †) li = U l
i we may write it as

(U †) li δlmU
m
j = δij. (L199)

To simplify the notation, we define

(U †)ij ≡ δik(U †) l
k δlj.

Conceptually, this definition changes covariant indices to contravariant ones (and vice versa).
This is done by application of the index raising operation Eq. (L55) with standard metric
gij = δij. Note that the index-raising operation does not affect the concrete values of matrix
elements, (U †)ij = (U †) ji , element-wise. For example, for

U =

(
a b
c d

)
, U † = U

T
=

(
a c

b d

)

with (U †)1
2 = (U †) 2

1 = c, etc. (In the info section on p. 111 we will extend the definition of
unitarity to the case of non-standard scalar products, gij 6= δij. For such scalar products, the
index-positioning becomes essential, and (U †)ij 6= (U †) ji .)

1

Recall that v and A refer to the Cn-component representation and the matrix representation of the vector
v and the linear map Â in a given basis.
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The unitarity condition now assumes the form

(U †)ikU
k
j = δij. (L200)

Matrices obeying this condition are called unitary matrices. In a similar manner the orthog-
onality condition of a real map, Ô, implies the matrix relation (OT ) il δijO

j
m = δlm (i.e. the

same as above, only that the complex conjugation is absent). In an analogous manner, we
raise/lower indices as (OT )ij = δik(OT ) l

k δlj to obtain the condition as

(OT )ik O
k
j = δij. (L201)

Matrices obeying this condition are called orthogonal matrices. The essential statement
made by Eqs. (L200) and (L201) is that

The adjoint, U †, and the transpose, OT , of a unitary matrix U and an orthogonal
matrix, O, respectively, equal their inverse. Conversely, a matrix whose inverse is

given by its adjoint (transpose) is unitary (orthogonal).

In other words, the inverse of a unitary (orthogonal) matrix is obtained without any elaborate
calculation. Consider, for example, the matrix U = 1√

2
( 1 i

i 1 ). It is straightforward to verify

that it is unitary: U † = 1√
2

(
1 −i
−i 1

)
obeys the condition (L200) and the matrices are inverse

to each other, U †U = 1.
In an index-free notation the equations defining unitarity and orthogonality, respectively,

read

Ô orthogonal ⇔ OTO = 1,

Û unitary ⇔ U †U = 1.
(L202)

These equations imply an economic way to test for the unitarity (orthogonality) of a
matrix: build the adjoint (transpose), U † (OT ), and check whether UU † = 1 (OOT = 1).
While unitarity (orthogonality) cannot usually be ‘seen’ with the naked eye (is U = 1√

2
( i 1

1 i )

unitary?) this operation can be performed with relatively little effort.
We finally mention that the non-covariant index representation of the unitarity/orthogonality

conditions reads as

U †ilUli = δij, OT
ilOlj = δij, (L203)

where U †ij = Uji and OT
ij = Oji.

The group of unitary and orthogonal matrices

We have seen that the abstract unitary and orthogonal maps form subgroups U(n) and
O(n) of the group of invertible linear maps. Likewise, the sets of unitary and orthogonal
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matrices define subgroups of the group of invertible matrices, GL(n,C) and GL(n,R). These
groups are denoted by U(n) and O(n), respectively, i.e. by the same symbol as their abstract
siblings.

2
They are called the group of unitary and orthogonal matrices, respectively, and

defined as

U(n) = {U ∈ GL(n,C)|U † = U−1},
O(n) = {O ∈ GL(n,R)|OT = O−1}. (L204)

Their group property follows from the fact that they are matrix representations of of the
groups U(n) and O(n) introduced in the previous section (think about this point). However,
it is a good exercise to check the group criteria explicitly, i.e. that the product of two unitary
(orthogonal) matrices is again unitary (orthogonal), that the same holds for the inverse, and
that the unit matrix lies in each group.

INFO As mentioned in the beginning of the chapter, orthogonal and unitary maps play an important

role in physics. The reason being that there are many linear transformation which preserve the norm

of vectors. Important examples include rotations of vectors, reflections of vectors at a point or at a

plane and others.

Consider, for example, the case of a two-dimensional real vector space, n = 2. The matrix

ye

R(θ) =

(
cos θ − sin θ

sin θ cos θ

)
(L205)

describes a rotation of vectors by the angle θ. This can be seen by applying

R(θ) to the vector (1, 0)T representing the unit basis vector in x-direction.

The inverse of this matrix is given by R−1(θ) = R(−θ) since it must rotate by

the same angle in opposite direction. Using cos(−θ) = cos θ and sin(−θ) =

− sin θ we find that

R−1(θ) =

(
cos θ sin θ

− sin θ cos θ

)
= RT (θ). (L206)

(Check by matrix multiplication that RR−1 = 1.) The reflection of vectors at the origin, x 7→ −x,

another orthogonal map, is represented by the negative of the unit matrix, −1. For example, a 90deg

rotation (θ = π/2) followed by a reflection and another 90deg rotation is not expected to have any

effect. Show this by verifying that R(π/2)(−1)R(π/2) = 1.

The most important applications of unitary maps in physics are found in quantum mechanics.

A brief teaser introduction to the description of quantum phenomena in terms of unitary maps will

be given on pp L9.2 after a some more material has been introduced.

2

Do not be confused by the double-usage of the symbol U(n). In the abstract context, it denotes the set
of linear maps of an n-dimensional complex vector space obeying the criterion (L197). In the matrix-context
it denotes a set of matrices acting in the standard space Cn and obeying the condition (L202). Once a basis
has been chosen, each element of the abstract U(n) has a corresponding element of the matrix U(n), and this
assignment is compatible with the rules of group composition. The groups are therefore ‘almost identical’,
and it is justified to denote them by the same symbol.
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INFO In applications, we sometimes need to work with non-orthonormal bases {v̂i} for which the

scalar product 〈v̂i, v̂j〉 = gij defines the elements of a metric tensor. In section L3.3 we saw that in

this case we should work with a non-standard Cn-scalar product 〈v,w〉 = vigijw
j .

Representing the coefficients of Û v̂ as (Uv)l = U liv
i,

3

, the unitarity condition (L197) becomes

U li v
i glm U

m
jw

j = vigijw
j . Comparison with Eq. (L198) shows that the presence of a metric tensor

amounts to a replacement δij → gij . Accordingly, the condition (L199) for the adjoint of the

transformation now reads

(U †) il gijU
j
m = glm. (L207)

The difference to the orthonormal relation (L199) is the generalization δij → gij . Again we observe

that the appearance of spurious Kronecker-δs in the covariant notation signifies a formula which

generalizes as before if a metric enters the stage. This should be considered a strength of the

notation. For example, the non-covariant formulation of unitarity, Eq. (L203) does not contain any

‘hints’ as to how its generalization to a non-orthonormal basis looks like.

INFO The simplest representative of a signature-r indefinite metric is the diagonal tensor η =

diag(1, . . . , 1,−1, . . . ,−1), containing r elements 1 and n−r elements −1 on its diagonal. Complex

matrices preserving this scalar product obey the relation (U †) il ηijU
j
m = ηlm. This is the defining

relation of the specical unitary group, U(r, n − r). The analogous relation for the real case,

(OT ) il ηijO
j
m = ηlm, defines the special orthogonal group O(r, n − r). As an example, consider

n = 2 and r = 1. The condition

ΛT
(
1

−1

)
Λ =

(
1

−1

)
(L208)

is satisfied by matrices of the form Λ =
(

coshα sinhα
sinhα coshα

)
. A group of great physical significance is the

Lorentz group, O(1, 3). This is the group of real matrices satisfying ΛT ηΛ = η for the Minkovski

metric introduced on p. 45, for which r = 1, n = 4. Elements, Λ ∈ O(1, 3), of the Lorentz group

are called Lorentz transformations and play an important role in the theory of special relativity.

Eigenvalues

Unitary matrices are invertible and therefore possess non-vanishing eigenvalues. However
there is an even stronger statement constraining the eigenvalues of unitary matrices: assume
Uv = λv and use that 〈v,v〉 = 〈Uv, Uv〉 = 〈λv, λv〉 = |λ|2 〈v,v〉, which requires |λ|2 = 1:

The n eigenvalues, λn, of a unitary matrix are complex unit-modular numbers,
λn = eiφn , with real φn ∈ [0, 2π].

The same argument applied to an orthogonal matrix, O, shows that its eigenvalues must
have unit modulus, too, |λ| = 1. However, these eigenvalues need not be real, i.e. there is

3

Recall that v and A refer to the Cn-component representation and the matrix representation of the vector
v̂ and the linear map Â in a given basis.
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no guarantee that the characteristic polynomial of an orthogonal matrix has real zeros. For
example, the orthogonal matrix ( 0 1

1 0 ) has the two imaginary unit-modular eigenvalues ±i. If
an orthogonal matrix has real eigenvalues, they must equal ±1, the only two real numbers
with modulus one.

L8.3 Special unitary and special orthogonal matrices

The determinant of a matrix equals the product of its eigenvalues. Above we have seen
that for unitary (orthogonal) matrices the latter are unit-modular numbers. Since the product
of unit-modular numbers is again unit-modular (why?), we know that

4

The determinant of a unitary matrix is a complex number of unit modulus,
det(U) = eiφ, where φ ∈ [0, 2π] is real. Likewise, the determinant of an
orthogonal matrix is a real number of unit modulus, i.e. det(O) = ±1.

It is instructive to prove this statement without reference to the eigenvalues. To this end, take a
unitary matrix, U , define z = det(U), and compute |z|2 = det(U)det(U) = det(U) det(U †) =
det(UU †) = det(1) = 1 where Eq. (L172) has been used. The same construction applied to
an orthogonal matrix shows det(O) = ±1.

Unitary (orthogonal) matrices possessing the special value det(U) = 1 (detO = 1) are
called special unitary (orthogonal) matrices. The unit-determinant property is preserved
under matrix multiplication, det(UV ) = 1 for det(U) = det(V ) = 1, the building of the
inverse, det(U−1) = 1, for det(U) = 1, and the unit-matrix of course has determinant one.
This means that the set of special unitary (orthogonal) matrices forms a subgroup of the set
of unitary (orthogonal) matrices known as the special unitary (orthogonal) group, SU(n)
(O(n)),

SU(n) ≡ {A ∈ U(n)|A† = A, detA = 1},
SO(n) ≡ {A ∈ O(n)|AT = A, detA = 1}. (L209)

We note that the special unitary group can also be understood as a subgroup of SL(n,C),
i.e. the group of unit-determinant (but not necessarily unitary) complex matrices. Similarly,
the special orthogonal group can be understood as a subgroup of SL(n,R), containing real
matrices of unit determinant, which are not necessarily orthogonal.

INFO Special unitary matrices play an important role in physics, notably in quantum mechanics and

particle physics. For example, the quantum mechanics of spin (which is the quantum generalization

of classical angular momentum) is mathematically described in terms of SU(2). () The groups SU(2)

and SU(3) played a decisive role in the sixties of the past century when their mathematical structure

4

Notice that even if an orthogonal matrix has no real eigenvalues its determinant is real by construction. At
the same time, the determinant is the product of n (possibly complex) unit modular eigenvalues. Combining
these two facts we conclude that the product must be real and unit-modular, i.e. it must equal ±1.
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was linked to the properties of known elementary particles and the so-called standard model of

matter emerged.

The groups SO(2) and SO(3) feature in classical mechanics where they describe the mathe-

matics of rotations in two- and three-dimensional space, respectively. We have argued above that

rotations are mathematically represented by orthogonal matrices. In fact, they are special orthogonal

matrices. This follows from the fact that any rotation specfied in terms of a set of rotation angles

can be continuously ‘deformed’ to a unit operation by reducing the angles to zero. Consider, for

example, the rotation matrix R(θ) defined in Eq. (L205). It can be deformed to the unit matrix

by a continuous reduction of θ to zero. The unit matrix has unit determinant, and so must have

any continuous deformation of it. A sudden ‘jump’ to a determinant −1 would be in conflict with

continuity. The above rotation matrix has unit determinant, , R(θ) ∈ SO(2), and so does any other.

By contrast, matrices describing reflections, for example, R =
(

1
−1

)
describing a reflection at the

x-axis (why?) can have determinant −1.

Summarizing, the set of complex (real) matrix groups encountered so far contains mat(n, n,C) ⊃
GL(n,C) ⊃ U(n), SL(n,C) ⊃ SU(n) (and analogously for the real case). There are a few
more groups of relevance to the physics curriculum, however, the ones above are arguably the
most important ones. The hierarchical relation between them is illustrated in Fig. L16.

Figure L16: The most imortant matrix subgroups of mat(n, n,C). The ‘smallest’ group SU(n) =
SL(n,C) ∩ U(n) is the intersection of the groups of unit determinant, SL(n,C), and the unitary
group, U(n), respectively. For the real case, replace C→ R and U→ O.

INFO For any unitary matrix U with determinant det(U) = eiφ, a matrix of unit determinant may be

defined as U ′ = e−iφ/n U . This follows from detU ′ = det(e−iφ/nU) = (e−iφ/n)n det(U) = e−iφeiφ =

1, where Eq.(L177) has been used. For example, the unitary matrix U = 1√
2

(
i 1
1 i

)
has determinant

eiπ = −1. Multiply it by e−iπ/2 = −i to obtain the special unitary matrix U ′ = 1√
2

(
1 −i
−i 1

)
. Since

matrices differing by a multiplicative factor are ‘almost equivalent’, the manipulation above is often

used to pass from a unitary matrix to its slightly simpler unit-determinant version.
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For orthogonal matrices, this prescription does not work since det(O)−1/n = (−1)−1/n is not a

real number so multiplication by it takes us outside the set of real matrices.

L8.4 Orthogonal and unitary basis changes

In section L5.6 we considered a basis transformation, T̂ , from a basis {vi} to a new
basis {v′i}, and found that finding the representing matrix of the inverse transformation,
T̂−1, generally requires inverting the matrix T . Much less work is required if we work with
orthonormal bases, i.e. if both the old, {ei}, and the new basis {e′i} are orthonormal. In this
case, the transformation matrix ei = e′jT

j
i preserves the scalar product, 〈ei, ej〉 =

〈
e′i, e

′
j

〉
=

δij. This means that the transformation matrix is unitary (orthogonal) and that its
inverse is obtained ‘for free’ just by building T † (T T ).

EXERCISE Apply elementary trigonometry to compute the matrix describ-

ing the transformation between the basis vectors shown in the figure. Verify

its orthogonality by building the transpose and checking that Eq. (L201)

holds.

To make these statements more concrete, let us write T ≡ U to
emphasize the unitarity of the transform and consider the inverse relation e′i = ej(U

−1)ji.
Multiplication of Eq. (L200) from the right by U−1 yields (U−1)ij = (U †)ij, and this gives us
the transformation relations

ej = e′k U
k
j, e′j = ek (U †)kj. (L210)

For the orthonormality preserving transformations T ≡ O of a real vector space, these
relations are to be replaced by

ej = e′k O
k
j, e′j = ek (OT )kj. (L211)
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Besides the unitary (orthogonal) maps there exists a second family of
linear maps defined in relation to the scalar product. These so-called Hermitian (symmetric)
maps are of great importance to physics, notably to quantum mechanics (see the info section
on p.118 for a brief discussion). Following the same strategy as in the previous chapter we
first define the hermiticity (symmetry) of linear maps to then discuss the structure of their
associated matrices.

L9.1 Hermitian and symmetric maps

We call a linear map Â : V → V of a complex (real) inner product space a Hermitian
(symmetric) linear map, if

∀v̂, ŵ ∈ V, 〈Âv̂, ŵ〉 = 〈v̂, Âŵ〉. (L212)

Unlike with unitary (orthogonal) maps the relation above does not define a group property:
if Â, B̂ are Hermitian (symmetric) then we know that 〈ÂB̂v̂, ŵ〉 = 〈B̂v̂, Âŵ〉 = 〈v̂, B̂Âŵ〉.
However, this does not equal 〈v̂, ÂB̂ŵ〉, unless ÂB̂ = B̂Â. So, in general, the composition of
two Hermitian (symmetric) maps, ÂB̂, is not Hermitian (symmetric). However, the absence
of a group structure notwithstanding, the matrices representing Hermitian (symmetric) maps
possess strong mathematical structure to be discussed in the next section:

L9.2 Hermitian and symmetric matrices

Definition

The availability of a scalar product suggests to representing Hermitian (symmetric) linear
maps in an orthonormal basis {êi}. With (Av)i = Aijv

j the condition 〈Av,w〉 = 〈v, Aw〉
then takes the form

Aij v
jδikw

k = vjδjlA
l
kw

k.
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This must hold for arbitrary v,w which requires Aijδik = δjlA
l
k. Recalling the definition of

the adjoint matrix (L108), and multiplying with δmj we obtain

δmj(A†) i
j δik ≡ (A†)mk = Amk. (L213)

The same construction carried out for a symmetric matrix acting on a real vector space shows
that (AT )mk = Amk. We have thus found that

The matrices, A, representing Hermitian (symmetric) linear maps in an orthonormal
basis are equal their adjoint (transpose), Aij = (A†)ij (Aij = (AT )ij).

EXAMPLE The matrices

A ≡



−1 1 1

1 −1 1

1 1 −1


 , B ≡

(
0 −i

i 0

)
, (L214)

are examples of a Hermitian and a symmetric matrix, respectively.

Eigenvalues and determinant

All n eigenvalues, λ, of a Hermitian (symmetric) matrix are real. To see this, let v be the
corresponding eigenvector and compute λ〈v,v〉 = 〈v, λv〉 = 〈v, Av〉 = 〈Av,v〉 = 〈λv,v〉 =
λ〈v,v〉. Since 〈v,v〉 6= 0, the first and the last entry in this chain of equalities require
λ = λ. The result also implies that unlike a generic real matrix a symmetric matrix has n real
eigenvalues. We know that its characteristic polynomial has n zeros λn (which for a generic
matrix may be complex). However, the argument above shows that these solutions must be
real. To summarize,

A Hermitian (symmetric) matrix of an n-dimensional complex (real)
vector space has n real eigenvalues.

As a corollary we observe that

The determinant of a Hermitian matrix is real.

This is because it is the product of its n real eigenvalues. (Of course, if a symmetric matrix
is real, then its determinant is too.)

EXERCISE Show that the eigenvalues of the symmetric matrix A of Eq. (L214) are given by

(1,−2,−2) and those of the Hermitian matrix B by (1,−1).
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Diagonalization

Hermitian (symmetric) matrices have the important property that they can always be diag-
onalized. The transformation matrices effecting the diagonalization are unitary (orthogonal).
These statements are proven in the info section below.

However, not only can these be diagonalized as a matter of principle, it also turns out that
the practical diagonalization procedure is much simpler than that for generic matrices. The
key simplification lies in the fact that

Eigenvectors v1 and v2 corresponding to different eigenvalues λ1 6= λ2 of a
Hermitian (symmetric) matrix are perpendicular to each other 〈v1,v2〉 = 0.

To show this, consider two different eigenvalues λ1, λ2. Then compute λ1〈v2,v1〉 = 〈v2, λ1v1〉 =
〈v2, Av1〉 = 〈Av2,v1〉 = λ2〈v2,v1〉, or 0 = (λ1−λ2)〈v2,v1〉. Since λ1−λ2 6= 0, this equality
requires 〈v2,v1〉 = 0. This observation suggests starting the diagonalization by computing as
many eigenvectors v̂i of different eigenvalues λi. Choosing these vectors to be normalized, we
know that they form an orthonormal set, 〈v̂i, v̂j〉 = δij. If all eigenvalues are different they
form a basis and the matrix T = (v1, . . . ,vn) transforms A into diagonal form, D = T−1AT .
The procedure becomes a little more complicated if degenerate eigenvalues λ of multiplicity
l > 1 are present. The proven diagonalizability of A means that l linearly independent eigen-
vectors v̂1, . . . , v̂l with eigenvalue λ exist, i.e. that we do not run into the same complications
that characterize the Jordan matrices discussed on p. 103. In situations with degenerate eigen-
values we therefore need to find l linearly independent solutions of the equation (A−λ1)v = 0
and then construct an orthonormal basis in the l-dimensional subspace of those solutions.

INFO A proof of principle showing the diagonalizability of Hermitian (symmetric) matrices
goes as follows. Let A be a Hermitian matrix and pick one of its eigenvalues, λ1. Denote the

corresponding (normalized) eigenvector v̂1. Next define V1 ⊂ V to be the subspace of V containing

all vectors perpendicular to v̂1, i.e. ∀w ∈ V1, 〈w, v̂1〉 = 0. The key observation now is that A acts

within V1, i.e. for w ∈ V1, Aw ∈ V1 is perpendicular to v̂1 too. To see this, compute 〈v̂1, Aw〉 =

〈Av̂1,w〉 = 〈λ1v̂1,w〉 = λ1〈v̂1,w〉 = 0, where in the last step the assumed orthogonality of w and

v1 was used.

We may now iterate the procedure by picking a second eigenvector λ2 and computing a normalized

eigenvector v̂2 ∈ V1. Then determine the subspace of V2 ⊂ V1 of all vectors in V1 perpendicular to v̂2

(and automatically perpendicular to v̂1 because we are working in V1). In each step, the dimension

of the spaces V1, V2, . . . reduces by one. Continue the procedure until the one-dimensional vector

space Vn−1 ⊂ Vn−1 ⊂ · · · ⊂ V1 ⊂ V with its unique normalized basis vector vn and eigenvalue λn
have been determined.

As a result of this procedure, a basis of orthonormal eigenvectors, 〈v̂i,vj〉 = δij is obtained. This

means that the corresponding transformation matrix T ≡ (v̂1, v̂2, . . . , v̂n) is unitary (orthogonal), cf.

section L8.4. However, while this procedure is straightforward in principle it requires us to determine

subspaces of vectors perpendicular to a set of chosen vectors. This can be cumbersome in practice

and for this reason Hermitian (symmetric) are usually diagonalized differently, as discussed in the

main text.
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EXERCISE Apply the procedure above to show that the matrices given in Eq. (L214) are diagonal-

ized by

A = TDT T , D = diag(1,−2,−2), T =




1√
3

1√
6

1√
2

1√
3

1√
6
− 1√

2
1√
3
− 2√

6
0




and

B = TDT †, D = diag(1,−1), T =
1√
2

(
1 1

i −i

)
. (L215)

We conclude this section by summarizing the most essential properties of Hermitian (sym-
metric) matrices:

. Every Hermitian (symmetric) matrix is diagonalizable.

. Its eigenvalues, {λi}, are real, and

. an orthonormal basis of eigenvectors can always be found.

. The transformation matrices, T , to an orthonormal basis of eigenvectors are unitary, T−1 =
T † (symmetric, T−1 = T T ), which means that

. Hermitian (symmetric) matrices can be represented as A = TDT †, D = diag(λ1, . . . , λn).

Figure L17: Cartoon of a one-dimensional crystal. Individual atoms are labeled by n. The components
ψi of a quantum mechanical state are a measure of the probability amplitude to find the state at
site n, and |ψi|2 is the corresponding probability.

INFO Although this is not the place for an in-depth discussion let us motivate the formal structures

introduced above by a brief outlook to the application of linear algebra in quantum mechanics.

We begin by formulating a few key axioms of quantum mechanics. These are all statements that

cannot be proven (much like Newton’s laws of classical mechanics cannot be ‘proven’) from more

fundamental principles. They have been formulated in axiomatic terms on the basis that they

successfully explain experimental observation.
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. The physical state of a system is described in terms of a unit normalized vector ψ ∈ V , 〈ψ,ψ〉 = 1

defined in a complex vector space (cf. section L3.4). The dimension of that space, N , may be

infinite, in which case a number of extra conditions need to be imposed. Vector spaces equipped

with these properties are called Hilbert spaces (see chapter L10 for more information). For all

practical purposes we may think of a Hilbert space as a complex inner product space. Following

standard conventions we denote Hilbert space state vectors, ψ, in a non-boldface (ψ) notation.

Their components, ψj , are generally written as subscripts, i.e. in non-covariant notation.

Consider, for example, a ‘one-dimensional crystal’ consisting of N equally spaced atoms, as shown

schematically in the bottom of Fig. L17. We assume the crystal to be closed into a ring, i.e. atom

no N is adjacent to atoms number N − 1 and 1. The Hilbert space representing this system then

is CN . Our ‘system’ in this context is an electron, i.e. a quantum particle which may move in

the crystal by hopping from one atom to the next.

. The components ψj are a measure for the so-called probability amplitude that the particle is

located at atom no. j, and the real number |ψj |2 gives us the actual probability to find it at

j in a measurement. In this context the jth standard basis vector (0, . . . , 1, . . . , 0)T describes

a state in which the electron is found with certainty (probability one) at site no. j. A general

state describes a ‘superposition’ in which the probability to find the electron is delocalized over

different sites with probability |ψj |2. The unit normalization 1 = 〈ψ,ψ〉 =
∑

j |ψj |2 means that

these probabilities add to unity, i.e. the particle will be found somewhere in the crystal.

. Physical observables, A, i.e. quantities which can be measured (position, momentum, angular

momentum, etc.) are described by Hermitian linear maps, Â, acting in V . In the present

context these maps are called (Hilbert space) operators, and their eigenvectors, ψn are called

eigenstates (Eigenzustand). An axiom of quantum mechanics states states that a measurement
of the observable must yield an eigenvalue, λn, of Â as a result.

For example, the position operator, X̂, describing the position of a quantum particle in the

lattice is described by a diagonal matrix

X =




1

2

3
. . .

N − 1

N



.

When we make a position measurement we find the electron at one of the N possible sites, i.e.

we measure one of the eigenvalues j = 1, . . . , N of the position operator.

However, before the measurement it cannot be known with certainty where the electron will be

found – the probabilistic nature of quantum mechanics. The best we can achieve is statements

about the expected result, denoted 〈A〉, of the measurement of A. For example, an electron with

probability amplitude ψ1 = ψ2 = 1√
2

, ψj>2 = 0 will be at site 1 and 2 with equal probability

|ψ1,2|2 = 1/2. In this case, we expect a position measurement to yield the result 1 or 2 with equal

probability, and the expected value of the measurement, which by definition equals the average
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over many repeated measurements, will be 1× 1
2 + 2× 1

2 = 1.5. Notice that the expected value

may take fractional values even if each measurement yields an integer result.

An axiom of quantum mechanics condenses all this into the mathematical statement that the

expectation value, 〈A〉, of the measurement of an observable, A, on a system in a state ψ

is given by the scalar product,

〈A〉 = 〈ψ, Âψ〉.

The hermiticity of Â guarantees that this yields a real value, 〈ψ, Âψ〉 = 〈Âψ, ψ〉 = 〈ψ, Âψ〉, as

we require of a probability. The meaning of the formula is easiest to interpret in a basis in which

Â assumes a diagonal form. For example, the position operator acts on a state as (X̂ψ)j = jψj ,

i.e. by multiplication of ψ by the diagonal matrix given above. We then obtain the expectation

value as

〈X̂〉 = 〈ψ, X̂ψ〉 =
∑

j

ψj(X̂ψ)j =
∑

j

j|ψj |2.

This formula expresses the fact that the result j is found with probability |ψj |2 and that the

expected value is the sum over all these contributions. For the state mentioned above, application

of this formula indeed yields 〈X̂〉 = 1 1√
2
2 + 2 1√

2
2 = 1.5.

. Another axiom of quantum mechanics states that a measurement of an observable A on a state ψ

will affect that state. Assume that a the measurement yielded a particular eigenvalue λn. Quan-

tum mechanics then says that right after the measurement the system will be in the corresponding

eigenstate ψn. Unlike with classical physics, where measurements can be made purely observatory

and non-invasive, a quantum measurement on a state ψ causes a state change ψ → ψn.

For example, the measurement of an electron at position j means that after the measurement the

system is in the state described by the jth standard vector (0, . . . , 1, . . . , 0). This reflects that

after the measurement we know with probability one that the electron is at j.

. In classical physics the instantaneous position, x, of a particle does not contain the full information

about its motion. We also need to know its velocity, v, or momentum, p = mv, where m is the

particle mass. The pair (x,p), fully specifies the state of the particle in the sense that knowledge

of (x,p)(0) at an initial time t = 0 is sufficient information to solve Newton’s equations and to

predict the future motion (x,p)(t).

To discuss how these structures carry over to the quantum world we turn back to our lattice exam-

ple. Without explanation we state that the Hermitian (check!) matrix representing the Hermitian

operator P̂ of the observable ‘momentum’ acts on quantum states as (Pψ)j = 1
2i(ψj+1−ψj−1).

The corresponding matrix reads

P =
1

2i




0 1 −1

−1 0 1

−1 0 1
. . .

−1 0 1

1 −1 0



,
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where all empty positions are filled with zeros.
1

We may now ask what values possible values a quantum measurement of momentum might

yield. According to the measurement axiom formulated above these must be eigenvalues of the

matrix P , i.e. to answer the question we need to diagonalize the latter. Let us denote the

eigenstates of the momentum operator by ψl, l = 1, . . . , N i.e. P̂ψl = λlψl, where λl is the

eigenvalue. To find these states, let us start from an eigenvector ansatz, ψ = c exp(zl), where

c, z are complex parameters. If we substitute this into the matrix equation, we find that for

site-indices inside the system, j 6= 1, N , the eigenvector condition is satisfied,

(P̂ψ)j =
1

2i
(ψj+1 − ψj−1) =

c

2i

(
ez(j+1) − ez(j−1)

)
=

1

2i

(
ez − e−z

)
ψj , 1 < j < N,

with eigenvalue λ = (ez − e−z)/2i. A constraint for the parameter z follows from the condition

that the equation hold at the boundaries, too:

(P̂ψ)N =
1

2i
(ψ1 − ψN−1) =

c

2i

(
ez − ez(N−1)

)
=

c

2i

(
eze−zN − e−z

)
ψN .

The eigenvalue equation is satisfied, provided exp(−zN) = 1. This condition is resolved by the N

different choices z = 2πil/N , where l = 1, . . . , N . These values lead to N different eigenvectors

and eigenvalues

ψl,j =
1√
N
ei 2πl

N
j , λl = sin(2πl/N),

where we have chosen the second free parameter, c = 1/
√
N to obtain normalization,

∑
l |ψl,j |2 =

1, and (ez − e−z)/2i = sin(2πl/N) was used. These N different states form a basis, the

eigenbasis of the momentum operator.

Physically, the axioms of quantum mechanics imply that a measurement of the momentum on

a lattice can yield only the discrete values λl = sin(2πl/N), l = 1, . . . , N . Unlike in classical

physics, the momentum of a quantum particle moving on a ring does not assume arbitrary values

but is quantized. The full set of real eigenvalues of an hermitean operator is called its spec-
trum.

2

Specifically, neighboring eigenvalues in the discrete spectrum of the momentum operator

differ by | sin(2π(l + 1)/N)− sin(2πl/N)| ' | cos(2πl/N)|2π/N = O(N−1) where a first order

Taylor expansion was applied and we used that the cosine is of order unity. This shows how the

quantization becomes more pronounced for ‘small systems’.

The above diagonalization procedure also shows that the eigenstates of the momentum operator

extend over the whole lattice, with components of uniform magnitude |ψk,l|2 = N−1. Now

suppose we had measured the position of the quantum particle and got j0 as an answer (i.e. an

eigenvalue of the position operator X̂). According to the collapse postulate, the state of the

particle immediately after the measurement will be described by the state vector ψj = δj,j0 , a

1

The corner elements 1 and −1 appearing in the momentum matrix describe the action of P̂ on boundary
states: (P̂ψ)N = 1

2i (ψ1 − ψN−1), i.e. the operator takes the difference of neighboring sites as in the ‘inner’
parts of the ring. (The neighboring sites of the terminal site N are N − 1 and 1.)

2

The denotation ‘spectrum’ is physically motivated and reflects that the eigenvalues of operators carrying
physical significance are often determined by spectroscopic methods.
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state concentrated at the lattice site j0. But this is very different from any of the delocalized

momentum eigenstates! Conversely, suppose we had measured the momentum and obtained

any of the eigenvalues sin(2πl/N). After the measurement the particle will then be in the

states ψl which is completely smeared over the lattice. This is very different from any position

eigenstate. These observations show that the observables position and momentum cannot
be simultaneously determined with certainty. The more accurately one is determined, the

more undetermined gets the other. The degree to which the maximizing the precision of one

measurement increases the uncertainty of the other is made precise by Heisenbergs uncertainty
relation which we do not discuss here. In lecture courses of quantum mechanics it is shown how

the ‘incompatibility’ of simultaneous measurements of observables is at the root of most quantum

phenomena.

The discussion above is meant to hint at the connections between the abstract operations discussed

earlier in the text (basis change, matrix diagonalization, etc.) and the phenomena of quantum me-

chanics. For an in-depth development of the the axiomatic of quantum mechanics and its formulation

in terms of linear algebra we refer to advanced lecture courses on quantum theory.

L9.3 Relation between Hermitian and unitary matrices

REMARK This section discusses connections between Hermitian and unitary matrices and can be

skipped at first reading.

Both Hermitian and unitary matrices were introduced with reference to a scalar product. One
may wonder if this means that they have more in common than our so far discussion revealed.
To understand the actual connection between these two sets of matrices, let A be an Hermitian
matrix and consider its exponential

U ≡ exp(iA), (L216)

where the exponential function is defined in Eq. (L195). We claim that U is unitary. To see
this, compute the Hermitian adjoint,

U † =

(∑

n

(iA)n

n!

)†
=
∑

n

((iA)n)†

n!
=
∑

n

(−iA)n)

n!
= exp(−iA) = U−1.

Here, we used (Xn)† = (X†)n, and (iA)† = −iA. In the last equality we noted that
exp(−iA) exp(iA) = 1, i.e. U−1 = exp(−iA). We have thus found that

The exponential of i×(a Hermitian matrix) is unitary.



L9.3 Relation between Hermitian and unitary matrices 123

EXAMPLE Consider the Hermitian matrix A = θ
( −i

i

)
, where θ is a real parameter. Multiplication

by i yields iA = θJ , where the matrix J =
(

1
−1

)
. We observe that J2 = −1, and J2n = (−)n1,

J2n+1 = (−)nJ . From these identities we obtain

exp(iA) =
∑

n

(
1

(2n+ 1)!
(iA)2n+1 +

1

2n!
(iA)2n

)
=
∑

n

(
(−)nθ2n+1

(2n+ 1)!
J +

(−)nθ2n

2n!
1

)
=

= sin(θ)J + cos(θ)1 =
(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)
.

It is straightforward to verify that the resulting matrix is unitary.

In fact, an even stronger statement can be made. A Hermitian matrix, A, of dimension n is
fixed by n2 real parameters. To understand this counting, note that the relation A† = A, or
Aij = Aji requires all n diagonal elements, Aii to be real. The n(n − 1)/2 elements Aij,
i > j, defining the upper right triangle of the matrix can be chosen as arbitrary complex
numbers. The elements of the lower left triangle are then fixed through the above hermiticity
condition. Noting that a complex number contains two real parameters, we conclude that
n+ 2n(n−1)

2
= n2 free real parameters need to be specified to define a Hermitian matrix. For

example, a general two-dimensional Hermitian matrix is of the form A =
(

a b+ic
b−ic d

)
, and thus

described by 4 = 22 real parameters a, b, c, d.
The unitary matrices of dimension n, too, are parameterized by n2 real parameters. This

follows from the fact that the relation U †U = 1, or (U †)ikU
k
i = δij can be understood as

a set of n2 real equations
3

constraining the n2 complex or 2n2 real parameters describing
an arbitrary complex matrix. Each equation effectively fixes one free parameter, so that
the set of unitary matrices is parameterizable in terms of 2n2 − n2 = n2 real parameters.
For example, a two dimensional unitary matrix, U = ( r st u ) is constraint by the condition
U †U = ( r̄ t̄s̄ ū ) ( r st u ) = ( 1

1 ). Building the matrix product, we see that this implies the two
real equations |r|2 + |t|2 = |s|2 + |u| = 1 and a complex one, r̄s + t̄u = 0. (The fourth
component relation is the complex conjugate of the third relation and does not introduce
further constraints). Since a complex relation implies two separate real equations for real and
imaginary part, we have a total of four real equations for the eight real parameters entering
the complex numbers r, t, s, u. This leaves 4 = 22 free real parameters determining a two-
dimensional unitary matrix.

The key observation is that unitary and hermitian matrices of the same dimension contain
equally many free real parameters. We have also seen that for a Hermitian A, U = exp(iA)
is unitary. This suggests that every unitary matrix can be expressed as the exponential of i
times a Hermitian matrix. It is non-trivial to show that this is indeed the case and that (L216)
represents a proper exponential parameterization of the group of unitary matrices.
This representation plays a rather important role in physics. For example, in quantum me-
chanics (see info section above), physical observables are represented by Hermitian matrices,

3

The counting follows from the observation that for i > j, (U†)ikU
k
j = 0 is an equation fixing the complex

number (U†)ikU
k
j . This gives a totality of twice as many, 2n(n − 1)/2 = n(n − 1), real equations. The

equations for i < j are obtained by complex conjugation of those for i > j (why?) and must not be counted
separately. For i = j, (U†)ikU

k
i =

∑
k |U ik|2 = 1 are n real conditions, so that we have a totality of

n+ 2n(n− 1)/2 = n2 real equations.
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the evolution of observables in time is described by unitary matrices, and the exponential rep-
resentation establishes the correspondence between these two descriptions. Another important
consequence of the exponential representation is that a unitary matrix can be factorized as

U = eiA = eiA/NeiA/N . . . eiA/N , (L217)

i.e. as a product of N factors exp(iA/N). (Explain on the basis of the results of section L7.5
why this relation holds.) If N � 1 is very large, the matrices A/N (containing the matrix
elements of A divided by N) are close to zero and an expansion exp(iA/N) ' 1 + iA/N is
permissible. The decomposition above represents a possibly complicated unitary matrix as a
product of a large number of relatively simple (close to the unit matrix) factors described by
‘small’ anti-hermitian matrices iA/N .

4
For example, if U =

(
cos θ sin θ
− sin θ cos θ

)
is a rotation as in

the example above, and N is chosen asymptotically large, the decomposition is in terms of N

factors
(

1 θ/N
−θ/N 1

)
. Convince yourself that the application of this matrix to a two-dimensional

vector, v, generates an ‘infinitesimal rotation’ of v by an angle θ/N . Specifically, check that
the norm of the transformed vector equals that of v up to corrections of O(N−2) neglected
in the first order expansion in iA/N . The above decomposition thus describes a finite angle
rotation as a product of an infinitely large number of ‘infinitesimal’ rotations. Representations
of this type play an important role in many physical applications.

A similar relation holds between the set of antisymmetric real matrices, AT = −A, and
the orthogonal matrices OT = O−1. It is a good exercise (try it!) to show that exp(A) = O
is orthogonal and that the sets of antisymmetric matrices and orthogonal matrices contain
the same number of parameters, namely n(n − 1)/2. However, in this case, exp(A) does
not cover the full group of orthogonal matrices. (Only the subgroup SO(n) ⊂ O(n) of unit
determinant orthogonal matrices is obtained.) This correspondence and its applications in
physics are discussed in advanced lecture courses.

4

A matrix X is called anti-hermitian if X† = −X. The matrices iA are anti-hermitian because (iA)† =
−iA† = −iA.
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REMARK This chapter looks at the mathematics of functions (i.e. mathematics commonly sub-

sumed under the roof of ‘calculus’) from a linear algebraic perspective. It should be read at a

relatively late stage and requires familiarity with major parts of chapter C. Specifically, we will make

reference to section C6.1 on the δ-function and section C6.2 on Fourier series. Some familiarity with

linear differential equations is also required. Throughout this chapter we will often use a column

vector notation such as f ↔ v where on the l.h.s we have an object belonging to a function space,

and on the r.h.s. the analogous object of a finite dimensional vector space. Occasionally we will

consider spaces with non-trivial metrics and familiarity with section L3.3 and covariant notation is

required to understand these parts of the chapter.

Earlier in part L (cf. section L2.3) we had introduced function spaces as an example of vector
spaces. However, so far we have not discussed any of the central concepts of linear algebra
– changes of basis, linear maps, etc. – in this context. This extension will be the subject of
the present chapter. It provides important foundations for the mathematical understanding of
various physical disciplines and notably of quantum mechanics. The mathematical framework
of quantum mechanics is essentially a synthesis of analysis and linear algebra, and the most
efficient way to penetrate it is to regard functions as vectors to which all operations of linear
algebra may be applied. In the rest of this chapter, we will discuss how this works in practice.

There are two aspects in which function spaces differ from the conventional vector spaces
discussed so far. The first is different notation. For example, the ‘components’ specifying
a function f are denoted f(x) and not vi like those of a vector v. As with any change of
notation it may take some time to get used to this, but after a while the linear-algebraic way of
handling functions will begin to feel natural. The second point is more serious: function spaces
are infinite dimensional. For example, we need infinitely many ‘components’ f(x) to fully
describe a function f , indices labeling function-bases run over infinite index-sets, etc. Infinite
dimensionality may also lead to existence problems. For example, linear maps of function
spaces can be thought of as infinitely large matrices. Determinants and traces of such matrices
then assume the form of infinite products and sums whose convergence must be checked.
All this indicates that the mathematically rigorous treatment of infinite dimensional vector
spaces requires substantial extensions of the framework of finite dimensional linear algebra,
and this is the subject of functional analysis. While a mathematically rigorous introduction
to functional analysis is beyond the scope of this text, we will point out convergence issues
where they occur and suggest pragmatic ways of handling them. This approach should be
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sufficient for the majority of situations encountered in physics.
Throughout, we will consider function spaces X ≡ {f : I → C} containing functions

mapping a bounded
1

domain of definition I ⊂ Rn into the complex numbers. Our focus
on complex valued functions is largely motivated by applications. The choice of a compact
domain of definition eases the discussion of some of the convergence issues mentioned above.
Some of the modifications required for the treatment of unbounded domains of definition will
be listed at the end of the chapter.

David Hilbert (1862–1943)
One of the most influential
and versatile mathematicians
of his time. Hilbert is con-
sidered one of the last ‘uni-
versal’ mathematicians, capa-
ble of overseeing the field as
a whole. He made impor-
tant contributions not only to many areas
of mathematics but also to physics, notably
to the development of general relativity and
to the mathematical foundations of quan-
tum mechanics.

Throughout this chapter we will also as-
sume square integrability f ∈ L2(I) which
means that X is an inner product space with
the standard scalar product

〈f, f ′〉 =

ˆ
I

dx f(x)f ′(x). (L218)

For n > 1 the integral on the right hand side
becomes a higher dimensional integral. Al-
though this generalization is straightforward,
we will mostly use n = 1 notation for simplic-
ity. In a number of applications Eq. (L218) is
replaced by the non-standard scalar product

〈f, f ′〉 ≡
ˆ
I

dx f(x)g(x)f ′(x) ←→ 〈v,v′〉 =
∑

ij

vigijv
j ≡

∑

i

vivi, (L219)

where g is some positive function.
2

Function spaces equipped with such scalar products define
an important an important class of so-called Hilbert spaces.

3

L10.1 The standard basis of a function space

In section L2.3 we established a correspondence between functions f and vectors v as

f ←→ v,

1

A set I ⊂ Rn is bounded if for any x ∈ I and all i = 1, . . . , n the components xi lie between an upper
and a lower bound ai < |xi| < bi, where ai < bi are positive real numbers.

2

One might consider even more general scalar products, viz. 〈f, f ′〉 ≡
´
I

dx dyf(x)g(x, y)f ′(y) where the

weight function g(y, x) = g(x, y) assumes the role of the metric gij = gji (check that this defines a scalar
product if g has suitable positivity properties). However such generalizations do not often occur in practice
and we will not discuss them.

3

Hilbert spaces are generalizations of the Euclidean spaces discussed earlier in this chapter. They are inner
product spaces equipped with an extra condition ensuring that the norm of a vector (L32) exists. Denoting the
components of a vector f by fk, this amounts to existence conditions on sums such as 〈f, f〉 =

∑
k f

2
k <∞.

In the case of finite dimensional Euclidean spaces this condition is trivially fulfilled. The detailed discussion
of the Hilbert condition for infinite dimensional spaces is beyond the scope of the present text. However, we
note that the requirement of finite 〈f, f〉 =

´
I
dxf(x)2 < ∞ is a condition of this sort if we understand the

integral as a generalized ‘sum’ over squared ‘components’ f(x)2.
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f(x) ←→ vi,

x ←→ i, (L220)

i.e. if f ∈ L2(I) is thought of as a vector, then x ∈ I would play the role of the index
i = {1, . . . , n}, and the f(x) values would be its components.

However, when we speak of components we implicitly refer to a basis, and the function f
must be expandable as

f =

ˆ
dx δx f(x) ←→ v =

∑

i

ei v
i, (L221)

where now δy ↔ ei assumes the role of a basis function and
´

dy ↔∑
i is a ‘sum’ over the

infinitely large number of these functions. The distinguishing property of the finite dimensional
standard basis {ei} in (L221) is its orthonormality 〈ei, ej〉 ≡ gij = δij, i.e. it is a basis in which
the metric assumes the form of a unit matrix. The component representation of these basis
vectors is as simple as possible, (ei)

j = δji has zeros everywhere except for a one at position
i. What would a basis function δx with analogous properties look like? A preliminary answer
to this question was given early in the text, on p. 33, where we argued that the basis function
which is to be multiplied by the coefficient f(x) in the linear expansion must be focused on
the point x with infinite precision. This is the defining property of the δ-function introduced
in section C6.1. The function has δx has the required properties that δx(y) vanishes for y 6= x
in such a way that its ‘infinitely narrow’ support is compensated by the infinite amplitude
δx(x) =∞, i.e.

δy(x) = δ(x− y)↔ (ei)
j = δji, (L222)

assumes the role of the Kronecker-δ valued components of a standard basis vector. The
components f(y) of a function expanded in the standard basis can then be expressed as

f(y) =

ˆ
dx δx(y)︸ ︷︷ ︸

δ(x−y)

f(x) ←→ vj =
∑

j

(ei)
j

︸︷︷︸
δji

vi. (L223)

Much like the standard basis of Rn is orthonormal, 〈ei, ei′〉 = δii′ , the δ-function basis {δx}
satisfies and orthonormality relation, too: 〈δx, δy〉 =

´
I

dz δx(z)δy(z) =
´
I

dz δ(x−z)δ(z−
y) = δ(x− y), so we have the correspondence

〈δx, δy〉 = δ(x− y) ←→ 〈ei, ej〉 = δij. (L224)

The components of a vector can be obtained by taking the scalar product with a basis vector
vi = 〈ei,v〉 =

∑
j 〈ei, ej〉 vj =

∑
j δ

i
jv
j, where the conventions of Eq. (L56) where used.

Likewise, the ‘components’ f(x) can be obtained as 〈δx, f〉 =
´

dy δx(y)f(y), i.e.

f(x) = 〈δx, f〉 ←→ vi =
〈
ei,v

〉
. (L225)

We note that for function spaces, there is no such thing as covariant notation of indices. If
a metric enters the stage, it needs to be written in explicit form and cannot be ‘hidden’ in
raised or lowered indices.
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vector space function space

invariant components invariant components

elements v vj=〈ej ,v〉 f f(x)=〈δx,f〉

scalar product 〈u,v〉 uigijv
j≡uivi 〈f,g〉

´
dx f(x)g(x)

standard basis ei eij=δ
i
j δy δy(x)=δ(y−x)

alternative basis wα (wα)j=〈ej ,wα〉 ψk ψk(x)=〈δx,ψk〉= 1√
L

eikx

orthonormality 〈wα,wβ〉≡gαβ=δαβ (wα)i(wβ)i=δαβ 〈ψk,ψp〉=δkp 1
L

´
dx ei(p−k)x=δkp

expansion v=wαv
α vj=(wα)jvα f=ψk f̃k f(x)= 1√

L

∑
k

eikxf̃k

coefficients vα=〈wα,v〉 vα=(wα)iv
i f̃k=〈ψk,f〉 f̃k= 1√

L

´
dx e−ikxf(x)

completeness 〈ej ,ei〉=〈ej ,wα〉〈wα,ei〉 δji=(wα)j(wα)i δ(x−y)=〈δx,ψk〉〈ψk,δy〉 δ(x−y)= 1
L

∑
k

eik(x−y)

Table L10.1: Summarizing the linear algebraic interpretation of basis changes in function space.
Einstein summation over the repeated indices α or k is used. For completeness, the table makes
reference to a general metric g = {gij}, and an index lowering convention vi ≡ gijv

j is used (cf.
Eq. (L51)). Similarly, wα = gαβw

β. Our discussion in the main text assumes orthonormal bases,
gij = δij and gαβ = δαβ where vi = vi and wα = wα. If you are not yet familiar with these index
conventions you may regard all indices as subscripts.

Non-standard bases of function space

The relations above would be of little more than pedagogical value if there were not
interesting function bases different from the standard δ-basis. We have already met one
important example of non-standard bases, viz. the basis of Fourier functions discussed in
section C6.2. To understand how Fourier series representations of functions can be seen
as a change of basis, we consider the case I = [0, L] and the function space X = {f ∈
L2(I)|f(0) = f(L)}, i.e. the space of complex valued square integrable functions on the
interval I with ‘periodic boundary conditions’ f(0) = f(L). Now consider the set of functions
{ψk ∈ X|k ∈ (2π/L)Z} where

ψk(x) ≡ 1√
L

exp(ikx). (L226)

Apart from the normalization factor L−1/2, these functions coincide with the Fourier modes
exp(ikx) introduced in Sec. C6.2. As we are going to show next the set {ψk} defines an
orthonormal basis of L2(I) different from the standard basis {δx}. To explore these con-
nections we again refer to the analogous situation in a finite dimensional vector space: let
{wα|α = 1, . . . , N} be an orthonormal system of basis vectors different from the standard
basis {ei|i = 1, . . . , N}.4

The function values

ψk(x) ←→ (wα)j (L227)

are the components of the new basis vectors written in terms of the old basis. In the language
of section ?? they define the entries of an ‘infinite dimensional’ transformation matrix (T−1)x,k.

4

We use different basis indices i and α, respectively, to foster comparison to the functions {δy} and {ψk}
which, likewise, are labeled by different indices x and k.
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Thanks to the orthonormalization of the standard basis {δy} ↔ {ei}, we may understand the
function values, ψk(x) (i.e. the analog of vector components) as scalar products taken between
the Fourier functions, ψk, (the analog of vectors) and the basis functions, δx of the standard
basis (cf. Eq. (L225))

ψk(x) = 〈δx, ψk〉 ←→ (wα)j = 〈ej,wα〉. (L228)

It is straightforward to check the orthonormalization of the Fourier basis:

〈ψk, ψp〉 =

ˆ
I

dxψk(x)ψp(x) =
1

L

ˆ L

0

dx ei(p−k)x = δkp

←→
〈wα,wβ〉 =

∑

j

(wα)j(wβ)j = δαβ. (L229)

The second line of Eq. (L229) states the orthonormality of the {wα} basis; the first line shows
that the Fourier modes {ψk} satisfy an analogous orthogonality relation.

Completeness relations

Eq. (L229) shows that the functions {ψk} are orthonormal and hence linearly independent.
However, we do not yet know whether they represent a complete set. Unlike an n-dimensional
vector space where n mutually orthogonal vectors will automatically form a basis, L2(I) is
infinite dimensional. But∞ is not a well defined number and we cannot determine by counting
whether the infinitely many functions {ψk} suffice to span it. (Maybe twice as many functions
2 ×∞ = ∞ would be needed for that task?) Unlike with finite dimensional vector spaces,
completeness needs to be established in different ways.

It will turn out that for function bases of practical interest, completeness follows from
general principles and need not be checked ‘manually’. Occasionally, however, this needs to
be done and we here show how. A set of functions {ψk} is complete, if every function can
be expanded as f =

∑
k ψkck, where ck are expansion coefficients. Taking the scalar product

〈ψk, f〉 and using the orthonormality relation (L229) we obtain the identification ck = 〈ψk, f〉,
so completeness requires the existence of expansions

f =
∑

k

ψk 〈ψk, f〉 ←→ v =
∑

α

wα〈wα,v〉. (L230)

An equivalent condition is that every element of a function basis, for example those of the
standard basis {δx}, is expandable

∀x ∈ I : δx =
∑

k

ψk〈ψk, δx〉 ←→ ∀i = 1, . . . , N : ei =
∑

α

wα〈wα, ei〉 .

(L231)
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Since a generic function can be expanded in the standard basis, Eq. (L231) suffices to guarantee
expandability in elements of the {ψk} basis. Taking scalar products 〈δy, 〉 of this relation with
generic standard basis vectors we obtain the equivalent set of relations

δ(y − x)
(L224)
= 〈δy, δx〉 (L231)

=
∑

k

〈δy, ψk〉 〈ψk, δx〉 (L228)
=
∑

k

ψk(y)ψk(x)

←→
δji

(L224)
= 〈ej, ei〉 (L231)

=
∑

α

〈ej,wα〉 〈wα, ei〉 (L228)
=
∑

α

(wα)j(wα)i . (L232)

These relations are easy to conceptualize: in the finite dimensional case (cf. Eq. (L228))
(T−1)jα = (T †)jα = 〈ej,wα〉 = (wα)j are elements of the unitary transformation matrix T−1

describing the basis change and Tαi = 〈wα, ei〉 = (wα)i. Eq. (L231) simply is a rewriting of
the unitarity relation (T †)jαT

α
i = δji with matrix elements expressed as scalar products.

5
In

an analogous manner, the first of the relations identifies {ψk(x)} as the elements of an infinite
dimensional unitary ‘matrix’ describing the change from the standard basis to the basis {ψk}.
Equations like

δ(y − x) =
∑

k

ψk(y)ψk(x), (L233)

are called completeness relations. For the specific case of the Fourier functions (L226) the
completeness has been checked by explicit construction, cf. Eq. (??). The orthonormality
relation (L229) and the completeness relation prove that

Fourier series expansion amounts to a change of basis in function space.

Below, we will introduce a few more examples of function bases and demonstrate how their
completeness follows in different ways from general criteria. However, before that we need to
adapt another key concept of linear algebra to function spaces:

L10.2 Linear operators

Linear maps Â : X → X, f 7→ Âf which send functions f ∈ X to new functions Âf are
generally called linear operators. The general linearity conditions discussed in section L5.1
require that for a sum of two functions f, g ∈ X the map act as Â(f + g) = Âf + Âg, and
that it be linearly compatible with scalar multiplication Â(cf) = cÂf for x ∈ R.

EXAMPLE Consider the space X ⊂ L2([0, 1]) of complex valued functions on the unit interval

subject to the periodicity condition f(0) = f(1). Linear operators Â : X → X respecting the

5

To make the equivalence perfect, one may raise the index j in Eq. (L232) (by multiplication with a trivial
δkj and summation over j) to obtain δki = 〈ek, ei〉 = (wα)k(wα)i.



L10.3 Eigenfunctions 131

periodicity condition are easily constructed. For example, consider the function h ∈ X with h(x) =

cos(2πx). Multiplication by h defines the linear operator Âh : X → X, f 7→ hf , where (hf)(x) =

h(x)f(x). Like h and f the function Âhf = hf is periodic, i.e. Âh acts within the space X.

Multiplication by h satisfies the linearity criteria Âh(f + g) = Âhf + Âhg and Âh(cf) = cAhf for

f, g ∈ X and c ∈ R and hence Âh is a linear operator on the space X.

The linear operators playing the most important role in applications involve derivative operations

and are called differential operators. As an example consider the operator −i dx acting on functions

by differentiation, e.g. −i dx cos(2πx) = 2π i sin(2πx), where the factor of −i has been introduced

for later convenience. This map, too, satisfies the periodicity condition (why?) and linearity and so

defines a linear operator in X.

Later in the chapter, we will see that this operator plays an important role in the description

of periodic functions and we will use it as a case study to illustrate various generic features of

differential operators. Sums and products of linear operators are again linear operators. For example

(−i dx)2 = −d2
x and −d2

x + cos(2πx), too, act linearly in X.

L10.3 Eigenfunctions

In previous sections we have seen that the essential information on a linear map Â : V → V
of a finite dimensional vector space is contained in its eigenvectors vi, i.e. vectors on which
Â acts as Âvi = λivi where λi is the corresponding eigenvalue. In cases where a basis of
eigenvectors could be found, the linear map Â assumed the simple form of a diagonal matrix
in that basis. Generic vectors could then be expanded in the basis of eigenvectors and the
action of the Â was essentially under control.

Very similar things can be said about linear operators of function spaces. For an operator
Â : X → X a function fn satisfying the relation

Âfk = λk fk (L234)

is called an eigenfunction with eigenvalue λk. We attach a subscript k to fk because in
cases where eigenfunctions play a role we will want to number them and k plays the role of
a counting index. Unlike with finite dimensional spaces, linear operators on function spaces
generally possess infinitely many eigenfunctions so the counting index will generally run over
an infinite set. Typical examples include k ∈ Z, or double-indices such as (k1, k2) ∈ Z×Z. If
I is unbounded, dense sets of eigenvalue indices may occur, see section L10.5 the end of this
chapter.

If an eigenfunction f̃k has been found it will often be convenient to normalize it. As with
vectors this is done by computing the square of its norm N ≡ 〈f̃k, f̃k〉 =

´
I

dx |̃fk|2. We

may then define the unit-normalized eigenfunction fk ≡ 1√
N f̃k. We note that the seemingly

innocent normalization operation may become tricky if I is non-compact and again refer to
section L10.5 for a discussion of this case.

EXAMPLE As an example consider the space of periodic functions on the unit interval discussed
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in the previous section L10.2. The eigenfunction equation for the linear operator (−i)dx reads

(−i)dxf(x) = λf(x), (L235)

where we temporarily omitted the counting index k. We verify by substitution that this equation

is solved by the function aeiλx where a, λ ∈ C and λ features as the eigenvalue. Given this result,

we need to ask two follow-up questions: the first is whether there are other eigenfunctions with the

same eigenvalue. The answer to this question requires some background in the theory of differential

equations. Eq. (L235) is an ordinary first order linear differential equation. In section C7.8 we will

show that up to normalization such equations possess a unique solution. The freedom of different

choices of normalization is represented by the pre-factor a in our family of eigenfunctions, so we have

found the full set of solutions.
6

The second question is whether the eigenfunctions actually belong to

the function space X. They do if the periodicity condition f(0) = f(1), or a = aeλ is obeyed. This

is satisfied iff λ = 2πik, k ∈ Z. What this tells us is that the proper eigenvalues of our operator in

X are given by λ = λk ≡ 2πik and that a exp(2πikx) are the corresponding eigenfunctions. Finally,

we verify that the norm of these functions is given by |a| and that for a = 1 or other unit-modular

constants we have unit normalization.

To summarize our results, we have found that the linear operator (−i)dx possesses the set of

eigenfunctions

fk(x) ≡ e2πikx, k ∈ Z. (L236)

These functions are just the Fourier modes on the unit-interval. We now understand that the

Fourier basis is just the basis of eigenfunctions of the linear operator −i dx : X → X.

The discussion of the example above contains a few general guiding principles for the
identification of eigenfunctions:

. Technically, the ‘eigenequations’ Âf = λf associated with a linear differential operator
are linear differential equations. Start by identifying a complete set of linearly independent
solutions. The cardinality of that set depends on both the order of the highest derivative
operator contained in Â and on the dimensionality of I. If dim(I) = 1 as in the example
above the order of Â determines the number of linearly independent solutions. For higher
dimensional I the situation can become more complicated (think of the Fourier expansion
of higher dimensional functions discussed in section ?? for example).

. Next check that the general solutions actually lie in the function space X, i.e. that they
satisfy the defining properties of elements of X. It may happen that some solutions have
to be disposed of (such as those with λ /∈ 2πiZ discussed above). The appropriately
restricted set then defines your set of eigenfunctions.

. Finally, it may be expedient to normalize the functions as discussed above.

6

The situation would be different had we considered the operator −d2
x = ((−i)dx)2. Its eigenequation

−d2
xf = λf is a second order differential equation with an eigenspace spanned by two linearly independent

solution functions e±λx. The general solution is then given by all linear combinations c+e
+λx + c−e−λx with

constants c±. More generally an nth order differential operator has n linearly independent solutions and an
n-dimensional eigenspace.
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L10.4 Self adjoint linear operators

In section ?? we discussed the specific properties of Hermitian linear maps. We learned
that a Hermitian matrix can always be diagonalized. The diagonalizability property means
that the set of eigenvectors of a Hermitian matrix is complete. In fact, the set eigenvectors
could be conveniently chosen so as to form an orthonormal basis. All these niceties carry over
to the case of linear operators.

Definition

Assume our function space X is equipped with a scalar product (L219). For concreteness,
we may consider the space X of periodic functions on the interval [0, L] with complex standard

scalar product 〈f, g〉 =
´ L

0
dx f(x)g(x). An operator Â : X → X is called self adjoint if

∀f, g ∈ X :
〈
Âf, g

〉
=
〈
f, Âg

〉
←→ ∀v,w ∈ V :

〈
Âv,w

〉
=
〈
v, Âw

〉
.

(L237)

We observe that a self adjoint linear operator is the analog of an Hermitian matrix. In fact, it
is common practice (in physics) to use the terminology of ‘Hermitian operators’, and we will
do so in the following.

For example, the operator (−i)dx considered above enjoys the hermiticity property:

〈(−i)dxf, g〉 =

ˆ L

0

dx (−i)dxf(x)g(x) = i

ˆ L

0

dx dxf(x)g(x) =

ˆ L

0

dx f(x) (−i)dxg(x) =

= 〈f, (−i)dxg〉 ,

where we integrated by parts, noting that no boundary terms arise due to the assumed peri-
odicity of the integrand.

7

EXERCISE Recapitulate the arguments of section ?? to verify that they carry over to the case of

function spaces.

As in the case of finite dimensional vector spaces, the hermiticity of a linear operator makes
strong statements about its eigenvalues and eigenfunctions: all eigenvalues λk are real, eigen-
functions ψk with different eigenvalues are mutually orthogonal 〈ψk, ψk′〉 = 0 if λk 6= λk′ , and
the full system of eigenfunctions is complete. The Fourier eigenfunctions of (−i)dx are a nice
example of this.

Importantly, the knowledge that an operator is Hermitian and that we have found all
of its eigenfunctions is sufficient to establish the completeness of that set of functions. In
applications, it is usually the theory of differential equations that tells us that we have found
a complete set of solutions of an operator eigenequation (L234). Once we know that all

7

At this point it becomes evident why we included a factor (−i) in the definition of the differential operator:
it serves to make the latter Hermitian.
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solutions are under control, completeness is granted by the hermiticity of the operator, and
no explicit verification of completeness relations is necessary. This is why we said above that
explicit verifications of completeness are often not needed.

INFO Hermitian differential operators play an important role both in mathematics and physics. For

example, the axioms of quantum mechanics state that to each physical ‘observable’ (position,

momentum, angular momentum, etc.) there corresponds one Hermitian operator Â. The expected

state
8

of that observable is given by the ‘matrix element’ 〈ψ, Âψ〉 of Â in a state vector ψ describing

the physical state of the system. Depending on the context, Â and ψ may belong to a finite-

dimensional vector space or to a function space, in which case ψ is called a wave function. We can

clearly learn a great deal about a physical observable from the eigenfunctions of its corresponding

operator. Moreover, if a given operator plays an especially important role in a problem, then its

eigenfunctions will typically be a natural basis to work with. In the case of infinite-dimensional oper-

ators, the eigenequations are determined by differential equations. For example, the two differential

operators discussed in the examples below are relevant to the quantum mechanical description of the

hydrogen atom.

Example: Legendre polynomials

Consider the function space X ≡ {f : [−1, 1] → R}, i.e. the real valued functions on
the interval [−1, 1] (no boundary conditions specified), with standard scalar product 〈f, g〉 =´ 1

−1
dx f(x)g(x). On this space, we define the second order differential operator

Â =
d

dx
(1− x2)

d

dx
. (L238)

It is straightforward to check, that this operator is symmetric relative to the standard scalar
product, 〈Âf, g〉 = 〈f, Âg〉.

EXERCISE Verify the symmetry of the differential operator (L238). Do this using integration by

parts and show why no boundary terms arise.

The eigenequation of Â, ÂPl = λlPl is called Legendre differential equation and the
eigenfunctions Pl are known as Legendre polynomials. (We will see shortly why they are
polynomials in x.) Finding a complete set of solutions of the Legendre equation is a non-
trivial task, often discussed in lecture courses on ordinary differential equations, theoretical
electrodynamics, or quantum mechanics. Referring to the info section below for a quick
sketch of the solution strategy, here we just state the result: non-singular solutions of the
Legendre differential equation are found for eigenvalues λl = −l(l + 1), where l = 0, 1, 2, . . .
is a positive integer. The corresponding Legendre polynomials can be represented in different

8

In quantum mechanics observables generally cannot be determined with mathematical precision, there
remains ‘quantum uncertainty’.
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ways, among them the so-called Rodrigues formula

Pl(x) =
1

2ll!

dl

dxl
(x2 − 1)l. (L239)

A list of the first four polynomials reads,

P0(x) = 1, P1(x) = x, P2(x) =
1

2
(3x2 − 1), P3(x) =

1

2
(5x3 − 3x),

P4(x) =
1

8
(35x4 − 30x2 + 3). (L240)

It is customary to normalize the Legendre polynomials as Pl(1) = 1, i.e. by fixing their value
at x = 1. For a visual representation of a few Legendre polynomials, see Fig. L18.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure L18: The Legendre polynomials P1, dashed; P2 dotted; P3 dash-dotted, P17, solid.

INFO Let us sketch the derivation of the result (L239).
9

The fact that the differential operator

Â contains a polynomial (1 − x2) suggests that polynomial solutions to the eigenequation might

exist. (This is a really weak argument, but better than none.) Indeed, we may check by direct

substitution that P0 ≡ 1 is a solution with eigenvalue λ0 = 0 and P1 ≡ x one with eigenvalue

λ1 = 2. Encouraged by these findings, we may speculate that more complex solutions P (x) of the

equation ÂP (x) = λP (x) also assume the form of a series

P (x) =

∞∑

j=0

ajx
α+j ,

Here, the parameter 0 ≤ α < 1 has been introduced to include the option of fractional, yet positive

powers of x. If we act on this ansatz with the Legendre differential operator (try it!) we obtain a

function

ÂP (x) =

∞∑

j=0

(
aj(α+ j)(α+ j + 1)xα+j − aj(α+ j)(α+ j − 1)xα+j−2

)
.

9

As a word of caution we note that a comprehensive discussion would need to cover various aspects of
convergence whose discussion is beyond the scope of this text. You may try to spot possible convergence
issues or consult the literature if you are interested in knowing how a watertight derivation proceeds.
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It will be convenient to combine the two contributions to this series into one. This can be done by

rearranging terms as follows:

∞∑

j=0

aj(α+ j)(α+ j − 1)xα+j−2 =

=

∞∑

j=2

aj(α+ j)(α+ j − 1)xα+j−2 +X(x) =

∞∑

j=0

al+2(α+ j + 2)(α+ j + 1)xα+j +X(x),

where the term X(x) ≡ a0α(α−1)xα−2 +a1(α+1)αxα−1, contains the first two summands j = 0, 1

of the series and in the second line we renamed the summation index as j → j−2. Combining terms

we have

ÂP (x) =

∞∑

j=0

(aj(α+ j)(α+ j + 1)− aj+2(α+ j + 2)(α+ j + 1))xα+j −X(x).

This series must be equal to the series λP (x). Representing these conditions in the form of a series,

we get

0
!

= ÂP (x)− λP (x) =

∞∑

j=0

(aj((α+ j)(α+ j + 1)− λ)− aj+2(α+ j + 2)(α+ j + 1))xα+j −X(x).

(L241)

The fact that the l.h.s vanishes everywhere demands that the coefficients of each power xα+k are

individually zero (why?). We first notice that terms of O(xα−2, xα−1) are contained only in the

contribution X(x). These two must be individually zero which leads to the condition α = 0 if either

a0 or a1 are different from zero. The vanishing of higher powers xα+j demands that

aj((α+ j)(α+ j + 1)− λ)− aj+2(α+ j + 2)(α+ j + 1) = 0⇔

aj+2 =
(α+ j)(α+ j + 1)− λ)

(α+ j + 2)(α+ j + 1)
aj .

The second equation can be seen as a relation recursively fixing coefficients as a0 → a2 → a4 → . . .

and a1 → a3 → a5 → . . . . To avoid the solution vanishing everywhere, at least one of its ‘anchors’

a0 or a1 must be non-vanishing, which in turn requires that the fractional power α = 0 vanishes.

Turning to the termination of the series, we are after solutions of polynomial form, i.e. we require that

aj = 0 after a finite number of terms. Inspection of the recursion relation shows that this condition

requires the eigenvalue to assume the form λ ≡ l(l+ 1) where l ∈ N+ is a positive integer. Assume

that l is an even/odd integer. We then observe that the series of even/odd coefficients vanishes,

while the odd/even series remains infinite. (These are the two linearly independent solutions of the

Legendre differential equation at given l, there won’t be other solutions.) Closer inspection shows

that the unbounded solution has convergence issues and that we should discard it. It is an easy matter

to compute the first few good solutions by hand and as a result one obtains the list (L241). A less

easy exercise (try it!) is to verify that the recurrence relations defining the Legendre polynomials are

generated by the Rodrigues formula (L239).
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EXERCISE Prove the orthogonality of the Legendre polynomials

ˆ 1

−1
dxPl(x)Pl′(x) ∝ δll′ , (L242)

for l = 2 and l′ = 3. The general proof is not easy, unless we use our linear algebraic background

knowledge: use that ÂPl = l(l + 1)Pl and the symmetry of Â,
´

(ÂPl)Pl′ =
´
Pl(ÂPl′) to show

that the integral vanishes unless l = l′.

In the next section we will see where the Legendre differential operator appears in a larger
framework of applications.

Exampe: spherical harmonics

REMARK Requires sections V2.4 and ??

In physics and mathematics we are often working with problems defined on a sphere, i.e. a
surface of points at fixed distance from a common origin. A convenient way to parameterize
such surfaces is in terms of spherical coordinates (θ, φ). We saw that the natural ‘surface
element’ assigning a spherical surface element to a change (dθ, dφ) of coordinates is given by
dS ≡ sin θ dθ dφ and this suggests that we should consider the scalar product

〈f, g〉 =

ˆ π

0

dθ

ˆ 2π

0

dφ sin θf(θ, φ)g(θ, φ), (L243)

defined on the space X ≡ L2(S2) of square-integrable functions on the sphere, where the latter
is identified with S2 = {(θ, φ)|θ ∈ (0, π), φ ∈ (0, 2π)}10

. This coordinate parameterization of
the sphere implies that for all f ∈ X we have the periodicity condition f(θ, 0) = f(θ, 2π).

A differential operator important for the description of problems in electrodynamics and
quantum mechanics is the Laplacian on the sphere ∆ : X → X. This operator is obtained
from the cartesian three-dimensional Laplace operator (??), ∆ = ∂2

x + ∂2
y + ∂2

z by passing to
spherical coordinates (x, y, z) 7→ (r, θ, φ). The result of this transformation is the complicated
looking differential operator Eq. (V99) containing second derivatives w.r.t. the three coordi-
nates, r, θ, φ. Its restriction to functions f(θ, φ), i.e. functions depending on angles but not
on radial coordinates, is given by

∆ =
1

sin θ
∂θ sin θ ∂θ +

1

sin2 θ
∂2
φ. (L244)

This operator is Hermitian w.r.t. the scalar product defined above as can be verified by an
instructive little calculation (try it!). Conceptually, its hermiticity is inherited from that of

10

As discussed in section V2.4 these coordinates parameterize the sphere up to a single line connecting the
north and the south pole. However, as long as the focus is on integration theory, the omission of a line out of
a two dimensional surface is not a problem.
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the Laplacian ∆ = ∂2
x + ∂2

y + ∂2
z of functions in three-dimensional space L2(R3) relative

to the standard three dimensional scalar product 〈f, g〉 =
´

dxdydz f(x, y, z) g(x, y, z). The
hermiticity of the cartesian Laplace follows straightforwardly upon partial integration w.r.t. the
coordinates x, y, z. Since the ‘parent’ three dimensional Laplacian is Hermitian, its restriction
to the subset of spherical functions must be so too.

Let us now proceed to identify the eigenfunctions, fλ, of the Laplace operator, i.e.
solutions of the second order partial (!) differential equation ∆fλ(θ, φ) = λfλ(θ, φ). The
solution of this problem would be tough if there were not a little trick by which the complicated
looking equation can be transformed into two simpler ones: let us start by multiplying the
equation with sin2 θ and rearranging terms,

[(
sin θ∂θ sin θ ∂θ − λ sin2 θ

)
+ ∂2

φ

]
f(θ, φ) = 0,

where we temporarily omitted the subscript λ for notational clarity. The important point now is
that the differential operator appearing in this equation is the sum of two terms each depending
only on θ or on φ. Multivariate operators separating into additive single-variate contributions
are called separable. They have the nice property that the corresponding solutions can be
obtained as products of single variate solution functions. In the present context this can be
seen as follows: we make an ansatz f(θ, φ) = g(θ)h(φ). Substituting this into the equation
and multiplying from the left by g−1(θ)h−1(φ), we obtain

g−1(θ)
(
sin θ∂θ sin θ ∂θ − λ sin2 θ

)
g(θ) = −h−1(φ)∂2

φh(φ).

The right side of this equation does not depend on θ, which means that the right side must
be a constant independent of θ too. Conversely, the left side must be a constant independent
of φ. Since these constants are equal to each other the left and the right side individually
must be equal to the same constant, independent of both θ and φ. Let us call this constant
m2. Equating both the left and the right side of the equation to this constant, we obtain two
separate ordinary equations,

(
sin θdθ sin θ dθ − λ sin2 θ

)
g(θ) = m2g(θ),

d2
φh(φ) = −m2h(φ).

The second of these equations is solved by the Fourier modes h = hm where hm(φ) ≡
exp(iφm) and the periodicity condition hm(0) = hm(2π) requires m ∈ Z to be an integer. In
the first equation, we apply a variable substitution x ≡ cos(θ) ∈ [−1, 1]. Defining g(θ(x)) ≡
P (x) and using that (sin θ)−1dθ = dx and sin2(θ) = 1− x2 a little calculation shows that the
equation assumes the form

(
dx(1− x2)dx − λ−m2(1− x2)−1

)
P (x) = 0.

For m = 0 this is just the Legendre differential equation discussed in the previous section. In
this case, we have the solutions P (x) = Pl(x) with corresponding eigenvalues λ = −l(l + 1).
The generalization of the solutions to arbitrary m are known as Legendre functions Pm

l .
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These functions exist for values of m ∈ {−l, . . . , l} and the corresponding eigenvalues are
given by −l(l + 1), independent of m. For positive m they are defined by

Pm
l = (−1)m(1− x2)m/2

dm

dxm
Pl(x), (L245)

while the solutions for negative m are Pm<0
l = (l−m)!

(l+m)!
P−ml . Summarizing, we have found

that the eigenfunctions of the spherical Laplace operator are given by the so-called spherical
harmonics

Y m
l (θ, φ) ≡

√
2l + 1

4π

(l −m)!

(l +m)!
eimφPm

l (cos(θ)), (L246)

where the prefactor ensures unit-normalization
〈
Y m
l , Y

n
j

〉
= δljδ

mn. (The proof of this is not
straightforward.)

EXERCISE Convince yourself of the generality of the above argument, i.e. of the fact that every

differential equation Âf = 0 defined by a separable differential operator of n variables and their

derivatives Â(x1, ∂1, . . . , xn, ∂n) =
∑

i Âi(xi, ∂i) can be diagonalized in terms of a product ansatz

f(x1, . . . , xn) =
∏
i fi(xi), where all fi are solutions of the ordinary equation Âifi = cfi with a

common constant c.

It is instructive to write down a few of these functions explicitly

l = 0 : Y 0
0 (θ, φ) =

1√
4π
,

l = 1 : Y 0
1 (θ, φ) =

√
3

4π
cos θ,

Y ±1
1 (θ, φ) =

√
3

8π
sin θ e±iφ,

l = 2 : Y 0
2 (θ, φ) =

√
5

16π
(3 cos2 θ − 1),

Y ±1
2 (θ, φ) = ∓

√
15

8π
cos θ sin θ e±iφ,

Y ±2
2 (θ, φ) = ∓

√
15

32π
sin2 θ e±2iφ. (L247)

We notice a trend of increasingly complex dependence on the angular arguments at higher
(l,m). Fig. L19 shows a visual representation of the first few spherical harmonics. If these
images faintly remind you of your chemistry classes this is no accident. The spherical harmonics
are a key element of the description of atomic and molecular orbitals which is a consequence
of their central role in the solution of the Schrödinger equations of atoms. These applications
are generally discussed in lecture courses on quantum mechanics.



140 L10 Linear algebra in function spaces

Figure L19: Plot of the first few spherical harmonics, Y 0
0 (first row), Y −1,0,1

1 (second row),

Y −2,−1,0,1,2
2 (third row). The surfaces shown are generated by plotting the spherical-coordinate

points (r, θ, φ) = (|Y m
l |2(θ, φ), θ, φ) as a function of the angles (θ, φ).

The spherical harmonics are the complete set of eigenfunctions of an hermitean differential
operator acting on functions f ∈ L2(S2) on the sphere. From linear algebra we know that
these functions define a function basis on the sphere, i.e. that every f can be expanded in
the basis functions Y m

l as

f(θ, φ) =
∞∑

l=0

l∑

m=−l
aml Y

m
l (θ, φ),

aml = 〈Y m
l , f〉 =

ˆ π

0

sin θ dθ

ˆ 2π

0

dφY m
l (θ, φ) f(θ, φ), (L248)

where the orthonormality of the spherical harmonics,
〈
Y m
l , Y

n
j

〉
= δljδ

mn, implies that the
expansion coefficients are obtained by the straightforward computation of scalar products as
indicated in the second line.
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Functions of one variable can often be approximated in terms of only a few Fourier har-
monics. Similarly, low order spherical harmonics expansions are generally sufficient to obtain
good descriptions of functions on the sphere (provided the latter do not exhibit wild vari-
ations). For an illustration of this point, consider the randomly generated function f(θ, φ)
shown in the first panel of Fig. L20. The remaining panels show the expansion of this function
in terms of spherical harmonics from l = 0 (second panel) up to l = 4 (last panel). The l = 4
approximation already does a rather good job at describing our function in terms of the 24
expansion coefficients needed for an l = 4 expansion. What our example shows is that the
spherical harmonics are the ‘Fourier modes of the sphere’ and play an equally useful role in
the description of functions with angular variation.

Figure L20: First panel: a randomly generated positive function f on the sphere plotted in the polar
representation f(θ, φ), θ, φ). Remaining panels: expansion of this function in terms of spherical
harmonics up to level l = 4. For visual clarity the plots of all functions are limited to an angular
window θ ∈ [0.6, π − 0.6].

L10.5 Function spaces with unbounded support

We conclude this chapter with a few qualitative remarks on function spaces with unbounded
support, for example the space X = L2(R) of square integrable functions on the real axis.
With few modifications, most of the concepts developed in previous sections carry over to this
case. For example, we have seen in section C6.3 how Fourier series become Fourier transforms
when functions defined on the entire real axis are considered. In practical terms this means
that sums become integrals, however, the general structure of the concept remains unchanged.
The importance one attributes to the differences between the bounded and the unbounded
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case depend a lot one one’s individual perspective:
Rigorous perspective: when we pass to spaces of functions with unbounded support, a lot of
things happen. For example, the eigenfunctions ψk(x) ≡ exp(ikx) of the differential operator
(−i)dx lie outside X, which follows from the fact that |ψk|2 = 1 cannot be integrated over
the whole real line.

This lack of integrability means that scalar products between the eigenfunctions cannot be
taken, unless properly ‘regularized’ (see below). Relatedly, the Fourier ‘index’ k now becomes
a continuous variable, and we need to ask how the discrete sums over eigenfunctions turn
into integrals of sorts. There are several other elements of finite dimensional linear algebra
— traces, determinants, etc. — whose mathematically rigorous generalization to the case of
function spaces with unbounded support is far from trivial. However, being physicists we may
ask how severe these complications are from the point of view of a
Pragmatic perspective: in section C6.3 we saw that the non-integrability of the Fourier modes
ψk could be dealt with by introducing convergence generating factors. Alternatively it is
often legitimate, and in fact convenient, to consider functions on a large but finite domain of
definition [−L,L], and send L → ∞ in the end. (In practice this means to make L bigger
than any other length scale of the physics problem at hand.) As long as L remains finite, the
concepts discussed in previous sections may safely be applied. Provided nothing dangerous
happens as the limit L → ∞ is eventually taken, the case of an unbounded integration
domain then effectively is under control. Pragmatic strategies of this sort usually work in
physics. However, it should not go unmentioned that there are important exceptions to the
rule. For example, so-called Dirac (differential) operators play a very important role in particle
physics and more recently also in condensed matter physics. Such operators are distinguished
for exceptionally poor convergence behavior and their ‘regularization’ is a delicate subject.
These issues are discussed in lecture courses on quantum field theory at a late stage of the
physics curriculum.
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REMARK In this chapter, vectors, v, matrices, A, and other objects of linear algebra will be

understood from a unified perspective. It therefore becomes pointless distinguish vectors by a boldface

notation and we will denote them as v ∈ V throughout. Unless mentioned otherwise we will work

with real vector spaces throughout.

Linear algebra is the mathematical discipline of objects that satisfying certain linearity criteria.
So far, we have seen two representatives of these, vectors and matrices. However, there are
other classes of ‘linear objects’ and the cumulative term for all of them – including vectors
and matrices – is tensors. Much like vectors can be generalized to vector fields, one may
define tensor fields. Tensors and tensor fields play an important role in various fields of physics
including in general relativity, in hydrodynamics, quantum information and others.

In this chapter, we introduce the algebraic foundations of tensor algebra and in this way
a new and unifying approach to linear algebra. The extension to tensor fields, along with an
introductory discussion of physical applications, is the subject of the later chapters V4 to V6.

L11.1 Direct sum and direct product of vector spaces

Starting from an n-dimensional vector space, V , multilinear algebra builds more structured
– and as we will see useful – vector spaces by hierarchical constructions. This is achieved by
two basic constructs, the direct sum and the direct product of vector spaces. In the following,
we introduce these two in turn.

Direct sum

Consider two real vector spaces, V and W , of dimension n and m, respectively. The direct
sum V ⊕W is defined as the set of ordered pairs of elements of V and W , respectively,

V ⊕W ≡ {(v, w) | v ∈ V,w ∈ W}. (L249)

For these pairs, addition and scalar multiplication rules (v, v′ ∈ V , w,w′ ∈ W , a ∈ R):

. (v, w) + (v′, w′) = (v + v′, w + w′),

143
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. a(v, w) = (av, aw), (L250)

are declared to make V ⊕W a real vector space. Given bases {ei} and {fj} of V and W ,
respectively, a generic element of V ⊕ W can be expressed as

∑
i c
i(ei, 0) +

∑
j d

j(0, fj).
This shows that the n + m vectors (ei, 0) and (0, fj) form a basis of V ⊕ W and that
dim(V ⊕W ) = n+m. Any element of V ⊕W can be decomposed as (v, w) = (v, 0)+(0, w)
into a contribution of V and W , respectively. The sum V ⊕W can therefore be imagined
as a vector space in which V and W are embedded as natural subspaces. For example,
R3 = R2⊕R may be considered as the direct sum of R2 and R, see the figure. A component
representation of vectors in V ⊕W is obtained by concatenating the component vectors of
V and W . In the example of R3 = R2 ⊕R, two-dimensional vectors (a, b)T ∈ R2 and one-
dimensional vectors c ∈ R are concatenated to obtain a component representation (a, b, c)T

of R3. Likewise, the basis vectors e1 = (1, 0)T and e2 = (0, 1)T of R2 and that, f1 = 1, of R
yield the three basis vectors (e1, 0) = (1, 0, 0)T , (e2, 0) = (0, 1, 0)T and (0, f1) = (0, 0, 1)T of
R3.

The construction can be iterated to yield direct
sums of higher order. For example, given three vec-
tor spaces, V,W,U with bases {ei}, {fj}, {gk}, the
direct sum V ⊕ W ⊕ U may be obtained as (V ⊕
W ) ⊕ U = V ⊕ (W ⊕ U) ≡ V ⊕ W ⊕ U (why
is this construction associative?), with basis vectors
(ei, 0, 0), (0, fj, 0) and (0, 0, gk). For example, the
standard vector space Rn may be thought of as the direct sum of n copies of R.

Tensor product

Besides the direct sum, there exists a second option to build a vector space from two
constituent spaces V and W , the direct product or tensor product, V ⊗W (Latin: tendo –
I span). This space is defined as the set of real linear combinations c1v1⊗w1 +c2v2⊗w2 + . . .
of pairs v ⊗ w, v ∈ V,w ∈ W . Within the set of these formal linear combinations we declare
the identifications (v, v′ ∈ V , w,w′ ∈ W , a ∈ C):

. (v + v′)⊗ w = v ⊗ w + v′ ⊗ w,

. v ⊗ (w + w′) = v ⊗ w + v ⊗ w′,

. (av)⊗ w = v ⊗ (aw) ≡ a(v ⊗ w).

These rules define addition and scalar multiplication in V ⊗W . Given bases ei and fj of V and
W , they imply that each v⊗w can be decomposed as v⊗w =

∑
ij v

iwjei ⊗ fj, for example
(e1 +3e2)⊗ (5f4 +2f5) = 5e1⊗f4 +2e1⊗f5 +15e2⊗f4 +6e2⊗f5. This decomposition may
be applied to each term in the sum, so that general elements of V ⊗W afford a representation
as
∑

ij c
ijei ⊗ fj:

V ⊗W =

{∑

ij

cijei ⊗ fj
∣∣∣cij ∈ R

}
. (L251)
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We conclude that {ei ⊗ fj} defines a basis of V ⊗W and that the dimension of the latter
is given by n × m. However, unlike with the direct sum, there is no natural component
representation of V ⊗W . For example, for V = W = R3, the nine-dimensional space V ⊗W
may be represented in terms of nine-component vectors, however, the connection between
this representation and the component vectors of the spaces V and W is not particularly
transparent. Relatedly, there is no intuitive graphical representation of V ⊗W , even for low-
dimensional V and W ; it is generally preferable to work with linear combinations in terms
of basis vectors as in Eq. (L251). Finally notice – an important but easily forgotten fact –
that not every element of V ⊗ W can be represented as a product v ⊗ w. For example,
e1 ⊗ f2 + e2 ⊗ f1 cannot.

As with the direct sum, the tensor product can be iterated to build tensor products of
higher order: given three vector spaces, V,W,U with bases {ei}, {fj}, {gk}, the tensor product
V ⊗W⊗U may be obtained as the tensor product (V ⊗W )⊗U = V ⊗(W⊗U) ≡ V ⊗W⊗U
(why is the product operation associative?) A basis is provided by the tensor products of basis
vectors, {ei ⊗ fj ⊗ gk}. The extension to products of higher order is obvious.

INFO Although tensor spaces are perhaps not easy to comprehend intuitively, they play a very

important role in physical applications, notably in quantum mechanics. To appreciate why, consider

once more the example of a particle on a lattice discussed on pp 118. There, we argued that the state

of a particle moving in an N -site lattice chain is encoded in a vector ψ ∈ V ≡ CN . Now suppose

that the particle is a physical electron. The electron is an elementary particle with a property called

spin. Heuristically, we can think of spin in terms of a compass needle that may point only in one of

two directions, say up and down. Following the principles of quantum mechanics the two alternatives

correspond to the basis states of a two-dimensional vector space, for example spin up↔ s1 ≡ (1, 0)T

and spin down ↔ s2 ≡ (0, 1)T . A general spin configuration of the particle is then described by a

vector χ ∈ W ≡ C2. For example, the state χ = 1√
3
s1 +

√
2√
3
s2 would describe a state where ‘spin

up’ is realized with probability (1/
√

3)2 = 1/3 and ‘spin down’ with probability 2/3.

Now consider the situation where the particle is free to move in the lattice, and may have arbitrary

spin. The joint information is contained in states ψ ∈ V ⊗W = CN ⊗ C2 that live in the tensor

product
1

of the spaces V and W describing its position and spin, respectively. For example a spin-

up electron at site i would be in state ei ⊗ s1. However, the quantum particle may also be in a

superposition state, for example an equal probability superposition 1√
2
ei⊗ s1 + 1√

2
ej ⊗ s2 of spin up

at i and spin down at j. A general configuration is described as

∑

i

∑

sj

cijei ⊗ sj , (L252)

i.e. an element ofCN⊗C2, where cij ∈ C. The probability of a combined position/spin measurement

is given by |cij |2, subject to the condition
∑

ij |cij |2 = 1, which enforces the requirement that with

unit probability the particle is to be found at some lattice site with some spin projection.

This example illustrates how the mathematical structure of tensor products is tailored to the de-

scription of composite quantum systems. For a discussion at much greater conceptual and method-

1

Tensor products of complex spaces are defined in analogy to the real case. The details are discussed in
lecture courses in quantum mechanics and not essential for the present discussion.
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ological depth we refer to lecture courses in quantum mechanics.

L11.2 Dual space

To each vector space V of dimension n there exists an intimately related partner space
called its dual space, V ∗. The dual space is defined as the set of all linear maps w of V into
the real numbers,

w : V → R, v 7→ w(v) ≡ wv, (L253)

where linearity implies the properties (v, v′ ∈ V, a ∈ R)

. w(v + v′) = wv + wv′,

. w(av) = awv.

Following the general convention to omit the brackets around the arguments of linear maps,
the notation wv ≡ w(v) is often used. Vector addition and multiplication by scalars, making
V ∗ a vector space, are naturally defined as (w + w′)(v) = wv + w′v and (aw)(v) = awv.
The elements of V ∗ are called dual vectors or covectors.

2

To understand the ‘duality’ V ↔ V ∗ in more concrete terms, let {ei} be a basis of V . A
corresponding basis of dual vectors, the so-called dual basis, {ei}, (note the upper index!) is
defined by the condition that

∀j : ei(ej) = eiej ≡ δij. (L254)

This defines the action of ei on a basis and hence fixes its action on a general vector v = ejv
j

as eiv = ei(ejv
j) = eiejv

j = vi, i.e. ei maps v onto its ith component,

eiv = vi. (L255)

A dual vector can be expanded as w = wi e
i in this basis, and its covariant components are

given by

wj = wej. (L256)

The action of w on v then yields

wv = (wie
i)(ejv

j) = wiv
i. (L257)

Notice the apparent visual symmetry between vectors and dual vectors in this equation. Indeed,
V ∗ is a vector space and one may ask what its dual is. Eq. (L254) suggests an interpretation
of the vector ej ∈ V as a map ej : V ∗ → R, ei 7→ eiej = δij. In spite of the unusual notation

2

Alternative denotations include linear functionals or one-forms.
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in which the symbol denoting the map, ej, appears to the right of its argument, ei, this is a
valid interpretation. It shows that vectors v ∈ V afford an interpretation of linear maps of V ∗

into the reals, and that

(V ∗)∗ = V, (L258)

i.e. the dual of the dual space of V ∗ is V itself. The action of general vectors v ∈ V on
dual vectors w ∈ V ∗ is again given by Eq. (L257), i.e. this equation can be read both as
w-acts-on-v or v-acts-on-w.

This shows in what sense V and V ∗ are ‘dual’ to each other. Importantly, however, there
exists no natural, or ‘canonical’ bijection assigning to elements v ∈ V elements w ∈ V ∗.
The construction above, which assigned dual basis vectors ei to basis vectors ei, does define
a map V → V ∗. However, this map requires the prior fixation of a basis, and hence is not
canonical. (In a different basis, {fi}, the prior basis vector ei would be mapped onto a dual
vector different from ei; think about this point!) However, on p. 148 we will discuss how the
presence of an inner product in V defines a very useful canonical identification V ↔ V ∗.

Finally, it is sometimes useful to think about the connection between vector spaces and their
duals in a component representation, where a basis is fixed and vectors v ↔ (v1, . . . , vn)T

are identified as column vectors or n× 1 matrices. Eq. (L254) then suggest an identification
w ↔ (w1, . . . , wn) of dual vectors as row vectors (the absence of the transposition symbol),
or 1 × n matrices. In this picture, the pairing wv = wiv

i is understood as the multiplication
of an 1× n matrix with an n× 1 matrix.

EXAMPLE In V = R2 consider a basis e1 =
(

1
1

)
and e2 =

(
2
3

)
. To find a component representation

of the dual basis vectors, e1 and e2, we express Eq. (L254) in the component representation (L257),

(ei)l(ej)
l = δij . If we associate (ei)l ≡ Ail with the components of an as yet unknown matrix,

then (ej)
l = (A−1T ) l

j must be the transpose (cf. Eq. (L107)) of the inverse of that matrix, since

(ei)l(ej)
l = Ail(A

−1T ) l
j = Ail(A

−1)lj = δij . Comparison with the given component representation

of the basis vectors e1 and e2 yields A−1T =
(

1 1
2 3

)
. We transpose this matrix and compute the

inverse to obtain A =
(

3 −2
−1 1

)
. The rows of this matrix, e1 = (3,−2) and e2 = (−1, 1) define the

sought-for dual vectors. Indeed one may double check to confirm that e1e1 = 1, e1e2 = 0, etc.

Co- and contravariant transformation

Suppose we choose a different basis, ei 7→ e′i ≡ ej(T
−1)ji. The corresponding vector

components transform as vi 7→ v′i = T ijv
j, so that

v = e′iv
′i = (ej(T

−1)ji)(T
i
kv

k) = ejv
j

remains invariant. The dual vectors e′i associated with the new basis vectors e′i are defined as
e′i(e′j) = δij. This condition in turn implies that the expansion of the new dual basis vectors
in the old dual basis reads as e′i = T ije

j (show this!). The components of a dual vector must
then transform as wi 7→ w′i = wj(T

−1)ij, so as to leave w = wie
i = w′ie

′i invariant.
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Observe that the co- or contravariance of an index fixes the transformation behavior of
the object it refers to. Regardless of whether they represent vectors or coefficients, contravari-
ant objects transform with T and covariant ones with T−1. To summarize,

vi 7→ T ijv
j, ei 7→ T ije

j, vi 7→ vj(T
−1)ji, wi 7→ wj(T

−1)ji. (L259)

This transformation behavior ensures the invariance of all three types of ’contractions’ encoun-
tered above, v = eiv

i, w = wie
i and wu = wiv

i. Notice that the transformation under T is
solely determined by the co- or contravariance of an index. Regardless of whether that index
labels a component or a vector we have (xi = ei, vi)

xi 7→ T ijx
j, xi 7→ xj(T

−1)ji. (L260)

Although the placement of transformation matrix elements to the right of covariant objects is
most natural, one may change the order by writing xi 7→ (T−1T ) ji xj.

INFO In physics there is a tendency to indiscriminately regard objects carrying single indices –

forces, velocities, current densities, etc. – as ‘vectors’. However, many of these objects afford a more

natural interpretation as dual vectors. Consider the example of mechanical force. The force, F ,

acting on a particle is determined by measuring the work required to move the particle along small

displacements. Work, W , is a scalar and displacements, s ∈ R3, are three-dimensional vectors, and

the force is a function defined through the relation F (s) = W . Since the work required to go along

to consecutive small segments s+ s′ is additive, F (s+ s′) = F (s) +F (s′) = W +W ′, this function

is linear. In other words, F is a dual vector, F ∈ (R3)∗. In a basis, the assignment of force to work

reads W = Fis
i, where Fi are the covariant components defining the force dual vector through work

measurement. Another physics example of a dual vector is angular momentum, L. Describing

the rotational motion of a body around a rotation center by a vector ω, where |ω| quantifies the

frequency of the rotation, and ω/|ω| the direction of the rotational axis, the number 1
2Liω

i is the

kinetic energy (a number) stored in the rotational motion. (Consider the motion of a point particle

on a circle to convince yourself that this is so.) This shows that L is a map of vectors to numbers,

a dual vector. Other examples of dual vectors in physics include the electric and magnetic field,

E and H, and mechanical momentum, p. In all these cases, the dual vector identification follows

from physical rather mathematical reasoning. The concept of dual vectors is as intuitive as that of

vectors themselves and the all-is-vector culture of physics likely an artifact of traditional teaching.

If we accept that forces are more naturally described by dual vectors, the question presents itself

how one may switch between the dual and the direct representation. In view of the fact that the

passage between vector spaces and their duals is not canonical, it is not obvious how to translate

from a dual F to a vectorial representative. The answer is that additional structure (viz. a metric, see

the next section) is required. Depending on the context, the necessity to introduce extra structure

may be harmless, or seriously obscure the natural interpretation of physical quantities.

Metric provides a canonical connection between space and dual space

The fact that the physics culture does not discriminate between vectors and dual vectors
suggests that these objects must be intimately connected. A canonical identification of vectors
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with dual vectors indeed exists for vector spaces with scalar products. (In all physics contexts
where dual vectors are treated as vectors, a scalar product is available and implicitly used in
the identification.) Formally, this identification is a linear map

J : V → V ∗, v 7→ J(v), (L261)

where the dual vector J(v) is defined by through the condition,

∀u ∈ V : J(v)u = g(v, u), (L262)

and g should be the scalar product of V . This condition requires that the action of the dual
vector J(v) on any u ∈ V should yield an image equal to the scalar product g(v, u). To
obtain a concrete expression for the covariant components J(v)i, we fix a basis {ei} and its
dual {ei}.3 We then have J(v)i = J(v)ei = g(v, ei) = vjgji = vi, where in the last equality
we used the index lowering convention (L51). The result

J(v)i = vjgji = vi, (L263)

affords a new interpretation of the previously formal index lowering operation:

The covariant components, vi = vjgji, are the components of the dual vector J(v)
that is the image of the vector v with components vj under the canonical mapping

J : V → V ∗ induced by a metric, g, of V .

Not surprisingly, a few more index-changing operations can now be understood in more
conceptual ways. We first note that the inverse of J is defined through the condition
J(J−1(w))(u) = g(J−1(w), u), where w ∈ V ∗ and u ∈ V . The left-hand side yields wu =
wju

j and the right-hand side J−1(w)lglju
j. This is implies the condition wj = J−1(w)lglj,

which can be inverted using gji, the inverse of the metric tensor (with gljg
ji = δ il ), to yield

J−1(w)i = wjg
ji = wi. (L264)

Thus, the contravariant components wi obtained by raising the indices of the covariant com-
ponents wj via the inverse metric gji are the components of the image vector J−1(w) to which
the dual vector w is mapped under the inverse isomorphism.

Index lowering or raising is equivalent to passing from a vector space to its dual
vector space or back, in a component language.

3

The dual basis is again defined by the condition eiej = δij . Notice that the dual basis vector ei assigned
to ei by this condition differs from the assignment J(ei), unless {ei} is an orthonormal basis, gij = δij .
Indeed, Eq. (L263) implies that J(ei) = J(ei)le

l = δ ki gkle
l = gile

l. This equals ei, iff gij = δij .
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We finally note that the isomorphism J defines a metric of dual space. The latter is defined
as g∗ : V ∗ × V ∗ → R, (w,w′) 7→ g∗(w,w′) via the condition

g∗(w,w′) = g(J−1(w), J−1(w′)). (L265)

(This can be equivalently formulated as g∗(J(v), J(v′)) = g(v, v′).) Using a basis representa-
tion, and defining (g∗)ij = g∗(ei, ej), the left-hand side of Eq. (L265) yields wi(g

∗)ijw′j and
the right-hand side g(ekw

k, elw
′l) = wkgklw

′l = wig
ikgklg

ljw′j = wig
ijw′j, implying

(g∗)ij = gij. (L266)

Thus, the contravariant components of the canonical metric of dual space equal the compo-
nents of the inverse of the metric tensor.

INFO In physics, the above connection between a vector space and its dual space is implicitly used

when, e.g., the work along a line segment is calculated as the scalar product between the segment

and a vector representing the force. In the previous section we argued that force is a dual vector

with covariant components Fi. The work done along a segment with contravariant components

si is then given by W = Fis
i. Physics describes force by a vector with components F i and the

work by the scalar product W = 〈F, s〉 = g(F, s) = F jgjis
j . Comparison of the two descriptions

shows that Fi = gijF
j . One may reason that the dual vector approach is more natural in that it (i)

introduces force via a measurement protocol (cf. previous section), and (ii) does not require a scalar

product for the computation of work. On the other hand, the usage of a metric required by the

all-is-vector-approach is mostly harmless, which is why this tradition remains pervasive in physics.

Exceptions include cases where the metric itself plays a key role (such as in the theory of gravity), or

cases where it obscures physically important structures (such as in the understanding of topological

structures).

L11.3 Tensors

Vectors and dual vectors are the basic elements from which all objects of linear algebra can
be hierarchically built. The key to this construction is the tensor product of vector spaces
introduced above. Of particular interest are tensor products built from a real vector space V
and its dual V ∗. Introducing the notation ⊗qV ≡ V ⊗ · · · ⊗ V for the product of q identical
spaces we define

T qp(V ) ≡ (⊗qV )⊗ (⊗pV ∗). (L267)

This is the (tensor) product of the spaces ⊗qV and ⊗pV ∗, which in turn are q- and p-fold
tensor products of the basic spaces, V and V ∗, respectively. Elements t ∈ T qp(V ) are called
tensors of contravariant degree q and covariant degree p. If a basis {ei} has been chosen,
elements t ∈ T qp can be represented by

t = t
i1,...,iq

j1,...,jp
ei1 ⊗ . . . eiq ⊗ ej1 ⊗ · · · ⊗ ejp , (L268)
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where t
i1,...,iq

j1,...,jp
are the coefficients of the tensor (think about this point). It is often

useful to understand tensors as multilinear maps: much like a dual vector and a vector are
maps of the vector space V and the dual space V ∗ into the reals, respectively, a general tensor
t ∈ T qp defines a multilinear

4
map assigning to q dual vectors and p vectors a number,

t : (⊗qV ∗)⊗ (⊗pV ) −→ R,

(w1, . . . , wq, v1, . . . , vp) 7−→ t(w1, . . . , wq, v1, . . . , vp). (L269)

The image t(w1, . . . , wq, v1, . . . , vp) ∈ R of the action of t on a set of q dual vectors,
w1, . . . , wq, and p vectors, v1, . . . , vp, is obtained by successive application of the q vecto-
rial factors eik in t on the corresponding dual-vector arguments, wik , and the p dual-vectorial
factors ejl on the corresponding vector arguments vjl , and multiplying the resulting factors:

t(w1, . . . , wq; v1, . . . , vp) = t
i1,...,iq

j1,...,jp
(ei1w

1) . . . (eiqw
q) (ej1v1) . . . (ejpvp),

For example, for a tensor t ∈ T 2
1(V ) with component representation t = tijkei ⊗ ej ⊗ ek we

have t(w,w′, v) = tijk(eiw)⊗ (ejw
′)⊗ (ekv) = tijkwiw

′
jv
k. Specifically, the action of a tensor

on a set of basis/dual-basis vectors yields the components of the tensor in that basis:

t
i1,...,iq

j1,...,jp
= t(ei1 , . . . , eiq , ej1 , . . . , ejp). (L270)

Under a transformation of bases, ei 7→ ejT
j
i, the coefficients of a tensor transform co- and

contravariantly according to their degree.
5

For example, for t ∈ T 1
2(V ),

tijk 7→ T ii′ t
i′
j′k′ (T

−1)j
′
j(T

−1)k
′
k.

We finally note that a tensor can be applied to an incomplete set of arguments to produce a
tensor of lowered rank. For example the application of t = tijkei⊗ej⊗ek ∈ T 2

1(V ) to (w, ., .)
(w ∈ V ∗, second and third argument left empty) yields t(w, ., .) = (tijkwi)ej⊗ek ∈ T 1

1 which
is a tensor of lower rank with components tijkwi. This exemplifies how the procedure yields
tensors with fewer fixed co- or contravariant indices by pairing of indices with the indices of
supplied arguments. An expression like tijkwi is called a contraction of components of t
against those of w. For further discussion of such operations, see section L11.8 below.

L11.4 Examples of tensor classes

Tensors of degree (1, 0) and (0, 1): vectors and dual vectors, respectively

The tensor spaces of lowest nontrivial degree
6

are T 1
0 = V and T 0

1 = V ∗, and the
coefficients of these tensors are the contra- and covariant coefficients of vectors and dual

4

A multilinear map is separately linear in each of its arguments, i.e. t(. . . av+a′v′, . . . ) = at(. . . v, . . . )+
a′t(. . . v′, . . . ), a, a′ ∈ R. The properties of such maps define the subject of multilinear algebra.

5

Do not confuse matrix elements of the transformation matrix, T ij with the denotation of the tensor space
T qp = T qp(V ).

6

The tensor space of zeroth degree is defined as T 0
0 = R.
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vectors, respectively. Eq. (L268) shows how vectors and dual vectors are the building blocks
of more complex tensorial structures.

Tensors of degree (1, 1): matrices

Tensors of first contra- and covariant degree, A ∈ T 1
1(V ), can be expanded as A =

ei ⊗ ejAij. Up to now, we have viewed the first degree co- and contravariant components
Aij as the components of matrices. The interpretation of A as a matrix (or linear map
V → V ) becomes apparent upon application of the tensor to an incomplete set of arguments,
(., v), where v ∈ V is a vector, and the dual vector slot is left unspecified. This yields
A(., v) = Aijv

j ei ∈ V , which is a vector whose components Aijv
j are obtained by application

of the matrix Aij to the argument v. In this way, the tensor can be understood as a linear
map V → V, v 7→ A(., v). However, the tensor formulation affords alternative interpretations
of elements A ∈ T 1

1(V ). For example, we can think of A as a map A(w, v) = Aijwiv
j that

assigns a number to a pair comprising a dual vector and vector. In conventional language,
this would read wTAv, where wT is interpreted as a column vector with covariant components
wi. Or, we let act A on (w, .) with vectorial argument left open, to obtain the dual vector
A(w, .) = Aijwie

j, which in conventional language amounts the the action of the matrix A
to the left as wA. Depending on the context, all these different views have advantages and
they illustrate the versatility of the tensor formulation of linear algebra.

Finally note that under a basis transformation, the coefficients of the tensor transform as

Aij 7→ T ii′A
i′
j′(T

−1)j
′
j. (L271)

In an index-free notation this reads as A 7→ TAT−1, in which we recognize the familiar
transformation behavior of matrices.

INFO For every tensor A ∈ V ⊗V ∗, we may define a corresponding transpose, AT ∈ V ∗⊗V , as an

element of a tensor product space in which the order of V and its dual V ∗ have been interchanged. As

such the transpose can be expanded as AT = (AT ) i
j e

j⊗ei and applied to a pair comprising a vector

and dual vector, (v, w) ∈ V ⊗V ∗, to yield the number AT (v, w) = (AT ) i
j v

jwi. Given A ∈ V ⊗V ∗,
its transpose AT ∈ V ∗ ⊗ V is defined by the condition that AT (v, w) = A(w, v) for arbitrary pairs

(v, w). The component representation of this (invariant) condition reads (AT ) i
j v

jwi = Aijwiv
j ,

implying (AT ) i
j = Aij . In Eq. (L107) this relation served as a formal definition of a transposed

matrix.

Tensors of degree (0, 2) or (2, 0): bilinear forms of V or V ∗

Tensors of second covariant degree, t ∈ T 0
2(V ) are generally called bilinear forms. They

can be understood as bilinear maps, t : V ⊗ V → R, (u, v) 7→ t(u, v). A prominent example
is the metric, g, of a vector space, cf. discussion in section L3.3. There, we defined a general
scalar product of a vector space as g(u, v) = uigijv

j, through the set of coefficients gij.
In tensor language, this is equivalent to the definition of a second-degree covariant tensor
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g = gije
i ⊗ ej. In physics, the set of coefficients {gij} is often considered as a matrix. This

can be a potent source of confusion, because under a change of basis, ei 7→ ej(T
−1)ji, the

coefficients gij 7→ gi′j′(T
−1)i

′
i(T
−1)j

′
j transform differently from a matrix (cf. (L271), or the

previous subsection).

INFO Another prominent example of a bilinear form is the inertia tensor, I, of a rigid body.

Describing the rotational motion of the body by a rotation vector ω, the kinetic energy stored in the

rotation is given by T = 1
2I(ω, ω) = 1

2Iijω
iωj . Likewise, the components of the angular momentum

are obtained as Li = Iijω
j .

L11.5 Alternating forms

We next introduce a subclass of tensors which is very important in applications and deserves
a separate discussion: consider the space T 0

p, i.e. the set of multilinear maps of ⊗pV into the

reals. Now define Λp(V ) ⊂ T 0
p

7
as

Λp(V ) ≡ {φ : ⊗pV → R |φ multilinear & alternating}, (L272)

where ‘alternating’ means antisymmetry w.r.t. exchange of any of its vector arguments:
φ(. . . , u, . . . , v, . . . ) = −φ(. . . , v, . . . , u, . . . ). The elements of Λp(V ) are called (alternat-
ing) forms of degree p, or p-form for short. (When using the shorthand nomenclature be
aware, however, that the general bilinear forms discussed earlier need not be alternating. For
example, the metric g(u, v) = g(v, u) is a symmetric bilinear form and therefore not a 2-form.)

EXAMPLE An example of a 2-form is φ = e1 ⊗ e2 − e2 ⊗ e1. Applied to two vectors u and v

it yields the antisymmetric combination φ(u, v) = u1v2 − u2v1. The triple product discussed in

section L4 is a 3-form in Λ3(R3): it maps three vectors onto a number and is antisymmetric under

exchange of its arguments. The matrix determinant can be interpreted as an n-form in Λn(Rn):

take an n×n matrix A = (v1, . . . , vn) and consider it as a stack of n vectors vi ∈ Rn. We can then

write detA = det(v1, . . . , vn), where the latter representation is the image of the multilinear form

det, evaluated on n argument vectors vi. The determinant is linear in each entry and antisymmetric

under argument exchange, and this makes it an n-form. Expanded in a tensor basis the determinant

assumes the form

det =
∑

P∈Sn
sgn(P )eP (1) ⊗ eP (2) . . . eP (n), (L273)

where Sn is the permutation group of n objects and the sum runs over all permutations P .

7

The notation where Λp(V ) ⊂ T 0
p carries the degree-index p upstairs is not ideal but standard and we will

use it here too.
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A general p-form can be expanded as

φ =
∑

i1<i2<···<ip
φi1,...,ip

∑

P∈Sp
sgn(P )eiP1 ⊗ eiP2 . . . eiPp , (L274)

in basis forms. Here P is an element of the group of permutations of p objects. By defi-
nition, the coefficients of the expansion obey the antisymmetrization condition φPi1,...,P ip =
sgn(P )φi1,...,ip . For this reason, the sum over indices in (L274) may be limited to ordered index
configurations i1 < i2 < · · · < ip. For example, the p = 2 forms in an (n = 3)-dimensional
space afford the expansion

φ = φ12(e1 ⊗ e2 − e2 ⊗ e1) + φ23(e2 ⊗ e3 − e3 ⊗ e2) + φ31(e3 ⊗ e1 − e1 ⊗ e3).

Terms with coinciding indices do not contribute due to antisymmetrization, (φ11(e1⊗e1−e1⊗
e1) = 0), and terms outside the ordering may be re-ordered to fit into the ordering scheme
(φ21(e2 ⊗ e1 − e1 ⊗ e2) = φ12(e1 ⊗ e2 − e2 ⊗ e1)), where the antisymmetry φ21 = −φ21

is essential. In the space Λn(Rn), where p = n, there is only one ordered configuration,
(i1, . . . , in) = (1, . . . , n), hence forms in this space are characterized by a single number,
φ1,...,n. Applying the n-form with φ1,...,n = 1 to a set of n vectors, v1, . . . , vn, from Rn yields

φ(v1, . . . , vn) =
∑

P∈Sn
sgn(P )eP1 ⊗ . . . ePn(v1, . . . , vn) =

∑

P∈Sn
sgn(P )(v1)P1 . . . (vn)Pn.

(L275)

Interpreting the n-tuple (v1, . . . , vn) ≡ A as a matrix with elements Aij = (vj)
i, the value

φ(v1, v2, . . . , vn) ≡ φ(A) equals the determinant of A (cf. Eq. (L154)), i.e. φ(A) = det(A),
as mentioned above. In two and three dimensions, the corresponding top-forms are the de-
terminants det(v1, v2) and det(v1, v2, v3), which yield the area of the parallelogram or the
volume of the parallelepiped spanned by their argument vectors, respectively (see p. 89). This
generalizes to arbitrary dimensions: in Rn the top-form (L275) yields the geometric ‘volume’
of the n-dimensional parallelepiped spanned by its argument vectors, as will be explained in
detail in Section V5.4.

In Eq. (L274), the product of the antisymmetric factor φii,...,ip and the antisymmetric sum
over permutations is symmetric w.r.t. to all its indices. Therefore, one may choose to avoid
the ordering condition in the sum and instead sum over all index combinations as

φ =
1

p!

∑

i1,i2,...,ip

φi1,...,ip
∑

P∈Sp
sgn(P )eiP1 ⊗ eiP2 . . . eiPp . (L276)

The terms with coinciding indices vanish, and the redundant summation over un-ordered index
pairs is compensated by the prefactor 1/p! (think about this point!).

8

We conclude this section with a summary of the most important mathematical properties
of alternating forms. They all follow immediately from our general discussion above.

8

For example, for p = 2 we have a 2!-fold redundancy,
∑
ij φij(e

i⊗ ej − ej⊗i) = φ12(e1⊗ e2− e2⊗ e1) +

φ21(e2 ⊗ e1 − e1 ⊗ e2) = 2φ12(e1 ⊗ e2 − e2 ⊗ e1), since both factors in the product are antisymmetric.
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. The sum φ + φ′ of two alternating forms φ, φ′ ∈ Λp(V ) is again an alternating form, i.e.
Λp(V ) is a vector space.

. Λ1(V ) = V ∗, the space of one-forms, is the dual vector space. We define Λ0(V ) = R.

. For dimV = n, Λp>n(V ) = {}, in other words, an n-dimensional vector space does not
support alternating p-forms if p > n. This is best seen by considering the action of forms
φ(eii , . . . , eip) on basis vectors. If p > n, identical basis vectors will appear repeatedly in
the argument (because we have only n different ones). However, φ(. . . , ei, . . . , ei, . . . ) =
−φ(. . . , ei, . . . , ei, . . . ) = 0 by antisymmetry.

. For dimV = n, the dimension of the vector space of alternating p-forms is dim Λp(V ) =
( np ). This follows since the number of ordered p-tuples 1 ≤ i1 < i2 < · · · < ip≤ n is ( np ),
and the sum in (L274) extends over as many basis forms.

L11.6 Visualization of alternating forms
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Figure L21: Visualization of alternating forms in (a) one-, (b,c) two- and (d-f) three-dimensional
space. The periodically extended sub-units defining the graphical representation of forms are indicated
in red shading. For a further discussion, see text.

Much as vectors can be visualized as arrows, alternating forms in low-dimensional spaces,
dim(V ) = 1, 2, 3, too, afford pictorial representations. Although these are of limited use
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for computations, they support the intuitive understanding of forms and are therefore worth
discussing. Alternating p-forms in n-dimensional space are represented through periodically
repeated patterns of (n− p)-dimensional linear structures, such as lines, planes, volumes, etc.
These patterns are introduced such that they can be ‘paired’ with p vectors to yield the value
of the form on the p argument vectors.

For example, a one-form in two-dimensional space, φ, is represented by a system of
parallel lines of specified slope and inter-line spacing (cf. Fig. L21(b)). These lines define
a pattern of strips (one is shown shaded) tiling the plane. The strips are given a sense of
‘orientation’ by choosing an ‘upside’ and a ‘downside’. In the figure, this choice is indicated
by an arrow labeled o pointing in the chosen ‘upward’ direction. The value of the form on a
vector, φ(v), is now defined graphically as follows: The modulus, |φ(v)|, equals the (generally
fractional) number of strips cut by the arrow representing v (in the figure, this would be about
2.5). Note that this number is invariant under parallel translation of the arrow, as it should
be. The sign of sgn(φ(v)) is positive/negative if v points in the upward/downward direction.
It is straightforward to verify (do it!) that these rules are compatible with the linearity criteria
defining differential forms. The algebraic coefficients, φi, defining the expansion of the form
in a given dual basis, φ = φ1 e

1 + φ2 e
2, are obtained by graphical evaluation of the form on

corresponding basis vectors, φi = φ(ei).

v

v

u+
−u

In a similar manner, a two-form in two-dimensional
space, ω, is defined by a lattice of unit cells (one is shown
shaded in Fig. L21(c)) of arbitrary shape, but with a spec-
ified number of unit cells per unit area (this number can
be fractional). An orientation is chosen by discriminating
between anti-clockwise (mathematically positive) and clockwise (negative) orientated forms.
The modulus of the form acting on two vectors, |ω(u, v)|, is obtained by counting the (gen-
erally fractional) number of tiles covered by the parallelogram spanned by u and v (in this
figure, this number would equal ca. 4.5). For an anti-clockwise orientated form, sgn(ω(u, v))
yields a positive sign when the orientation of v relative to u is anticlockwise (left panel), and
a negative sign otherwise (right panel). For an clockwise oriented form the assignment is
opposite. These rules are consistent with the linearity and antisymmetry criteria of differential
two-forms. The algebraic coefficient, ω12, defining the expansion of the form in a dual basis,
ω = ω12e

1 ∧ e2, is obtained by graphical evaluation of ω(e1, e2) on the pair of corresponding
basis vectors.

EXERCISE Discuss how a one-form in one-dimensional space can be defined through a periodic

pattern of points on the real line, plus a sense of orientation, cf. Fig. L21(a). How is the value of

the form on one-dimensional vector computed, and how is its expansion in a basis obtained?

A one-form in three-dimensional space, φ, is defined in conceptual analogy to the one-
form in two-dimensional space, only that the strips are replaced by slabs defined by a system
of equi-spaced parallel planes, cf. Fig. L21(d). As in the two-dimensional case the value of the
form on a vector, φ(v), is obtained by determining the number of slabs pierced by v, where the
sign follows from the alignment of v relative to that of an orienting direction, o. A two-form
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in three-dimensional space, φ, may be represented by a lattice of parallel lines of specified
direction, density of lines per unit area and orientation (‘upwards’ or ‘downwards’) along
the lines, cf. Fig. L21(e). The lines define a pattern of parallel rods, and the absolute value,
|φ(u, v)|, of the form on a pair of vectors is obtained by counting the number of parallelogram-
shaped inter-rod cross sections intersected by the parallelogram defined by u and v (about
5.5 in the figure). The sign of the form is positive/negative depending on whether the system
(o, u, v) defined by a vector, o, pointing in upward direction and the two argument vectors
define a right/left handed system. Finally a three-form in three-dimensional space, φ,
can be defined through a lattice of points with specified density of points per unit volume,
cf. Fig. L21(f). The points define a pattern of parallelepipeds, and |φ(u, v, w)| is obtained by
counting how many of these are contained in the parallelepiped spanned by u, v and w.

In general, a p-form in n-dimensional space can be defined by pattern of identical
(n− p)-dimensional linear structures.

9
The value of the form is obtained by determining how

many of these are are covered by the generalized parallelepiped spanned by p vectors. For
top-forms, n− p = 0, the subunits have finite extent in all n dimensions, which explains why
top-forms measure the geometric volume of n-dimensional parallelepipeds.

EXERCISE Think more about the pictures in Fig. L21 and make sure you are comfortable with the

rules of assignment, the senses of orientation, the number of coefficients required to uniquely specify

a form, etc. Explain how the fractional counting of lines or grid-areas implied by the procedures above

can be avoided by reducing the separation between the points, lines or planes used to represent the

various forms, respectively. Think how a graphical procedure in terms of an ‘infinitely dense’ pattern

of lines or planes should be designed.

L11.7 Wedge product

Alternating forms can be multiplied with each other to yield alternating forms of higher
degree. Given a p-form and a q-form we define their so-called wedge product (exterior
product) as

∧ : Λp(V )⊗ Λq(V )→ Λp+q(V ), (φ, ψ) 7→ φ ∧ ψ,

(φ ∧ ψ)(v1, . . . , vp+q) ≡
1

p!q!

∑

P∈Sp+q
sgnP φ(vP (1), . . . , vP (p))ψ(vP (p+1), . . . , vP (p+q)).

(L277)

Here, Sn is the permutation group of n objects and the sum runs over all permutations P .
For example, for p = q = 1, (φ ∧ ψ)(v, w) = φ(v)ψ(w)− φ(w)ψ(v). For p = 0 and q = 1, φ
is a number and we define φ∧ψ(v) = φψ(v). Important properties of the wedge product
include (φ ∈ Λp(V ), ψ ∈ Λq(V ), λ ∈ Λr(V ), c ∈ R):

9

In the present context, a structure is called (n−p)-dimensional if it has infinite extent in n−p dimensions.
Examples of one-dimensional structures are the strips used to define one-forms in two-dimensional space
(n− p = 2− 1), and the rods used to define two-forms in three-dimensional space (n− p = 3− 2).
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. bilinearity, i.e. (φ1 + φ2) ∧ ψ = φ1 ∧ ψ + φ2 ∧ ψ and (cφ) ∧ ψ = c(φ ∧ ψ).

. associativity, i.e. φ ∧ (ψ ∧ λ) = (φ ∧ ψ) ∧ λ ≡ φ ∧ ψ ∧ λ.

. graded commutativity, φ ∧ ψ = (−)pq ψ ∧ φ.

The fact that the wedge product changes the degree of forms is motivation to define the direct
sum of spaces

Λ(V ) ≡
n⊕

p=0

Λp(V ), (L278)

i.e. a space containing all spaces of fixed degree 0 ≤ p ≤ n as subspaces. This vector space
has dimension dim(Λ(V )) =

∑n
p=0 dim(Λp(V )) =

∑n
p=0 ( np ) = 2n, where in the last equality,

we used the binomial formula. The most important feature of Λ(V ) is that it is more than a
vector space, it is an algebra. An algebra is a vector space (W, ·) endowed with a product
operation, u · v = w, u, v, w ∈ W , i.e. an operation that produces vectors by multiplication
of other vectors (unlike the inner product which yields numbers). The space (Λ(V ),∧) is a
vector space with an (associative) product operation, ∧. It is therefore defines an algebra, the
so-called Grassmann algebra, in the sense of the definition of p. L5.3.

INFO A (real) algebra is an R-vector space W with a product operation

W ×W →W, u, v 7→ u · v,

subject to the following conditions (u, v, w ∈W, c ∈ R):

. (u+ v) · w = u · w + v · w,

. u · (v + w) = u · v + u · w,

. c(v · w) = (cv) · w + v · (cw).

For example, the space of n×n matrices (mat(R, n), ·) forms an algebra, with matrix multiplication

A ·B = C as its product operation.

A natural basis of Λp(V ) is given by the set of forms

ei1 ∧ · · · ∧ eip , 1 ≤ i1 < · · · < ip ≤ n. (L279)

To see this, notice (i) that these forms are alternating by construction, i.e. they belong to
Λp(V ), (ii) that they are linearly independent, and (iii) that there are ( np ) of them. For
example, for n = 3 and p = 2, we have the 3 = ( 3

2 ) linearly independent forms, e1 ∧ e2,
e2 ∧ e3, e3 ∧ e1.

The three criteria (i)-(iii) guarantee the basis property. Any p-form can be represented in
the above basis as

φ =
∑

i1<···<ip
φi1,...,ip e

i1 ∧ · · · ∧ eip , (L280)
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where the coefficients φi1,...,ip ∈ R are given by φi1,...,ip = φ(ei1 , . . . , eip) and therefore are
antisymmetric under exchange of index arguments (for example φ123 = −φ213). Alternatively
φ may be represented by an unrestricted sum with a compensating factor of 1/p! (cf. (L276)):

10

φ =
1

p!

∑

i1,...,ip

φi1,...,ip e
i1 ∧ · · · ∧ eip . (L281)

To illustrate Eq. (L280), we note that the 0, . . . , 3-forms in R3 can be represented as

p = 0 : φ = φ1,

p = 1 : φ = φ1 e
1 + φ2 e

2 + φ3 e
3,

p = 2 : φ = φ12 e
1 ∧ e2 + φ23 e

2 ∧ e3 + φ31 e
3 ∧ e1,

p = 3 : φ = φ123 e
i ∧ e2 ∧ e3. (L282)

Notice that there are 8 = 23 independent coefficients in all, and that the 1- and 2-forms
are described by three coefficients each. The formulas above illustrate the importance of the
wedge product: it allows us to build forms of arbitrary complexity from the much simpler
1-forms.

L11.8 Inner derivative

One can think of a p-form as a machine with p slots into which vectors are fed as arguments.
It is sometimes useful to feed a p-form only one vector v to produce a form of lower degree,
p − 1. The corresponding map, denoted by iv : Λp(V ) → Λp−1(V ), is called the inner
derivative and defined by the relation

(ivφ)(v1, . . . , vp−1) ≡ φ(v, v1, . . . , vp−1), (L283)

where v, indicated as a subscript on the left, acts as additional argument to be supplied to
the p-form φ, as indicated on the right. The components of ivφ are obtained by ‘contraction’
of one of the components of φ with those of v (as follows from Eq. (L268)),

(ivφ)i1,...,ip−1 = viφi,i1,...,ip−1 .

Notice that in Eq. (L283) the seemingly ad hoc choice to feed v into the first argument slot of φ
is inconsequential: due to the antisymmetry of φ, we have, e.g., vjφj,i1,...,ip−1 = −vjφi1,j,...,ip−1 ,
i.e. the contracted index can be permuted at the expense of, at most, a minus sign.

The inner derivative obeys the following properties, which are direct consequences of the
definition:

. iv is a linear map, iv(φ+ φ′) = ivφ+ ivφ
′.

10

For example, for p = 2 we have
∑
ij φije

i ∧ ej = φ12e
1 ∧ e2 + φ21e

2 ∧ e1 = 2φ12e
1 ∧ e2, cf. 8.
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. It is also linear in its ‘parametric argument’, iv+w = iv + iw.

. iv obeys the (graded) Leibniz rule:

iv(φ ∧ ψ) = (ivφ) ∧ ψ + (−)pφ ∧ (iv)ψ, φ ∈ ΛpV ∗. (L284)

Up to the minus sign, this resembles the product rule of differentiation, and because of this
resemblance iv is called a ‘derivative’.

. The inner derivative is ‘antisymmetric’ in the sense that iv ◦ iw = −iw ◦ iv, in particular,
(iv)

2 = 0.

EXERCISE Gain familiarity with the Leibniz rule by computing the components of the inner

derivative of a simple form, for example iv(e
1 ∧ e2).

Let us illustrate the functioning of the inner derivative on the example of the three-form
φ = e1 ∧ e2 ∧ e3 in R3. A quick calculation shows that

iv(φ) = v1e2 ∧ e3 + v2e3 ∧ e1 + v3e1 ∧ e2,

iwiv(φ) = (v2w3 − v3w2)e1 + (v3w1 − v1w3)e2 + (v1w2 − v2w1)e3,

iuiwiv(φ) = det(u, v, w).

INFO The second of these lines contains an interesting message. The components of the one-form

iwiv(φ) are those of the vector product v×w. This is in line with our earlier observation that the vector

product is not a real vector — it does not transform as a vector under linear transformation, but, as

we now understand, as a one-form. In d = 3, we actually have three different objects characterized

by three components: vectors v = v1e1 + v2e2 + v3e3, one-forms φ = φ1e
1 + φ2e

2 + φ3e
3, and

two-forms ω = ω12e
1∧e2 +ω23e

2∧e3 +ω31e
3∧e1. In physics, they are all indiscriminately treated as

vectors, while grudingly acknowledging the odd transformation behavior of one-forms by calling them

‘pseudovectors’. It would be better to accept one-forms as what they are, namely linear forms,

but old habits are hard to change and physics culture will likely keep adhering to the misconception

of calling them ‘pseudovectors’.

L11.9 Pullback

Given a linear map, F : V → W , between two vector spaces, a form, φ ∈ Λp(W ), defined
in W may be ‘pulled back’ by F to become a form F ∗(φ) ∈ Λp(V ) defined in V . The pullback
operation is defined as,

F ∗ : Λp(W )→ Λp(V ), φ 7→ F ∗φ,

(F ∗φ)(w1, . . . , wp) ≡ φ(Fw1, . . . , Fwp). (L285)
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F ∗
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F ∗φ

The idea behind this definition is illustrated in the figure
on the example of the pullback of one-forms between two-
dimensional vector spaces: the action of F ∗φ on vectors
v ∈ V is defined by the action of φ on the image Fv ∈
W : (F ∗φ)(v) ≡ φ(Fv). (The figure uses the visualization
discussed in section ??, where the value of a one-form on two-dimensional vectors is obtained
by counting line-crossings.) Notice that the pullback operation imposes no conditions on F
(besides linearity), nor on the dimensionality of V and W .

To understand what pullback means in a component language, we first consider the case
of one-forms, φ ∈ Λ1(W ). Let {ei} and {fj} be bases of V and W , with dual bases {ei} and
{f j}, respectively. The map F is then described by a component matrix {F i

j} as Fej = fiF
i
j.

Now consider the pullback of a dual basis vector from Λ1(W ), say f j, to Λ1(V ). We can find
the components of F ∗f i w.r.t. the dual basis {ej} by acting with it on the basis vectors {ej}
(cf. Eq. (L256)). We obtain (F ∗f i)j = (F ∗f i)(ej)

(L285)
= f i(Fej) = f i(flF

l
j) = F i

j, or

F ∗f i = F i
je
j. (L286)

Notice how this formula parallels the one for contravariant basis change. In the particular
case where W = V and F is a change of bases, the pullback formula indeed describes the
associated change of the dual basis vectors (think about this point). The action of F ∗ on
forms of higher degree follows from the following general properties of the pullback operation:

. F ∗ is linear: F ∗(φ+ ψ) = F ∗φ+ F ∗ψ.

. F ∗(φ ∧ ψ) = (F ∗φ) ∧ (F ∗ψ),

. (F ◦G)∗ = G∗ ◦ F ∗.

All three rules are immediate consequences of the definition, and the second may be applied
to compute the pullback of general forms, as given by Eq. (L280): iterated application of the
second identity to the expansion φ =

∑
φi1,...,ipf

i1 ∧ · · · ∧ f ip of a form φ ∈ Λp(W ) leads
to F ∗φ =

∑
φi1,...,ip(F

∗f i1) ∧ · · · ∧ (F ∗f ip). The pullbacks of the individual one-forms are
obtained from Eq. (L286) and we obtain

F ∗φ =
∑

i1<···<ip
φi1,...,ip F

i1
j1
. . . F

ip
jp
ej1 ∧ · · · ∧ ejp . (L287)

Later on in chapters V5 and V6 we will understand that this operation is implicitly used in
many routine operations of physics calculus, notably in the manipulation of integrals.

This concludes our survey of tensor algebra. Applications of the formalism will be discussed
in chaptersV4 to V6.



PL Problems: Linear Algebra

The solutions to odd-numbered problems are given in part S, chapter SL. Lecturers can obtain
the solutions to even-numbered problems from the publishers by request.

P.L1 Mathematics before numbers

The problems for chapter L1 are meant to help the reader gain familiarity with the notions of
sets, maps, groups and fields. For further introductory examples we refer to lecture courses in
mathematics.

P.L1.1 Sets and Maps

Become comfortable with the notation used to specify maps by doing the following problems
on the composition of maps.

EL1.1.1 Composition of maps

Let N0 denote the set of all natural numbers including zero, and Z the set of all integers.
Consider the following two maps:

A : Z→ Z, n 7→ A(n) = n+ 1,

B : Z→ N0, n 7→ B(n) = |n| ≡ n · sign(n).

(a) Find the composite map C = B ◦ A, i.e. specify its domain, image and action on n.

(b) Which of the above maps A, B and C are surjective? Injective? Bijective?

PL1.1.2 Composition of maps

(a) Consider the set S = {−2,−1, 0, 1, 2}. Find its image, T = A(S), under the map
n 7→ A(n) = n2. Is the map A : S → T surjective? Injective? Bijective?

(b) Find the image, U = B(T ), of the set T from part (a) under the map n 7→ B(n) =
√
n.

(c) Find the composite map C = B ◦ A.

(d) Which of the above maps A, B and C are surjective? Injective? Bijective?

162
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P.L1.2 Groups

To gain familiarity with the notion of a ‘group operation’ and the relations which it implies
among the group elements, study the following elementary examples of groups. We particularly
recommend the problems on permutations, L1.2.5 and L1.2.6, which set the stage for the
discussion of determinants in chapter L6.

EL1.2.1 The group Z2

(a) Show that Z2 ≡ ({0, 1}, ), where the addition operation is de-
fined by the adjacent composition table, is an abelian group.

0 1

0 0 1

1 1 0

(b) Construct a group isomorphic to Z2 using two integers as group elements and standard
multiplication of integers as group operation. Set up the corresponding composition table.

PL1.2.2 The groups of addition modulo 5 and rotations by multiples of 72 deg

(a) Consider the set Z5 = {0, 1, 2, 3, 4}, endowed with the group operation

: Z5 × Z5 → Z5, (p, p′) 7→ p p′ ≡ (p+ p′) mod 5.

Set up the composition table for the group (Z5, ). Which element is the neutral
element? For a given n ∈ Z, which element is the inverse of n?

(b) Let r(φ) denote a rotation by φ degrees about a fixed axis, with r(φ+360) = r(φ). Con-
sider the set of rotations by multiples of 72 deg,R72 = {r(0), r(72), r(144), r(216), r(288)},
and the group (R72, • ), where the group operation • involves two rotations in succession:

• : R72 ×R72 → R72, (r(φ), r(φ′)) 7→ r(φ) • r(φ′) ≡ r(φ+ φ′).

Set up the multiplication table for this group. Which element is the neutral element?
Which element is the inverse of r(φ)?

(c) Explain why the groups (Z5, ) and (R72, • ) are isomorphic.

(d) Let (Zn, ) denote the group of integer addition modulo n of the elements of the set
Zn = {0, 1, . . . , n− 1}. Which group of discrete rotations is isomorphic to this group?

EL1.2.3 Group of discrete translations in one dimension

In this problem we show that discrete translations on an infinite, one-dimensional lattice form
a group. The lattice G has lattice constant 0 < λ ∈ R and consists of the set of all real
numbers that are integer multiples of λ, thus G := λZ := {x ∈ R|∃n ∈ Z : x = λ · n},
where · is the usual multiplication rule in R. Note that for any given x ∈ G, n is uniquely
determined. On this lattice we define ‘translation’ by the composition rule

T : G×G→ G, (x, y) 7→ T (x, y) ≡ x+ y,
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where + denotes the usual addition of real numbers. Since this composition rule is symmetric,
it can be visualized in two equivalent ways: T (x, y) describes (i) a ‘shift’ or a ‘translation’
of lattice point x by the distance y, or (ii) a translation of lattice point y by the distance x.
[Figure (a), where λ = 1

3
, shows both visualizations of T (2

3
, 4

3
).]

)3
4,3

2(T

3
1=λ )3

4,3
2(T

3
2

3
3

3
4

3
5

3
6

3
7

3
1

3
0

(i)

(ii)

3
2T(a) (b)

(a) Show that (G, T ) forms an abelian group.

(b) For a given y ∈ G we now define, in accordance with visualization (i), a ‘translation’ of
the lattice by y, i.e. each lattice point x is ‘shifted’ by y:

Ty : G→ G, x 7→ Ty(x) ≡ T (x, y).

[Figure (b), where λ = 1
3
, shows T 2

3
.] Now consider the set of all such translations,

T := {Ty, y ∈ G}. Show that (T, ) forms an abelian group, where is defined as

: T×T→ T, (Tx, Ty) 7→ Tx Ty ≡ TT (x,y).

Remark: the set T underlying this group consists of maps (namely translations), illus-
trating that the set underlying a group need not be ‘simple’.

PL1.2.4 Group of discrete translations on a ring

In this problem we show that discrete translations on a finite, one-dimensional lattice with
periodic boundary conditions form a group. Consider a ring with radius 0 < R ∈ R and
lattice constant λ = 2πR/N with N ∈ N, thus G := λ(ZmodN) := {x ∈ R|∃n ∈
{0, 1, . . . , N − 1} : x = λ ·n}, where · is the usual multiplication rule in R. Note that for any
given x ∈ G, n is uniquely determined. The ring forms a ‘periodic’ structure: when counting
its sites, 0λ and Nλ describe the same lattice site, the same is true for 1λ and (1 + N)λ,
for 2λ and (2 + N)λ, etc. On this lattice we define a composition rule, corresponding to a
‘translation’, using addition modulo N :

T : G×G→ G, (x, y) = (λ · nx, λ · ny) 7→ T (x, y) ≡ λ · ((nx + ny)modN).

Here + is the usual addition of integers, and nmodN (spoken as ‘n mod N ’) is defined as
the integer remainder after division of n by N (e.g. 9 mod 8 = 1). [For N = 8, figure (a)
shows two visualizations of the translation T (4λ, 5λ): as a ‘shift’ of the lattice site 4λ by the
distance 5λ along the ring, or of the site 5λ by the distance 4λ.]
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(a) (b)

λ

)λ5λ,(4T
λ0

λ1

λ2

λ3

λ4

λ5

λ6

λ7

= 8N

λ2T

(a) Show that (G, T ) forms an abelian group.

(b) For a given y ∈ G we now define a ‘translation’ of the lattice by y,

Ty : G→ G, x 7→ Ty(x) ≡ T (x, y)

i.e. each site x is ‘shifted’ by y along the ring. [For N = 8, figure (b) shows the translation
T2λ]. Now consider the set of all such translations, T := {Ty, y ∈ G}. Show that (T, )
forms an abelian group, where is defined as

: T×T→ T, (Tx, Ty) 7→ Tx Ty ≡ TT (x,y).

EL1.2.5 The permutation group

A map which reorders n labelled objects is called a permutation of these objects. For example,

1234
[4312]7−→ 4312 is a permutation of the four numbers in the string 1234, where we use [4312]

as shorthand for the map 1 7→ 4, 2 7→ 3, 3 7→ 1 and 4 7→ 2. Similarly, if the same permutation

is applied to the string 2314, it yields 2314
[4312]7−→ 3142. (In general, [P (1)...P (n)] denotes the

map j 7→ P (j), for j = 1, ..., n.) Two permutations performed in succession again yield a
permutation. For example, acting on 1234 with P = [4312] followed by P ′ = [2413] yields

1234
[4312]7−→ 4312

[2413]7−→ 3124, thus the resulting permutation is P ′ ◦ P = [3124].

The set of all possible permutations of n numbers is denoted by Sn. It contains n! elements.
Viewing P ′ ◦ P (perform first P , then P ′) as a group operation,

◦ : Sn × Sn → Sn, (P ′, P ) 7→ P ′ ◦ P ,
we obtain a group, (Sn, ◦), the permutation group, usually denoted simply by Sn.

(a) Complete the adjacent com-
position table for S3, in
which the entries P ′ ◦ P
are arranged such that those
with fixed P ′ sit in the same
row, those with fixed P in
the same column.

P ′ ◦ P [123] [231] [312] [213] [321] [132]

[123] [123] [231] [312] [213] [321] [132]

[231] [312] [123] [321] [132] [213]

[312] [231] [132] [213] [321]

[213] [312] [231]

[321] [312]

[132]
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(b) Which element is the neutral element of S3? How can we see from the multiplication
table that every element has a unique inverse?

(c) Is S3 an abelian group? Justify your answer.

PL1.2.6 Decomposing permutations into sequences of pair permutations

Consider the permutation group Sn defined in the previous problem. Any permutation can
be decomposed into a sequence of pair permutations, i.e. permuations which exchange just
two objects, leaving the others unchanged. Examples:

123
[321]7−→ 321

[132]7−→ 231 ⇒ [231] = [132] ◦ [321].

1234
[2134]7−→ 2134

[3214]7−→ 2314 ⇒ [2314] = [3214] ◦ [2134],

1234
[3214]7−→ 3214

[1324]7−→ 2314 ⇒ [2314] = [1324] ◦ [3214],

1234
[4231]7−→ 4231

[1432]7−→ 2431
[1243]7−→ 2341

[4231]7−→ 2314 ⇒ [2314] = [4231] ◦ [1243] ◦ [1432] ◦ [4231].

The last three lines illustrate that a given permutation can be pair-decomposed in several
ways, and that these may or may not involve different numbers of pair exchanges. However,
one may convince oneselve (try it!) that all pair decompositions of a given permutation have
the same parity, i.e. the number of exchanges is either always even or always odd.

To find a ‘minimal’ (shortest possible) pair decomposition of a given permutation, say [2413],
we may start from the naturally-ordered string 1234 and rearrange it to its desired form, 2413,
one pair permutation at a time, bringing the 2 to the first slot, then the 4 to the second slot,

etc. This yields 1234
[2134]7−→ 2134

[4231]7−→ 2431
[3214]7−→ 2413, hence [2413] = [3214] ◦ [4231] ◦ [2134].

Find a minimal pair decomposition and the parity of each of the following permutations:

(a) [132], (b) [231], (c) [3412], (d) [3421], (e) [15234], (f) [31542].

P.L1.3 Fields

The number fields of most importance in physics are the real numbers and the complex
numbers. The problems in this section focus on the latter, assuming you know the former
from high school. The section’s final problem L1.3.7 gives an example of a number field
involving just four elements, included as an amusing curiosity.

EL1.3.1 Complex numbers – elementary computations

Consider the complex numbers z1 = 12 + 5i, z2 = −3 + 2i and z3 = a − ib, with a, b ∈ R.
Compute (a) z̄1, (b) z1 + z2, (c) z1 + z̄3, (d) z1z2, (e) z̄1z3, and (f) z1/z2. (Present each
answer in the form x+ iy.) Also compute (g) |z1|, (h) |z1 + z2| and (i) |az2 + 3z3|.
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PL1.3.2 Complex numbers – elementary computations

Consider the complex numbers z1 = 3 + ai and z2 = b − 2i with a, b ∈ R. Compute (a) z̄1,
(b) z1− z2, (c) z1z̄2, and (d) z̄1/z2. (Present each answer in the form x+ iy.) Also, compute
(e) |z1| and (f) |bz1−3z2|. [Check your results for a = 2, b = 3: (a) 3−2i, (b) 4i, (c) 5+12i,
(d) 1, (e)

√
13, (f) 12.]

EL1.3.3 Algebraic manipulations with complex numbers

For z = x+iy ∈ C, bring each of the following expressions into standard form, i.e. write them
as (real part) + i(imaginary part):

(a) z + z̄, (b) z − z̄, (c) z · z̄, (d)
z

z̄
,

(e)
1

z
+

1

z̄
, (f)

1

z
− 1

z̄
, (g) z2 + z, (h) z3.

[Check your results for x = 2, y = 1: (a) 4, (b) i2, (c) 5, (d) 3
5

+ i4
5
, (e) 4

5
, (f) −i2

5
, (g)

5 + i5, (h) 2 + i11.]

PL1.3.4 Algebraic manipulations with complex numbers

For z = x+ iy ∈ C, bring each of the following expressions into standard form:

(a) (z + i)2, (b)
z

z + 1
, (c)

z̄

z − i
.

[Check your results for x = 1, y = 2: (a) −8 + i6, (b) 3
4

+ i1
4
, (c) −1

2
− i3

2
.]

EL1.3.5 Multiplying complex numbers – geometrical interpretation

(a) Let z1 and z2 be two complex numbers, with polar representations zj = (ρj cosφj, ρj sinφj).
Show that multiplying them, z3 = z1z2, yields the relations ρ3 = ρ1ρ2 and φ3 =
(φ1 + φ2)mod(2π). [The mod(2π) is needed if polar angles are restricted to lie in the
interval φ ∈ [0, 2π).] To this end, the following trigonometric identities are useful:
cosφ1 cosφ2−sinφ1 sinφ2 = cos (φ1 + φ2), sinφ1 cosφ2+cosφ1 sinφ2 = sin (φ1 + φ2).

(b) For z1 =
√

3 + i, z2 = −2 + 2
√

3i, compute the product z3 = z1z2, as well as z4 = 1/z1

and z5 = z̄1. Find the polar representation [with φ ∈ [0, 2π)] of all five complex numbers
and sketch them in the complex plane (in one diagram). Is your result for z3 consistent
with (a)?

PL1.3.6 Multiplying complex numbers – geometrical interpretation

For z1 = 1√
8

+ 1√
8
i, z2 =

√
3 − i, compute the product z3 = z1z2, as well as z4 = 1/z1 and

z5 = z̄1. Find the polar representation [with φ ∈ [0, 2π)] of all five complex numbers and
sketch them in the complex plane (in one diagram).
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EL1.3.7 Field axioms for F4

For a field, the requirement that the addition and multiplication rules be distributive imposes
powerful constraints on both composition rules. The present problem illustrates this fact for
a discrete field involving just four elements.
Equip the set F4 = {0, 1, a, b} with ‘multiplication’
and ‘addition’ rules chosen such that (F4, , • ) is
a field, with 0 and 1 as neutral elements of addition
and multiplication, respectively. To this end, com-
plete the given composition tables in such a way
that the properties of a field are fulfilled.
Hint: Start with the multiplication table!

• 0 1 a b
0

1 1 a b
a a

b b

0 1 a b

0 0 1 a b

1 1
a a

b b

P.L2 Vector spaces

P.L2.4 Vector spaces: examples

EL2.4.1 Vector space axioms: rational numbers

(a) Show that the set Q2 = {
(
x1

x2

)
|x1, x2 ∈ Q}, consisting of all pairs of rational numbers,

forms a Q-vector space over the field of rational numbers.

(a) Is it possible to construct a vector space from the set of all pairs of integers, Z2 =

{
(
x1

x2

)
|x1, x2 ∈ Z}? Justify your answer!

PL2.4.2 Vector space axioms: complex numbers

Show that the complex numbers C form a R-vector space over the field of real numbers.

EL2.4.3 Vector space of real functions

Let F ≡ {f : R → R, x 7→ f(x)} be the set of real functions. Show that (F, , •) is an R
vector space, where the addition of functions, and their multiplication by scalars, are defined
as follows:

: F × F → F (f, g) 7→ f g, with f g : x 7→
[
f g

]
(x) ≡ f(x) + g(x) (1)

• : R× F → F (λ, f) 7→ λ • f, with λ • f : x 7→
[
λ • f

]
(x) ≡ λf(x) (2)

Remark regarding notation: It is important to distinguish the ‘name’ of a function, f , from
the ‘function value’, f(x), which it returns when evaluated at the argument x. The sum of
the functions f and g is a function named f g. Eq. (1) states that its function value at x,
denoted by

[
f g

]
(x) (square brackets indicate the function name), is by definition equal to

f(x) + g(x), the sum of the function values of f and g at x. The product of the number c
and the function f yields a function named c • f . Eq. (2) states that its function value at x,
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denoted by
[
c • f

]
(x), is by definition equal to cf(x), the product of c with the function value

of f at x.

PL2.4.4 Vector space of polynomials of degree n

The vector space of all real functions is infinite-dimensional. However, if only functions of a
prescribed form are considered, the corresponding vector space can be finite-dimensional. As
an example, it is shown in this problem that the set of all polynomials of degree n form a
vector space of dimension n+ 1, isomorphic to Rn+1.

[Remark on the notation: In the context of the present problem on polynomials, xk means “x
to the power of k”, and ak is “the coefficient of xk”. This is in contrast to the notation that we
have adopted elsewhere when discussing vectors, where xk stands for the k-th component of
the vector x =

∑
k vkx

k with respect to a basis of vectors {vk}. Every notational convention
has exceptions!]

Let pa denote a polynomial in the variable x ∈ R of degree n:

pa : R→ R, x 7→ pa(x) ≡ a0x
0 + a1x

1 + . . . anx
n. (1)

pa is uniquely specified by its n+1 real coefficients a0, a1, . . . , an, which for notational brevity
we arrange into a (n + 1)-tuplet, a = (a0, a1, . . . , an)T ∈ Rn+1. Let Pn = {pa|a ∈ Rn+1}
denote the set of all such polynomials of degree n. The natural definitions for adding such
polynomials, or multiplying them by a scalar c ∈ R, are:

pa pb : R→ R, x 7→ pa(x) + pb(x) , (2)

c • pa : R→ R, x 7→ c pa(x) ,
(3)

where on the right side the usual addition and multiplication in R is used.

(a) Show that the above addition and scalar multiplication imply the following composition
rules in Pn,

Addition of polynomials: : Pn × Pn → Pn, (pa, pb) 7→ pa pb ≡ pa+b ,

Multiplication by a scalar: • : R× Pn → Pn, (c, px) 7→ c • pa ≡ pca ,

where a + b and ca denote the usual addition and scalar multiplication in Rn+1.

(b) Show that (Pn, , •) is an R vector space, and that it is isomorphic to Rn+1.

(c) Construct a set n + 1 of polynomials, {pa0 , . . . , pan} ⊂ Pn, that forms a basis for this
vector space.
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EL2.4.5 Vector space with unusual composition rule

The axioms that define a vector space can be satisfied in many different ways. These may
involve unconventional definitions of vector addition and scalar multiplication. The purpose
of the present problem is to illustrate this point.
For any a ∈ R, let Va ≡ {vx} be a set whose elements vx, labelled by real numbers x ∈ R,
satisfy the following composition rules:

Addition: : Va × Va → Va, (vx,vy) 7→ vx vy ≡ vx+y+a

Multiplication by a scalar: · : R× Va → Va, (λ,vx) 7→ λ · vx ≡ vλx+a(λ−1)

The a and x labels, being real numbers, satisfy the usual addition and scalar multiplication
rules of R; e.g. in V2 we have: v3 v4 = v3+4+2 = v9 and 3 · v4 = v3·4+2(3−1) = v16. Show
that the triple (Va, , ·) represents an R-vector space, with v−a and 1 being the neutral
elements for addition and scalar multiplication, respectively, and v−x−2a the additive inverse
of vx.

PL2.4.6 Vector space with unusual composition rule

For any a ∈ R2, let Va ≡ {vx} be a set whose elements vx, labelled by vectors x ∈ R2,
satisfy the following composition rules:

Addition: : Va × Va → Va, (vx,vy) 7→ vx vy ≡ vx+y−a

Multiplication by a scalar: · : R× Va → Va, (λ,vx) 7→ λ · vx ≡ vλx+f(a,λ)

Here f(a, λ) is a function of a and λ, whose form will be determined below.

(a) Show that Va, endowed with the composition rule , forms an abelian group, and specify
the neutral element of addition and the additive inverse of vx.

(b) Find the specific form of f that ensures that the triple (Va, , ·) forms an R-vector
space.

(c) Would a similar construction work for a, x ∈ Rn (with n a positive integer) instead of
R2?

P.L2.5 Basis and dimension

EL2.5.1 Linear Independence

(a) Are the vectors v1 = (0, 1, 2)T , v2 = (1,−1, 1)T and v3 = (2,−1, 4)T linearly indepen-
dent?

(b) Depending on whether your answer is yes or no, find a vector v′2 such that v1, v′2 and
v3 are linearly dependent or independent, respectively, and show explicitly that they have
this property.
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PL2.5.2 Linear independence

(a) Are the vectors v1 = (1, 2, 3)T , v2 = (2, 4, 6)T and v3 = (−1,−1, 0)T linearly indepen-
dent?

(b) Depending on whether your answer is yes or no, find a vector, v′2 such that v1, v′2 and
v3 are linearly dependent or independent, respectively, and show explicitly that they have
this property.

EL2.5.3 Einstein summation convention

Which of the following statements involving (a1, a2) and
(
b1

b2

)
, formulated using the Einstein

summation convention, are true and which are false? Justify your answers!

(a) aib
i ?

= bjaj , (b) aiδ
i
jb
j ?

= akb
k ,

(c) aib
jajb

k ?
= akb

lalb
i , (d) a1aib

1bi + b2aja2b
j ?

= (aib
i)2 .

PL2.5.4 Einstein summation convention

Let (a1, a2) = (1, 2),
(
b1

b2

)
=
(−1
x

)
. Evaluate the following expressions, formulated using the

Einstein summation convention, as functions of x:

(a) aib
i , (b) aiajb

ibj , (c) a1ajb
2bj .

[Check your results for x = 3: (a) 5, (b) 25, (c) 15.]

P.L3 Euclidean geometry

P.L3.1 Scalar product of Rn

P.L3.2 Normalization and orthogonality

EL3.2.1 Angle, orthogonal decomposition

(a) Find the angle between the vectors a = (3, 4)T and b = (7, 1)T .

(b) Consider the vectors c = (3, 1)T and d = (−1, 2)T . Decompose c = c‖ + c⊥ into
components parallel and perpendicular to d, respectively. Scetch all four vectors.

[Check your results: ‖c‖‖ = 1√
5
, ‖c⊥‖ = 7√

5
.]
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PL3.2.2 Angle, orthogonal decomposition

(a) Find the angle between the vectors a = (2, 0,
√

2)T and b = (
√

2, 1, 1)T .

In the figure, the points P , Q and R have coordinate vectors p =
(−1,−1)T , q = (2, 1)T and r = (−1,−1 + 13a)T , with a a positive real
number. The line RS is perpendicular to the line PQ.

(b) Find the coordinate vector s of S, expressed as a function of a.
Hint: Let c denote the vector from P to Q, and d the vector from
P to R, then decompose d = d‖ + d⊥ into components parallel and
perpendicular to c.

R

Q

S

P

(c) Find the distance RS from R to S and the distance PS from P to S.

[Check your results for a = 1: (b) s = (5, 3)T , (c) RS
2

+ PS
2

= 169.]

P.L3.3 Inner product spaces

EL3.3.1 Inner product for vector space of continuous functions

This problem illustrates a particularly important example of an inner product: in the space of
continuous functions, an inner product can be defined via integration.
Let V be the vector space of continuous real functions defined on an interval I ∈ R, f : I →
R, with the usual composition rules of vector addition and scalar multiplication:

∀f, g ∈ V : f + g : I → R, x 7→ (f + g)(x) ≡ f(x) + g(x)),

∀f ∈ V, λ ∈ R : λ · f : I → R, x 7→ (λ · f)(x) ≡ λ (f(x)) .

(a) Show that the following map defines an inner product on V :

〈·, ·〉 : V 2 → R, (f, g) 7→ 〈f, g〉 ≡
ˆ
I

dx f(x)g(x) .

(b) Now consider I = [−1, 1]. Compute 〈f1, f2〉 for f1(x) ≡ sin
(
x
π

)
and f2(x) ≡ cos

(
x
π

)
.

PL3.3.2 Unconvential inner product

The defining properties of an inner product on Rn are of course satisfied not only by the
‘standard’ definition, 〈x,x〉 =

∑n
i=1(xi)2; there are infinitely many other bilinear forms that

do so, too. The present problem illustrate this with a simple example. Show that the following
map defines an inner product on the vector space R2:

〈·, ·〉 : R2 ×R2 → R,
(
x,y

)
7→ x1y1 + x1y2 + x2y1 + 3x2y2 .
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EL3.3.3 Projection onto an orthonormal basis

(a) Show that the vectors e′1 = 1√
2
(1, 1)T , e′2 = 1

2
(1,−1)T form an orthonormal basis for R2.

(b) Express the vector w = (−2, 3)T in the form w = e′1w
1 + e′2w

2, by computing its
components wi with respect to the basis {e′i} through projection onto the basis vectors.
[Check your results:

∑2
i=1 w

i = −2
√

2.]

PL3.3.4 Projection onto an orthonormal basis

(a) Show that the vectors e′1 = 1
9
(4,−1, 8)T , e′2 = 1

9
(−7, 4, 4)T and e′3 = 1

9
(−4,−8, 1)T

form an orthonormal basis in R3.

(b) Let w = e′iw
i be the decomposition of w = (1, 2, 3)T in this basis. Find the components

wi. [Check your results:
∑3

i=1 w
i = 22

9
.]

EL3.3.5 Non-orthonormal basis vectors and metric

Consider the vectors v̂1 =
(

2
0

)
and v̂2 =

(
1
1

)
, written as column vectors in the standard basis

of R2. (In this problem we use the notation of section ??: vectors in the inner product space
R2 carry a caret, e.g. x̂, and their components w.r.t. a given basis do not, e.g. x.)

(a) Write the standard basis vector ê1 =
(

1
0

)
as a linear combination of v̂1 and v̂2. Ditto for

ê2 =
(

0
1

)
. Do {v̂1, v̂2} form a basis for R2?

(b) Let x̂ = v̂1x
1 + v̂2x

2 and ŷ = v̂1y
1 + v̂2y

2 be two vectors in R2, whose components
w.r.t. v̂1 and v̂2 are given by x = (x1, x2)T = (3,−4)T and y = (y1, y2)T = (−1, 3)T

respectively. Express x̂ and ŷ as column vectors in the standard basis of R2 and compute
their scalar product 〈x̂, ŷ〉R2 .

(c) If the scalar product 〈x̂, ŷ〉R2 is expressed through the components xi of x̂ and yi of ŷ
w.r.t. the non-orthogonal basis {v̂1, v̂2}, then it takes the form of an inner product with
a metric: 〈x̂, ŷ〉R2 = 〈x,y〉g = xigijy

j, with gij = 〈v̂i, v̂j〉R2 . Compute the components

of the metric explicitly (concretely: find g11, g12, g21 and g22).

(d) The inner product from (c) can be written as 〈x̂, ŷ〉R2 = (xigij)y
j = xjy

j, with xj =

xigij, thus “hiding” the metric by absorbing it into the definition of covariant components
(with subscript indices). Compute 〈x̂, ŷ〉R2 in this manner, by first finding x1 and x2.
[Check: is the result consistent with that from (b)?]
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PL3.3.6 Non-orthonormal basis vectors and metric

Consider the vectors v̂1 = (2, 1, 2)T , v̂2 = (1, 0, 1)T , and v̂3 = (1, 1, 0)T , written as column
vectors in the standard basis of R3. (In this problem we use the notation of section ??: vectors
in the inner product space R3 carry a caret, e.g. x̂, and their components w.r.t. a given basis
do not, e.g. x.)

(a) Write the standard basis vector ê1 = (1, 0, 0)T as a linear combination of v̂1, v̂2 and v̂3.
Ditto for ê2 = (0, 1, 0)T and ê3 = (0, 0, 1)T . Do v̂1, v̂2 and v̂3 form a basis for R3?

(b) Let x̂ = v̂1x
1 + v̂2x

2 + v̂3x
3 and ŷ = v̂1y

1 + v̂2y
2 + v̂3y

3 be two vectors in R3,
whose components w.r.t. v̂1, v̂2 and v̂3 are given by x = (x1, x2, x3) = (2,−5, 3)T and
y = (y1, y2, y3) = (4,−1,−2)T , respectively. Express x̂ and ŷ as column vectors in the
standard basis of R3 and compute their scalar product 〈x̂, ŷ〉R3 .

(c) Find the components of the metric gij = 〈v̂i, v̂j〉R3 explicitly.

(d) Now calculate the scalar product of x̂ and ŷ using the formula 〈x̂, ŷ〉R3 = 〈x,y〉g =
xigijy

j = xjy
j, with xj = xigij, and carry out the sum over i and j explicitly. [Check: is

the result consistent with that from (b)?]

EL3.3.7 Gram-Schmidt orthonormalization

Apply the Gram-Schmidt procedure to the following set of linearly independent vectors {v1,v2,v3}
to construct an orthonormal set {e′1, e′2, e′3} with the same span and with e′1||v1.

v1 = (1,−2, 1)T , v2 = (1, 1, 1)T , v3 = (0, 1, 2)T .

PL3.3.8 Gram-Schmidt orthonormalization

Apply the Gram-Schmidt procedure to each of the following sets of linearly independent vectors
{v1,v2,v3} to construct an orthonormal set {e′1, e′2, e′3} with the same span and with e′1||v1.

(a) v1 = (−2, 0, 2)T , v2 = (2, 1, 0)T , v3 = (3, 6, 5)T .

(b) v1 = (1, 1, 0, 0)T , v2 = (0, 0, 1, 1)T , v3 = (0, 1, 1, 0)T .

P.L3.4 Complex scalar product

P.L4 Vector product

P.L4.2 Algebraic formulation

EL4.2.1 Elementary computations with vectors

Given the vectors a = (4, 3, 1)T and b = (1,−1, 1)T .
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(a) Calculate ‖b‖, a− b, a · b and a× b.

(b) Decompose a into a vector a‖ parallel to b and a vector a⊥ perpendicular to b.

(c) Calculate a‖ · b, a⊥ · b, a‖ × b and a⊥ × b. Do these results match your expectations?

[Check your results: (a) a · b +
∑

i(a× b)i = −4, (b)
∑

i(a‖)
i = 2

3
,
∑

i(a⊥)i = 71
3
.]

PL4.2.2 Elementary computations with vectors

Given the vectors a = (2, 1, 5)T and b = (−4, 3, 0)T .

(a) Calculate ‖b‖, a− b, a · b and a× b.

(b) Decompose a into a vector a‖ parallel to b and a vector a⊥ perpendicular to b.

(c) Calculate a‖ · b, a⊥ · b, a‖ × b and a⊥ × b. Do these results match your expectations?

[Check your results: (a) a · b +
∑

i(a× b)i = −30, (b)
∑

i(a‖)
i = 1

5
,
∑

i(a⊥)i = 74
5
.]

EL4.2.3 Levi-Civita tensor

(a) Is the statement aibjεij2
?
= −akεk2lb

l true or false? Justify your answer.

Express the following k-sums over products of two Levi-Civita tensors in terms of Kronecker
delta functions. Check your answers by also writing out the k-sums explicitly and evaluating
each term separately.

(b) ε1ikεkj1, (c) ε1ikεkj2.

PL4.2.4 Levi-Civita tensor

(a) Is the statement aiajεij3
?
= bmbnεmn2 true or false? Justify your answer.

Express the following k-sums over products of two Levi-Civita tensors in terms of Kronecker
delta functions.

(b) ε1ikε23k, (c) ε2jkεki2, (d) ε1ikεk3j.
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P.L4.3 Further properties of the vector product

EL4.3.1 Grassmann identity (BAC-CAB) and Jacobi identity

(a) Prove the Grassmann (or BAC-CAB) identity for arbitrary vectors a, b, c ∈ R3:

a× (b× c) = b(a · c)− c(a · b).

Hint: Expand the three vectors in an orthonormal basis, e.g. a = eia
i, and use the identity

εijkεmnk = δimδjn − δinδjm for the Levi-Civita-tensor. If you prefer, you may equally well
write all indices downstairs, e.g. a = eiai, since in an orthonormal basis ai = ai.

(b) Use the Grassmann identity to derive the Jacobi identity:

a× (b× c) + b× (c× a) + c× (a× b) = 0 .

(c) Check both identities explicitly for a = (1, 1, 2)T , b = (3, 2, 0)T and c = (2, 1, 1)T by
separately computing all terms they contain.

PL4.3.2 Lagrange identity

(a) Prove the Lagrange identity for arbitrary vectors a, b, c, d ∈ R3:

(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c).

Hint: Work in an orthonormal basis and use the properties of the Levi-Civita tensor.

(b) Use (a) to compute ‖a× b‖ and express the result in terms of ‖a‖, ‖b‖ and the angle
φ between a and b.

(c) Check the Lagrange identity explicitly for the vectors a = (2, 1, 0)T , b = (3,−1, 2)T ,
c = (3, 0, 2)T , d = (1, 3,−2)T , by separately computing all its terms.

EL4.3.3 Scalar triple product

This problem illustrates an important relation between the scalar triple product and the ques-
tion whether three vectors in R3 are linearly independent or not.

(a) Compute the scalar triple product S(y) of v1 = (1, 0, 2)T , v2 = (3, 2, 1)T and v3 =
(−1,−2, y)T as a function of the variable y.

[
Check your result: S(1) = −4

]
.

(b) By solving the vector equation via
i = 0, find that value of y for which v1, v2 are v3 not

linearly independent.

(c) What is the value of S(y) for the value of y found in (b)? Interpret your result!
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PL4.3.4 Scalar triple product

Compute the volume V (φ) of the parallelepiped spanned by
three unit vectors v1, v2 and v3, each pair of which encloses
a mutual angle of φ (with 0 ≤ φ ≤ 2

3
π; why is this restriction

needed?).
Check your results: (i) What do you expect for V (π

2
) and

V (2
3
π)? (ii): V (π

3
) = 1√

2
.

1e

2e

3e
3v

2v

1v

φ
φ

φ

Hint: Choose the orientation of the parallelepiped such that v1 and v2 both lie in the plane
spanned by e1 and e2, and that e1 bisects the angle between v1 and v2 (see figure).

P.L5 Matrices I: general theory

P.L5.1 Linear maps

P.L5.2 Matrices

P.L5.3 Matrix multiplication

EL5.3.1 Matrix multiplication

Compute all possible products of pairs of the following matrices, including their squares, where
possible:

P =
(

4 −3 1

2 2 −4

)
, Q =

(
3 0 1

1 2 5

1 −6 −1

)
, R =

(
3 0

1 2

1 −6

)
.

[Check your results: the sum of all elements of the first column of the following matrix products
is:
∑

i(PQ)i1 = 14,
∑

i(PR)i1 = 14,
∑

i(QR)i1 = 16,
∑

i(RP )i1 = 12,
∑

i(QQ)i1 = 16.]

PL5.3.2 Matrix multiplication

Compute all possible products of pairs of the following matrices, including their squares, where
possible:

P =




2 0 3

−5 2 7

3 −3 7

2 4 0


 , Q =

(
−3 1

−1 0

2 1

)
, R =

(
6 −1 4

4 4 −4

−4 −4 6

)
.

[Check your results: the sum of all elements of the first column of the following matrix products
is:
∑

i(PQ)i1 = 25,
∑

i(PR)i1 = −44,
∑

i(RQ)i1 = −5,
∑

i(RR)i1 = 8.]
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EL5.3.3 Spin 1
2

matrices

The following matrices are used to describe quantum mechanical particles with spin 1
2
:

Sx = 1
2

(
0 1
1 0

)
, Sy = 1

2

(
0 −i
i 0

)
, Sz = 1

2

(
1 0
0 −1

)
.

(a) Compute S2 = S2
x + S2

y + S2
z .

(b) Compute the commutators [Sx, Sy], [Sy, Sz] and [Sz, Sx], and express each result in terms
of one of the matrices given above. Remark: [A,B] = AB −BA.

(c) The results from (b) can be compactly summarized in an equation of the form [Si, Sj] =
aijkSk for {i, j, k} ∈ {x, y, z} (with summation over k). Find the tensor aijk.

PL5.3.4 Spin 1 matrices

The following matrices are used to describe quantum mechanical particles with spin 1:

Sx = 1√
2

(
0 1 0
1 0 1
0 1 0

)
, Sy = 1√

2

(
0 −i 0
i 0 −i
0 i 0

)
, Sz =

(
1 0 0
0 0 0
0 0 −1

)
.

(a) Compute S2 = S2
x + S2

y + S2
z .

(b) Comute the commutators [Sx, Sy], [Sy, Sz] and [Sz, Sx], and express each result through
one of the matrices given above. Remark: [A,B] = AB −BA.

EL5.3.5 Matrix multiplication

Let A and B be N×N matrices with matrix elements Aij = Ajδ
i
m and Bi

j = Biδ
i
j. Remark:

Since the indices i and j are specified on the left, they are not summed over on the right even
though in the expression for Bi

j the index i appears twice on the right.

(a) For N = 3 and m = 2, write these matrices explicitly in the usual matrix representation
and calculate the matrix product AB explicitly.

(b) Calculate the product AB for arbitrary N ∈ N and 1 ≤ m ≤ N . [Check your result: the
sum of the diagonal elements yields:

∑N
i=1(AB)ii = AmBm.]

PL5.3.6 Matrix multiplication

Let A and B be N × N matrices with matrix elements Aij = Aiδ
i
N+1−j and Bi

j = Biδ
i
j.

Remark: Since the indices i and j are specified on the left, they are not summed over on the
right even though the index i appears twice in Bi

j on the right.

(a) For N = 3 and m = 2, write these matrices explicitly in the usual matrix representation
and calculate the matrix product AB explicitly.
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(b) Calculate the product AB for arbitrary N ∈ N and 1 ≤ m ≤ N . [Check your result: if
N is odd, the sum of the diagonal elements yields:

∑N
i=1(AB)ii = AN+1

2

BN+1
2

.]

P.L5.4 The inverse of a matrix

EL5.4.1 Gaussian elimination and matrix inversion

(a) Solve the following system of linear equations using Gaussian elimination.

3x1 + 2x2 − x3 = 1,
2x1 − 2x2 + 4x3 = −2,
−x1 + 1

2
x2 − x3 = 0.

[Check your result: the norm of x is ‖x‖ = 3.]

(b) How does the solution change when the last equation is removed?

(c) What happens if the last equation is replaced by −x1 + 2
7
x2 − x3 = 0?

(d) This system of equations can also be expressed in the form Ax = b. Calculate the inverse
A−1 of the 3×3 Matrix A using Gaussian elimination, and verify your answer to (a) using
x = A−1b.

PL5.4.2 Gaussian elimination and matrix inversion

Consider the linear system of equations Ax = b, with

A =




8− 3a 2− 6a 2

2− 6a 5 −4 + 6a

2 −4 + 6a 5 + 3a


 . (1)

(a) For a = 1
3
, use Gaussian elimination to compute the inverse matrix A−1. (Remark: It is

advisable to avoid the occurrence of fractions until the left side has been brought into
row echelon form.) Use the result to find the solution x for b = (4, 1, 1)T . [Check your
result: the norm of x is ‖x‖ =

√
117/18.]

(b) For which values of a can the matrix A not be inverted?

(c) If A can be inverted, the system of equations Ax = b has a unique solution for every b,
namely x = A−1b. If A cannot be inverted, then either the solution is not unique, or no
solution exists at all – it depends on b which of these two cases arises. Decide this for
b = (4, 1, 1)T and the values for a found in (b), and determine x, if possible.
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EL5.4.3 Matrix inversion

Let Mn be an n× n matrix with matrix elements (Mn)ij = δijm+ δ1
j, with i, j = 1, . . . , n.

(a) Find the inverse matrices M−1
2 and M−1

3 . Verify in both cases that M−1
n Mn = 1.

(b) Use the results from (a) to formulate a guess at the form of the inverse matrix M−1
n for

arbitrary n. Check your guess by calculating M−1
n Mn.

(c) Give a compact formula for the matrix elements (M−1
n )ij. Check its validity by showing

that
∑

l(M
−1
n )il(Mn)lj = δij holds, by explicitly performing the sum on l.

PL5.4.4 Matrix inversion

Let Mn be an n×n matrix with matrix elements (Mn)ij = mδij +δi+1,j, with i, j = 1, . . . , n.

(a) Find the inverse matrices M−1
2 and M−1

3 . Verify in both cases that M−1
n Mn = 1.

(b) Use the results from (a) to formulate a guess at the form of the inverse matrix M−1
n for

arbitrary n. Check your guess by calculating M−1
n Mn.

(c) Give a compact formula for the matrix elements (M−1
n )ij. Check its validity by showing

that
∑

l(M
−1
n )il(Mn)lj = δij holds, by explicitly performing the sum over l.

P.L5.5 General linear maps and matrices

EL5.5.1 Two-dimensional rotation matrices

A rotation in two dimensions is a linear map, R : R2 → R2, that rotates every vector by a
given angle about the origin without changing its length.

(a) Find the 2 × 2 dimensional rotation matrix Rθ describing a rotation by the angle θ by

proceeding as follows: Make a sketch that illustrates the effect ej
Rθ(ei)−→ e′j of the rotation

about the i axis on the three basis vectors ej (j = 1, 2, 3) (eg. for θ = π
6

). The image
vectors e′j of the basis vectors ej yield the columns of Rθ.

(b) Write down the matrix Rθi for the angles θ1 = 0, θ2 = π/4, θ3 = π/2 and θ4 = π.
Compute the action of Rθi (i = 1, 2, 3, 4) on a = (1, 0)T and b = (0, 1)T , and make a
scetch to visualize the results.

(c) The composition of two rotations again is a rotation. Show that RθRφ = Rθ+φ.
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Hint: Utilize the following ‘addition theorems’:

cos(θ + φ) = cos θ cosφ− sin θ sinφ ,

sin(θ + φ) = sin θ cosφ+ cos θ sinφ .

Remark: A geometric proof of these theorems (not
requested here) follows from the figure by inspecting
the three right-angled triangles with diagonals of
length 1, cosφ and sinφ.

φsinθcos

φ
si
n

θ
si
n

)φ+θsin(

)
φ

+
θ

cos(

φ
co
s

θ
co
s

φ
co
s

φ
sin

φ

1

θ

θ

φ−θ−
2
π

φcosθsin

(d) Show that the rotation of an arbitrary vector r = (x, y)T by the angle θ does not change
its length, i.e. that Dθr has the same length as r.

PL5.5.2 Three-dimensional rotation matrices

Rotations in three dimensions are represented by 3 × 3 dimensional matrices. Let Rθ(n) be
the rotation matrix that describes a rotation by the angle θ about an axis whose direction is
given by the unit vector n.

(a) Find the three rotation matrices Rθ(ei) for rotations about the three coordinate axes e1,
e2 and e3 explicitly, by proceeding as follows: Make a separate sketch for each of j = 1, 2

and 3 that illustrates the effect ej
Rθ(ei)−→ e′j of a rotation about the i axis on the three

basis vectors ej (j = 1, 2, 3) (e.g. for θ = π
6

). The image vectors e′j of the basis vectors
ej yield the columns of the sought rotation matrix Rθ.

(b) It can be shown that for a general direction n = (n1, n2, n3)T of the axis of rotation, the
matrix elements have the following form:

(Rθ(n))ij = δij cos θ + ninj(1− cos θ)− εijk nk sin θ (εijk = Levi-Civita-Tensor) .

Use this formula to find the three rotation matrices Rθ(ei) (i = 1, 2, 3) explictly. Are
your results consistent with those from (a)?

(c) Write down the following rotation matrices explicitly, and compute and scetch their effect
on the vector v = (1, 0, 1)T :

(i) A = Rπ(e3) , (ii) B = Rπ
2
( 1√

2
(e3 − e1)) .

(d) Rotation matrices form a group. Use A and B from (c) to illustrate that this group is
not commutative (in contrast to the two-dimensional case!).

(e) Show that a general rotation matrix R satisfies the relation Tr(R) = 1 + 2 cos θ, where
the ‘trace’ of a matrix R is defined by Tr(R) =

∑
i(R)ii.

(f) The product of two rotation matrices is again a rotation matrix. Consider the product
C = AB of the two matrices from (c), and find the corresponding unit vector n and
rotation angle θ. Hint: these are uniquely defined only up to an arbitrary sign, since Rθ(n)
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and R−θ(−n) describe the same rotation. (To be concrete, fix this sign by choosing the
component n2 positive.) |θ| and |ni| are fixed by the trace and the diagonal elements of
the rotation matrix, respectively; their relative sign is fixed by the off-diagonal elements.
[Check your result: n2 = 1/

√
3.]

P.L5.6 Matrices describing coordinate changes

EL5.6.1 Basis transformations and linear maps in E2

Remark on notation: For this problem we denote vectors in euclidean space E2 using hats
(e.g. êj, x̂, ŷ ∈ E2. Their components with respect to a given basis are vectors in R2 and
are written without hats (e.g. x, y ∈ R2).

Consider two bases for the Euclidean vector space E2, one old {êj}, and one new {ê′i}, with

ê1 = 3
4
ê′1 + 1

3
ê′2 , ê2 = −1

8
ê′1 + 1

2
ê′2 .

(a) The relation êj = ê′iT
i
j expresses the old basis in terms of the new basis. Find the

transformation matrix T = (T ij).

(b) Find the matrix T−1, and use the inverse transformation ê′j = êi(T
−1)ij to express the

new basis in terms of the old basis.

(c) Let x̂ be a vector with components x = (1, 2)T in the old basis. Find its components x′

in the new basis. [Check your result: x′ = (1
2
, 4

3
)T .]

(d) Let ŷ by a vector with components y′ = (3
4
, 1

3
)T in the new basis. Find its components

y in the old basis.

(e) Let Â be the linear map defined by ê′1
Â7→ 2ê′1 and ê′2

Â7→ ê′2 . First find the matrix
representation A′ of this map in the new basis, then use a basis transformation to find
its matrix representation A in the old basis. [Check your result: (A)2

1 = −3
5
.]

(f) Let ẑ be the image vector onto which the vector x̂ is mapped by Â, i.e. x̂
Â7→ ẑ. Find

its components z′ with respect to the new basis by using A′, and its components z with
respect to the old basis by using A. Are your results for z′ and z consistent?

(g) Now make the choice ê1 = 3ẽ1 + ẽ2 and ê2 = −1
2
ẽ1 + 3

2
ẽ2 for the old basis, where

ẽ1 = (1, 0)T and ẽ2 = (0, 1)T are the basis vectors of the standard basis of E2. What
are the components of ê′1, ê′2, x̂ and ẑ in the standard basis E2? [Check your results:
‖ê′1‖ = 4, ‖ê′2‖ = 3, ‖x̂‖ = 2

√
5, ‖ẑ‖ = 4

√
2.]

(h) Make a sketch (with ẽ1 and ẽ2 as unit vectors in the horizontal and vertical directions
respectively), showing the old and new basis vectors, as well as the vectors x̂ and ẑ. Are
the coordinates of these vectors, discussed in (c) and (f), consistent with your sketch?
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PL5.6.2 Basis transformations and linear maps in E2

Remark on notation: For this problem we denote vectors in euclidean space E2 using hats
(e.g. êj, x̂, ŷ ∈ E2). Their components with respect to a given basis are vectors in R2 and
are written without hats (e.g. x, y ∈ R2).

Consider two bases for the Euclidean vector space E2, one old {êj}, and one new {ê′i}, with

ê1 = 1
5
ê′1 + 3

5
ê′2 , ê2 = −6

5
ê′1 + 2

5
ê′2 .

(a) The relation êj = ê′iT
i
j expresses the old basis in terms of the new basis. Find the

transformation matrix T = (T ij).

(b) Find the matrix T−1, and use the inverse transformation ê′j = êi(T
−1)ij to express the

new basis in terms of the old basis.

(c) Let x̂ be a vector with components x = (2,−1
2
)T in the old basis. Find its components

x′ in the new basis.

(d) Let ŷ by a vector with components y′ = (−3, 1)T in the new basis. Find its components
y in the old basis.

(e) Let Â be the linear map defined by ê1
Â7→ 1

3
(ê1− 2ê2) and ê2

Â7→ −1
3
(4ê1 + ê2). First find

the matrix representation A of this map in the old basis, then use a basis transformation
to find its matrix representation A′ in the new basis. [Check your result: (A′)2

1 = 2
3
.]

(f) Let ẑ be the image vector onto which the vector x̂ is mapped by Â, i.e. x̂
Â7→ ẑ. Find

its components z with respect to the old basis by using A, and its components z′ with
respect to the new basis by using A′. Are your results for z and z′ consistent? [Check
your result: z′ = 1

3
(5, 1)T .]

(g) Now make the choice ê1 = ẽ1 + ẽ2 and ê2 = 2ẽ1− ẽ2 for the old basis, where ẽ1 = (1, 0)T

and ẽ2 = (0, 1)T are the basis vectors of the standard basis of E2. What are the

components of ê′1, ê′2, x̂ and ẑ in the standard basis E2? [Check your results: ‖ê′1‖ =
√

41
4

,

‖ê′2‖ =
√

89
4

, ‖x̂‖ = ‖ẑ‖ =
√

29
2

.]

(h) Make a sketch (with ẽ1 and ẽ2 as unit vectors in the horizontal and vertical directions
respectively), showing the old and new basis vectors, as well as the vectors x̂ and ẑ. Are
the coordinates of these vectors, discussed in (c) and (f), consistent with your sketch?

EL5.6.3 Basis transformations

Consider the following three transformations in R3, using the standard basis {e1, e2, e3}:

A : Rotation about the third axis by the angle θ3 = π
4

, in the right-hand positive direction.
Hint: Use the compact notation cos θ3 = sin θ3 = s.

B : Dilation (stretching) of the first axis by the factor s1 = 3;
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C : Rotation about the second axis by the angle θ2 = π
2

, in the right-hand positive direction.

Hint: To understand what ‘right-hand positive‘ means, imagine wrapping your right hand
around the axis of rotation, with your thumb pointing in the positive direction. Your other
fingers will be curled in the direction of ‘positive rotation’.

(a) Find the matrix representations (with respect to the standard basis) of A, B and C.

(b) What is the image y = Bx of the vector x = (1, 1, 1)T under the dilation B?

(c) What is the image z = Dx of x under the composition of all three maps, D = C ·B ·A?
[Check your result: z2 =

√
2.]

(d) Now consider a new basis {e′j}, defined by a rotation of the standard basis by A, i.e.

ej
A7→ e′j. Draw the new and old basis vectors in the same figure. Find the transformation

matrix T , and specify the matrix elements of the transformation between the old and the
rotated bases using ej = e′it

i
j.

(e) In the {e′i} basis let the vectors x and y be represented by x = e′ix
′i and y = e′iy

′i. Find
the corresponding components x′ = (x′1, x′2, x′3)T and y′ = (y′1, y′2, y′3)T . [Check your
results: x′1 =

√
2, y′3 = 1.]

(f) Let B′ denote the dilation B in the rotated basis. Find B′ by the appropriate transforma-
tion of the matrix B, and use the result to calculate the image y′ of x′ under B′. [Does
the result match that from (e)?]

PL5.6.4 Basis transformations and linear maps

Consider the following three linear transformations in R3, using the standard basis {e1, e2, e3}.
A : Rotation around the first axis by the angle θ1 = −π

3
in the right-handed sense, i.e. a

left-handed rotation. Hint: Use the compact notation cos θ1 = c, sin θ1 = s.

B : Dilation of the first and second axes by the factors s1 = 2 and s2 = 4 respectively.

C : A reflection in the 2,3-plane.

(a) Find the matrix representations (using the standard basis) of A, B, C. Which of these
transformations commute with each other (i.e. for which pairs of matrices does T1T2 =
T2T1)?

(b) What is the image y = CAx of the vector x = (1, 1, 1)T under the transformation CA?

(c) Find the vector z, whose image under the composition of all three transformations , D =
C ·B · A, gives y. [Hint: D−1 = A−1B−1C−1.] [Check your result: z3 = 1

16
(7− 3

√
3).]

(d) Now consider a new basis {e′i}, defined by a rotation and reflection CA of the standard

basis, e′i
CA7→ ei. [Caution: in the sample the order was reversed!] Sketch the old and new

bases in the same picture. [Note: The new basis vectors are a left handed system! Why?]
Find the transformation matrix T , and specify the matrix elements of the transformation
between the old and the new basis, with ej = e′iT

i
j.



P.L6 Matrices II: determinants 185

(e) In the {e′i}-Basis let the vectors z and y be represented by z = e′iz
′i and y = e′iy

′i. Find
the corresponding components z′ = (z′1, z′2, z′3)T and y′ = (y′1, y′2, y′3)T . [Check your
results: z′3 = 1

2
(1−

√
3), y′2 = 1

2
(−1 +

√
3).]

(f) Let D′ denote the representation of D in the new Basis. Find D′ by an appropriate
Transformation of the Matrix D, and use the result to find the image y′ of z′ under D′.
[Does the result match the one from (e)?].

P.L6 Matrices II: determinants

P.L6.1 Determinant

EL6.1.1 Calculating determinants

Compute the determinants of the following matrices by expanding them along an arbitrary row
or column. Hint: The more zeros it contains, the easier the calculation.

A =
(

2 1
5 −3

)
, B =

(
3 2 1
4 −3 1
2 −1 1

)
, C =



a a a 0
a 0 0 b
0 0 b b
a b b 0


 .

[Check your result: for a = 1, b = 2 one has detC = −4.]

PL6.1.2 Calculating determinants

(a) Compute the determinant of the matrix D =

(
1 c 0
d 2 3
2 2 e

)
. [Check your result: for c = 1,

d = 3, e = 2, one has detC = −2.]

(i) Which values must c and d have to ensure that detD = 0 for all values of e?

(ii) Which values must d and e have to ensure that detD = 0 for all values of c?

Could you have found the results of (i,ii) without explicitly calculating detD?

Now consider the two matrices A =
(

2 −1 −3 1
0 1 5 5

)
and B =




2 1
6 6
−2 8
−2 −2


.

(b) Compute the product AB, as well as its determinant det(AB) and inverse (AB)−1.

(c) Compute the product BA, as well as its determinant det(BA) and inverse (BA)−1.

Is it possible to calculate the determinant and the inverse of A and B?
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P.L7 Matrices III: diagonalizing a matrix

P.L7.3 Characteristic polynomial

P.L7.4 Matrix diagonalization

EL7.4.1 Diagonalising real 2× 2 matrices

For the following real matrices, find the eigenvalues λj ∈ R, eigenvectors vj ∈ R2 and the
similarity transformation S, as well as its inverse, S−1, for which S−1AS is diagonal:

(a) A =

(
−1 6

−2 6

)
, (b) A =

1

5

(
11 −8

−8 −1

)
.

[Check your result: verify that S−1AS contains the eigenvalues on the diagonal.]

PL7.4.2 Diagonalising real 2× 2 matrices

For the following real matrices, find the eigenvalues λj ∈ R, eigenvectors vj ∈ R2 and the
similarity transformation S, as well as its inverse, S−1, for which S−1AS is diagonal:

(a) A =

(
4 −6

3 −5

)
, (b) A =

1

10

(
−19 3

3 −11

)
.

[Check your result: verify that S−1AS contains the eigenvalues on the diagonal.]

EL7.4.3 Diagonalising complex 2× 2 matrices

For the following complex matrices, find the eigenvalues λj ∈ C, eigenvectors vj ∈ C2 and
the similarity transformation S, as well as its inverse, S−1, for which S−1AS is diagonal:

(a) A =

(
−i 0

2 i

)
, (b) A =

(
1 i

−i 1

)
.

[Check your result: verify that S−1AS contains the eigenvalues on the diagonal.]

PL7.4.4 Diagonalising complex 3× 3 matrices

For the following complex matrices, find the eigenvalues λj ∈ C, eigenvectors vj ∈ C3 and
the similarity transformation S, as well as its inverse, S−1, for which S−1AS is diagonal:

(a) A =




1 0 −1

0 2i 0

1 0 1


 , (b) A =




1 0 −i

0 1 0

i 0 1


 .

[Check your result: verify that S−1AS contains the eigenvalues on the diagonal.]
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EL7.4.5 Diagonalising a matrix that depends on a variable

Consider the matrix A =

(
x 1 0
1 2 1

3− x −1 3

)
, which depends on the variable x ∈ R. Find the

eigenvalues λj and eigenvectors vj ∈ R3 of A, with j = 1, 2, 3.
Hints: One of the eigenvalues is λ = x. (Of course the other results, too, can depend on
x.) Avoid fully multiplying out the characteristic polynomial; try instead to directly bring it
to a completely factorized form! [Check your results: for x = 4, two of the (unnormalized)
eigenvectors are given by (1,−2,−1)T and (1,−1,−2)T .]

PL7.4.6 Diagonalizing a matrix depending on two variables: qubit

A qubit (for “quantum bit” = quantum version of a classical bit) is a manipulable two-level

quantum systems. The simplest version of a qubit is described by the matrix H =
(
B ∆
∆ −B

)
,

with B ∈ R and ∆ ∈ C.

(a) Calculate the eigenvalues Ej (choose E1 < E2) and normalized eigenvectors v1 and v2

of H as a function of B, ∆ and X ≡ [B2 + |∆|2]1/2.

(b) Show that the eigenvectors can be brought to the form v1 = 1√
2

(
−
√

1− Y
eiφ
√

1 + Y

)
and v2 =

1√
2

( √
1 + Y

eiφ
√

1− Y

)
, where eiφ is the phase factor of ∆ ≡ |∆|eiφ. How does Y scale as a

function of B and X? On three diagrams arranged below each other, each showing
two curves, sketch first E1 and E2, second, the square of the absolute values of the
components |v1

1|2 and |v2
1|2 of the eigenvector v1, and third the square of the absolute

values of the components of |v1
2|2 and |v2

2|2 of the eigenvector v2, all as functions of
B/|∆| ∈ {−∞,∞} for fixed |∆|.

Background information: The first sketch shows the so called “avoided crossing”, a typical
trait of a quantum bit. The second and third sketches show that the eigenvectors “exchange
their roles” if B/∆ goes from −∞ to +∞. Both these properties have been detected in many
experiments.

EL7.4.7 Inertia tensor

The inertia tensor of a rigid body composed of point masses is defined as

Ĩij =
∑

a

ma Ĩij(ra, ra) , with Ĩij(r, r
′) ≡ δijr · r′ − (ei · r)(ej · r′) ,

where ma and ra = (r1
a, r

2
a, r

3
a)
T are, respectively, the mass and position of point mass a.

The eigenvalues of the inertia tensor are known as the rigid body’s moments of inertia.
Consider a rigid body consisting of three point masses m1 = 4, m2 = M and m3 = 1 at
positions r1 = (1, 0, 0)T , r2 = (0, 1, 2)T and r3 = (0, 4, 1)T , respectively. Determine its inertia

tensor Ĩ and moments of inertia as functions of M . (Eigenvectors are not required.) [Check
your results: if M = 5, then λ1 = 42, λ2 = 39, λ3 = 11.]
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PL7.4.8 Inertia tensor

Consider a rigid body consisting of two point masses, m1 = 2
3

and m2 = 3, at positions
r1 = (2, 2,−1)T and r2 = 1

3
(2,−1, 2)T , respectively.

(a) Show that its inertia tensor has the following form: Ĩ =

(
5 −2 0
−2 6 2

0 2 7

)
.

(b) Find the moments of inertia (eigenvalues). (Hint: One eigenvalue is λ = 3.)

(c) Construct matrices S and S−1 that diagonalize the inertia tensor.

EL7.4.9 Degenerate eigenvalue problem

For the matrix A =

(
2 −1 2
−1 2 −2

2 −2 5

)
, find the eigenvalue λj, the normalized eigenvectors

vj ∈ R3, and the similarity transformation S, as well as its inverse, S, such that S−1AS
is diagonal. Hint: One eigenvalue is λ1 = 1. [Check your result: verify that S−1AS contains
the eigenvalues on the diagonal.]

PL7.4.10 Degenerate eigenvalue problem

Consider the following matrices:

A =

(
15 6 −3
6 6 6
−3 6 15

)
, B =



−1 0 0 2i

0 7 2 0
0 2 4 0
−2i 0 0 2


 .

(a) One of the eigenvectors vj ∈ R3 of the matrix A is v3 = 1√
3
(1, 1, 1)T . Find all eigenvalues

λj of A. (Hint: Two of them form a degenerate pair.) Construct an orthonormal basis
{v1,v2,v3} of R3 consisting of eigenvectorss of A. Find a similarity transformation S,
and its inverse S−1, for which S−1AS is diagonal.

(b) One of the eigenvectors vj ∈ C4 of the matrix B is v3 = 1√
5
(0, 1,−2, 0)T . Find all

eigenvalues λj of B. (Hint: Two of them form a degenerate pair.) Construct an or-
thonormal basis {v1,v2,v3,v4} of C4 consisting of eigenvectors of B. Find a similarity
transformation S, and its inverse S−1, for which S−1BS is diagonal.

EL7.4.11 Determinant equals product of eigenvalues

If A is an n×n matrix with eigenvalues λ1, . . . , λn, then detA =
∏n

j=1 λj, i.e. the determinant
is equal to the product of the eigenvalues. Prove this for the case that A is diagonalizable.
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PL7.4.12 Trace of a matrix

The trace of an n × n matrix, TrA, is defined as the sum of all diagonal elements, TrA =∑n
j=1Ajj. Show the following properties of the trace:

(a) Tr(AB) = Tr(BA) for any n× n matrices A and B.

(b) A = Tr(S−1AS) for any n× n matrices A and S, where S is invertible.

(c) If A has the eigenvalues λ1, . . . , λn, then TrA = λ1 + . . .+ λn. You may assume that A
is diagonalizable.

P.L7.5 Functions of matrices

EL7.5.1 Functions of matrices

The purpose of this problem is to gain familiarity with the concept of a ‘function of a matrix’.
Let f be an analytic function, with Taylor series f(x) =

∑∞
l=0 clx

l, and A ∈ mat(R, n, n) a
square matrix, then f(A) is defined as f(A) =

∑∞
l=0 clA

l, with A0 = 1.

(a) A matrix A is called ‘nilpotent’ if an l ∈ N exists such that Al = 0. Then the Taylor

series of f(A) ends after l terms. Example: Compute eA for A =
(

0 a
0 0

)
.

(b) If A2 ∝ 1, then A2m ∝ 1 and A2m+1 ∝ A, and the Taylor series for f(A) has the form

f01+ f1A. Example: Compute eA explicitly for A = θσ̃, with σ̃ =
(

0 −1
1 0

)
.

[Check your result: if θ = −π
6

, then eA = 1
2

(√
3 1

−1
√

3

)
.]

(c) If A is diagonalizable, then f(A) can be expressed in terms of its eigenvalues. Let S
be the similarity transformation that diagonalizes A, with diagonal matrix D = S−1AS
and diagonal elements D = diag(λ1, λ2, . . . , λn). Show that the following relations then
hold:

f(A) = Sf(D)S−1 = S




f(λ1) 0 · · · 0

0 f(λ2)
. . .

...
...

. . .
. . . 0

0 · · · 0 f(λn)


S−1 .

Remark: Both equalities are to be established independently of each other.

(d) Now compute the matrix function eA from (b) using diagonalization, as in (c).

PL7.5.2 Functions of matrices

Express each of the following matrix functions explicitly in terms of a matrix:

(a) eA, with A =

(
0 a 0
0 0 b
0 0 0

)
.
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(b) eB, with B = bσ1 and σ1 =
(

0 1
1 0

)
, using the Taylor series of the exponential function.

[Check your result: if b = ln 2, then eB = 1
4

(
5 3
3 5

)
.]

(c) The same function as in (b), now by diagonalizing B.

(d) eC , with C = iθΩ, where Ω = njSj, while n = (n1, n2, n3)T is a unit vector (‖n‖ = 1)

and Sj are the spin-1
2

matrices: S1 = 1
2

(
0 1
1 0

)
, S2 = 1

2

(
0 −i
i 0

)
, S3 = 1

2

(
1 0
0 −1

)
.

Hint: Start by computing Ω2 (for this, the property SiSj + SjSi = 1
2
δij1 of the spin-1

2

matrices is useful), and then use the Taylor series of the exponential function.

[Check your result: if θ = −π/2 and n1 = −n2 = n3 = 1√
3
, then eC = 1√

6

(√
3− i 1− i

−1− i
√

3 + i

)
.]

Remark: The exponential form eC is a representation of SU(2) transformations, the
group of all special unitary transformations in C2. Its elements are characterized by
three continuous real parameters (here θ, n1 and n2, with n3 =

√
1− n2

1 − n2
2). The

Sj matrices are ‘generators’ of these transformations; they satisfy the SU(2) algebra, i.e.
their commutators yield [Si, Sj] = iεijkSk.

EL7.5.3 Exponential representation of 2-dimensional rotation matrix

The matrix Rθ =
(

cos θ − sin θ
sin θ cos θ

)
describes a rotation by the angle θ in R2. Use the following

‘infinite product decomposition’ to find an exponential representation of this matrix:

(a) A rotation by the angle θ can be represented as a sequence of m rotations, each by the
angle θ/m: Rθ = [R(θ/m)]

m. For m → ∞ we have θ/m → 0, thus the matrix R(θ/m)

can be written as R(θ/m) = 1+ (θ/m)σ̃ +O
(
(θ/m)2

)
Find the matrix σ̃.

(b) Now use the identity limm→∞[1 + x/m]m = ex to show that Rθ = eθσ̃.

Remark: Justification for this identity: We have ex = [ex/m]m = [1+x/m+O
(
(x/m)2

)
]m.

In the limit m→∞ the terms of order O
(
(x/m)2

)
can be neglected.

[Check your result: does the Taylor series for eθσ̃ reproduce the matrix for Rθ given above?]

Remark: The procedure illustrated here, by which an infinite sequence of identical, infinitesimal
transformations is exponentiated, is a cornerstone of the theory of ‘Lie groups’, whose elements
are associated with continuous parameters (here the angle θ). In this context the above matrix
σ̃ is called the ‘generator’ of the rotation.

PL7.5.4 Exponential representation 3-dimensional rotation matrix

In R3, a rotation by an angle θ, about an axis whose direction is given by the unit vector
n = (n1, n2, n3), is represented by a 3× 3 matrix that has the following matrix elements:

(Rθ(n))ij = δij cos θ + ninj(1− cos θ)− εijk nk sin θ (εijk = Levi-Civita-Tensor) . (1)

The goal of the following steps is to supply a justification for Eq. (1).
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(b) Consider first the three matrices Rθ(ej) for rotations by the angle θ about the three
coordinate axes ej, with j = 1, 2, 3. Elementary geometrical considerations yield:

Rθ(e1) =

(
1 0 0

0 cos θ − sin θ

0 sin θ cos θ

)
, Rθ(e2) =

(
cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

)
, Rθ(e3) =

(
cos θ − sin θ 0

sin θ cos θ 0

0 0 1

)
.

For each of these matrices, use an infinite product decomposition of the form Rθ(n) =
limm→∞[Rθ/m(n)]m to obtain an exponential representation of the form Rθ(ei) = eθτi .
Find the three 3×3 matrices τ1, τ2 and τ3. [Check your results: The τi commutators yield
[τi, τj] = εijkτk. This is the so-called SO(3) algebra, which underlies the representation
theory of 3-dimensional rotations. Moreover, τ 2

1 + τ 2
2 + τ 2

3 = −21.]

(c) Now consider a rotation by the angle θ about an arbitrary axis n. To find an exponential
representation for it using an infinite product decomposition, we need an approximation
for Rθ/m(n) up to first order in the small angle θ/m. It has the following form:

R(θ/m)(n) = R(n1θ/m)(e1)R(n2θ/m)(e2)R(n3θ/m)(e3) +O
(
(θ/m)2

)
. (2)

Intuitive justification: If the rotation angle θ/m is sufficiently small, the rotation can be
performed in three substeps, each about the direction ej, by the ‘partial’ angle njθ/m.
The prefactors nj ensure that for n = ej (rotation about a coordinate axis j) only one
of the three factors in (2) is different from 1, namely the one that yields R(θ/m)(ej); for
example, for n = e2 = (0, 1, 0)T : R(0θ/m)(e1)R(1n2θ/m)(e2)R(0θ/m)(e3) = R(n2θ/m)(e2).

Show that such a product decomposition of Rθ(n) yields the following exponential rep-
resentation:

Rθ(n) = eθΩ , Ω = niτi =




0 −n3 n2

n3 0 −n1

−n2 n1 0


 , (Ω)ij = −εijknk . (3)

(d) Show that Ω, the ‘generator’ of the rotation, has the following properties:

(Ω2)ij = ninj − δij, Ωl = −Ωl−2 for 3 ≤ l ∈ N. [Cayley-Hamilton theorem] (4)

Hint: First compute Ω2 and Ω3, then the form of Ωl>3 will be obvious.

(e) Show that the Taylor expansion of Rθ(n) = eθΩ yields the following expression,

Rθ(n) = 1+ Ω sin θ + Ω2(1− cos θ), (5)

and that its matrix elements correspond to Eq. (1).



192 P.L9 Hermiticity and symmetry

P.L8 Orthogonality and unitarity

P.L8.1 Orthogonal and unitary maps

P.L8.2 Orthogonal and unitary matrices

EL8.2.1 Orthogonal and unitary matrices

(a) Is the matrix A as given below an orthogonal matrix? Is B unitary?

A =

(
sin θ cos θ

− cos θ sin θ

)
, B =

1

1− i




2 1 + i 0

1 + i −1 1

0 2 i




(b) Let x = (1, 2)T . Calculate a = Ax explicitly, as well as the norm of x and a. Does the
action of A on x conserve its norm?

(c) Let y = (1, 2, i)T . Calculate b = By explicitly, and also the norm of y and b. Does the
action of B on y conserve its norm?

PL8.2.2 Orthogonal and unitary matrices

(a) Determine if whether the following matrices are orthogonal or unitary:

A =

(
0 3 0
2 0 1
−1 0 2

)
, B =

1

3

(
1 2 −2
−2 2 1

2 1 2

)
, C =

1√
2

(
i 1
−1 −i

)

(b) Let x = (1, 2,−1)T . Calculate a = Ax and b = Bx explicitly. Also, calculate the norm
of x, a and b. Which of these norms should be equal? Why?

(c) Let y = (1, i)T . Calculate c = Cy explicitly, and also determine the norm of y and c.
Should the norms be equal? Why?

P.L8.3 Special unitary and special orthogonal matrices

P.L8.4 Orthogonal and unitary basis changes

P.L9 Hermiticity and symmetry

P.L9.2 Hermitian and symmetric matrices

P.L9.3 Relation between Hermitian and unitary matrices
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P.L10 Linear algebra in function spaces

P.L10.1 The standard basis of a function space

P.L10.2 Linear operators

P.L10.3 Eigenfunctions

P.L10.4 Self adjoint linear operators

P.L10.5 Function spaces with unbounded support

P.L11 Multilinear algebra

P.L11.1 Direct sum and direct product of vector spaces

P.L11.2 Dual space

P.L11.3 Tensors

P.L11.4 Examples of tensor classes

P.L11.5 Alternating forms

P.L11.6 Visualization of alternating forms

P.L11.7 Wedge product

P.L11.8 Inner derivative

P.L11.9 Pullback



C

Calculus
Part C of this book introduces the elements of calculus

1

required in the first years of the physics curriculum. We

start with a recapitulation of one-dimensional differentiation and integration. Although this may be material familiar to

many readers, we will provide interpretations of differentiation and integration not normally emphasized in school. We

then turn to higher dimensions and discuss how differentiation can be applied to understand the behavior of functions

depending on several parameters. The second part of the chapter discusses the integration of multi-dimensional

functions and functions defined on higher-dimensional geometric domains, such as spheres. The generalized concepts

of differentiation and integration are the basis for the advanced elements of calculus discussed in later parts of the

chapter, including differential equations, Fourier analysis, functional calculus, and the calculus of functions depending

on complex variables.

The mathematics of physics is all about differentiating and integrating. The reasons for
this are deeply rooted in the foundations of our science. To understand why, consider the
situation before the age of enlightenment. At that time scientific knowledge was accumulated
empirically, for example through the tabulation of the motion of celestial bodies. Although
people were aware that a complete tabulation of all planets and stars is out of the question no
alternative method was known. The situation changed when it became understood that a more
rewarding approach was to monitor small incremental changes in the motion of celestial bodies.
For example, an interesting quantity to study were the changes, v(t+ δ)−v(δ), accumulated
in a body’s velocity during small increments of time, δ. For sufficiently small δ this change is
approximately proportional to δ, and it made sense to shift the focus of attention to the study
of the rate-change, or derivative, of the velocity, v′(t) ≡ limδ→0 δ

−1(v(t + δ) − v(t)). The
great step forward came with the observation that these incremental changes were universal
and could be described through relatively simple physical laws equally applicable to all bodies.
This realization, which found its quantitative expression in Newton’s famous laws of mechanical
motion, defined the starting point of modern physics. From then on the laws of nature were
often encoded in ‘differential relations’ describing rate changes of physical quantities. From
such laws the actual behavior of a physical object, for example, the full time dependent profile,
v(t), of a planet’s velocity, could be reconstructed through the twin sister of differentiation,
integration, to be discussed in section C2.

In the next chapter we introduce the concept of differentiation on the important example
of one-dimensional functions familiar from high school. However, we will do so in a manner
that differs from the school approach in that it affords straightforward generalization to the
case of more complex function.

1

Although ‘analysis’ maytion a shade more rigorous than ‘calculus’ the almost synonymous with each other.
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C1 Differentiation of one-dimensional functions

In school, differentiation is often introduced as a tool to describe slope of a function defined
on a one-dimensional interval. However, differentiation is a concept much more general than
that: much like the surface of earth looks flat when viewed locally, even very complicated
functions assume a simple (linear) appearance if we ‘zoom in’ closely and look at them from
close up. For example, what has been said above amounts to the statement that for short
time differences, δ, the velocity is a function linear in δ, v(t + δ) ' v(t) + δ v′(t). More
generally, the overarching objective of differentiation is to describe functions locally in terms
of simple linear approximations. In this chapter we introduce this idea on the example of one-
dimensional functions familiar from high school. This will set the stage for the generalization
to more complicated functions discussed in later chapters.

C1.1 Definition of differentiability

We start by recapitulating the definition of differentiability as it is usually taught in school.
Heuristically, a function f : R→ R, x 7→ f(x) is differentiable at x if it may be approximated
by a well defined tangent, and if that tangent does not have infinite slope, see Fig. C1.

The construction of a tangent effectively monitors the changes
of the function in the limit of small increments of its arguments.
As a first step towards a more rigorous definition, we need
to discuss what is meant by the term ‘limit’. Intuitively, g
approaches the limit g(x) = c, if deviations off the value c
become arbitrarily small for arguments y sufficiently close to x.

In this case we write limy→x g(y) = c, or limδ→0 g(x+ δ) = g(x) and say that the limit exists.
An equivalent formulation is to say that g converges to g(x) = c in the limit y → x.

INFO There are various ways to turn the intuitive formulation into a rigorous definition of a limit.

Referring for in-depth discussions to lecture courses in mathematics, we mention the Weierstrass-

Jordan (also known as ε-δ criterion) which says that g converges to g(x) = c if for any ε > 0 there

exists a δ > 0 such that for all arguments y which are δ-close to x, |y − x| < δ the function values

g(y) are ε-close to g(x), |g(y)− g(x)| < ε (see the figure.)

We now define a function f : R → R, x 7→ f(x) to be differentiable if the difference
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196 C1 Differentiation of one-dimensional functions

quotient 1
δ

[
f(x+ δ)− f(x)

]
has a well defined limit δ → 0. In this case, it probes the local

slope of f at x and the limit

df(x)

dx
≡ lim

δ→0

1

δ

[
f(x+ δ)− f(x)

]
, (C1)

is called the derivative of f at x. The limiting form of the difference quotients on the r.h.s.
is sometimes called differential quotient. Alternative denotations of the derivative include

f ′(x) =
df(x)

dx
=

df(y)

dy

∣∣∣
y=x

=
d

dx
f(x) = dxf(x) = fx(x).

However, all these notations are defined in the same way by the r.h.s. of Eq. (C1). Before
continuing to discuss the properties of the ‘differential quotients’ defined through Eq. (C1) it
is worthwhile to understand the conditions under which the limits δ → 0 exist. A first, if not
sufficient existence condition is the continuity of f at x.

)δ+x(f
)x(f

δ+x

δ

δ
)δ+x(f

Figure C1: Differentiation of a function. Discussion, see text.

Continuity and differentiability of functions

The existence of the differential quotient in Eq. (C1) requires that f have no ‘jumps’ at x
which in mathematical terminology is called the absence of discontinuities. For example, the
function shown in the left panel of Fig. C2 has a unit jump at zero, implying the divergence
of the limit of δ−1(f(0 + δ) − f(0)) = δ−1. Continuity is a necessary (but not sufficient,
see discussion below) prerequisite for differentiability. Using the above terminology of limits, a
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function is continuous at x if limy→x f(y) = f(x), i.e. if it converges to f(x) for arguments
approaching x.

To understand that continuity does not necessarily imply differentiability consider
the second panel of Fig. C2. It shows a function which is continuous, but not differentiable at
x = 0. The reason is the presence of an ‘edge’, i.e. f(x) = +x for any x > 0 and f(x) = −x
for x < 0. For positive values of δ we then have δ−1

[
f(δ) − f(0)

]
= δ−1[+δ − 0] = 1,

while for negative values δ−1
[
f(δ) − f(0)

]
= δ−1[−δ − 0] = −1. This means that the limit

is not unambiguously defined, and therefore the differentiability criterion fails. Another thing
that may go wrong is that ‘infinitely strong’ slopes appear (third panel.) For example, the
function f(x) = 3x1/3 has the derivative (see below for a summary of differentiation rules)
f ′(x) = x−2/3 and this does not exist at x = 0 where the function crosses the x axis with
‘infinite slope’. Finally, functions such as that shown in the fourth panel have well defined
tangents everywhere and therefore are differentiable.

Figure C2: Left: a function that is not continuous at x = 0. The solid dot indicates that f(0) = 0.
For all strictly positive values x > 0, f(x) = 1. Center: a function that is continuous but not
differentiable at x = 0. Right: a smooth function that is differentiable throughout its domain of
definition.

In this text, we often require global differentiability and for this reason we generally consider
functions defined on open intervals, I ≡ (a, b) (cf. the discussion of openness on p. 16.)
Openness is required to safeguard the existence of the differential quotient throughout the
entire interval: by definition, an interval I is open if any x ∈ U ⊂ I lies in a neighborhood
U = {y||y − x| ≤ ε} ⊂ I entirely contained in I. The differential quotient can then be
computed within U . By contrast, the differential quotient cannot be computed at the boundary
points of a closed interval, [a, b], because for any δ > 0, b+ δ is outside [a, b] and f(b+ δ) is
not defined.

Interpretation of the derivative

In school it is often emphasized that the derivative, f ′(x), determines the slope (Steigung)
of f at x. This view adequately applies the situation with one-dimensional functions but is
too narrow to capture the meaning of derivatives in more general contexts. A more versatile
interpretation is as follows: before taking the limit δ → 0, consider a fixed but very small value
of δ. The right-hand side of (C1) will then be a very good approximation to the derivative,
i.e. 1

δ

[
f(x+ δ)− f(x)

]
' f ′(x). Now rewrite this equation as

f(x+ δ) ' f(x) + f ′(x) δ. (C2)
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This tells us that in the immediate neighborhood of x, the function f can be approximated by
a function

1
which is linear in δ, namely f(x) + f ′(x) δ (see Fig. C1). We may set x+ δ ≡ y

to formulate the linear approximation as

f(y) ' f(x) + f ′(x) (y − x).

However, it has to be understood that this equation holds only for arguments y very close to
the fixed value x where the derivative is taken. Summarizing, we understand that

Derivatives provide local approximations to functions by linear functions.

We will soon see that this interpretation carries over to more general contexts, including
situations where the notion of ‘slope’ is not defined. By contrast, the approximation-by-linear-
functions view is generally valid and provides the key to understanding even the most involved
derivative operations.

INFO The approximate equality (C2) is often applied to actually compute derivatives. To illustrate

this principle, consider the function f(x) = x3. Then f(x+δ) = (x+δ)3 = f(x)+3x2 δ+3xδ2 +δ3.

Now, δ is assumed to be very small, hence δ2 is even smaller, and δ3 smaller still. For example, for

δ = 10−2 we have δ2 = 10−4 and δ3 = 10−6. This illustrates that for δ approaching zero, terms

beyond linear order become negligible compared to the linear ones. It is standard to represent this

smallness as

f(x+ δ) = f(x) + 3x2δ +O(δ2),

where the notation O(δ2) (spoken ‘order-δ2’) indicates that terms of order δ2 and higher are ne-

glected.
2

Rearranging terms we have δ−1(f(x+ δ)− f(x)) = 3x2 + δ−1×O(δ2). In the limit δ → 0

the second term on the right hand side vanishes and comparison with (C2) leads to the identification

dxx
3 = 3x2.

Notice that we did not take the limit δ → 0 in the expansion above — that would have yielded a

trivial equation, f(x) = f(x). Instead, we took δ to be nonzero but ‘arbitrarily small’. Variables, δ,

assuming values smaller than any other in a specific mathematical context are sometimes referred to

as infinitesimally small quantities. The attribute infinitesimal usually implies that a limit δ → 0

will eventually be taken. Still, it can be advantageous to keep the variable temporarily finite and use

its smallness as an aid in computations (ignoring terms of O(δ2), etc.)

1

A function g(x) is called linear in x if it is of the form x 7→ g(x) = ax + b, a, b ∈ R. This should be
distinguished from the slightly more restrictive definition x 7→ ax of linear maps used in chapter L.

2

The mathematically precise definition of the symbol O is as follows: given two functions, g(x), h(x), we
write g(x) = O(h(x)) in the limit x→ 0, if there exists a constant, c, such that |g(x)| < c|h(x)| for sufficiently
small x. For example, x2 + 3x3 is O(x2) because |x2 + 3x3|/|x2| < c, for c > 1 and x sufficiently small.
The notation always makes reference to a limit which, however, need not be 0. For example, 1/(x2 + x3) is
O(x−2) in the limit x→∞.
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As an instructive example, a geometric construction

may be applied to show that the derivative of the sine

function is given by dφ sin(φ) = cos(φ). To this end,

apply geometric reasoning to verify that an infinitesimal

increment of the argument of the sine function changes

its value from sin(φ) to sin(φ+ δ) ' sinφ+ δ cosφ.

Derivatives of higher order and smoothness

Derivatives of higher order are defined by the iteration of ordinary derivatives. For
example, the second derivative of a function is defined as

d2f(x)

dx2
=

d

dx

(
df(x)

dx

)
. (C3)

One sometimes says that a derivative is taken by ‘applying the derivative operator d
dx

to a
function’. The mathematical formulation of this statement reads

dnf(x)

dxn
≡ dn

dxn
f(x) ≡ d

dx

(
d

dx
· · ·
(

d

dx
f(x)

))

︸ ︷︷ ︸
n factors

. (C4)

For example,

d

dx
(x2 sin(x)) = 2x sin(x) + x2 cos(x),

d2

dx2
(x2 sin(x)) = (2− x2) sin(x) + 4x cos(x),

d3

dx3
(x2 sin(x)) = (−6x) sin(x) + (6− x2) cos(x),

...
...
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Functions that can be differentiated infinitely many
times are called smooth functions. Examples of
such functions include polynomials, or trigonomet-
ric functions. By contrast, the function defined by

f(x) =
1

2

{
+x2, x ≥ 0,
−x2, x < 0,

is differentiable at x = 0, but not smooth. Indeed,
f ′(x) = |x| and this cannot be differentiated at zero, i.e. the function above is differentiable,
but not two-fold differentiable. Although it looks smooth the function is not smooth in the
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mathematical sense. We finally note that higher-order derivatives are sometimes represented
in terms of the alternative notation

f (n)(x) ≡ dnxf(x) ≡ dn

dxn
f(x), (C5)

which indicates the order of differentiation as a superscript. It is imperative to put the latter
in parentheses, f (n), to avoid confusion with the n-th power, fn, of the function f .

C1.2 Differentiation rules

We here summarize the most important rules of differentiation. These identities may be
familiar from high school and they are routinely proven in introductory courses in mathematics.
In the following, f, g : R→ R are smooth functions, and a ∈ R.

. Product rule

d(fg)

dx
=

df(x)

dx
g(x) + f(x)

dg(x)

dx
. (C6)

. Chain rule

df
(
g(x)

)

dx
=

df(y)

dy

∣∣∣
y=g(x)

dg(x)

dx
. (C7)

The essence of the chain rule is that the rate of change of the function f(g(x)) is determined
by that of the function f(y) at y = g(x), multiplied by that of g(x) with x. It is worth
taking a moment to understand this statement in intuitive terms.

In particular, df(ax)
dx

= adf(y)
dy
|y=ax and

d

dx

1

g(x)
= − 1

(
g(x)

)2

dg(x)

dx
,

where the latter identity follows from the choice f(y) = 1/y, and dy(1/y) = −1/y2.

. Derivative of inverse functions. Let f−1 be the inverse function
3

of f , i.e. f−1
(
f(x)

)
=

x. Then,

df−1(y)

dy
=

1
df(x)

dx

∣∣∣
x=f−1(y)

. (C8)

3

The inverse function of a function f is usually denoted by f−1 and this must not be confused with
the inverse of the function value f−1(x) = 1/f(x). (For example, f(x) = x2 has the inverse function
f−1(y) =

√
y, different from f−1(x) = 1/x2.) Which quantity is meant should generally be evident from the

context.
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For example,

d

dy
ln(y) =

1

exp′(x)
∣∣
x=ln(y)

=
1

exp(x)
∣∣
x=ln(y)

=
1

y
.

INFO Differentiation formulae such as the chain rule, or the derivative of inverse functions can

always be derived by application of the basic rule (C2). Let us illustrate this idea on a heuristic

proof of the chain rule, Eq. (C7). Using the abbreviation g(x) = y, Eq. (C2) may be applied to

to linearize first g, then f , and obtain

f(g(x+ δ)) ' f(g(x) + g′(x) δ) = f(y + g′(x) δ) ' f(y) + f ′(y) g′(x) δ. (C9)

In the second equality we noted that for infinitesimally small δ the product g′(x)δ is likewise small.

The function f may therefore be linearized in it as indicated. Rearranging terms and dividing by δ

we obtain δ−1 [f(g(x+ δ))− f(g(x))] ' f ′(y) g′(x). Remembering the definition of the derivative,

Eq. (C1), we arrive at the chain rule. Use similar reasoning to derive the (simpler!) product rule.

C1.3 Derivatives of selected functions

For reference we list below the derivatives of a number of functions frequently occurring
in practice.

. Power functions

dxα

dx
= αxα−1. (C10)

The formula also applies to fractional powers, e.g. for α = 1/3 we have dx1/3

dx
= 1

3
x−2/3.

. Trigonometric functions

sin′(x) = cos(x), cos′(x) = − sin(x), tan′(x) =
1

(
cos(x)

)2 . (C11)

. Exponential function and logarithm

exp′(x) = exp(x), ln′(x) =
1

x
. (C12)

. Hyperbolic functions
4

sinh′(x) = cosh(x), cosh′(x) = sinh(x), tanh′(x) =
1

(cosh(x))2
. (C14)

4

The hyperbolic sine, cosine and tangent functions are defined as:

sinh(x) = 1
2 (ex − e−x), cosh(x) = 1

2 (ex + e−x), tanh(x) =
sinhx

coshx
. (C13)



202 C1 Differentiation of one-dimensional functions

. Inverse trigonometric and hyperbolic functions are differentiated using (C8):

arcsin′(x) =
1√

1− x2
, arccos′(x) = − 1√

1− x2
, arctan′(x) =

1

1 + x2
, (C15)

arcsinh′(x) =
1√

1 + x2
, arccosh(x)′ =

1√
x2 − 1

, arctanh′(x) =
1

1− x2
. (C16)

Derivatives of more complicated functions can be computed with the help of the product and
chain rules. For example,

d

dx
x2 exp(3x) = 2x exp(3x) + 3x2 exp(3x),

d

dx
ln(x2 + 5) =

1

x2 + 5
2x.

Practice computing derivatives by doing problems C1.3.1-2. Problems C1.3.3-4 deal with veri-
fying the formulas (C15) and (C16) for the derivatives of inverse trigonometric and hyperbolic
functions.

C1.4 Summary and Outlook

In this introductory chapter we have reviewed the basic idea of differentiation on the exam-
ple of one-dimensional real valued functions. We discussed why differentiation is so important
to physics and emphasized its interpretation as a linear approximation of smooth functions.
In this way of thinking it is frequently useful to keep the infinitesimal parameter δ entering
the construction of the differential quotient (C1) finite and to work with effectively linearized
representations of functions as in (C2). The utility of such representations became evident in
a number of cases, including the explicit computation of derivatives via the manipulation of
difference quotients with finite δ. We also discussed various more technical aspects of differ-
entiation including continuity requirements, differentiation rules, and the derivatives of various
important classes of functions. Although these concepts have been discussed within the frame-
work of one-dimensional functions they are of general relevance and will play an important
role in our subsequent discussion of multi-dimensional functions, starting in chapter C3.1

However, before generalizing to the multi-dimensional case, we first introduce the twin-
operation of differentiation, integration. Following the same logics as above, we begin with
the case of one-dimensional functions, once more staying at a level familiar to many readers
from high school. This will allow us to keep the intimate connection between integration and
differentiation in sight when we advance to higher dimensions.
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Integration is as important to physics as differentiation. Whereas incremental changes in
physical quantities are monitored by differentiation, integration is applied to sum over small
increments. For example, once the incremental change in the coordinates of a stellar body
has been understood, an integration procedure needs to be applied to sum over increments
and obtain the change of the observable over finite time spans. This simple analogy already
indicates that, quite generally, differentiation and integration are mutually inverse operations.

In the following, we adopt a strategy similar to that of the previous chapter and introduce
the concept of integration on the example of one-dimensional real functions. The technical
aspects of this operation will be familiar to many readers from high school. However, we stress
an interpretation of integration which is not usually emphasized in school and which extends
to the integrals over more complex functions to be discussed in later chapters.

C2.1 The concept of integration

In school, integration is introduced as an operation to de-
termine the area under a function. However, only a small
minority of the integrals encountered in physics can be in-
terpreted in this way. A more general view is to think of
integrals as generalized sums. Let us introduce this inter-
pretation on a simple example: suppose we are given a two-
dimensional painted surface, S, and want to determine its
geometric area, A. A practical approach to solving this task
would first choose a reference shape of known area A0, a
square say. One might then count the number, N(A0), of
squares fitting into the area (see figure). An estimate of A
would then be given by

A '
N(A0)∑

`=1

A0 = N(A0)A0,

where the index ` enumerates the squares. Of course, this estimate generally contains an error
because parts of the area remain uncovered. However, the accuracy may be refined by turning

203
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to squares of smaller area, A1, and counting the number, N1 > N0, of squares required to
cover S in this refined way. This leaves less uncovered excess area and leads to the improved
estimate

A '
N(A1)∑

`=1

A1 = N(A1)A1.

In principle, the procedure may be iterated down to ‘infinitely many’ squares of infinitesimally
small area and in this limit the true value of A will be recovered. The limiting operation is
called an ‘integral’. All integrals have in common that they can be interpreted as limits of
sums conceptually similar to that considered above.

It is straightforward to generalize the above procedure to more
complicated settings. For example, consider a surface, S,
coated with an inhomogeneous distribution of a massive sub-
stance, cf. the figure where darker/lighter areas represent re-
gions of stronger/weaker coverage. We describe the system
through two cartesian coordinates (x, y) and a mass distribu-
tion function, ρ(x, y), defined in such a way that ρ(x, y)δxδy
equals the weight of the substance present in a small rectangle
of area δxδy at the coordinate point (x, y).

An estimate for the total mass, M , of the substance may
be obtained by discretizing the total area, A, of the surface into a system of N(δxδy) ∝ A/δxδy
infinitesimal rectangles at points (x`, y`), where the index ` enumerates the rectangles. Sum-

ming over the respective weights we obtain the estimate M ' δxδy
∑N(δxδy)

`=1 ρ(x`, y`). We may
now proceed to finer and finer discretizations to generate a sequence

1
of increasingly accurate

estimates, which in the limit of infinitely small discretization areas, δxδy → 0,approaches the
true value of M :

M = lim
δxδy→0

δxδy

N(δxδy)∑

`=1

ρ(x`, y`) ≡
ˆ
S

dxdy ρ(x, y).

Here, the symbolic notation appearing on the r.h.s. of the equation is defined by the expression
in the center: the integral symbol

´
stands for an infinitely refined sum carried out over the

area S, indicated as a subscript. That the summation is over a set of two-dimensional ‘surface
elements’ δxδy, built with reference to coordinates (x, y), is indicated by the symbol dxdy.
However, we repeat that all this notation is ‘implicit’ in the sense that the actual definition of
the integral is given by the sequence of sums on the l.h.s. of the equation. Each of these sums

1

An (infinite) sequence, (an)n∈N = (a0, a1, . . . ) is an infinite and sequentially ordered collection of
objects. For example, an = 1/n defines the sequence (1, 1/2, 1/3, . . . ). The sequence converges to a limit,
limn→∞ an ≡ a, if for increasing n the values an converge to the value a. For example, the sequence an = 1/n
converges to 0. Convergence means that for any ε > 0 there exists a threshold nε ∈ N such that for n > nε
|an − a| < ε.



C2.2 One-dimensional integration 205

can be computed in concrete ways, either manually, or on a computer, and at any desired level
of accuracy. The important and general statement conveyed by this discussion above is that

2

Almost any integral encountered in physics can be represented as the limit of a
sequence of finite sums, each of which can be computed by ‘conventional techniques’.

Bernhard Riemann
(1826-1866)
A German mathematician
who made breakthrough con-
tributions to analysis, number
theory and differential ge-
ometry. Riemann gave the
concept of integration a precise meaning.
He also introduced various foundations of
modern geometry, including the concept of
Riemannian manifolds fundamental to the
later formulation of general relativity.

The sequences of sums representing integrals
are generally called Riemann sums. All Rie-
mann sums have the structure

Riemann sum = lim
δ→0

δ

N(δ)∑

`=1

X`, (C17)

where X` is the quantity to be summed and
the index ` enumerates subdivisions of a sum-
mation domain that has been divided into
N(δ) ∝ δ−1 compartments. This propor-
tionality ensures that the smallness of δ is
balanced by the increase in the number of
summation steps. In the following we will
discuss various concrete examples of Riemann
summation procedures.

C2.2 One-dimensional integration

In this section, we apply the program outlined above to one-dimensional functions f :
R → R, y 7→ f(y). The quantities to be summed up now are the values f(y)δy obtained
by multiplying function values with small increments in the argument variable. We observe
that f(y) plays a role analogous to that of the mass distribution discussed in the previous
section. In the present one-dimensional context the result of the summation procedure will
be the geometric area enclosed by the function graph and the abscissa (see the figure below.)
We begin by discussing how the summation procedure is made quantitative.

One-dimensional Riemann sums

In the one-dimensional case, the integration domain (i. e. the analog of the area S in our
example above) is a real interval, say [0, x]. Proceeding in analogy to the previous discussion,
the domain is partitioned into N(δ0) ≡ x/δ0 intervals of small width δ0. For finite δ0 these
increment intervals are sometimes called bins and we will use this denotation for convenience.
Let f` ≡ f(y`), with ` = 1, . . . , N(δ0), be the value of f at a point y` somewhere in the `th bin.

2

We write ‘almost any’ because there are rare cases of integrals which cannot be computed along the lines
of our construction above. For further comments on this point, see section C2.2.
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The corresponding area is then approximately given by δ0f`, and summation leads to the esti-
mate

0δ

1δ

0 �y

F (x) ' δ0

N(δ0)∑

`=1

f`,

for the total area. Note that for finite δ0 the value of this
estimate depends on the arbitrary choice of the readout
point y` within the `th bin — left edge, right edge, cen-
ter? — and therefore contains arbitrariness. However,
as is indicated by the figure, the dependence of the in-
dividual strip areas on the positioning of y` diminishes
upon passing to bins of higher resolution. In fact, this
statement holds true even for functions containing iso-
lated singularities,

3
and we will revisit it in more detail

and generality on p. 430.
The limiting case of an infinitely refined sum is called

the integral of the function:

F (x) = lim
δ→0

δ

x/δ∑

`=1

f` ≡
ˆ x

0

dy f(y). (C18)

The interpretation in terms of sums also shows how integration and differentiation are
‘inverse’ operations. To understand this point, let us ask how F (x) varies as a function of
x. An approximate answer can be found by considering its Riemann sum at a small but fixed
value of δ:

F (x+ δ) = δ

x
δ

+1∑

`=1

f` = δ

x
δ∑

`=1

f` + δfx
δ

+1 = F (x) + δ · f(x),

where in the last step we conveniently put the readout position to the left of the bin, fx
δ

+1 =
f(x). (Why is the arbitrariness of this choice inessential?) We divide by δ and take the limit
δ → 0 to obtain

dF (x)

dx
≡ lim

δ→0

1

δ

[
F (x+ δ)− F (x)

]
= f(x)

3

For a bin containing an isolated singularity, the value δ0f` of course depends crucially on whether the
readout coordinate lies to the left or the right of the singularity. However, no matter what is chosen, the
‘error’ will be of O(δ0) and as long as the number of singularities is finite the sum will contain a finite number
of these errors. In the limit δ0 → 0 the defective contribution goes to zero. Perhaps, think more about this
point.
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This confirms that the rate at which an integral F (x) =
´ x

0
dyf(y) changes under variation

of the integration boundary, x, is given by the value of the integrand at the boundary, f(x).
The reciprocity between integration and differentiation is summarized by the fundamental
theorem of calculus:

F (x) =

ˆ x

0

dy f(y) ⇒ dF (x)

dx
= f(x). (C19)

Later in the text, we will see that similar relations hold for more general classes of integrals
and derivatives. They all follow from the interpretation of integrals as sums and of derivatives
as measures of small increments.

Definite and indefinite integrals

Any function, F (x), whose derivative equals f(x), d
dx
F (x) = f(x), is called a primitive

functionprimitive functions or anti-derivative of f . The terminology anti–derivative empha-
sizes that passing from f to F is the opposite of passing from f to f ′. We write ‘a’ instead of
‘the’ primitive function because for any constant C the function F (x) +C is an equally valid
primitive function, d

dx
(F (x) + C) = f(x).

Even in the higher dimensional integration theory to be discussed in later sections actual
calculations come down to successions of one-dimensional integrals. Eq. (C19) indicates that
primitive functions are the key to the computation of these integrals and this explains their gen-
eral importance. The connection between integrals and the primitive function is underpinned
by the notation ˆ

dx f(x) ≡ F (x) + C, (C20)

where the symbol on the l.h.s. is called an indefinite integral. The indefinite integral is just
a another denotation for the whole class of primitive functions with unspecified integration
constant, C. For example,

´
dx x4 = 1

5
x5 +C, since d

dx

(
1
5
x5 + C

)
= x4, irrespective of the

value of C. In integral tables the additive constant is often omitted, although its presence is
implicitly assumed.

Knowing a primitive function, the value of a definite integral, i.e. an integral over a
definite interval [a, b] is obtained as

ˆ b

a

dy f(y) = F (b)− F (a) ≡ F (x)
∣∣∣
b

a
≡
[
F (x)

]a
b
. (C21)

This relation follows from Eq. (C19) and the observation that
´ b
a

dy f =
´ b

0
dy f −

´ a
0

dy f ,
i.e. the summed area from a to b equals that from 0 to b minus that from 0 to a. Note that
in the difference on the r.h.s. the integration constant drops out and there is no arbitrariness
in the definite integral. The general consistency of the additivity of integrals with Eq. (C21)

is seen from relations such as
´ b
a

dy f(y) =
´ c
a

dy f(y) +
´ b
c

dy f(y), which is compatible with
F (b)− F (a) = [F (b)− F (c)] + [F (c)− F (a)].
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When doing an integral over a definite interval, [a, b], the first step usually is to ‘compute
the indefinite integral’ and find a primitive function of the integrand. However, unlike with the
derivative of functions, not every integral can be solved in closed form — sometimes it is just
not possible to find a suitable primitive function. Nevertheless, there exists a huge body of
solution strategies (analytical, approximate, or numerical) and satisfactory solutions to most
integration problems can be found. Some general rules and hints in this regard are summarized
in section C2.4.

We finally note that the integral over an open interval, (a, b), gives the same result
as that over its closure, [a, b]. The reason is that the estimate of the bin width entering
the Riemann sum construction does not depend on the presence or absence of the isolated
endpoints, a, b, in which the two intervals differ. (In fact, the notation

´ b
a

dxf(x) does not
even distinguish between the two cases.) As mentioned previously, we will mostly work with
open intervals in this text. However, where integration is concerned the difference between
‘open’ and ‘closed’ is conveniently irrelevant.

EXERCISE In the formulas above on definite integrals,
´ b
a dyf(y) we tacitly assumed a < b.

However, convince yourself that all relations remain valid if we define

ˆ a

b
dy f(y) = −

ˆ b

a
dy f(y) (C22)

Although integrals with lower boundaries exceeding the upper boundary do not really make sense,

expressions with sign inverted boundaries sometimes appear at intermediate step, and the above

relation can be used to convert them to ‘ordinary integrals’.

Integrability

δ

−δ

1
−1

2 y

f(y)
Not all integrals are well-defined. Much like a function
can vary too rapidly to be differentiable, it can diverge
too strongly to be ‘summable’. More precisely, an integral
over a specified interval is said to ‘exist’ if and only if the
Riemann sum (C18) converges to a finite value in the
limit δ → 0. If it does not, we say that the integral
‘does not exist’ or that the integrand is not Riemann
integrable.

4
For example, consider the function f(y) =

1/y, which has a singularity (i.e. a point of divergence)

at y = 0. The integral
´ 2

1
dy y−1 = ln(y)

∣∣2
1

= ln(2) exists, but
´ 2

0
dy y−1 = ln(y)

∣∣2
0

does not
because the primitive function, F (y) = ln(y), diverges at zero (see figure). Note that the
divergence of an integrand at a singularity does not necessarily imply the non-existence of its

4

There exist more general integration schemes – the relevant keyword is Lebesgue integrability – often
discussed in advanced lecture courses of calculus. However in view of the rarity of functions which are Lebesgue-
but not Riemann-integrable we do not address this generalization here.
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integral. For example y−1/2 has a singularity at y = 0, however, the integral
´ 1

0
dy y−1/2 =

2y1/2
∣∣1
0

= 2 does exist. This is an example of an integrable singularity. More generally, any

power, y−α, α < 1 has the primitive function − 1
α−1

y−(α−1) which is well behaved at y = 0.
However, y−α, α ≥ 1 are examples of non-integrable singularities.

Finally, there are integrals that trick one into believing that they are Riemann-doable,
although they are not. As an example, consider the integral

´ 2

−3
dyy−1. A naive evaluation

through the primitive function F (y) = ln(y) yields the result ln(2)− ln(−3). This looks like
the difference of two finite numbers. However, the appearance of the (ill-defined) logarithm of
a negative real number makes the result questionable. Indeed, the integrand contains a non-
integrable singularity at y = 0, whereas the application of Eq. (C18) requires integrability
throughout the entire domain of integration.

One one may make sense of an integral with an isolated singularity at y0 by considering
the expression

P

ˆ b

a

dy f(y) ≡ lim
δ→0

(ˆ y0−δ

a

+

ˆ b

y0+δ

dy

)
f(y),

For finite δ the singularity is avoided by removal of a region of around it. If the limit δ → 0 of an
infinitesimally small cutout region exists, P

´ b
a

dy f(y) is called the principal value integral
of the function around the singularity. This expression must not be identified with the integral
of the function f(y), which does not even exist if the limits limδ→0

´ y0−δ
a

f and limδ→0

´ b
y0+δ

f

do not exist separately. (If the limits exist, then P
´

dyf =
´

dyf by construction.) Principal
value integrals can be finite if the diverging contributions to an integral from the left and the
right of a singularity almost cancel each other. For example, the principle value integral (see
the figure above for an illustration):

P

ˆ b

a

dy

y
= lim

δ→0

[ˆ −δ
a

dy

y
+

ˆ b

δ

dy

y

]
= lim

δ→0

[
−
ˆ −a
δ

dy′

y′
+

ˆ b

δ

dy

y

]
=

= lim
δ→0

[− ln(−a) + ln δ + ln b− ln δ] = ln

(
b

|a|

)
,

a < 0 < b, is finite. In the second equality we used a substitution y′ = −y5
and in the third

noted that the contribution of the interval [δ, 2] to the two integrals cancels. We will discuss
applications of principal value integrals in chapter C9.

As a corollary we note that a criterion for the integrability of a function, f , is the
integrability of its modulus, |f |. The integral

´
dy|f(y)| ≥

∣∣ ´ dyf(y)
∣∣ is an upper bound

for the modulus of an integral (why?) and if it exists, the integral of f exists with certainty.
In the integral of the modulus, potential singularities are all counted with equal sign and a
spurious cancellation mechanism as discussed above will not go undetected.

5

Readers not familiar with variable substitutions in integrals from high school find the concept explained
in the next section.
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C2.3 Integration rules

The fundamental theorem of calculus Eq. (C19) is called ‘fundamental’ for a reason: from
it, other integration identities can be derived with little effort. In the following, we discuss
two important secondary identities, the rule of integration by parts, and that of substitution
of variables.

Integration by parts

Consider the function F (x) = u(x)v(x) where u and v are differentiable functions. The
product rule of differentiation, Eq. (C6), then states that F ′ = u′ v + u v′ where we omitted
the arguments for clarity. This means that

F (b)− F (a) =

ˆ b

a

dxF ′(x) =

ˆ b

a

dx
[
u′(x) v(x) + u(x) v′(x)

]
.

Rearranging terms we obtain the formula for integration by parts

ˆ b

a

dxu(x) v′(x) =
[
u(x) v(x)

]b
a
−
ˆ b

a

dxu′(x) v(x) . (C23)

This rule is often formulated without explicit reference to boundaries:
ˆ

dxu(x) v′(x) = u(x) v(x)−
ˆ

dxu′(x) v(x) . (C24)

This relation is useful in cases where the integral on the right is easier to do than that on the
left (→ C2.3.1-2).

EXAMPLE Consider the integral
´

dxxex. With u(x) = x and v(x) = exp(x) we have u′ = 1 and

v = (exp(x))′. Integration by parts then yields

ˆ
dxx ex = −

ˆ
dx ex + x ex = ex(x− 1) .

As a check, we note that differentiating the result indeed reproduces the integrand, xex.

Substitution of variables

Much like Eq. (C23) follows from the product rule of differentiation, an integration formula
for changes of variables follows from the chain rule (C7): Consider a function f(y) ≡ dyF (y).
Let y(x) be a monotonically increasing differentiable function of the variable x. Then b > a
implies y(b) > y(a), and application of the fundamental theorem yields F (y(b))− F (y(a)) =´ y(b)

y(a)
dydyF (y) =

´ y(b)

y(a)
dyf(y). On the other hand, we may consider F (y(x)) as a function
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of x. Applying the fundamental theorem once more, but this time with reference to the
variable x, we obtain F (y(b)) − F (y(a)) =

´ b
a

dx dxF (y(x)) =
´ b
a

dx dyF
∣∣
y(x)

dxy(x) =´ b
a

dx f(y(x))dxy(x). Equating the two results yields the rule of substitution of variables,

ˆ b

a

dx
dy(x)

dx
f(y(x)) =

ˆ y(b)

y(a)

dy f(y). (C25)

EXAMPLE Consider the integral
´

dxx e−x
2

. Define y(x) = x2 and write it as 1
2

´
dx dy(x)

dx e−y(x) =
1
2

´
dy e−y = −1

2e−y = −n
2 e−x

2

. Check the formula by differentiation.

For a monotonically decreasing function y the same construction yields

ˆ b

a

dx
dy(x)

dx
f(y(x)) = −

ˆ y(a)

y(b)

dy f(y),

where now y(b) < y(a). Since the derivative of a decreasing function is negative, we may
absorb the minus sign by writing −dxy = |dxy|. Both variants may therefore be subsumed in
single equation, known as the indefinite version of the rule of substitutions of variables,

ˆ
dx

∣∣∣∣
dy(x)

dx

∣∣∣∣ f(y(x)) =

ˆ
dy f(y). (C26)

INFO Consider the substitution rule (C25). Formulae describing the change of variables in integrals

generally contain derivative factors such as dy
dx above. The following dirty trick is a mnemonic for

remembering the placement of such factors: suppose dx and dy were ordinary ‘variables’ and dy
dx

an ordinary ratio. The structure ‘dxdy
dx = dy’ would then be an ordinary formula for fractions. The

mathematically precise formulation of this mnemonic is discussed in chapter V5.

Study problems C2.3.3-4 to gain practice with performing integrals by substitution. Prob-
lems C2.3.5-8 provide guidance to performing certain standard classes of integrals using trigono-
metric or hyperbolic substitutions.

INFO Above we provided a formal proof of the rule of substitution of variables by application

of the fundamental theorem. However, variable substitutions appear very frequently, not just in

one-dimensional contexts, and it is well to understand the meaning of Eq. (C25) intuitively. To

this end, let us return to the description of integration as sums over increasingly fine discretization

‘grids’. The point to notice now is that these grids need not be evenly spaced. The freedom to

choose discretizations of varying width is the principle behind all variable substitution rules of

integration.
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Consider a function f : [ã, b̃] → R, y 7→ f(y) for which

regions of rapid variation alternate with ones where changes

are slow (see the figure). In this case, it might make sense to

introduce a system of bins of varying width: rapid changes

would call for a finer discretization through a large number

of narrow bins, while fewer and wider bins would suffice to

describe regions of modest variation. (On a computer such

flexible sampling leads to higher efficiency and saves memory

without sacrificing accuracy.)

A variant of the Riemann sum over N bins, [y`, y`+1], of

varying width, y`+1 − y`, reads

ˆ b̃

ã
dyf(y) = lim

N→∞

N−1∑

`=0

[y`+1 − y`]f(y`). (C27)

To compute the sum (C27) in concrete terms we need to

specify the points y`. To this end, we introduce an interval

[a, b] and a monotonically increasing function

y : [a, b]→ [ã, b̃], x 7→ y(x), (C28)

where y(a) = ã, y(b) = b̃. This function is defined such that for a uniform discretization of [a, b]

into N points x` = a+ `δ, with δ = (b− a)/N and ` = 0, . . . , N − 1, the values y` ≡ y(x`) define

the the points of the desired discretization. For example (see figure), a region of rapid variation of

y(x) leads to widely spaced points y`, and hence wide bins y`+1 − y`.
Using y`+1 − y` = y(x` + δ)− y(x`) ' δ dy(x`)

dx , we now represent the Riemann sum as

ˆ b̃

ã
dy f(y) = lim

N→∞

N−1∑

`=0

[
y(x` + δ)− y(x)

]
f(y(x`))

(C2)' lim
N→∞

N−1∑

`=0

δ
dy(x`)

dx
f(y(x`)) =

ˆ b

a
dx

dy

dx
f(y(x)) .

Here, the factor dy
dx describes the way in which the uniform x-grid gets distorted to generate the non-

uniform y-grid. For example, regions where dy
dx is large contribute to the x-integral with increased

weight because they correspond to wide grid spacings in the original y-representation. Recalling that

ã = y(a) and b̃ = y(b) we recognize the rule of substitution of variables, Eq. (C25) above.

Later in the text, we will meet various other identities describing the change of variables in

integrals. However, all these formulae rely on constructions similar to that discussed above. It may

be a good idea to spend a little time and let the geometric interpretation sink in, both in the discrete

and the continuum representation.
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C2.4 Practical remarks on one-dimensional integration

Although there exists no general recipe to compute the primitive function for arbitrary f ,
the majority of integrals encountered in the physics curriculum involve standard functions —
polynomials, exponentials, logarithms, trigonometric functions, etc. With time and practice
the integrals of these functions will become familiar. A number of important examples of such
‘basic’ integrals are implicit in the derivatives listed in section C1.3, we just need to read the
equations from right to left. For example,

(ln(x))′ =
1

x
⇔
ˆ

dx
1

x
= ln(x).

How do we approach integrals if the solution is not immediately obvious? The following list
contains a number of useful procedures and guiding principles:

. It often helps to start from an educated guess for the primitive F (x). Sometimes one
just needs to play around a little to improve an initially not-quite-correct guess and arrive
at a function satisfying d

dx
F (x) = f(x).

. If the integrand contains functions whose derivative looks more inviting than the function
itself try to integrate by parts (→ C2.3.1-2). For example,

ˆ
dx x ln(x) =

ˆ
dx

1

2

dx2

dx
ln(x)

(C24)
=

1

2
x2 ln(x)− 1

2

ˆ
dx x2 d ln(x)

dx

=
1

2
x2 ln(x)− 1

2

ˆ
dx x2 1

x
=
x2

2

(
ln(x)− 1

2

)
.

. If an integral contains terms more complicated than the elementary functions listed in
section C1.3 try substitutions (→ C2.3.3-??). An expression containing dx 1

x
, might call

for the substitution y = ln(x), which results in dy = dx 1
x

. For example,

ˆ
dx

1

x

1

a+ ln(x)
=

ˆ
dy

1

a+ y
= ln(a+ y).

Similarly, the combination dx x suggests the substitution y = x2, with dx x = 1
2
dy.

. There are families of functions whose integrals look complicated but are known to be doable.
An important example are the rational functions, i.e. functions f(x) = P (x)/Q(x) which
can be written as a ratio of two polynomials. These can be integrated using a technique
called partial fraction decomposition (→ C2.3.9-12). Other examples of integrable fam-
ilies include rational functions of trigonometric functions (ratios of polynomials in the
functions sin(x), cos(x) and tan(x)), and polynomials in exponential functions. For
the corresponding integration strategies we refer to textbooks on calculus. Try to memorize
the families of functions mentioned above to be able to recognize their integrals as doable
when you meet them.



214 C2 Integration of one-dimensional functions

. Computer algebra packages such as Mathematica R© or Maple R© can be powerful aids for
solving even very complex integration problems. However, we suggest not to use these
packages excessively: integrals encountered in physics often have a structure that ‘reflects’
the underlying physics, and if one lets a computer do the job one looses touch with this
structure. On the same note, the ‘manual’ struggling with an integral usually is rewarded
with added insight into the problem. It is therefore good practice to seriously try to solve
integrals by hand before turning to a computer.

. As a compromise between the manual and the fully automated solution of integrals one
may use integral tables. The primary reference in this context is I.S.Gradshteyn and I.M.
Ryzhik, Table of Integrals, Series, and Products, Academic Press, 7th edition, 2007. This
book tabulates thousands of integrals.

. No matter how the primitive function has been obtained, always check it by differentiation.

. Many integrals are not expressible through elementary functions. For example, the
Gaussian function, exp(−x2), does not have an elementary primitive. In cases where an
‘important’ function cannot be integrated to elementary functions, its primitive defines a
what is called a special function. For example, the integral of the Gaussian function
defines the so-called error functionˆ y

0

dx e−x
2 ≡
√
π

2
erf(y).

Mathematica R© or Maple R© can be powerful aids for solving even very complex integration
problems. However, we suggest not to use these packages excessively: integrals encountered
in physics often have a structure that ‘reflects’ the underlying physics, and if one lets a
computer do the job one looses touch with this structure. On the same note, the ‘manual’
struggling with an integral usually is rewarded with added insight into the problem. It
is therefore good practice to seriously try to solve integrals by hand before turning to a
computer.

. For some types of definite integrals, there exists methods which avoid the need to find the
primitive function, and some of these will be discussed in section C9.5 on complex calculus.
Such shortcuts are helpful in cases where the indefinite integrals cannot be expressed in
elementary terms. For example, the Gaussian integral,

ˆ ∞
−∞

dx e−x
2

=
√
π, (C29)

can be computed (→ C2.3.13-14) without reference to its indefinite integral, the error func-
tion. Other integrals in the same league include the exponential integrals

´∞
0

dx xn e−x

(→ C2.3.15) and general Gaussian integrals
´∞

0
dx x2n e−x

2
(→ C2.3.16).

. Any (Riemann integrable) function can be integrated numerically on a computer. In this
case, a computer is employed to evaluate the Riemann discretizations. The accuracy of the
results can be increased by lowering the discretization steps, and/or turning to non-uniform
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discretizations (cf. info section on p. 211) adjusted to the profile of the integrand. For
the discussion of discretization grids tailored to obtain rapid convergence, etc., we refer to
textbooks on numerical integration.

C2.5 Summary and Outlook

In this chapter we introduced the idea of integration as a refined way of summation on
the example of one-dimensional functions. Many aspects of this discussion, notably the ‘reci-
procity’ of integration and differentiation, carry over to the generalized integrals addressed in
later chapters. For example, the substitution rule has various higher dimensional generaliza-
tions. Although these may look a little more complicated than the one-dimensional one, the
constructions principles always reflect the discussion of the info section on p. 211. We also
discussed various integration techniques specific to one-dimensional functions. These, too,
continue to play an important role in more general contexts: higher dimensional integrals are
usually broken down to successions of one-dimensional ones, which then need to be processed
by the methods reviewed above.

We have now reached a good basis to turn to the generalize the concepts of differentiation
and integration to functions defined in higher dimensional spaces, and this is the subject to
which we turn next.



C3 Partial differentiation

Consider a function depending on more than one variable, such as the water depth, D(r),
beneath a boat at position r = (x, y) on a lake, or the air pressure, P (T, V ), in a container
of volume V at temperature T . One may ask how these quantities change if only one of the
variables is varied: how does the water depth vary if the boat moves in x-direction at fixed
y? Or how does the pressure in the container change upon increasing temperature at fixed
volume? The present chapter introduces partial derivatives as the mathematical tools to
adress such questions.

C3.1 Partial derivative

Consider a function f : Rd → R, x 7→ f(x) = f(x1, . . . , xd) depending on d variables
x1, . . . , xd. The partial derivative of f with respect to xi probes how f(x) changes if only
the single variable xi is varied. It is defined as the ordinary derivative of f w.r.t. to xi taken
at fixed values of the other variables:

∂f(x)

∂xi
≡ lim

δ→0

1

δ

[
f(x1, . . . , xi + δ, . . . , xd)− f(x1, . . . , xi, . . . , xd)

]
. (C30)

The symbol ∂ indicates that this is a partial derivative of a multi-dimensional function, in con-
trast to the ordinary derivative (written as d) of a one-dimensional function. Other frequently
used notations include

1

∂f(x)

∂xi
≡ ∂xif(x) ≡ ∂if(x).

EXAMPLE The examples below are partial derivatives written in different notations:

∂1

[
(x1)2x2 + x3

]
= 2x1x2,

1

In covariant notation where component indices are written as superscripts (xi), the symbol ∂i carries
a subscript. The rationale behind this convention will be discussed in chapter V5. However, an easy way to
memorize it is to note that ∂/∂xi is an object carrying a superscript symbol in the denominator. Much as with
a double fraction (1/(1/5) = 5) this corresponds to a symbol with inverted index position in the numerator,
∂/∂xi = ∂i.

216
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∂x2

[
(x1)2x2 cos(x2) + x3

]
= (x1)2

[
cos(x2)− x2 sin(x2)

]
,

∂y
[
(x2 + y3) sin(x+ y2)

]
= 3y2 sin(x+ y2) + (x2 + y3)2y cos(x+ y2).

1eδ+x

2eδ+x

)2eδ+x(f

)1eδ+x(f

x

)x(f f1δ ∂

f2δ ∂

Figure C3: Partial derivatives illustrated for a function f : R2 → R.

It is sometimes useful to write Eq. (C30) in a vectorial notation where the variables xi

define a vector as x =
∑d

i eix
i. We then have

∂f(x)

∂xi
= lim

δ→0

1

δ

(
f(x + δ ei)− f(x)

)
. (C31)

Fig. C3 illustrates the interpretation of the partial derivative on a two-dimensional example.
The shaded planes indicate how one variable is kept constant in the process. The variation of
the other variable yields the partial derivative as an ordinary derivative taken in the direction
of the corresponding coordinate axis.

Since partial derivatives are ordinary derivatives taken w.r.t. one out of d variables they are
as easy to take as one-dimensional derivatives (→ C3.1.1-2). All differentiation rules discussed
in Section C1.2 directly carry over to partial differentiation. For example, the product rule
reads:

∂i
(
f(x) g(x)

)
=
(
∂if(x)

)
g(x) + f(x)

(
∂ig(x)

)
.

C3.2 Multiple partial derivatives

Just as with multiple ordinary derivatives (cf. Eq. (C4)) multiple partial derivatives are
obtained by repeatedly taking single derivatives. For example, the symbols ∂2

xi,xj or just ∂2
i,j

indicate a double partial derivative in which one first differentiates in the variable xj, and
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then the result in xi. If i = j this is an ordinary second order derivative in xi and generally
abbreviated as ∂2

xi,xi ≡ ∂2
xi ≡ ∂2

i . For example, with x1 ≡ x and x2 ≡ y

∂2
x

(
x3y2

)
= ∂x

(
3x2y2

)
= 6xy2, ∂2

y

(
x3y2

)
= ∂y

(
2x3y

)
= 2x3.

Mixed derivatives in different variables generally are to be taken in the order specified by the
notation:

∂2
i,jf(x) ≡ ∂2

xi,xjf(x) ≡ ∂xi∂xjf(x) ≡ ∂xi
(
∂xjf(x)

)
.

However, for smooth functions Schwarz’ theorem states that the order in which partial
derivatives are taken does not matter:

2

∂2
i,jf(x) = ∂xi∂xjf(x) = ∂xj∂xif(x) = ∂2

j,if(x), (f ‘smooth’). (C32)

For example (→ C3.2.1-2),

∂2
x,y cos(xey) = ∂x

(
− sin(xey)xey

)
= − cos(xey)xe2y − sin(xey)ey,

∂2
y,x cos(xey) = ∂y

(
− sin(xey)ey

)
= − cos(xey)xe2y − sin(xey)ey.

In physics, multiple partial derivatives appear frequently and changes in the order of derivatives
are applied to simplify calculations or even prove statements. However, it is important to
remember that such operations rely on the smoothness condition and that there exist (few)
treacherous functions which look smooth but are not (in the sense of the definition on p. 199).
In such cases, the exchange of derivatives may be invalid:

EXAMPLE Consider the function

f(x, y) =

{
xy(x2−y2)
x2+y2 , (x, y) 6= (0, 0),

0, (x, y) = (0, 0),

The function looks smooth and is partially differentiable every-

where. However, at (x, y) = (0, 0) the partial derivatives do not

commute: ∂x∂yf
∣∣
(0,0)

6= ∂y∂xf
∣∣
(0,0)

(check this). This signifies

that the smoothness conditions required by Schwarz’ theorem are

not given. In mathematics, it is good practice to check the re-

quired criteria before a derivative is carried out. Physicists tend

to be more cavalier and assume the commutativity of derivatives.

This approach becomes dangerous in the (admittedly very rare)

cases where functions look smooth, but are not in a mathematical

sense. Premature differentiation may then lead to errors, which,

however, are generally easy to track.

2

Actually, Schwarz’ theorem does not require smoothness but the weaker condition that all second order
partial derivatives ∂2

i,jf be continuous at x.
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C3.3 Chain rule for functions of several variables

In physics one frequently encounters situations in which a multivariate function f(g) =
f(g1, . . . , gd) depends on a parameter variable, x, indirectly via the dependence gi = gi(x)
of its arguments on x. For example, the pressure, P (V, T ), of a gas in a piston depends on
the available volume, V , and temperature, T . This dependence may become time dependent,
P (t) = P (V (t), T (t)), if temperature, T (t), and pressure, P (t), vary in time. In such cases,
it is natural to ask how the composite function f

(
g(x)

)
varies with x. The answer to this

question is provided by a generalization of the chain rule to be introduced in this section.

An auxiliary relation

Figure C4: The qualitative picture behind the relation (C35), illustrated in d = 2 dimensions.
Discussion, see text.

We first ask how a function f(y) = f(y1, . . . , yd) changes under the simultaneous varia-
tion of all its arguments, y → y + δz, where z ∈ Rd is arbitrary and δ is infinitesimal.
Before answering this question in general, let us consider a function depending on just two
arguments, d = 2. In this case, the rate of change is described by the difference quotient,
1
δ

[f(y1 + δ z1, y2 + δ z2)− f(y1, y2)]. We aim to reduce this expression to one containing
the more familiar difference quotients of ordinary derivatives in single variables. This can be
achieved by the insertion of 0 = −f(y1 + δz1, y2) +f(y1 + δz1, y2). In this way, the difference
quotient becomes

1

δ

[
f(y1 + δ z1, y2 + δ z2)− f(y1, y2)

]

=
1

δ

[
f(y1 + δ z1, y2 + δ z2)− f(y1 + δz1, y2)

]
+

1

δ

[
f(y1 + δz1, y2)− f(y1, y2)

]

(C30)' z2∂f(y1 + δ z1, y2)

∂y2
+ z1∂f(y1, y2)

∂y1

δ→0−→ z2∂f(y1, y2)

∂y2
+ z1∂f(y1, y2)

∂y1
. (C33)
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Here, the second term probes the function’s increment when its first argument y1 changes to
y1 + δ z1, at fixed y2. Similarly, the first term probes the function’s increment when its second
argument y2 changes to y2 + δ z2, at fixed y1 + δz1. Figure C4 visualizes this decomposition
of the full increment into two separate contributions, indicated by thick vertical lines.

In the first equality of the third line, the two increments are expressed by the corresponding
partial derivatives, taken at y1+δ z1 and y2, respectively. Finally, f was assumed to be smooth,
and so ∂y2f is likewise smooth. In particular, it is continuous. This implies limδ→0 ∂y2f(y1 +
δz1, y2) = ∂y2f(y1, y2), i.e. in the limit of infinitesimal δ the slight shift in the evaluation
point of the partial derivative does not matter, and this point is made in the final equality.
Similar lines of reasoning will be applied in several other cases below. Before reading on, make
sure that you understand the logic of the construction above well.

The construction immediately generalizes to functions depending on more than two argu-
ments and the result then reads

lim
δ→0

1

δ

[
f(y + δz)− f(y)

]
=

d∑

j=1

∂f(y)

∂yj
zj. (C34)

This identity states that the net change of the function is obtained by computing its partial
derivatives, ∂yi , in the directions of the individual variables, weighting each with the component
of the increment vector, zi, and adding up.

A version of this formula describing the ‘linearization’ of f in small yet not necessarily
infinitesimal variations of δ reads

f(y + δz)− f(y) '
d∑

j=1

∂f(y)

∂yj
δzj. (C35)

Notice how relation this equation embodies the essence of differentiation: the local structure
of a function, i.e. the difference of function values between nearby points on the l.h.s., can is
approximately described by a function that is linear in the argument displacements, ∝ δzi. The
linearization on the r.h.s. is the higher-dimensional analogue of the straight line of figure C1.

Chain rule

Let us now turn back to the setting mentioned in the beginning of the section and consider
the composite function (cf. Fig. C5)

f ◦ g : R→ R, x 7→ f
(
g(x)

)
= f

(
g1(x), . . . , gd(x)

)
≡ f(x),

where g : R→ Rd , x 7→ g(x) =
(
g1(x), . . . , gd(x)

)
defines the dependence of the arguments

on a single parameter x. Notice that the dependence x 7→ f(x) defines an ordinary real-valued
function of a single variable and so it must be possible to compute the derivative dxf(x). We
compute this derivative by explicit linearization of the functions involved in the process:

df
(
g(x)

)

dx
= lim

δ→0

1

δ

[
f
(
g(x+ δ)

)
− f

(
g(x)

)]
= lim

δ→0

1

δ

[
f
(
g(x) + δdxg(x)

)
− f

(
g(x)

)]
,
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Figure C5: Geometric description relevant to the discussion of the chain rule illustrated for n = 2.
Discussion, see text.

where in the last step we used gj(x+δ) = gj(x)+δ g
j(x)
dx

, and introduced the shorthand notation

dxg ≡
(

dg1

dx
, . . . , dgd

dx

)T
. We may now apply Eq. (C34) with the identifications y = g(x) and

z = dxg(x) to obtain

df
(
g(x)

)

dx
=

d∑

j=1

∂f(y)

∂yj

∣∣∣
y=g(x)

∂gj(x)

dx
=

d∑

j=1

∂f
(
g(x)

)

∂gj
∂gj(x)

dx
, (C36)

where the right-most expression defines a shorthand for the middle one. This is one of various
versions of a chain rule for a function of several variables. The rationale underlying this
formula is similar to that of the ordinary chain rule Eq. (C7):

The change of a function f
(
g(x)

)
under variations of the argument x multiplica-

tively depends on both the change of f(g) with gj and the change of gj(x) with
x. The total rate changes in the different variables, ∂gjf∂xg

j, need to be added
to obtain the full variation as in Eq. (C36).

EXAMPLE Chain rules appear frequently in physical applications. Consider, for example, a

mobile particle in a volume with nontrivial temperature profile, T (x). The trajectory of the particle

is described by a curve r(t) and the instantaneous ambient temperature ‘felt’ by the particle at time

t is T (r(t)). The rate of change in temperature with time is described by the derivative dT (r(t))
dt , for

which Eq. (C36) yields

dT (r(t))

dt
=

3∑

j=1

∂jT (r(t))

∂rj
drj(t)

dt
.
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Generalized chain rules

The chain rule has two extensions which straightforwardly follow from Eq. (C36). The
first generalization replaces the scalar function f by a vectorial function

f : Rd → Rm, y 7→ f(y) =
(
f 1(y), . . . , fm(y)

)
.

This function may be composed with the function g(x) to yield f ◦g : R→ Rm, x 7→ f(g(x)).
The chain rule (C36) applies to each component f i(g(x)) separately. Using the vectorial
notation

df

dx
≡
(

df 1

dx
, . . . ,

dfm

dx

)T
,

∂f

∂yj
≡
(
∂f 1

∂yj
, . . . ,

∂fm

∂yj

)T
, (C37)

etc., we may the generalized chain rule as

df(g(x))

dx
=

d∑

j=1

∂f(g)

∂gj
dgj(x)

dx
. (C38)

To formulate the second generalization we introduce a function g(x) of n > 1 variables xk,

g : Rn → Rd, x 7→ g(x) =
(
g1(x1, . . . , xn), . . . gd(x1, . . . , xn)

)T
,

and compose it with f to yield

f ◦ g : Rn → Rm, x 7→ f
(
g(x)

)
= f
(
g1(x1, . . . , xn), . . . , gd(x1, . . . , xn)

)
.

We may now ask how the component f i changes if one variable xk is varied while all others are
kept fixed. By definition, this amounts to taking the partial derivative ∂xkf

i. Remembering
that this is just an ordinary derivative in xk taken at fixed xl 6=k Eq. (C38) may be applied to
obtain (→ C3.3.1-2)

∂f
(
g(x)

)

∂xk
=

d∑

j=1

∂f
(
g(x)

)

∂gj
∂gj(x)

∂xk
. (C39)

INFO As an example application consider a jet engine whose output power W (T, P ) depends on

both the temperature, T , and the pressure, P , in the combustion chamber. These two quantities in

turn depend on the fuel injection rate, κ, and the chamber volume, V . The task is to optimize the

function W (T (κ, V ), P (κ, V )) with respect to κ and V . To this end, one needs to know the partial

derivatives ∂κW and ∂VW (here m = 1, n = 2, d = 2). Application of Eq. (C39) yields

∂κW = ∂TW ∂κT + ∂PW ∂κP, ∂VW = ∂TW ∂V T + ∂PW ∂V P,
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where we have used shorthand notations for the partial derivatives, ∂T = ∂
∂T

, etc. An optimiza-

tion procedure would now seek points where these derivatives vanish, i.e. configurations where the

adjustable parameters are such that the engine output is at an extremum.

EXERCISE Consider the two functions

f(y1, y2) =

(
y1 cos(y2)

y1 sin(y2)

)
, g(x1, x2) =

(
((x1)2 + (x2)2)1/2

arctan(x2/x1)

)
.

Show that
∂f i(g1(x1, x2), g2(x1, x2))

∂xj
= δij . How would you interpret this result?

C3.4 Summary and Outlook

In this chapter we introduced partial differentiation as a means to probe the variation of
multivariate functions. Partial derivatives monitor the rate at which such functions change
if just one of their arguments is varied, and all others are kept fixed. All rules of ordinary
differentiation are equally applicable to partial derivatives. The same goes for the interpretation
of derivatives as effective linearizations of functions. The application of this idea to functions
with indirect variable dependences led to higher-dimensional variants of the chain rule, the most
general one being Eq. (C39). These rules are required to describe the change of functions
depending on multiple, mutually correlated variables.

Partial derivatives are the workhorses used to break down even very complex derivatives
down to manageable ‘ordinary derivatives’ in individual scalar variables. They are easy to get
used to, not least because they appear on a daily basis in the work of any physicist. Much
like ordinary derivatives are ‘dual’ to integrals over single variables, partial derivatives are dual
to repeated integrations over several variables. In the next chapter, we introduce this first
extension of one-dimensional integrals, which will then become the basis of the more general
multi-dimensional integrals discussed in later parts of the text.



C4 Multi-dimensional integration

In physics, one often needs to integrate (‘sum’) over the values of functions defined in higher-
dimensional spaces. A cartoon of the general situation has been discussed in section C2.1
where we asked how the total mass carried by a surface coated with a substance of a given
‘mass density’ can be obtained. More generally, integration problems arise when the many
incremental changes accumulated by a function in a given context (differentiation) need to
be resummed (integration) to obtain the change of the function at large. In one dimensional
contexts, this task is achieved by the highschool variant of integration which effectively samples
the area enclosed by the graph of a function. Building on the understanding of this procedure
we here discuss the extension of integration to higher dimensions.

Higher-dimensional integration theory is a subject of considerable depth and needs to be
introduced with an appropriate level of care. At the same time, many beginning physics
students face the situation that multi-dimensional integration techniques are required early
on in the (experimental) physics curriculum. We have therefore decided to include a fast
track to integration into this chapter. It provides a pragmatic introduction to the integrals
generally required by first and second term experimental physics lecture courses, integration
over functions defined in two-dimensional and three-dimensional space, and on two-dimensional
surfaces. These integrals are under control after the reading of sections C4.1 and the first
subsection in each of C4.2, C4.3 and C4.4 respectively. However, we emphasize that these
text snippets do not treat integration at the level of depth required in later stages of the
curriculum; students should return to reading the chapter in full after they went through the
crash course.

C4.1 Cartesian area and volume integrals

Integrals over higher-dimensional structures can always be reduced to successions of one-
dimensional integrals. This reduction is best introduced on the example of ‘cuboids’ — rect-
angles in two-dimensional space, boxes in three-dimensional space, etc. Once the principles
are understood, the extension to the more complex integrals discussed in later parts of the
chapter will be straightforward.

224
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R

xδ

yδ
)′�, y�x(

)′�, y�x(f

Figure C6: On the concept of two-dimensional integration over a function.

Integration over rectangles

Consider a function of two variables defined on a rectangle, R = [a, b]× [c, d]:
1

f :[a, b]× [c, d] ⊂ R2 → R, (x, y)T 7→ f(x, y) : (C40)

In physical applications, f will usually represent some kind of ‘density’. For example, it might
be a mass density in the sense that f(x, y)δxδy represents the mass of a substance contained in
a small rectangle with area δxδy at the point (x, y)T . In this case, the integral would compute
the total mass contained in the full rectangle R. In the visualization in Fig. C6, the mass
contained in such a small is represented by the volume of the column above that rectangle,
and the total mass by the volume under the floating surface defined by f(x, y).

Following the discussion of section C2.1, we tile the rectangle R by a set of infinitesimal
rectangular cells and then sum the contributions of all cells. The summation procedure is set up
by dividing the interval [a, b] into Nx bins of infinitesimal width δx = (b−a)/Nx, and similarly
for the interval [c, d], with δy = (d−c)/Ny. Next, the function values are read out as f(x`, y`′)
where x` and y`′ lie in the `th x-bin and `′th y-bin, respectively. The exact positioning of
these coordinates within the bins is not essential (cf. the analogous discussion in section C2.2).
For example, x` = `δx with ` = 0, . . . , Nx−1, and y`′ = `′ δy with `′ = 0, . . . , Ny−1, will
do the job. One may now sum over f(x`, y`′)δ

xδy and in the limit δx, δy → 0 obtains the
two-dimensional integral as

ˆ
R

dxdy f(x, y) ≡ lim
δx,δy→0

δxδy
∑

`

∑

`′

f(x`, y`′). (C41)

1

Referring to the definition of Cartesian products of sets Eq. (L1), the rectangle is defined as the set of
points [a, b]× [c, d] ≡ {(x, y)|x ∈ [a, b], y ∈ [c, d]}.
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This construction not only defines the integral but also contains the recipe for its practical
computation: In the limit δy → 0, at fixed δx and fixed first coordinate x` the integral
converges to a one-dimensional integral of the function f(x`, y) over y,

lim
δy→0

δy
∑

`′

f(x`, y`′) =

ˆ d

c

dy f(x`, y) ≡ I(x`),

whose value I(x`) depends on the value of x`. The insertion of I(x`) into the remaining
sum, followed by a limit δx → 0 leads to another one-dimensional integral, now over x:
limδx→0 δ

x
∑

` I(x`) =
´ b
a

dx I(x). We conclude that the area integral is given by

ˆ
R

dx dy f(x, y) =

ˆ b

a

dx

ˆ d

c

dy f(x, y) =

ˆ d

c

dy

ˆ b

a

dx f(x, y), (C42)

where
´

dyf(x, y) means ‘integrate f(x, y) over the second argument, y, at a fixed value of
the first argument, x’. The second equality holds since the construction above could have
been formulated in the reverse order — first integrate over x, then over y.

EXAMPLE As an example, consider the function f : [0, 2]× [0, 1]→ R, (x, y) 7→ f(x, y) = xy+y2.

It can be integrated in either order to obtain identical results:

ˆ 2

0
dx

ˆ 1

0
dy f(x, y) =

ˆ 2

0
dx
[
1

2
y2x+

1

3
y3
]1

0
=

ˆ 2

0
dx
(
1

2
x+

1

3

)
=
[
1

4
x2 +

1

3
x
]2

0
=

5

3
,

ˆ 1

0
dy

ˆ 2

0
dx f(x, y) =

ˆ 1

0
dy
[
1

2
x2y + xy2

]2

0
=

ˆ 1

0
dy
(

2y + 2y2
)

=
[
y2 +

2

3
y3
]1

0
=

5

3
.

The fact that the order of integration does not matter is known as Fubini’s theorem. Gen-
erally speaking, integrals are defined as Riemann sums over the cells tiling the integration
domains. Due to the commutativity of addition the order in which one sums over these is
arbitrary. This statement holds for all types of integrals to be discussed in subsequent chapters.

INFO Apart from rare exceptions, Fubini’s theorem holds if the double integral over a function,

performed in either order, exists. More precisely, the condition granting Fubini interchangeability
is that

´
R dxdy|f(x, y)|, i.e. the integral over the modulus of the function must exist. To appre-

ciate the relevance of the modulus, consider the function f(x, y) = (x2 − y2)/(x2 + y2)2. It is

straightforward to verify that

ˆ 1

0
dx

ˆ 1

0
dy

x2 − y2

(x2 + y2)2
=
π

4
.

However, the integral done in reverse order yields the negative value, −π/4. To understand what is

happening here, notice that for x, y approaching zero while x > y the integrand contains a strong

positive divergence. For x < y the divergence is negative. The integrals over the respective regions,

1 ≥ x > y ≥ 0 and 0 ≤ x < y ≤ 1, do not exist. Likewise, the integral of the modulus |f(x, y)|
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over the full square, 0 ≤ x, y ≤ 1 does not exist either (because in this case the two singularities

add). However, doing the double integral over the function itself, we obtain a result of ∞ − ∞
type, where the two ∞’s come from x > y and x < y, respectively. The naive evaluation of the

integral tricks one into believing that the difference of the two infinities is finite, either π/4 or −π/4,

depending on the order in which the x- and y-integrals are performed. However, the sign discrepancy

is a manifestation of the fact that the difference of two ∞’s is actually not well defined. While the

double integrals make formal sense, they do not represent a well-defined area integral.

The general message is that before doing an integral one should check that the integral over the

modulus of the integrated function exists (cf. discussion on p. 209). If not, one is generally working

with an ill-defined expression.

The tiling construction described above can readily be generalized to integrals over higher-
dimensional cuboids. For example, consider a function f(x, y, z) on C = [a, b] × [c, d] ×
[e, f ] ⊂ R3. The separate discretization along each dimension divides C into a large number
of small cubicles. In the limit, the Riemann sum over all these leads to the triple integral

ˆ
C

dx dy dz f(x, y, z) =

ˆ b

a

dx

ˆ d

c

dy

ˆ f

e

dz f(x, y, z), (C43)

where the order of integrations is again arbitrary. The extension to cuboids of higher dimension
should be obvious.

Integration over domains with spatially varying boundaries

Many functions of practical interest are defined on non-rectangular
domains. Integrals over such functions can often be computed by
straightforward adaption of the above strategy: the integration do-
main is tiled by infinitesimal rectangular cells (or boxes in three-
dimensional settings). However, the number of cells in one direction
may now depends on the cell index in other directions. For a two-
dimensional example, consider the circular disk, D, shown in the
figure. In this case, the number of cells in y-direction is largest close
to the center of the x-axis at x` ' 0. As a consequence, the lower
and upper summation thresholds for y`′ now depend on x`. Let us

denote them by c−(x`) and c+(x`), respectively, and the lower and upper thresholds for x` by
a− and a+. The discrete approximation of the integral then assumes the form

δxδy
∑

a−≤x`<a+

∑

c−(x`)≤y`′<c+(x`)

f(x`, y`′).

We take the limit δx, δy → 0 to obtain the integral representation

ˆ
D

dx dy f(x, y) ≡
ˆ a+

a−

dx

ˆ c+(x)

c−(x)

dy f(x, y).
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Here, the integration boundaries of the ‘inner’ y-integral, I(x) =
´ c+(x)

c−(x)
dy f(x, y), depend

on the integration variable of the ‘outer’ x-integral. However, this is no cause for concern
— one simply integrates over y to find I(x), and subsequently over x to obtain

´ a+

a−
dx I(x)

(→ C4.1.1-6).

EXAMPLE Consider a disk of radius R and let us determine its area, A, by integration. In this

case, the boundaries a± = ±R are set by the disk radius and c±(x) = ±
√
R2 − x2. This gives

A =

ˆ R

−R
dx

ˆ √R2−x2

−
√
R2−x2

dy 1 = 2

ˆ R

−R
dx
√
R2 − x2 =

[
x
√
R2 − x2 +R2 arctan

(
x√

R2 − x2

)]R

−R
.

(The integral can be done using the substitution x = R cosu. Verify the last equality by differen-

tiating the result of the integration.) For x = ±R the first term on the right vanishes while the

argument of the arctan assumes the value ±∞. Since arctan(±∞) = ±π
2 we arrive at the expected

result A = πR2, i.e. the familiar area enclosed by a circle of radius R. Note that the computation

appears to be unwieldy; there should be easier ways to obtain the surface of a disk, and we will

introduce them in the next section.

2π/

1

x

y

0
0

)xcos(

)yarccos(

Fubini’s theorem on the interchangeability of integration orders ex-
tends to non-cuboidal integration domains. For example, the above
construction for the disk could have been organized in such a way
that the integration over x is performed first and that over y second.
The freedom to choose the order of integration order becomes relevant
when one order is more convenient than the other. As an example,
let us apply two-dimensional integration to compute the area enclosed
between the curve y = cos(x) and the x- and y-axes (see figure).

Integrating first over y, then x, turns out to be easier than the reverse order:

A =

ˆ π/2

0

dx

ˆ cos(x)

0

dy =

ˆ π/2

0

dx cos(x) =
[
sin(x)

]π/2
0

= 1,

A =

ˆ 1

0

dy

ˆ arccos(y)

0

dx =

ˆ 1

0

dy arccos(y) =
[
−
√

1− y2 − y arccos(y)
]1

0
= 1.

C4.2 Curvilinear area integrals

The integration procedure described in the preceding section uses Cartesian coordinates. How-
ever, these coordinates are not ideal for the description of integration domains possessing rota-
tional or other symmetries. This is illustrated by the above example, where the integration over
a disk in Cartesian coordinates led to cumbersome expressions. In this section we introduce
more powerful techniques and learn how to integrate over two-, three- and higher-dimensional
structures in arbitrary coordinates.
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Describing areas by curvilinear coordinates

REMARK Knowledge of sections V2.1 to V2.4 on curvilinear coordinates is required for this section.

φδ

R

)ρ, φ(r

), φρδ+ρ(r

)φδ+ρ, φ(r

)ρ, φ(r

ρ

ρδ

)φδ+, φρδ+ρ(r

ρv
ρδ

φv
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D

f

)′�, φ�ρ(f

′��δS

′��δS

)′�, φ�ρ(

Figure C7: Integration in two dimensions using polar coordinates. A rectangular coordinate domain
U (bottom right) is used to parametrize the disk D (top right). This leads to area elements δS``′

shaped like distorted rectangles (bottom left). The integration of a function f(ρ, φ) over the disk
amounts to the summation over these shapes, weighted with the product of the base areas |δS``′ | and
the heights f(ρ`, φ`′) (top left). The arrows shown in the bottom left panel are defined in Eq. (C46).

Let us turn back to the example of integration over a circular disk, D. Again, we
start by introducing a discretization grid, however, this time it will be defined such that the
symmetries of the integration domain are taken into account. To this end, consider the
representation of D in terms of the polar coordinates introduced in section V2.1,

r : U ≡ (0, R)× (0, 2π)→ D, y ≡ (ρ, φ)T 7→ r(ρ, φ) ≡ (ρ cosφ, ρ sinφ)T . (C44)

Observe that the circular domain of integration, D, is now parameterized by the rectangular
coordinate domain, U = (0, R)× (0, 2π).

INFO As always with curvilinear coordinate descriptions, we take the coordinate domain to be open.
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This is done to ensure global differentiability of the map, cf. the discussion at the end of section V2.1

(p. 390). The openness of the coordinate intervals often implies that an integration domain can

be almost, but not fully covered by a single coordinate map. For example, the image of the map

above does not cover the boundary of the disk, where R = 1, nor the intersection of the disk with the

positive real axis, where φ = 0. However, these excluded regions are of dimension lower than two and

their exclusion does not affect a two-dimensional integral over a continuous functions. The heuristic

picture behind this statement is that an ‘infinitely thin’ line does not contribute to the summation

over areas. A more formal justification of this statement will be given in the context of Eq. (C52)

below. In the following, what we mean when we say that a d-dimensional integration domain, M , is

covered by a system of coordinates is that the coordinates parameterize all of M , except perhaps for

subsets of lower dimension. For completeness, we mention that situations where the full coverage of

a domain by coordinates is essential are addressed in chapter ??.

We now introduce a set of points, {(ρ`, φ`′)T}, ρ` = `δρ, φ`′ = `′δφ, 0 ≤ ` ≤ R/δρ,
0 ≤ `′ ≤ 2π/δφ, defining the corners of a system of rectangular cells of area δρδφ covering U .
The coordinate map r(ρ, φ) sends this rectangular grid onto a ‘distorted grid’ of image points,
r(ρ`, φ`′), whose corners define a set of area elements, δS``′ , in D. These have the shape of
‘distorted rectangles’ tiling D in a spider-web pattern, as illustrated in Fig. C7. The covering
generated in this fashion reflects the rotational symmetry of the disk — a key advantage
relative to the Cartesian grid of p. 227.

Geometrically distorted area elements

The strategy just described is not limited to polar coordinates. Integration over non-
rectangular domains often starts with a coverage generated by curvilinear coordinates. All
steps that follow then are of general nature and it therefore makes sense to introduce them
for a generic two-dimensional coordinate system, r : U → M , y 7→ r(y). In the end of the
section we will turn back to polar coordinates, y = (ρ, φ)T and M = D, and do specific
integrals over the disk.

Let us denote the points of a tiling grid in U by y``′ ≡ (y1
` , y

2
`′)

T ≡ (`δ1, `′δ2)T and let
r(y``′) define the induced grid in M . The integral of a function, f : M → R, r 7→ f(r) over
M is then define as the Riemann sum over the area elements,

ˆ
M

dS f(r) ≡ lim
δ1, δ2→0

∑

``′

|δS``′|f(y``′), (C45)

where the notation f(y) ≡ f(r(y)) is used and |δS``′ | is the geometric area of the surface
element δS``′ . If f represents the density of a quantity such as mass, then the summand
|δS``′|f(y``′) gives the amount of this quantity associated with that area element.

Eq. (C45) remains formal as long as the dependence of the area elements |δS``′| on the
coordinate points y``′ has not been specified. To this end, we temporarily suppress the indices
`, `′ and note that an element δS labeled by y is defined by the four corner points r(y1, y2),
r(y1 + δ1, y2), r(y1 + δ1, y2 + δ2) and r(y1, y2 + δ2). These points are connected by the
corresponding coordinate lines (see Fig. C7). What simplifies the computation of the enclosed
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area is the proximity of the corner points to each other: in the limit of infinitesimally small δ1

and δ2, the curvature of the coordinate lines between the points becomes negligibly small and
the shape of δS approaches that of a parallelogram spanned by the two vectors

r(y1 + δ1, y2)− r(y1, y2) ' δ1 ∂y1r(y) = δ1 v1(y),

r(y1, y2 + δ2)− r(y1, y2) ' δ2 ∂y2r(y) = δ2 v2(y). (C46)

In the last equalities of each line we noted that (cf. section V2.3) the tangent vectors to
the coordinate lines, ∂yir, equal the basis vectors, vi, of the coordinate basis. The vectors
spanning δS are thus given by the scaled basis vectors δ1v1 and δ2v2 and |δS| is the area of
the corresponding parallelogram.

There are three different ways to describe the geometric area of this particular parallel-
ogram. All have advantages and we will discuss them in turn. The first approach is based
on elementary geometry and suffices for a first introduction to the subject. The other two
formulations are more general and distinctly more powerful. They are introduced in the next
subsection, where integration in two dimensions is discussed from a general perspective.

Area element from geometric construction

)2v×1v(2δ1δ

1v
1δ

2vδ2

)2, y1y(r

)2, y1δ+1y(r

)2δ+2, y1y(r

1e

2e

3e The first approach describes the area element by geomet-
ric construction. The area of the parallelogram spanned by
two vectors v1 and v2 enclosing an angle ∠(v1,v2) is given
by A(v1,v2) = ‖v1‖‖v2‖ sin(∠(v1,v2)). Using Eq. (L73),
this may be rewritten as ‖v1 × v2‖. (The latter notation
implicitly assumes that the vectors v1 and v2 span a two-
dimensional plane in three-dimensional space, see the figure.

Their cross product, v1×v2, then points in the 3-direction perpendicular to the plane and its
norm gives the required parallelogram area.) In this notation, the area of δS is expressed as

|δS| ' δ1δ2A(v1,v2) = δ1δ2 ‖v1 × v2‖ = δ1δ2 ‖∂y1r(y)× ∂y2r(y)‖. (C47)

It remains to substitute this expression into Eq. (C45) and perform the summation over indices
`, `′. In the limit of an infinitely fine discretization, each sum δ

∑
` →
´

dy becomes an integral
over a coordinate interval. The Riemann sum thus assumes the form of a double integral,ˆ

M

dS f(r) =

ˆ
U

dy1dy2 ‖∂y1r(y)× ∂y2r(y)‖ f(y). (C48)

Note that the final integral extends over a rectangular coordinate domain and hence falls into
the category of integrals discussed in the previous chapter. The geometric distortion of the
coordinate lines in the image domain, M , enters through the factor ‖∂y1r × ∂y2r‖. This
factor mediates between the rectangular shape of the coordinate cells in U (convenient for
integration) and the distorted shape of the image cells in M (convenient for tiling a general
integration area). The formal expression

dS = dy1dy2 ‖∂y1r(y)× ∂y2r(y)‖ (C49)
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is sometimes called the area element or the integration measure of two-dimensional in-
tegration. The latter terminology refers to the right-hand side of the defining equation as a
‘measure’ of geometric areas in the integration domain.

2
In the following, we will refer to both

dS and its finite analogue δSas ‘area elements’.
The result (C48) also shows why the assumed openness of the coordinate domain

does not matter. For a rectangular open domain U = (a, b) × (c, d), the double integral

becomes
´
U

dy1dy2 =
´ b
a

dy1
´ d
c

dy2. However, as discussed in section C2.2, integrals over
open and closed intervals yield the same values, i.e. the same expression would be obtained
for the integration over product of intervals, [a, b]× [c, d] parameterizing a closed coordinate
domain.

Integration in polar coordinates

Let us now return to polar coordinates and evaluate the expressions above in that concrete
context. Eq. (C47) applied to the coordinate basis vectors (V28) of the polar coordinate
system, vρ = ∂ρr = eρ and vφ = ∂φr = eφρ, yields

‖∂y1r(y)× ∂y2r(y)‖ = ‖vρ × vφ‖ = ρ, (C50)

and the polar area element

dS = ρ dρ dφ. (C51)

The proportionality to ρ means that the area element increases in the radial direction. The
geometric reason is that the extension of δS in the φ-direction, given by ρ δφ, increases linearly
with the radial coordinate (see Fig. C7). Substituting this result into Eq. (C48), we obtain

ˆ
D

dS f(r) =

ˆ R

0

dρ

ˆ 2π

0

dφ ρ f(ρ, φ) (C52)

as a formula for the integration in polar coordinates over the disk D.

EXAMPLE Turning back to the example on p. 228, the geometric area of a circular disk of

radius R is now simply obtained by integrating the constant function f(r) = 1 over the disk D:

A =

ˆ R

0
ρdρ

ˆ 2π

0
dφ 1 =

ˆ R

0
ρ dρ 2π = πR2.

This computation is simpler and more elegant than its Cartesian counterpart of p. 228. The indepen-

dence of the integration domains of φ and ρ implies that the integrals over these variables factorize.

This is the essential advantage of polar coordinates over Cartesian coordinates and it is owed to the

fact that the former are adjusted to the rotational symmetry of the disk. Polar representations are

particularly well-suited for integrating functions which are rotationally symmetric and hence depend

2

The mathematically precise definition of measures is a subject of ‘measure theory’. However, we do not
enter this discussion here.
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only on the radial coordinate, f(ρ, φ) = f(ρ). Consider, for example, a surface carrying a mass den-

sity increasing quadratically with the distance from the origin, ρm(ρ) = κρ2, where κ is a constant.

The total mass carried by the surface is obtained by integration:

M =

ˆ
D

dS ρm(ρ) =

ˆ R

0
ρdρ

ˆ 2π

0
dφκρ2 =

ˆ R

0
ρdρ (2πκρ2) = 1

2πκR
4.

The analogous calculation in Cartesian coordinates would be significantly harder.

The result (C52) may be straightforwardly generalized to the integration over domains
without rotational symmetry (→ C4.2.1-2). For example, the integral of a function f(r)
over the quarter of a disc, parameterized as {r(ρ, φ) | ρ ∈ (0, R), φ ∈ (0, π/2)}, is given by

ˆ R

0

ρ dρ

ˆ π/2

0

dφ f(ρ, φ).

φ

2
1

φ

)φ(bρ

1

2
1−

EXAMPLE As a less trivial example, consider the heart-shaped area shown

in the figure. For any given angle, φ ∈ (−π, π) the distance from the origin

to the boundary of the heart is given by ρb(φ) =
(
1 − |φ|/π

)
. This means

that its area is given by

A =

ˆ π

−π
dφ

ˆ ρb(φ)

0
ρ dρ 1 =

ˆ π

−π
dφ 1

2ρ
2
b(φ) = 1

2

ˆ π

−π
dφ

[
1− |φ|

π

]2

= 1
3π.

Jacobian and metric representations of area element

REMARK Requires chapter L6.1 on matrix determinants.

Above we applied geometric reasoning to obtain the area of the surface element δS. We
here introduce two different approaches to the same problem which will lead to alternative
representations of the area integral. Depending on the context, application of either of these
methods can be favorable. An important feature of the procedures introduced in this section
is that they afford transparent generalizations to integrals in arbitrary dimensions.

The second method expresses the area element as a matrix determinant. To this
end assume the presence of a Cartesian basis {ea} in the integration domain. Adopting the
notation of section V2.3, the coordinate image points can then be expanded as r(y) = eax

a(y)
where the Cartesian expansion coefficients xa(y) are functions of the coordinates y. The
partial derivative of r(y) in the coordinates yi yields the expansion of the coordinate basis
vectors as vj(y) = eav

a
j(y) with components vaj = ∂xa

∂yj
, cf. Eq. (V22). The advantage

of this Cartesian representation is that the area spanned by the coordinate basis vectors can
be expressed through the determinant formula Eq. (L158) (which assumes an expansion in a
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Cartesian basis): the area spanned by v1 and v2 is given by A(v1,v2) = |det J |, where the
2 × 2 matrix J = (v1,v2) contains the components vaj = (vj)

a as columns. In the present

context, where vaj = ∂xa

∂yj
, this is often expressed through the suggestive notation

J ≡ ∂x

∂y
≡ ∂(x1, x2)

∂(y1, y2)
≡
(
∂x1

∂y1
∂x1

∂y2

∂x2

∂y1
∂x2

∂y2

)
, (C53)

where xj = (x1, x2)T is the component vector representing r in the Cartesian basis {ea}.
(Keep in mind that all these quantities are functions of the generalized coordinates, x = x(y),
etc.)

The matrix J is called the Jacobi matrix (or just Jacobian) of the map r : U → M ,
y 7→ r(y). (Confusingly, the determinant |det J | = |det ∂x

∂y
| is likewise called the Jacobian

of the map. In cases where unambiguous phrasing is required we will refer to it as the Jacobi
determinant.) Comparison with Eq. (C47) shows that the area element is given by

|δS| = δ1δ2|det J | = δ1δ2

∣∣∣∣det

(
∂(x1, x2)

∂(y1, y2)

)∣∣∣∣ = δ1δ2

∣∣∣∣
∂x1

∂y1

∂x2

∂y2
− ∂x1

∂y2

∂x2

∂y1

∣∣∣∣ . (C54)

A straightforward check shows that for polar coordinates, Eq. (C50) is indeed reproduced.

The third approach expresses the area element via the metric tensor. Here, the starting
point is Eq. (L40) for the parallelogram area,

A(v1,v2) = |〈v1,v1〉〈v2,v2〉 − 〈v1,v2〉2|1/2 = |g11g22 − g12g21|1/2 = |det(g(y))|1/2, (C55)

where in the second step we noted that the scalar products 〈vi,vj〉 (V24)
= gij(y) define the

metric tensor, and det(g) is the determinant of the matrix {gij}. We thus obtain

|δS| = δ1δ2| det(g(y))|1/2. (C56)

This formula expresses the area element through the metric tensor defined by the coordinate
basis vectors, g(y). For example, in polar coordinates, Eq. (V25) yields

√
det(g(ρ, φ)) =√

gρρgφφ = ρ, so that we again arrive at Eq. (C50).

Generally speaking, the metric determinant is the ‘strongest’ of the three representations
discussed above. Unlike the Jacobi determinant, it does not make reference to Cartesian
representations of the vectors v1 and v2. We will also see in section C4.4 generalizes to
integrals for which no Jacobian determinant exists. On the other hand, there are situations
where the Jacobian, or the elementary geometric procedure are more convenient than others;
it is certainly good to know all three.



C4.2 Curvilinear area integrals 235

Two dimensional area integrals – summary

Summarizing, we now have three representations for the area spanned by v1 and v2, and
this implies three alternative representations for the integral of a function, Eq. (C48):

ˆ
M

dS f(r) =

ˆ
U

dy1dy2





‖∂y1r(y)× ∂y2r(y)‖∣∣∣det
(
∂(x1,x2)
∂(y1,y2)

)∣∣∣
| det(g(y))|1/2




f(r(y)). (C57)

Each of these expresses the curvilinear integration of f over M in terms of

. an integral over the underlying coordinate domain, U ,

. of the function evaluated in curvilinear coordinates, f(r(y)), and

. any of the rescaling factors, ‖∂1r × ∂2r‖,
∣∣∂x
∂y

∣∣, | det(g(y))|1/2, which all represent the

geometric area in the integration domain corresponding to an infinitesimal area δ1δ2 in the
coordinate domain. This area element generally varies as a function of y.

EXAMPLE As an instructive application of the second line of Eq. (C57), consider the integral

I ≡
ˆ
R2

dxdy f
(
(x/a)2 + (y/b)2

)
.

The integrand depends on the Cartesian coordinates x ≡ (x, y)T only via the combined variable

µ2 ≡ (x/a)2 + (y/b)2. This suggests a coordinate transformation, x(y) = (x(y), y(y))T =

(aµ cosφ, bµ sinφ)T , to ‘generalized polar coordinates’, y ≡ (µ, φ)T . Its Jacobi matrix is
3

∂x

∂y
=
∂(x, y)

∂(µ, φ)
=

(
∂x
∂µ

∂x
∂φ

∂y
∂µ

∂y
∂φ

)
=

(
a cosφ −aµ sinφ

b sinφ bµ cosφ

)
,

with Jacobi determinant
∣∣det

(
∂x
∂y

)∣∣ = µab. We may now pass to a (µ, φ) integration as

I =

ˆ ∞
0

dµ (µab)

ˆ 2π

0
dφ f(µ2),

where the integration boundaries are chosen such that M = R2 is

covered. This integral is easier to compute than the original expression.

For example, consider the function f(µ2) = 1 for µ2 ≤ 1 and 0 else, so that the integrand assumes

the value one on the ellipsoidal area shown in the figure, and vanishes elsewhere. The integral I

should then yield the area, πab, of an ellipse with semi-axes a and b. Doing the integral, we indeed

obtain I =
´ 1

0 dµ(µab)
´ 2π

0 = πab.

3

Notice that for generalized polar coordinates the coordinate basis vectors vµ = ∂µr and vθ = ∂θr are not
orthogonal. This coordinate system thus has non-orthogonal coordinate lines.
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Jacobian vs. metric determinant

The considerations discussed above imply the equality of the Jacobian and metric
expressions for the area element,

∣∣∣∣det

(
∂x

∂y

)∣∣∣∣ = | det(g(y))|1/2. (C58)

We have established this equality in two dimensions by geometric reasoning. However, the
final formula does not make visible reference to the two-dimensionality of the vectors and one
may suspect that it is of more general validity.

That this is indeed the case can be shown by algebraic reasoning: the invariance of the de-

terminant under transposition, det J
(L170)
= det JT , implies that (det J)2 = (det JT )(det J)

(L178)
=

det(JTJ). Now observe that the matrix elements of JTJ are given by (JTJ)ij = (JT ) ai (J)aj
(L107)
=

vaiv
a
j = 〈vi,vj〉 = gij(y). This shows that det(J)2 = det(g). Taking the square root of the

modulus of this equation we obtain Eq. (C58). The beauty of this construction is that it does
not make reference to two dimensions and generalizes to higher-dimensional situations.

C4.3 Curvilinear volume integrals

The concepts developed above are straightforwardly generalized to higher dimensions. Of
particular importance to applications are integrals over three-dimensional space, or volume
integrals. For example, the mass of a three-dimensional structure is obtained by integrating a
mass density function over its volume. This section explain how to do integrals of this type.

Geometric representation of the volume element

Three-dimensional volumes, V ⊂ R3, such as balls, cylinders, or the general structure
shown in Fig. C8, can be described by a three-dimensional extension of the curvilinear coordi-
nates discussed in the previous section. We define coordinates, y ≡ (y1, y2, y3)T , on a domain,
U , and a smooth map, r : U → V,y 7→ r(y), parameterizing the integration domain in these
coordinates. For example, the unit radius ball, B ≡ {r ∈ R3 | ‖r‖ ≤ 1}, is conveniently
described in spherical coordinates, Eq. (V41a), through a map U → B,y = (r, θ, φ)T 7→
r(r, θ, φ).
Once a system of good coordinates has been established, volume integrals may be constructed
in analogy to the one- and two-dimensional integrals discussed above (cf. Fig. C8). Let
us assume that the coordinate domain is given by the Cartesian product of three intervals,
U = (a1, b1)×(a2, b2)×(a3, b3) as in U = (0, 1)×(0, π)×(0, 2π) for the spherical coordinates
(r, θ, φ). The domain U is partitioned into a large number of boxes with corner points at
y` ≡ (y1

`1
, y2
`2
, y3
`3

)T , yi`i ≡ `i δ
i (i = 1, 2, 3, no summation) and volume δ1δ2δ3. The indices

enumerating these points run in the ranges 0 ≤ `i ≤ (bi − ai)/δi, and ` is a shorthand for
` = (`1, `2, `3)T . Under the coordinate map r(y) these boxes get sent onto distorted volume
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1v
1δ

2v
2δ

3v
3δ δV

Figure C8: On the definition of three-dimensional volume integrals.

elements, δV`, in V bounded by the coordinates lines running through the corners r(y`) (see
Fig. C8).

By construction, the system of volume elements {δV`} covers the target volume. The
integral of a function f : V → R, r 7→ f(r), may thus be defined as the sum

ˆ
V

dV f ≡ lim
δi→0

∑

`

|δV`| f(y`), (C59)

where f(y) ≡ f(r(y)) and |δV`| is the geometric volume of δV`. This formula is the three-
dimensional analogue of the two-dimensional Eq. (C45).

Next we need a formula for the volume elements. Proceeding in analogy to the two-
dimensional case, and suppressing the box index ` for brevity, we note that for small δi, δV
can be approximated by a parallelepiped spanned by the vectors δi ∂yir(y) = δi vi (i = 1, 2, 3,
no summation), cf. Fig. C8. Its volume can be computed by a geometric construction
similar to that applied in the two-dimensional case: according to Eq. (L89), the volume of the
parallelepiped spanned by the vectors v1, v2 and v3 is given by the triple product |(v1×v2)·v3|.
The volume of δV thus equals

|δV | = δ1δ2δ3|(v1 × v2) · v3| = δ1δ2δ3
∣∣(∂y1r(y)× ∂y2r(y)

)
· ∂y3r(y)

∣∣ .

This expression is the three-dimensional analogue of Eq. (C47) for the two-dimensional area
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element |δS|. Substituting it into the Riemann sum (C59) and taking the limit we obtain

ˆ
V

dV f(r) =

ˆ
U

dy1dy2dy3
∣∣(∂y1r× ∂y2r) · ∂y3r

∣∣ f(y), (C60)

for the three-dimensional volume integral. The combination

dV ≡ dy1dy2dy3|(∂y1r× ∂y2r) · ∂y3r| (C61)

is called the volume element or integration measure of the integral.

φ

θ

θsinr

θδ

φδ
rδ

r

EXAMPLE The coordinate basis vectors in spher-
ical coordinates are given by (cf. Eq. (V42)) vr =

er, vθ = eθ r, vφ = eφ r sin θ. The orthonormal-

ity of the local spherical basis vectors, ei, implies

|(er × eθ) · eφ| = 1. By Eq. (C61), the volume
element in spherical coordinates is given by

dV = r2 dr sin θ dθ dφ. (C62)

Here, the factor r2 sin θ reflects the fact that the dimensions of the distorted box δV in θ- and

φ-directions are given by r δθ and r sin θ δφ, respectively. The factor sin θ is best understood by

exploring how the volume element shrinks upon approaching the north and south pole of the sphere,

respectively (think about this point).

For example, the integral of a function over a ball, B, of radius R has the form

ˆ
B

dV f(r) =

ˆ R

0
r2dr

ˆ π

0
sin θdθ

ˆ 2π

0
dφ f(r, θ, φ).

For f = 1 this integral yields the result 4
3πR

3, the well-known formula for the volume of the ball

(→ C4.3.1-6).

EXERCISE Verify that the volume element in cylindrical coordinates is given by

dV = ρdρ dφ dz. (C63)

Jacobian and metric representations of volume element

Above we applied geometric reasoning to express the volume |δV | of the element δV
as a triple product. Proceeding in analogy to section C4.2 we now introduce alternative
representations of the same quantity as a Jacobian and a metric determinant, respectively.
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As in our previous discussion the Jacobian representation of the volume element is based
on a Cartesian expansion of the coordinate vectors, vj = eav

a
j, where vaj = ∂xa

∂yj
. Recalling

Eq. (L159), the volume of the parallelepiped spanned by these vectors may be represented
as V (v1,v2,v3) = |det J |, where the 3 × 3 matrix J = (v1,v2,v3) contains the Cartesian
component representations, (vj)

a = vaj = ∂xa

∂yj
, of these vectors as columns. As in the two-

dimensional case, this motivates the definition of the Jacobi matrix as J = ∂x
∂y
≡ ∂(x1,x2,x3)

∂(y1,y2,y3)

such that |δV | = δ1δ2δ3det(J).
The third representation is based on Eq. (C58) which we saw holds in arbitrary dimensions.

Hence, | det J | = | det g|1/2, where gij(y) = 〈vi,vj〉, is the metric tensor in the coordinate
basis. We have thus obtained two more representations for the volume element,

|δV | = δ1δ2δ3

∣∣∣∣det

(
∂(x1, x2, x3)

∂(y1, y2, y3)

)∣∣∣∣ = δ1δ2δ3
∣∣det(g(y))

∣∣1/2 .

In conceptual analogy to Eq. (C57), a volume integral can now be represented by any of the
three formulae

ˆ
V

dV f(r) =

ˆ
U

dy1dy2dy3





∣∣(∂y1r× ∂y2r) · ∂y3r
∣∣

∣∣∣det
(
∂(x1,x2,x3)
∂(y1,y2,y3)

)∣∣∣
∣∣det(g(y))

∣∣1/2




f(y). (C64)

For later reference we note that the determinants of the metric tensor in cylindrical and
spherical coordinates are given by (cf. Eqs. (V42) and (V36))

cylindrical:
√

det(g(ρ, φ, z)) =
√
gρρgφφgzz = ρ,

spherical:
√

det(g(r, θ, φ)) =
√
grrgθθgφφ = r2 sin θ. (C65)

These formulae lead back to Eqs. (C63) and (C62), as they should. As an instructive exercise,
re-derive them from the Jacobian perspective.

C4.4 Curvilinear integration in arbitrary dimensions

REMARK Requires chapter L6.1 on matrix determinants.

In this section we consider integrals over generic d-dimensional objects embedded in n-
dimensional space. Once more, the construction of these integrals is based on a suitable
integration ‘measure’. The definition of these measures in turn relies on the metric and
the ensuing integrals will be generalized variants of the third representations in Eqs. (C57)
and (C64), respectively.
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Consider a smooth subset of n-dimensional space, M ⊂ Rn. By ‘smooth’ we mean that
M is the image of a smooth map U → M ⊂ Rn, r : U → M , y 7→ r(y), where U ⊂ Rd

is a d-dimensional coordinate domain.
4

In this case, d coordinates y = (y1, . . . , yd)T are
required to parameterize M and we call it a ‘d-dimensional’ structure. For example, a sphere
of unit radius is a (d=2)-dimensional object embedded in (n=3)-dimensional R3 which can
be parameterized by two spherical coordinates (θ, φ). Without loss of generality, we assume
U = (a1, b1)× · · · × (ad, bd) to be a d-dimensional cuboid.

Consider U discretized by a d-dimensional lattice of coordinate points as discussed on
p. 236, only that the index i now runs from 1 to d. The assignment y 7→ r(y) maps this
lattice onto a distorted lattice of image points in M . These define the corners of generalized
d-dimensional volume elements covering M . Each element δV can be approximated by a
d-dimensional parallelepiped spanned by the d vectors δi∂yir(y) = δivi ∈ Rn (i = 1, . . . , d,
no summation).

Next we need formulae for the volume, |δV |, of these generalized parallelepipeds. As a
warmup to the discussion of general n and d, let us discuss an instructive example:

M

)2, y1y(r

)2, y1δ+1y(r

)2δ+2, y1y(r

1v
1δ

2v
2δ

1r

2r

3r

1y

2y

)y(r

δS

1δ

2δ

Figure C9: Integral over a two-dimensional surface in three-dimensional space.

Example: integration over a two-dimensional surface in three-dimensional space

In practice, one often needs to integrate over an (d = 2)-dimensional surface, M , embedded
in (n = 3)-dimensional space, R3, see Fig. C9. The ‘volume elements’ then actually are surface
elements, δS, embedded in R3. They are spanned by the pair of three-dimensional vectors
δ1∂y1r = δ1v1 and δ2∂y2r = δ2v2. We know two expressions for the geometric area of such
parallelograms: the norm of their vector product Eq. (C47), and Eq. (L40) which in the present
context assumes the form of Eq. (C55). The area of the surface element δS is therefore given

4

Again, we tolerate the presence of ‘defects’ of dimension < d in M which are not in the image r(U).
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as

|δS| = δ1δ2‖∂y1r× ∂y2r‖ = δ1δ2| det(g(y))|1/2. (C66)

This in turn means that the integral over a two-dimensional surface M embedded in R3 is
defined as

ˆ
M

dS f(r) =

ˆ
U

dy1dy2




‖∂y1r× ∂y2r‖
| det(g(y))|1/2



 f(r(y)). (C67)

The first of these two representations is often encountered in introductory texts. It utilizes the
vector product, and is therefore limited to the present situation of dimensions, d = 2, n = 3.
The second representation, however, holds for a (d = 2)-dimensional surface embedded in a
space of arbitrary dimension n ≥ 2. This can be traced to the fact that the formula for the
area element, Eq. (C55), is valid for any n. Also notice that the surface integral does not
afford a representation in terms of a Jacobian det(∂x/∂y), the reason being that Jacobians
can be defined only for d = n. These observations suggest that integral formulae based on
the metric determinant may be the ‘most general’ representations. This impression will be
corroborated by the discussion of the general case below.

EXAMPLE Let us use Eq. (C67) to compute the area of a two-dimensional sphere in three-
dimensional space. We apply (V41a) with r = R to parameterize a sphere of radius R by spherical

coordinates (y1, y2) = (θ, φ). From Eq. (V42) we find ∂y1r = ∂θr = vθ = eθR and ∂y2r = ∂φr =

vφ = eφR sin θ for the curvilinear velocities, and gθθ = R2, gφφ = sin2(θ)R2, gθφ = gφθ = 0 for the

elements of the metric tensor. Both ‖vθ × vφ‖ and |det(g)|1/2 yield R2 sin(θ). We thus obtain the

area as (→ C4.4.1)

A =

ˆ π

0
dθ

ˆ 2π

0
dφR2 sin(θ) = 4πR2. (C68)

EXERCISE As another example consider the surface shown in the fig-

ure. It is radially symmetric in the xy-plane, and the Cartesian height

coordinate is given by z = 1
3(a3 − (x2 + y2)3/2) for x2 + y2 < a2. We

aim to compute the geometric area of this surface. To this end, we in-

troduce polar coordinates, y = (ρ, φ)T , in the xy-plane and obtain the

parameterization r(y) = (x, y, z)T (y) = (ρ cosφ, ρ sinφ, 1
3(a3 − ρ3))T .

Show that the metric determinant reads as

det(g(y))1/2 = ρ(1 + ρ4)1/2.

Use this result to confirm that the area is given by A = π
2 (a2
√

1 + a4 + arcsinh(a2)). Discuss the

results in the limit a� 1 and a� 1, respectively (→ C4.4.2-4).
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Integration over objects of arbitrary dimension: metric tensor

We now turn to the generic case d ≤ n. We need the volume of a d-dimensional paral-
lelepiped, δV ⊂ Rn, spanned by the vectors δivi, with i = 1, . . . , d. Referring to section ??
for a general argument, we state that this volume is given by the metric determinant

|δV | = (δ1 . . . δd) det(g(y))1/2, (C69)

where gij = 〈vi,vj〉 is computed using the standard scalar product of the embedding space
Rn. The integral over M is thus defined as

ˆ
M

dV f(r) =

ˆ
U

dy1 . . . dyd
[
det(g(y))

]1/2
f(r(y)). (C70)

All multi-dimensional integration formulae descend from this powerful result. It holds for
arbitrary d ≤ n and encompasses all the special cases discussed so far. To recapitulate, the
application of this formula requires

. a parameterization of the integration domain, M , by a coordinate map, r(y),

. computation of the partial derivative vectors, vi = ∂yir, the elements of the metric tensor,
gij(y) = 〈vi,vj〉, and its determinant det(g(y)), and finally

. the computation of the integral over the coordinate domain U .

Integration over d-dimensional volumes in d-dimensional space: Jacobian

In the special case d = n there exists an alternative representation of the volume element
in terms of a Jacobian. Although this case, too, is covered by Eq. (C70), the Jacobian
formulation is widely used and we discuss it for completeness. The Jacobi matrix of the
coordinate map y 7→ r(y) generalizes Eq. (C53): it is defined as the matrix, J(v1, . . . ,vd),
whose columns contain the Cartesian coordinates {vaj} = {∂xa

∂yj
} of the vectors, vj = ∂yjr(y):

∂r

∂y
≡ ∂(x1, . . . , xd)

∂(y1, . . . , yd)
≡




∂x1

∂y1
∂x1

∂y2 · · · ∂x1

∂yd

∂x2

∂y1
∂x2

∂y2 · · · ∂x2

∂yd

...
...

. . .
...

∂xd

∂y1
∂xd

∂y2 · · · ∂xd

∂yd



. (C71)

From Eq. (C58) we know that
∣∣ det

(
∂x
∂y

)∣∣ = | det(g(y))|1/2, and this implies the representation

ˆ
M

dV f(r) =

ˆ
U

dy1 . . . dyd
∂(x1, . . . , xd)

∂(y1, . . . , yd)
f(r(y)). (C72)

Notice the structural similarity of this formula to the one-dimensional substitution rule (C26).
In the next section we discuss how Eqs. (C26) and (C72) can be understood as special cases
of a general formula describing variable changes in integrals of arbitrary dimensionality.
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C4.5 Changes of variables in higher-dimensional integration

Eq. (C72) affords an interesting interpretation as a generalization of the one-dimensional
substitution rule (??). To understand this, consider an integral over a d-dimensional volume,
M , in d-dimensional space. Assume that r(x) = eax

a has been parameterized by a Cartesian
coordinate system. In this case, the basic integration formulae of section C4.1 may be applied
to represent the integral as ˆ

M

dV f(r) =

ˆ
M

dx1 . . . dxd f(x),

where the boundaries of the xa-integrals must be chosen so as to obtain a full coverage of M .
Alternatively we may introduce a map, x : U → M , y 7→ x(y), to cover M by a different
system of coordinates, y, and represent the integral through Eq. (C72). The equality of the
two representations leads to the formula

ˆ
M

dx1 . . . dxd f(x) =

ˆ
U

dy1 . . . dyd
∣∣∣∣det

(
∂x

∂y

)∣∣∣∣ f(x(y)). (C73)

This formula is valid independent of the geometric context in which it has been derived. In
particular, it does not rely on an interpretation of x as a Cartesian coordinate vector. It
describes, rather, a change of integration variables, x → x(y), in general d-dimensional
integrals and extends the one-dimensional formula (C26) to higher dimensions. The notation
x→ x(y) is a shorthand for saying: ‘a reparameterization of variables, y 7→ x(y), is applied
to convert an integral over x to an identical integral over y’. The appearance of the Jacobian
in this formula may be remembered from the dirty mnemonic dx↔ d/y det

(
∂x
∂/y

)
, which has a

status similar to that of the trick mentioned after Eq. (C26).

Equation Eq. (C73) motivated from a different perspective

To obtain a better understanding of the generality of for-
mula (C73), consider another change of variables (cf. the
figure),y : T → U, z 7→ y(z). One now has two options to ex-
press Eq. (C73) as an integral over z. The first is to parametrize
x through z via the composite map, x ◦ y : T → M,
z 7→ x(y(z)) ≡ x(z). Application of Eq. (C73) to x → x(z)
then yields
ˆ
M

dx1 . . . dxd f(x) =

ˆ
T

dz1 . . . dzd
∣∣∣∣det

(
∂x

∂z

)∣∣∣∣ f(x(z)).

The second is to apply the variable change y→ y(z) to the integral on the r.h.s. of Eq. (C73):
ˆ
U

dy1. . . dyd
∣∣∣∣det

(
∂x

∂y

)∣∣∣∣ f(x(y)) =

ˆ
T

dz1. . . dzd
∣∣∣∣det

(
∂y

∂z

)∣∣∣∣
∣∣∣∣det

(
∂x

∂y

)∣∣∣∣
y(z)

f(x(y(z))),
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where the notation emphasizes that in the integral on the right, all functions have to be
expressed through the z-coordinates.

Since the preceding two equations represent the same integral, we conclude that the Ja-
cobian determinants occuring therein must satisfy the relation

∣∣∣∣det

(
∂x

∂z

)∣∣∣∣ =

∣∣∣∣det

(
∂x

∂y

)∣∣∣∣
y(z)

∣∣∣∣det

(
∂y

∂z

)∣∣∣∣ . (C74)

Indeed, the validity of Eq. (C74) follows from an important property of the Jacobi matrix:
application of the chain rule (C39) (with the identification f i = xi, gj = yj, xk = zk) gives

∂xi(y(z))

∂zk
=
∂xi(y)

∂yj

∣∣∣∣
y(z)

∂yj(z)

∂zk
.

This formula has the suggestive short-hand notation ∂xi

∂zk
= ∂xi

∂yj
∂yj

∂zk
, or just

∂x

∂z
=
∂x

∂y

∂y

∂z
. (C75)

Eq. (C75) states that Jacobi matrices are multiplicative: the Jacobian of the transformation
x→ x(z) equals the product of those of x→ x(y) and y → y(z), respectively. The matrix
product identity for determinants, det(AB) = det(A) det(B), then directly implies Eq. (C74).

To summarize, Eq. (C73) is the generalization of the one-dimensional substitution rule
(C26) to changes of variables in generic higher-dimensional integrals.

C4.6 Summary and Outlook

In this chapter we introduced the higher dimensional integration techniques required in the
early physics curriculum. Building on the general understanding of integration as generalized
(Riemann) summation, we began with a straightforward construction of integrals over cuboidal
domains, line segments, rectangles, boxes, etc. We then moved on to the important subject
of integration over more general structures, where the usage of problem adjusted coordinates
became vital. In all cases integration turned out to be an algorithm of three consecutive
steps: i) the coverage of the integration domain by suitable coordinates, preferably defined
on a cuboidal coordinate domain. ii) Determination of the geometric distortion factors by
which the cuboidal line, surface, volume elements of the coordinate domain differ from the
distorted line, surface, volume elements defined by the coordinate map in the integration
domain. This step really is at the heart of the matter of all integration and we provided three
alternative solutions, each tailored to different situations. Finally, iii) doing the integral over
the coordinate domain weighted over a function of interest and said distortion factor.

We discussed various types of integrals distinguished by the dimension of the integration
domain (the number of coordinates required to parameterize it) and the dimensionality of



C4.6 Summary and Outlook 245

the space in which the domain is embedded. This led to a perhaps somewhat overwhelming
multitude of integrals all of which, however, all are of granted relevance in practice. In the later
chapter V5.4 we will introduce a more geometric perspective of integration and demonstrate
that the integrals introduced above are not so different as they might seem. However, for the
time being we leave the subject of integration and turn back to the ‘local’ analysis of functions
by advanced techniques of differentiation.



C5 Taylor series

Depending on the type of information they encode, mathematical functions may be simple or
complicated. Sometimes they are defined ‘implicitly’,

1
or they may be the results of measure-

ments in which case no analytic representation exists. While the description of a function in
full generality may be a difficult task, it is often sufficient to understand its behavior in the
vicinity of a specific point of interest.

INFO For example, the binding potentials stabilizing a chemical molecule such as O2 are complicated

functions V (r) of the inter-atomic distances, r. However, at temperatures far below those where the

molecule disintegrates, the inter-atomic separations are close to an equilibrium value r = a. Much

of the observable physics of the molecule can then be understood from the profile of V (r) for values

of r close to a.

In this chapter we introduce methodology capable of describing the ‘local’ structure of functions
even if the global structure is not known. In the next chapter, we then take a complementary
point of view and introduce concepts to characterize the global profile of functions.

)x−′x(1c) +x(f�)′x(f
2)x−′x(2c) +x−′x(1c) +x(f�)′x(f

3)x−′x(3c+2)x−′x(2c) +x−′x(1c) +x(f�)′x(f

x
′x

)′x(f

Figure C10: Schematic on the interpretation of a Taylor series expansion. Discussion, see text.

1

For example, the function might be the result of an integral
´ x

dx f(x) for which no closed representation
is known.

246



C5.1 Approximating functions by polynomials 247

C5.1 Approximating functions by polynomials

In chapter C1 we discussed how the derivative of a function f(x) yields a local approxima-
tion in terms of a linear function. This is made explicit in Eq. (C2), f(x+δ) ' f(x)+δ f ′(x),
where the ' sign indicates that the quality of the approximation depends on the range over
which it is applied. The reason is that even for small δ, f(x + δ) generally is not linear in δ
but may depend on arbitrary powers, δ, δ2 ,δ3, . . . . However, for δ small, say, δ = 10−9, these
terms rapidly decrease as 10−9, 10−18, 10−27, and this explains why for very small δ a linear
approximation may be good enough. For larger δ, however, we should consider an ‘expansion’
of the form

f(x+ δ) = c0 + c1δ + c2δ
2 + c3δ

3 + . . . , (C76)

where c0 = f(x), c1 = f ′(x), and ci≥2 are coefficients that need to be determined. Alterna-
tively, we may define x′ ≡ x+ δ and write

f(x′) = c0 + c1(x′ − x) + c2(x′ − x)2 + c3(x′ − x)3 + · · · =
∞∑

n=0

cn(x′ − x)n . (C77)

This equation defines a representation of the function f in the vicinity of a fixed argument x
in terms of an power series in (x′− x). If only a finite number of terms of this series are kept,
one obtains an approximation of f in terms of a polynomial in (x′ − x) of finite order. For
increasing |x′ − x| an increasing number of terms of the series needs to be kept to obtain an
accurate representation of f . The situation is illustrated in Fig. C10. On the smallest scales
(left panel), the function looks nearly linear and can be approximated by a linear polynomial
(a straight line). At somewhat larger scales (middle panel), the curvature of f becomes
noticeable and a local representation in terms of a quadratic polynomial (corresponding to
a generalized parabola) becomes appropriate. On yet larger scales (right panel), a cubic
polynomial representation is required, etc.

C5.2 Taylor expansion

The concrete values of the expansion coefficients characterizing a function f in the neigh-
borhood of a point x are easy to determine. The nth coefficient, cn, is obtained by differentiat-
ing Eq. (C77) n times w.r.t. x′ at the point x′ = x. To see how this works, we note that on the

l.h.s. side the differentiation yields dnf(x′)
dx′n

∣∣
x′=x = dnf(x)

dxn
, which is nth derivative of the function

f at x. We assume that this derivative can be computed analytically (or perhaps numerically
if the function is the result of a measurement). Turning to the r.h.s., we note that only the
contribution of nth order to the series yields a non-vanishing contribution to the derivative:
for l < n, we have dnx′(x

′ − x)l = 0, and for l > n, dnx′(x
′ − x)l = const× (x′ − x)l−n, which

vanishes at x′ = x. The surviving terms yields dnx′(x
′ − x)ncn = 1 · 2 · · · (n− 1) · ncn ≡ n!cn,

where we defined the factorial of a number as

n! ≡ 1 · 2 · · · (n− 1) · n, . (C78)
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for positive integers n ∈ N+, and 0! ≡ 1 We thus have the identification cn = 1
n!

dnf(x)
dxn

, and
so the expansion (C77) can be written as

f(x′) =
∞∑

n=0

1

n!

dnf(x)

dxn
(x′ − x)n. (C79)

This series representation is called the Taylor series expansion of the function f around x.
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Figure C11: The function exp(x) (red curves) and the first six approximate representations around
x = 1. For large N the approximate representation of exp(x) becomes increasingly accurate over
wider intervals around x = 1.

Examples of Taylor series

Consider, for example, the function f(x) = exp(x). The derivatives of this function are

easy to evaluate, exp(n)(x) ≡ dn exp(x)
dxn

= exp(x). We thus obtain

exp(x′) = exp(x)
∞∑

n=0

(x′ − x)n

n!
. (C80)

The contributions of the first few terms of this series, up to sixth order, are shown in the
panels of Fig. C11. Setting x = 0, we obtain the famous exponential series

exp(x) =
∞∑

n=0

xn

n!
. (C81)

Notice that this series converges for all x: no matter how large its value, the factorial n! in
the denominator grows more rapidly with n than the power law xn in the numerator

2
so that

2

For large n, the coefficients rn ≡ xn/n! rapidly converge to zero. This is because they are ratios of products
x · x · · · in the numerator, and the much larger products n · (n− 1) · · · in the denominator. Equivalently, one
may note that the ratio of two consecutive values rn+1/rn = x/n + 1 � 1 becomes arbitrarily small. The
sum over all these values remains finite.
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sum over n converges to a finite value. Referring for a more substantial discussion to the next
subsection, we say that the ‘radius of convergence’ of the series is infinite.
Taylor series representations are often applied to describe the local profile of functions. How-
ever, they may also contain information on global structures. To illustrate this point, let
us consider the Taylor expansion of the sine and cosine functions, sin(x) and cos(x)
at x = 0. The elementary properties sin(0) = 0, cos(0) = 1, dx sin(x) = cos(x) and
dx cos(x) = − sin(x) readily lead to the following general expressions for higher order deriva-
tives at x = 0: sin(2n)(0) = 0 (vanishing even-order derivatives), sin(2n+1)(0) = (−1)n

(odd-order derivatives), and cos(2n)(0) = (−1)n, cos(2n+1)(0) = 0. We thus obtain the Taylor
expansions:

sin(x) =
∞∑

n=0

(−1)n

(2n+ 1)!
x2n+1, cos(x) =

∞∑

n=0

(−1)n

(2n)!
x2n. (C82)

Again, these series have coefficients of O(xn/n!) and therefore infinite radius of convergence.
If a Taylor series does exist, it need not necessarily converge for all values of x′. Consider,

for example, the function f(x) = 1
1−x . Differentiating this function at x = 0 we obtain

f (n)(0) = n! and this leads to the so-called geometric series,

1

1− x =
∞∑

n=0

xn. (C83)

The convergence of the right hand side is limited to values |x| < 1. This reflects the fact that
for x↗ 1,

3
we hit the divergence of the left hand side.

As another important example, we consider the logarithm, f(x) = ln(1 − x). Since
f ′(x) = −(1 − x)−1, its series expansion is closely related to that of the geometric series.
Indeed, it is straightforward to verify that the logarithmic series assumes the form

ln(1− x) = −
∞∑

n=0

1

n
xn. (C84)

Again the radius of convergence is finite and convergence is lost for |x| > 1.

Complex Taylor series I: Convergence

Above we have seen that a Taylor series need not converge for all values of x′. The interval
of values x′ within which a series converges is called its radius of convergence. The functions
exp, sin, and cos have infinite radius of convergence, the functions 1/(1 − x) and ln(1 − x)
do not. In the latter cases the radius of convergence depends on the point around which one
expands.

4

3

The symbol ↗ indicates that x approaches 1 from below, with x < 1 throughout the limiting process.
Similarly, x↘ −1 would indicate that x approaches −1 from above, with x > −1.

4

For example, for x = 1 + δ, δ > 0, the radius of convergence is set by δ.
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Brook Taylor (1685-1731)
A British mathematician best
known for introducing the
concept of Taylor series to
mathematics. The series ap-
peared as part of his work on
generalizing infinitesimal cal-
culus to a calculus of finite dif-
ferences (the precise description how a func-
tion changes upon finite changes of the ar-
gument). The importance of this line of
thinking remained unrecognized until four
decades after Taylor’s death when Lagrange
understood its powers.

The existence of a Taylor series requires
a function to be infinitely differentiable. A
function satisfying this criterion throughout
its entire domain of definition is called an
entire function (ganze Funktion). For ex-
ample, the exponential function, and the tri-
gonometric functions sin and cos, are entire
on the real axis and can be Taylor expanded
around arbitrary points. Most functions, how-
ever, contain singularities (such as the func-
tion 1/x at x = 0), or lack differentiability
(e.g. the function |x| at x = 0), or can only
be differentiated a finite number of times (e.g.
x3/2 at x = 0). In such cases no Taylor se-
ries representation exists around the points

violating the condition of infinite differentiability.
Compared to real functions, functions of a complex variable possess much stronger

mathematical properties which will be addressed in detail in chapter C9. At this point we
just note that the concept of Taylor series can be effortlessly extended to complex functions.
One of several benefits of that extension is that the important question of series convergence
is much better understood in that context. To construct the Taylor series of a function
f : C → C, z 7→ f(z) we first need to define a complex derivative, f ′(z). This derivative
is defined in analogy to the derivative of a real function, Eq.(C1),

df(z)

dz
= lim

δz→0

1

δz

[
f(z + δz)− f(z)

]
. (C85)

If the limit exists, i.e. if the same limiting value is obtained independent of the way in which
δz is sent to zero, the function is called ‘complex differentiable’. If they exist, higher-order
derivatives are defined by repeated differentiation, e.g. d2

zf(z) = dzf
′(z), etc. For example,

the function 1/(1− z) is complex differentiable around z = 0 and its first two derivatives are
given by dz(1/(1 − z)) = 1/(1 − z)2, and d2

z(1/(1 − z)) = 2/(1 − z)3, respectively. This
example illustrates the general rule that complex derivatives are computed like real derivatives;
all differentiation rules familiar from the real case carry over to the complex case.

For a function which is infinitely differentiable at z′ its complex Taylor series may now
be defined as

f(z′) =
∞∑

n=0

1

n!

dnf(z)

dzn
(z′ − z)n. (C86)

As in the real case, the validity of this representation is shown by n-fold differentiation of the
both sides at z′ = z. For example, the complex generalization of the geometric series reads as

1

1− z =
∞∑

n=0

zn. (C87)
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Comparison to the real case (C83) shows that the complex series is obtained by complex
generalization x→ z in the latter. Indeed it is good practice to

Always think of Taylor series as complex series. The restriction to real series is
then obtained by the substitution z = x+ iy → x.

-2 -1 1 2

0.2

0.4

0.6
EXAMPLE As an example illustrating how complex Taylor series are

superior to real ones, consider the function

f(x) = e−1/x2

. (C88)

The function f is infinitely differentiable at x = 0 and all its derivatives

vanish, f (n)(0) = 0. The Taylor series expansion thus predicts f(x) =
∑

n 0 · (xn/n!) = 0. However,

this is incorrect, since f is clearly different from the zero function.

This frustrating ambiguity – whether or not one can tell in advance if the series is equal to the

function – disappears if f is interpreted as the restriction of the complex function f(z) = exp−1/z2,

with z ∈ C, to the real axis, where z = x. To see this, let us briefly digress to discuss the

differentiability of complex functions (for an in-depth discussion, see chapter C9).

At z = 0, the function exp(−1/z2) is not differentiable. (To see why, explore the limiting

behavior of exp(−1/z2) for z = δ and z = iδ, respectively, when the real number δ is sent to zero.

Two different limiting values are obtained, in violation of the differentiability criterion which requires

the existence of a unique limiting value.) Consequently, a series representation of exp(−1/z2) around

z = 0 does not exist.

This explains why the real function exp(−1/x2) of Eq. (C88) does not have a Taylor series

expansion around x = 0, although all its derivatives w.r.t. to x do exist. The function is the real

restriction, exp(−1/z2) = exp(−1/(x+ iy)2)→ exp(−1/x2), of a complex function which does not

have a series expansion around z = 0. Although a rigorous discussion of Taylor series convergence

is best undertaken within the framework of functions of a complex variable, pathologies such as the

one above are rare. In most cases, the convergence of a real Taylor series can be addressed within a

real framework.

Complex Taylor series are defined in the plane of complex numbers. The
maximum value, R, such that the Taylor series converges for all z′ inside
the complex circle |z′ − z| < R is called its radius of convergence
around z. For example, the complex geometric series (C87) has radius
of convergence R = 1 around z = 1. For all |z′ − 1| < R the powers

|z− z′|n < rn, where r < R = 1 is smaller than unity. This makes the series convergent. The
‘radius of convergence’ of the real series (C83) is the width of the interval |x′−1| < 1 defined
by the intersection of the complex disk of convergence with the real numbers.
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Complex Taylor series II: Relation between functions

Complex Taylor series representations can be applied to reveal connections between func-
tions which are difficult to understand otherwise. As an example, consider the series

exp(z) =
∞∑

n=0

zn

n!
, (C89)

generalizing the real series (C81) to the complex plane. As in the real case, its radius of
convergence is infinity. Now substitute the argument z = ix, x ∈ R to obtain

exp(ix) =
∞∑

m=0

(ix)m

m!
=
∞∑

n=0

(−1)n

(2n)!
x2n + i

∞∑

n=0

(−1)n

(2n+ 1)!
x2n+1,

where in the second equality we split the summation into even (m = 2n) and odd (m = 2n+1)
powers of x, and used i2n = (i2)n = (−1)n. Comparison with (C82) shows that the even and
odd parts of the series coincide with the cos- and the sin-series, respectively. All series involved
here have infinite radius of convergence and therefore can be considered as equivalent to the
functions they represent (i.e. substituting an arbitrary argument into exp(x) or into its series
representation leads to identical results). Equating the series to their respective functions then
leads to the conclusion

exp(ix) = cos(x) + i sin(x). (C90)

Leonhard Euler (1707-
1783)
A swiss mathematician and
physicist. Euler played a
pioneering role in the devel-
opment of modern analysis,
but also contributed to num-
ber theory, graph theory, and
applied mathematics. In physics he worked
on problems of mechanics, fluid dynamics,
astronomy, and others. Euler is generally
considered one of the greatest mathemati-
cians of all time. An exclamation by a
famous contemporary mathematician:‘Read
Euler, read Euler, he is the master of us
all!’

Eq. (C90) is known as the Euler formula.
Remarkably, this very simple relation between
three elementary functions is not straightfor-
ward to prove by means other than series ex-
pansion. At the same time, the Euler for-
mula is immensely useful in applications. For
example, it can be used to reformulate the
‘polar representation’ of complex numbers,
Eq. (L11), as

z = |z|eiφ, (C91)

i.e. as a decomposition in terms of the mod-
ulus |z| and the phase, φ (i.e. the angle en-
closed by the point z in the complex plane).
This representation plays an important role in

numerous applications in physics and engineering.
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INFO It is worthwhile to list a few important corollaries of the Euler formula: taking the real

and imaginary parts of the relation we obtain

sin(x) =
1

2i

(
eix − e−ix

)
, cos(x) =

1

2

(
eix + e−ix

)
. (C92)

At the particular values x = 2πn, n ∈ Z, the relation reduces to the identity

ei2πn = 1, (C93)

which we will see plays an important role within the framework of Fourier calculus, section C6.2

Similarly, inserting x = π into Eq. (C90) leads to

eiπ + 1 = 0, (C94)

a remarkably simple relation between five of the most important numbers in mathematics, 0, 1, π,

e and i.

EXERCISE Compute the Taylor series expansion of the functions sinh(x) and cosh(x) around x = 0

and use the result to verify that

exp(x) = cosh(x) + sinh(x). (C95)

Formulate the complex extension of the sin- and cos-series, Eq. (C82) to verify that

sinh(x) = i sin(−ix), cosh(x) = cos(−ix).

C5.3 Finite-order expansion

Taylor expansions of finite order are often applied to approximate a function f in the
neighborhood of a point x by

fN(x′) ≡
N∑

n=0

f (n)(x)

n!
(x′ − x)n , (C96)

i.e. a polynomial comprising the the first N + 1 terms of the Taylor expansion of f about x.
The advantage of such a representation is that the information on the local behavior of even
a very complicated function is now encoded in N + 1 numbers, the derivatives f (n)(x). On
the other hand we need to understand the accuracy of the approximation, which depends on
the order, N , on the range, |x− x′|, and on the local profile of f . It should be evident that a
rapidly varying function is less easy to approximate than slowly varying one.
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The accuracy of a finite-order Taylor expansion is determined by the magnitude of the
difference |f(x′)−fN(x′)|. Quantitative bounds for approximation errors are derived in lecture
courses of mathematics and we here restrict ourselves to stating a principal result: let I ⊂ R
be an interval on which the function’s nth derivative is bounded, up to a multiplicative constant
α, by the nth power of some constant C, i.e. assume that constants α and C exist such that

|f (n)(x′)| < αCn, ∀x′ ∈ I, n ∈ N. (C97)

The error made by approximating f(x′) by fN(x′) is then bounded as

|f(x′)− fN(x′)| < α
(C|x′ − x|)N+1

(N + 1)!
.

Since the factorial function grows more rapidly than the exponential function, 2 the right-hand
side vanishes in the limit of large N and the Taylor series converges to f . We also observe that
the magnitude of the function derivatives, which are a measure of the speed of its variation,
enter the estimate.

INFO If functions violate the above convergence criterion it is often possible to find an ‘optimal’

N for which the finite series represents an approximation with the least error. For such functions,

truncating the series at either larger or smaller values of N will produce worse results. The systematic

discussion of these so-called asymptotic expansions is beyond the scope of this text.

C5.4 Solving equations by Taylor expansion

Taylor expansions can be applied to find approximate solutions of equations which are too
complicated to be solved in closed form. To introduce the idea let us consider the example of
an equation that can be solved exactly:

y2 − 2εy − 1 = 0. (C98)

Considered as an equation for y, this quadratic equation has the exact solution

y(ε) = ε± (1 + ε2)1/2, (C99)

where the notation indicates that the solution for y depends on ε. Now, if ε is small, it is
possible to find an approximate solution for y(ε) without knowing the exact solution. The
advantage of such an approximate scheme is that it also works for equations so complicated
that it is difficult or impossible to find the exact solution.

For ε = 0, Eq. (C98) is trivially solved by y = ±1, hence we anticipate that for |ε| � 1,
the solution y(ε) will remain close to y(0) = ±1. To find the solution up to and including
order O(ε2), say, we thus express it in terms of a series ansatz of the form

y(ε) = c0 + c1ε+ c2ε
2 +O(ε3), (C100)
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where c0 = ±1 and the higher coefficients need to be determined. To this end we substitute
the series into Eq. (C98), retaining only terms up to O(ε2), to obtain

[
c2

0 + 2c0c1ε+ (c2
1 + 2c0c2)ε2

]
+−2ε(c0 + c1ε)− 1 +O(ε3) = 0 ,

or, rearranged to group terms with the same power of ε together,

(c2
0 − 1) + (2c0c1 − 2c0)ε+ (c2

1 + 2c0c2 − 2c1)ε2 +O(ε3) = 0.

The left-hand side is a polynomial in ε, and we require it to vanish identically for arbitrary ε.
The only way to satisfy this condition is that all coefficients of the polynomial (the expressions
in brackets) vanish individually. This leads to the system of equations

c2
0 − 1 = 0 ,

2c0c1 − 2c0 = 0 , (C101)

c2
1 + 2c0c2 − 2c1 = 0 .

Notice that the coefficients cn appear successively: the first equation contains c0, the second c0

and c1, the third all coefficients up to c2, etc. Also observe that each time a new coefficient cn≥1

appears, it enters the corresponding equation linearly. These two properties do not depend
on the particular form of our equation, but are general features of the solution strategy of
solving an equation using a series ansatz (think about this point). They allow us to solve the
equations (C101) iteratively, determining first c1 in terms of c0, then c2 in terms of c0 and c1,
etc. This yields

c0 = ±1, c1 = 1, c2 = ±1
2
,

and hence

y(ε) = ±1 + ε± 1
2
ε2 +O(ε3).

This agrees with the Taylor expansion of the exact solution up to quadratic order(C99).
Let us conclude with a few general remarks on the procedure. First, we built the

approach on the a priori assumption that the solution can be expanded in ε. If this assumption
turns out to be illegitimate, the equations will signal it by a breakdown of the hierarchical

construction. For example, the simple equation
(
y(ε)

)2
= ε cannot be expanded in ε. This

can be understood by inspection of its exact solution, y(ε) = ±√ε, which cannot be Taylor
expanded around ε = 0 (why?). Attempting a series ansatz as above, one readily finds that
no solvable hierarchy of equations ensues.

5

For equations whose solutions can be expanded in some small parameter, ε, the procedure
above generally works. To repeat the three-step algorithm, consider an equation F (y, ε) = 0
and assume that for ε = 0 the solution of the equation F (y, 0) = 0 is known as y = c0. To
find an approximate solution for small ε 6= 0, one proceeds as follows:

5

Explicitly: inserting the Ansatz y(ε) = c0 +c1ε+O(ε2) into y2 = ε yields c20 +2c0c1ε+(c1ε)
2 +O(ε2) = ε.

Equating coefficients with the same power of ε yields c0 = 0 and c0c1 = 1, which would imply c1 =∞.
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. Start by substituting the power series ansatz y(ε) =
∑

n=0 cnε
n into the equation.

. Expand the resulting expression F (
∑

n cnε
n, ε) = 0 in powers of εn to obtain another power

series in ε, of the form
∑

n an(c0, . . . , cn)εn = 0. Here each coefficient an is linear in cn
and in general can depend on all ci≤n.

. This power series must vanish for all ε, implying that each of its coefficients must vanish
identically, an = 0. Solving these equations iteratively yields the sought-after coefficients
cn.

Iterative solution strategies of this type are called perturbative solutions. The procedure
is ‘perturbative’ in the sense that for small ε the solution is weakly deformed from its ε = 0
value, y0.

INFO Perturbative solutions of algebraic equations, and of the differential equations to be discussed

later, play an enormously important role in physics. The reason is that physical problems generally

present themselves in the form of equations. We often encounter situations where an equation

contains a ‘small’ parameter, ε, and becomes simpler if it is expanded in powers of ε. For example,

let y = I be the electric current flowing through a metal in response to the application of a voltage

ε = V . For V = 0 no current will flow, i.e. I = 0 in this case. Since an external electric

field is generally small in comparison to the internal fields that hold the metal together, it may be

considered a ‘small perturbation’. We may thus expand the current to linear order in this small

perturbation, writing it as I = 0 + gV , where the unknown coefficient, g, is to be interpreted as the

(linear) conductance of the system. Computing the linear coefficient g for a real solid can still be

complicated, but it is much easier than computing the full form of the function I(V ) for general V .

Such perturbative expansions turn out to be very usefull – indeed, there exists a plethora of different

types of perturbation theory, which play an important role in almost all sub-disciplines of physics.

The discussion of advanced types of perturbation theory is a subject of lecture courses in theoretical

physics and beyond the scope of this text.

C5.5 Higher-dimensional Taylor expansion

REMARK Requires section ??. The physical understanding of the example contained in this section

requires basic familiarity with electrostatics.

The concept of local approximations by Taylor expansion is not limited to functions of one
argument. Its generalization to the expansion of a multi-dimensional function f : Rm → R in
the vicinity of a fixed argument x ∈ Rm reads

f(x′) =
∞∑

n=0

1

n!
((x′ − x) ·∇)nf(x), (C102)
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Figure C12: Taylor expansions of electric and magnetic fields play an important role in applications.
For example, the focusing of particle beams in accelerators relies on magnetic fields designed in such
a way that the first-order Taylor expansions of the local magnetic field strengths vanish. Magnets for
which this is the case are called quadrupole or octupole magnets, respectively, and their construction
is a task of great importance (the image shows a quadrupole magnet employed in the Australian
synchrotron, a 3GeV synchrotron accelerator).

where y ·∇ ≡∑m
i=1 y

i∂xi . For example, the expansion up to second order is given by

f(x′) ' f(x) +
∑

i

(x′ − x)i∂xif(x) + 1
2

∑

ij

(x′ − x)i(x′ − x)j∂2
xi,xjf(x). (C103)

To prove Eq. (C102) one proceeds as in the one dimensional case Eq. (C79). An n-fold
partial derivative ∂n

x′i1 ,...,x′in

∣∣
x′=x

is applied to both the left and the right hand side, where

i1, . . . , in ∈ {1, . . . ,m} are arbitrarily chosen indices. On the l.h.s. of the equation this yields
∂n
xi1 ,...,xin

f(x). On the r.h.s. the derivatives act on the factors x′i multiplying the derivative

operators. For n = 2 it is straightforward to verify by inspection of Eq. (C103) that the
resulting expression coincides with the l.h.s. Some more bookkeeping is required to do the
calculation for general n, however the principal procedure remains the same.

However, unlike with the infinitely-extended Taylor series discussed in the previous sections,
multi-dimensional expansions are usually truncated after the first few orders. The reason is
that the bookkeeping required to keep the variable indices xi under control quickly becomes
unmanageably complicated.

EXAMPLE The electric potential created by a point particle at r0 carrying positive charge q is

given by ϕ(r) = q
|r−r0| . (We are working in so-called CGS units here.) At the point r this potential

creates an electric field

E ≡ −∇ϕ(r) = q
r− r0

|r− r0|3
.

Consider now an electric dipole, i.e. a system of two opposite

electric charges, ±q, sitting at positions ±a relative to the origin

of a coordinate system. When observed from a remote point, r,

with r ≡ |r| � |a|, the electric potentials generated by these

charges, ϕ±(r) = ±q/|r∓a| ' ±q/|r|, largely cancel out. How-

ever, the cancellation is not perfect. The residual contribution is captured by a first-order Taylor
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expansion of the function (1/|r− a|) in the offset a around a = 0. Using ∂i(1/|r|) = −xi/|r|3, we

find

ϕ±(r) =
q

|r∓ a| = ± q

|r| +
qa · r
|r|3 +O(a2).

The potential created by the two charges, ϕ(r) = ϕ+(r) + ϕ−(r), is thus given by

ϕ(r) ' 2qa · r
|r|3 ≡ d · n

r2
.

Here we introduced the unit vector n ≡ r/r, and defined the dipole moment, qd = q(2a), as a

vector connecting the positions of the two opposite charges, multiplied by their magnitude. The

contour lines of the dipole potential (i.e. lines along which the potential remains constant) are

indicated in the figure above.

Dipole fields appear in many different contexts. For example, biological membranes often com-

prise layers of molecules stacked in such a way that the membrane does not carry a net charge but

does create a dipole potential.

Verify that the dipole electric field, E = −∇ϕ, is given by

E(r) ' 3(d · n)n− d

r3
.

Discuss the spatial profile of this field.
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In the previous chapter we have introduced tools to describe the ‘local’ profile of functions.
We now take a complementary perspective and turn to the description of ‘global’ properties.
Our first step will be the introduction of a rather special ‘function’ which will later serve as a
diagnostic tool to probe the properties of generic functions.

C6.1 δ-Function

For a fixed number y ∈ R, consider a ‘function’ δy : R → R obeying the condition that
for any continuous function f : R→ R

ˆ
dx δy(x)f(x) = f(y). (C104)

This so-called δ-function clearly is a strange object. The condition states that for every
function f the integral of f multiplied by δy projects out the function value f(y). A moment’s
thought shows that the function δy(x) must vanish for all values of x except for x = y, cf.
Fig. C13.

1
On the other hand we may consider the particular ‘test function’ f = 1 to obtain

the normalization condition ˆ
R

dx δy(x) = 1.

We are thus dealing with a ‘function’ that vanishes everywhere except at one point, x = y,
and at the same time integrates to unity, i.e. has unit ‘weight’. This means that δy(y) must
be ‘infinitely large’ to compensate for the ‘vanishingly narrow width’ of the ‘function’:

δy(x) =

{
0, x 6= y,
∞, x = y.

(C105)

This extreme behavior implies that the δ-‘function’ cannot be a function in an ordinary sense.
However, much like 0 = limε→0 ε can be thought of as a limiting value, we may try to

construct a family of well-defined functions δ
(ε)
y such that for any finite ε, δ

(ε)
y is a regular

function and only in the limit limε→0 δ
(ε)
y = δy the extreme behavior of δy is approached. In

the next sections we introduce concrete realizations of such constructions.
1

If δy(x) were non-vanishing for x 6= y, it would be possible to devise functions f(y) such that´
dx, δy(x)f(x) 6= f(y). Think about this point.

259
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Figure C13: On the definition of the δ-function. A function with the required property (C104) must
be vanishing for all values of x except for x = y where it has to be ‘infinitely large’.

Construction of the δ-function

-0.5 0.5

5

10It is not difficult to define a family of functions δ(ε) satisfying the required
convergence criterion. Consider, for example, the Gaussian functions

δ(ε)
y (x) ≡ 1

ε
√
π

e−(x−y)2/ε2 .

These functions are defined such that, irrespective of the value of ε, the
normalization condition

´∞
−∞ dx δ

(ε)
y (x) = 1 is satisfied. For decreasing

values of ε the support
2

of δ
(ε)
y shrinks to a narrow region of width

ε centered around y: limε→0 δ
(ε)
y (x) = 0 for x 6= y. On the other

hand, the function values at y diverge, limε→0 δ
(ε)
y (y) = ∞, in such a

manner that the normalization remains constant. The figure illustrates
this behavior for the three values ε = 0.2, 0.07, 0.02, respectively.

We conclude that we may write limε→0 δ
(ε)
y = δy, since in this limit the defining criteria of

Eq. (C105) are all satisfied. Also notice that the parameter y and the argument x appear in

δ
(ε)
y (x) in the combination y − x, i.e. the function depends only on the distance between the

argument x and the reference point y. In particular we have δ
(ε)
y (x) = δ

(ε)
0 (x−y) ≡ δ(ε)(x−y),

where δ
(ε)
0 ≡ δ(ε) is centered around 0 and the reference to that special center is usually omitted

in the notation. This leads to the alternative representation

δ(ε)(x− y) ≡ 1

ε
√
π

e−(x−y)2/ε2 . (C106)

In a similar manner, we write δy(x) ≡ δ(x− y), where δ(x− y) ≡ limε→0 δ
(ε)(x− y).

To summarize, we constructively define the δ-function as the limit,

δ(x) ≡ lim
ε→0

δ(ε)(x), (C107)

2

The support (Träger), supp(f) ≡ {x ∈ R|f(x) 6= 0}, of a function f : R→ R is the subset of arguments
on which f is non-vanishing.
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Figure C14: δ-functions defined on finite intervals. Discussion, see text.

of a one-parameter family of functions defined by two conditions, unit normalization,
´

dx δ(ε)(x) =
1, and vanishing support in the limit ε → 0. Above we modeled a set of functions obeying
these criteria in terms of Gaussian functions. In the next section, we will introduce other
realizations of practical relevance. However, before that let us summarize two general points
relating to the definition of δ-functions.

. It is no problem to restrict the definition of the δ-function to finite intervals. For an
open interval I ≡ (a, b) and y ∈ I a finite neighborhood surrounding y is contained in I.

If the width of that neighborhood is called δ and ε � δ the support of δ
(ε)
y , too is almost

entirely contained in I (cf. Fig. C14). We then have the asymptotically exact normalization´
I

dx δ
(ε)
y (x) ' 1. This implies

´
I

dx δy(x)f(x) = 1, as before.

If one needs to work with a closed interval I = [a, b] an exceptional situation arises only at

the boundaries y = a, b. It is then customary to work with families of functions δ
(ε)
y defined

such that limε→0

´ b
a
δ

(ε)
a dx f(x) =

´ b
a
δ(x− a) = 1

2
f(x), i.e. one half of the weight of the

δ-function lies inside the interval (cf. the figure). The other half is outside and gets lost
under integration.

. The δ-function categorically appears under an integral operation. Properties of inte-
grals containing δ-functions may be understood by temporary substitution of the members
of a generating family, δ(ε), application of standard rules of calculus to them, followed
by an eventual limit ε → 0. For example, consider the frequently occurring expression´

dx δ′(x)f(x). At first sight, this does not make sense, a function as singular as the
δ-function certainly is not differentiable. However, one may make sense of this integral by
integration by parts of the differentiable members of a family δ(ε):

ˆ
dx δ′(x)f(x) = lim

ε→0

ˆ
dx δ(ε)′(x)f(x) = − lim

ε→0

ˆ
dx δ(ε)(x)f ′(x) = −f ′(0),

which leads to the identification
ˆ

dx δ′(x)f(x) = −
ˆ

dx δ(x)f ′(x) = −f ′(0). (C108)
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Paul Adrien Maurice Dirac
(1902-84)
An english physicist who is
considered one of the found-
ing fathers of quantum me-
chanics, and of quantum field
theory. His most striking sin-
gle achievement was the for-
mulation of the Dirac equation, an exten-
sion of the Schrödinger equation of quan-
tum mechanics into the realm of relativistic
dynamics. The Dirac equation led to a va-
riety of striking predictions including that of
the existence of anti-matter. It also necessi-
tated the introduction of quantum fields, a
concept of immense importance in modern
physics.

The δ-function plays an important role in ap-
plications both in mathematics and physics.
It was originally introduced by the physicist
P.A.M. Dirac as a tool for the description of
point charges. (A point charge at y is an ob-
ject whose charge density is zero everywhere,
except for the point y where it diverges, i.e. its
charge profile is described by δy as in (C105).)
It took several decades to capture the essence
of Dirac’s idea in precise mathematical terms.
The result was an extension of the concept of
functions, known as distributions (see info
section below).

INFO For any nonzero ε, δ(ε) is a regular func-

tion, however the limit δ = limε→0 δ
(ε) is not.

To understand the limit one may note that for

y ∈ I, δy extracts the number f(y) from a func-

tion f : I → R: f(y) =
´

dx δy(x)f(x). This suggests that we should interpret δy as a map from

the space of functions to the real numbers. This map acts on functions as δy[f ] = f(y), where we

followed the convention of enclosing the function-argument, [f ], of a map acting on functions by

square brackets. For technical reasons, one has to restrict their consideration to argument functions

which are smooth and have compact support, the so-called test functions. Maps assigning numbers

to test functions are called distributions, and δy belongs to this class of objects. For this reason,

mathematicians prefer to speak of a δ-distribution. However, we here follow physics parlance and

use the more sloppy terminology ‘δ-function’.

EXERCISE Use the auxiliary identity
´∞
−∞ dx 1

1+x2 = π to show that the family of functions

δ(ε)(x) =
1

π

ε

ε2 + x2
(C109)

converges to the δ-function as limε→0 δ
(ε)(x) = δ(x). Eq. (C109) is referred to as the Lorentzian

representation of the δ-function.
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1.0In the next section we will need one more representation,
namely the representation of the δ-function in terms
of exponential series. Consider the family of functions

δ(ε)(x) ≡ 1

L

∑

k

exp(ikx− ε|k|), (C110)

where k is summed over all values k = 2πn/L, n ∈ Z,
and x ∈ I ≡ [0, L]. To heuristically understand why these
functions have a chance of converging to δ(x), note that
for fixed x and arbitrary k, the ‘phase factor’ exp(ikx) is a
complex number of modulus one and phase kx. The summation over k can be interpreted
as an ‘average’ over lots of exponentials with effectively random phases, kx = 2πinx/L. In
the limit of small ε, a large number of n-values contribute to the sum

3
. If x does not equal

0 or L, the exponentials are spread across the complex plane with quasi-random phases (i.e.
quasi-random angles w.r.t. to the real axis), so that their sum essentially yields zero. [The
figure illustrates the situation for L = 100, ε = 0.01, x =

√
2 +
√

3. The red points represent
the numbers exp

(
2πn/L(ix − ε)

)
for n = 1, . . . , 500, in the complex plane. For increasing

values of n the presence of the ‘damping factor’ ε brings the exponentials closer to zero and
guarantees the convergence of (C110). Summation over all exponentials will yield a value
close to zero.] Conversely, for x = 0, we are summing over exp(−ε|k|), and in the limit ε→ 0
obtain an infinitely large value. This argument shows that the family of sums (C110) is a good
candidate for a δ-function limit.

The sums in (C110) have the form of a geometric series,
∑

n

(
exp(C)

)n
, and can therefore

be computed in closed form. As is detailed in the info section below, application of the master
formula Eq. (C83) leads to the result

δ(ε)(x) ' 1

π

ε

ε2 + x2
, |x|, ε� L, (C111)

i.e. when the argument, x, is small compared to L, the sum converges to the Lorentzian form
of the δ-function, Eq. (C109), confirming the expected behaviour.

INFO The proof of Eq. (C111) is an instructive exercise in series manipulation. We define z =
2π
L (ix− ε) and organize the sum (C110) as

δ(ε)(x) =
1

L

( ∞∑

n=0

enz +

0∑

n=−∞
e−nz̄ − 1

)
=

1

L

∞∑

n=0

(
enz + enz̄

)
− 1

L

=
1

L

(
1

1− ez
+

1

1− ez̄
− 1

)
=

1

2L

(
1 + ez

1− ez
+

1 + ez̄

1− ez̄

)
. (C112)

Now observe that for x nonzero and ε = 0 we have z̄ = −z. Using this identity we immediately

find limε→0 δ
(ε)(x) = δ(x) = 0. To see what happens for x close to 0 we note that for |x|, ε � L

3

Due to the damping factor e−ε|k| = e−ε2π|n|/L, values |n| & L/ε give only exponentially small contribu-
tions.
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the argument |z| � 1 is small, and so the numerators and denominators in (C112) may be Taylor

expanded to first order, as 1 + ez = 2 +O(z) and 1− ez = −z +O(z2). This yields

δ(ε)(x) ' − 1

L

(
1

z
+

1

z̄

)
= − 1

2π

(
1

ix− ε +
1

−ix− ε

)
=

1

π

ε

ε2 + x2
, (C113)

as stated above.

Properties of the δ-function

The definition (C104) implies a number of useful relations obeyed by the δ-function,
which we summarize here for later reference.

. For any smooth function, we have the defining property

ˆ
dx δ(x− y)f(x) = f(y), (C114)

which implies the unit-normalization
´

dx δ(x) = 1.

. In applications, we often encounter δ-functions whose arguments differ from the integration
variable. As a simple example, consider the integral

´
dx δ(cx)f(x), where c is a constant.

This integral may be computed by application of the substitution rule Eq. (C26) to change to
a new integration variable u = cx. We then obtain

´
du|c|−1δ(u)f(u/c) = |c|−1f(0/c) =

|c|−1f(0), where the defining property of the δ-function has been applied to compute the
u-integral. The result

ˆ
dx δ(cx)f(x) =

1

|c|f(0), (C115)

is equivalent to the scaling relation

δ(cx) =
1

|c|δ(x). (C116)

Remember: the defining property only applies to combinations
´

dx δ(x)(. . . ) where the
integration variable itself features as an argument of the δ-function. Specifically, the δ-
function is inversely proportional to factors appearing in its arguments.

. Eq. (C116) implies symmetry of the δ-function under changes of sign, δ(x) = δ(−x).

. Another frequently occurring expression reads
´

dx δ
(
g(x)

)
f(x) where g is a function.

Since δ(g(x)) = 0 for g(x) 6= 0 this integral receives contributions only from an (infinitesi-
mal) neighborhood of the zeros of g. Assume that x0 is such a zero, assume differentiability
of g there, and expand g(x) = g(x0) + g′(x0)(x − x0) + · · · = g′(x0)(x − x0) + . . . . We
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substitute this expression into the integral, note that for x→ x0 the higher order terms in
the expansion can be neglected, and apply Eq. (C115) to obtain

ˆ
dx δ(g(x)) f(x) =

f(x0)∣∣∣dg(x0)
dx

∣∣∣
.

In cases where g has more than one zero, x0, x1, . . . the contributions of all these to the
integral need to be added together. In this way we arrive at the most general representation
for the change of variables under a δ-function

ˆ
dx δ(g(x)) f(x) =

∑

i

f(xi)∣∣∣dg(xi)dx

∣∣∣
. (C117)

For completeness we mention that integrals over functions with zeros of higher order, such
as
´

dx δ(x2), are ill-defined.

EXAMPLE Consider the integral I =
´∞
−∞ dx δ(x2 + 3x− 10) · (2x+ 1). The function g(x) =

x2 +3x−10 has zeros at x0 = 2 and x1 = −5, and at these points its derivative, g′(x) = 2x+3,

gives g′(x0) = 7 and g′(x1) = −7. Eq. (C117) thus yields

I =
1

|7|
[
2 · 2 + 1

]
+

1

| − 7|
[
2 · (−5) + 1

]
= −4

7
.

. Derivatives acting on the δ-function are are defined by the relation Eq. (C108).

. Consider the integral
´ x
−∞ dy δ(y)f(y). It yields 0 if x < 0 (because the interval does not

contain y = 0), f(0) if x > 0, and f(0)/2 in the exceptional case where x = 0 coincides
with the center of the δ-function (cf. Fig. C14 and its discussion). The frequent occurrence
of this expression motivates the definition of the Heaviside step function

4

Θ(x) =





1 for x > 0,
1
2

for x = 0,
0 for x < 0.

(C118)

The above results may now be written as

ˆ x

−∞
dy δ(y)f(y) = Θ(x)f(x). (C119)

4

In the literature, one often finds a simplified version of the Heaviside function, Θ(x) = 1 for x ≥ 0 and 0
for x < 0, which is not perfectly symmetric relative to the jump point, x = 0.
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For f = 1 we have

ˆ x

−∞
dy δ(y) = Θ(x),

which may be considered as an alternative definition of the Heaviside function. Differenti-
ation of this relation w.r.t x yields

Θ′(x) = δ(x).

This formula states that the Θ-function is constant almost everywhere except at the jump-
point x = 0, where its derivative is singular. Of course, neither the Θ-function, nor the
δ-function are truly differentiable. All the expressions above have to be understood as limits
of appropriately defined δ(ε)-sequences.

C6.2 Fourier series

Jean Baptiste Fourier
(1768-1830)
A French mathematician
and physicist best known
for the invention of Fourier
calculus. Fourier applied his
new concept to the study
of physical phenomena such
as heat conduction or the physics of
vibrations. He is considered the discoverer
of the greenhouse effect.

We now turn to the principal theme of
this chapter, the ‘global characterization of
functions’. To motivate the topic, suppose
an experimentalist has recorded data such as
that shown in Fig. C15. (The plot shows
oscillations of individual quantum states of a
molecule.) How can the ‘essence’ of the mea-
sured signal be described in concise terms?
The data clearly contains both experimental
noise and a high level of repetitive redun-
dancy. However, just by looking at it one
can also identify ‘relevant information’, no-

tably the presence of an oscillatory pattern that fluctuates at two time scales, one of order
1ps, the other of order 10ps. Our goal is to distill such relevant information from a complicated
and largely redundant background.

The idea of Fourier calculus

The idea of Fourier calculus is to represent a given function f as a sum over many simple
functions. In most cases these are the harmonic functions exp(ikx), cos(kx), or sin(kx).

5

5

A function ψ(x) is called harmonic if it obeys the condition d2
xψ(x) = c × ψ(x), where c is a constant.

This states that harmonic functions reproduce themselves (up to multiplication by a constant) upon two-fold
differentiation. There exists a generalized definition of harmonic functions (and of Fourier calculus) in which
the simple two-fold derivative is replaced by a more complicated so-called Laplace operator. However, this
extension is beyond the scope of this text.
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Figure C15: Measurement of collapse and revival phenomena in a single atomic eigenstate. Image
taken from H. Goto et al., Nature Physics 7, 383385 (2011).

Here we focus on the expansion in terms of exp-functions, which play the most important role
in physical applications. The straightforward modifications needed for the closely related cos
or sin series are discussed in problems ?? and ??, respectively.

Consider a complex valued function f : I → C, x → f(x), defined on a finite interval
I ≡ [0, L] and obeying periodic boundary conditions f(0) = f(L). Now let us try to
‘expand’ f in terms of oscillatory exponentials as

f(x) =
1

L

∑

k

f̃k eikx, (C120)

where the sum extends over all

k =
2πn

L
, n ∈ Z. (C121)

These values are chosen such that each of the exponentials in (C120) satisfies exp(ikL) =
exp(0) = 1. In this way it is guaranteed that the r.h.s. of the equation respects the boundary
condition f(0) = f(L) of the l.h.s. Series such as (C120) are called Fourier series.

INFO Fourier series are frequently applied to the analysis of periodic functions, i.e. functions f

which repeat on some interval [0, L], see Fig. C16. All the information about such a function is

contained in its restriction to a single-period interval [0, L], where f obeys the periodicity condition

f(0) = f(L). This motivates the study of functions restricted to [0, L] and obeying periodic boundary

conditions. A function defined on the full real axis may then always be reconstructed by repetition

of the restricted function. (For arbitrary y ∈ R, determine the integer n such that y = nL + x,

x ∈ [0, L] and define f(y) = f(nL+ x) = f(x) through the restricted function.)

It turns out that for many functions of interest, an expansion as in (C120) fails for a lack
of convergence. Since |eikx| = 1 the coefficients f̃k are required to decay rapidly and this
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Figure C16: (Real part of a complex) function periodic on the interval [0, L]. The full ‘information’
aboout the function is stored in its restriction to a single-period interval [0, L].

condition limits the option of a series representation to only a narrow class of functions.
However, an efficient way to improve on the situation is to redefine the series as

f(x) =
1

L
lim
ε↘0

∑

k

f̃k eikx−|k|ε, (C122)

where the notation ε ↘ 0 means that ε is sent to zero coming from positive values. For
any finite ε the series now converges, unless the coefficients f̃k increase exponentially in k.
The parameter ε is called a convergence generating factor. It is customary to not write
this factor explicitly even if its presence is required to render a series convergent. However,
if seemingly ill-defined series such as

∑
k eikx (coefficients f̃k = 1) are encountered in the

literature, one may safely assume that the presence of a convergence generator is implicit.

Fourier modes

Eq. (C120) contains the functions exp(ikx), which in the present context are called Fourier
modes. They will play an important role throughout and it is worthwhile to summarize their
essential features: for each value of k, exp(ikx) is an oscillatory functions (cf. Fig. C17) where
the oscillation period, ∆x = 2π/k = L/n, decreases with n. In physical applications, Fourier
modes often appear in the context of with wave-like phenomena and the index k is called
the wave number of a wave with wave length λ =2π/k. A Fourier mode of index n then
contains n oscillation periods in the interval [0, L].

Fourier modes obey a so called orthogonality relation

1

L

ˆ
I

dx ei(k−k′)x = δkk′ , (C123)

i.e. the integral of the product, exp(i(k − k′)x), of a Fourier mode, exp(ikx), and of its
complex conjugate exp(−ik′x) vanishes unless their wave numbers are equal.
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0.5 1

1

Figure C17: Real part cos(kx) (solid) and imaginary part (sin(kx)) (dashed) part of the Fourier
mode exp(ikx), for k = 2× 2π/L and L = 1.

This relation, which we will see is of central importance, can be proven as follows: if k 6= k′

we have

1

L

ˆ
I

dx ei(k−k′)x =
1

iL(k − k′) ei(k−k′)x
∣∣∣
L

0
= 0,

due to the periodic boundary conditions, exp(ikL) = exp(ik0) = 1 (and the same for k′).
However, for k = k′, exp(i(k − k′)x) = 1, and the integral trivially yields unity.

INFO In physics and engineering the notation of (C120) is often used when x is a space-like

argument. However, just as often Fourier calculus is applied to describe functions f(t), where t is

time-like. (For example, Fig. C15 shows a time-like signal.) In that case the alternative notation

f(t) =
1

T

∑

ω

f̃ω e−iωt (C124)

is more frequently used. Here, f(t) is defined on an interval [0, T ] and ω = 2πn/T is called the

frequency of the Fourier mode. Also notice the sign change relative to Eq. (C120) in the exponent

of the mode. The details of the definition of Fourier modes are matters of convention and differ

from one scientific community to another. In texts involving Fourier calculus it is therefore common

practice to open with a remark such as: ‘In this text, we will define Fourier series as f(x) = . . . ’.

Fourier series construction

In view of the periodic structure of the Fourier modes it may seem surprising that most
functions which occur in practice, including aperiodic functions, afford Fourier series represen-
tations.

To understand the criteria for Fourier representability let us assume that the series exists
and ask what conditions for the function f ensue. If f has a series representation then the
Fourier coefficients f̃k can be easily obtained as follows: multiply f(x) by exp(−ikx) and
integrate over I:ˆ

I

dx e−ikxf(x) =

ˆ
I

dx e−ikx
( 1

L

∑

k′

f̃k′ e
ik′x
)

=
∑

k′

f̃k′
1

L

ˆ
I

dx e−i(k−k′)x (C123)
= f̃k,

where in the last step the orthogonality relation of Fourier modes was used. We thus have the
identification

f̃k =

ˆ
I

dx e−ikxf(x). (C125)
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Figure C18: Fourier representation of the function (C127) in terms of a finite series with maximum
index nmax = 1 (long dashed), 10 (dashed) and 80 (solid).

Notice that even for real functions, f(x) ∈ R, the coefficients f̃k are generally complex.
However, we have the symmetry relation,

f̃k =

ˆ
I

dx e+ikxf(x) = f̃−k. (C126)

EXAMPLE Consider the function (cf. Fig. C18)

f(x) =

{
−x, x ∈

(
0, 1

2

)
.

1− x, x ∈
(

1
2 , 1
) . (C127)

The Fourier coefficients describing f are readily computed: for k = 0 we have f̃0 = 0, and for k 6= 0

we obtain

k 6= 0 : f̃k =

ˆ 1/2

0
dx e−ikx(−x) +

ˆ 1

1/2
dx e−ikx(1− x) =

e−ik/2

ik
, (C128)

where partial integration was used to integrate xe−ikx.

The above procedure yields the coefficients f̃k provided the Fourier expansion exists. To
understand under which conditions this is true, we substitute Eq. (C125) into (C120), assume
that the order of the summation over k and the integration over x can be exchanged, and
obtain

f(y)
!

=
1

L

∑

k

(ˆ
I

dx e−ikxf(x)

)
eiky =

ˆ
I

dx

(
1

L

∑

k

eik(y−x)

)
f(x)

(C110)
=

ˆ
dx δ(x− y)f(x), (C129)

Where in the crucial third equality we noted that the expression in brackets is the δ-function.
6

The final integral yields f(y), so the ansatz of f as a sum over Fourier modes faithfully

6

Do remember that there is a hidden convergence generating factor, i.e. the expression in brackets should
be read as limε→0

1
L

∑
k eik(y−x)−ε|k|, which is Eq. (C110)ε→0 = δ(x).
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reproduces f as required. However, in deriving this relation, we tacitly assumed that the
Fourier coefficients, f̃k, are finite and that the sum over them exists. For functions obeying
the rather mild so-called Dirichlet conditions (see info section below) this is the case, and
Fourier expandability is granted.

INFO The three Dirichlet conditions sufficient for the Fourier expandability of a function read:

. The integral of (the modulus) of the function must exist:
´
I |f(x)|dx <∞.

. The number of local extrema of f in I must be finite.

. f must contain only finitely many discontinuities in I.

-0.10 -0.05 0.05 0.10

-1.0

-0.5

0.5

1.0 An example of a function failing this test is given by

f(x) =

{
0, x ∈ [−π, 0],

sin(1/x), x ∈ (0, π].

The infinitely many extrema accumulating in the vicinity of x = 0

spoil its Fourier-expandability.

EXAMPLE In the previous example we obtained Eq. (C128) for the Fourier coefficients of the

‘sawtooth function’. Using this result, we obtain the series representation

f(x) =
∑

k 6=0

eikx e−ik/2

ik
=

1

π

∑

n∈Z\{0}

ei2πnx

2i

e−iπn

n
=

1

π

∑

n>0

sin(2πnx)
(−1)n

n
.

Fig. C18 illustrates how the series models the function in terms of oscillatory (sin) contributions.

The long-dashed, dashed, and solid curves, respectively, represent finite summations truncated at

the index nmax = 1, 10, 80, respectively. It is evident that the ensuing approximations are efficient in

regions where the function is smooth. However, problems arise in the neighborhood of sharp corners

where a large number of terms is required to obtain satisfactory agreement.

INFO Notice that even for an elaborate representation of f(x) in terms of 80 Fourier contributions

the series visualized in Fig. C18 ‘overshoots’ at the corners of the function. It can be shown that the

excess peak does not diminish upon inclusion of more terms in series; it remains at a level of O(10%)

of the function value. Only the width of the excess regions shrinks at higher levels of summation

accuracy.
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This phenomenon is known as ringing. Ringing is notorious in audio and

video compression algorithms such as MP3 or AAC, or JPEG, which all rely

on Fourier signal encoding. The term ‘ringing’ alludes to the fact that in

compressed acoustic data, such overshooting becomes audible as a sharp

‘ringing’ noise, accompanying the reproduction of dynamical sound sources

(such as drums). The JPEG compressed reproduction of a star shown in the

figure illustrates how the same effect spoils the accurate reproduction of sharp edges in visual data.

The example above illustrates an important general feature of Fourier representations:
the series (C120) encodes the information carried by the function f(x). For large k the
exponential functions on the r.h.s. oscillate rapidly, i.e. functions with large k carry the
information about the ‘fine structure’ of f(x), or structures at small scales in x. Conversely,
the information on large scale structure in x is carried by slowly oscillating contributions with
small k. The appearance of k and x in the product k ·x in the Fourier modes shows that scales
of characteristic length ∆x are described in terms of Fourier modes with index k ∼ ∆x−1.
This fact is known as Fourier reciprocity and should be remembered as follows:

Fourier modes of large/small value k describe structures at small/large scales, x ∼ k−1.

EXAMPLE For functions devoid of sharp singularities, the inclusion of a few Fourier modes can

suffice to obtain excellent approximations. Consider, for example, the function

f(x) = Re
1

2 + eix
=

2 + cosx

5 + 4 cosx
(C130)

on the interval x ∈ [0, 2π] (Fig. C19). The Fourier coefficients of this function are best computed

by geometric series expansion (cf. Eq. C83),

f(x) =
1

2
Re

1

1 + 1
2eix

=
1

2
Re

∞∑

l=0

(
−1

2
eix

)l
. (C131)

Substituting this expression into Eq. (C125) and using Eq. (C123), we obtain f̃k = (−1)k/2k+2.

The graphics shown in the figure illustrate how the approximation of the function in terms of a sum

over only a few Fourier modes yields excellent results.

Conceptual meaning of Fourier series representations

Eq. (C120) has the form ‘function=
∑

k (coefficient)k × (function)k’, where the function

on the l.h.s. is f(x), f̃k ≡(coefficient)k are the coefficients, and exp(ikx) ≡(function)k are
k-dependent functions of x. If we think of f as an element of a vector space of periodic
functions, then this formula has the status of representing the ‘vector’ f in terms of a linear
combination of other vectors, viz. the exponential functions indexed by k. Since every function
can be expanded in this way, the set of all exponentials {exp(ikx)} can be viewed as a basis
of function space, indexed by k. This suggests that
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Figure C19: The red curve shows the function (C130) and the dashed, dash-doted, and solid black
lines are approximations by 1, 3, and 6 Fourier modes.

A Fourier series representation corresponds to a change of basis in function space.

This interpretation of Fourier representations is rather useful both conceptually and from an
applied perspective. Many of the formulae derived in this section have a background in linear
algebra and this connection is helpful for understanding and remembering their structure.
The observation that functions can be expanded in terms of exp-functions suggests that it
might be possible to construct further sets of useful function bases. Indeed there exist several
other expansion schemes relevant to physical disciplines such as electrodynamics or quantum
mechanics, and the vector space interpretation allows them to be understood in a unified
fashion. For a comprehensive discussion of these connections we refer to chapter L10.

C6.3 Fourier transform

Next we explore what happens as we extend the width of our support interval I indefinitely.
To this end, we choose an interval I ≡ [−L

2
, L

2
], and send L→∞. In the limit, the function

f is defined on the entire real axis, f : R→ C.

Definition of the Fourier transform

For L → ∞ the spacing δk = 2π
L

between successive Fourier series wave numbers k =
n2π/L tends to zero. The Fourier sum then assumes the form of a Riemann sum 1

L

∑
k(. . . ) =

1
2π
δk
∑

nδk(. . . ) → 1
2π

´∞
−∞ dk(. . . ). Introducing the shorthand notation

´
dk
2π

= 1
2π

´
dk and

writing f̃k → f̃(k) for the infinite-space Fourier coefficients we apply this replacement to the
series (C120) to obtain

f̃(k) =

ˆ ∞
−∞

dx e−ikxf(x),

f(x) =

ˆ ∞
−∞

dk

2π
eikxf̃(k). (C132)

The first of Eqs. (C132) defines the Fourier transform f̃ of the function f and the second
equation is the inverse Fourier transform.
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As with the Fourier series Eq. (C120) the definition (C132) has problematic convergence
properties: only a few functions can be integrated with an exponential function over an infinite
interval. To overcome this problem we introduce a convergence generating factor similar
to that introduced in Eq. (C122): we generalize the exponentials appearing in the definition
as

exp(ikx)→ exp(ikx− ε|k|),
exp(−ikx)→ exp(−ikx− ε|x|)

where ε is positive and sent to zero, ε ↘ 0, after all integrals have been done. At any finite
ε, functions f(x) and f̃(k) with less than exponential increase at |x| → ∞ and |k| → ∞ can
now safely be integrated. The generalized transformation identities are given by

f̃(k) = lim
ε↘0

ˆ ∞
−∞

dx e−ikx−ε|x|f(x),

f(x) = lim
ε↘0

ˆ ∞
−∞

dk

2π
eikx−ε|k|f̃(k), (C133)

Again, it is customary to suppress this factor in the notation in cases where it is not absolutely
required.

EXAMPLE Consider the function

f(x) = Θ(x)e−γx+iqx,

where q ∈ R and γ ∈ R+, and Θ is the Heaviside step function (C118). Its Fourier transform is

given by

f̃(k) =

ˆ ∞
0

dx e−ikxe−γx+iqx =
1

γ + i(k − q) .

The inverse Fourier transform then reads

f(x) =

ˆ ∞
−∞

dk

2π

eikx

γ + i(k − q) .

Could you compute the integral defining the inverse transform by elementary means? (Do not try

too hard, it is not straightforward.)

Let us demonstrate that Eqs. (C133) define an integral transform, i.e. that it is possible to
reconstruct the function f(x) from its Fourier transform f̃(k). To this end, we substitute the
first integral without the convergence generating factor (it will not be needed) into the second
integral (where the factor does play a role), exchange the order of integrations and obtain

f(x)
!

= lim
ε↘0

ˆ
dk

2π
eikx−ε|k|

ˆ
dx′ e−ikx′f(x′) =

ˆ
dx′
(

lim
ε↘0

ˆ
dk

2π
eik(x−x′)−ε|k|

)
f(x′).
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We thus require that

lim
ε↘0

ˆ
dk

2π
eik(x−x′)−ε|k| = δ(x− x′), (C134)

This integral owes its existence to the presence of the convergence generating factor (why?)
and can be computed as

lim
ε↘0

ˆ
dk

2π
eik(x−x′)−ε|k| = lim

ε↘0

(ˆ ∞
0

dk

2π
eik(x−x′)−εk +

ˆ 0

−∞

dk

2π
eik(x−x′)+εk

)
=

= lim
ε↘0

1

2π

(
− 1

i(x− x′)− ε +
1

i(x− x′) + ε

)
=

= lim
ε↘0

1

π

ε

(x− x′)2 + ε2
(C113)
= δ(x− x′).

We thus confirm Eq. (C134) and the Fourier transform identity relying on it. However, notice
that the proof relied an exchange of integrals

´
dk
´

dx(. . . ) →
´

dx
´

dk(. . . ). Much as
with the previous case of Fourier series this exchange operation — an application of Fubini’s
theorem discussed in C4.1 — relies on the existence of the integrals involved. While generic
criteria for the existence of Fourier integrals are difficult to state, the rule of thumb is that
functions that can be integrated in the presence of a convergence generating factor can be
transformed. This includes functions which grow no faster than power laws (for the growth
of any power xn will be compensated by a factor of exp(−ε|x|), no matter how small ε)
but excludes functions with exponential growth. There exist modified versions of the Fourier
transform, for example, the so-called Laplace transform that can be applied to deal with
such cases. However, we will not discuss these extensions here.

INFO The relation,

ˆ
dk

2π
eikx = δ(x), (C135)

plays an important role in various contexts beyond the Fourier transform. It is known as the

exponential representation of the δ-function. Comparing this integral to the series repre-

sentation of the δ-function, (C110), we notice a subtle difference: Eq. (C110) was defined for

arguments x ∈ [0, L]. However, if we consider (C110) for general x ∈ R then we obtain a

result periodic in x with a period L. Since k is summed over values k = n2π/L, we have

exp(ik(x + mL)) = exp(ikx + 2πnm) = exp(ikx),m ∈ Z. The sum therefore produces a ‘comb’

of δ-peaks at positions mL. This is consistent with the fact that Fourier series were designed to

describe L-periodic functions. In the limit L→∞ the sum becomes an integral, the period spacing

goes to infinity, and the two definitions match.

EXERCISE Occasionally, it may be necessary or just more convenient to generate convergence by

a so-called Gaussian convergence generating factor,

exp(ikx)→ exp(ikx− εk2), (C136)
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i.e. a generalization which is even better at convergence at large values of k. Use the general formula

for Gaussian integrals ˆ ∞
−∞

ds e−as
2+bs =

√
π

a
e−

b2

4a , (C137)

to verify that

lim
ε↘0

ˆ
dk

2π
eik(x−x′)−εk2

produces a Gaussian representation of the δ-function [cf. Eq. (C29)].

Generalized definitions of Fourier integrals

In practice, one often needs to Fourier transform higher-dimensional functions f : Rn →
C,x 7→ f(x). This is achieved by separate Fourier transformation in each of the variables
contained in x = (x1, . . . , xn). Defining

f̃(k1, . . . , kn) ≡
ˆ

dx1 e−ix1k1 . . .

ˆ
dxn e−ixnknf(x1, . . . , xn),

and combining the products of exponentials to a single exponential we obtain the Fourier
transform of multi-dimensional functions

f̃(k) =

ˆ
dx1 . . . dxn e−ik·xf(x),

f(x) =

ˆ
dk1

2π
. . .

dkn
2π

eik·xf̃(k), (C138)

where k ·x =
∑

i kix
i, k = (k1, . . . , kn)T ,

7
and the second line contains the inverse transform.

The Fourier transform of functions f(t) depending on time-like arguments is de-
fined as

f̃(ω) =

ˆ ∞
−∞

dt eiωtf(t),

f(t) =

ˆ ∞
−∞

dω

2π
e−iωtf̃(ω), (C139)

where ω is a frequency-like variable. As with the definition of the Fourier series (C124),
the signs in the exponents are exchanged relative to the ‘space–like’ Fourier transform. The
rationale behind this convention becomes evident once Fourier transforms of functions f(x, t)
depending on space– and time–like arguments are considered. This point is usually discussed
in texts on classical electrodynamics.

7

Here we use a fact discussed in analytical mechanics (cf. V.I.Arnonld, Mathematical Methods of Classical
Mechanics, Springer Verlag 1978), viz. that k = (k1, . . . , kn)T is a covariant object whose components should
be labeled by subscripts. For the purposes of the present text it is sufficient to consider this as a notational
convention.
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Properties of the Fourier transform

The following is a list of the most important properties of the Fourier transform:

. The Fourier transform converts derivatives into multiplicative factors. To see what
is meant by this statement, consider the derivative of a function, dxf(x). The Fourier

transform, d̃xf(k), of this derivative is obtained as

d̃xf(k) = ikf̃(k), (C140)

where f̃(k) is the transform of f(x). This is seen by partial integration as
8

d̃xf(k) =

ˆ
dx e−ikxdxf(x) = −

ˆ
dx (dxe

−ikx)f(x) = ik

ˆ
dx e−ikxf(x) = ikf̃(k),

In the same way one verifies the inverse property: a Fourier transform given by dkf̃(k) has
inverse Fourier transform −ixf(x), or

dkf̃(k) = −i(x̃f)(k) . (C141)

The key observation here is that

Derivatives ‘simplify’ under Fourier transformation. They get
converted into multiplicative factors.

In problems involving lots of derivatives it is often convenient to pass to a Fourier represen-
tation, work for a while there, and only later transform back to the original representation.
We will discuss such strategies in the next chapter when we solve differential equations.

. Consider two functions, f, g : R → C. What is the Fourier transform of the product fg?
To answer this question we define the convolution (Faltung) of two functions f, g as

(f ∗ g)(x) ≡
ˆ

dx′f(x− x′)g(x′). (C142)

This definition applies regardless of where the functions are defined. For example, the
convolution of two functions f̃ , g̃ depending on the variable k is given by

(f̃ ∗ g̃)(k) ≡
ˆ

dk′f̃(k − k′)g̃(k′).

8

Keep the presence of convergence generating factors exp(−|x|ε) in mind. They eliminate the boundary
terms e−ikxe−ε|x|f(x)|∞−∞ generated by the partial integration.
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The Fourier convolution theorem now states that the Fourier transform of the product
of two functions (fg)(x) = f(x)g(x) is given by the convolution of the respective Fourier
transforms:

f̃ g(k) =
1

2π
(f̃ ∗ g̃)(k). (C143)

Equivalently, the Fourier transform of a convolution is given by the product of the Fourier
transforms,

(f̃ ∗ g)(k) = f̃(k)g̃(k), (C144)

Eq. (C143) is proven by direct calculation:

(f̃ g)(k) =

ˆ
dx e−ikxf(x)g(x)

=

ˆ
dx e−ikx

ˆ
dk′′

2π
eik′′xf̃(k′′)

ˆ
dk′

2π
eik′xg̃(k′)

=

ˆ
dk′

2π

ˆ
dk′′

1

2π

ˆ
dx e−i(k−k′′−k′)x

︸ ︷︷ ︸
δ(k−k′′−k′)

f̃(k′′)g̃(k′) =

=

ˆ
dk′

2π
f̃(k − k′)g̃(k′). (C145)

The inverse relation is shown in the same way. Observe that

Upon Fourier transformation a convolution (complicated) becomes a
product (simple), and vice versa.

Convolutions appear in many different contexts. For example, in applied mathematics and
engineering they are often applied to smoothen ragged signal structures (see the exercise
below).

. The Fourier transform of the exponential function is a δ-function, and vice versa

ẽiqx = δ(k − q), ˜δ(x− y) = eiky. (C146)

An important special case is q = 0, y = 0, i.e.

1̃ = δ(k), δ̃(x) = 1. (C147)

All these relations are straightforward consequences of the definition of the transform.
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. Another useful relation connects f̃(0) to the integral of f(x), and f(0) to the integral of
f̃(k)

f̃(0) =

ˆ
dxf(x),

f(0) =

ˆ
dk

2π
f̃(k). (C148)

These relations are trivial consequences of the definition of the Fourier transform.

For later reference, we state two more properties of the Fourier transform. However, they may
be skipped at first and consulted when necessary.

. The Fourier transform preserves the scalar product on L2(R,C), i.e.
ˆ

dx f(x)g(x) =

ˆ
dk

2π
f̃(k)g̃(k). (C149)

The finite-interval version of this relation is:ˆ
I

dx f(x)g(x) =
∑

k

f̃(k)g̃(k), (C150)

Eqs. (C149) and (C150) are proven by straightforward calculation. When applied to the
case f = g Eq. (C149) assumes the form

ˆ
dx |f(x)|2 =

1

2π

ˆ
dk |f̃(k)|2. (C151)

This equation goes by the name of the Plancherel theorem.

. Under complex conjugation the Fourier transform behaves as

f̃(k) = f̃(−k), (C152)

where f̃ is the Fourier transform of the complex conjugate function f . For real valued

functions the relation simplifies to f̃(k) = f̃(−k).

INFO Before leaving the formal discussion of the Fourier transform it is worthwhile mentioning

that there exists various other integral transforms of similar flavor. A prominent example is the the

Laplace transform,

f̃(s) ≡
ˆ ∞

0
dt f(t)e−st. (C153)

Here, f(t) is a ‘time-dependent’ function, and the complex parameter s is a ‘frequency-like’ variable.

(Imaginary parts in frequency-like variables can be interpreted as finite damping rates, see later
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Figure C20: Decomposition of a sound signal of 0.1 sec duration in terms of 500 (dashed) or 1000
(solid) Fourier modes. The latter reduces the raw data (5000 data points) by a factor 5 and already
gives a decent approximation to the full signal.

discussion in section C7.3). The required existence of the integral is an implicit part of the definition,

i.e. the Laplace transform f̃(s) is defined only if the integral on the right hand side exists. For

example (verify) the Laplace transform of the δ-function δ̃(s) = 1 exists for all s, and that of the

exponential function e−t, (s+ 1)−1 for all arguments Re(s) > −1.

The Laplace transform shares many essential properties with the Fourier transform. For example,

it is manifestly linear (f̃ + g = f̃ + g̃) and satisfies relations such as (verify) t̃f(t) = −f̃ ′(s), or

f̃ ′(s) = −sf̃(s) − f(0). An important difference is that the inverse, f(t), of a Laplace represented

function f̃(s) is not as easily obtained as in the Fourier case. Rather, the inverse transformation

relies on complex functions integral techniques (of the sort introduced in section C223 below.) For

further discussion of the Laplace transform and the occasional applications in differential equation

solving where it outperforms the Fourier transform we refer to the literature.

C6.4 Fourier transform applications

REMARK This section illustrates the utility of the Fourier transform on concrete examples. It can

be skipped at first reading.

The Fourier transform is a powerful tool in science and engineering. Prominent areas of
applications include:

. The transformation of derivatives into multiplicative factors (cf. Eq. (C140)) makes the
Fourier transform an aid in the solution of differential equations. We will return to this
point in the next chapter.

. Fourier transformation is used to analyse, or manipulate measurement data. Consider,
for example, the data shown in Fig. C15. The signal visibly contains two superimposed
oscillations, one with period∼ 0.5 ps and a slower one with period∼ 7 ps. Temporal Fourier
transformation would make this observation quantitative in terms of pronounced peaks in
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the transform at frequencies corresponding to the two dominant oscillation frequencies.

. Fourier transformation plays an important role in the compression of acoustic or visual
data. The basic idea is to decompose data into Fourier modes and to dispose of modes
with wave numbers or frequencies exceeding a certain threshold (cf. Fig. C20). Actual
compression algorithms are refined implementations of this approach.

. Fourier transformation plays a key role in imaging algorithms (cf. the second example
below).

In the following, we illustrate the utility of the Fourier transform on two examples.

Noise reduction

In experimental physics and engineering one often records
data in which a ‘signal’ is masked by noise. For example, the
figure shows the readout of a measurement device suscep-
tible to the mechanical vibrations caused by human traffic
next to the apparatus. (Notice how at nighttimes – the
center regions of the plot – the noise is reduced.)

To explore how noisy signals can be processed by Fourier
transformation, consider a function f(x) = fs(x) + fn(x), where fs(x) represents a slowly
varying ‘signal’ and fn(x) is a ‘noise’ function fluctuating rapidly on scales ∼ δ. The noise
contribution can be reduced by convolution of f with a suitably chosen smoothing function.
Consider, for example, the box function

g(x) =
1

ε

{
1, |x| < ε/2,
0, else

(C154)

where ε > δ is large compared to the noise fluctuation rate but small compared to the variation
scales of the signal and the prefactor is chosen to obtain unit normalization

´
dxg(x) = 1. A

convolution

f(x)→ (f ∗ g)(x) =

ˆ
dyg(y)f(x− y) =

1

ε

ˆ ε/2

−ε/2
dyf(x− y),

effectively ‘averages’ f an interval of width ε around x and hence smoothens the function. It
damps out the noise but leaves the signal essentially unaffected if ε is not chosen too large.
The effect of the convolution becomes even more transparent in the Fourier language. To
illustrate the principle, consider the example of the function

fs(x) = e−x/`Θ(x), fn(x) = η cos(Kx), (C155)

shown in Fig. C21. Here, fs represents a ‘signal’ decaying exponentially on the scale ` and fn
simulates ‘noise’ fluctuating on the scale 2π/K � `.
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Figure C21: Plot of the function (C155) for ` = 1, η = 0.07,K = 50π). The damped solid and flat
curve are the convolution of f against the Gaussian weight (C154) for ε = 0.01 and 0.1, respectively.

The Fourier transforms of these two contributions and that of the averaging ‘weight func-
tion’ are readily computed to be

9

f̃s(k) =
1

1/`+ ik
,

f̃n(k) = πη(δ(k +K) + (k −K)),

g̃(k) =
2

εk
sin(εk/2).

Notice that g̃(0) = 1 which reflects the normalization
´

dxg(x) = 1. In Fourier language, the

convolution f̃ ∗ g(k) = f̃(k)g̃(k) becomes a simple multiplication,

f̃s(k)g̃(k)
k∼`−1

' fs(k),

f̃n(k)g̃(k) ' O(1/εK).

In the first line we noted that for k values ∼ `−1 relevant to the variation of the signal
multiplication with g̃(k) has little effect, short range averaging does not alter the signal. The
second line states that for k ∼ K the weight function leads to a strong suppression of rapid
fluctuations.

EXERCISE Consider the Gaussian weight function,

g(x) =
1√
πε

e−x
2/ε2 , (C156)

and cofirm that

(fn ∗ g)(x) = e−(Kε2 )
2

cos(Kx),

(fs ∗ g)(x) ' e−x/`+(ε/`)2/4 (for x� ε) .

Compute the Fourier transform

g̃(k) = e−( kε2 )
2

.

Discuss in what sense convolution with g has little/strong effect on signal/noise.

9

The Fourier transforms of experimentally recorded data would have to be computed by numerical methods.
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Figure C22: The idea behind tomographic imaging. Discussion, see text.

Tomographic imaging

Tomographic imaging is an important tool for visualization in medicine and technology. Con-
ceptually, it relies on a variant of the Fourier transform known as the Radon transform. To
understand the idea, consider a thin slice of some substance, for example a section of a human
skull shown in Fig. C22. We choose a fixed xy-coordinate system and assume the object to
be described by a yet unknown density profile f(r), with r = (x, y). The goal is to obtain
information on f(r) by X-ray imaging techniques.

To this end, the object is exposed to spatially directed radiation. We define an angle φ such
that the polar unit vector eφ = (cosφ, sinφ) is perpendicular to the direction of incidence,
and thereby parallel to the radiation wave fronts (cf. Fig. C22). At a detector oriented parallel
to eφ the radiation absorbed by the substance is recorded in a spatially resolved manner. This
defines an absorption function, a(ξ, φ), where ξ is the distance from the central axis of the
radiation beam (see the figure). It is evident that the profile of the function a(ξ, φ) depends on
the density distribution f(r). However, we still need to understand out how to quantitatively
reconstruct f from the knowledge of a.

Let us assume that all radiation arriving at a point specified by the coordinates (φ, ξ) has
traversed along the straight-line path γξ,φ indicated in the figure. Points, r ≡ (x, y)T ∈ γξ,φ, on
this path are distinguished by the constancy of the scalar product, r·eφ = x cos(φ)+y sin(φ) =
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ξ. We also assume that the radiation loss incurred locally along the path is proportional to
the local density of tissue, f(r). The total loss along the path can be expressed as an integral

a(ξ, φ) = c

ˆ
dx dy f(r)δ(x cosφ+ y sinφ− ξ), (C157)

where the δ-function restricts the integration variables to the line γξ,φ and c is a constant of
proportionality.

Eq. (C157) defines the so-called Radon transform of the function f . In a tomographic
scan it is obtained by recording the absorption profiles, a(ξ, φi), for a discrete set of incidence
angles, φi. (Changes in the angular direction are responsible for the infamous clicking noise
audible during a computer tomography.)

The desired density profile, f(r), is obtained from the measured signal, a(ξ, φ), in a process
of two steps, both involving Fourier transforms. One first transforms a(ξ, φ) at fixed φ in the
variable ξ as

ã(k, φ) ≡
ˆ

dξ e−iξka(ξ, φ) = c

ˆ
dx dy e−i(k cosφx+k sinφ y)f(r)

≡ c

ˆ
dx dy e−i(kxx+kyy)f(r) = cf̃(k), (C158)

where in the second equality we substituted Eq. (C157) and did the integral over the δ-
function. In the third equality we identify (k cosφ, k sinφ) ≡ (kx, ky) with the polar coordinate
representation of a two-dimensional Fourier vector k = (kx, ky)

T . This is appropriate because
the final equality shows that ã(k, φ) = cf̃(k) is just the x-Fourier transform, f(k) = f(kx, ky),
of the density function.

The second step now is the inverse Fourier transform to obtain f(r) from f̃(k):

cf(r)
(C138)
=

ˆ
dkxdky
(2π)2

ei(kxx+kyy)cf̃(k)
(C158)
=

1

(2π)2

ˆ ∞
0

dk k

ˆ 2π

0

dφ ã(k, φ)eik cosφx+ik sinφy .

Where in the second equality we changed from Cartesian coordinates to an integration in polar
coordinates,

´
dkx dky =

´
k dk
´

dφ.
To summarize, the two-dimensional density profile f(r) can be obtained from the absorption

signal a(ξ, φ) by computing the one-dimensional Fourier transform ã(k, φ), and from there
f(r) by a double inverse transform. In essence, this is the algorithm underlying tomographic
image analysis. Our discussion was an oversimplification in that it ignored the fact that in
reality a(ξ, φ) is known only for a discrete set of angles φi. However, a slightly modified
transform known as the discrete Fourier transform can be applied to obtain approximate
representations of f(r) from discrete data. Of course, the quality of the result will depend on
the number of discretization steps.



C7 Differential equations

C7.1 What are they and why do we need them?

A differential equation (DEQ) is an equation involving both a function and its derivatives.
A solution is a function for which the conditions defined by the DEQ are satisfied. This means
that if the solution and its derivatives are substituted into the DEQ, an equality results. For
example,

df(x)

dx
= cf(x), c ∈ R (C159)

is a differential equation — an equation involving both f and f ′. It is solved by all functions
of the form f(x) = µ exp(cx), µ ∈ R. Each value of µ defines a different solution, i.e. we
observe that the solution of a differential equation need not be unique.

The set of all solutions of a differential equation is called its general solution. To specify
a unique solution, additional conditions need to be imposed. For example, one might require
that the solution of Eq. (C159) obey a so-called boundary condition such as f(0) = 1. This
would fix a particular solution with µ = 1.

However, before turning to a more substantial discussion of the mathematics, let us argue
why differential equations are important to physics. Physics is about making quantitative
predictions for observable phenomena. For example, in celestial mechanics one might aim to
predict the position of a planet at a specified time in the future. Such predictions are obtained
on the basis of fundamental laws which categorically are formulated in ‘differential form’:
they state how a physical quantity X will change if physical quantity Y acts over a small
span of time or space. For example, Newton’s second law, mdtv = F, can be written as
v(t+ ∆t)− v(t) ' F(t)∆t. In this form it states how the velocity X = v of a body of mass
m changes if a force Y = F is applied over a small time ∆t. Similar equations encode the laws
of electrodynamics, quantum mechanics, relativity, and other fields. Predictions about physical
processes extending over finite intervals of time are obtained by solving such equations, where
the uniqueness of the solution requires specifying the boundary data. For example, Newton’s
equations for the motion of a planet has a unique solution specified in terms of the planet’s
initial position and velocity. This exemplifies the tight connection between physical prediction
making and the solution of differential equations, summarized in general terms in Fig. C23.

285



286 C7 Differential equations
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differential equations boundary data
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Figure C23: The role of differential equations in physics. Discussion, see text.

C7.2 Typology of differential equations

There exist many different types of differential equations: a DEQ can involve the first
derivative of a function, f ′, or higher-order derivatives, f (n), it may be an equation for a one
dimensional function, f(x), or for a higher-dimensional function, f(x), it may be an equation
for more than one function fi, i = 1, . . . , it may depend linearly on the function (as in our
example), or it may depend on f in complicated ways, etc. Different types of differential
equations call for distinct solution strategies and in many cases the solutions are unknown.

For all these reasons, the theory of differential equations is a field difficult to make an
overview of. It is therefore all the more important to know the most important criteria
for distinguishing between different types of differential equations and their mathematical
complexity:

. There exist two major families, ordinary and partial DEQs. Ordinary differential equa-
tions contain derivatives, dx, with respect to only one variable x. Partial differential
equations involve several variables, x1, x2, . . . and their derivatives, ∂x1 , ∂x2 , . . .

Examples:

dxf(x) = g(x), ordinary

(∂x − ∂t)f(x, t) = 0, partial.

. A differential equation of n-th order (Ordnung n) contains derivatives of nth and lower
order. The majority of differential equations relevant to physics are of order 2 or less.

Examples:

f ′(t) = g(t, f(t)), 1st order,

d2
tf(t) + dtf(t) = g(t, f(t)), 2nd order

. A system of differential equations is a set of m1 coupled differential equations.
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Example:

dtx(t) = v(t),

dtv(t) = f(x(t)).

. A linear differential equation contains the function in question only to linear order.
Nonlinear differential equations depend on the solution in more complicated ways.

Examples:

∂2
xφ(x) = −ρ(x) linear, ordinary, 2nd order (one-dimensional Poisson equation)

d2
tx(t) = c sin(x(t)) nonlinear, ordinary, 2nd order (eq. of mathematical pendulum).

In the following, we discuss the above classes separately and introduce different types of
solution strategies. The focus will be on ordinary DEQs which are much easier to solve than
partial DEQs. A few comments on the latter are included at the end of the chapter.

C7.3 Linear first-order equations

The simplest differential equations are linear in the solution function and of first order in
derivatives. An equation of this type can always be represented as (why?)

dtf(t) = g(t)f(t) + h(t), (C160)

where g and h are given functions, and f needs to be found. Equations of this form play an
important role in the theory of electric circuits and in signal processing. (In these applications,
f, g, h are functions of time and this is why the variable is denoted by t.)

The unique solution of a first order (not necessarily linear) DEQ requires the specification
of a single additional equation such as f(t0) = f0 where t0 and f0 are constants. In line with
the time-like interpretation of t, such conditions are called initial conditions. In section C7.6
we will explain why the equation needs precisely one initial condition to be uniquely solvable.
For notational convenience we set t0 = 0 throughout.

We first consider the so-called homogeneous equation defined by the absence of the
f -independent term, h = 0. This equation can be solved by a method known as ‘separation
of variables’ (see info section below) and the result reads

f(t) = f0 exp

(ˆ t

0

ds g(s)

)
. (C161)

That this is a solution is easily verified by computing f ′(t) = f0 exp(
´ t

0
ds′g(s)) dt

´ t
0

ds g(s) =
f(t)g(t). For t = 0, the integral vanishes and we obtain f(0) = f0 as required.
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INFO The solution (C161) is derived by a method known as separation of variables. This scheme

is applicable to all differential equations of the form

dtf(t) = g(t)h(f(t)), (C162)

where g and h are arbitrary functions. For h(f(t)) = f(t) this reduces to the linear equation

Eq. (C160). To understand the terminology ‘separation of variables’ we define y ≡ f(t) and rewrite

the equation as

dy

dt
= g(t)h(y).

Let us now temporarily replace the derivative by a quotient of differences, i.e. think of dy and dt as

finite quantities defined in such a way that limdt→0 dy/dt = y′. We may then rearrange the equation

as

dy

h(y)
= g(t)dt.

In this representation, variables have been ‘separated’ in that all y/t-dependence is on the left/right

side of the equation. In the final step, we ‘sum’ over the increments appearing on the two sides

of the equation between corresponding bounds, i.e. values between y0 and y1 on the l.h.s. and

corresponding time arguments t0 and t1 on the l.h.s. Using the symbol ‘
´

’ to represent a sum in the

limiting case of infinitely small increments this leads to

ˆ y1

y0

dy

h(y)
=

ˆ t1

t0

g(t)dt.

In the jargon of differential equations theory this is known as a solution up to quadrature. Here,

‘quadrature’ is historical terminology for integration, and what the term means is that the problem

is solved up to an integral over functions (1/h, g) which are given.

For example, in the case of a linear differential equation, h(y) = y, the l.h.s. integrates to

ln(y/y0). We may then exponentiate exp(ln(y1/y0)) = exp(
´ t

0 gdt) to obtain y1 = y0 exp(
´ t1
t0

dt).

A final relabelling of variables t→ s, t0 = 0, t1 = t, y0 = f0, y1 = f(t) leads to the solution (C161).

In section ?? we will show how the above cavalier treatment of the increments, dt,dy, can be

made precise. However, we also note that what counts in differential equation theory is to find

solutions. How these solutions are found is of secondary importance. One frequently has situations

where no clear solution strategy is known and ‘experimentation’ becomes necessary. Even if these

steps involve manipulations of dubious mathematical legitimacy, solutions may always be checked by

substitution into the DEQ.

We turn to the inhomogeneous differential equation (C160) with non-vanishing h. The
strategy to solve the general problem was introduced by Euler and is called variation of
constants. Euler’s proposal was to ‘vary the constant’ f0 of the homogeneous solution and
to replace it by a function f̃(t),

f(t) = f̃(t) eΦ(t), (C163)
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where we defined the abbreviation Φ(t) =
´ t

0
ds g(s). The question now is how to find a

function f̃ such that the DEQ is solved. To this end, we substitute the ansatz (C164) into
the equation and bring all f -dependence to the l.h.s. to obtain

(dt − g(t))
(
f̃(t)eΦ(t)

)
= (f̃ ′(t) + f̃Φ′(t)− f̃ g(t))eΦ(t) = f̃ ′(t)eΦ(t) !

= h(t),

where in the last step we used that Φ′(t) = g(t). This shows that f̃ is determined by the
condition f̃ ′ = e−Φh, i.e. f̃ is the principal function of e−Φh: f̃(t) =

´ t
0

ds h(s)e−Φ(s) + c,

where the constant c is determined by substitution of t = 0 into the equation, c = f̃(0). We
have thus obtained f̃(t) = f̃(0) +

´ t
0

ds h(s)e−Φ(s) and substitution of this result into (C163)
yields

f(t) = f̃(0)eΦ(t) + eΦ(t)

ˆ t

0

ds h(s) e−Φ(s).

At t = 0 the integral vanishes, Φ(0) = 0, and so the as yet undetermined value f̃(0) = f(0)
!

=
f0 is fixed by the boundary condition. This leads to the final result

f(t) = f0 e
´ t
0 ds g(s) +

ˆ t

0

ds h(s) e
´ t
s dr g(r). (C164)

(Verify that this result solves Eq. (C160).)

EXAMPLE Linear differential equations play an important role in applications. As an example,

consider a so-called RC-circuit containing a resistor of resistance R, a capacitor of capacitance C,

and a time dependent voltage source, V (t), in series.

We want to compute the time-dependent current flow, I(t), through the

circuit. According to Kirchhoff’s voltage law, the sum of the voltage drops

across each of the three circuit elements equals zero. The voltage drop at

the source is V (t), at the resistor it is RI (Ohm’s law), and at the capacitor

it is C−1Q, where Q = Q(t) is the time-dependent charge on the capacitor.

We thus have C−1Q(t) +RI(t) = V (t). We also know that the rate of change of the charge on the

capacitor is equal to the current, dtQ(t) = I(t). This leads to the inhomogeneous linear differential

equation

dtQ+
1

RC
Q =

V (t)

R
,

for the function Q(t). Comparing to Eq. (C160) we have the identification g = −1/RC and

h = V (t)/R. The integration over the constant function g yields
´

ds g = −s/RC and so the

general solution (C164) assumes the form

Q(t) = Q0e−t/RC +
1

R

ˆ t

0
ds V (s) e−(t−s)/RC .
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Differentiation w.r.t. time, t, yields

I(t) = − Q0

RC
e−t/RC − 1

R2C

ˆ t

0
ds V (s) e−(t−s)/RC +

V (t)

R
,

where the first two terms come from the differentiation of the exponential functions and the third

from the differentiation w.r.t. the upper limit of the integration boundary.The exponential factors in

the solution show that the system possesses an intrinsic RC-time, t0 = RC. This time scale sets

the rate at which the circuit responds to changes in the external voltage changes. Also note that

for constant voltage, V = const., the current vanishes for time scales t > t0 (try proving it): the

presence of the capacitor forbids a static current flow along the loop.

C7.4 Systems of first order linear differential equations

A system of first order linear differential equations is a set of first order DEQ’s for n
unknown functions (f 1, . . . , fn) which is linear in all f i. Using a ‘time-like’ notation, f i =
f i(t), this constrains the system to the form

ḟ 1(t) = a1
1(t)f 1(t) + a1

2(t)f 2(t) + . . . a1
n(t)fn(t) + g1(t),

...
...

ḟn(t) = an1(t)f 1(t) + an2(t)f 2(t) + . . . ann(t)fn(t) + gn(t),

where the coefficient’s aij(t) and gi(t) may be functions of t. Defining a matrix A = {aij} and
combining the functions f i into a vector, f = (f 1, . . . , fn)T , and likewise, g = (g1, . . . , gn)T ,
this assumes the compact form

ḟ(t) = A(t)f(t) + g(t). (C165)

General systems of this form can be difficult to solve. The problem becomes much easier in
cases where A(t) = A and g(t) = g are constant in time. This defines the so-called system
of first order linear differential equations with constant coefficients,

ḟ(t) = Af(t) + g. (C166)

The problem becomes even simpler if g = 0 and we have the homogeneous equation,

ḟ(t) = Af(t). (C167)

We next discuss how the system (C167) can be solved in closed form.

EXERCISE Consider the case n = 1, i.e. ḟ = af + g. Solve this DEQ with the initial condition

f(0) = f0.
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Solution of the homogeneous linear equation Eq. (C167)

The appearance of a matrix A in the system (C197) suggests considering its eigenvectors,
vi and eigenvalues, λi. Specifically, for an initial condition f0 ≡ cvi, c ∈ C, proportional to
one of the eigenvectors, the system is solved as

f(t) = ceλitvi.

This is readily checked by substitution, dtf = λif = λicvie
λit = cAvie

λit = Af . Assuming
that A is diagonalizable, i.e. that the set {vi} defines a basis of Cn, we may generalize this
result to a full solution of the problem:

1. Expand an arbitrary initial condition in terms of the eigenvectors,

f0 ≡
∑

i

civi, (C168)

2. to obtain the solution

f(t) =
∑

i

cieλitvi. (C169)

(Substitute Eq. (C169) into the differential equation to check that that it solves the equation
and is consistent with the initial conditions.)

INFO (Requires section L7.5.) Systems of linear equations play an important role in physics,

for example in classical (see the next section) and quantum mechanics. In these fields it is often

preferable to work with ‘invariant’ solutions of the system (C197), that is solutions not making

explicit reference to the eigenvectors of the matrix A. The structural similarity of the system (C197),

dt(solution) = (constant)×(solution) to the single linear equation (C159) indeed suggests that there

is an analogous solution, (solution)=exp((constant)×t), where the role of the constant must however

be taken by the matrix. Indeed, we may apply the methods of section L7.5 to define

f(t) = eAt f(0), (C170)

where the exponential exp(At) ≡ ∑n
1
n!(At)

n acts as a matrix on the vector of initial conditions.

That this is a solution can be checked by direct computation; let us compute

dtf = dte
Atf(0) = dt

∞∑

n=0

tn

n!
Anf(0)

=

∞∑

n=1

tn−1

(n− 1)!
An−1+1f(0) = A

∞∑

n=0

tn

n!
Anf(0) = A eAtf(0) = Af(t),

where in the fifth equality we relabeled the summation index, (n− 1)→ n.
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Eq. (C170) does not assume the matrix A to be diagonalizable. However, if it is, A = TDT−1,

we may use (L196), to reformulate the result as

f(t) = (T eDt T−1)f(0) = T eDt(T−1f(0)).

This equation establishes the relationship with the previous solution (C169). To see this, recall (cf.

section ??) that T = (v1, . . . ,vn) contains the eigenvectors of A as columns, Tei = vi. We may

then write the expansion of the initial condition in eigenvectors as f(0) =
∑

i c
i(Tei) which shows

that T−1f(0) =
∑

i c
iei. Substitution of this representation into the previous equation leads to

f(t) = T eDt
∑

i

eic
i = T

∑

i

eλiteic
i =

∑

i

eλitvic
i,

where in the second equality we used that the diagonal matrix, D, acts as Dei = λiei.

The solution of the inhomogeneous system of linear first order differential equations with
constant coefficients (C166) is left as an answered exercise.

Behavior of the solution

The behavior of the solution (C169) crucially depends on the eigenvalues λi. In the
exceptional case where all eigenvalues are imaginary, λi ∈ iR, the vector f(t) is a superposition
of n oscillatory contributions with frequencies λ−1

i , i.e. all factors exp(λit) = exp(i|λi|t) are
purely oscillatory in this case. More generally, if the eigenvalues are complex, the value λi
with the largest real part Reλi dominates the solution at large times. The reason is that
| exp(λit)| = exp((Reλi)t) is exponentially larger than all | exp(λjt)| = exp((Reλj)t), j 6= i
in this case. Without loss of generality, we assume that λ1 has the largest real part. (For
Reλj>1 < 0 this includes the possibilities of negative or vanishing real part of λ1.) In this
case we may approximate

f(t) ∼ c eλtv

for sufficiently large times where the superscript ‘1’ has been omitted for brevity. We now
have to discriminate between several different profiles of long-time solutions:

. For λ > 0 real and positive the solution grows exponentially, and

. For λ < 0 real and negative it shrinks to zero.

. For λ = iω purely imaginary the solution is oscillatory in time with frequency ω.

. For λ = c+ iω, c > 0 complex with positive real part the norm of the solution vector
grows exponentially and the vector itself performs oscillatory motion, while

. For λ = c+iω, c < 0 complex with negative real part the vector oscillates and shrinks.

In the next section we illustrate these different types of solutions with a concrete example.
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Figure C24: A massive particle acted upon by two springs, all in a tank filled by some viscous liquid.
If the deviation, q, of the particle away from the force balance point is small, then the force acting on
the particle will be approximately linear in q. The viscous medium acts on the particle by frictional
forces.

Application: Damped Oscillator

Phenomena described by linear differential equations include oscillations, damping by fric-
tional motion, or instabilities of mechanical systems. As an example, we consider a particle
of mass m attached to two springs, see Fig. C24. At the particle coordinate q = 0 the
net force F (q) exerted by the springs vanishes, F (0) = 0. We aim to describe what happens
at moderate deviations away from q = 0. For small deviations, the force acting to restore
equilibrium is linear in q, i.e. F = −mω2

0q, where ω0 > 0 is a constant. To make the problem
more realistic we assume the presence of a friction (Reibungskraft) force Ffr = −2mτ−1q̇
where τ−1 is a constant and the proportionality of the force to the inverse velocity means that
friction slows fast motion.

1
The differential equations describing the motion of the particle

then read

dtq = v,

dtv = −2τ−1v − ω2
0q, (C171)

where the first equation defines the velocity in terms of the particle coordinate and the second
is Newton’s law, F = ma = mdtv. The equations have to be solved with an initial condition
(q(0), p(0)) = (q0, v0). In matrix notation the problem assumes the form

dt

(
q
v

)
=

(
0 1
−ω2

0 −2τ−1

)(
q
v

)
,

where the 2 × 2 matrix now assumes the role of the matrix A of the previous section. Its
eigenvalues

λ± = −τ−1 ± i

√
ω2

0 −
1

τ 2
. (C172)

are straightforwardly obtained by solution of a quadratic equation and the corresponding eigen-
vectors are given by v± = (1, λ±)T . The general solution of the oscillator equation then
assumes the form

y(t) =

(
q(t)
v(t)

)
= c+

(
1
λ+

)
eλ+t + c−

(
1
λ−

)
eλ−t, (C173)

1

The microscopic origin of this force is molecules of the liquid colliding with the particle and thus impeding
its motion.
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where c± are constants determined by the initial conditions. For definiteness, let us consider
a situation where at time t = 0 the particle is released at coordinate q(0) = q0 and zero
velocity, v(0) = 0. We then have y0 = (q0, 0)T and the expansion of this starting vector
in the eigenvectors of the problem yields y0 = q0

λ−−λ+
(λ−v+ − λ+v−). Substitution of this

representation into the general solution yields the specific solution

y(t) =
q0

λ− − λ+

(
λ−v+eλ+t − λ+v−eλ−t

)
.

It is instructive to discuss the behavior of this solution in a number of physically distinct cases:

. In the frictionless case, τ−1 = 0, the eigenvalues λ± = ±iω0 are purely imaginary. We
then find

y(t) = q0

(
cos(ω0t)
−ω0 sin(ω0t)

)
,

i.e. the particle performs oscillatory motion at a frequency set by ω0. The trajectory y(t)
is shown in the bottom left panel of Fig. C25 and the corresponding q-coordinate in the
upper panel.

. For finite friction, 0 < τ−1 < ω0, the eigenvalues contain a negative real part. If the
friction coefficient is weak, τ−1 � ω0, we may approximate λ± ' −τ−1 ± iω0, and this
yields,

y(t) ' q0

(
cos(ω0t)

−mω0 sin(ω0t)

)
e−

t
τ +O(1/τω0).

The particle performs damped oscillations.

. Finally, for τ−1 > ω0, we are in the so-called over-damped regime. The eigenvalues are
now real. Considering the case τ−1 � ω0 for simplicity, a first-order Taylor expansion of
the square root in (C172) yields (τ−2 − ω2

0)1/2 ' τ−1 − τω2
0/2 implying λ+ ' −τω2

0/2
and λ− ' −τ−1 so that |λ+| � |λ−|. The large negative value of λ− makes contributions
proportional to exp(λ−t) damp down rapidly. We thus retain only the longer-lived terms
proportional to exp(λ+t), yielding

y(t) ' q0

(
1
−ω0

)
e−

τω2
0

2
t.

The damping is so strong that the particle no longer performs oscillatory motion. Instead,
it slowly ‘creeps’ from its point of origin back to the equilibrium position at q = 0.

C7.5 General nth order linear differential equation

A general ordinary linear differential equation can be written as

L̂(t)f(t) = g(t),
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Figure C25: Upper panel: coordinate q(t) of the particle shown in Fig. C24 in the case of no
damping (black, solid), finite damping (red, solid), and overdamping (black, dashed). Bottom: the
trajectories y(t) = (q(t), p(t))T of the particle.

L̂(t) = h(0)(t) + h(1)(t)
d

dt
+ h(2)(t)

d2

dt2
+ . . . , (C174)

where h(n)(t) are functions, and the ellipses represent terms containing higher order derivatives.
A few comments on this equation: (i) the formal expression L̂(t) is called a linear differential
operator. It is an ‘operator’ in the sense that

L̂(t)f(t) = h(0)(t)f(t) + h(1)(t)f ′(t) + h(2)(t)f
′′
(t) + . . . (C175)

operates on a function to produce a new function. The operator is linear because L̂(c1f1 +
c2f2) = c1L̂f1 +c2L̂f2, where we omitted the argument ‘t’ and c1,2 are constants. (ii) In prac-
tice linear differential equations of higher than second order occur rarely. Most equations
of relevance to physics are of first or second order. (iii) The unique solution of an nth oder lin-
ear differential equation requires the specification of n ‘boundary conditions’. For example,
the solution of a second order equation can be made unique by fixing two values, f(ti) = fi,
i = 1, 2, or by requiring f(t0) = f0, f ′(t1) = d0, etc. (iv) Linear differential equations play a
highly important role in physics. Key physical theories such as electrodynamics of quantum
mechanics are linear in the sense that their fundamental laws — the Maxwell equations and the
Schrödinger equation, respectively —

2
assume the form of linear differential equations. The

fundamental equations of other theories can be approximated by linear differential equations
in physically important limits. For example, the Einstein equations of general relativity afford
a ‘linearization’ and in this limit describe phenomena such as gravitational waves.

2

Both the Maxwell equations and the Schrödinger equation are partial linear equations, i.e. they contain
derivatives with respect to multiple variables. However, most of our below discussion relating to the linearity
of DEQs carries over to these cases.
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Even complicated-looking linear differential equations can often be solved. The weak spot
of these equations is, in fact, their linearity. To appreciate its implications, let f1 and f2 be
solutions to Eq. (C174) with inhomogeneity g1 and g2, respectively. The linearity of the equa-
tion then implies that c1f1 +c2f2 is a solution to the equation with inhomogeneity c1g1 +c2g2.
Of course the linear superposition of not just two but arbitrarily many inhomogeneities is given
by the corresponding superposition of the partial solutions. This feature, which is sometimes
called the superposition principle, suggests representing ‘complicated’ inhomogeneities as
sums of simpler ones, and first try to solve the equation for these. This solution strategy
goes by the name ‘Green function method’ and plays an important role, both in physics and
mathematics.

INFO The superposition principle has important physical ramifications. As an example, consider

Maxwell’s equations (to be discussed in section V7) whose solutions are electromagnetic fields gen-

erated in response to charges and currents, which assume the role of inhomogeneities. If two such

sources generate two electromagnetic fields, then the combined action of the sources will be the sum

or superposition of the fields. This physical superposition principle is responsible for phenomena such

as wave interference, i.e. the formation of superimposed wave patterns resulting from the addition

of individual waves.

Green function methods

Next to the vanishing function, g = 0, δ-functions arguably are the simplest of inhomo-
geneities. The function g(t) = δ(t− u) vanishes everywhere except for the point t = u, i.e. it
has minimal mathematical structure. For historical reasons, the solution of Eq. (C174) with a
δ-inhomogeneity

L̂G(t, u) = δ(t− u), (C176)

is called a Green function. Of course, the Green function depends on the position of the
singularity of the δ-inhomogeneity (i.e. for each u we have a different function) and its second
argument keeps track of this dependence.

George Green 1793–1841
He owned and worked a Nottingham wind-
mill. His only schooling consisted of four
terms in 1801/1802, and where he learned
his mathematical skills remains a mys-
tery. Green published only ten mathemat-
ical works, the first and most important at
his own expense in 1828, “An essay on the
application of mathematical analysis to the
theories of electricity and magnetism.” He
left his mill, became an undergraduate at
Cambridge in 1833 at the age of 40, then a
Fellow of Gonville and Caius College in 1839.

Assume we had managed to compute the
Green functions for all values of u. The dif-
ferential equation for general g is then es-
sentially under control. To understand why,
notice that any function g(t) may be repre-
sented as a superposition of δ-functions as

g(t) =

ˆ
du δ(t− u)g(u). (C177)

In this formula, the function g is represented
by a ‘sum’ (an integral, in fact) over all val-
ues of u. The constant, t-independent coef-
ficients in this sum are the values g(u), and
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the functions entering the superposition are
the δ-functions, δ(t− u).

h1

h2

hN

Figure C26: A function, g, can be approximately represented as a sum over unit height functions,
hi, of narrow width ε around the coordinates t = iε. In the limit of a large number of discretization
steps, the sum g(t) '∑i hi(t)g(iε) is a good approximation of the continuous function g(t). In the
limit ε→ 0, the scaled functions ε−1hi turn into functions δ(t−u), and the scaled sum ε

∑
i →
´
du

becomes an integral. This illustrates how the formal expression (C177) can be understood as a ‘sum’
over functions δ(t− u) with ‘weights’ g(u).

EXERCISE Formally, Eq. (C177) identity is proven by doing the integral over u and using the

defining property of the δ-function. However, in the present context, it is more useful to think of it

in the spirit of the discrete representation shown in the figure ??. Before reading the caption of that

figure discuss in what sense it shows a discrete representation of the continuum Eq. (C177).

The representation of the inhomogeneity, g, as a sum over δ-functions with ‘coefficients’, g(u),
implies that the solution of the differential equation, too, assumes the form of a sum,

f(t) =

ˆ
duG(t, u) g(u), (C178)

with the same coefficients, g(u). That this is a solution can be verified by direct computation.
Using that the differential operator, L̂(t), acts on functions of t, and is linear we obtain

L̂(t)f(t) =

ˆ
du (L̂(t)G(t, u)) g(u)

(C176)
=

ˆ
du δ(t− u)g(u) = g(t).
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However, as mentioned above, this solution is not unique unless boundary conditions are
provided. To an arbitrary solution, f , a solution f0 of the homogeneous differential equation,
L̂(t)f0(t) = 0, may be added to obtain another solution f(t) + f0(t) of the inhomogeneous
equation (L̂(f + f0) = L̂f + L̂f0 = g + 0 = g.) Conversely, two solutions f1,2 of the

inhomogeneous equation
3

differ by a solution of the homogeneous equation (L̂(f1 − f2) =
g − g = 0). This means that the general solution of the inhomogeneous equation can
be written as f + f0, where f is a fixed but arbitrary solution of the inhomogeneous equation,
and f0 runs through all solutions of the homogeneous problem. For a differential operator of
nth degree, the specification of n boundary conditions then selects a uniquely defined specific
solution.

4

Of course, the solution (C178) remains a formal expression as long as the Green functions
G(t, u) are not known. In the theory of inhomogeneous linear differential equations, the
computation of the Green functions is more or less equivalent to the solution of the problem.
Accordingly, sophisticated machinery for the computation of Green functions, both exactly and
approximately, have been developed, and their teaching is a standard subject of theoretical
physics courses. In the next section, we will discuss how Green functions of certain classes of
linear DEQs can be computed on a simple yet important example.

Figure C27: An oscillating particle subject to friction and external driving. Discussion, see text.

Application: Driven damped oscillator

REMARK Requires familiarity with chapter C6 on Fourier calculus.

Consider the damped oscillator problem described by Eq. (C171) extended to the presence of
an external driving force, ξ(t), cf. Fig. (C27). The external driving adds to the balance of
forces which means that the second of Eqs. (C171) generalizes to dtv = −2τ−1 − ω2

0q + ξ.
We substitute the first equation, dtq = v into the second to obtain the second order linear

3

Eq. (C178) does not specify a unique solution because prior to the fixation of boundary conditions the
Green function is not uniquely defined either. The addition of an arbitrary solution of the homogeneous
equation to the Green function then defines another valid Green function.

4

For a detailed discussion of why n conditions are required we refer to the specialized literature. Heuris-
tically, the statement follows from the fact that an nth order linear differential equation, can be transformed
to a system of n first order equations (cf. section C7.7 below for a general discussion of this statement).
In section (C7.6) we will show that a single first order equation requires the specification of one boundary
condition. A system of n equations, equivalent to a single equation of nth order therefore need n conditions.
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equation
(

d2
t +

2

τ
dt + ω2

0

)
q(t) = ξ(t). (C179)

Comparison with Eq. (C174) shows that the differential operator governing this equation,
L̂ = d2

t + 2τ−1dt + ω2
0 is of second order. Its weight functions, h(0) = ω2

0, h(1) = 2τ−1,
h(2) = 1 are coefficients, i.e. they do not depend on time, t, and this facilitates the solution
of the problem .

INFO The equation Eq. (C179) finds many applications in the natural sciences. Depending on

the context, it describes mechanical, electrical, chemical, or biological systems in which a quantity

of interest (q) is subject to effective forces restoring equilibrium (ω2
0), friction (τ−1), and external

influence (ξ). In the mechanical context, this situation is realized for the majority of ‘realistic’ systems

performing oscillatory motion. As an example of an electrical system described by these equations,

we mention a resonator, where the role of q is played by a time dependent voltage, oscillatory motion

is caused by the interplay of a capacitor (Kondensator) and a coil (Spule), friction by a resistor

(Widerstand), and the external forcing is due to an external voltage. For the discussion of this and

other applications we refer to specialized courses.

The Green function of the oscillator problem obeys the equation
(

d2
t +

2

τ
dt + ω2

0

)
G(t− u) = δ(t− u).

Its heuristic meaning is that of a solution of the problem in the presence of a δ-function force
acting only at time t = u. Due to the absence of time dependent coefficients we anticipate
the existence of a solution G(t, u) = G(t− u) depending only on the difference between the
time t at which the solution is evaluated and the time u at which the force acts (think about
this point). From this function, the desired q(t) is obtained as

q(t) =

ˆ
duG(t− u)ξ(u). (C180)

The key to the computation of the Green function lies in the Fourier transform iden-

tity (C138). Applied to a time dependent function it states that d̃tF (t) = −iωF̃ (ω). (The
relative minus sign is due to the fact that the Fourier transform of a time dependent func-
tion (C139) is defined with an exponent +iωt rather than the −ikx of the spatial transform.)

Repeated application of this identity leads to d̃nt F (t) = (−iω)nF̃ (ω), i.e. under the Fourier
transform derivatives dt can be converted to algebraic factors −iω. To make use of this
feature, we substitute t → t + u into the equation for the Green function to rewrite it as
(d2
t + 2τ−1dt + ω2

0)G(t) = δ(t). In a second step we Fourier transform both the left and the
right hand side to obtain

(
−ω2 − 2iω

τ
+ ω2

0

)
G̃(ω) = 1,
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where we noted that the Fourier transform of a δ-function equals unity, Eq. (C147). The
expression in parenthesis now has become an algebraic factor. We divide by it to obtain the
result

G̃(ω) =
1

−ω2 − 2iω
τ

+ ω2
0

. (C181)

This has been the most important step in the solution of the equation. We now know the
Fourier transform of the Green function, and this reduces the solution of the problem to the
computation of integrals. Depending on the type of the driving force, however, these integrals
may be non-trivial and one of three different strategies may be favorable:

. One may first compute the inverse Fourier transform of the Green function to obtain
(cf. Eq. (C139))

G(t) =

ˆ
dω

2π
e−iωtG(ω). (C182)

The solution is then obtained by substitution of the result into Eq. (C180). For complete-
ness, we discuss the behavior of the function G(t) in the info section below.

. Alternatively one may observe that the solution of the problem has the form of a convo-
lution q(t) =

´
duG(t− u)ξ(u) = (G ∗ ξ)(t) of the Green function and the driving force.

Eq. (C144) then implies that q̃(ω) = G(ω)ξ(ω): the Fourier transform of the solution is
obtained as the product of the Green function (C181) and the Fourier transform, ξ̃(ω) of
the driving force (which needs to be computed from the given ξ(t)). In a final step, one
computes q(t) from q̃(ω).

. For driving forces with simple time dependence it may be preferable to compute the result
by direct substitution of the formal representation Eq. (C182) into Eq. (??). We give an
example of this strategy in the second info section below.

-5 5 10 15 20
t

-0.2

0.2

0.4

0.6

0.8

1.0

G

Figure C28: Green function of the harmonic oscillator for the underdamped configuration, ω/τ = 1/4.

INFO Let us discuss the temporal behavior of the harmonic oscillator Green function. The

inverse Fourier integral Eq. (C182) leading from G̃(ω) to G(t) actually is hard to do, unless one
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computes it by the complex function techniques introduces in chapter C9. As shown in the example

on p. 336, the result in the underdamped regime, |ω0| > τ−1 is given by

G(t− u) =
1

ω̃
sin(ω̃(t− u)) exp

(
− t
τ

)
Θ(t− u) +G0(t− u), ω̃ ≡ (ω2 − τ−1)1/2, (C183)

where Θ(t) is the Heaviside step function (C118), and G0(t) is an arbitrary solution of the ho-

mogeneous equation. In Eq. (??) these have been identified as the q-component of the general

homogeneous solution Eq. (C173), which in the presently used notation assumes the form

G0(t) = exp

(
− t
τ

)
(c+eiω̃t + c−e−iω̃t).

The two undetermined constants of the general solution, c±, are sitting in the homogeneous solution.

Notice that, regardless of the choice of these constants, it decays exponentially in time. A very natural

choice of boundary conditions would be G(t→ ±∞) = 0, i.e. the vanishing of the oscillatory motion

at both negative infinity, prior to the action of the δ-function, and at positive infinity when the

damped oscillation has fully relaxed. This requires the choice c± = 0, and consequently G0 = 0.

In this case, the Green function is given by the first term in Eq. (C183), and affords an intuitive

interpretation: prior to the action of the δ-function force at t = u the oscillator is at rest, G(t−u) = 0.

At t = u it starts to perform oscillatory motion, attenuated by the damping rate τ .

INFO As an example of the third solution strategy mentioned above, let us consider an harmonic
oscillator subject to periodic driving ξ(t) = ξ0 cos(ωdt). We use the Euler formula Eq. (C92),

substitute Eq. (C182) into Eq. (C180) and obtain

q(t) =
ξ0

2

ˆ
du

ˆ
dω

2π

(e−iωdu + eiωdu)e−iω(t−u)

−ω2 − 2iω
τ + ω2

0

=

=
ξ0

2

ˆ
dω

2π

(δ(ω − ωd) + δ(ω + ωd))e−iωt

−ω2 − 2iω
τ + ω2

0

=

= −Re
ξ0 e−iωdt

ω2
d + 2iωd

τ − ω2
0

= − ξ0

(ω2
0 − ω2

d)2 +
ω2

d

(2τ)2

(
(ω2

0 − ω2
d) cos(ωdt) +

2ωd
τ

sin(ωdt)

)

where in the second line Eq. (C134) was used in its frequency/time incarnation,
´

du exp(iεu) =

2πδ(ε). The subsequent integral of the δ-function over the frequency argument leads to the stated

result.

For an in-depth discussion of this result we refer to lecture courses in mechanics. Notice, however,

that time dependence of the forced oscillations is periodic (sin / cos) in the driving frequency, and that

the amplitude becomes largest when the driving frequency ωd = ω0 equals the intrinsic frequency

of the oscillator. This observation is at the root of all resonance phenomena. In the limit of

small damping, ω → 0, the response may actually diverge at the resonance frequency. Resonance

phenomena may occur in the presence of even moderate forcing (the strength of the prefactor, ξ0)

if only the damping is weak enough. As an example, we mention the evacuation of TechnoMart, a

37 story high rise in Seoul, in 2011, which became necessary due to a resonance building up when a

group of only 17 aerobic enthusiasts performed a rhythmic exercise.
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Linear algebraic interpretation of the Green function

REMARK Requires chapter L10

Although the construction of the Green function solution scheme follows a well motivated logic,
it may look somewhat alien to first time readers. It turns out, however, that the formalism
becomes rather transparent when interpreted from the perspective of linear algebra. To this
end, let us consider the functions f and g in (C174) as infinite dimensional limits of finite
dimensional vectors f and g. The linear operator, L̂, then acts as finite dimensional linear
map, L, and the linear DEQ assumes the form of a matrix equation Lf = g. When written in
this form, it is evident how to solve the equation: multiply from the left by the inverse of the
linear map (assuming that it exists), to obtain f = L−1g, or f i = (L−1)ijg

j. In the infinite
dimensional limit, vector components become function values, f i → f(t), and sums become
integrals. The solution equation will therefore assume the form

f(t) =

ˆ
du (L̂−1)(t, u)g(u).

Comparison with Eq. (C178) shows that

G(t, u) = (L̂−1)(t, u), (C184)

The Green function is the inverse of the operator defining a linear differential equation.

To connect this general view with the concrete formulae used to compute the Green function
above, recall that the inverse of a matrix is defined as LijG

j
k = δik. In the limit, δik → δ(t−u)

becomes a δ-function, and so the equation should assume the form
´

dv L̂(t, v)G(v, u) =
δ(t−u). This looks almost, but not quite like Eq. (C176), the seeming discrepancy being that
the latter does not contain an integral over the running variable, v. The reason for this is that
L̂ is not a totally generic linear operator in function space but one that is ‘almost diagonal’
(see info block below). Much like the application of a diagonal matrix, Di

j = diδij to a generic

matrix, (DA)ij = diAij does not contain an index summation, (L̂f)(t) = L̂(t)f(t) does not
contain an integral over a running variable. Likewise, the defining equation for the continuum
inverse assumes the form, L̂(t)G(t, u) = δ(t, u), and this completes the identification of the
Green function as an operator inverse.

There remains one unexplained subtlety, though. In our discussion above we talked a lot
about ‘homogeneous solutions’ of the equation, L̂f = 0. In the finite dimensional context
this becomes Lf = 0, i.e. the existence of a non-vanishing homogeneous solution would be
equivalent to the existence of a zero eigenvalue, in conflict with the assumed invertibility of
the operator. There is, however, no reason for concern: prior to fixing the boundary conditions
the operator L̂ is indeed not invertible. In our discussion above this showed in the absence
of a uniquely defined Green function. After fixing boundary conditions, invertibility is granted
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and G is uniquely specified.
5

INFO Let us try to understand in what sense a differential operator corresponds to an almost
diagonal matrix. A derivative acts on a function as dtf(t) = limδ→0(f(t + δ) − f(t)). In a

representation discretized as t = iδ this corresponds to the ‘discrete derivative’ (df)i ≡ f i+1 − f i.
The matrix representing d is given contains 1 on the main diagonal and −1 on its neighboring

diagonal: dij = δi+1
j − δij . Upon multiplying this matrix with a function, (df)i = dijf

j =

f i+1−f i, the j-index summation collapses to just two terms. Likewise, the continuum representation

(df)(t) =
´

du d(t, u)f(u) = dtf(t) does not contain an integral over an intermediate variable. If

we multiply matrices to represent higher derivatives, dn ↔ dnt , the diagonals ‘shift’, for example,

(d2f)i = fi+2 − 2fi+1 + fi, however the fact remains that in the limit of very large dimensions, the

representing matrices look almost diagonal. The multiplication of derivatives with time dependent

functions, h(t)dt ↔ hi(δ
i+1

j − δij) does not change this structure, either. This explains the absence

of integrals in the product L̂G.

Importantly, however, the inverse of an almost diagonal matrix need not be almost diagonal at

all. This is exemplified by the fact that G, the inverse of the almost diagonal L̂, has non-vanishing

‘matrix elements’, G(t, u) even for large separations |t−u|. As an instructive exercise, try to compute

the inverse of dij for low matrix dimensions (or even general matrix dimension, if you are feeling

ambitious) to explore this point.

C7.6 General first-order differential equation

Consider the first-order differential equation

dtf(t) = g(f(t), t), (C185)

where g = g(x, t) may be a general function. If that function does not depend on the
argument, t, i.e. if g = g(x) the DEQ

dtf(t) = g(f(t)) (C186)

is called an autonomous differential equation.

5

In this argument we tacitly assume that the assumed boundary conditions define a function space. For
example, the conditions f(±∞) = 0 satisfy this criterion: the linear combination of two functions vanishing
at infinity again vanishes at infinity. However, the f(t1) = f(t2) = 1 is an example of boundary conditions
not defining a function space. For the rigorous algebraic interpretation of this situation we refer to specialized
courses on differential equations.
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Figure C29: Left: Logistic growth for system parameters Γ = 100, f0 = 1, and c = 0.01, 0.02, 0.03,
where the largest value of c corresponds to the steepest growth. Notice that the vertical axis is in
logarithmic units. Right: Demographic predictions of world population growth.

Solution of the autonomous equation

The autonomous equation can be solved by separation of variables (cf. info section on
p. 287):

df

dt
= g(f)⇒ df

g(f)
= dt⇒

ˆ f(t)

f0

df

g(f)
=

ˆ t

0

dt = t. (C187)

The integral defines a solution of Eq. (C186) with initial condition f(0) = f0. That it is a
solution may be checked by differentiating the left and the right hand side w.r.t. t. Application

of the chain rule gives dt
´ f(t)

f0

df
g(f)

=
(
df
´ f
f0

df ′

g(f ′)

)∣∣
f=f(t)

dtf(t) = 1
g(f(t))

dtf which should be

equal to dtt = 1. Equating the two results, we get back to the differential equation. To obtain
f(t) in more explicit terms, the integral in Eq. (C187) needs to be done. Denoting the result
by F (f) ≡

´
df 1

g(f)
one then obtains the algebraic equation

6
F (f(t)) − F (0) = t. The

solution of this equation for f(t) finally leads to the solution of Eq. (C186)

f(t) = F−1(t+ F (f0)), F (f) =

ˆ
df

g(f)
, (C188)

where F−1 is the inverse function of F .
7

EXAMPLE Consider the so-called logistic differential equation

dtf = cf(Γ− f),

6

An algebraic equation contains no derivatives.
7

The existence of an inverse of F is equivalent to the solvability of the differential equation.
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where c and Γ are positive constants. This equation is often employed to model population growth.

The rationale is that a small population of individuals will initially grow at a constant rate. Denoting

the population size by f and the growth rate by cΓ this is described by the linear equation dtf = cΓf .

This equation predicts exponential growth, f(t) = f0 exp(cΓ). The logistic equation takes into

account that at some point the host medium will reach its load capacity and the exponential growth

must come to an end. In the equation this is described by a diminishing of the growth rate dtf as

f ↗ Γ. Applying the procedure outlined above, we compute

F (f) =

ˆ
df

cf(Γ− f)
=

1

cΓ
ln

(
f

Γ− f

)
.

The function f(t) is then obtained by solution of F (f(t))− F (f0) = t which readily leads to

f(t) =
Γf0

(Γ− f0)e−cΓt + f0
.

A plot of f for different growth rates, c, is shown in the left panel of Fig. C29. The right panel

shows predictions for the population growth on various continents. Can we interpret these as logistic

growth profiles?

For the solution theory of the non-autonomous first order DEQ we refer to the specialized
literature.

Existence of solution

The general first order equation is important in its own right, but also features as a building
block in the solution of more complex equations. An important question to ask, therefore, is
whether the DEQ (C185) always possesses a solution and if yes whether its solutions are unique.
In the following, we explore this question for the autonomous equation. (The construction for
its non-autonomous generalization is similiar.)

g

g̃

The answer is that Eq. (C185) does possess a unique
solution provided that an initial condition f(0) = f0

at the ‘left end’ of the interval I = [0, L] is specified
and g(f, t) does not vary too rapidly as a function of
f . To formulate the latter condition in more precise
terms we need to introduce the notion of Lipschitz
continuity.

A function g : I → R is called Lipschitz contin-
uous, if

∃K ∈ R+ : ∀x, y ∈ I : |g(x)− g(y)| ≤ K|x− y|.

The visual interpretation of this statement is shown in the figure: the graph, {(y, g(y))|y ∈ I},
of a Lipschitz continuous function, g, with Lipschitz constant, K, is such that for all points
(y, g(y)) it lies outside a cone bounded by two lines with slope K and −K, respectively,
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intersecting at that point. The function g in the figure satisfies this criterion whereas g̃
does not. In essence, the condition states that nowhere does the derivative of g become
infinitely large. For example, the function

√
|x| is not Lipschitz continuous at x = 0, where

limx↘0

√
x
′
= 1

2
√
x

diverges.
Lipschitz continuity is required for the existence and uniqueness of solutions of DEQs. The

idea of the existence proof is that the differential equation (C186) becomes equivalent to the
∆t→ 0 limit of the discrete equations

f(t+ ∆t) ' f(t) + ∆t g(f(t̃)).

provided the function g does not fluctuate too wildly. Under this condition t̃ ∈ [t, t + ∆t]
may be chosen arbitrarily and in the limit ∆t → 0 the discrete expression converges to
the differential equation. The degree of continuity required to grant the existence of the
limit is expressed by the Lipschitz condition. To see this, we define t̃ = t + ε and write
g(f(t̃)) ' g(f(t) + εf ′(t)) = g(f(t)) + X where |X| ≤ Kε|f ′(t)| ≤ K|f ′(t)|∆t, and K is a
Lipschitz constant for g. The error X introduced by the ambiguity in choosing the evaluation
point t̃ is of O(∆t), so we have

f(t+ ∆t) = f(t) + ∆tg(f(t)) +O(∆t2),

where the abbreviated notation g(f) = g(f, t) has been used. We conclude that f(t + ∆t)
may be obtained from f(t) up to an error vanishing in the limit ∆t→ 0, provided g is Lipschitz
continuous. Under this condition the full solution may be constructed iteratively, starting from
t = 0:

f(0) = f0,

f(∆t) = f0 + ∆t g(f0),

f(2∆t) = f(∆t) + ∆t g(f(∆t)) = f0 + ∆t g(f0) + ∆t g(f(∆t))

f(3∆t) = f(2∆t) + ∆tg(f(2∆t) = f0 + ∆t g(f0) + ∆t g(f(∆t)) + ∆t g(f(2∆t))

...
...

Notice that in the limit ∆t→ 0 this expression converges to the integral equation f(t) = f0 +´ t
0

dt g(f(t)). Differentiation of the left and the right hand side makes the equivalence of the
integral equation to the DEQ (C186) explicit. However, the main point of the discussion is that
for Lipschitz continuous g a unique solution is constructible by iteration. The mathematically
precise formulation of these statements is made by the Picard-Lindelöf theorem discussed
in mathematics courses on differential equations.

C7.7 nth-order differential equation

We next consider DEQs of higher order in the number of derivatives. For example, the
Newton equation q̈ = 1

m
F (q) is an equation relating second derivatives of the coordinate
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function q to a force F (q). The generalization to a generic nth-order differential equation
is often expressed in the form

G(f (n)(t), f (n−1)(t), f (n−2)(t), . . . , f (0)(t), t) = 0, (C189)

with an arbitrary function G(y1, . . . , yn+1, t).
8

(The Newton equation fits into this scheme
as q̈ − 1

m
F (q) = 0, i.e. G(y1, y2) = y1 − 1

m
F (y2)).) It is often convenient to transform

this equation into an equivalent system of first order equations. To this end, a set of n
functions x1(t) ≡ f(t), x2(t) ≡ f (1)(t) = dtx

1(t), . . . , xn(t) ≡ f (n−1)(t) = dtx
n−1(t) is

defined. The differential equation (C189) then becomes equivalent to the system of n first-
order differential equations,

dtx
1 = x2,

dtx
2 = x3,

...
...

dtx
n−1 = xn,

G(dtx
n, xn, xn−1, . . . , x1, t) = 0, (C190)

for the vector of functions x = (x1, . . . , xn)T . Once x(t) is found, the function of interest,
f = x1, is given by the first component of the solution vector. Although the system of
n first order equations amounts to just a rewriting of the original problem this change of
representation is often advantageous. Specifically, we will see in the next section that systems
of first order differential equations can be handled using powerful geometric methods.

EXAMPLE Turning back to the one-dimensional Newton equation,

q̈ =
1

m
F (q),

we define the vector xT ≡ (q, p) comprising the particle’s coordinate, x1 = q, and the particle’s

momentum, x2 = p = mv = mdtq.
9

The Newton equation can now be equivalently expressed as

dtq =
1

m
p,

dtp = F (q).

This representation appeared before in section ??. In an analogous manner, Newton’s equation in

d-dimensional space, q̈ = 1
mF(q), assumes the form

dtq =
1

m
p,

dtp = F(q),

8

The first equation discussed in the previous section is a special case of this structure, i.e. f ′(t) =
g(f(t), t)⇔ G(f ′(t), f(t), t) = 0 where G(y1, y2, y3) = y1 − g(y2, y3).

9

Slightly deviating from the general scheme, a constant, m, is included in the definition of x2 = mdtx
1.
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which is a first-order equation for the 2d-component vector x ≡ ( q
p ). The 2d-dimensional space

hosting the vectors x is called the phase space (Phasenraum) of a mechanical system. It plays an

important role in the modern theory of mechanical systems.

Systems of first-order equations

In the previous section we have seen how an nth-order differential equation can be trans-
formed to a particular system of first-order equations (C190). The general system of coupled
first-order differential equations is defined by

10

dtx
1 = f1(x1, x2, . . . , xn, t),

dtx
2 = f2(x1, x2, . . . , xn, t),

...
...

dtx
n = fn(x1, x2, . . . , xn, t), (C191)

where xi = xi(t) are the desired solutions. We introduce a compact vector notation x ≡
(x1, . . . , xn)T , f = (f 1, . . . , fn)T , to represent the system as

dtx(t) = f(x(t), t). (C192)

This notation suggests an interpretation of x(t) as a curve. The curve is defined by the
condition that at every instant of time, t, its velocity, dtx(t), equals the given vector function
f(x(t)). If the function f does not carry explicit time dependence, f(x, t) = f(x), the system
is called autonomous.

Systems of first-order differential equations play an important role not only in physics but
also in biology, chemistry, engineering, and the social sciences. They are used to describe the
time evolution of multi-component quantities (the coordinates and momenta of a mechani-
cal system, the concentrations of chemical compounds, the population numbers describing a
multi-species habitat, the stock market value of a system of companies, etc.) in response to
‘forces’ driving that evolution (generalized forces, chemical reactions, environmental changes,
economic market forces, etc.). The connection between cause and effect is then represented in
terms of a system of differential equations where the coupling between the equations expresses
the interaction between the agents of the systems.

EXAMPLE Let us illustrate the application of coupled first order DEQs with a toy model for eco-

logical inter-dependence, the Lotka-Volterra (LV) system.
11

The LV system describes a population

of f predators (foxes) r prey (rabbits), x = (r, f)T . It is assumed that the number of rabbits

proliferates at a constant rate, α, and diminishes at a rate βf due to the presence of the f foxes.

10

Eq. (C191) fits into this scheme by defining f i(x1, . . . , xn, t) = xi+1, i = 1, . . . , n − 1 and solving the
algebraic equation G(dtx

n, xn, . . . , x1, t) = 0 for dtx
n as dtx

n ≡ fn(x1, . . . , xn, t).
11

A.J. Lotka, Elements of Physical Biology, Williams and Wilkins, (1925); V. Volterra, Variazioni e flut-
tuazioni del numero dindividui in specie animali conviventi, Mem. Acad. Lincei Roma 2, 31 (1926).
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Conversely, the population of the foxes is controlled by a mortality rate, γ, and a proliferation rate,

δr, proportional to the available food ressources, i.e. the rabbit population. Cast in the form of a

system of two differential equations, this model assumes the form

0.5 1 1.5
r0

1

2
f

dtr = (α− βf)r,

dtf = (−γ + δr)f. (C193)

The analytic solution of this system of equations is possible but com-

plicated. The plot of numerically computed solutions shows a periodic

pattern in the population balance: an abundance of rabbits causes a

flourishing of the fox population which leads to a decimation of the rab-

bits. This in turn suppresses the fox population, and the cycle starts

again.

Observe that the system possesses a so-called fixed point, where

the populations remain stationary: for f = f∗ ≡ α/β, r = r∗ ≡ γ/δ

the right hand side of the system vanishes, which means that dtr = dtf = 0. Consequently the

populations remain stationary. Fixed points are important characteristics of systems of DEQs in

general. Methods of finding them and exploring what happens in their vicinity will be introduced in

the next section.

Although the LV system is based on oversimplifying assumptions it describes important aspects

of population fluctuations. More complicated models of ecological systems are often constructed

by generalization of LV-type differential equations. Generally speaking, finite systems of equations

can never faithfully describe ‘reality’. The goal of modeling nature or society in terms of systems

of differential equations is to reduce real world processes down to a manageable level of complexity

which is still sufficiently ‘realistic’ to have predictive power.

Only in exceptional cases can systems of DEQs be solved in
closed form and this motivates the development of qualita-
tive methods for their description. One frequently employs
a language in which t is considered as a time-like variable,
and the system (C191) interpreted as a ‘dynamical sys-
tem’. For a given x, the curve x(t) solving the system with
initial condition x(0) = x is called a trajectory of the
DEQ. The full information on all trajectories is carried by

the flow of the DEQ. Mathematically, the flow is a map

Φ : I ×M →M,

(t,x) 7→ Φt(x), (C194)

where I a time interval and M , the domain of definition of the functions x, is often called the
phase space of the system.

12
The flow map obeys the condition Φ0(x) = x. For finite t, the

12

The phase space defined by the time dependent coordinates and momenta (q,p)T of a mechanical
system is an important example of this notion. In fact, physicists tend to reserve the term ‘phase space’ for
this particular realization.
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flow Φt(x) = x(t) is defined by the trajectory through x. As such it obeys the composition
rule,

Φt+s(x) = x(t+ s) = Φt(Φs(x)),

i.e. the trajectory point x(t+ s) can be understood as the endpoint of a trajectory of duration
t starting at x(s) = Φs(x). This composition rule can be used to extend the definition of flow
to negative times: x = Φ0(x) = Φt+(−t)(x) = Φ−t(Φt(x)). Also notice that

dtΦt(x) = dtx(t) = f(x(t)) = f(Φt(x)),

i.e. considered as a function of t the flow is a solution of the DEQ. Plotting the flow lines Φt(x)
for a set of initial points x gives the trajectories starting at these points. In the exceptional
case of a stationary flow, Φt(x

∗) = x∗, we call the point x∗ a stationary point, or a fixed
point of the system. The fixed-point property is equivalent to the condition dtx

∗ = f(x∗) = 0.
Finding the fixed points is, thus, equivalent to finding the zeros of f , and this is usually the
first step in the analysis of a system of DEQs. In a second step, one then analyses the behavior
of the system in the vicinity of its stationary points.

Deterministic chaos: introduction in a nutshell

Before turning to the discussion of near-fixed-point dynam-
ics, let us stay for a moment at the global level. In the
previous section we argued that a DEQ possesses a unique
solution provided the defining function g is sufficiently well-
behaved. That existence criterion can be generalized to
systems of DEQs: we are granted unique solutions if initial
conditions have been specified and f obeys a generalized
Lipschitz criterion.

Often, however, the formal existence criterion is of only
limited practical usefulness. The reason is that the flows
of many systems of DEQs exhibit the phenomenon of deterministic chaos. A defining
feature of chaotic flows is their exponential sensitivity to initial conditions: consider two initial
configurations x0 and x0 + δx where |δx| is ‘infinitesimally’ small. If the flow is chaotic
the trajectories Φx0(t) and Φx0+δx(t) starting from these configurations will deviate strongly
from each other no matter how small the initial displacement |δx|. The deviation grows
exponentially in time, i.e. there exists a so-called Lyapunov exponent, λ, such that

|Φx+δx(t)−Φx(t)| ∼ |δx| exp(λt). (C195)

This means that for times t � λ−1 even tiny changes in the initial conditions take a drastic
effect on the course of the trajectory. The mathematician and meteorologist Edward Lorenz
described this phenomenon by saying that the flap of a butterfly’s wings in Brazil could set
off a tornado in Texas.
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Figure C30: A single component (x) of two trajectories (black and red) of the Lorenz system (C196).
Both trajectories are computed for the parameters σ = 10, ρ = 28, β = 8/3, but are started using
slightly different initial conditions x0 = (x0, y0, z0) = (1, 1, 1) and (1.01, 1, 1), respectively. While
for short times the trajectories are visually indistinguishable, the uncontrolled growth of the relative
deviation becomes apparent at times t ∼ 2 (arbitrary units).

EXAMPLE The phenomenon of chaos occurs even in very simple systems. For example, the

n = 3 system

dx

dt
= σ(y − x),

dy

dt
= x(ρ− z)− y,

dz

dt
= xy − βz, (C196)

with constants σ, ρ, β was proposed by Lorenz
13

as a model of atmospheric convection phenomena.

In spite of its relatively simple form – three functions f i of quadratic order in the variables (x, y, z)

– it cannot be solved analytically. However, a numerical solution reveals its sensitivity to variations

in the boundary conditions, as shown in Fig. C30.

The structure of a typical trajectory in the three dimensional space of variables is illustrated in

Fig. C31. The panels of the figure show the curve Φx0
(t) at times t = 0.1, 0.3, 1.5, 5. These values

correspond to different dynamical stages of the dynamics, also visible in Fig. C30: an initial sweep

from the starting point to a center region t . 0.1, followed by a spiraling motion (t . 1.5). At

larger times, the trajectory traces out a two-winged structure known as the Lorenz attractor. This

is an example of a strange attractor, a region in space which binds trajectories to it. The attribute

‘strange’ is well deserved. Trajectories captured by the Lorenz attractor perform perpetual motion

about it and their flow traces an infinitely filigree pattern of ‘fractal geometry’. This defines an

object that looks almost, but not quite, like a ‘surface’ in space. In mathematics, these structures are

characterized in terms of a fractal dimension (d ' 2.05 for the Lorenz attractor). The fascinating

physics and mathematics of chaotic dynamics is explored in fields including chaos theory, nonlinear
dynamics, and turbulence and for further discussion we refer to texts introducing these disciplines.

13

E.N. Lorenz, Deterministic non-periodic flow. Journal of the Atmospheric Sciences 20, 130 (1963).
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Figure C31: A trajectory of the Lorenz system with boundary condition (1, 1, 1), as in Fig. C30. The
inset figures illustrate different stages of the dynamics, as discussed in the text.

C7.8 Linearizing differential equations

Consider a set of differential equations for a solution vector x = (x1, . . . , xn). It may be
expedient to think of x as the vector of coordinates specifying a complex mechanical system,
or that of populations in a biological context. Let us assume that the system is initially at
rest. In mathematical terms, this means that it is initialized at a stationary point x∗ of a
differential equation dtx = f(x) where f is the vector of generalized forces describing the
evolution. A ‘perturbation’ of the system will cause a deviations away from the stationary
point, x∗ → x∗+y. Since x+y no longer is a stationary point, y(t) now becomes a function
of time. For example, it may perform a damped oscillatory motion describing the vibrational
relaxation, y(t) ↘ 0, of an elastic mechanical system. However, the perturbation may also
cause more dramatic effects. For example, the small perturbation of a spherical body initially
at rest on the top a hill may cause accelerated motion away from the initial configuration.

Even if the full equation, dtx = f(x), describing the system is complicated, motion in
the vicinity of fixed points can generally be described analytically. To understand how, we
substitute x = x∗ + y into the equation and obtain

dt(x
∗ + y) = dty = f(x∗ + y),

where dtx
∗ = f(x∗) = 0 was used. For sufficiently small y we may Taylor expand the r.h.s.

to first order in the small increment y. Eq. (C103) then tells us that

f i(x∗ + y) ' f i(x∗) + y · ∇f i(x∗) =
∑

j

∂f i(x∗)

∂xj
yj

where the fixed-point condition f i(x∗) = 0 was used again. From these equations we obtain
the system of linear differential equations with constant coefficients

dty
i =

n∑

j=1

Aij y
j, Aij =

∂f i(x∗)

∂xj
,
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for the deviations yi. The constancy (i.e. independence of time) of the coefficient matrix A
follows from its definition as a fixed point property. Formulated in vector/matrix notation, the
equation assumes the compact form

dty = Ay. (C197)

We may now relate back to our discussion of section C7.4 to predict the different types
of dynamics in the vicinity of fixed points. The structure of the general solution (C169)
implies that everything depends on the structure of A’s eigenvalues, λi. These eigenvalues are
generally complex and depending on their value one may observe either:

. Oscillatory motion around the fixed point: all eigenvalues purely imaginary, Re(λi) = 0,

. Damped oscillatory motion: eigenvalues have finite negative real part, Re(λi) < 0,

. Attenuated motion back to the fixed point: eigenvalues real and negative, Re(λi) < 0,
Im(λi) = 0,

. Instability: the exist eigenvalues with positive real part, Re(λi) > 0, for at least one i.

In the latter case the system is unstable, and will diverge from its fixed point. In such cases,
the condition that the deviation y is small holds only for short timescales and different solution
methods must be applied to describe the dynamics at longer timescales.

C7.9 Partial differential equations

Partial differential equations are differential equations involving derivatives w.r.t. several
variables. A simple example is the wave equation in one dimension,

(v2∂2
t − ∂2

x)u(x, t) = 0, (C198)

where x and t are a spatial and temporal coordinate, respectively, v is a constant and u(x, t)
is a function representing the medium undergoing wave-like motion (the pressure of a gas, the
height of a water wave, etc.).

From a physical perspective, the two most important facts about differential equations are:

. They are of profound importance to all disciplines of physics. This follows from our rea-
soning in section C7.1: the laws of physics are naturally expressed in terms of differential
equations and most involve more than one variable.

. Their solution theory is much more complex than that of ordinary differential equations.

Partial differential equations take center stage in the physics curriculum, examples include the
Hamilton equations (mechanics), the Maxwell equations (electrodynamics), the Schrödinger
equation (quantum mechanics), or the Einstein equations (general relativity). Due to the
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mathematical complexity of these equations, lecture courses generally invest a lot of effort
into discussing solution schemes for the families of DEQs relevant to them.

The typology of partial DEQs, too, is much richer than that of ordinary DEQs. Again,
we have to discriminate between linear and non-linear equations, or equations of different
order. On top of that, however, there exist other criteria classifying different types of partial
DEQs whose discussion is beyond the scope of this text. Also, the question of existence
and uniqueness of solutions becomes more complicated. For example, it is straightforward
to verify that for arbitrary one-dimensional functions f and g, u1(x, t) ≡ f(x − vt) and
u2(x, t) ≡ g(x + vt) solve equation (C198). This illustrates that it is not enough to specify
an ‘initial condition’: for f = g, the two solutions obey the same initial condition u1(x, 0) =
u2(x, 0) = f(x), but for finite times they are clearly distinct. In the case of the wave equation,
different information is required to fix a solution.

14

How do we know that ‘all’ general solutions of a partial DEQ have been found? How much
additional information is required to uniquely specify a unique solution and in what ‘form’ can
this information be provided? These are questions of considerable depth which are addressed
in mathematics lecture courses on partial DEQs and, from a more applied perspective, in all
lecture courses of theoretical physics.

14

In the case of the wave equation, unique solutions may be fixed by providing ‘initial conditions’ in the
form u(x, 0) = g(x) and ∂tu(x, t) = h(x), or ‘boundary data’ such as u(0, t) = u(L, t) = 0. For a discussion
of these statements we refer to lecture courses in mechanics and electrodynamics.
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In standard calculus, one deals with functions F (v) that take vectors v ∈ Rn as arguments.
Functional calculus generalizes standard calculus, in that one considers ‘functions’ F [f ] taking
functions as arguments. Now, ‘function of a function’ does not sound nice, and for this reason
F is called a functional. Likewise, it is customary to indicate the argument of a functional in
square brackets. To understand why functionals have a lot in common with ordinary functions,
recall that their argument functions can always be discretized as f → {f i|i = 1, . . . , N}, i.e.
they may be interpreted as N → ∞ limits of N -dimensional vectors. This indicates that
one may work with functionals much like one would with ordinary functions. In particular, we
anticipate that standard operations of calculus must have a generalization to functionals.

EXAMPLE (a) Consider the set of functions {f : [0, 1] → R} mapping the interval [0, 1] into

the reals. For 0 ≤ a ≤ 1, we may define a functional δa[f ] ≡ f(a), i.e. we simply read out the

value of the argument function at a fixed argument to produce a number. (b) We may also define

Av[f ] ≡
´ 1

0 f(x)dx, i.e. a functional yielding the average value of f over the domain of definition.

(c) Consider the set of curves Γ ≡ {γ : curve in three-dimensional space}. Curves are a particular

class of functions, so a map assigning function values to individual curves will be a functional. For

example, we may define the functional L[γ]=(Length of γ) to be discussed in some detail below.

C8.1 Definitions

For the sake of concreteness, we will focus on functionals taking
curves as arguments throughout. (This choice is motivated by
the fact that functionals of curves are the first encountered in the
physics curriculum. Most concepts relevant to generic functionals
are already realized with this subclass.) Let Γ be the set of all
smooth curves γ in Rd. A real valued functional on Γ is then a
smooth map

F :Γ −→ R,

γ 7−→ F [Γ], (C199)

assigning to individual curves a real number. (Of course, we may imagine functionals mapping

315
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into target spaces different from the reals ... ) In many applications, the value a functional
takes on a curve is encoded in local properties of that curve, its curve velocity, local curvature,
etc. If we parameterize the curve as γ : I → Rd, t 7→ r(t), its local properties at r(t) are
encoded in the instantaneous derivatives, dtr(t), d2

t r(t), . . . This observation motivates the
definition of a local functional as one whose value is described by an integral,

F [γ] =

ˆ
dt L(r(t), dtr(t), d2

t r(t), . . . ), (C200)

where L : Rd ⊕ Rd ⊕ · · · → R, (x,y, . . . ) 7→ L(x,y, . . . ) is a function.
1

By contrast, an
example of a non-local functional would be

X[γ] =

ˆ
dt ds ri(t)Kij(t, s) r

j(s), (C201)

where Kij(t, s) is some function depending on t and s in some manner.
Notice one important point: to define a local functional, we need an explicit coordinate

representation r(t) of our curves. (How else would we compute derivatives?) However, the
functional as such is an object assigning to the curve γ, i.e. an object existing independently
of concrete coordinate representations, a number. This entails the coordinate invariance
of local functionals: parameterizing the same curve γ in terms of two different coordinate
representations r(t) and n(s), the value of F [γ] must not change, although the form of the
corresponding functions L(r(t), . . . ) and K(n(s), . . . ) will in general be different. All these
features are illustrated by the curve-length example discussed below.

EXAMPLE The length of a curve γ : I → Rd, t 7→ r(t) is defined as

L[γ] ≡
ˆ t1

t0

dtL(ṙ(t)), L(ṙ) =
(
ṙiṙi
)1/2 ≡ |ṙ|, (C202)

The functional L[γ] (not to be confused with its representing function L(ṙ)) assigns to each curve

its euclidean length.

It is instructive to check that the functional does not change under reparameterization. For

example, we may parameterize the curve in terms of a different parameter s(t). Assuming a Cartesian

coordinate system for notational simplicity, we then have L(dsr) = |dsr(t(s))| = |dst(s) dtr(t)| =

|dst(s)|L(dtr). Changing variables in the integral, we then obtain

L[γ] =

ˆ
dsL(dsr) =

ˆ
dt |dts(t)| |dst(s)|︸ ︷︷ ︸

1

L(dtr) =

ˆ
dt L(dtr). (C203)

1

More generally, L(r(t),dtr(t),d2
t r(t), . . . , t) may explicitly depend on the curve parameter, t. However,

to keep the notation simple, we do not discuss this complication here. As an exercise you may ask yourself
what changes (not much) if such an explicit dependence is present.
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C8.2 Functional derivative

Much like ordinary functions, functionals are characterized by their local extrema. Formu-
lated in the language of the curve functional, the first question we will ask is on what curve(s)
γ ∈ Γ does F [γ] assume extremal values. Judging from the analogy with functions, we expect
the extremal condition to be equivalent to the vanishing of some kind of ‘functional derivative’.
These considerations motivate the following definitions:

Consider two curves γ, γ′ ∈ Γ that lie ‘close’ to each other. For example, we may require
that |r(t) − r′(t)| < ε for all t and some positive ε. We are interested in the increment
F [γ]− F [γ′]. Defining γ′ = γ + h, the functional is called differentiable iff

F [γ + h]− F [γ] = dF
∣∣
γ
[h] +O(h2), (C204)

where dF
∣∣
γ
[h] is a linear functional of h, i.e. a functional obeying dF

∣∣
γ
[c1h1 + c2h2] =

c1dF
∣∣
γ
[h1] + c2dF

∣∣
γ
[h2] for c1, c2 ∈ R and h1,2 ∈ Γ. In (C204), O(h2) indicates residual

contributions of order h2. For example, if |h(t)| < ε for all t, these terms would be of O(ε2).
The functional dF |γ is called the differential of the functional F at γ. Notice that dF |γ

need not depend linearly on γ. Comparison with Eq. (C2) shows that the differential generalizes
the notion of a derivative to functionals (for a more comprehensive discussion of differentials,
see section ??). Alternatively, we may think of F [γ + h] = F [γ] + dF |γ[h] + O(h2) as a
generalized Taylor expansion. The linear functional F |γ describes the behavior of F in the
vicinity of the reference curve γ. A curve γ is called an extremal curve of F if F |γ = 0.

EXAMPLE Consider the length functional L[γ] restricted to all curves r(t0) = r0, r(t1) = r1

beginning and ending at fixed initial and final points r0 and r1. To obtain the differential of that

functional, we denote the parameterization of γ(t) and γ + h by r(t) and r(t) + y(t), and consider

the variation

L[γ + h]− L[γ] =

ˆ t1

t0

dt (|ṙ + ẏ| − |ṙ|) =

ˆ t1

t0

dt

(
ṙiẏi

|r| +O(y2)

)
=

=

ˆ t1

t0

dt

(
d

dt

(
ṙi

|r|

)
yi +O(y2)

)
, (C205)

where in the second line we integrated by parts. (Why does the integration by parts not generate

boundary terms?) This identifies the differential of the length functional as

dF |γ [h] =

ˆ t1

t0

dt
d

dt

(
ṙi

|ṙ|

)
yi. (C206)

The differential vanishes at γ, if for all smooth ‘test curves’ curves h, F |γ [h] = 0. Inspection of the

integral representation shows that this is equivalent to the condition

∀t :
d

dt

(
ṙi

|ṙ|

)
= 0, i = 1, . . . , n. (C207)
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For example, let us consider Cartesian coordinates, gij = δij in which a straight connection between

the initial and final point reads

r(t) =
1

t1 − t0
[−r0(t− t1) + r1(t− t0)] . (C208)

We then have ṙi = const., so that the above stationarity condition is trivially fulfilled. The straight

connection has extremal (shortest) length. More generally, we may consider a straight connection of

the two points,

r′(t) = r0 + f(t)(r1 − r0), (C209)

where f : [t0, t1]→ R is a function with boundary condition f(t0) = 0 and f(t1) = 1. We may think

of this as a reparameterization of the straight curve, or as the same curve traversed at inhomogeneous

velocity ḟ(t)(r1 − r0). (A car performing accelerated motion along a straight line still moves along

the shortest possible track.) Substitute this form into the extremal condition to verify that the latter

is still satisfied – the reparameterization invariance of functional extrema conditions.

EXERCISE Re-familiarize yourself with the definition of the derivative f ′(x) of higher dimensional

functions f : Rk → R. Interpret the functional F [γ] as the limit of a function F : RN → R, {γi} →
F ({γi}) where the vector {γi|i = 1, . . . , N} is a discrete approximation of the curve γ. Think how

the definition (C204) generalizes the notion of differentiability and how F |γ ↔ f ′(x) generalizes the

definition of a derivative.

C8.3 Euler-Lagrange equations

Calculating extrema of local functionals by explicit manipulation of the corresponding
integrals is always an option, but can be tedious in practice. It is therefore good to know that
there exist ways to derive extremal conditions which hold regardless of the specific form of the
functional. To illustrate the principle, consider the the set of smooth curves

Γr0→r1 = {γ : [t0, t1]→ Rd, t 7→ r(t)|r(t0) = r0, r(t1) = r1}, (C210)
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Joseph–Louis Lagrange
1736–1813
A mathematician who ex-
celled in all fields of analysis,
number theory, and celestial
mechanics. In 1788 he pub-
lished Mécanique Analytique,
which formulated Newtonian mechanics in
the then modern language of differential
equations.

connecting two fixed points r0 and r1. On
this set, we define the class of functionals

S[γ] =

ˆ t1

t0

dt L(r(t), ṙ(t)), (C211)

where L : Rn⊕Rn → R is a function. These
are local functionals depending only on the
instantaneous positions of the curves, and on
their velocities. We adopt notation standard
in physics, where S is called an action (func-
tional) and L is called a Lagrangian func-

tion.
We can now prove that the local functional S[γ] is differentiable and that its derivative is

given by
2

dF
∣∣
γ
[h] =

ˆ t1

t0

dt (∂riL− dt∂ṙiL) yi, (C212)

where we use coordinate vectors r and y to parameterize the curves γ and h, respectively.
Eq. (C212) is verified by straightforward Taylor series expansion:

S[γ + h]− S[γ] =

ˆ t1

t0

dt (L(r + y, ṙ + ẏ, t)− L(r, ṙ, t)) =

=

ˆ t1

t0

dt
[
∂rL · y + ∂ṙL · ḣ

]
+O(y2) =

=

ˆ t1

t0

dt [∂rL− dt(∂ṙL)] · y + ∂ṙL · y|t1t0 +O(y2),

where in the last step, we have integrated by parts. The boundary term vanishes due the
condition that all curves begin and end at the same point. Applied to the original curve, r(t),
and the shifted one, r(t) + y(t), this means r(ti) = (r + y)(ti) = ri, i = 0, 1, which enforces
y(t0) = y(t1) = 0. Comparison with the definition (C204) leads to the identification (C212).

Eq. (C212) may now be read as follows: the local functional S is extremal on all curves
obeying the so-called Euler-Lagrange equations

d

dt

∂L

∂ṙi
− ∂L

∂ri
= 0, i = 1, . . . , d. (C213)

The reason is that if and only if these d conditions hold, will the linear functional (C212)
vanish on arbitrary curves h.

2

Do not be confused by the notation ∂ṙiL. It simply means the partial derivative of the function L w.r.t.
its second set of arguments: ∂ṙiL = ∂yiL(x,y)|y=ṙ.
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EXERCISE Compute the Euler-Lagrange equations of the length functional (C202) to re-establish

the results discussed above.

EXERCISE Above we have argued that the extremal condition is an intrinsic property of a curve,

and not tied to a specific coordinate representation. This means that if we parameterize a given

curve γ in two different coordinate representations r(t) and q(t), the Euler-Lagrange equations must

hold for both sets of coordinates, ri and qi, i.e.

γ extremal⇒,
(

d

dt

∂

∂ṙi
− ∂

∂ri

)
L(r, ṙ) = 0,

(
d

dt

∂

∂q̇i
− ∂

∂qi

)
L(q, q̇) = 0, (C214)

Where L(q, q̇) = L(r(q), ṙ(q)) is the r-Lagrange function expressed in q-coordinates. To show the

coordinate invariance of the Euler-Lagrange equations, i.e. that the second line above follows

from the first, use the chain rule, i.e. ∂q̇iL =
∑

j ∂ṙjL
∂ṙj

∂q̇i . To compute the partial derivative on the

right use that ṙi(q) = dtr
i =

∑
j
∂ri

∂qj dtq
j , and the resulting equation ∂ṙi

∂q̇j = ∂ri

∂qj .

ρ

Figure C32: Parameterization of a two-dimensional curve in terms of Cartesian (r1, r2) and polar
(ρ, φ) coordinates.

EXAMPLE Let us illustrate the coordinate invariance of the variational formalism with the ex-

ample of the length functional C202 in the case d = 2, i.e. the functional measuring the length

of planar curves. This functional depends only on first order time derivatives, i.e. it is described

by the Lagrangian function L(r1, r2, ṙ1, ṙ2) =
(
(ṙ1)2 + (ṙ2)2

)1/2
, depending only on the derivatives

ṙi, but not on the coordinates ri themselves. Compute the explicit form of the Euler-Lagrange

equations (C213) for this functional to rediscover our earlier extremal condition (C207).

Let us now reparameterize the two dimensional (r1, r2)-plane in terms of polar coordinates (for a

comprehensive discussion of non-Cartesian coordinates, see chapter V2) r1 = ρ cos(φ), r2 = ρ sin(φ).
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Each curve has now two alternative descriptions, (r1(t), r2(t)) and (ρ(t), φ(t)), see Fig. C32. Sub-

stituting ṙ1 = ρ̇ cos(φ)− ρ sin(φ)φ̇ and ṙ2 = ρ̇ sin(φ) + ρ cos(φ)φ̇ into the Euler-Lagrange equation,

we obtain the representation

L(ρ, φ, ρ̇, φ̇) =
(
ρ̇2 + ρ2φ̇2

)1/2
, (C215)

It is now straightforward to compute the Euler-Lagrange equations

d

dt

∂L

∂ρ̇
− ∂L

∂ρ
= φ̇(. . . )

!
= 0,

d

dt

∂L

∂φ̇
− ∂L

∂φ
= φ̇(. . . )

!
= 0.

Here, the notation φ̇(. . . ) indicates that we are getting a lengthy list of terms which, however,

are all multiplied by φ̇. Putting the initial point into the origin, i.e. a point with radial coordinate

ρ(t0) = 0 and the final point somewhere into the plane, (ρ(t1), φ(t1)) = (ρ1, φ1), we conclude that

curves connecting the origin along a straight line, i.e. one without variation in the angular coordinate,

φ(t) = φ1 = const., are solutions of the Euler-Lagrange equations; they have vanishing derivative

φ̇ = 0, implying that both equations are satisfied. (It is less straightforward to show that these are

the only solutions.)



C9 Calculus of complex functions

Although the complex number field C may be superficially more complicated than the real
one we have frequently seen in this text that the ‘complex’ description of problems can be a
lot simpler than a ‘real one’ – think of Fourier calculus as an example. However, so far we
have not really harvested the full potential of complex numbers. We will do so in this chapter
where we introduce the complex version of calculus, complex differentiation, integration, etc.
The ensuing complex calculus will turn out to be much more powerful than real calculus. For
example, we will discuss integration theorems so strong that one often chooses to ‘complexify’
real integrals (in a manner to be discussed) to benefit from them.

At first sight, the above remarks may be surprising: hadn’t we said that the complex
numbers z = x+ iy can be parameterized in terms of two real coordinates x, y and therefore
may be regarded as a two dimensional real vector space, Z ' R2? Which would then suggest
that complex calculus is more or less equivalent to two-dimensional real calculus. What this
argument misses is that complex numbers can be multiplied with each other. Staying with the
vector space picture this means that we are dealing with a variant of R2 in which vectors can
be multiplied to produce new vectors (which is the defining feature of an algebra, cf. p. 71,
i.e. the complex numbers are equivalent to a two-dimensional real algebra). It is this added
feature which gives complex calculus its strength.

C9.1 Holomorphic functions

Definition

Complex calculus addresses the properties of differentiable complex functions f : U →
C, z 7→ f(x), where U ⊂ C is an open subset of C. In analogy to Eq. (C1) we call f
complex differentiable at z ∈ U if the limit

f ′(z) ≡ df(z)

dz
≡ lim

∆z→0

1

δz
(f(z + ∆z)− f(z)) (C216)

exists. If f is differentiable for all z ∈ U we call it holomorphic in U . Examples of functions
for which holomorphy in all of C can be established by explicit construction of the limit (i.e. as
with real functions) include the monomials zl, l ∈ N, convergent power series, or the functions
exp(z), sin(z), cos(z) (by virtue of their power series representations).

322
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Recall that the two most important rules of real differentiation, the product rule and the
chain rule, follow directly from the limit definition Eq. (C1). Since Eq. (C216) has the same
structure, complex generalizations of these rules follow in an analogous manner:

product rule:
d

dz
(fg)(z) = f ′(z)g(z) + f(z)g′(z),

chain rule:
d

dz
(f(g(z))) = f ′(g(z))g′(z), (C217)

where the existence of all derivatives is assumed.

Cauchy-Riemann differential equations

Is holomorphy equivalent to the condition of real differentiability of the function f(x, y)
when z = x + iy is interpreted as a two-dimensional real variable? No it is not, holomorphy
is a much stronger condition and this follows from the above mentioned algebraic structure
of the complex numbers. To understand this point let us represent z = (x, y)T as as a
two component vector containing its real and imaginary part. Now consider another complex
number w = r + is and build the product z′ ≡ x′ + iy′ = wz = rx − sy + i(ry + sx). In
matrix representation this reads

Auguistin-Louis Cauchy
(1789-1857)
A French mathematician
generally considered as one
of the fathers of modern
analysis and in particular of
complex analysis. However,
Cauchy also contributed to
many other areas of mathematics and
physics including algebra, number theory,
wave mechanics, and elasticity.

(
x′

y′

)
=

(
r −s
s r

)(
x
y

)
. (C218)

We split f = u + iv into real and imaginary
part and temporarily interpret it as a real two-
dimensional function

f : R2 −→ R2,(
x
y

)
7−→

(
u
v

)

(x,y)

, (C219)

where the argument is indicated as a subscript
for notational convenience. This function is
differentiable in the real sense if all partial derivatives ∂xu, ∂yu, ∂xv, ∂yv exist and a small
increment of the function can be represented as

(
u
v

)

(x+∆x,y+∆y)

=

(
u
v

)

(x,y)

+

(
∂xu ∂yu
∂xv ∂yv

)

(x,y)

(
∆x
∆y

)
+O(∆x2,∆y2).

By contrast, complex differentiability calls for the condition

f(z + ∆z) = f(z) + f ′(z)∆z +O(∆z2),

where on the r.h.s. we have the multiplication of complex numbers. If we write out this relation
in a real two-component representation we understand that (i) f ′(z) is to be identified with
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the 2×2 in the real derivative. At the same time, f ′(z)∆z is the multiplication of two complex
numbers and Eq. (C218) requires that

∂xu = ∂yv, ∂yu = −∂xv. (C220)

These equations are known as Cauchy-Riemann differential equations and they express
the condition of complex differentiability in the language of real numbers.

Analyticity

z0

ρ

U

One can show that a function is holomorphic in U iff it can be
expanded in a complex Taylor series around each z0 ∈ U , i.e.
if there exists a representation

f(z) =
∞∑

n=0

an(z − z0)n, an =
f (n)(z0)

n!
, (C221)

where the identification of the coefficients, an = f (n)(z0)/n! fol-
lows from n-fold differentiation of the left and the right hand side of the equation at z0, as in
the case of real Taylor series. The series exists (converges) in a disk with radius ρ around z0.
A lower bound for ρ is the radius of the maximal disk centered at z0 and contained in U (see
figure). Functions having this property are called analytic in U . The attributes ‘analytic in
U ’ and ‘holomorphic in U ’ are synonymous and both in widespread use.

Here are a few examples of functions along with their analyticity properties:

. exp(z), sin(z), cos(z) — power series expandable around any z ∈ C and therefore globally
analytic.

. z = x− iy — not analytic, because it violates Eqs. (C220).

. |z| — also not analytic, for the same reason.

. 1
z−w — analytic on C\{w}.

A point z0 ∈ C where a function f is not analytic is called the point of a singularity. Notice
that a singularity need not imply diverging behavior. For example z = 0 is a singularity of the
function |z|, which vanishes at the singular point.

Geometric interpretation of holomorphy

Let us turn back to the R2-interpretation of complex functions to give the concept of holomor-
phy a geometric meaning. Consider the map (C219) and in particular the set of curves in the
uv-plane generated by keeping one of the coordinates x, y constant, e.g. (u, v)(x, y0), where
y0 = const.. We may think of this as a map from a perpendicular grid of parameter lines in
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Figure C33: Image curves of the holomorphic functions (left to right) log(z), sinh(z), exp(z) and
tanh(z). For arguments z = x + iy with x ∈ [−1, 1] and y ∈ [0, 2π] discretized into an argument
grid with 20× 20 lines. The arrows are the tangents at arguments (x0, y0) = (0.6, π/5).

the xy-plane to a distorted grid of image lines in the uv-plane, see. Fig. C34. A key feature
of that image-grid is that its lines still cross at 90deg angles, like those of the argument-grid.
We say that the map (x, y)T 7→ (u, v)T is conformal or angle preserving, and this feature
is a direct consequence of holomorphy.

Figure C34: A holomorphic map f(x+iy) = (u+iv)(x+iy) sends a perpendicular grid of coordinate
lines in the xy-plane to a distorted but angle-preserving grid in the uv-plane.

To understand this connection, consider a curve (u, v)T (x) ≡ (u, v)(x + iy0) in the uv-
plane obtained by keeping y0 constant. Its tangent vector at the point x0 + iy0 is given by
(∂xu, ∂xv)T(x0+iy0). Likewise, the tangent vector of the curve with constant x0 passing through

x0 + iy0 reads (∂yu, ∂yv)T(x0+iy0). The scalar product of these two tangents is given by

∂xu∂yu+ ∂xv∂yv
(C220)

= ∂xu∂yu− ∂yu∂xu = 0.

The fact that it vanishes means that the parametric curves intersect at a 90deg angle, just like
those of the xy-argument grid, i.e. the image grid locally preserves the angular structure of the
argument grid. (Think why the local preservation of the angle is not tied to the perpendicularity
of the argument grid used in the construction above.) For illustration, Fig. C33 shows image
grids for a number of specific conformal maps.
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C9.2 Complex integration

REMARK Requires section ??.

The Cauchy-Riemann differential equations are at the root one side of a coin whose other are
strong theorems applying to the integrals of complex functions. These theorems are instru-
mental in most applications of complex functions in physics, mathematics, and engineering.

Definition of complex integrals

As before with differentiation, we may approach complex integration by interpreting the
complex quantities involved as elements in R2. To this end, consider a curve γ in R2 begin-
ning and ending at (x0, y0)T and (x1, y1)T , respectively. Assume γ to be parameterized as
γ : [0, 1]→ R2, t 7→ (x(t), y(t))T . Let (u,−v)T(x,y) and (v, u)T(x,y) be the component represen-
tation of two vector fields, where u(x,y) and v(x,y) are real functions. We then know that the
line integral of the fields along the curve are given by the integral of the scalar product of the
curve-velocity (ẋ, ẏ)T with the vector fields (u,−v)T and (v, u)T , respectively, cf. Eq. (V12).
In a component representation this leads to the two results

I ≡
ˆ 1

0

dt (ẋ(t)u(t)− ẏ(t)v(t)),

J ≡
ˆ 1

0

dt (ẋ(t)v(t) + ẏ(t)u(t)). (C222)

These formulae can be cast into a convenient complex represenation. To this end we interpret γ
as a curve in the complex numbers with representation z(t) ≡ x(t)+iy(t). In a similar manner
we combine the vector field components to define a complex function f(z) ≡ (u + iv)(z).
Now let us define the complex line integral along γ as

ˆ
γ

f(z)dz ≡
ˆ 1

0

dt ż(t)f(z(t)). (C223)

As always with line integrals, notations such as
´
γ
fdz are symbolic representations for a

concrete definition through a time-like parameter integral, here given by the expression on the
r.h.s.

Defining the complex number K ≡
´
γ
fdz and using that żf = ẋu− ẏv+ i(ẋv+ ẏu), we

realize that K = I+i J , i.e. the real and imaginary parts of our complex definition are just the
two real line integrals introduced above. This is an important observation as it connects the
complex definition to the two-dimensional geometry of conventional vector field integration.
For example, this correspondence tells us that the complex integral does not depend on the
choice of the representation z(t) of the complex curve (because the corresponding real vector
field integrals don’t, still you may want to verify this by explicit computation).
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EXAMPLE Let z0 = R, R ∈ R+ be a point on the positive real axis and z1 = Reiφ a terminal

point at the same distance R from the origin. Consider a circular arc Sφ connecting the two points

according to the parameterization z(t) = exp(itφ), t ∈ [0, 1]. Let us compute the complex line

integral of the function zn along this curve:

ˆ
Sφ

dz zn =

ˆ 1

0
dt(iφReiφt)(Reiφt)n =

Rn+1

(n+ 1)

(
ei(n+1)φ − 1

)
.

Suppose we close the curve by choosing φ = 2π, i.e. we now integrate around a closed curve S2π

of constant radius R around the origin. In this case, exp(i2π(n + 1)) = 1, and the integrals all

vanish as long as n ≥ 0. This is a remarkable result. It tells us that the line integral of any

function holomorphic at z = 0, i.e. any function that can be represented in terms of a Taylor series

f(z) =
∑

n a
nzn (whose radius of convergence exceeds R) has a vanishing line integral along the

circle. In fact, the closed line integral vanishes even for all negative powers n < 0, i.e. for functions

singular at the origin, unless n = 1. Only in this case we obtain the finite result
´
S2π

dz z−1 = 2πi.

For later reference, we summarize these findings as

ˆ
S

dz(z − z0)n = 2πiδn,−1, (C224)

where S is a curve surrounding z0 at constant radius.

Clearly something is going on here, and in the next section we discuss what it is.

INFO The result above implies a useful representation of the coefficients, cn, of the complex

series, Eq. (C221) of holomorphic functions: let S be a circle of radius smaller than the series of

convergence around a z0 where a function is holomorphic. For any given n consider the line integral

of f(z)/(z − z0)n+1 along that circle:

˛
S
dz

f(z)

(z − z0)n+1
=
∑

m

am

˛
S
dz(z − z0)m−n−1 = 2πian,

where in the last step Eq. (C224) was used. We thus have the representation

an =
1

2πi

˛
S
dz

f(z)

(z − z0)n+1
. (C225)

This representation can be used to obtain non-trivial results, cf. the proof of Liouville’s theorem

below.

C9.3 Cauchy theorem
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Let U be a simply connected domain in the complex plane. We recall
(cf. section V3.2) that a domain is called simply connected if it is
connected (any two points z1, z2 ∈ U can be connected by a curve
in U) and any closed curve in U can be shrunk to a point (see the
figure, where the upper domain is simply connected while the lower one
is not). Let γ be a closed curve in U and f a function holomorphic in
U . Cauchy’s theorem then states that

ˆ
γ

dz f(z) = 0, (C226)

i.e. the line integral of a holomorphic function along a closed curve is zero. Before proving
this important fact, we note the equally important consequence that

The integral of a holomorphic function f along a curve connecting two points
z1,2 in a simply connected domain does not depend on the choice of the curve.

This follows from the fact
1

that if you have two curves γ1,2 connecting the two points, you
may concatenate them to form a closed curve γ1∪γ2 going from z1 to z2 (along γ1) and back
(along γ2). But then we have

´
γ1
f −
´
γ2
f =
´
γ1∪γ2

f = 0, where the last equality is due to
Cauchy. This feature gives us the freedom to ‘deform’ integration contours at will. As long
as we don’t hit any points where the function is non-holomorphic the value of an integral will
not change.

To prove Cauchy’s theorem, we turn back to the real interpretation of the complex
line integral. Both, I, J in (C222) are line integrals of vector fields in the two-dimensional
xy-plane. We may apply Stoke’s theorem (V104) to convert them to integrals of the curl
of our fields over the the bounded by the integration curve in the xy-plane. Embedding
the integration plane into a three-dimensional space with third coordinate z, the integral I
can then be represented as the integral of (∇ × (u,−v, 0)T )z = ∂x(−v) − ∂yu. However,
this combination of derivatives vanishes because our function is analytic and hence obeys the
Cauchy-Riemann equations (C220). By the same token, the curl of the second vector field
(∇× (v, u, 0)T )z = ∂xu− ∂yv vanishes as well. We therefore conclude that both I = J = 0
and this means that the complex line integral K = I + iJ vanishes.

The vanishing of the integrals of zn along the circular contour discussed in the example
of the previous section is now understood as a manifestation of Cauchy’s theorem. The
theorem also tells us that the integration contour might have been deformed to any other one
surrounding the origin, and the holomorphy of zn (outside the origin for n < 0) would ensure
the invariance of the integral.

Cauchy’s theorem and a a few of its cousins which we are going to discuss are powerful
allies in both complex and real integration theory. Integrals over real functions can often be

1

Recall the very similar reasoning employed in section V3.2 to show the path independence of integrals of
gradient fields.
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processed by interpreting the integral as a complex one, followed by application of a complex
integration theorem. In the following example, we apply this strategy to the computation of
a real integral over a rational function.

EXAMPLE Suppose we wanted to compute the integral I ≡
´∞
−∞ dx r(x) over the rational function

r(x) = x2−1
(x2+1)2 . Integrals of this type can generally be computed by elementary yet somewhat

laborious variable substitutions (do the above integral in this way). However, one may often proceed

in more efficient and certainly more elegant ways by complex integration methods. To illustrate this

strategy let us define the function f(z) ≡ 1
(z+i)2 . Consider the integral of this function along the real

axis, i.e. from −∞+ i0 to +∞+ i0. Using the real variable x as an integration parameter, we find

ˆ
R

dz f(z) =

ˆ ∞
−∞

dx
1

(x+ i)2
=

ˆ ∞
−∞

dx

(
x2 − 1

(x2 + 1)2
− 2i

(x2 + 1)2

)
.

We observe that the real part of the line integral is just the integral

we are interested in. We now compute the complex integral by a

commonly played trick: we imagine the integration contour closed by

a giant semicircle of radius → ∞ through the upper complex plane

(see figure). Does this operation change the result of the integral?

The answer is no, and this is because the integrand decays as ∼ z−2 for |z| → ∞. However, the

circumference of the circle grows only as ∼ |z|. So the contribution from the semicircle to the line

integral decays as ∼ |z|−1. (If you feel uneasy about this argument, inspect the line integral more

closely.) We now have transformed our integral to one along a closed contour, and one that runs

through a simply connected part of the complex plane. Furthermore, the function f has only one

singularity at z = −i (the cross in the figure), and so it is analytic everywhere inside the contour.

Cauchy’s theorem then tells us that the integral equals 0 = 0 + i0, i.e. I = 0 as a consequence of

the complex integration theorem.

C9.4 Singularities

Most functions of interest are not holomorphic throughout all of C. For example, one can
prove (Liouville’s theorem) that every function f that is bounded |f(z)| < M , for some
M > 0, and holomorphic in all of C must necessarily be constant. This means that interesting
bounded functions (of which there are many) contain singularities.

INFO The proof of Liouville’s theorem nicely illustrates the power of series expansions in complex

calculus: let f : C → C, z 7→ f(z) be holomorphic in all of C and bounded, |f(z)| < R for some

R > 0. Holomorphy in all of C implies the existence of a series representation (C221) centered

around any point in C, say z0 = 0, and unlimited radius of convergence, f(z) =
∑∞

n=0 anz
n.

Consider a circle S of radius R centered around z = 0, and represent the coefficients of f ’s series as
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in Eq. (C225). We then obtain the estimate,

|an| ≤
1

2π

˛
S
dz

∣∣∣∣
f(z)

zn+1

∣∣∣∣ ≤
1

2π
(2πR)

M

Rn+1
= MR−n, (C227)

where the factor 2πR in the numerator comes from the circumference of the integration contour.

(If you feel uneasy about this estimate, use a parameterization z(t) = Reiφt to formulate an explicit

representation of the line integral and count the factors of R then.) This means that |an| ≤MR−n

for arbitrary R, which in turn implies an = 0, unless n = 0. The series thus collapses to f(z) = a0,

showing the constancy of f .

As we will see below, complex singularities are interesting objects which can be potent allies,
especially when it comes to the integration of functions. However, before we turn to the
discussion of this point we need to classify them according to their severity. We first need
to discriminate between isolated singularities and extended singularities. A function has an
isolated singularity at z0 ∈ U if it is holomorphic on U\{z0}, where U is some open
neighborhood of z0. For example, the function z−1 has an isolated singularity at z = 0
because it can be expanded (is analytic) around any point different from zero. The square
root function z1/2, has a singularity at z = 0, too, but it is not an isolated one. As we will
discuss in more detail below, one cannot even define a continuous square root function on a
punctured neighborhood U\{0} of the origin. (As you may have guessed, this is related to
the notorious sign ambiguity, e.g.

√
4 = ±2.)

Turning to the isolated singularities, the ‘least singular’ of those is a removable singularity
(hebbare Singularität). This is an isolated singularity at some z0 where a function f(z) just
is not properly defined. However it is ‘removable’ in the sense that a holomorphic extension
covering z0 is possible. The canonical example in this context is the function sinc(z) ≡
sin(z)/z which has a problem at z0 = 0 where it shows a 0/0 ambiguity. However, we
may define sinc(0) = 1 to remove the singularity and obtain a globally holomorphic function.
(Discuss the function now is holomorphic and construct a Taylor series representation centered
around z = 0. )

A pole is an example of a more serious singularity. The function f(z) has a pole at z0 if
it is analytic on U\{z0}, but not at z0, and if there exists a holomorphic function g : U → C

with non-vanishing g(z0) such that for all z 6= z0

f(z) =
g(z)

(z − z0)n.
(C228)

The smallest n for which such a representation exists is called the order of the pole. A few
examples:

. The function f(z) = 1
(z−i)2 has a pole of order 2 at z = i.

. The function f(z) = 1
(z−1)2(z+1)

has a pole of order 2 at z = 1 and one of order 1 at
z = −1.
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. The function f(z) = 1
eiz+1

has a pole of order 1 at z = π. This is best seen by expanding

the exponential function in the vicinity of iπ as eiπ+z = −1− z− z2/2− . . . . Substitution
into f(z) leads to f(z) ' 1/(−z − z2) = −1/z(z + 1) which is of the form Eq. (C228)
with g(z) ' −1/(1 + z).

An isolated singularity which is neither removable, nor a pole is called an essential singularity.
For example, z = 0 is an essential singularity of the function |z| (but notice the absence of
divergences!) This wording suggests that poles are somehow considered ‘non-essential’. But
why is this? The answer lies in the analyticity of the function g in (C228) which in turn implies
the existence of a Taylor series expansion g(z) =

∑
m≥0 bm(z − z0)m. If we substitute this

into the pole expression, we obtain the series representation

f(z) =
∞∑

m=−n
am(z − z0)m, (C229)

where the coefficients am = bm+n are determined by the expansion of g. Series of this type,
i.e. power series starting at some finite negative exponent −n are called Laurent series. The
singularity of the function f is now encoded in finitely many simple functions (z−z0)m<0, and
in this sense is non-essential. Functions that are holomorphic except for finitely many points
where they afford Laurent expansions (i.e. contain poles) are called meromorphic functions.
The terminology (inspired by the Greek word meros=‘part’) suggests that they stand halfway
between the holomorphic and the truly singular functions. The coefficient a−1 ≡ Res(f, z0)
of the expansion is called the residue (Residuum) of f at z0. We will see in a moment how
the residue plays an important role in the complex integration of f .

Figure C35: A one-dimensional cartoon of function singularities in ascending order of severity.

For example, the second function in the list above f(z) = 1
(z−1)2(z+1)

is meromorphic in C. In

the vicinity of its second order pole at z = 1, the second factor (z+ 1)−1 may be expanded as

1

z + 1
=

1

(z − 1) + 2
= −

∞∑

m=0

(
−1

2

)m+1

(z − 1)m,

and from there we obtain the Laurent series representation

1

(z − 1)2(z + 1)
z'1
= −

∞∑

m=−2

(
−1

2

)m+3

(z − 1)m, (C230)

with a residue of −1/4. To conclude, we have seen that the severity of singularities can be
classified according to the hierarchy removable → essential indicated in Fig. C35.
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C9.5 Residue theorem

Deforming integration contours

Suppose we want to integrate a meromorphic function f around a path γ encircling one
or more of its poles (cf. Fig. C36, first panel) in mathematically positive, counter-clockwise
direction. What can we say in general about the outcome of the integration? Of course, one
would suspect not much — should the result of the integration not depend on the choice of
the integration curve?

However, it is one of the marvels of complex calculus that the choice of the curve is
inessential to the value of the integral, all what matters is how many point-singularities of f it
encircles. To see this, consider the composite curve γ′∪cl∪(−S)∪cr shown in the second panel,
where cl,r are parallel stretches from some point of γ to the neighborhood of the singularity
and back, γ′ is a cut version of γ and −S a small circular curve surrounding the singularity in
mathematically negative, clockwise direction. We indicate the sense of orientation by a minus
sign in the notation. This new curve surrounds a region in which f is holomorphic and so
Cauchy’s theorem tells us that

ˆ
γ′∪cl∪(−S)∪cr

dzf =

ˆ
γ′

dzf +

ˆ
cr

dzf +

ˆ
−S

dzf +

ˆ
cl

dzf = 0.

The integrals along cl,r mutually cancel out because they are along geometrically identical
stretches traversed in opposite direction,

´
cr

+
´
cl

=
´
cr

+
´
−cr = 0. We also know that the

integral over γ′ equals that over γ because cutting a curve at a single point does not change
the value of an integral. Finally,

´
−S dzf = −

´
S

df , where S is the positively traversed circle.
Combining these observations we arrive at the result

ˆ
γ

dzf =

ˆ
S

dzf. (C231)

Figure C36: First panel: integration of a meromorphic function along a contour encircling singular-
ities. Second panel: the contour can be deformed (without changing the value of the integral) to
one encircling the residues along small circles. Those integrals in turn yield 2πi× the corresponding
residues of the function at the singular points. Third panel: the method works for an arbitrary
number of singularties inside the contour.
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If there are several singularities the construction may be generalized as shown in the right
panel of the figure, i.e.

ˆ
γ

dzf =
∑

i

ˆ
Si

dzf, (C232)

where the sum is over all singular points, and the Si’s are small circles surrounding these
points.

A good way to think about the construction is to imagine γ as a
rubber band and the singularities as nails. Outside the nail’s po-
sitions the rubber band can be deformed arbitrarily without chang-
ing the integral over holomorphic functions. If there is just one
nail, the band may be shrunk to an arbitrarily small one encir-
cling its position. Think how to rationalize the multi-singularity

generalization (C232) within the rubbery analogy.

The residue theorem

Now imagine a meromorphic f expanded in a Laurent series (C229) around one of its
singularities. The formula Eq. (C224) then tells us that the integration along the corresponding
circle will yield 2πi times the coefficient of order m = −1, i.e. the coefficient termed residue
of the function at the singularity:

ˆ
Si

dzf(z) = 2πi Res(f, zi). (C233)

Combining this formula with Eq. (C232) we arrive at the residue theorem,

ˆ
γ

dzf(z) = 2πi
∑

i

Res(f, zi). (C234)

The integral of a meromorphic function along a curve equals 2πi times the sum over the
residues of all the singular points enclosed by the curve.

INFO As we will see momentarily, the theorem of residues is a powerful aid, both in real and complex

integration. This being so it is expedient to know recipes for the efficient computation of residues
of meromorphic functions. One approach is to start from a representation as in Eq. (C228),

followed by Taylor series expansion of the function g. In practice, the function g is often easy to

guess and this method works reasonably well. Alternatively, one may compute the derivative

Res(f, z0) =
1

(n− 1)!
∂n−1
z ((z − z0)nf(z))

∣∣∣
z=z0

, (C235)
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where n is the order of the pole of f at z0. To understand this formula consider the Laurent series

of f and notice that

∂n−1
z ((z − z0)nf(z)) = ∂n−1

z

∞∑

m=−n
am(z − z0)n+m =

∞∑

m=−1

(n+m)!

m!
am(z − z0)m+1,

where in the second step we noted that powers of (z − z0) of order smaller than n− 1 vanish under

the derivative. If we now set z = z0 all contributions to the series except the lowest, m = −1 vanish.

So we are left with a−1 × (n − 1)! and that explains why Eq. (C235) picks out the residue of the

function at z0.

Examples

Figure C37: Three examples of contour integration aided by the theorem of residues. Discussion,
see text.

Example 1: like Chauchy’s theorem the theorem of residues may be applied to the computation
of real integrals. Consider, for example, the integral

I ≡
ˆ ∞
−∞

dx
1

x2 +m2
.

We proceed as in the example of p C9.3 and interpret I as an integral of the complex function
1/(z2 + m2) over the real axis. A semicircle closing the contour either in the upper or lower
complex plane at distance→∞ may be added without altering the value of the integral. Now
we have a closed contour and the theorem of residues instructs us to inspect the singularities
of 1

z2+m2 = 1
(z−im)(z+im)

, where we assume m > 0. There are two poles of order unity at

z0 = ±im, with residue ±1/2m, see left panel of Fig. C37. If we close the contour in the
upper complex plane we encircle the pole at +im and the theorem of residues immediately
gives I = π

m
. Verify this result from the fact that arctan′(x) = 1

x2+1
. Check that the closure

of the integration contour in the lower complex plane yields the same result. (In doing so keep
an eye on the direction of travel, clockwise or anti-clockwise, of contours.)

A generalized variant of the above integral which plays an important role in both electro-
dynamics and quantum mechanics reads

I ≡
ˆ ∞
−∞

dx
eikx

x2 +m2
,
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where k > 0 for concreteness. Calculate the integral by the same method as above to verify

I =
π

m
e−|k|m.

Discuss why the choice of the upper contour now is required by the sign of k.
Example 2: occasionally, one encounters integrals over complex functions which do not yet
have the canonical form of a complex line integral Eq. (C223). As an example, consider the
integral (which again plays a role in some areas of quantum mechancis)

I ≡
ˆ 2π

0

dφ
1

1− eδeiφ
,

where δ > 0. Defining z = eiφ and noting that dφz = iz, we realize that the integral can be
written as

I =

ˆ
γ

dz
1

z(1− eδz)
,

where the integral is along a unit circle around the complex origin, and φ was used as a curve
parameter (cf. Fig. C37), center. This integral has two poles of order unity at z0 = 0 and
z1 = e−δ with residues 1 and −1, resp. Application of the theorem of residues thus yields
I = 0.

An alternative way to obtain this result is to expand the φ-representation of the integral
in a power series in eiφ and to show that each term in the expansion vanishes (try it!) As an
exercise you may explore what happens if δ < 0. Does the integral still vanish? Compute its
value by an explicit expansion and by the theorem of residues.
Example 3: as a final example consider the integration

I ≡
ˆ ∞
−∞

dx
f(x)

x− iδ
. (C236)

of the product of a function f(z) analytic in a strip around the real axis and the factor 1
z−iδ

,
where δ > 0 is assumed to be infinitesimally small, along the real axis. As a concrete example
we may consider f(z) = 1

1+z2 which is analytic for |Im(z)| < 1.

The function 1
z−iδ

has a pole at z = iδ, see Fig. C37, right panel. This means that if
we close our integration contour as shown in the figure, we have a closed loop integral over
an analytic function, i.e. an integral that yields a vanishing result. The infinitesimally short
pieces connecting the two parallel integration stretches along the real axis R and the backward
contour R+ iδ do not contribute to the integral, so we may write

0 =

ˆ
R

dz
f(z)

z − iδ
−
ˆ
γl∪S∪γr

dz
f(z)

z − iδ
= I −

ˆ
γl∪S∪γr

dz
f(z)

z − iδ
,

where γl = (−∞,−ε)+iδ, γr = (ε,∞)+iδ, and S is an semicircle of infinitesimally small radius
ε around the point iδ, 0 < ε < δ. Parameterizing these contours as γl ↔ (x + iδ, x < −ε),
γr ↔ (x+ iδ, x > ε), and S ↔ (iδ − εeit, t ∈ [0, π]), we obtainˆ

γl

dz
f(z)

z − iδ
=

ˆ −ε
−∞

dx
f(x+ iε)

x
'
ˆ −ε
−∞

dx
f(x)

x
,
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ˆ
γr

dz
f(z)

z − iδ
=

ˆ ∞
ε

dx
f(x+ iε)

x
'
ˆ ∞
ε

dx
f(x)

x
,

ˆ
S

dz
f(z)

z − iδ
=

ˆ π

0

dt (−iε eit)
f(iδ − εeit)

−εeit
' iπf(0),

where the last equalities are based on the assumed continuity of f , i.e. the assumption that f
does not vary noticeably over scales δ, ε. We combine these results to obtain

ˆ ∞
−∞

dx
f(x)

x− iδ
= P

ˆ ∞
−∞

dx
f(x)

x
+ iπf(0), (C237)

where we have defined the so-called principal value integral (Hauptwertintegral)

P

ˆ ∞
−∞

dx g(x) ≡ lim
ε→0

(ˆ ε

−∞
dx+

ˆ ∞
ε

dx

)
g(x). (C238)

The result above is often abbreviated in symbolic notation as

1

x− iδ
= P

1

x
+ iπδ(x). (C239)

However, this formula makes sense only under an integral, and in the limit δ → 0. For example,
with f(x) = 1

1+x2 , we have

ˆ
R

dx
1

1 + x2

1

x− iδ
= P

ˆ ∞
−∞

dx
1

x(1 + x2)
+ iπ

ˆ ∞
−∞

dx
δ(x)

1 + x2
= iπ,

where we used that the principal value integral vanishes due to the evenness of the integrand
under x↔ (−x).

EXERCISE Compute the imaginary part Im(x−iδ)−1 and convince yourself that in the limit δ → 0 a

representation of the δ-function is obtained. This is an alternative way to understand the appearance

of iπδ(x) in Eq(C239).

EXAMPLE As a concrete and final example let us compute the inverse Fourier transform,

G(t) =

ˆ
dω

2π
eitωG̃(ω) = −

ˆ
dω

2π

eitω

ω2 − 2iωτ−1 − ω2
0

,

of the Green function of the driven oscillator, Eq. (C181). Inspection of the quadratic denominator

shows that for oscillator frequencies larger than the damping rate, ω0 > τ−1, the integral has

poles of first order in the upper complex plane at ω± = iτ−1 ± ω̃, where we defined the shifted
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Figure C38: Computation of the Green’s function of the oscillator as an residue integral, discussion,
see text.

frequency, ω̃ = (ω2
0 − τ−2)1/2. If the time t is positive, then the numerator of the integrand is

exponentially decaying in the upper complex plane, i.e. Re(iωt) < 0 for Imω > 0. In this case, the

integration contour along the real axis may be closed via an infinitely large semicircle as in Example

1 above (see Fig. (C38), left panel). Application of the theorem then yields

G(t) =
1

ω̃
sin(ω̃t) exp

(
− t
τ

)
, t ≥ 0 (C240)

For negative times, t < 0, the exponential factor decays in the lower complex plane and the integral

may be closed there, Fig. C38, right panel. The integrand now does not enclose any singularities and

application of the Cauchy theorem yields a vanishing result, G(t) = 0, t < 0. Combining the results

for the two domains t ≥ 0 and t < 0 in a single formula, we arrive at the first term in Eq. (C183).

Discuss the integral in the over-damped regime, ω0 < τ−1 and extend the physical discussion of

section C7.5 to this case.

C9.6 Essential Singularities

We finally turn to the discussion of complex functions with ‘real’ singularities, of which the
square root function

√
z is the perhaps the simplest one. The real square root

√
x appears so

frequently that it is easy to forget how strange this ‘function’ really is. To begin with, it is no
function at all:

√
4 = ±2 has two solutions, i.e.

√
x is intrinsically multi-valued. It is customary

to restrict oneself to one ‘branch’ of the function, e.g.
√

4 ≡ 2, but the fact remains that there
is an ambiguity. And of course the domain of definition cannot be extended to the negative
real numbers, because

√
−1 does not exist in the reals. This latter limitation disappears once

we pass to the complex numbers. However, there is a price to pay, the sign ambiguity now
looks even worse! To understand what is going on let us parameterize the complex number
z = reiφ, r ≥ 0 and define z1/2 = r1/2eiφ/2, where r1/2 ≥ 0 is the positive branch of the real
square root. This function is a valid ‘square root’, because, (z1/2)2 = (r1/2)2(eiφ/2)2 = z.

Consider what happens with the real part Re(z1/2) = r1/2 cos(φ/2) of this function as we
move from an ‘almost real’ argument z = 1 + iδ, δ > 0 infinitesimal, at fixed modulus |z| = 1
once around the complex plane to arrive at the ‘almost real’ argument z = 1 − iδ. In the
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parameterization above, this circular motion is described by φ ' δ → 2π − δ, at constant

r = 1. Along it the square root function smoothly changes from 1
δ↘0
=
√

1 + iδ = cos(δ/2)

to −1
δ↘0
=
√

1− iδ = cos(π − δ/2). At first sight, this looks like an acceptable result: the
complex square root function incorporates the two branches of the real square root in such a
way that the imaginary part of the argument

√
1± iδ = ±1 signals which branch to pick. The

price to be payed for that ‘switch functionality’ is a singular jump of hight 1 − (−1) = 2 as
the positive real axis at r = 1 is crossed in imaginary direction, see the first panel of Fig. C39
for a visualization.

Figure C39: The two branches of the multi-valued function
√
z. Further discussion, see text.

However, on closer inspection it becomes apparent that the con-
struction recipe above remains unacceptably ambiguous. First, even
the complex

√
-function has two branches, ±z1/2 = ±r1/2eiφ/2 both

square to z and are legitimate options. (The sign inverted branch
is shown in the second panel of the top row of Fig. C39). So, the
question of which branch to pick is still with us. However, what is
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worse is that the construction is ‘parameterization dependent’ and therefore does not really
define a function: we might have decided to parameterize the complex plane in terms of a
differently chosen angle ϕ ∈ (−π, π) as shown in the figure. If we now define z = reiϕ we
obtain branches

√
z = ±r1/2eiϕ/2 very different from the ones before (see the first and second

panel in the second row of Fig. C39).
All this indicates that z1/2 cannot be an ordinary function. As a first step towards a better

understanding of z1/2, let us combine the two branches ±z1/2 to a set S ≡ {(z1/2,−z1/2)|z ∈
C}. This set affords different interpretations. We can think of it as the set of solutions, w,
of the complex equation w2 = z, i.e. w = ±z1/2. Alternatively, it may be interpreted as the
image of a ‘bi-valued’ function, i.e. a function that takes two values at each z. However, the
most expedient view is geometric: S defines a two-sheeted ‘surface’, where the two vertically
superimposed sheets represent the choices ±z1/2. A visualization of real and imaginary part
of this surface

2
is shown in the right panels of Fig. C39 where we the sheets are represented in

one plot. The most apparent features of this construction are: (i) the ensuing double-sheeted
surfaces are globally smooth, they do not contain jumps of any kind, and (ii) the surfaces
obtained for the two different parameterizations above are identical. This latter observation
is important and indicates that the construction S = {(z1/2,−z1/2)|z ∈ C} might contain
the key to a good understanding of the square root: no matter what specific ‘coordinate
representation’ for z1/2 is chosen, e.g. z1/2 = ±r1/2eiφ,±r1/2eiϕ, . . . , the union of all values
leads to the same surface, S.

C9.7 Riemann surfaces

The construction above suggests a new way to think about a whole class of functions:
consider a function w = f(z) defined for z ∈ U whose inverse z = g(w) has several solutions
w1, . . . , wn (such as z = w2 has the solutions w = ±z1/2). We may then combine the
solutions to define {w1(z), ..., wn(z)|z ∈ U}. This set is the n-sheeted Riemann surface of
the function. Fig. C40 shows the real (left) and imaginary (right) part of the Riemann surfaces
of the two-sheeted function z1/2, the three-sheeted function z1/3, and the infinite-sheeted
function ln(z). The individual Riemann sheets wi(z) of the surface are glued together at
lines which are called branch cuts and which emanate at branch points. Branch points
are essential singularities — they are the end points of cut lines and therefore fundamentally
distinct from isolated singularities — whose positions in the complex plane follow from the
definition of the function. However, both the choice of Riemann sheets and that of the
branch cuts are not canonical. For example, in our first/second parameterization above, the
cut line is along the positive/negative reals (indicated by solid red lines in Fig. C39) and
we observed the differences in the Riemann sheets corresponding to the two choices. In
either choice, the square root function has one branch point at z = 0 and the other at

2

Calling S a ‘surface’ is metaphoric inasmuch as its elements are complex numbers. Surfaces in the
traditional sense ensue when we consider real and imaginary part of S separately. However, although this
is necessary for graphical visualizations, the split way of thinking real/imaginary is not really natural in the
present context. It is better to widen ones understanding of surfaces and mentally allow them to be complex.
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|z| = ∞. For an example of a function with two branch points at finite values of z consider
f(z) =

√
1− z2 =

√
(1− z)(1 + z) which has branch points at z = ±1 corresponding to

the essential singularities of the two square root factors. Depending on how one chooses the
branch cuts of those, f(z) has a finite cut (−1, 1) along the real axis connecting the two
branch points, or two disconnected segments (−∞,−1) ∪ (1,∞) connecting ±1 with ±∞.

Each Riemann sheet wi(z) has a discontinuity at the cut lines, i.e. approaching the line
from different directions we get different values for wi.

3
For example, a common choice for the

branch cut of the function ln(z) is the negative real axis R−. Each sheet of the function then
has a discontinuity limδ→0(ln(−r+ iδ)− ln(−r− iδ) = 2πi, where both values correspond to
the same value of the inverse limδ→0 e−r+iδ = limδ→0 e

−r−iδ+2πi. However as Fig. C40 shows,
the Riemann surface of ln itself is a smooth object. We may interpret the singularity by saying
that upon crossing the cut we smoothly pass from one Riemann sheet wi to the next one wi+1

where limδ→0wi(−r + iδ) = limδ→0wi+1(−r − iδ). Riemann surfaces demystify the spurious
ambiguities otherwise observed with functions such as zq, q ∈ Q. They establish a beautiful
connection between complex function theory and the geometry of two-dimensional surfaces.
In fact, Riemann surfaces are two-dimensional real manifolds in the sense of our discussion of
section V4.1. However, a comprehensive discussion of their rich geometry is beyond the scope
of this text and interested readers are referred to courses in complex analysis.

3

In Fig. C39, the second parameterization of the square root function appears continuous at the cut line.
However, this is because only the real part is plotted. The imaginary part is discontinuous (check this).
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Figure C40: Riemann surfaces of the three functions z1/2 (top), z1/3 (center), and ln(z) (bottom).
The plots show the real (left) and imaginary (right) parts of the functions over the complex plane.
Further discussion, see text.



PC Problems: Calculus

The excerises come in odd–even–numbered pairs, labelled E for ‘example’ and P for ‘practice’.
Each example problem prepares the reader for tackling the subsequent practice problem. The
solutions to the odd-numbered example problems are given in chapter SC. Lecturers can obtain
the solutions to the even-numbered practice problems from the publishers by request.

P.C1 Differentiation of one-dimensional functions

P.C1.3 Derivatives of selected functions

EC1.3.1 Derivatives

Compute the first derivative of the following functions.
[Check your results against those in square brackets, where [a, b] stands for f ′(a) = b.]

(a) f(x) = 1
4
x3 − 3x2 + 9x [2, 0] (b) f(x) = − 1√

2x

[
2, 1

8

]

(c) f(x) = ex(2x− 3)
[
1, e
]

(d) f(x) = x sin
[
π
(
x+ 1

6

)] [
0, 1

2

]

(e) f(x) = sin2(πx)
[

1
4
, π
]

(f) f(x) = tan(x) ≡ sinx

cosx

[
π
6
, 4

3

]

(g) f(x) = x lnx
[
1, 1
]

(h) f(x) = x ln(9x2)
[

1
3
, 2
]

(i) f(x) = coshx ≡ 1
2
(ex + e−x)

[
ln 3, 4

3

]
(j) f(x) = tanh x ≡ ex − e−x

ex + e−x
[
0, 1
]

PC1.3.2 Derivatives

Compute the first derivative of the following functions.
[Check your results against those in square brackets, where [a, b] stands for f ′(a) = b.]

(a) f(x) = (x− 1)(1 + x)(x− 2)
[
2, 3
]

(b) f(x) =
3
√
x2

[
8, 1

3

]

(c) f(x) = −e(1−x2)
[
1, 2
]

(d) f(x) = −x2 cos(πx)
[
1, 2
]

(e) f(x) = − cos4(3x2/π − x)
[
π
2
, 2
]

(f) f(x) = cot(x) ≡ cosx

sinx

[
π
2
,−1

]

(g) f(x) = ln
√
x2 + 1

[
1, 1

2

]
(h) f(x) = −2

√
lnx

x

[
e, 1

e2

]

342
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(i) f(x) = sinh x ≡ 1
2
(ex − e−x)

[
0, 1
]

(j) f(x) = coth x ≡ ex + e−x

ex − e−x
[
ln 2,−16

9

]

EC1.3.3 Derivatives of inverse functions

If a bijective function f is differentiable at the point x, with derivative f ′(x) 6= 0, then the
inverse function f−1 is likewise differentiable at the point y = f(x), with

df−1(y)

dy
=

(
df(x)

dx

∣∣∣
x=f−1(y)

)−1

. (1)

Use this relation to compute the following derivatives, and specify for each on which y-domain
your answer holds. [Check your results: [a, b] stands for (f−1)′(a) = b.]

(a) d
dy

ln y, [2, 1
2
]; (b) d

dy
arctan(y), [1, 1

2
]; (c) d

dy
arccos(y) [3,− 3√

8
].

Hint: The identity sec2 y = 1 + tan2 y is useful for (b), and sin2 y + cos2 y = 1 for (c).

PC1.3.4 Derivatives of inverse functions

Use (f−1)′(y) = 1/f ′(f−1(y)) to compute the following derivatives of inverse functions.
[Check your results: [a, b] stands for (f−1)′(a) = b.]

(a) d
dy

arcsinh(y), [2, 1√
5
]; (b) d

dy
arctanh(y), [1

2
, 4

3
]; (c) d

dy
arccosh(y) [2, 1√

3
].

Hint: The identity cosh2 y = 1 + sinh2 y is useful for (a,c), and sech2 y = 1 − tanh2 y for
(b).

P.C2 Integration of one-dimensional functions

EC2.3.1 Integration by parts

Integrals of the form I(z) =
´ z
z0

dx u(x)v′(x) can be written as I(z) = [u(x)v(x)]zz0 −´ z
z0

dx u′(x)v(x) using integration by parts. This is useful if u′v can be integrated – either
directly, after further integrations by parts [see (b)], or after other manipulations [see (e,f)].
When doing such a calculation, we recommend that you clearly indicate the factors u, v′, v and
u′. Always check that the derivative I ′(z) = dI/dz of your result reproduces the integrand!
If a single integration by parts suffices to calculate I(z), you’ll find that its derivative exhibits
the cancellation pattern I ′ = u′v + uv′ − u′v = uv′ [see (a,c,d)]; otherwise, more involved
cancellations occur [see (b,e,f)].
Integrate the following integrals by parts. [Check your results against those in square brackets,
where [a, b] stands for I(a) = b.]

(a) I(z) =

ˆ z

0

dx x e2x
[

1
2
, 1

4

]
(b) I(z) =

ˆ z

0

dx x2 e2x
[

1
2
, e

8
− 1

4

]
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(c) I(z) =

ˆ z

0

dx lnx
[
1,−1

]
(d) I(z) =

ˆ z

0

dx lnx 1√
x

[
1,−4

]

(e) I(z) =

ˆ z

0

dx sin2 x
[
π, π

2

]
(f) I(z) =

ˆ z

0

dx sin4 x
[
π, 3π

8

]

PC2.3.2 Integration by parts

Integrate the following integrals by parts. [Check your results against those in square brackets,
where [a, b] stands for I(a) = b.]

(a) I(z) =

ˆ z

0

dx x sin(2x)
[
π
2
, π

4

]
(b) I(z) =

ˆ z

0

dx x2 cos(2x)
[
π
2
,−π

4

]

(c) I(z) =

ˆ z

0

dx (lnx) x
[
1,−1

4

]
(d) I(z)

[n>−1]
=

ˆ z

0

dx (lnx) xn
[
1, −1

(n+1)2

]

(e) I(z) =

ˆ z

0

dx cos2 x
[
π, π

2

]
(f) I(z) =

ˆ z

0

dx cos4 x
[
π, 3

8
π
]

EC2.3.3 Integration by substitution

Integrals of the form I(z) =
´ z
z0

dx y′(x)f(y(x)) can be written as I(z) =
´ y(z)

y(z0)
dyf(y) by

using the substitution y = y(x), dy = y′(x)dx. When doing such integrals, we recommend
that you explicitly write down y(x) and dy, to ensure that you correctly identify the prefactor of
f(y). Always check that the derivative I ′(z) = dI/dz of your result reproduces the integrand!
You’ll notice that the factor y′(z) emerges via the chain rule for differentiating composite
functions.
Calculate the following integrals by substitution. [Check your results against those in square
brackets, where [a, b] stands for I(a)=b.]

(a) I(z) =

ˆ z

0

dx x cos(x2 + π)
[√

π
2
,−1

2

]
(b) I(z) =

ˆ z

0

dx sin3 x cosx
[
π
4
, 1

16

]

(c) I(z) =

ˆ z

0

dx

√
1 + ln(x+ 1)

x+ 1

[
e3 − 1, 14

3

]
(d) I(z) =

ˆ z

0

dx x3e−x
4

[
4
√

ln 2, 1
8

]

PC2.3.4 Integration by substitution

Calculate the following integrals by substitution. [Check your results versus those in square
brackets, where [a, b] stands for I(a) = b.]

(a) I(z) =

ˆ z

0

dx x2
√
x3 + 1

[
2, 52

9

]
(b) I(z) =

ˆ z

0

dx sinx ecosx
[
π
3
, e−√e

]

(c) I(z) =

ˆ z

0

dx
sin
√
πx√
x

[
π
9
, 1√

π

]
(d) I(z) =

ˆ z

0

dx
√
x e
√
x3 [

(ln 4)2/3, 2
]
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EC2.3.5
√

1− x2 Integrals by trigonometric substitution

The sine and cosine functions satisfy the following identities:

d
dy

sin(y) = cos(y), d
dy

cos(y) = − sin(y), cos2(y) = 1− sin2(y).

The last of these is useful for solving integrals that contain
√

1− x2 by using the trigonometric
substitution x = sin(y), since

√
1− x2 = cos(y).

Calculate the following integrals (|z| < 1 for (a), and |z| < 1
2

for (b)); check your results by

calculating dI(z)
dz

.

(a) I(z) =

ˆ z

0

dx
1√

1− x2
.
[
Check your result: I

(
1√
2

)
= π

4
.
]

(b) I(z) =

ˆ z

0

dx
√

1− 4x2.
[
Check your result: I

(
1
2

)
= π

8
.
]

Hint: The cos2 y integral that emerges after substitution can be solved by integrating by
parts!

PC2.3.6
√

1 + x2 Integrals by hyberbolic substitution

The ‘hyperbolic sine’ and ’hyperbolic cosine’ functions, defined by

sinh(y) = 1
2
(ey − e−y), cosh(y) = 1

2
(ey + e−y),

satisfy the following identities:

d
dy

sinh(y) = cosh(y), d
dy

cosh(y) = sinh(y), cosh2(y) = 1 + sinh2(y).

The last of these is useful for solving integrals that contain
√

1 + x2 by using the hyperbolic
substitution x = sinh(y), since

√
1 + x2 = cosh(y).

Calculate the following integrals; check your results by calculating dI(z)
dz

.

(a) I(z) =

ˆ z

0

dx
1√

1 + x2
. [Check your result: I

(
3
4

)
= ln 2. ]

(b) I(z) =

ˆ z

0

dx

√
1 + x2

4
. [Check your result: I

(
3
2

)
= ln 2 + 15

16
. ]

Hint: The cosh2 y integral that emerges after substitution can be solved by integrating
by parts!



346 P.C2 Integration of one-dimensional functions

EC2.3.7 1/(1− x2) Integrals by hyperbolic substitution

(a) Show that the functions tanh(y) (‘hyperbolic tangent’) and sech(y) = 1
cosh(y)

(‘hyperbolic

secant’) satisfy the following identities:

d
dy

tanh(y) = sech2(y), 1− tanh2(y) = sech2(y).

The second of these is useful for solving integrals that contain 1−x2 by using the trigonometric
substitution x = tanh(y), with inverse function y = arctanh(y), since 1− x2 = sech2(y).

Calculate the following integral for |z| < 1; check your results by calculating dI(z)
dz

.

(b) I(z) =

ˆ z

0

dx
1

1− x2
.
[
Check your result: I

(
3
5

)
= ln 2.

]

PC2.3.8 1/(1 + x2) Integrals by trigonometric substitution

(a) Show that the functions tan(y) and sec(y) = 1
cos(y)

(‘secant’) satisfy the following iden-
tities:

d
dy

tan(y) = sec2(y), 1 + tan2(y) = sec2(y).

The second of these is useful for solving integrals that contain 1+x2 by using the trigonometric
substitution x = tan(y), with inverse function y = arctan(x), since 1 + x2 = sec2(y).

Calculate the following integrals; check your results by calculating dI(z)
dz

. [In (c), a ∈ R.]

(b) I(z) =

ˆ z

0

dx
1

1 + x2
.

[
Check your result: I

(
∞
)

= π
2

.
]

(c) I(z) =

ˆ z

0

dx
1

(1 + a2x2)3
.

[
Check your result: for a = 1, I

(
1
)

= 1
32

(8 + 3π).
]

EC2.3.9 1/(1 + x2) Integral via partial fraction decomposition

A function f is called a ‘rational function’ if it can be expressed as a ratio f(x) = P (x)/Q(x)
of two polynomials P and Q. Integrals of rational functions can be computed using a ‘partial
fraction decomposition’, a procedure that expresses f as the sum of a polynomial (possibly with
degree 0) and several ratios of polynomials with simpler denominators. To achieve this, the
denominator Q is factorized into a product of polynomials qj of lower degree, Q(x) =

∏
j qj(x),

and the function f is written as f(x) =
∑

j pj(x)/qj(x). The form of the polynomials pj in
the numerators is fixed uniquely by the form of the polynomials P and qj. (Since a partial
fraction decomposition starts with a common denominator and ends with a sum of rational
functions, it is in a sense the inverse of the procedure of adding rational functions by finding
a common denominator.) If a complete factorization of Q is used, this yields a decomposition
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of the integral
´

dxf(x) into a sum of integrals that can be solved by elementary mean.
In Problems C2.3.9 to C2.3.12, we illustrate the method using some simple examples; for a
systematic treatment, consult textbooks on calculus.

(a) Compute the integral I(z) =

ˆ z

0

dx
1

1 + x2
using a partial fraction decomposition. [Check

your result: I(1) = π
4

.]

(b) Alternatively, this integral can also be computed using the trigonometric substitution
x = tan(y), resulting in I(z) = arctan(z) (see Problem C2.3.6). To establish that

the latter result agrees with that from (a), solve the equation x = tan(y) = eiy−e−iy

i(eiy+e−iy)

explicitly to find y as function of x; the resulting expression is equal to arctan(x). [The
abovementioned expression for tan(y) in terms of exponentials of iy is established in
Sec. C5.2, see Eq. (C92).]

PC2.3.10 1/(1− x2) Integral via partial fraction decomposition

(a) Compute the integral I(z) =

ˆ z

0

dx
1

1− x2
using a partial fraction decomposition. [Check

your result: I(1
2
) = 1

2
ln 3.]

(b) Alternatively, this integral can also be computed using the hyperbolic substitution x =
tanh(y), resulting in I(z) = arctanh(z) (see Problem ??). To establish that the latter
result agrees with that from (a), solve the equation x = tanh(y) = ey−e−y

ey+e−y explicitly to
find y as function of x; the resulting expression is equal to arctanh(x).

EC2.3.11 Partial fraction decomposition

Use partial fraction decomposition to compute the following integrals, for z ∈ R, z > −1:

(a) I(z) =

ˆ z

0

dx
3x+ 3

(x+ 1)2(x− 2)
, (b) I(z) =

ˆ z

0

dx
3x

(x+ 1)2(x− 2)
.

[Check your results: (a) I(3) = − ln 8, (b) I(3) = − ln 4 + 3
4
.]

PC2.3.12 Partial fraction decomposition

Use partial fraction decomposition to compute the following integrals, for z ∈ R, z < 1:

(a) I(z) =

ˆ z

0

dx
x+ 2

x3 − 3x2 − x+ 3
, (b) I(z) =

ˆ z

0

dx
4x− 1

(x+ 2)(x− 1)2
.

[Check your results: (a) I(1
2
) = 5

8
ln 5− 1

2
ln 3, (b) I(1

2
) = 1− ln

(
5
2

)
.]
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EC2.3.13 Elementary Gaussian integral

(a) Show that the two-dimensional Gaussian integral I =
´∞
−∞
´∞
−∞ dxdy e−(x2+y2) has the

value I = π. Hint: Use polar coordinates; the radial integral can be solved by substitution.

(b) Now calculate the one-dimensional Gaussian integral I0(a) =
´∞
−∞ dx e−ax

2
(here and

below, a ∈ R, a > 0). Hint: I = [I0(1)]2. Explain why! [Check your result: I0(π) = 1.]

PC2.3.14 Gaussian integral with linear term in exponent

(a) Compute the one-dimensional Gaussian integral with a linear term in the exponent:

I0(a, b) =

ˆ ∞
−∞

dx e−ax
2+bx (a, b ∈ R, a > 0).

Hint: Write the exponent in the form −ax2 + bx = −a(x−C)2 +D (called ‘completing
the square’) and then substitute x̃ = x− C. You may use

´∞
−∞ dx e−x

2
=
√
π .

Compute the following integrals:

(b) I1(c) =

ˆ ∞
−∞

dx e−
1
2(x2+3x+ c

4) (c) I2(c) =

ˆ ∞
−∞

dx e−2(x+3)(x−c)

[Check your results: I0(π,
√
π) = e

1
4 , I1(1) =

√
2π , I2(−3) =

√
π
2

.]

EC2.3.15 Definite exponential integrals

Calculate the integral In(a) =
´∞

0
dx xne−ax (with a ∈ R, a > 0, n ∈ N) using two different

methods: (a) repeated partial integration, and (b) repeated differentiation:

(a) Calculate I0, I1 and I2 by using partial integration where necessary. Then use partial
integration to show that In(a) = n

a
In−1(a) for all n ≥ 1. Use this relation iteratively to

determine In(a) as a function of a and n.

(b) Show that taking n derivatives of I0(a) with respect to a yields In(a) = (−1)n dnI0(a)
dan

.
Then calculate these derivatives for a few small values of n. From the emerging pattern,
deduce the general formula for In(a).

[Check your result: I3(2) = 3
8
.]
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PC2.3.16 General Gaussian integrals

Determine the value of the x2n Gaussian integral, In(a) =
´∞
−∞ dx x2n e−ax

2
(with n ∈ N),

using two different methods: (a) repeated partial integration, and (b) repeated differentiation:

(a) Starting from the Gaussian integral I0(a) =
√

π
a

, compute the integrals I1 and I2 by
using partial integration where necessary. Then use partial integration to show that
In(a) = 2n−1

2a
In−1(a) holds for all n ≥ 1. Use this relation iteratively to determine In(a)

as a function of a and n.

(b) Show that taking n derivatives of I0(a) with respect to a times yields In(a) = (−1)n dnI0(a)
dan

.
Then calculate these derivatives for a few small values of n. From the emerging pattern,
deduce the general formula for In(a).

P.C3 Partial differentiation

P.C3.1 Partial derivative

EC3.1.1 Partial derivatives

Compute the partial derivates ∂xf(x, y) and ∂yf(x, y) of the following functions:
[Check your results against those in square brackets.]

(a) f(x, y) = x2y3 − 2xy [∂xf(2, 1) = 2, ∂yf(1, 2) = 10]

(b) f(x, y) = sin
[
xe2y

] [
∂xf(0, 1

2
) = e, ∂yf(π, 0) = −2π

]

PC3.1.2 Partial derivatives

Compute the partial derivates ∂xf(x, y) and ∂yf(x, y) of the following functions:
[Check your results against those in square brackets.]

(a) f(x, y) =
x2

y3
+

4y

x
[∂xf(2, 1) = 3, ∂yf(3, 3) = 1]

(b) f(x, y) = ln
(
x2 sin(y)

) [
∂xf(2, 1) = 1, ∂yf(1, π

4
) = 1

]

(c) f(x, y) = e−x
2 cos(y)

[
∂xf(1, π) = 2e, ∂yf(1, π

2
) = 1

]

(d) f(x, y) = sinh
(
x
y

) [
∂xf(ln 2, 1) = 5

4
, ∂yf(ln 2, 1) = −5

4
ln 2
]

P.C3.2 Multiple partial derivatives

EC3.2.1 Partial derivates of first and second order

Consider the function f : R2\(0, 0)T → R, r = (x, y)T 7→ f(r) = x
r

+ 1, with r =
√
x2 + y2.

Calculate all possible partial derivatives of first and second order.
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PC3.2.2 Partial derivates of first and second order

Consider the function f : R3 → R, r = (x, y, z)T 7→ f(r) = z2exy. Calculate all possible
partial derivatives of first and second order.

P.C3.3 Chain rule for functions of several variables

EC3.3.1 Chain rule for functions of two variables

This problem aims to illustrate the inner life of the chain rule for a function of several variables.
Consider the function f : R2 → R, y = (y1, y2)T 7→ f(y) = ‖y‖2 and the vector field
g : R2

+ → R2, x = (x1, x2)T 7→ g(x) = (lnx2, 3 lnx1)T , then f(g(x)) gives the norm of g
as a function of x. Find the partial derivatives ∂x1f(g(x)) and ∂x2f(g(x)) as functions of x1

and x2 in two ways,

(a) by first computing f(x) = f(g(x)) as function of x and then taking partial derivatives;

(b) by using the chain rule ∂xkf(g(x)) =
∑

j ∂gjf(g(x)) ∂xkg
j(x).

Why do both routes yield the same answer? Identify the similarities in both computations!

[Check your results: if x1 = 9, x2 = 2, then ∂x1f = 4 ln 3, ∂x2 = ln 2.]

PC3.3.2 Chain rule for functions of two variables

Consider the function f : R2 → R, y = (y1, y2)T 7→ f(y) = y ·a, where a = (a1, a2)T ∈ R2,
and the vector field x = (x1, x2)T 7→ g : R2 → R2, g(x) = x(x · b), where b = (b1, b2)T ∈
R2. Compute the partial derivatives ∂xkf(g(x)) (with k = 1, 2) as functions of x,

(a) by first computing f(g(x)) explicitly and then taking partial derivatives;

(b) by using the chain rule ∂xkf(g(x)) =
∑

j ∂gjf(g(x))∂xkg
j(x).

[Check your result: if a = (0, 1)T , b = (1, 0)T , then ∂1f(g(x)) = x2, ∂2f(g(x)) = x1.]
Hint: If compact notation is used, such as a · x = alx

l and ∂xkx
l = δlk, the computations are

quite short.

P.C4 Multi-dimensional integration

P.C4.1 Cartesian area and volume integrals

EC4.1.1 Two-dimensional integration (Cartesian coordinates)

Calculate the surface integral I(a) =
´
Ga

dx dy f(x, y) of the function f(x, y) = xy, over the

area G = {(x, y) ∈ R2; 0 ≤ y ≤ 1; 1 ≤ x ≤ a − y}, with 2 ≤ a ∈ R. [Check your result:
I(2) = 5

24
].
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PC4.1.2 Two-dimensional integration (Cartesian coordinates)

Calculate the surface integral I(a) =
´
G

dx dy f(x, y) of the function f(x, y) = y2 + x2 over
the surface G = {(x, y) ∈ R2; 0 ≤ x ≤ 1; 0 ≤ y ≤ eax}, with a ∈ R. Hint: for

´
dx x2eax,

use partial integration twice! [Check your result: I(1) = e + (e3 − 19)/9.]

EC4.1.3 Area enclosed by curves (Cartesian coordinates)

Consider the curve γ1 : R → R2, t 7→ (t, b(1 − t/a))T and the closed curve γ2 : (0, 2π) ⊂
R→ R2, t 7→ (a cos t, b sin t)T in Cartesian coordinates, with 0 < a, b ∈ R.

(a) Sketch the curves γ1 and γ2.

(b) Compute the area S(a, b) enclosed by γ2. [Check your result: S(1, 1) = π.]

(c) γ1 divides the area enclosed by γ2 into two parts. Find the area A(a, b) of the smaller
part by computing an area integral. Check your result using elementary geometrical
considerations.

PC4.1.4 Area enclosed by curves (Cartesian coordinates)

Consider the curves γ1 : R → R2, t 7→ ((t − 2a)2 + 2a2, t)T and γ2 : R → R2, t 7→
(2(t− a)2, t)T in Cartesian coordinates, with 0 < a ∈ R.

(a) Sketch the curves γ1 and γ2.

(b) Compute the finite area S(a) enclosed between these curves. [Check your result: S(1
2
) =

4
3
.]

EC4.1.5 Area integral for volume of a pyramid (Cartesian coordinates)

Consider the pyramid bounded by the xy plane, the yz plane, the xz plane and the plane
E = {(x, y, z) ∈ R3, z = c(1− x/a− y/b}, with 0 < a, b, c ∈ R.

(a) Make a qualitative sketch of the pyramid. Find its volume V (a, b, c) using geometric
arguments [Check your result: V (1, 1, 1) = 1

6
.]

(b) Compute V (a, b, c) by integrating the height h(x, y) of the pyramid over its base area in
the xy plane.

PC4.1.6 Area integral for volume of ellipsoidal tent (Cartesian coordinates)

A tent has a flat, ellipsoidal base, given by the equation (x/a)2 + (y/b)2 ≤ 1. The shape of
the tent’s roof is given by the height function h(x, y) = c

[
1− (x/a)2 − (y/b)2

]
.

(a) Give a qualitative sketch of the shape of the tent, for a = 2, b = 1 and c = 2.
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(b) Calculate the volume V of the tent via a surface integral of the height function . [Check
your result: if a = b = c = 1, then V = π/2.]

Hint: Show by a suitable trigonometric substitution that
´ 1

0
dx (1− x2)3/2 = 3

16
π.

P.C4.2 Curvilinear area integrals

EC4.2.1 Area of an ellipse (elliptical polar coordinates)

(a) Let f : R2 → R be a function of the coordinates x and y that depends only on the
combined variable (x/a)2 + (y/b)2. Show that a two-dimensional area integral of f over
R2 can be written as

I =

ˆ
R2

dxdy f
(
(x/a)2 + (y/b)2

)
= 2πab

ˆ ∞
0

dµµ f(µ2) ,

by transforming from Cartesian coordinates to elliptical polar coordinates, defined as
follows:

x = µa cosφ, y = µb sinφ ,

µ2 = (x/a)2 + (y/b)2, φ = arctan(ay/bx) .

Hint: For a = b = 1, they correspond to polar coordinates. For a 6= b, the local basis is
not orthogonal!

(b) Using a suitable function f , calculate the area of an ellipse with semi-axes a and b, with
a and b defined by (x/a)2 + (y/b)2 ≤ 1.

PC4.2.2 Area integral for volume (elliptical polar coordinates)

In the following, use elliptical coordinates in two dimensions, defined as x = µa cosφ, y =
µb sinφ, with a, b ∈ R, a > b > 0. Calculate the volume V (a, b, c) of the following objects
T , E and C, as a function of the length parameters a, b and c.

(a) T is a tent with an elliptical base with semi-axes a and b. The
height of its roof is described by the height function hT (x, y) =
c
[
1− (x/a)2 − (y/b)2

]
. x

y

z

a b

c

(b) E is an ellipsoid with semi-axes a, b and c, defined by (x/a)2 +
(y/b)2 + (z/c)2 ≤ 1 .

x

y

z

a
b

c

(c) C is a cone with height c and an elliptical base with semi-axes a and b. All cross sections
parallel to the base are elliptical, too. Hint: Augment the elliptical coordinates by another
coordinate, z (in analogy to passing from polar to cylindrical coordinates).

[Check your answers: if a = 1/π, b = 2, c = 3, then (a) VT = 3, (b) VE = 8, (c) VC = 2.]
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P.C4.3 Curvilinear volume integrals

EC4.3.1 Volume and moment of inertia (cylindrical coordinates)

The moment of inertia of a rigid body with respect to a given axis of rotation is defined as
I =
´
V

dV ρ0(r)d2
⊥(r), where ρ0(r) is the density at the point r, and d⊥(r) the perpendicular

distance from r to the rotation axis.

Let F = {r ∈ R3 |H ≤ z ≤ 2H,
√
x2 + y2 ≤ az} be a homogeneous

conical frustum (cone with tip removed) centered on the z-axis. Calculate,
using cylindrical coordinates,

(a) its volume VF (a), and

(b) its moment of inertia IF (a) with respect to the z axis,

ze

H

H2

as functions of the dimensionless, positive scale factor a, the length parameter H, and the
mass m of the frustum. [Check your results: VF (3) = 21πH3, IF (1) = 93π

70
MH2.]

PC4.3.2 Volume and moment of inertia (cylindrical coordinates)

Consider the homogeneous rigid bodies C, P and B specified below, each with density ρ0.
For each body, use cylindrical coordinates to compute its volume V (a) and moment of inertia
I(a) = ρ0

´
V

dV d2
⊥ with respect to the axis of symmetry, as functions of the dimensionless,

positive scale factor a, the length parameter R, and the mass of the body, M .

(a) C is a hollow cylinder with inner radius R, outer radius aR, and height 2R. [Check your
results: VC(2) = 6πR3, IC(2) = 15

6
MR2.]

(b) P is a paraboloid with height h = aR and curvature 1/R, defined by
P = {r ∈ R3 | 0 ≤ z ≤ h, (x2 + y2)/R ≤ z} [Check your results:
VP (2) = 2πR3, IP (2) = 2

3
MR2.] x

h

z

(c) B is the bowl obtained by taking a sphere, S = {r ∈ R3| x2+y2+(z−
aR)2 ≤ a2R2}, with radius aR, centered on the point P : (0, 0, aR)T ,
and cutting a cone from it, C = {r ∈ R3| (x2 + y2) ≤ (a− 1)z2, a ≥
1}, which is symmetric about the z axis, with apex at the origin.
[Check your results: VB

(
4
3

)
= 16

9
πR3, IB

(
4
3

)
= 14

15
MR2. What do

you get for a = 1? Why?]

x

z

P

Hint: First, for a given z, find the radial integration boundaries, ρ1(z) ≤ ρ ≤ ρ2(z), then
the z integration boundaries, 0 ≤ z ≤ zm. What do you find for zm, the maximal value
of z?

EC4.3.3 Volume of a buoy (spherical coordinates)

Consider a buoy, with its tip at the origin, bounded from above by a sphere
centered on the origin, with x2 + y2 + z2 ≤ R2, and from below by a cone with
tip at the origin, with z ≥ a

√
(x2 + y2). θ̃

z

R
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(a) Show that the half angle at the tip of the cone is given by θ̃ = arctan(1/a).

(b) Use spherical coordinates to calculate the volume V (R, a) of the buoy as a function of
R and a. [Check your results: V (2,

√
3) = (16π/3)(1−

√
3/2).]

PC4.3.4 Volume integral over quarter sphere (spherical coordinates)

Use spherical coordinates to calculate the volume integral F (R) =
´
Q

dV f(r) of the function

f(r) = xy on the quadrant Q, defined by x2 + y2 + z2 ≤ R2 and x, y ≥ 0. Sketch Q. [Check
your result: F (2) = 64

15
.]

EC4.3.5 Wave functions of two-dimensional harmonic oscillator (polar coordinates)

The quantum mechanical treatment of a two-dimensional harmonic oscillator leads to so-called
‘wave functions’,

Ψnm : R2 → C, r 7→ Ψnm(r) , with n ∈ N0, m ∈ Z, m = −n,−n+ 2, . . . , n− 2, n,

which have a factorized form when written in terms of polar coordinates, Ψnm(r) = Rn|m|(ρ)Zm(φ),
with Zm(φ) = 1√

2π
eimφ. The wave functions satisfy the following ‘orthogonality relation’:

Omm′
nn′ ≡

ˆ
R2

dSΨnm(r)Ψn′m′(r) = δnn′δmm′ .

Verify these for n = 0, 1 and 2, where the radial wave functions have the form:

R00(ρ) =
√

2e−ρ
2/2, R11(ρ) =

√
2ρe−ρ

2/2, R22(ρ) = ρ2 e−ρ
2/2, R20(ρ) =

√
2[ρ2 − 1]e−ρ

2/2.

Proceed as follows. Due to the product form of the wave function Ψ, each area integral

separates into two factors that can be calculated separately, Omm′
nn′ = P

|m||m′|
nn′ P̃mm′ , where P

is a radial integral and P̃ an angular integral.

(a) Find general expressions for P and P̃ as integrals over R or Z functions, respectively.

(b) Compute the angular integral P̃mm′ for arbitrary values of m and m′.

(c) Now compute those radial integrals that arise in combination with P̃ 6= 0, namely P 00
00 ,

P 11
11 , P 22

22 , P 00
22 and P 00

20 .

Hint: The Euler identity, ei2πk = 1 if k ∈ Z, is useful for evaluating the angular integral, and´∞
0

dx xne−x = n! for the radial integrals.

Background information: The functions Ψnm(r) are the ‘eigenfunctions’ of a quantum me-
chanical particle in a two-dimensional harmonic potential, V (r) ∝ r2, where n and m are
‘quantum numbers’ that specify a particular ‘eigenstate’. A particle in this state is found with
probability |Ψnm(r)|2dS within the area element dS at position r. The total probability of
being found anywhere in R2 equals 1, hence the normalization integral yields Omm

nn = 1 for
every eigenfunction Ψnm(r). The fact that the area integral of two eigenfunctions vanishes
if their quantum numbers are not equal, reflects the fact that the eigenfunctions form an
orthonormal basis in the space of square-integrable complex functions on R2.
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PC4.3.6 Wave functions of the hydrogen atom (spherical coordinates)

Show that the volume integral Pnlm =
´
R3 dV |Ψnlm(r)|2 for the following functions Ψnlm(r) =

Rnl(r)Y
m
l (θ, φ), with spherical coordinates r = r(r, θ, φ), yields Pnlm = 1:

(a) Ψ210(r) = R21(r)Y 0
1 (θ, φ), R21(r) =

re−r/2√
24

, Y 0
1 (θ, φ) =

(
3

4π

)1/2
cos θ

(b) Ψ320(r) = R32(r)Y 0
2 (θ, φ), R32(r) =

4 r2e−r/3

81
√

30
, Y 0

2 (θ, φ) =
(

5
16π

)1/2
(3 cos2 θ − 1)

(c) Show that the so-called ‘overlap integral’ O =
´
R3 dV Ψ320(r)Ψ210(r) yields zero.

Hint: In =
´∞

0
dx xn e−x = n! .

Background information: The Ψnlm(r) are quantum mechanical ‘eigen-
functions’ of the hydrogen atom, where n, l and m are ’quantum numbers’
which specify the quantum state of the system. A particle in this state
is found with probability |Ψnm(r)|2dV within the volume element dV at
position r. The total probability for being found anywhere in R3 equals
1, hence Pnlm = 1 holds for every eigenfunction Ψnm(r).

The figures each show a surface on which |Ψnlm|2 has a constant value. The eigenfunctions
form an orthonormal basis in the space of square-integrable complex functions on R3, hence
the volume integral of two eigenfunctions vanishes if their quantum numbers are not equal.

P.C4.4 Curvilinear integration in arbitrary dimensions

EC4.4.1 Surface integral: area of a sphere

Consider a sphere S with radius R. Compute its area, AS, using (a) Cartesian coordinates,
and (b) spherical coordinates, by proceeding as follows.

(a) Choose Cartesian coordinates, with the origin at the center of the spere. Its area is twice
that of the half-sphere S+ lying above the xy-plane. S+ can be parametrized as

r : D → S+, (x, y)T 7→ r(x, y) = (x, y,
√
R2 − x2 − y2)T ,

where D = {(x, y)T ∈ R2|x2 + y2 < R2} is a disk of radius R. Use this parametrization
to compute the area of the sphere as AS = 2

´
D

dxdy ‖∂xr× ∂yr‖.
(b) Now choose spherical coordinates and parametrize the sphere as

r : U → S, (θ, φ)T 7→ r(θ, φ) = R(sin θ cosφ, sin θ sinφ, cos θ)T ,

with U = (0, π)×(0, 2π). Compute the area of the sphere as AS =
´
U

dθdφ ‖∂θr×∂φr‖.
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PC4.4.2 Surface integral: area of slanted face of rectangular pyramid

Consider the pyramid shown in the sketch. Find a parametrization of
its slanted face, Fslant, of the form

r : U ⊂ R2 → Fslant ⊂ R3, (x, y)T 7→ r(x, y),

i.e. specify the domain U and the Cartesian vector r(x, y). Then com-
pute the area of the slanted face as Aslant =

´
U

dxdy ‖∂xr× ∂yr‖.
[Check your result: if a = 2, then Aslant =

√
53

12
.]

xe

ye

ze

2
1

3
1

a

EC4.4.3 Volume and surface integral: parabolic solid of revolution

Let the solid of revolution K be the volume bounded from above by the plane z = zmax, and
from below by the surface of revolution P , which is defined via the rotation of the parabola
z(x) = x2 about the z-axis.

(a) Calculate the volume V of the body K.

(b) Calculate the surface area A of the curved part of the surface of K.

[Check your results: For zmax = 3
4

we have V = 9π
32

and A = 7π
6

.]

PC4.4.4 Surface integral: hyperbolic solid of revolution (Gabriel’s horn)

Let K be the solid body generated by rotating the function ρ(z) = 1/z with 1 ≤ z ≤ a about
the z-axis. This shape is known as Gabriel’s horn or Torticelli’s trumpet.

(a) Compute the volume, V (a), of the body K. [Check
your result: V (2) = π

2
.]

(b) Write down the integral for the surface area of this
solid, A(a), and calculate its derivative A′(a) =
d
da
A(a). [Check your result: A′(1) = 2

√
2π.]

(c) Find a lower bound for the value of the integral A(a)
by using the inequality

√
z−4 + 1 ≥ 1.

(d) How large are the volume and (the lower bound for)
the area in the limit as a→∞?

xe

ye

ze

EC4.4.5 Surface area of a circular cone

Consider a circular cone C of radius R and height h. Compute the area, AC(R, h), of its
(slanted) conical surface SC as a function of R and h. [Check your result: AC(3, 4) = 15π .]
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PC4.4.6 Surface area of an elliptical cone

Consider an elliptical cone C with semi-axes a and b and height h. Use generalized polar
coordinates to show that the area, AC , of its (slanted) conical surface SC is given by an
integral of the form,

AC =

ˆ
SC

dS = P

ˆ 2π

0

dφ

√
1 +Q sin2 φ ,

and find P (a, b, h) and Q(a, b, h) as functions of a, b and h. Remark : This integral belongs
to the class of so-called elliptical integrals, which cannot be solved in closed form.
[Check your results: if a = 3, b = 2 and h = 4, then C = 5 and D = 32

25
.]

P.C4.5 Changes of variables in higher-dimensional integration

EC4.5.1 Jacobian determinant for cylindrical coordinates

Calculate the Jacobian determinant
∣∣∣∂(x1,x2,x3)

∂(ρ,φ,z)

∣∣∣ for the transformation from Cartesian to cylin-

drical coordinates.

PC4.5.2 Jacobian determinant for spherical coordinates

Calculate the Jacobian determinant
∣∣∣∂(x1,x2,x3)

∂(r,θ,φ)

∣∣∣ for the transformation from Cartesian to spher-

ical coordinates.

EC4.5.3 Three-dimensional Gaussian integral via linear transformation

Calculate the following three-dimensional Gaussian integral (with a, b, c > 0, a, b, c ∈ R):

I =

ˆ
R3

dx dy dz e−[a2(x+y)2+b2(z−y)2+c2(x−z)2]

Hint: Use the substitution u = a(x + y), v = b(z − y), w = c(x − z) and calculate the

Jacobian determinant, using J =
∣∣∣∂(u,v,w)
∂(x,y,z)

∣∣∣
−1

. You may use
´∞
−∞ dx e−x

2
=
√
π. [Check your

result: if a = b = c =
√
π, then I = 1

2
.]

PC4.5.4 Three-dimensional Lorentzian integral via linear transformation

Calculate the following triple Lorentz integral (with a, b, c, d > 0, a, b, c, d ∈ R):

I =

ˆ
R3

dx dy dz
1

[(xd+ y)2 + a2]
· 1

[(y + z − x)2 + b2]
· 1

[(y − z)2 + c2]

Hint: Use the change of variables u = (xd + y)/a, v = (y + z − x)/b, w = (y − z)/c and

calculate the Jacobian determinant using J =
∣∣∣∂(u,v,w)
∂(x,y,z)

∣∣∣
−1

. You may use
´∞
−∞ dx(x2+1)−1 = π.

[Check your result: if a = b = c = π, d = 2, then I = 1
5
.]
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EC4.5.5 General Gaussian integrals

[This problem and the next presume that you know how to diagonalize a symmetric matrix,
see Sec. ??.]
Multiple Gaussian integrals are integrals of the form

I =

ˆ
Rn

dx1 . . . dxn e−r
TAr ,

where r = (x1, . . . , xn)T and the matrix A is symmetric and positive definite (i.e. all eigenval-
ues of A are > 0). The characteristic property of this class of integrals is that the exponent
is a ‘quadratic form’, i.e. a quadratic function of all integration variables. In general this
function contains mixed terms, but these can be removed by a basis transformation: Let S
be the similarity transformation that diagonalizes A, so that D = STAS is diagonal, with
eigenvalues λ1, . . . , λn. Since A is symmetric, S is orthogonal, with S−1 = ST and detS = 1.
Now define r̃ = (x̃1, . . . , x̃n)T by r̃ ≡ ST r, then we have

rTAr = rTSDST r = r̃TD r̃ =
∑

i

λi(x̃
i)2 . (1)

When expressed through the new variables r̃, the exponent thus no longer contains any mixed
terms, so that the Gaussian integral can be solved by the variable substitution r = Sr̃:

I =

ˆ
Rn

dx1 . . . dxn e−r
TAr =

ˆ
Rn

dx̃1 . . . dx̃n J e−
∑n
i λn(x̃i)2

=
√

π
λ1
. . .
√

π
λn

=
√

πn

detA
.

We have here exploited two facts: (i) Since ∂xi/∂x̃j = Sij, the Jacobian determinant of the
variable substitution equals the determinant of S and thus equal to 1:

J =

∣∣∣∣
∂(x1, . . . , xn)

∂(x̃1, . . . , x̃n)

∣∣∣∣ =

∣∣∣∣∣∣∣
det




∂x1

∂x̃1 . . . ∂x1

∂x̃n
...

...
∂xn

∂x̃1 . . . ∂xn

∂x̃n




∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
det



S1

1 . . . S1
n

...
...

Sn1 . . . Snn




∣∣∣∣∣∣∣
= | detS| = 1 .

(ii) The product of the eigenvalues of a matrix equals its determinant,
∏n

i λi = detA.

Now use the above strategy to compute the following integral (a > 0):

I(a) =

ˆ
R2

dx dy e−[(a+3)x2+2(a−3)xy+(a+3)y2]

Execute all steps of the above argumentation explicitly:

(a) Bring the exponent into the form −rTAr, with r = (x, y)T and A symmetric. Identify
and diagonalize the matrix A. In particular, explicitly write out equation (1) for the
present case.

(b) Find S. Calculate the Jacobian determinant explicitly.

(c) What is the value of the Gaussian integral? [Check your result: I(1) = π
2
√

3
.]
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PC4.5.6 General Gaussian integrals

Compute the following three-dimensional Gaussian integral (a > 0):

I(a) =

ˆ
R3

dx dy dz e−[(a+2)x2+(a+2)y2+(a+2)z2+2(a−1)xy+2(a−1)yz+2(a−1)xz]

(a) Bring the exponent into the form −rTAr, with r = (x, y, z)T and A symmetric.

(b) Diagonalize the matrix A. You do not need to compute the corresponding similarity
transformation explicitly.

(c) Compute I(a) by expressing it as a product of three one-dimensional Gaussian integrals.
[Check your result: I(3) = 1

9

√
π3.]

P.C5 Taylor series

P.C5.1 Approximating functions by polynomials

P.C5.2 Taylor expansion

EC5.2.1 Addition theorems for sine and cosine

Prove the addition theorems for sine and cosine:

(a) cos(a+ b) = cos a cos b− sin a sin b,

(b) sin(a+ b) = cos a sin b+ sin a cos b.

Hint: Use the Euler-de Moivre identity on both sides of ei(a+b) = eiaeib.

PC5.2.2 Powers of Sine and Cosine

Use the Euler-de Moivre identity to prove the following identities:

(a) cos2 a = 1
2

+ 1
2

cos(2a) , sin2 a = 1
2
− 1

2
cos(2a) .

(b) cos3 a = 3
4

cos a+ 1
4

cos(3a) , sin3 a = 3
4

sin a− 1
4

sin(3a) .

P.C5.3 Finite-order expansion

EC5.3.1 Taylor series

Taylor expand the following functions. You may choose to either calculate the coefficients of
the Taylor series by taking the corresponding derivatives, or to use the known Taylor expansions
of sin(x), cos(x), 1

1−x and ln(1 + x).
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(a) f(x) = 1
1−sin(x)

around x = 0, up to and including fourth order.

(b) g(x) = sin(ln(x)) around x = 1, up to and including second order.

(c) h(x) = ecosx around x = 0, up to and including second order.

[Check your results: the highest-order term requested in each case is: (a) 2
3
x4, (b) −1

2
(x−1)2,

(c) −e1
2
x2.]

PC5.3.2 Taylor series

Taylor expand the following functions. You may choose to either calculate the coefficients of
the Taylor series by taking the corresponding derivatives, or to use the known Taylor expansions
of sin(x), cos(x), 1

1−x and ln(1 + x).

(a) f(x) = cos(x)
1−x around x = 0. Keep all terms up to and including third order.

(b) g(x) = ecos(x2+x) about x = 0, up to and including third order.

(c) h(x) = e−x ln(x) around x = 1, up to and including third order.

[Check your results: the highest-order term requested in each case is: (a) 1
2
x3, (b) −ex3, (c)

4
3
e−1(x− 1)3.]

P.C5.4 Solving equations by Taylor expansion

EC5.4.1 Series expansion for iteratively solving an equation

(a) Solve the quadratic equation y2 − 1 = 2εy up to and including O(ε2) for small ε, i.e.
express y in the form y = y0 + y1ε+ 1

2!
y2ε

2 +O(ε3) . Hint: Note that the equation can
have more than one solution. [Check your results: y2 = ±1.]

(b) Next, find the exact solutions of this equation, and calculate the first three terms of
their Taylor series. Check that these expansions match those obtained from the iterative
solution.

PC5.4.2 Series expansion for iteratively solving an equation

A real and analytic function f(x) satisfies the following equation, for |x| � 1:

ln
[
(x+ 1)2

]
+ ey(x) = 1− y(x) .

Determine y(x) iteratively up to order O(x2), using a series expansion of the form y(x) =
y0 +y1x+ 1

2!
y2x

2 +O(x3). Hint: Start by showing that the solution has the property y(0) = 0.
[Check your results: y2 = 1

2
.]
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EC5.4.3 Taylor series for inverse function

Learning objective: Calculate the series expansion of an inverse function by iteratively solving
an equation.
The inverse g(x) of the function f(x) fulfills the defining equation f(g(x)) = x. The series
expansion of the inverse function around the point x0, of the form g(x0 + x) ≡ y(x) ≡∑∞

n=0
1
n!
y(n)(0)xn, can be determined by iteratively solving the equation f(y(x)) = x0 +x for

y(x). In this manner, calculate the series expansion of the following functions around x = 0,
up to and including second order in x:

(a) ln(1 + x), (b) 2x.

[Check your results: the highest-order term requested in each case is: (a)−1
2
x2, (b) 1

2
ln2(2)x2.]

PC5.4.4 Taylor series for inverse function

Calculate the series expansion of arcsin(x) around x = 0, up to and including order three,
using the following two alternative methods:

(a) Find arcsin(x) ≡ y(x) by iteratively solving the equation sin[y(x)] = x.

(b) Starting from the identity arcsin (sin(y)) = y, use the known series expansion for sin(y)
as well as the ansatz arcsin(x) = c1x

1 + c3x
3 + O(x5), and determine c1 and c3 by a

comparison of coefficients. [Why are there only odd powers of x?]

Learning objective: realizing that some approaches may be easier than others!
[Check your results: c3 = 1

6
.]

P.C5.5 Higher-dimensional Taylor expansion

EC5.5.1 Taylor expansions in two dimensions

Find the Taylor expansion of the function g(x, y) = ex cos(x + 2y) in x and y, around the
point (x, y) = (0, 0). Calculate explicitly all terms up to and including second order,

(a) by multiplying out the series expansions for the exponential and cosine functions;

(b) by using the formula for the Taylor series of a function of two variables.

[Check your results: the mixed second-order term in each case is: (a) −2xy, (b) −2xy.]

PC5.5.2 Taylor expansion in two dimensions

For the following functions, calculate the Taylor expansion in x and y around the point (x, y) =
(0, 0), up to and including second order:

(a) f(x, y) = e−(x+y)2

, (b) g(x, y) =
1 + x√
1 + xy

.

[Check your results: the mixed second-order term in each case is: (a) −2xy, (b) −1
2
xy.]
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EC5.5.3 Lagrange multipliers

Find the extremum of the function j(r) = x2 +y2 +z2 subject to the constraints x+y+z = 1
and x− y + 2z = 2.

PC5.5.4 Lagrange multipliers

(a) A manufacturer would like to pack his product in a rectangular box using as little material
as possible, by minimizing the box’ surface area A for a given volume V . Find the side
lenghts x, y and z and the minimal surface area Amin of the box in terms of V , by solving
an appropriate extremization problem. [Check your result: if V = 1

8
m3 then A = 3

2
m2.]

(b) Consider the ellipsoid defined by x2

a2 + y2

b2
+ z2

c2
= 1. Also consider a

rectangular box whose corners lie on the surface of the ellipsoid and
whose edges are parallel to the elipsoid’s symmetry axes. Let P =
(xp, yp, zp)

T denote that corner of the box that lies in the positive quad-
rant (xp > 0, yp > 0, zp > 0). How should this corner by chosen to max-
imize the volume of the box? What is the value of the maximal volume?

P

Hint: Maximize the volume V (x, y, z) = 8 xyz of a box having a corner at (x, y, z)T ,
under the constraint that this point lies on the ellipsoid.
[Check your result: if a = 1

2
, b = 3, c =

√
3, then Vmax = 4.]

P.C6 Fourier calculus

P.C6.1 δ-Function

EC6.1.1 Integrals with δ function

Calculate the following integrals (with a ∈ R):

(a) I1(a) =

ˆ ∞
−∞

dx δ(x− π) sin(ax)

(b) I2(a) =

ˆ
R3

d3x δ(x− y) x2 , with y = (a, 1, 2)T

(c) I3(a) =

ˆ a

0

dx δ(x− π)
1

a+ cos2(x/2)

(d) I4(a) =

ˆ 3

0

dx δ(x2 − 6x+ 8)
√

eax

[Check your results: I1(1
2
) = 1, I2(1) = 6, I3(π) = 1

2π
, I4(ln 2) = 1.]
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PC6.1.2 Integrals with δ function

Calculate the following integrals (with a ∈ R, n ∈ N):

(a) I1(a) =

ˆ 4

1

dx δ(x− 2) (ax + 3)

(b) I2(a) =

ˆ
R2

d2x δ(x− y) (x1 + x2)2 e3−x1 , with y = (3, a)T

(c) I3(a) =

ˆ 1

−1

dx
√

2 + 2x δ(ax− 2) , with a 6= 0

(d) I4(a) =

ˆ ∞
−∞

dx δ(3−x − 9)(1− xa)

(e) I5(n) =

ˆ 9π/2

−π/2
dx cos(nx) δ (sinx)

[Check your results: I1(3) = 12, I2(−5) = 4, I3(2) = 1
2
, I4(3) = 1

ln 3
, I5(7) = 1.]

EC6.1.3 Lorentz representation of the Dirac delta function

Show that in the limit ε→ 0+, the Lorentz peak function δ[ε](x) given below is a representation
of the Dirac delta function δ(x). To this end, calculate (i) the height, (ii) the width xb (defined
by δ[ε](xb) = 1

2
δ[ε](0), xb > 0) and (iii) the area of the peak. Furthermore, calculate the

functions θ[ε](x) =
´ x
−∞ dx′δ[ε](x′) and δ′[ε](x) = d

dx
δ[ε](x). Sketch all three functions θ[ε], δ[ε],

δ′[ε] in separate scetches (one beneath the other, with aligned y-axes and the same scaling for
the x-axes).

Lorentz-Peak: δ[ε](x) =
ε/π

x2 + ε2
.

Hint: When calculating the peak weight, use the substitution x = ε tan y.
Remark: Lorentzian functions are common in physics. Example: the energy of a discrete
quantum state, which is weakly coupled to the environment, has the form of a Lorentzian
function, the width of which is determined by the strength of the coupling to the environment.
As the coupling strength approaches zero, we obtain a δ peak.

PC6.1.4 Representations of the Dirac delta function

Show that in the limit ε → 0+, each of the three peak-shaped functions δ[ε](x) given below
is a representation of the Dirac delta function δ(x). To this end, calculate (i) the height,
(ii) the width xb (defined by δ[ε](xb) = 1

2
δ[ε](0), xb > 0) and (iii) the area of each peak.

Furthermore, calculate the functions θ[ε](x) =
´ x
−∞ dx′δ[ε](x′) and δ′[ε](x) = d

dx
δ[ε](x). For
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each peak shape, sketch all three functions θ[ε], δ[ε], δ′[ε] in separate scetches (one beneath the
other, with aligned y-axes and the same scaling for the x-axes).

(a) Gaussian peak: δ[ε](x) =
1

ε
√
π

e−(x/ε)2

.

Hint: The function θ[ε](x) cannot be calculated in terms of elementary functions; instead write
it in terms of the ‘error function’, Erf(z) = 2√

π

´ z
0

dy e−y
2
, with Erf(∞) = 1.

Remark: Gaussians appear very often in physics. Example: A quantum mechanical harmonic
oscillator with spring constant k and potential energy 1

2
kx2 has a Gaussian wavefunction for

its ground state, with width ∼ 1/
√
k.

(b) Derivative of the Fermi function: δ[ε](x) =
1

4ε

1

cosh2[x/(2ε)]
.

Hint: When calculating the peak weight, use the substitution y = tanh[x/(2ε)].
Remark: In condensed matter physics and nuclear physics the function δ[ε](x) plays an impor-
tant role: it arises as the derivative of the so-called ‘Fermi function’, f(E) = 1

eE/kBT+1
=

θ[kBT ](−E), with − d
dE
f(E) = δ[kBT ](E), where f(E) is the occupation probability of a

fermionic single-particle state with energy E as function of the system’s temperature T (kB

is the so-called Boltzmann constant). In the limit of zero temperature, T → 0, the derivative
of the Fermi function reduces to a Dirac δ function.

(c) Second derivative of the absolute value function: δ[ε](x) =
1

2

ε2

(x2 + ε2)3/2
.

Hint: When calculating the peak weight, use the substitution x = ε tan y.
Remark: This peak form can be written as δ[ε](x) = d2

dx2
1
2
|x|ε, where |x|ε = (ε2 + x2)1/2

represents a ‘smeared’ version of the absolute value function, with limε→0 |x|ε = |x|. [Using
ε 6= 0 ‘smears out’ the sharp ‘kink’ in |x| at x = 0.] The first and second derivatives of
1
2
|x|ε yield ‘smeared’ versions of the step function θ(x) and the Dirac delta function δ(x),

respectively. To illustrate this, include a scetch of the function |x|ε above your scetch of θ[ε].

EC6.1.5 Series representation of the coth function

Show that the series
∑

n∈Z e−y|n|, with 0 < y ∈ R, converges to the coth function.

PC6.1.6 Series representation of the periodic δ function

Show that the function δ[ε](x), defined by

δ[ε](x) =
1

L

∑

k

eikx−ε|k| , k = 2πn/L, n ∈ Z , x, ε, L ∈ R , 0 < ε� L , (1)
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has the following properties:

(a) δ[ε](x) = δ[ε](x+ L) . (2)

(b)

ˆ L/2

−L/2
dx δ[ε](x) = 1 . Hint: Treat k = 0 and k 6= 0 separately in

∑

k

. (3)

(c) δ[ε](x) =
1

2L

[
1 + w

1− w +
1 + w

1− w

]
=

1

L

1− e−4πε/L

1 + e−4πε/L − 2e−2πε/L cos(2πx/L)
, (4)

where w = e2π(ix−ε)/L and w = e2π(−ix−ε)/L.
Hint: Write out the sum in Eq. (1) as a geometric series in powers of w and w.

(d) lim
ε→0

δ[ε](x) = 0 for x 6= mL, with m ∈ Z. Hint: Start from Eq. (4). (5)

(e) δ[ε](x) ' ε/π

ε2 + x2
for |x|/L� 1 and ε/L� 1 . (6)

Hint: Taylor expand the numerator in Eq. (4) up to first order in ε̃ = 2πε/L, and the
denominator up to second order in ε̃ and x̃ = 2πx/L.

(f) Sketch the function δ[ε](x) qualitatively for ε/L� 1 and x ∈ [−7
2
L, 7

2
L].

(g) Deduce that in the limit of ε→ 0, δ[ε](x) represents a periodic δ function, with

δ[0](x) =
1

L

∑

k

eikx =
∑

m∈Z
δ(x−mL) . (7)

P.C6.2 Fourier series

EC6.2.1 Fourier series of the sawtooth function

Let f(x) be a sawtooth function, defined by f(x) = x for −π < x < π, f(±π) = 0
and f(x + 2π) = f(x). Calculate the Fourier coefficients f̃n in the representation f(x) =
1
L

∑
n eiknxf̃n. How should kn and L be chosen? Sketch the function f(x), as well as the sum

of the n = 1 and n = −1 terms of the Fourier series (i.e. the first term of the corresponding
sine series). [Check your result: f̃6 = 1

3
iπ.]

PC6.2.2 Fourier series

Determine the Fourier series for the following periodic functions, i.e. calculate the Fourier
coefficients f̃n in the representation f(x) = 1

L

∑
n eiknxf̃n. How should kn and L be chosen

in each case? Sketch the functions first.

(a) f(x) = | sinx|, (b) f(x) =

{
4x for −π ≤ x < 0 ,

2x for 0 ≤ x < π ,
and f(x+2π) = f(x).

[Check your results: (a) f̃3 = − 2
35

, (b) f̃3 = 2
9
(2− 9iπ).]
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EC6.2.3 Cosine Series

For the function f : I → C, x 7→ f(x), with I = [−L/2, L/2], consider the Fourier series
representation f(x) = 1

L

∑
k eikxf̃k, with k = 2πn

L
and n ∈ Z.

(a) Show that the Fourier coefficients are given by f̃k =
´ L/2
−L/2 dx e−ikxf(x).

(b) Now let f be an even function, i.e. f(x) = f(−x). Show that then the Fourier coefficients

are given by f̃k = 2
´ L/2

0
dx cos(kx)f(x), and furthermore, that f(x) can be represented

by a cosine series of the form f(x) = 1
2
a0 +

∑
k>0 ak cos(kx), with k = 2πn

L
and n ∈ N0.

Find ak, expressed via f̃k.

(c) Now consider the following function: f(x) = 1 for |x| < L/4, f(x) = −1 for L/4 <
|x| < L/2. Scetch it, and compute the coefficients f̃k and ak of the corresponding Fourier
and cosine series. [Check your result: for k = 2π

L
, ak = 4

π
and f̃k = 2L

π
.]

PC6.2.4 Sine Series

For the function f : I → C, x 7→ f(x), with I = [−L/2, L/2], consider the Fourier series
representation f(x) = 1

L

∑
k eikxf̃k, with k = 2πn

L
and n ∈ Z, with Fourier coefficients

f̃k =
´ L/2
−L/2 dx e−ikxf(x).

(a) Let f be an odd function, i.e. f(x) = −f(−x). Show that then the Fourier coefficients are

given by f̃k = −i2
´ L/2

0
dx sin(kx)f(x), and furthermore, that f(x) can be represented

by a sine series of the form f(x) =
∑

k>0 bk sin(kx) with k = 2πn
L

und n ∈ N0. What

does bk look like when expressed via f̃k?

(b) Now consider the following function: f(x) = 1 for 0 < x < L/2, f(x) = −1 for
−L/2 < x < 0. Sketch it, and compute the coefficients f̃k and bk of the corresponding
Fourier and sine series. [Check your result: for k = 2π

L
, bk = 4

π
and f̃k = 2L

iπ
.]

EC6.2.5 Parseval’s identity and convolution

Let f(x) be a sawtooth function, defined by f(x) = x for −π < x < π, f(±π) = 0 and
f(x+2π) = f(x). In the Fourier representation f(x) = 1

2π

∑
n∈Z einxf̃n its Fourier coefficients

are f̃n = 2πi(−1)n/n []. Let g(x) = sinx.

(a) Using this concrete example, check that Parseval’s identity holds, by computing both the

integral
´ π
−π dxf(x)g(x) and the sum (1/2π)

∑
n f̃n g̃n explicitly.

(b) Prove the famous identity
∑∞

n=1
1
n2 = π2

6
, by computing the integral

´ π
−π dxf 2(x) in two

ways: first, by direct integration, and second, by expressing it as a sum over Fourier
modes using Parseval’s identity.

(c) Calculate the convolution (f ∗ g)(x) both by directly computing the convolution integral
and by using the convolution theorem and a summation of Fourier coefficients.
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PC6.2.6 Performing an infinite series using the convolution theorem

Learning objective: This problem illustrates how a complicated sum may be calculated explicitly
using the convolution theorem.

Consider the function fγ(t) = fγ(0)eγt for t ∈ [0, τ) and f(t + τ) = f(t) with fγ(0) =
1/(eγτ − 1).

(a) Consider a Fourier series representation of fγ(t) of the following form:

fγ(t) =
1

τ

∑

ωn

e−iωntf̃γ,n, f̃γ,n =

ˆ τ

0

dteiωntfγ(t), with ωn = 2πn/τ, n ∈ Z.

Show that the Fourier coefficients are given by f̃γ,n = 1/(iωn + γ).

(b) Use this result and the convolution theorem to express the following series as a convolution
of fγ and f−γ:

S(t) =
∞∑

n=−∞

e−iωnt

ω2
n + γ2

= −τ
ˆ τ

0

dt′fγ (t− t′) f−γ (t′) . (1)

(c) Sketch the functions fγ(t − t′) and f−γ(t′) occurring in the convolution theorem as
functions of t′, for t′ ∈ [−τ, 2τ ]. Assume 0 ≤ t ≤ τ and show that the convolution
integral (1) is given by the following expression:

S(t) =
τ
[
sinh (γ (t− τ))− sinh (γt)

]

2γ
[
1− cosh (γτ)

] .

Hint: The integral
´ τ

0
dt′ involves an interval of t′ values for which t − t′ lies outside of

[0, τ). It is therefore advisable to split the integral into two parts, with
´ t

0
dt′ and

´ τ
t

dt′.

P.C6.3 Fourier transform

EC6.3.1 Properties of Fourier transformations

Demonstrate the following properties of the Fourier transformation, where a is an arbitrary
real constant.

(a) The Fourier transform of f(x− a) is e−ikaf̃k.

(b) The Fourier transform of f(ax) is f̃k/a/|a|, where a 6= 0.
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PC6.3.2 Properties of Fourier transformations

Prove that the following properties of the Fourier transform hold in 2 dimensions, where
a ∈ R2, α ∈ R \ {0} and R is a rotation matrix.

(a) The Fourier transform of f(x− a) is e−ik·af̃k.

(b) The Fourier transform of f(αx) is 1
|α|2 f̃k/α.

(c) The Fourier transform of f(Rx) is f̃Rk.

EC6.3.3 Fourier transformation of a Gauss peak

Show that the Fourier transform of a normalized Gaussian distribution with width σ, g[σ](x) =
1√
2πσ

e−x
2/2σ2

, with
´∞
−∞ dx g[σ](x) = 1, is given by g̃

[σ]
k = e−σ

2k2/2. Hint: The Fourier integral
can be calculated by completing the square in the exponent.

PC6.3.4 Convolution of Gauss peaks

Learning objective: To illustrate the following statement: ‘The fine structure of a function
(i.e. noise in a test signal) can be smoothed out via convolution with a peaked function of
suitable width.’

A normalized Gaussian function with width σ has the form g[σ](x) = 1√
2πσ

e−x
2/2σ2

. Show
that the convolution of two normalized Gaussians with widths σ1 and σ2 is again a normalized
Gaussian with width σ =

√
σ2

1 + σ2
2, i.e. show that

(
g[σ1] ∗ g[σ2]

)
(x) = g[σ](x). Do this via

two different methods, (a) and (b):

(a) Calculate the convolution integral by completing the square in the exponent.

(b) Use the following property of convolution
( ˜g[σ1] ∗ g[σ2]

)
(k) = g̃[σ1](k)g̃[σ2](k), and the

known form of the Fourier transform of a Gaussian, g̃[σj ](k).

(c) Draw two qualitative sketches, the first of g[σ1](x), g[σ2](x) and g[σ](x), the second of

their respective Fourier spectra g̃[σ1](k), g̃[σ2](k) and
( ˜g[σ1] ∗ g[σ2]

)
(k). Explain using the

sketch why the convolution of a function (here g[σ1]) with a peaked function (here g[σ2])
leads to a widened version of the first function.

Let f [σ1](x) =
∑5

n=−5 g
[σ1]
n (x), with g

[σ1]
n (x) = g[σ1](x−nL), be a ’comb’ of 11 identical, nor-

malized Gaussians of width σ1, with peak-to-peak distance L, and let F [σ2](x) =
(
f ∗ g[σ2]

)
(x)

be the convolution of this crest with a normalized Gaussian of width σ2.

(d) Find a formula for F [σ2](x), expressed as a sum over the normalized Gaussians. What is
the width of this peak?

(e) The sketch shows F [σ2](x) for σ1/L = 1
4

and four values of σ2/L: 1
100

, 1
4
, 1

2
and 3

4
.

Explain the observed behaviour based on your formula from part (c) of the exercise. Why
does the fine structure vanish in F [σ2](x) for σ2 & 1

2
L?
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(f) Regarding the statement about the smoothing of the noise in the signal: Explain in
general how the width of the peaked function should be chosen to smooth out the noise
in the signal.

EC6.3.5 Poisson summation formulas

(a) Show that every function f(x), for which a Fourier-integral representation of the form
f(x) =

´∞
−∞

dk
2π

eikxf̃(k) exists, fulfills the following remarkable relationship:

‘Poisson summation formula’:
∑

m∈Z
f(m) =

∑

n∈Z
f̃(2πn) .

The sum of the function values f(m) over all the integers is exactly the same as the sum
over all the Fourier coefficients f̃(2πn)!

Hint: multiply the completeness relation for discrete Fourier modes, namely 1
L

∑
n∈Z e−i2πny/L =∑

m∈Z δ(y − Lm), with f(y/L) then integrate over x = y/L.

Using the Poisson summation formula and the following functions f(x), prove the following
identities (with 0 < a ∈ R):

(b) f(x) = e−a|x|:
∑

n∈Z

2a

(2πn)2 + a2
= coth (a/2) .

(c) f(x) = e−(ax2+bx+c):
∑

m∈Z
e−(am2+bm+c) =

√
π

a
e

(
b2

4a
−c
)∑
n∈Z

e−
1
a(π2n2+iπnb) .

The identity (c) is the so-called ‘Poisson resummation formula’ for infinite sums over discrete
Gaussian functions. Note that this is an example of Fourier reciprocity: the width of the
discrete Gaussian functions on the left and right hand sides of the equation are proportional
to 1/a and a/π2 respectively.

P.C6.4 Fourier transform applications

P.C7 Differential equations

P.C7.3 Linear first-order equations
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EC7.3.1 Separation of variables

A first order differential equation is called ’autonomous’ if it has the form ẋ = f(x), i.e. the
right hand side is time independent [non-autonomous equations have ẋ = f(x, t)]. Such an
equation can the solved by separation of variables.

a) Solve the autonomous differential equation ẋ = x2 for two different initial conditions: (i)
x(0) = 1 and (ii) x(2) = −1. [Check your results: (i) x(−2) = 1

3
, and (ii) x(2) = −1.]

b) Sketch the obtained solutions qualitatively. Convince yourself that your scetches for
the function x(t) and its derivative ẋ(t) satisfy the relation specified by the differential
equation.

PC7.3.2 Separation of variables

(a) Solve the differential equation y′ = −x2/y3 for the function y : R → R, x 7→ y(x)
by separation of variables, for two different initial conditions: (i) y(0) = 1, and (ii)

y(0) = −1. [Check your result: (i) y(−1) =
(

7
3

)1/4
, (ii) y(−1) = −

(
7
3

)1/4
.]

(b) Sketch the obtained solution qualitatively. Convince yourself that your scetches for the
function y(x) and its derivative y′(x) satisfy the relation specified by the differential
equation.

EC7.3.3 Separation of variables: barometric formula

The standard barometric formula for atmospheric pressure p(x) as a function of x is given

by: dp(x)
dx

= −α p(x)
T (x)

. Solve this equation with initial value p(x0) = p0 for the case of a linear

temperature gradient, T (x) = T0 − b(x− x0). Hint: Separation of variables!
[Check your result: if α, b, T0, x0, p0 = 1, then p(1) = 1.]

PC7.3.4 Separation of variables: bacterial culture with toxin

A bacterial culture is exposed to the effects of a toxin. The death rate induced by the toxin
is proportional to the number n(t) of bacteria still alive in the culture at a time t and the
amount of toxin T (t) remaining in the system, which is given by τn(t)T (t), where τ is a
positive constant. On the other hand, the natural growth rate of the bacteria in the culture
is exponential, i.e. it grows with a rate γn(t), with γ > 0. In total, the number of bacteria in
the culture is given by the differential equation

ṅ = γn− τnT (t), for t ≥ 0.

(a) Find the general solution to the given linear differential equation with n(0) = n0.
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(b) Assume now that the toxin is injected into the system at a constant rate T (t) = at,
where a > 0. Show, using a qualitative analysis of the differential equation (i.e. without
solving it explicitly), that the bacterial population grows up to a time t = γ/(aτ), and
decreases thereafter. Furthermore, show that as t → ∞, n(t) → 0, i.e. the bacterial
culture is practically wiped out.

(c) Now find the explicit solution n(t) to the differential equation and sketch n(t) qualitatively
as a function of t. Convince yourself that the sketch fulfils the relation between n(t),
ṅ(t) and t that is specified by the differential equation. [Check your result: if τ = 1, a =
1, n0 = 1 and γ =

√
ln 2, then n(

√
ln 2) =

√
2.]

(d) Find the time th at which the number of bacteria in the culture drops to half the initial
value. [Check your result: if τ = 4, a = 2/ ln 2 and γ = 3, then th = ln 2.]

EC7.3.5 Substitution and separation of variables

(a) Show that the differential equation y′ = f(y/x) for the function y(x) can be converted
by the substitution y = ux into a differential equation for the function u(x), which is
solvable using separation of variables.

(b) Use this method to solve the equation xy′ = 2y + x with the initial condition y(1) = 0.
[Check your result: y(2) = 2.]

PC7.3.6 Substitution and separation of variables

Often differential equations can be solved by convenient substitution. Here we examine differ-
ential equations of the type

y′(x) = f(ax+ by(x) + c) . (1)

(a) Substitute u(x) = ax+ by(x) + c and find a differential equation for u(x).

(b) Find an implicit expression for the solution u(x) of the new differential equation using an
integral that contains the function f . Hint: Separation of variables!

(c) Use the substitution strategy of (a,b) to solve the differential equation y′(x) = ex+3y(x)+5,
with initial condition y(0) = 1.
[Check your result: y(ln(e−8 + 3)− 2 ln 2) = 1

3
(2 ln 2− ln(e−8 + 3)− 5).]

(d) Check: Solve the differential equation given in (c) directly (without substitution) using
separation of variables. Is the result in agreement with the result from (c)?

(e) Solve the differential equation y′(x) = [a(x + y) + c]2 with initial condition y(x0) = y0

using the substitution given in (a).
[Check your result: if x0 = y0 = 0 and a = c = 1, then y(0) = 0.]
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EC7.3.7 Inhomogeneous linear differential equation: variation of constant

Solve the inhomogeneous differential equation ẋ+ 2x = t with x(0) = 0, as follows:

(a) Determine the general solution of the homogeneous equation.

(b) Then find a special (particular) solution to the inhomogeneous problem by means of
variation of constants. [Check your result: x(− ln 2) = 3

4
− 1

2
ln 2.]

PC7.3.8 Inhomogeneous linear differential equation, variation of constants

The function x(t) satisfies the inhomogeneous differential equation

ẋ(t) + tx(t) = e−
t2

2 , with initial condition x(0) = x0. (1)

(a) Find the solution xh(t) of the corresponding homogeneous equation with xh(0) = x0.

(b) Find the particular solution xp(t) of the inhomogeneous equation (1), with xp(0) = 0
using variation of constants, xp(t) = c(t)xh(t). What is the general solution?
[Check your result: if x0 = 0, then x(1) = e−1/2.]

(c) For a differential equation of the form ẋ(t) + a(t)x(t) = b(t) (ordinary, first order, linear
and inhomogeneous), the sum of the homogeneous and inhomogeneous solutions has the
form:

x(t) = xh(t) + xp(t) = xh(t) + c(t)xh(t) = (1 + c(t))xh(t) = c̃(t)xh(t) .

The initial condition x(0) = x0 can therefore also be satisfied by imposing on xh(t) and
c̃(t) the initial conditions xh(0) = 1 and c̃(0) = x0. Use this approach to construct a
solution to the differential equation (1) of the form x(t) = c̃(t)xh(t). Does the result
agree with the result as obtained in (b)? (Learning objective of (c): Realize that the
same initial condition can be implemented in more than one way.)

P.C7.4 Systems of first order linear differential equations

EC7.4.1 System of linear differential equations with non-diagonizable matrix

We consider a procedure to solve the differential equation

ẋ = A · x (1)

for the case of a matrix A ∈ Mat(R, n, n) that has n−1 distinct eigenvalues λj and associated
eigenvectors vj, with j = 1, . . . , n − 1, where the eigenvalue λn−1 is a two-fold zero of the
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characteristic polynomial. Since λn−1 has only one eigenvector, this matrix not diagonalizable.
However, it can be brought into the so-called Jordan normal form:

S−1AS = J, J =




λ1 0 · · · · · · 0

0 λ2 0 · · · 0

0 0
. . . · · · 0

... · · · · · · λn−1 1

0 · · · · · · 0 λn−1



, S = (v1, · · · ,vn−1,vn) . (2)

Using A = SJS−1, as well as vj = Sej and Jej = λjej + δjnej−1, one finds that this is
equivalent to

A · vj = λjvj + vj−1δjn, ∀j = 1, . . . , n. (3)

For j = 1, . . . , n − 1 this corresponds to the usual eigenvalue equation, and vj to the usual
eigenvectors. vn, however, is not an eigenvector, but is rather determined by the following
equation:

(A− 1λn)vn = vn−1. (4)

Since (A− 1λn) is not invertible, this equation does not uniquely fix the vector vn. Different
choices of vn lead [via (2)] to different similarity transformation matrices S, but they all yield
the same form for the Jordan-Matrix J .
The λj and vj thus obtained can be used to find a solution for the DE (1), using an exponential
ansatz together with ‘variation of the constants’:

x(t) =
n∑

j=1

vje
λjtcj(t), with λn ≡ λn−1. (5)

The coefficients cj(t) can be determined by inserting this ansatz into (1):

0 =
(

d
dt
− A

)
x(t) =

n∑

j=1

vje
λjt
[
λjc

j(t) + ċj(t)− λjcj(t)
]
− vn−1e

λntcn(t). (6)

Comparing coefficients of vj we obtain:

vj 6=n−1 : ċj(t) = 0 ⇒ cj(t) = cj(0) = const. , (7)

vn−1 : ċn−1(t) = cn(t) ⇒ cn−1(t) = cn−1(0) + t cn(0) . (8)

The values of cj(0) are fixed by the initial conditions x(0):

x(0) =
∑

j

vjc
j(0) = Sc(0) , ⇒ c(0) = S−1x(0) . (9)

Now use this method to find the solution of the DE

ẋ = Ax, with A =
1

3




7 2 0

0 4 −1

2 0 4


 and x(0) =




1

1

1


 . (10)
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(a) Show that the characteristic polynomial for A has a simple zero, say λ1, and a two-fold
zero, say λ2 = λ3.

(b) Show that the eigenspaces associated with λ1 and λ2 are both one-dimensional (which
implies that A is not diagonalizable), and find the corresponding normalized eigenvectors
v1 and v2.

(c) Use Eq. (4) to find a third, normalized vector v3, having the property that A is brought
into a Jordan normal form using S = (v1,v2,v3). While doing so, exploit the freedom of
choice that is available for v3 to choose the latter orthonormal to v1 and v2. [Remark:
For the present example orthonormality is achievable (and useful, since then S−1 = ST

holds), but this is not generally the case.]

(d) Now use an ansatz of the form (5) to find the solution x(t) to the DE (10). [Check your
result: x(ln 2) = (2, 4, 0)T + 4

3
(1 + ln 2)(2,−1, 2)T .]

(e) Check your result explicitly by verifying that it satisfies the DE.

PC7.4.2 System of linear differential equations with non-diagonizable matrix: critically damped
harmonic oscillator

Find the general solution for the damped, homogeneous, harmonic oscillator,

ẍ+ 2γẋ+ Ω2x = 0 ,

for the critically damped case γ = Ω, by finding a first order matrix differential equation and
solving the corresponding eigenvalue problem.

(a) In this case, both the eigenvalues are degenerate and there is only one corresponding
eigenvector. Find the corresponding solution x1(t).

(b) Find a second solution via variation of constants by inserting the ansatz x2(t) = c(t)x1(t)
into the DE for x. Find a differential equation for c(t) and solve this equation.

(c) Find the solution x(t) that satisfies the initial conditions x(0) = 1, ẋ(1) = 1.
[Check your result: if γ = 2, then x(ln 2) = 1

4
(1− ln 2(2 + e2)).]

(d) The critically damped harmonic oscillator can be thought of as the limit λ→ Ω of both
the over-damped and under-damped harmonic oscillator. Perform a Taylor expansion of
the general solution of both the over-damped and under-damped cases for small values
of εt, with ε ≡

√
|γ2 − Ω2|, and show that the result in both cases can be written as a

linear combination of the solutions to the critically damped harmonic oscillator found in
(a) and (b).
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P.C7.5 General nth order linear differential equation

EC7.5.1 Inhomogeneous linear differential equation of order 2: driven overdamped harmonic
oscillator

Consider the following driven, over-damped harmonic oscillator with γ > Ω:

Differential equation: ẍ+ 2γẋ+ Ω2x = fA(t). (1)

Initial value: x(0) = 0, ẋ(0) = 1 , (2)

Driving function: fA(t) =

{
fA for t ≥ 0,
0 for t < 0.

For t > 0, find a solution to this equation of the form x(t) = xh(t) + xp(t), where xh(t) and
xp(t) are the homogeneous and particular solutions to the homogeneous and inhomogeneous
differential equation that have the initial values (2) or xp(0) = ẋp(0) = 0, respectively.
Proceed as follows:

(a) Rewrite as matrix equation: Write the DE (1) in the matrix form

ẋ = A · x + b(t), with x ≡ (x, ẋ)T ≡ (x1, x2)T . (3)

Find the matrix A, the driving force vector b(t), and the initial value x0 = x(0).

(b) Homogeneous solution: Find the solution xh(t) of the homogeneous DEQ (3)|b(t)=0 that

has the initial value xh(0) = x0. Use the ansatz xh(t) =
∑

j c
j
hxj(t), with xj(t) = vje

λjt,
where λj and vj (j = 1, 2) are the eigenvalues and the eigenvectors of A. What does the
corresponding solution xh(t) = x1

h(t) of the homogeneous differential equation (1)|fA(t)=0

look like? [Check your result: if γ =
√

2 ln 2 and Ω = ln 2, then xh(1) = 3
4

2−
√

2

ln 2
.]

(c) Particular solution: Using the ansatz xp(t) =
∑

j c
j
p(t)xj(t) (variation of constants),

find the particular solution for the inhomogeneous differential equation (3) that has the
initial value xp(0) = 0. What is the corresponding solution xp(t) = x1

p(t) of the

inhomogeneous DE (1)? [Check your result: if γ = 3 ln 2, Ω =
√

5 ln 2 and fA = 1, then
xp(1) = 49

640
1

(ln 2)2 .]

(d) Qualitative discussion: The desired solution of the inhomogeneous DE (1) is given by
x(t) = xh(t) + xp(t). Sketch your result for this function qualitatively for the case
fA < 0, and explain the behavior as t→ 0 and t→∞.

PC7.5.2 Inhomogeneous linear differential equation of order 3

Consider the following third order inhomogeneous linear differential equation:

Differential equation:
...
x − 6ẍ+ 11ẋ− 6x = fA(t), (1)

Initial value: x(0) = 1, ẋ(0) = 0, ẍ(0) = a , with a ∈ R. (2)
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Driving: fA(t) =

{
e−bt for t ≥ 0 ,
0 for t < 0 ,

with 0 < b ∈ R. (3)

For t > 0, find a general solution to this equation of the form x(t) = xh(t) + xp(t), where
xh(t) and xp(t) are the homogeneous and particular solutions to the homogeneous and inho-
mogeneous differential equation that have the initial values (2) or xp(0) = ẋp(0) = ẍp(0) = 0
respectively. Proceed as follows:

(a) Write the differential equation (1) in the matrix form

ẋ = A · x + b(t), with x ≡ (x, ẋ, ẍ)T ≡ (x1, x2, x3)T , x0 = (x(0), ẋ(0), ẍ(0))T . (4)

(b) Find the homogeneous solution xh(t) of (4)|b(t)=0 with xh(0) = x0; then xh(t) = x1
h(t).

(c) Find the inhomogeneous solution xp(t) of (4), with xp(0) = 0; then xp(t) = x1
p(t).

Hint: The eigenvalues λ1, λ2, λ3 of A are integers, with λ1 = 1.

EC7.5.3 Coupled oscillations of two point masses

Consider a system of two point masses, with masses m1 and m2, which are connected to two
fixed walls and to each other by means of three springs (spring constants K1, K12 and K2)
(see sketch). The equations of motion for both masses are

m1ẍ
1 = −K1x

1 −K12(x1 − x2),

m2ẍ
2 = −K2x

2 −K12(x2 − x1).

K1 K12 K2m1 m2

x1 x2
0 0

(a) Bring the system of equations into the form ẍ(t) = −A ·x(t), with x = (x1, x2)T . What
is the form of matrix A? [Check your result: detA = [K1K2 + (K1 +K2)K12]/(m1m2).]

(b) Using the ansatz x(t) = v cos(ωt), this system of differential equations can be converted
to an algebraic eigenvalue problem. What does it look like?

(c) Set m1 = m2, K2 = m1Ω2, K1 = 4K2 and K12 = 2K2 (note that Ω has the dimension
of frequency.). Find the eigenvalues λj and the eigenvectors vj of the matrix 1

Ω2A, and
therefore the corresponding ‘eigenfrequencies’ ωj and ‘eigenmodes’ xj(t) of the coupled
masses (with xj(0) = vj). [Check your result: λ1 + λ2 = 9.]

(d) Make a sketch of both eigenmodes xj(t) which shows both the j = 1 and 2 cases on the
same set of axes. Comment on the physical behaviour that you observe!
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PC7.5.4 Coupled oscillations of three point masses

Consider a system consisting of three masses, m1, m2 and m3, coupled through two identical
springs, each with spring constant k (see sketch). The equations of motion for the three
masses read:

m1ẍ
1 = −k(x1 − x2),

m2ẍ
2 = −k

(
[x2 − x1]− [x3 − x2]

)
,

m3ẍ
3 = −k(x3 − x2),

m1 m2

x1 x2 x3

m3k k

(a) Bring this system of equations into the form ẍ(t) = −A · x(t), with x = (x1, x2, x3)T .
What is the matrix A?

(b) By making the ansatz x(t) = v cos(ωt), this system of equations can be reduced to
an algebraic eigenvalue problem. Find this eigenvalue equation. [Check your result:
detA = 0.]

(c) From now on, set m1 = m3 = m, m2 = 2
3
m, and k = mΩ2. (Ω has the dimension of a

frequency.) Find the eigenvalues λj and normalized eigenvectors vj of the matrix 1
Ω2A,

and thus the corresponding ’Eigenfrequencies’ ωj and ‘Eigenmodes’ xj(t) of the coupled
masses (with xj(0) = vj). [Check your result: λ1 + λ2 + λ3 = 5.]

(d) Sketch the three Eigenmodes xj(t) as functions of time: for each j = 1, 2 and 3, make
a separate sketch that displays the three components x1

j(t), x2
j(t) and x3

j(t) on the same
axis. Comment on the physical behaviour that you observe!

EC7.5.5 Green’s function of (dt + a)

Let D(dt) = (dt + a) be a first order differential operator, and a be a positive, real constant.
The corresponding Green’s function is defined by the differential equation:

D(dt)G(t) = δ(t) . (1)

(a) Show that the ansatz

G(t) = θ(t)xh(t) with θ(t) =

{
1 for t > 0
0 for t < 0

, (2)

satisfies the defining equation (1), provided that xh(t) is a solution to the homogeneous
equation D(dt)xh(t) = 0 with initial condition xh(0) = 1. [Hint: The initial condition
guarantees that δ(t)xh(t) = δ(t).]

(b) Determine G(t) explicitly by solving the homogeneous equation for xh(t). [Check your
result: G( 1

a
ln 2) = 1

2
.]

(c) Calculate the Fourier integral G̃(ω) =
´∞
−∞ dt eiωtG(t). [Check your result: for a = 1,

|G̃(a)| = 1√
2
.]
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(d) Consistency check: Alternatively, determine G̃(ω) via a Fourier transformation of the
defining equation (1). Is the result in agreement with the result from part (c) of the
exercise?

(e) Find a solution to the inhomogeneous differential equation (dt + a)x(t) = e2at by con-
volving the function G(t) with the inhomogeneity. Verify the obtained solution explicitly
by inserting it into the differential equation.

PC7.5.6 Green’s function of critically damped harmonic oscillator

A driven, critically damped harmonic oscillator with frequency Ω > 0 and damping rate γ = Ω
satisfies the equation D(dt)x(t) = f(t), with D(dt) = (d2

t + 2Ωdt + Ω2). The corresponding
Green’s function is defined by the differential equation

D(dt)G(t) = δ(t) . (1)

(a) Show that the Ansatz

G(t) = θ(t)xh(t) , with θ(t) =

{
1 for t > 0
0 for t < 0

, (2)

satisfies the defining equation (1) if xh(t) is a solution of the homogeneous equation
D(dt)xh(t) = 0, with initial values xh(0) = 0 and dtxh(0) = 1. [Hint: the initial values
ensure that δ(t)xh(t) = 0 and δ(t)dtxh(t) = δ(t).]

(b) Determine G(t) explicitly by solving the homogeneous equation for xh(t). [Check your
result: for Ω = 1, G(1) = 1/e.]

(c) Compute the Fourier integral G̃(ω) =
´∞
−∞ dt eiωtG(t). [Check your result: for Ω = 1,

|G̃(Ω)| = 1
2
.]

(d) Consistency check: find G̃(ω) in an alternative way by Fourier transforming the defining
equation (1). Does the result agree with that of subproblem (c)?

(e) Find a solution of the inhomogeneous differential equation D(dt)x(t) = q sin(ω0t) by
convolving G(t) with the inhomogeneity. Check explicitly that your result satisfies this
equation. [Hint: it is advisable to represent the sine function by Im

[
eiω0t

]
and use eiω0t

as inhomogeneity, and to take the imaginary part only at the very end of the calculation.]

P.C7.6 General first-order differential equation

EC7.6.1 Field lines in two dimensions

Consider the vector field F = (−ay, x)T in the xy-plane, with a > 0. Calculate and sketch
the corresponding field lines by solving the appropriate differential equation (set a = 1/2 for
the purposes of the sketch).
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PC7.6.2 Field lines of electric quadrupole field in two dimensions

Consider the field E = F

(
x
−3z

)
in the xz plane, generated by an electric quadrupole. The

constant F governs the field strength. Compute and sketch the shape of the field lines by
solving the corresponding differential equation. [Check your result: for all points on a field
line, x3z = const.]

P.C7.7 nth-order differential equation

P.C7.8 Linearizing differential equations

EC7.8.1 Fixed points of a differential equation in one dimension

Consider the autonomous differential equation ẋ = fλ(x) = (x2 − λ)
2−λ2 for the real function

x(t), with λ ∈ R.

(a) Find the fixed points of this differential equation as a function of λ for (i) λ ≤ 0, and (ii)
λ > 0. [Check your results: for λ = 2, the fixed points lie at 0, 2, and −2.]

(b) Make two separate sketches of f(x) as a function of x for the following fixed values of
λ: (i) λ = −1 and (ii) λ = +1, and mark on your sketches the fixed points found in (a).

(c) Determine the stability of each of these fixed points via a graphical analysis of the function,
and show the flow of x(t) in the neighbourhood of these fixed points on the sketch from
(b).

PC7.8.2 Fixed points of a differential equation in one dimension

Consider the differential equation ẋ = f(x) = tanh[5(x − 3)] tanh[5(x + 1)] sin(πx) for the
real-valued function x(t).

(a) Find the fixed points of this differential equation. [Hint: there are infinitely many!]

(b) Sketch f(x) as a function of x with x ∈ [−4, 5], and mark on it the fixed points that you
found in (a).

(c) From an analysis of your sketch, determine the stability of each of these fixed points, and
show the flow of x(t) near the fixed points in the sketch from (b).

EC7.8.3 Stability analysis in two dimensions

The function x : R→ R2, t 7→ x(t) satisfies the following differential equation, with 0 < c ∈
R:

ẋ =

(
ẋ
ẏ

)
= f(x) =

(
2x2 − xy
c(1− x)

)
.
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(a) Find the fixed point x∗ of the differential equation.

(b) For a small displacement η = x − x∗ from the fixed point, linearize the differential
equation and bring it into the form η̇ = Aη. What is the matrix A?

(c) Check that the matrix elements of A are given by aij =
(
∂f i

∂xj

)
|x=x∗ .

(d) Find the eigenvalues and eigenvectors of A.

(e) Analyze the stability of the fixed point: For displacements relative to the fixed point, in
which directions do these displacements grow or shrink the fastest? On which timescales?

[Check your results, for c = 3: (a) ‖x∗‖ =
√

5. (b) detA = −3. (d) eigenvalues: λ+ = 3,
λ− = −1; eigenvectors: v+ = (1,−1)T and v− = (1, 3)T .]

PC7.8.4 Stability analysis in three dimensions

Consider the following autonomous differential equation:

ẋ =




ẋ
ẏ
ż


 =




x10 − y24

1− x
−3z − 3


 .

(a) Find the fixed points of this equation. [Check your result: for all fixed points, ‖x∗‖ =
√

3.]

(b) Show that the fixed points are in general unstable, however are stable to deviations in
certain directions. Determine the linear approximation to this equation for small deviations
about the fixed point, and calculate the eigenvalues and eigenvectors of the corresponding
matrix, A. [Check your results: for all fixed points, | detA| = 72. Some of the eigenvalues
for these fixed points are 6, 4, 12, −2.]

(c) Identify the stable directions, and the respective characteristic timescales for each devia-
tion from the fixed point to decay to zero.

P.C7.9 Partial differential equations

P.C8 Functional calculus

P.C8.1 Definitions

P.C8.2 Functional derivative

P.C8.3 Euler-Lagrange equations

P.C9 Calculus of complex functions
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P.C9.1 Holomorphic functions

EC9.1.1 Cauchy-Riemann equations

Write the following functions of z = x+iy and z̄ = x−i in the form f(x, y) = u(x, y)+iv(x, y)
and explicitly check if the Cauchy-Riemann equations are satisfied. Which of these functions
are analytic in z?

(a) f(z) = ez , (b) f(z) = z̄2.

PC9.1.2 Cauchy-Riemann equations

Investigate, using the Cauchy-Riemann equations, which of the following functions are analytic
in z = x + iy, and if so, in which domain in C. Check your conclusions by attempting to
express each function in terms of z and z̄.

(a) f(x, y) = (x3 − 3xy2) + i(3x2y − y3) .

(b) f(x, y) = xy + i1
2
y2 .

(c) f(x, y) =
x− iy

x2 + y2
.

(d)
f+(x, y)
f−(x, y)

}
= ex

[
x cos y ± y sin y

]
+ iex

[
x sin y ∓ y cos y

]
.

P.C9.2 Complex integration

EC9.2.1 Cauchy’s theorem

The function f(z) = ez for z ∈ C is analytic. Cauchy’s theorem then states that (a) closed
path integrals over simply connected domains are zero, and (b) path integrals between two
points are independent of the chosen path. Check these claims explicitly by calculating the
following complex path integrals:

(a) IγR =
�
γR

dz f(z), along the circle γR with radius R about the origin z = 0.

(b) Iγi =
´
γi

dz f(z), between the points z0 = 0 and z1 = 1 − i, along (i) the straight line

γ1(t) = (1− i)t and (ii) the curve γ2(t) = t3− it, with t ∈ [0, 1]. Calculate explicitly the
difference F (z1)− F (z0), where F (z) is the antiderivative of f(z).
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PC9.2.2 Cauchy’s theorem

Calculate the complex path integral Iγi =
´
γi

dz (z − i)2 along the following curves γi, and
explain your answers with reference to Cauchy’s theorem.

(a) γ1 is the straight line from z0 = 0 to z1 = 1, γ2 is the line from z1 = 1 to z2 = i, and γ3

is the line from z2 = i to z0 = 0. What is Iγ1 + Iγ2 + Iγ3? Explain your answer.

(b) γ4 is the quarter-circle with radius 1 from z1 to z2. Is there a connection between Iγ4 and
the integrals from (a)?

P.C9.3 Singularities

EC9.3.1 Laurent series, residues

Let p(z) be a polynomial of order k ≥ 0 on C, then fm(z) = p(z)
(z−z0)m

(with m ≥ 1) is an

analytic function on C\z0, with a pole of order m at z0.

(a) Show, using a Taylor series of p(z) about z0, that the Laurent series of fm(z) has the
following form:

fm(z) =
k−m∑

n=−m

p(n+m)(z0)

(n+m)!
(z − z0)n , with p(n)(z0) =

dn

dzn
p(z)

∣∣∣∣
z=z0

.

(b) Find, for fm(z) = z3

(z−2)m
, the Laurent series about the pole at z0 = 2.

(c) Find for m = 1, 2, 3, 4 and 5 the residues of fm(z) = z3

(z−2)m
about the pole z0 = 2,

using the formula Res(f, z0) = limz→z0
1

(m−1)!
dm−1

dzm−1 [(z − z0)mf(z)].

[Check your results: are the residues from (c) consistent with the Laurent series of (b)?]

PC9.3.2 Laurent series, residues

For each of the following functions, determine their poles, as well as the residues using the
residue formula. Then find the Laurent series about each pole using an appropriately chosen
Taylor series.

(a)
2z3 − 3z2

(z − 2)3
, (b)

1

(z − 1)(z − 3)
, (c)

ln z

(z − 5)2
, (d)

eπz

(z − i)m
with m ≥ 1 .

Hint: The Laurent series of a function of the form f(z) = g(z)/(z− z0)m, with g(z) analytic
in some neighbourhood of z0, follows from the Taylor series of g(z) about z0.
[Check your results: The constant terms [coefficient of (z− z0)0] in the Laurent series are for
(a) 2, (b) −1

4
for the poles at z0 = 1 and 3, (c) − 1

25
, (d) −πm/m! . Further check: Do the

residues match the coefficients of (z − z0)−1 for each Laurent series?]
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P.C9.4 Residue theorem

EC9.4.1 Circular contours, residue theorem

(a) Calculate the integrals I
(k)
+ =

‰
k mal: |z|=R

dz

z
and I

(k)
− =


k mal: |z|=R

dz

z
,

where I
(k)
+ (resp. I

(k)
− ) is a circular path with radius R which winds around the origin

k times in the mathematically positive (negative) direction, i.e. anticlockwise (clock-
wise). Do not use the residue theorem; rather calculate the integral directly using the
parametrization z(φ) = R eiφ and a suitable choice of integration interval for φ.

Calculate the following closed contour integrals in the complex plane, for 0 < a ∈ R:

(b) I1(a) =

‰
|z|= 1

2

dz g(z) , I2(a) =


2 times: |z|=2

dz g(z) , with g(z) =
eiaz

z2 + 1
.

(c) I3(a) =

‰
|z|=4

dz f(z) , with f(z) =
z

z3 + (ai− 6)z2 + (9− 6ai)z + 9ai
.

Hint: One of the poles of f(z) is at z1 = −ai.

[Check your results: (b) I2(ln 2) = 3π, (c) I3(1) = 0, I3(6) = 4π
25

(1 + 4
3
i).]

PC9.4.2 Circular contours, residue theorem

Consider the function f(z) =
4z

(z − a)(z + 1)2
, with 1 < a ∈ R.

(a) Determine the residues of the function f at each of its poles.

Calculate the integral Iγi(a) =
´
γi

dz f(z) for the following integration contours:

(b) γ1: a circle with radius R = 1 about z = a, traversed in the anticlockwise direction.

(c) γ2: a circle with radius R = 1 about z = −1, traversed in the clockwise direction.

(d) γ3: a circle with radius R = 2a about the origin, traversed in the anticlockwise direction.
[
Check your results: (b) Iγ1(2) = 16

9
πi, (c) Iγ2(3) = 3

2
πi
]
.

EC9.4.3 Integrating by closing contour and using residue theorem

Calculate the following integral, with a, b ∈ R, by closing the contour along a suitably chosen
half-circle with radius →∞:

I(a, b) =

ˆ ∞
−∞

dx
1

x2 − 2xa+ a2 + b2
. [Check your results: I(−1,−2) = π

2
.]
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PC9.4.4 Integrating by closing contour and using residue theorem

Calculate the following integrals (with a, b ∈ R and a > 0) by closing the contour with a
semicircle of radius → ∞ in the upper or lower complex half-planes (show that both choices
give the same result!):

(a) I(a, b) =

ˆ ∞
−∞

dx
x

(x2 + b2)(x− ia)
, (b) I(a, b) =

ˆ ∞
−∞

dx
x

(x+ ib)2(x− ia)
.

[Check your results: (a) I(3,−2) = π
5

, (b) I(3, 2) = 6π
25

.]

EC9.4.5 Various integration paths, residue theorem

Consider the function f(z) =
z2

(z2 + 4)(z2 + a2)
, with a ∈ R, 3 ≤ a < 4.

(a) Determine the residues of f at each of its poles.

Calculate the integral Iγi(a) =
´
γi

dz f(z) for the following integration contours:

(b) γ1: a circle with radius R = 1 about the origin, traversed in the anticlockwise direction.

(c) γ2: a circle with radius R = 1
2

about z = 2i, traversed in the anticlockwise direction.

(d) γ3: a circle with radius R = 2 about z = 2i, traversed in the clockwise direction.

(e) γ4: the real axis, traversed in the positive direction.
[
Check your results: (c) Iγ2(3) = −2π

5
, (d) Iγ3(10

3
) = −3π

16
, (e) Iγ4(7

2
) = 2π

11
.
]

PC9.4.6 Various integration paths, residue theorem

Consider the function f(z) =
1

[z2 − 2az + a2 + 1
4
]2 (4z2 + 1)

, with 1 < a ∈ R.

(a) Determine the residues of the function f at each of its poles.

Calculate the integrals Iγi(a) =
´
γi

dz f(z) for the following integration contours:

(b) γ1: a circle with radius R = 1 about z1 = 0, traversed in the anticlockwise direction.

(c) γ2: a circle with radius R = 1√
2
a about z2 = 1

2
a(1 − i), traversed in the clockwise

direction.

(d) γ3: a circle with radius R = a+ 1
2

about z3 = 1
2
a, traversed in the anticlockwise direction.

(e) γ4: the line z = x, with x ∈ [−∞,∞], traversed in the positive x-direction.

(f) γ5: the line z = 1
3
a+ iy, with y ∈ [−∞,∞], traversed in the positive y-direction.

[
Check your results: (b) Iγ1(2) = πi

25
, (c) Iγ2(2) = 7π

25
, (e) Iγ4(3) = 3π

25
, (f) Iγ5(3) = πi

150
.
]
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EC9.4.7 Inverse Fourier transform via contour closure

(a) The Green’s function defined by the equation (dt + a)G(t) = δ(t) (with 0 < a ∈ R) has
corresponding Fourier transform given by G̃(ω) = (a−iω)−1. Show that the corresponding
inverse Fourier transform yields the following result:

G(t) =

ˆ ∞
−∞

dω

2π

e−iωt

a− iω
= θ(t) e−at , with θ(t) =

{
1 for t > 0 ,

0 for t < 0 .

(b) The Fourier transform of the exponential function, L̃(ω) =
´∞
−∞ dt eiωte−a|t| = 2a

ω2+a2

(with 0 < a ∈ R), is a Lorentz curve. Find the inverse Fourier transform L(t) =´∞
−∞

dω
2π

e−iωtL̃(ω), by explicitly calculating the integral.

Hint: Calculate the integral for t 6= 0 as a complex path integral, by closing the contour with
a suitably chosen semicircle with radius →∞.

PC9.4.8 Inverse Fourier transform via contour closure: Green’s function of damped harmonic
oscillator

The Green’s function of the damped harmonic oscillator is defined by the differential equation
(d2
t + 2γdt + Ω2)G(t) = δ(t) (with 0 < Ω, γ ∈ R). Its Fourier transform, defined by

G(t) =
´∞
−∞

dω
2π

e−iωtG̃(ω), is given by G̃(ω) = (Ω2 − ω2 − 2γiω)−1. Express the Green’s

function in the form G(t) =
´∞
−∞ dz f(z), and calculate the integral by closing the contour in

the complex plane. You should proceed as follows:

(a) Find the residues of f(z). Distinguish between the following cases:
(i) Ω > γ (underdamped), (ii) Ω = γ (critically damped) und (iii) Ω < γ (overdamped).
Hint: (i) and (iii) each have two poles of first order; (ii) has only a single pole, but of
second order.

(b) Calculate G(t) by closing the contour with an appropriately chosen semicircle with radius
R→∞ (again distinguishing between the different cases!). [Check your results for G(t):
(i) for Ω = 1 and γ = 0, G(π/2) = 1; (ii) for Ω = γ = 1, G(1) = e−1; (iii) for Ω = 4
and γ = 5, G(1/3) = 1

3
e−5/3 sinh(1).]

P.C9.5 Essential Singularities

P.C9.6 Riemann surfaces



V

Vector calculus

The third part of this book, labeled V for ‘vector calculus’, introduces the mathematics of smooth structures in higher-

dimensional spaces. Methodologically, this requires a synthesis of concepts of linear algebra and calculus introduced

in the previous two chapters, respectively. We discuss the mathematical description of curves, surfaces and more

general geometric objects in higher-dimensional spaces. We will learn how to characterize these structures both from a

global and a local perspective. So-called vector fields will emerge as an important tool in the description of geometric

structures of any kind. We will learn how to differentiate and integrate vector fields to probe their local and global

contents, respectively. In the final chapters of part V we introduce differential forms as a powerful concept generalizing

the notion of vector fields and allowing for an intuitive description of geometric structures relevant to both mathematics

and physics.
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V1 Curves

Curves in d-dimensional space play an important role in many areas of physics. This is true in
particular in mechanics were they describe the motion of bodies through space. In this chapter
we will discuss the mathematical definition of curves and introduce quantities describing them.
We will learn how to differentiate and integrate with reference to curves.

V1.1 Definition

A curve can be imagined as a smooth line in d-dimensional space. To define this in
mathematical terms we need the concept of a vector-valued function. This is a function

r : I → Rd, t 7→ r(t), (V1)

which smoothly assigns a vector r(t) to the parameter variable t. Here, I ⊂ R is some
interval, which is taken to be I = (0, 1), unless otherwise stated. It is often useful to
interpret t as a time-like variable, in which case r(t) is a time-dependent position vector
describing the motion of a point through Rd. One may introduce an orthonormal basis {ei}
to parameterize Rd in Cartesian coordinates and represent r(t) in terms of a coordinate vector
x(t) = (x1(t), . . . , xd(t)). This representation is described by d real functions xi(t) of the
parameter t, which means that the mathematical description of vector-valued functions is not
more difficult than that of scalar functions.

The curve, γ, corresponding to the function r is
defined to be the image of r, i.e.

γ ≡ {r(t)|t ∈ I}, (V2)

where the term ‘image’ is defined as in section L1.1.
A visual image of γ in Rd is obtained by drawing
a line passing through the points r(t) ∈ Rd for all

values of t (see figure).
The function r(t) defines a parameterization of the curve γ. A parameterization con-

tains more ‘information’ than the curve itself, since it describes not only the shape of the
curve, but also how the point r(t) moves (quickly/slowly?) along the curve as function of
t. For example, a curve might be realized as a penciled route connecting two locations on a

387
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1φ

1φ

2φ

2φ

Figure V1: Schematic depiction of the two parameterizations (V3) of the unit circle. Left: the angle
φ1(t) increases uniformly with time. Right: the angle φ2(t) increases non-uniformly with time. The
difference shows in different velocity and acceleration vectors, as discussed in the text.

road map. Then a cyclist’s schedule for reaching certain points r(t) at various specified times
t would be a possible parameterization of the route.

Any curve has infinitely many distinct parameterizations. For example, the two functions
r1(t) and r2(t) defined by

ri(t) =

(
cos(φi(t))
sin(φi(t))

)
, φ1(t) = 2πt, φ2(t) = π[1− cos(πt)] , (V3)

are different parameterizations of the same curve, namely a unit-circle in R2. To verify this,
first note that (r1

i )
2+(r2

i )
2 = 1 lies on the unit circle. In either parameterization φi(t) increases

monotonically from 0 to 2π (cf. Fig. V1). This means that a circular curve is fully covered as
previously stated.

INFO The function r(t) is often referred to as a curve without discriminating between the curve
and its parameterization. This should not cause confusion as long as the relation between curves

and parameterizations is kept in mind: A curve is an invariant geometric object in space and its

various possible parameterizations are different languages for describing it.

V1.2 Curve velocity

The point r(t) moves through space at a certain velocity (Geschwindigkeit). Velocity is a
vectorial quantity, v, whose direction is tangent to the curve and whose magnitude measures
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the speed of the motion (see Fig. V1 where the different lengths of the velocity vector indicate
that the two parameterizations traverse the curve at different speed).

)tδ+t(r

tδ)t(v

Mathematically, the velocity, v(t), of the curve at time
t ∈ I is defined as

v(t) = lim
δt→0

r(t+ δt)− r(t)

δt
≡ dr(t)

dt
≡ ṙ(t). (V4)

The differential quotient expresses the intuitive notion
that the velocity describes the distance between two near-
by points, r(t+ δt)− r(t), in relation to the time, δt, that
it took to traverse them (see figure).

1
Inserting the com-

ponent representations r(t) = eir
i(t) into Eq. (V4) we

obtain v = ṙ = eiṙ
i ≡ eiv

i, i.e. the derivative acting on
the vector r is computed component-wise:

vi(t) =
dri(t)

dt
≡ ṙi(t).

To see that v lies tangent to the curve, rewrite (V4) as

r(t+ δt) ' r(t) + δtv(t).

Varying δt at fixed t we obtain a tangent, i.e. a straight line r(t) + δtv(t) which for small δt
is a good local approximation to the curve near r(t).

INFO In the following we will often need to differentiate vector-valued functions. All these derivatives

can be reduced to ordinary derivatives acting on the components of vectors. However, one should aim

to keep the notation compact and avoid component representations where possible. Useful vector
differentiation rules include:

dt(r + s) = dtr + dts,

dt(ar) = (dta) r + a(dtr),

dt(r · s) = (dtr) · s + r · (dts),

dt(r× s) = (dtr)× s + r× (dts) (for d = 3).

(V5)

For the sake of transparency, we have omitted the time argument here, e.g. dta = dta(t), etc. All

these relations can be verified by expressing the vectors in terms of their components, r(t) = eir
i(t),

etc., applying standard rules of differentiation, and remembering that the Cartesian basis vectors are

time-independent, ėi = 0.

1

The dot notation is customary for derivatives with respect to a time-like parameter. For example, one
does not write ḟ(x) = df

dx if x parameterizes length.
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As an example, consider a time-dependent vector, r(t), of fixed norm r · r = l2 = const.

Differentiation w.r.t. time yields:

0 = dtl
2 = dt(r · r) = (dtr) · r + r · (dtr) = 2r · (dtr) = 2r · v, (V6)

where v = dtr is the curve velocity. This shows that for a circular curve traced out by a position

vector of fixed norm, the velocity vector is always perpendicular to the position vector.

If the the velocity along the curve changes in time, the motion is subject to acceleration
(Beschleunigung). Acceleration is a vectorial quantity defined as the rate of change of velocity,

a(t) ≡ lim
δt→0

v(t+ δt)− v(t)

δt
= v̇(t) ≡ r̈(t), (V7)

or ai(t) = v̇i(t) = r̈i(t) in components.

EXAMPLE Consider the two curves r1(t) and r2(t) defined in Eq. (V3). Their velocity and

acceleration vectors read

vi(t) =

(
− sin(φi(t))

cos(φi(t))

)
φ̇i(t), φ̇1(t) = 2π, φ̇2(t) = π2 sin(πt) ,

ai(t) = −
(

cos(φi(t))

sin(φi(t))

)
(φ̇i(t))

2 +

(
− sin(φi(t))

cos(φi(t))

)
φ̈i(t) , φ̈1(t) = 0, φ̈2(t) = π3 cos(πt) .

A series of ‘snapshots’ of these vectors at different times is shown in Fig. V2. Notice that vi · ri = 0,

which was proved generally in Eq. (V6). Also notice that the speed is constant along the first

curve, ‖v1(t)‖ = 2π, but changes along the second, ‖v2(t)‖ = π2| sin(πt)|. Correspondingly the

acceleration vector for the first curve is directed towards the center (φ̈1 = 0 implies a1 ‖ −r1),

whereas the acceleration vector for the second curve has a tangential component (φ̈2 6= 0 implies

a2 · v2 6= 0, see red arrows), which acts to increase or decrease the speed along the curve.

INFO We conclude this section on curve velocity with a mathematical subtlety: in this text, we will

always parameterize curves by open
2

parameter intervals, such as (0, 1). This is done to guarantee

the global differentiability of the function r(t). For a closed interval, [0, 1], the parameterization

would not be differentiable
3

at t = 0 or t = 1, and this would lead to unwanted side effects, both

mathematical and physical. (For example, the velocity of a curve would not be defined at its end

points.) For a curve defined on an open interval, (0, 1), the end points r(0) and r(1) are formally

excluded from the curve. In practice, however, this omission is generally not of relevance, because

for any continuous curve the endpoints can always be defined as limits, e.g. r(1) = limt→1 r(t).

2

The concept of an ‘open interval’ is explained in section L1.3, p. 16.
3

The definition of differentiability requires the existence of the differential quotient (C1), [f(t + δt) −
f(t)]/δt, irrespective of the sign of the incremental parameter, δt. This condition is violated at the boundary
of a closed interval. For example, if f(t) is defined on [0, 1], then f(1 + δt) is not defined for positive δt.
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Figure V2: The velocity vectors (black arrows) and acceleration vectors (red arrows) for the two
parameterizations r1(t) (upper row) and r2(t) (lower row) of a circle defined in Eq. (V3), shown at
different times.

V1.3 Curve length

An important characteristic of a curve, γ, is its length. An estimate for the curve length
may be obtained by approximating the curve as a concatenation of many short, straight line
segments (see figure). The geometric length of each segment can be computed using the
Euclidean scalar product on Rd and in the limit of an infinitely fine discretization, their sum
converges to the length of the curve.

)�t(r
)tδ+�t(r

To make this strategy quantitative, we need a parame-
terization of the curve, say r : (0, 1)→ Rd, t 7→ r(t).
We divide the parameter interval (0, 1) into N � 1
subintervals of width δt = 1/N , bounded by the dis-
crete parameter values t` = ` δt, with ` = 0, . . . N .
Each difference vector r(t` + δt)− r(t`) then defines a
line segment approximately tangent to the curve, and

by adding the lengths of these segments,

Lδt ≡
N−1∑

`=0

‖r(t` + δt)− r(t`)‖,

we obtain an estimate of the the length of the curve. For small δt, one may approximate
‖r(t` + δt)− r(t`)‖ ' ‖δt ṙ(t`)‖ = δt‖ṙ(t`)‖ and this yields

L ≡ lim
δt→0

Lδt = lim
δt→0

δt

N−1∑

`=0

‖ṙ((t`)‖ =

ˆ 1

0

dt ‖ṙ(t)‖,

where in the last step we recognized the appearance of a Riemann sum [cf. Eq. (C18)].
Denoting the length of a curve γ by L[γ], we have thus have

L[γ] =

ˆ 1

0

dt ‖ṙ(t)‖. (V8)
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Figure V3: The curve parameterized by Eq. (V9).

This definition has been obtained by constructive geometric reasoning and therefore should not
depend on the choice of parameterization. To verify its parameterization invariance, consider
an arbitrary smooth and monotonically increasing function t : (a, b) → (0, 1), s 7→ t(s) such
that the function r′ : (a, b)→ Rd, s 7→ r′(s) ≡ r(t(s)) defines a different parameterization of
the same curve. Applying the length formula in the new parameterization yields

L[γ] =

ˆ b

a

ds ‖dsr′(s)‖ =

ˆ b

a

ds ‖dsr(t(s))‖ (C7)
=

ˆ b

a

ds ‖dtr(t)
∣∣
t=t(s)

dst(s)‖

=

ˆ b

a

ds
dt(s)

ds
‖dtr(t)

∣∣
t=t(s)
‖ (C26)

=

ˆ 1

0

dt ‖dtr(t)‖,

where the chain rule was used at the end of the first line, and a variable substitution at the end
of the second. Thus definition (V8) for the curve length is indeed parametrization invariant.

EXERCISE Compute the length of the curve Eq. (V3) in the two parameterizations given there,

and show that the circumference of the unit circle is obtained in either case.

EXAMPLE Consider the curve γ shown in the figure above with parameterization

r : (0, 5)→ R3, t 7→ r(t) ≡
(

sin(2πt), cos(2πt),
2

3
t3/2
)T

. (V9)

The norm of the velocity vector,

dr(t)

dt
=
(

2π cos(2πt),−2π sin(2πt), t1/2
)T

,

is given by ‖dtr(t)‖ =
√

4π2 + t and this integrates to

L[γ] =

ˆ 5

0
dt (4π2 + t)1/2 =

2

3
(4π2 + t)3/2

∣∣∣
5

0
=

2

3

[
(4π2 + 5)3/2 − (2π)3

]
.



V1.4 Line integral 393

INFO For a curve with parameterization r : (0, 1)→ R, t 7→ r(t), consider the length, s(t), of the

curve segment corresponding to the partial interval (0, t), t ≤ 1,

s(t) ≡
ˆ t

0
du ‖dur(u)‖. (V10)

The function s(t) grows monotonically with t from 0 at t = 0 to L[γ] as t → 1. It defines a

bijection s : (0, 1) → (0, L[γ]) and may therefore be inverted to yield a function, t(s), that assigns

to each length s ∈ (0, L[γ]) the parameter t(s) at which s is reached. This observation suggests

parameterizing the curve by its own length function. The resulting parameterization,

rL :(0, L[γ])→ R3, s 7→ rL(s) ≡ r(t(s)) ,

is called the natural parameterization of the curve. The subscript ‘L’ is usually omitted and one

writes r(s) ≡ r(t(s)) once it has been made clear that s refers to the length.

The distinguishing feature of the natural parameterization is that the resulting curve velocity,

v(s) = dsr(s), has unit magnitude:

‖dsr(s)‖ = ‖dsr(t(s))‖ = ‖dtr(t)
∣∣
t(s)
‖ dt(s)

ds

(C8)
= ‖dtr(t)

∣∣
t(s)
‖ 1

ds(t)
dt

∣∣∣
t=s(t)

(V10)
=
‖dtr(t)|t(s)‖
‖dtr(t)

∣∣
t(s)
‖ = 1. (V11)

This fact implies the orthogonality, a(s) ⊥ v(s), between the curve velocity and the acceleration

vector a(s) = dsv(s), cf. Eq. (V6).

Try to develop some intuition for why in the natural parameterization, r(s), the curve is traversed

at a uniform velocity. If in some other parametrization, r(t), a curve segment is traversed very quickly

(or slowly), what does this mean for the rate of change of the length function s(t), and what is the

consequence for v(s)? Compute the natural parameterization of the curve (V9).

V1.4 Line integral

In physics, curves often appear as integration domains for a class of integrals known as line
integrals. The idea of the line integral is best motivated via an application. In section ?? we
defined the work done when a body subject to a constant force, F, is moved along a straight
path, s, as W = F · s. More generally, however, the force may vary along the path, and the
path itself need not be straight (see the figure, where the path follows the curve γ).
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)tδ+�t(r

)�t(r

))�t(r(F

The work done under these generalized con-
ditions is computed by straightforward adap-
tion of the previous construction for the
curve length: let r(t), t ∈ (0, 1), be a pa-
rameterization of the path, γ, and F(r(t))
be the force acting at the point r(t). To
determine the work done, we divide the
curve into N = δ−1

t � 1 segments s` =
r(t` + δt)− r(t`), where the discretization
is defined as in section V1.3. The work
along each of these (straight) segments is
given by W` = s` · F` with F` = F(r(t`)),

4
i.e.

W` = [r(t` + δt)− r(t`)] · F(r(t`)) ' δt ṙ(t`) · F(r(t`)).

The total work along the path is obtained by summation over all segments and in the limit
δt → 0 of an infinitely fine segmentation one obtains

W ≡ lim
δt→0

N−1∑

`=0

W` = lim
δt→0

δt

N−1∑

`=0

ṙ(t`) · F(r(t`)) =

ˆ 1

0

dt ṙ(t) · F(r(t)) ≡
ˆ
γ

dr · F.

The last expression is symbolic notation for the line integral of the force along the curve; it is
defined in terms of the integral over time given in the second-last expression.

The construction above is an example of the line integral of a general vector-valued
function, f : γ → Rd, r 7→ f(r), defined on a curve γ in Rd. The line integral is built
according to the following procedure:

1. Parameterize the curve by a vector-valued function r : (0, 1)→ Rd, t 7→ r(t).

2. Construct the real-valued function ṙ(t) · f(r(t)).

3. Integrate that function over the domain of the curve parameter,

ˆ
γ

dr · f ≡
ˆ 1

0

dt ṙ(t) · f(r(t)). (V12)

Although the construction makes reference to a particular parametrization, the result is in-
dependent of the choice of parameterization. (Proceed as in section V1.3 to convince
yourself that this is so.) This implies, for example, that the work invested to pull a body along
a curve does not depend on the speed at which the curve is traversed.

EXAMPLE

4

For sufficiently small δt and a smooth force function, F(r(t)) ' F(r(t + δt)), the specific choice of the
‘readout point’ at which the force is evaluated is not of importance.
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f
1x

2x
2

Consider a vector-valued function

f : R2 → R2, r =

(
x1

x2

)
7→ f(r) =

(
x2

−x1

)
,

and a two-dimensional curve, γ, parametrized as

r : (−1, 1)→ R2, t 7→ r(t) =

(
x1(t)

x2(t)

)
=

(
t3

2t

)
.

To compute the line integral,
´
γ dr · f , we determine the curve velocity, ṙ(t), and evaluate the vector

function along the curve, f(r(t)), obtaining, respectively,

ṙ(t) =

(
3t2

2

)
, f(r(t)) =

(
x2(t)

−x1(t)

)
=

(
2t

−t3
)
.

Their scalar product, ṙ(t) · f(r(t)) = 6t3 − 2t3 = 4t3, integrated over the curve parameter, t, yields

ˆ
γ

dr · f =

ˆ 1

−1
dt ṙ(t) · f(r(t)) =

ˆ 1

−1
dt 4t3 = 0.

For the present choice of f and γ the integrand is an antisymmetric function of t, hence the integral

vanishes.
5

This antisymmetry reflects the ‘vortex-like’ winding of the vectors f around the origin, as

indicated in the figure. If f is interpreted as a force and the line integral as the work performed by

it, then this work is zero, because the contributions where f acts ‘along’ the integration path cancel

with those where it acts ’opposite’ to it (for every point on the path for which the projection of f

onto ṙ is positive, there is another point where it is negative, but with the same magnitude).

Now consider another path connecting the initial and final points of γ, say γ′ ∪ γ′′, as shown in

the figure. Compute the line integral over this path as the sum of the line integrals over γ′ and γ′′,
respectively. Show that the integral does not vanish. This result demonstrates that the work done

against a force along a path between two points can, in general, depend on the shape of that path.

INFO Some physics texts discuss line integrals using the notation dr =
∑3

i=1 ei dxi for the ‘line

element’ and
´

dr · f =
∑3

i=1

´
dxi f

i for line integrals. Such notation is OK if one is familiar with

differential forms and really understands what one is doing, but otherwise is prone to errors. For a

fault-proof interpretation of the ‘line element’ we refer to chapter V5 on differential forms.

5

The integral
´ a
−a dt g(t) vanishes if g(t) = −g(−t) (why?).
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In chapter L we argued that the Euclidean space Rd is best
spanned by a fixed orthonormal basis. However, there are cir-
cumstances where it is preferable to abandon this principle and
represent the vicinity of each point r ∈ Rd by an individual basis
that depends on that point. To understand why this may be a
better choice, consider the curve

r(t) =
(

1− t,
√

1− (1− t)2
)T

, t ∈ (0, 1) (V13)

At first sight, it may not be obvious that r(t) describes a quadrant of the unit circle, S1 =
{r ∈ R2|‖r‖ = 1}, i.e. a set of points with unit distance to the origin. The problem is that
due to the square root in the second component, this representation ‘breaks the symmetry’
between the 1- and 2-coordinates. However, the circle itself is symmetric under an exchange
of these two coordinates. The representation (V13) thus has less symmetry than the object it
describes, and consequently is generally inconvenient to work with.

As a rule, it is always more convenient to describe physical systems in a language reflecting
the full symmetry of the problem. In the example above, the use of a fixed orthonormal
basis does not appropriately describe the rotational symmetry and we should seek alternative
descriptions.

V2.1 An example: polar coordinates

Let us begin our discussion with a simple yet important case study. Consider a problem de-
fined in two-dimensional space. The coordinates, x ≡ (x, y)T , describing a point r = exx+eyy
with reference to a fixed orthonormal basis, {ex, ey}, are called Cartesian coordinates. Our
discussion above indicated that Cartesian coordinates are not ideally suited to the description
of problems possessing rotational symmetry. In such cases a more natural choice would be to
characterize the same point, r, by a pair of polar coordinates, y ≡ (ρ, φ)T , describing its
distance from the origin ρ, and the angle, φ, between r and a fixed reference direction, say ex
(cf. Fig. V4). The point r can then be represented using two different sets of coordinates,

r = ex x+ ey y = ex ρ cosφ+ ey ρ sinφ , (V14)

396
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where the second representation follows from the geometric definition of the polar coordinates.
The correspondence between the two ‘languages’, Cartesian and polar, is established by the
coordinate transformation

x : R+ × (0, 2π) −→ R2\R+,

y =

(
ρ
φ

)
7−→ x(y) =

(
x(ρ, φ)
y(ρ, φ)

)
=

(
ρ cosφ
ρ sinφ

)
, (V15a)

and its inverse

y : R2\R+ −→ R+ × (0, 2π),

x =

(
x
y

)
7−→ y(x) =

(
ρ(x, y)
φ(x, y)

)
=

( √
x2 + y2

arctan(y/x)

)
. (V15b)

A good way to visualize the polar coordinates is to plot the Cartesian coordinate representation
x(ρ, φ) as a function of ρ at fixed values of φ, and of φ at fixed values of ρ, respectively (see
Fig. V4). This generates a system of coordinate lines in the form of a spider web. The main
advantage of polar coordinates is that they afford an optimal representation of systems
with rotational symmetry. In polar coordinates, points sitting at a fixed distance, R, from
the origin have a simple representation, (ρ, φ)T = (R, φ)T , while in Cartesian coordinates we
need to parameterize them as pairs, (x, y)T subject to the constraint

√
(x)2 + (y)2 = R.

Calculations in the latter language involve inconvenient square roots and are generally more
complicated and less intuitive.

INFO Notice that in Eq. (V15) the variable φ is defined on the open interval, (0, 2π). Openness

is required to ensure differentiability of the coordinate map, including at the boundaries of the

underlying intervals.
3

For example, global differentiability is needed to define basis vectors tailored

to the coordinate system, as discussed in section V2.3. The price to be paid is that the map

defined in this way does not cover the entire plane R2: its image excludes points of the form

(exρ cos(φ) + eyρ sin(φ))φ=0,2π = exρ + ey0, i.e. the positive real axis, here denoted as R+ ≡
{exρ | 0 < ρ ∈ R} (see the wriggly line in Fig. V4). However, this deficiency does not really limit

the practical utility of the map. The reason is that we will mostly work with continuous functions,

f(ρ, φ), whose values at the excluded points can be understood as limits, f(ρ, 0) ≡ limφ→0 f(ρ, φ).

Although in this text we will follow the mathematics convention to exclusively work with open

coordinate intervals, the physics literature frequently extends the φ-coordinate domain to the semi-

open interval [0, 2π). The positive real axis is now included,
1

but the map is no longer differentiable

there. We finally refer to the info section on p. ?? where coordinate representations providing full

coverage are discussed.
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Figure V4: The construction of polar coordinates. Each coordinate pair, (ρ, φ)T ∈ U , describes a
point, x(ρ, φ) ∈ R2, in the Cartesian coordinate plane. The concentric and radial lines are lines of
constant radius ρ or angle φ, respectively. Tangent to these lines are the vectors of the coordinate
basis discussed in section V2.3 (see Eq. (V23)). The wriggly line denotes the positive real axis, R+,
which is not covered by the coordinate map.

V2.2 Coordinate transformations

The construction above motivates the following general definition of curvilinear coordi-
nates: a system of coordinates is an invertible map,

r : U →M, y 7→ r(y) = r(y1, . . . , yd) , (V16a)

between a coordinate domain U ⊂ Rd, open in Rd, and its image M ⊂ Rn.
2

The inverse
map assigns to each point r ∈M its coordinates y(r) ∈ U (see Fig. V5):

y : M → U, r 7→ y(r) = (y1(r), . . . , yd(r))T . (V16b)

For example, for the case of polar coordinates discussed above, M = R2\R+ is the ‘slit’ two
dimensional plane and U = R+ × (0, 2π) is its polar coordinate domain.

Note that in Eq. (V16a) the symbol r is used to denote both the transformation map
r : U → M and image points r(y) ∈ M . A similar statement holds for the symbol y in
Eq. (V16b). Although such double assignments may appear a little confusing at first, they are
perfectly consistent and generally used to keep the notation slim.

Now consider a second coordinate system for M , described by a different invertible map,
3

r : U ′ →M, y′ 7→ r(y′) = r(y′1, . . . , yd) , (V17a)

1

However, the origin (x, y)T = (0, 0)T remains excluded because there the function φ is not defined.
2

The image, M , of the coordinate domain U may be embedded in a space whose dimension is larger than
that of the coordinate domain. For example, the description of a sphere (the surface of a three-dimensional
ball) requires d = 2 coordinates, although the sphere is embedded in (n = 3)-dimensional space.

3

To keep the notation slim, we use the same symbol, r, for both the maps r : U → M and r : U ′ → M ,
noting that they can be distinguished via the specified domains of definition, U vs. U ′, or arguments, y vs. y′.
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Figure V5: Schematic depiction of two coordinate representations of a subset M ⊂ Rn in terms of
two coordinate systems, y and y′, and the transformations between them.

with a different coordinate domain, U ′ ⊂ Rd, open in Rd, but the same image M ⊂ Rn. Its
inverse assigns to each point r ∈M its coordinates y′(r) ∈ U ′ in the second system:

y′ : M → U ′, r 7→ y′(r) = (y′1(r), . . . , y′d(r))T . (V17b)

For example, if we choose the second system to be Cartesian coordinates in the space Rd,
then y′ would stand for the Cartesian coordinate vector x ≡ (x1, . . . , xd)T , representing r in
an orthonormal basis of Rd.

4
(Unless otherwise specified, we will use the notation x exclusively

for Cartesian coordinates.)
Given two such coordinate systems, each point in M can be described in two different

ways, r(y) = r(y′). We may thus construct coordinate transformations between them,
5

y′ = y′ ◦ r : U → U ′, y 7→ y′(y), (V18a)

y = y ◦ r : U ′ → U, y′ 7→ y(y′), (V18b)

which express each coordinate point y′ in U ′ in terms of a coordinate y in U , or vice versa.
Eqs. (V15a) and (V15b) implement these coordinate transformations for the example of polar
and Cartesian coordinates of the 2-plane, with y = (ρ, φ)T and y′ = x = (x, y)T . By
construction, the maps y′(y) and y(y′) are invertible and smooth; these are the defining
features of diffeomorphic maps.

Coordinates may be visualized in terms of coordinate lines. A coordinate line representing
the jth coordinate is generated by varying yj while keeping all remaining coordinates fixed.

4

If M is embedded in a space Rn of dimension n > d, and one wants to describe it using Cartesian
coordinates, x = (x1, . . . , xn) ∈ Rn, then only d of these n components serve as independent coordinates for
M , while the remaining n− d ones are functions of the former. For example, a sphere with unit radius in R3

can be described by the Cartesian coordinates (x1, x2,
√

1− (x1)2 + (x2)2)T .

5

Following our predilection for slim notation, we again use the same symbols for maps defined on different
domains, since the specified domains and arguments suffice to uniquely identify them. For example, when
writing y′ = y′ ◦ r : U → U ′, it is understood that the first map in the composition refers to r : U → M ,
y 7→ r(y), the second to y′ : M → U ′, r 7→ y′(r), and the net result to y′ : U → U ′, y 7→ y′(r(y)) ≡ y′(y).
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This defines a curve in M ,

rj : I →M, y 7→ rj(y) ≡ r(y1, . . . , y, . . . , yd), (V19)

where the argument y takes the place of yj and I is an interval of y-values such that
(y1, . . . , y, . . . , yd)T lies in U . In this way, each fixed choice for the remaining coordinates,
yi 6=j, generates its own j-coordinate line in M . If two different sets of coordinates, y′ and y
are defined, one may define the y′-representation of the coordinate line associated with yj,

y′j : I → U ′, y 7→ y′j(y) ≡ y′(y1, . . . , y, . . . , yd), (V20)

i.e. the curve in U ′ that traces out the y′-coordinates traversed when varying yj. For example,
Fig. V4 shows lines xρ and xφ in the Cartesian coordinate plane traced out by varying the
polar coordinates ρ and φ, respectively. (How would the coordinate lines yj generated in the
polar coordinate domain under variation of the Cartesian coordinates look like?)

INFO In many applications M is a subset of an affine space. Once a point of origin, O, has been

chosen, the latter becomes identical to a vector space, V , and M ⊂ V . The specification of a fixed

orthonormal basis of V then assigns to each r ∈ M a Cartesian coordinate vector, x ∈ UC, via the

map x : M → UC, r 7→ x(r). This identification is so natural that the distinction between M

and its Cartesian representation domain, UC, is easily forgotten. However, within the framework

of the present discussion one should draw a clear conceptual distinction between points r in M

(which have invariant meanings such as center points of planets in the solar system), and any of

their coordinate representations (which are ‘languages’ in which to describe these points).

V2.3 Coordinate basis and local basis

General definitions

Every point r(y) ∈ M lies at the intersection of d coordinate lines, rj(y), as defined in
Eq. (V19). We can obtain a tangent vector for the coordinate line rj(y) at point r(y) by
computing the corresponding curve velocity, defined as

(vj)r ≡ vj,r =
d

dy
ri(y) =

∂

∂yj
r(y). (V21)

Since the directions of the coordinate lines generally vary with r, the vectors vj,r, too, depend
on the base point r and a subscript will occasionally be used to emphasize this dependence.
However, both in the physics and mathematics literature this subscript is not indicated unless
necessary and we will follow this convention.

Since the map y 7→ r(y) is defined to be invertible, the d vectors vj,r are all linearly
independent.

6
They define a basis of Rd, the coordinate basis corresponding to the y-

coordinates at r. To obtain an explicit representation of the coordinate basis vectors, we may

6

If the tangent vectors were linearly dependent, a non-trivial linear combination of these vectors would
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expand r(y) = eax
a(y) in a Cartesian basis; we will temporarily label its basis vectors ea by

the symbol a = 1, 2, . . . , d, for better discrimination from the index j = 1, 2, . . . , d labeling
the coordinate basis vectors. The Cartesian components xa(y) of r(y) are functions of the
curvilinear coordinates, but the Cartesian basis vectors ea are not. Therefore Eq. (V21) yields

vj(y) = ea
∂xa(y)

∂yj
. (V22)

For example, in polar coordinates, the differentiation of r(θ, φ) in Eq. (V14) w.r.t.
coordinates yields

vρ = ex cosφ+ ey sinφ,

vφ = ρ(−ex sinφ+ ey cosφ) (V23)

for the polar coordinate basis vectors (illustrated in Fig. V4). Note how these vectors emerge
naturally as functions of the coordinates y = (ρ, φ)T .

(Local) metric tensor

In general, the vectors {vj,r} of a coordinate basis are neither normalized, nor mutually
orthogonal. However, many coordinate systems of practical relevance (polar, spherical, and
cylindrical, to mention the most important ones) do have an orthogonal (although not nor-
malized) coordinate basis. Systems possessing this feature are called orthogonal coordinate
system.

In either case the local geometric structure (i.e norm and relative orientation) of the
coordinate basis at a point r is described by the metric tensor Eq. (L47),

gij,r ≡ 〈vi,r,vj,r〉 , (V24)

where 〈 , 〉 is the standard scalar product in Rd. For example, the metric in polar coordi-
nates is given by

gρρ = 1, gφφ = ρ2, gρφ = gφρ = 0, (V25)

which shows how the norm of vφ grows with increasing distance from the origin while that of
vρ remains constant. For later reference, we also state the components of the inverse metric,
defined via Eq. (L53):

gρρ = 1, gφφ = ρ−2, gρφ = gφρ = 0. (V26)

exist that yields zero, vja
j = ∂jr a

j = 0. Consequently the variation of r(y) upon a shift of its argument to
y+δ a would vanish: r(y+δ a)−r(y) ' δ ∂jr aj = 0, where Eq. (C34) was used for each of the components
rj . Thus two different coordinates would be mapped onto the same image point, r(y + δ a) = r(y), in
contradiction to the assumed invertibility of the map y 7→ r(y).
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Local basis

By construction, the coordinate basis vectors point in the direction of the coordinate lines
and are computed via the straightforward derivative (V21). This makes them optimally suited
to describe problems in the representation defined by the y-coordinates. One may even argue
that the lack of normalization that is characteristic for this basis is an intuitive feature. For
example, the vector vφ defined in Eq. (V23) has norm ‖vφ‖ = ρ. This expresses the fact that
vφ = ∂φr describes the change in r induced by a change in the angular coordinate, which is
the larger, the larger the norm |r| = ρ is (think about this point). However, in the physics
community it is customary to normalize the vectors of the coordinate basis and in this way
pass to what is called the local basis. The vectors of the local basis are defined as

ej,r =
vj,r√
gjj

=
vj,r
‖vj,r‖

, (V27)

and frequently denoted by the letter e. In this case, they are distinguished from the vectors
of the Cartesian basis by their subscript. For example the local basis in polar coordinates
is given by

eρ = vρ = ex cosφ+ ey sinφ ,

eφ =
1

ρ
vφ = −ex sinφ+ ey cosφ . (V28)

Although the normalization feature is convenient for some purposes, it comes with a price
tag: the normalization factor, (gjj(y))−1/2, is a function of y. In mathematical (and physical)
practice, the coordinate or local basis vectors usually appear as building blocks in operations
involving several derivatives w.r.t. coordinates y. These operations become more complicated
in the presence of a y-dependent normalization function. Therefore, one may reason that this
is one of the cases where it would actually be advantageous to use unnormalized basis vectors.

)ρ, φ(r

φeφδρeφδ−

φδ

)φδ+ρ, φ(r

As an example of a relatively easy local basis vector deriva-
tive operation, consider the partial derivatives

∂ρeρ = 0, ∂φeρ = eφ,

∂ρeφ = 0, ∂φeφ = −eρ, (V29)

which follow directly from the definition Eq. (V28). These
derivatives describe how the vectors vary under variations of
coordinates (cf. the figure). Evidently a variation in ρ leaves
both basis vectors unchanged, but a variation in φ changes
eρ in a direction parallel to eφ, and eφ in a direction anti-
parallel to eρ.

In applications such derivatives appear, e.g., when the local basis is employed to describe
physical motion along curves. As an example, consider a two-dimensional curve with
parameterization r(t). Expressed in Cartesian and local polar basis vectors, this vector assumes
the form

r(t) = exx(t) + eyy(t) = eρ(t) ρ(t) = eρ,r(t) ρ(t),
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where the subscript r(t) in eρ,r(t) emphasizes that the basis vector may change with time as
the base point r(t) varies. The curve velocity thus takes the form

ṙ = eρ ρ̇+ ėρ ρ, (V30)

where the time arguments have been suppressed for notational compactness. It remains to
compute the time derivative ėρ explicitly. Since the time dependence of a local basis vector
ei(t) comes from the time dependence of the coordinates at which it is evaluated, as ei(t) =
ei,r(t) = ei,r(ρ(t),φ(t)), the chain rule of calculus Eq. (C38) (with the identifications f → e,
g→ y = (ρ, φ)T , x→ t) yields

ėρ = (∂ρeρ) ρ̇+ (∂φeρ) φ̇
(V29)
= eφ φ̇ , ėφ = (∂ρeφ) ρ̇+ (∂φeφ) φ̇

(V29)
= −eρ φ̇ . (V31)

The curve velocity (V30) can thus be written as

ṙ = eρ ρ̇+ eφ ρ φ̇ . (V32)

This equation states that ρ̇ and φ̇, the rates of change of the radial or polar coordinates during
the motion, define the corresponding components of the velocity vector. The proportionality
of the polar component to the radial coordinate ρ accounts for the fact that changing φ shifts
the point r(t) by an amount that increases with its distance from the origin.

INFO Occasionally, it becomes necessary to compute higher-order derivatives of curve parameteri-

zations in curvilinear coordinates. As an example, consider the curve acceleration for a curve in
polar coordinates. Differentiating ṙ w.r.t. time and using Eq. (V31) once more, we obtain

a = dt(ṙ)
(V32)
= dt(eρ ρ̇+ eφ ρ φ̇) = ėρ ρ̇+ eρ ρ̈+ ėφ ρ φ̇+ eφ ρ̇ φ̇+ eφ ρ φ̈

(V31)
= (eφφ̇) ρ̇+ eρ ρ̈+ (−eρφ̇) ρ φ̇+ eφ ρ̇ φ̇+ eφ ρ φ̈ = eρ (ρ̈− ρ φ̇2) + eφ (2ρ̇ φ̇+ ρ φ̈). (V33)

To qualitatively interpret the different contributions to the velocity vector, consider different types

of motion, e.g. purely radial motion with φ̇ = 0, or purely angular motion with ρ̇ = 0, or motion at

constant angular velocity with φ̇ = const.

The derivation of equation (V33) shows that computations with curvilinear coordinates require

care. A useful safety check is to monitor the physical dimensions of terms at all stages of the com-

putation. For example, the vector r has physical dimension ‘length’. To express this compactly one

writes [r] = length, using square brackets as shorthand for ‘dimension of’. Each time derivative di-

vides this dimension by one dimension of time, i.e. [dr
dt ] = length/time and [a] = [d2r

dt2 ] = length/time2.

The different terms contributing to Eq. (V33) all have this dimension. Regardless of the context,

the dimensional analysis of results is a potent aid in avoiding computational errors.
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EXAMPLE As an example illustrating the usefulness of

curvilinear coordinates, consider the work done by a ro-
tationally symmetric force field, F(r) = feφ, r 6= 0,

along a spiral path, γ, in the plane. Except for the ori-

gin where the angular direction is not defined, the force

is colinear to eφ, and has constant strength, f = const.
7

Consider a path parameterized as y(t) = (ρ(t), φ(t))T =

( tRt0 , 2π
t
t0

)T , describing a spiral winding once around the

origin between times t = 0 and t0 and reaching a ra-

dial distance R at the final time (see the figure, where

distance is plotted in units of R, such that the final sepa-

ration corresponds to a unit distance). Substituting this parameterization into Eq. (V32) we obtain

ṙ = R
t0

(eρ + 2π t
t0

eφ), and ṙ · F = 2πRft
t20

. This yields the work integral

W =

ˆ
γ

dr · F =

ˆ t0

0
dt ṙ · F =

ˆ t0

0
dt

2πRft

t20
= πRf.

The positive sign indicates that work is done by the force along a path approximately aligned with it.

Also note that excluding the positive real axis from the definition of the variable φ implies excluding

the points r(0) and r(t0) from the curve, where φ = 0 and 2π, respectively, i.e. restricting the curve

parameter t to the open interval (0, t0) instead of using the closed interval t ∈ [0, t0]. This, however,

does not change the value of the integral.

Try doing the same calculation in Cartesian coordinates; you will find that it becomes technically

more complicated and less intuitive.

V2.4 Cylindrical and spherical coordinates

In low dimensions, d = 2, 3, the continuous symmetry most frequently encountered is
rotational symmetry, namely rotational symmetry about a point in R2, a fixed rotation axis in
R3 or a point in R3. To describe these cases, tailor-made curvilinear coordinate systems have
been devised. These are the polar coordinates discussed above, and the three-dimensional
cylindrical and spherical coordinate systems, to be introduced next.

Cylindrical coordinates

Cylindrical coordinates are designed to describe problems which are rotationally symmetric
around a fixed axis. For example, the axially symmetric magnetic field generated by a straight,
current-carrying wire is conveniently described in cylindrical coordinates. The construction of

7

In fact, since we excluded the entire positive real axis when defining polar coordinates [Eq. (V15)], we
implicity do the same when expressing F in terms of eφ. However, the computation of the work below shows
that this omission is irrelevant, both from a mathematical and physical perspective.
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)a( )c()b(

Figure V6: Coordinate lines of the three most frequently used curvilinear coordinate systems. (a)
Two-dimensional polar coordinates, (b) cylindrical coordinates, and (c) spherical coordinates (some-
times called three-dimensional polar coordinates).

cylindrical coordinates is shown in figure V6: following standard conventions we define the
x3-axis of a Cartesian coordinate system as the symmetry axis of the problem. We next pick
two directions orthogonal to it to define a three dimensional Cartesian system of coordinates
(x, y, z). A vector r may then be decomposed as r = ezz + r⊥, where r⊥ ⊥ ez lies in
the xy-plane. Choosing polar coordinates, (ρ, φ), to parameterize this plane, we obtain a
representation r⊥ = ex ρ cosφ+ey ρ sinφ for the transverse component, and the representation

r(ρ, φ, z) = ex ρ cosφ+ ey ρ sinφ+ ez z, (V34)

for the three-dimensional vector. The corresponding transformation map between its cylin-
drical coordinates y = (ρ, φ, z)T and its Cartesian coordinates x = (x, y, z)T is given by

x : R+ × (0, 2π)×R −→ R3\(R+ × {0} ×R),

y =



ρ
φ
z


 7−→ x(y) =



x(ρ, φ, z)
y(ρ, φ, z)
z(ρ, φ, z)


 =



ρ cosφ
ρ sinφ
z


 , (V35a)

and the inverse map is

y : R3\(R+ × {0} ×R) −→ R+ × (0, 2π)×R,

x =



x
y
z


 7−→ y(x) =



ρ(x, y, z)
φ(x, y, z)
z(x, y, z)


 =



√
x2 + y2

arctan( y
x
)

z


 . (V35b)

As for polar coordinates, we ensure global differentiability by defining φ on an open interval,
φ = (0, 2π). The image of the map y → x therefore excludes all image points of the form
(x, y, z)T = (ρ, 0, z)T , which together define the half-plane of positive x-values at y = 0,
R+ × {0} ×R ≡ {(x, y, z)T |x ∈ R+, y = 0, z ∈ R} (see the shaded plane in figure V7).
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Figure V7: The definition of cylindrical coordinates [Eq. (V35)].

Eqs. (V22), (V24), and (V27) can be used to compute the coordinate basis vectors
for cylindrical coordinates, {vρ,vφ,vz}, the metric tensor, and the local basis vectors,
{eρ, eφ, ez}. One finds

vρ = ex cosφ+ ey sinφ, gρρ = 1, eρ = vρ,

vφ = ρ(−ex sinφ+ ey cosφ), gφφ = ρ2, eφ =
1

ρ
vφ, (V36)

vz = ez, gzz = 1, ez = ez.

EXERCISE Verify the orthogonality of the cylindrical coordinate basis, gij = 0, i 6= j. Also

verify that the local basis defines a right-handed system, eρ × eφ = ez. The basis comprises a

fixed vector in z-direction, ez, and the local basis, {eρ, eφ}, of a polar system spanning the plane

perpendicular to z. Notice that the point r now affords the simple representation

r = eρ ρ+ ezz. (V37)

From here, the velocity of a time-dependent vector r(t) is obtained as

ṙ = eρ ρ̇+ eφ ρ φ̇+ ez ż. (V38)

EXAMPLE Let us take another look at the spiral curve defined in (V9). In cylindrical coordinates, it

is represented as (ρ(t), φ(t), z(t))T = (1, 2πt, (2/3)t3/2)T . We may now use the representation (V37)

to represent its velocity as

ṙ(t) = ėρ ρ+ eρ ρ̇+ ėzz + ez ż
(V31)
= (eφ φ̇)ρ+ 0 + 0 + ez ż = eφ 2π + ez t

1/2. (V39)

This equation describes how the velocity vector winds around the z-axis while building up a growing

z-component. In agreement with our previous analysis, the norm of this vector is obtained as

‖ṙ‖ =
√

(2π)2 + t. Although the expressions in cylindrical coordinates are not necessarily ‘simpler’

than their Cartesian counterparts, they are better suited to expose the geometry of the curve.
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EXAMPLE As another example, consider a force

F = feφ + c ez similar to that discussed on p. 404,

but now with a constant component, c, in the z-

direction. We aim to compute the work done along

a three-dimensional spiral, which in a time t0 winds

once around the origin up to a maximal separation

R from the central axis, while also climbing up to

a height Z (see the figure, where ρ and z are indi-

cated in units of R and Z, respectively). In cylin-

drical coordinates, this curve can be parameterized

as y(t) = (ρ(t), φ(t), z(t))T = (R t
t0
, 2π t

t0
, Z t

t0
)T . Eq. (V38) yields ṙ = R

t0
(eρ + 2π t

t0
eφ) + Z

t0
ez,

hence ṙ · F = 2πRft
t20

+ Zc
t0

, thus the work integral gives

W =

ˆ
γ

dr · F =

ˆ t0

0
dt ṙ · F =

ˆ t0

0
dt
(

2πRft
t20

+ Zc
t0

)
= πRf + Zc .

Spherical coordinates

Spherical coordinates are used to describe problems possessing rotational symmetry around
a fixed point in Euclidean space. We choose this point as the origin of a Cartesian coordinate
system. In cases where the problem possesses a particular axis of interest,

8
this axis is com-

monly chosen as the z-axis. The x- and y-axes then span the ‘equatorial plane’, as indicated in
figure V8. A point r is now described in terms of the following three numbers: its distance, r,
from the origin; the angle, θ, between the vector r and the z-axis; and the angle, φ, enclosed
by the x-axis and the projection of r onto the equatorial plane.

Elementary geometry shows that the z-component of a vector can now be represented
as r cos θ, where θ ∈ (0, π). Its perpendicular distance from the central axis is given by
r sin θ, which means that the x- and y-components are given by, respectively, (r sin θ) cosφ
and (r sin θ) sinφ. This is summarized by the representation

r(r, θ, φ) = ex r sin θ cosφ+ eyr sin θ sinφ+ ezr cos θ. (V40)

The map describing the change from spherical coordinates y = (r, θ, φ)T to Cartesian
coordinates x = (x, y, z)T is thus given by

x : R+ × (0, π)× (0, 2π) −→ R3\(R+ × {0} ×R) , (V41a)

y =



r
θ
φ


 7−→ x(y) =



x(r, θ, φ)
y(r, θ, φ)
z(r, θ, φ)


 =



r sin θ cosφ
r sin θ sinφ
r cos θ


 ,

8

For the description of a planet, this might be the axis connecting its magnetic north and south poles, for
example.
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Figure V8: The definition of spherical coordinates [Eq. (??)].

and its inverse

y : R3\R+ × {0} ×R −→ R+ × (0, π)× (0, 2π), (V41b)

x =



x
y
z


 7−→ y(x) =



r(x, y, z)
θ(x, y, z)
φ(x, y, z)


 =




√
x2 + y2 + z2

arccos
(

z√
x2+y2+z2

)

arctan(y/x)


 .

Since we take the intervals for φ and θ to be open, the image of the map x(y) excludes the
half-plane R+ × {0} ×R, as for cylindrical coordinates.

EXERCISE Verify that the coordinate basis vectors for spherical coordinates, {vr,vθ,vφ}, the

metric tensor, and the local basis vectors, {er, eθ, eφ}, are given by, respectively,

vr = ex sin θ cosφ+ ey sin θ sinφ+ ez cos θ, grr = 1, er = er,

vθ = r(ex cos θ cosφ+ ey cos θ sinφ− ez sin θ), gθθ = r2, eθ =
1

r
vθ, (V42)

vφ = r sin θ (−ex sinφ+ ey cosφ), gφφ = r2 sin2 θ, eφ =
1

r sin θ
vφ,

with gi 6=j = 0. Again the off-diagonal elements of the metric tensor vanish, implying that the local

basis vectors are mutually orthogonal. Verify that they form a right-handed system, er × eθ = eφ.

In the local basis the point r has the simple representation

r = er r. (V43)

Verify that the velocity of a time-dependent vector r(t), obtained by computing the time derivative

of this expression, is given by

ṙ = er ṙ + eθ rθ̇ + eφ rφ̇ sin θ . (V44)
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INFO Curvilinear coordinates are tailored to describe structures of lower dimension, n < d, embedded

in d-dimensional space. For example, the surface of a sphere of unit radius, S2, is an (n = 2)-

dimensional object embedded in (d = 3)-dimensional space. It can be parameterized by keeping the

radius of the sphere, r = 1 fixed and letting the two angular coordinates θ and φ run through their

domain of definition. In this way, we obtain a representation

(0, π)× (0, 2π)→ S2 ⊂ R3, (θ, φ) 7→ r(1, θ, φ),

playing a role analogous to the one-dimensional parameterization t 7→ r(t) of a curve (which can

be seen as a (n = 1)-dimensional object in d-dimensional space). In mathematical terminology,

such generalizations of smooth n-dimensional ‘surfaces’ are called differentiable manifolds and

their description in terms of generalized coordinates is a concept of great importance in physics and

mathematics. We will return to this point in chapter V5 where advanced methods for the description

of manifolds are introduced.

V2.5 Local coordinate bases and linear algebra

REMARK This section re-interprets the concepts introduced above from a linear algebraic perspec-

tive. It introduces methodology for working with curvilinear coordinates that will facilitate our later

discussion of various geometric structures. The section requires familiarity with matrices, in partic-

ular the transformation matrices between different base (section L5.6). It is included for reference

purposes and may be skipped at first reading.

Jacobi matrix

From the perspective of linear algebra, Eq. (V22) defines a linear transformation between
the two bases {ea} and {vj}, of the form vj = eaJ

a
j. The matrix mediating this transforma-

tion,

Jaj ≡
(
∂x

∂y

)a

j

≡ ∂xa(y)

∂yj
, (V45)

is called the Jacobi matrix of the map y 7→ x(y) that expresses Cartesian in terms of
curvilinear coordinates. Its matrix elements are generally nonlinear functions of the coordinates
yj. However when considered at a fixed point r, i.e. a fixed set of coordinates y, the numbers
Jaj define a fixed d× d matrix, and all the concepts of linear algebra can be applied to it.

The inverse of the Jacobi matrix is given by

(J−1)ja =

(
∂y

∂x

)j

a

≡ ∂yj(x)

∂xa
, (V46)
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where the curvilinear coordinates y = y(x) are now interpreted as functions of the Cartesian
coordinates. That these matrices are inverse to each other can be checked as

Jaj(J
−1)jb =

∂xa(y)

∂yj
∂yj(x)

∂xb
=
∂xa

∂xb
= δab,

where the chain rule Eq. (C36) was used. The inverse matrix can then be used to switch from
the coordinate basis back to the Cartesian basis using ea = vj(J

−1)ja, i.e.

ea = vj(y(x))
∂yj(x)

∂xa
. (V47)

Here, both factors on the right vary as functions of x. However, they do so in such a way that
their product yields the constant Cartesian basis vectors ea.

Now let u(r) be a generic vector at the point r = r(x) = r(y). Depending on which
basis is used, it affords the two representations, u = eau

a(x) = vj(y)uj(y), where the choice
of subscript, a vs. j, indicates which basis is referred to. (In practice, the slightly ambiguous
notation, using the same symbol u for the coefficients, uj(x) or ua(y), of a vector in different
bases does not create problems, see the examples below.) From linear algebra we know that the
corresponding change between vector components is given by the transformation matrix
as ua = Jaju

j, and uj = (J−1)jau
a, or

ua(x) =
∂xa(y)

∂yj
uj(y)

∣∣∣∣
y=y(x)

, uj(y) =
∂yj(x)

∂xa
ua(x)

∣∣∣∣
x=x(y)

. (V48)

Here, the subscript y = y(x) emphasizes that the expression on the r.h.s. of the first equality
emerges as a function of the generalized coordinates, y. However, when featuring in a coor-
dinate change to Cartesian coordinates, x, all y-dependences should be expressed through x
via the unique correspondence y = y(x).

Example: Jacobi Matrix of polar coordinates

From Eq. (V15a) the Jacobi matrix of the polar coordinate system is readily obtained as
9

J =
∂(x, y)

∂(ρ, φ)
=

(
∂x
∂ρ

∂x
∂φ

∂y
∂ρ

∂y
∂φ

)
=

(
cosφ −ρ sinφ
sinφ ρ cosφ

)
, (V49)

where J = Jaj now carries the indices a = x, y and j = ρ, φ. Inserting the elements of J
into Eq. (V22), one indeed obtains Eq. (V23) for the transformation between the basis vectors
{vρ,vφ} and {ex, ey}.

The passage in opposite direction is mediated by the inverse Jacobi matrix, which from
Eq. (V15b) is obtained as

J−1 =
∂(ρ, φ)

∂(x, y)
=

(
∂ρ
∂x

∂ρ
∂y

∂φ
∂x

∂φ
∂y

)
=

(
x

(x2+y2)1/2
y

(x2+y2)1/2

− y
x2+y2

x
x2+y2

)
, (V50)

9

The notation ∂(x1,x2,... )
∂(y1,y2,... ) is equivalent to ∂x

∂y .
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and Eq. (V47) yields

ex = vρ
x

(x2 + y2)1/2
− vφ

y

x2 + y2
,

ey = vρ
y

(x2 + y2)1/2
+ vφ

x

x2 + y2
,

where this time everything is expressed in the x = (x, y) language. As an exercise, compute
the coordinate basis vectors directly from Eqs. (V15a) and (V21) as vj = ∂jr, j = ρ, φ.
Which route do you find more intuitive, the direct one, or the one engaging the Jacobi matrix?
Although the merits of the Jacobi matrix may not be immediately obvious from the present
context, we will see how it becomes an important tool as we move along.

For a vector with Cartesian representation u(r) = eau
a(x), the polar coordinate represen-

tation u(r) = vj(y)uj(y), with y = (ρ, φ)T , is given by

(
uρ

uφ

)
(y) = J−1(x)

(
ux

uy

)
(x)

∣∣∣∣
x=x(y)

,

where the argument y(x) on the left emphasizes that (uρ, uφ)T (y) is delivered as a function of
Cartesian coordinates. In a second step, one will then typically express x in terms of the polar
coordinates y via Eq. (V15a). As an example, consider the vector with Cartesian representation
u = (−yex +xey)(x

2 + y2)−1/2 or, in components, (x2 + y2)−1/2
( −y

x

)
. We want to compute

its representation in the polar basis at the point with Cartesian coordinates x = (x, y)T . (Do
not forget that all formulas are specific to a fixed point r = r(x) = r(y)!) A quick calculation
shows that

(
uρ

uφ

)
= J−1 ( u

x

uy ) = (x2 + y2)−1/2 ( 0
1 ). We can express this in terms of polar

coordinates using (x2 + y2)1/2 = ρ, which leads to
(
uρ

uφ

)
=
(

0
ρ−1

)
, or u = ρ−1vφ = eφ.

Jacobi matrix and metric

It is sometimes useful to express the metric gij defined by the coordinate basis vectors in
terms of the Jacobi matrix. To this end, we note that gij = (vi)

aδab(vj)
b. The expansion

vj = eaJ
a
j implies (vj)

a = Jaj, so that we obtain gij = JaiδabJ
b
j = (JT ) ai J

a
j = (JTJ)ij,

where the definition of the transpose of a matrix Eq. (L107) was used. This leads to the
desired relation connecting the metric with the Jacobi matrix:

gij = (JTJ)ij. (V51)

Although it may sometimes be more economical (and intuitive) to calculate the metric directly
by analyzing the scalar products (V24), this relation plays an important role in different con-
texts, notably in integration theory (cf. the discussion following Eq. (C58) in chapter C4 on
multi-dimensional integration). Apply relation (V51) to the polar Jacobi matrix to verify that
the metric (V24) is obtained.

EXERCISE
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Apply Eq. (V35) to verify that the Jacobi matrix in cylindrical coordinates is given by

J =
∂(x, y, z)

∂(ρ, φ, z)
=




cosφ −ρ sinφ 0

sinφ ρ cosφ 0

0 0 1


 , J−1 =

∂(ρ, φ, z)

∂(x, y, z)
=




x
(x2+y2)1/2

y
(x2+y2)1/2 0

− y
x2+y2

x
x2+y2 0

0 0 1


 .

(V52)

If further computing practice is needed, you may check the Jacobi matrix in spherical coordinates
follows from Eq. (V41) as

J =
∂(x, y, z)

∂(r, θ, φ)
=




sin θ cosφ r cos θ cosφ −r sin θ sinφ

sin θ sinφ r cos θ sinφ r sin θ cosφ

cos θ −r sin θ 0


 ,

J−1 =
∂(r, θ, φ)

∂(x, y, z)
=




x
(x2+y2+z2)1/2

y
(x2+y2+z2)1/2

z
(x2+y2+z2)1/2

xz
(x2+y2)1/2(x2+y2+z2)

yz
(x2+y2)1/2(x2+y2+z2) − (x2+y2)1/2

x2+y2+z2

− y
x2+y2

x
x2+y2 0


 . (V53)

Also verify explicitly that the expressions given in Eqs. (V52) and (V53) satisfy J−1J = 1.



V3 Fields

Physical information is often encoded in functions mapping d-dimensional space into image
domains such as the real or complex numbers, the vector spaces Rn or Cn, groups, or other
mathematical structures. When they appear in physical contexts, such functions are called
fields.

1
Before defining fields in formal terms, let us give some examples of their use in physics.

. Local variations in the temperature in a volume U ⊂ R3 can be described by a scalar field
in three-dimensional space, T : U → R, r 7→ T (r), i.e. a map assigning to each point
r ∈ U the local temperature, T (r). Fields taking values in R or C are generally called real
or complex scalar fields, respectively.

. If the temperature profile depends on time, a time-dependent scalar field, T : U × I →
R, (r, t)T 7→ T (r, t), is required to describe the temperature variations over an interval of
time I ⊂ R. This field is defined on a subset of four-dimensional space-time, U × I ∈
R3 ×R.

. The flow of a fluid of homogeneous density is described by a field, (r, t)T 7→ v(r, t) ∈ R3,
where v describes speed and direction of the flow at a point in space, r, and time, t. This
is an example of a three-dimensional vector field defined on four-dimensional space-time.

. The state of a ferromagnet is described by a field that assigns to each space-time point
(r, t)T a unit-normalized vector n̂(r, t) ∈ R3 describing the local magnetization of the
material. For example, a ferromagnetic phase is distinguished by an approximately homo-
geneous magnetization, n̂(r, t) ' const., which generates the macroscopic magnetic field
characteristic for magnetic substances. A unit-normalized vector, ‖n̂‖ = 1, may be iden-
tified with a point on the sphere of unit radius, S2, so the field n̂ : R3 × R → S2 maps
space-time onto the unit sphere.

Mathematically, a field is a smooth map

F : M → L, r 7→ F(r), (V54)

assigning to points r of the base manifold (Basismannigfaltigkeit), M , values F(r) in the
target manifold (Zielmannigfaltigkeit), L. We assume that M ⊂ Rd and L ⊂ Rn are open
subset of d and n dimensional vector spaces, respectively.

2
If M is parameterized by a system

1

These fields are unrelated to the (number-)fields of mathematics defined in section L1.3.
2

Situations where this setting is too narrow will be discussed in section V4.1 below.

413
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)y(F

y

L

Figure V9: Schematic illustration of the concept of a field as a map, F, from a base manifold M to
a target manifold L.

of generalized coordinates the arguments r = r(y) may then be parameterized by coordinate
vectors y = (y1, . . . , yd)T . Likewise, a system of coordinates on L implies a coordinate
representation for F. Throughout this introductory section we will not rigorously discriminate
between points r and their coordinate vectors y. Likewise, we will identify F = (F 1, . . . , F n)T

with its coordinate representation. This leads to descriptions of the field as

F : M → L, y = (y1, . . . , yd)T 7→ F(y) = (F 1, . . . , F n)(y), (V55)

which must be taken with a grain of salt but should not lead to confusion. We finally note
that, as in previous chapters, we tend to reserve the symbol x for Cartesian coordinates.
For example, a point in (3 + 1)-dimensional space-time has Cartesian representations as x =
(x0, x1, x2, x3)T , where x0 = t parameterizes time, and x1,2,3 are the b coordinates of a spatial
vector.

If n = 1, then F = F is a real-valued function, and fields of this type are called real
scalar fields. For M = C ∼= R2 we have a complex scalar field. If M = Rn>1 we speak of
a vector field.

3
Finally, M 6⊂ Rn may be a genuine subset of Rn, such as the sphere S2 ⊂ R2

mentioned above. The general concept of all these maps is illustrated in Fig. V9 where the
shaded gray area represents the base manifold U and thick lines symbolize the image values
F(x).

Fields can be visualized in a variety of ways, as illustrated in Fig. V10 with three different
examples. A scalar field in two-dimensional space can be imagined as a ‘surface’ floating
over a plane (left panel) whose height relative to the plane is the field value. A vector field,
F(r), mapping two-dimensional space points to two-dimensional vectors (center panel) can be
visualized in terms of a ‘swarm of arrows’, where F(r) is indicated by an arrow representing
F with base point at r. Such representations are often used to describe, e.g., distributions

3

Formally, a complex scalar field, M ∼= R2 may be identified with a two dimensional real vector field.
However, in the complex case, additional conditions discussed in chapter C9 are generally imposed. This
means that a complex scalar field has more structure than a generic two-dimensional real vector field, and that
the two classes should be distinguished.
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Figure V10: Visualization of a scalar field in two dimensions, n = 1, d = 2 (left), a two-dimensional
vector field in two dimensions, n = 2, d = 2 (center), and a three-dimensional vector field in three
dimensions, n = 3, d = 3 (right).

of current flow in the oceans. Likewise, three-dimensional vectors in three-dimensional space
may be represented in terms of three-dimensional visualizations (right panel), depicting, e.g.,
the flow of a fluid in a vessel. However, the figure also illustrates how visual representations
of three-dimensional vector fields tend to lack clarity.

In the rest of this chapter, we will learn how to describe fields in quantitative terms.

V3.1 Scalar fields

Scalar fields are real-valued functions depending on more than one argument, f = f(y) =
f(y1, . . . , yd). (Although an ordinary function f(y) of one variable (d = 1) may also be
considered as a field, the term is usually restricted to functions with base manifolds of dimension
d ≥ 2.) As an example, consider the two-dimensional scalar field,

h : R2 → R, x = (x, y)T 7→ h(x) =
1

(x2 + y)2 + c
, (V56)

where c is a positive constant. As mentioned in the previous section, such fields may be visu-
alized as surfaces of local height, h(x), floating over the two-dimensional plane (cf. Fig. V11).
The surface analogy suggests an alternative, truly two-dimensional graphic representation the
field. For a number of constant values, hn ≡ c × n, n ∈ Z, c = const., contour lines are
drawn in the (x, y)-plane along which the function remains at a constant value, h(x) = hn.
This yields the contour plot shown in the bottom of the figure. The contour plot indicates
changes in the function in terms of the density of contour lines, where widely-spaced (or
densely-spaced) lines are indicative of shallow (or steep) function changes. Contour represen-
tations are used frequently used, e.g., in geographic maps to indicate the altitude levels of the
charted territory.

Total differential
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Figure V11: Representation of the field h(x) of (V56) as a surface floating over the xy-plane. The
bottom of the graph shows a contour plot of the function, in which the lines denote constant values
of the function. Regions in which the contour lines are dense indicate that the slope of the function
is steep there (why?). The arrows indicate the direction in which the function increases most steeply,
and their length indicates the magnitude of the increase. Note that the length of the arrows is largest
in regions where the contour lines are dense, and the function varies most strongly.

}

u

)uδ+r(f

)u(rfdδOne frequently needs to describe how field values,
f(r), change under small variations of the argument,
r→ r + δu, where u is a vector describing the direc-
tion in which the change is observed and δ is an (in-
finitesimally) small variation parameter. The answer
to such questions is provided by a quantity known as
the total differential of the field. For a given point
r ∈ M ⊂ Rd, the total differential, dfr, is a linear
map acting on vectors u ∈ Rd to produce a number
that describes the rate of change of f in the direction of u.

4
It is defined as

dfr : Rd → R, u 7→ dfr(u) ≡ lim
δ→0

1

δ

(
f(r + δu)− f(r)

)
. (V57)

An argument similar to that used to prove Eq. (C34) shows that the differential dfr at fixed
r is linear in its vectorial argument,

5
i.e. (a, b ∈ R, u,w ∈ Rd)

dfr(au + bw) = a dfr(u) + b dfr(w). (V58)

4

Notice that u need not necessarily lie in M . For example, if the field is defined on the disk of unit radius,
M = D ⊂ R2, we may consider u = (100, 100)T and r = (0, 0)T . For infinitesimal δ, r + δu then lies in D
although u does not.

5

To see this explicitly, evaluate the differential on a sum of two vectors as

df(u + w) ≡ lim
δ→0

δ−1
(
f(r + δ u + δw)− f(r + δw) + f(r + δw)− f(r)

)
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The definition of the total differential does not make reference to a coordinate system
and therefore remains somewhat abstract. A more tangible representation is obtained by
evaluating df on the jth vector of a coordinate basis, vj = ∂yjr(y), at r = r(y). According
to definition (V57) this is dfr(vj) = limδ→0 δ

−1
(
f(r + δ vj)− f(r)

)
= limδ→0 δ

−1
(
f(r(y) +

δ∂jr(y))− f(r(y))
)
. Compare this expression to the jth partial derivative of the coordinate

representation, given by Eq. (C31): ∂yjf(y) = ∂yjf(r(y)) = limδ→0 δ
−1
(
f(r(y + δ ej)) −

f(r(y))
)

= limδ→0 δ
−1
(
f(r(y) + δ∂jr(y))− f(r(y))

)
. The two expressions are equal and so

we have the identification

dfr(y)(vj) = ∂yjf(y). (V59)

This intuitive formula states that the change of a function along the jth coordinate vector
equals the partial derivative of the function’s coordinate representation. In the following, the
differential will appear frequently, and we often use shorthand notations such as dfr(y) ≡
dfr ≡ dfy ≡ df , where the last representation leaves the dependence of the differential on
the coordinates implicit. For a general vector u = vju

j expanded in the coordinate basis, the
linearity of the differential, df(u) = df(vju

j) = df(vj)u
j, then implies the representation

dfy(u) =
∂f(y)

∂yj
uj . (V60)

Comparison of Eq. (V57) with the definition of the one-dimensional derivative, Eq. (C1),
shows that the differential dfr generalizes the concept of an ordinary derivative to higher
dimensions. It describes the change of the function f by a linear approximation, as can be
seen by evaluating the r.h.s. of the definition for small but finite δ. This leads to a formula
analogous to the one-dimensional Eq. (C2),

f(r + δu) ' f(r) + dfr(δu), (V61)

showing how for small variations, δu, the change in the function is described by a linear map,
i.e. a map satisfying the condition (V58).

INFO The total differential plays an important role both in mathematics and physics, where it

is applied to describe the changes of functions in convenient and versatile ways. Many of these

applications rely on a representation of the total differential of a general function, f , in terms of

the differentials of the coordinate functions: the ith coordinate, yi, can be considered as a function,

yi : U → R, y 7→ yi(y) = yi, assigning to the coordinate vector y ∈ U its ith component, yi. Since
∂yi

∂yj = δij , we see from Eq. (V60) that this function has the total differential dyiy(u) = ui, so that

Eq. (V60) can be written as

dfy(u) =
∂f(y)

∂yj
dyjy(u) .

= lim
δ→0

δ−1
(
f(r + δ u + δw)− f(r + δw)

)
+ lim
δ→0

δ−1
(
f(r + δw)− f(r)

)
= df(u) + df(w).

In the first equality we inserted 0 = −f(r+δw)+f(r+δw), and in the second we noted that the infinitesimal
offset δw in the arguments of the first difference vanishes in the limit δ → 0.
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This should be considered as a relation between the linear maps dfy and dyjy. Since it holds for

arbitrary vectors v, the maps themselves are equal in the sense that

df =
∂f(y)

∂yj
dyj , (V62)

where we followed the convention to omit the coordinate subscript, writing dfy = df . For example,

the function h defined in Eq. (V56) has the total differential

dh = − 2(x2 + y)

((x2 + y)2 + c)2
(2xdx+ dy).

In principle, df is a linear map that may be applied to a general vector v to produce the number

df(v). However, the above construction shows that one should rather think of the total differential

as a map acting on a ‘small’ vector, δv to describe the change of a function under a small change

of its argument, y → y + δv. To illustrate this point with a physically motivated example from

thermodynamics (where the use of total differentials is pervasive), let p(V, T ) be the pressure of

a gas in a container of volume V at temperature T . We now ask for the change in pressure under

small variations, δV and δT , of volume and temperature, respectively. To answer this question, we

set up the total differential

dp =
∂p(V, T )

∂V
dV +

∂p(V, T )

∂T
dT. (V63)

The corresponding change in pressure, δp(V,T ) ≡ p(V + δV, T + δT ) − P (V, T )
(V61)' dpV,T (δV, δT )

can now conveniently be represented as
6

δp(V,T ) = dp(V,T )(δV, δT ) =
∂p(V, T )

∂V
δV +

∂p(V, T )

∂T
δT.

For example, for an ideal gas Clapeyron’s formula states that pV = nRT , where n is the amount of

substance (in units of moles) and R the Avogadro constant. This may be represented as p(V, T ) =

nRT/V , with ∂V p = −nR T
V 2 and ∂T p = nR 1

V , so that

δp(V,T ) = dp(V,T )(δV, δT ) = nR

(
−TδV
V 2

+
δT

V

)
. (V64)

Unfortunately, physics parlance tends to describe the differential itself (and not the arguments on

which it acts) as a ‘small quantity’. For example, one frequently finds formulations such as ‘let

dp = ∂V p dV + ∂T p dT be the variation of pressure, dp, under small variations of volume and

temperature, dV and dT , respectively’. Factually, this is nonsense — dp,dV,dT are linear maps

which cannot be ‘small’ — but this misconception is quite pervasive in physics. However, if one keeps

in mind that the formulation actually refers to the action of the differential on a small argument,

(δV, δT )T , i.e. δp = ∂V p δV + ∂T p δT , confusion can be kept to a minimum.

We finally note that in the terminology of mathematics, the differentials df and dyi are called

differential forms. Differential forms play an increasingly important role in physics and they are

discussed in more depth in chapter V5.

6

In the last step, the total differentials dV and dT occurring in Eq. (V63) are applied to the vector
(δV, δT )T , yielding δV and δT , respectively.
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Gradient

In physics, the local change of a scalar field, f , is often described in terms of a quantity
which is derived from the differential, df , but is of a more ‘geometric nature’, the so called
gradient field, ∇f ,

∇f : M ⊂ Rd → Rd, r 7→∇fr . (V65)

The gradient field assigns to each point r ∈M ⊂ Rd, a vector, ∇fr ∈ Rd, that has the same
number of components as r. As with the differential, the r-dependence of the gradient vector
is frequently left implicit and one uses the shorthand notation∇f . The defining feature of the
gradient vector is that it points in the direction of the steepest increase of the function f , and
that its norm is set by the growth rate of the function in that direction. For an illustration, see
Fig. V11, where the black arrows represent the two-dimensional gradient field of the function
h at a few selected points.

The quantitative definition of the gradient field is formulated in terms of the function’s
differential: for each vector u ∈ Rd one requires that

dfr(u) = 〈∇fr,u〉 , (V66)

where 〈 , 〉 is the standard scalar product in M ⊂ Rd. This equation defines the gradient
through the implicit condition that the scalar product of the gradient with any vector u
must be equal to the function’s differential evaluated on that vector. Eq. (V66) implies that
the variation df(u) (the left-hand side) is strongest along the direction of u for which the
alignment of u with the gradient vector,∇f , expressed through the scalar product 〈∇f,u〉 (the
right-hand side), becomes maximal. In other words, the vector ∇f points in the direction of
strongest increase of the function f . Denoting this direction by the unit vector e, we may thus
write ∇f = e‖∇f‖. To obtain an interpretation of the norm ‖∇f‖, we substitute u = ∇f
into the defining equation (V66), obtaining ‖∇f‖ df(e)

(V58)
= df(∇f)

(V66)
= 〈∇f,∇f〉 = ‖∇f‖2,

where in the first equality the linearity of the differential was used. Division by ‖∇f‖ leads to
‖∇f‖ = df(e), i.e. the norm of the gradient equals the value df(e) of the differential in the
direction of maximal increase, which gives the slope of f in that direction. To summarize,

The gradient vector ∇fr points in the direction along which the slope of the
function f at r is maximal, and ‖∇fr‖ gives the magnitude of the maximal slope.

(V67)

To obtain explicit representations for the gradient vector, we expand it in the y-coordinate basis
{vi}, denoting the components by∇f i. If we insert ∇f = vi∇f i and u = vj into Eq. (V66),

the l.h.s. yields df(vj)
(V59)
= ∂yjf , the r.h.s. 〈∇f,vi〉 = 〈vi∇f i,vj〉 (V24)

= ∇f igij. Equating these
expressions and using the index-lowering convention ∇fj ≡∇f igij of Eq. (L51), we obtain

(∇fr(y))j = ∂yjf(y). (V68)
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Hence in the coordinate basis the gradient’s covariant components, ∇fj, are simply given
by the partial derivatives of f w.r.t. to yj. (If a different basis is used, e.g. the local basis,
{ej}, then different, and generally more complicated expressions are obtained.)

The contravariant components of the gradient vector are obtained by raising the index
using Eq. (L55) and Eq. (L53) for the inverse metric tensor,

∇f j = gji∇fi = gji∂yif . (V69)

For a Cartesian basis, where gij = δij, these are inessential operations, since ∇f i =∇fi. For
a general coordinate basis, co- and contravariant components are different. Notice though,
that when the gradient appears in a scalar product with another vector, say u = viu

i, with

〈∇f,u〉 =∇fiui = (∂yif)ui, (V70)

only the covariant components, given by the simple Eq. (V68), are needed.

INFO The gradient vector is often used to describe the rate of change of a function along a
curve, t 7→ r(t) = r(y(t)), where in the second equality a parameterization in coordinates y is

assumed. Application of the chain rule (C36) then yields

df(y(t))

dt
= ∂yjf(y(t))

dyj(t)

dt

(V68)
= ∇fj ẏj =∇fr(y(t)) · ṙ(y(t)) . (V71)

This formula states that the rate at which f changes along the curve is determined by its slope in

the direction of the curve velocity.

In a Cartesian basis, where ∂j = ∂j = ∂xj , the gradient vector can be represented in the
following form, which is often found in the physics literature:

∇f = ej∇f j =



∂1f

...
∂df


 . (V72)

In this representation,∇f can be interpreted as the action of a gradient operator (also called
‘nabla operator’), ∇, on the function f . The nabla operator is a formal vector defined as

∇ ≡ ej ∂
j =



∂1

...
∂d


 . (V73)

It is a ‘differential operator’ in the sense that it acts on the function to its right (it never
occurs alone) as f 7→∇f , where the r.h.s. is defined through (V72). The denotations ‘nabla
f ’ and ‘gradient f ’ are synonyms.

EXAMPLE As an example, consider the field h(x) of Eq. (V56) shown in Fig. V11. Evaluating its

partial derivatives, we find

∇h(x,y) =

(
∂xh(x, y)

∂yh(x, y)

)
= − 2(x2 + y)

[
(x2 + y)2 + c

]2
(

2x

1

)
. (V74)
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In the contour plot at the bottom of the figure, a few arrows representing this gradient field indicate

how it stands orthogonal to the contour lines of the function (and thus points in a direction of

maximal variation). For example, for any point on the line x = 0, the vector (2x, 1)T points in

the y-direction. At (x, y)T = (0, 0)T the gradient vanishes, reflecting the absence of a direction of

increase, i.e. this point is a local maximum.

The gradient in the local basis of a curvilinear system is computed by inserting the
elements gij of the inverse metric tensor, Eq. (L53), into Eq. (V69). In the standard coordinate
systems, polar, cylindrical, spherical, these representations assume a relatively simple form,
thanks to the diagonal form of the metric tensor, gij = 0, i 6= j. As a consequence, the
inverse elements required to formulate the contravariant components of the metric tensor are
trivially obtained as gjj = g−1

jj . For example, in polar coordinates we have the expansions

∇f = vρ∇fρ + vφ∇fφ (V69)
= vρ g

ρρ∂ρf + vφ g
φφ∂φf

(V26)
= vρ ∂ρf + vφ

1

ρ2
∂φf

(V27)
= eρ ∂ρf + eφ

1

ρ
∂φf. (V75)

EXERCISE Compute the gradient in spherical coordinates, i.e. a system of coordinates (r, θ, φ)

with diagonal metric grr = 1, gθθ = r2, gφφ = r2 sin2 θ. Show that the result is given by

∇f r = ∂rf, ∇fθ =
1

r2
∂θf, ∇fφ =

1

r2 sin2 θ
∂φf. (V76)

The general representation of the gradient in an orthogonal (diagonal metric tensor) system
reads as

∇f = vj g
jj∂yjf = ej

1
√
gjj
∂yjf. (V77)

Although the right-most version of this formula is the one most frequently encountered in the
physics literature, the presence of square-root normalization factors looks awkward. From a
geometric perspective, it is more natural to work in the un-normalized coordinate basis (center
representation), or to avoid the usage of contravariant gradient indices altogether, in which
case the simple covariant formula Eq. (V68) suffices to describe the gradient.
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INFO It is sometimes useful to characterize the geometry of the

gradient vector in terms of so called contour surfaces. Contour

surfaces generalize the contour lines describing functions f :

R2 → R to functions in arbitrary dimensions, f :Rd → R. A

contour surface, Sc ≡ {r′ ∈ Rd|f(r′) = c}, c ∈ R is defined as

the set of all points r′ for which f assumes the fixed value, c.

Every point r lies on such a contour surface, namely the surface

Sf(r) defined by all points on which f assumes the value f(r).

For d= 2, these ‘surfaces’ reduce to the contour lines illus-

trated in Fig. V11. In higher dimensions, the equation f(r′) =

f(r) is one real equation that constrains a set of d variables, say the coordinates y = (y1, . . . , yd)T

of r′. This constraint allows one to express one of them, say yd = yd(y1, . . . , yd−1), in terms of the

other d−1 free variables, y1, . . . , yd−1, which may then be interpreted as coordinates parameterizing

the surface. This shows that the contour surfaces are (d−1)-dimensional objects in d-dimensional

space. (Exceptions to this rule occur at extremal points of the function f . For example, the contour

surface corresponding to a global maximum f(rmax) = fmax is just a single point, Sfmax
= {rmax}.)

The geometry of these surfaces is equivalently described by the statement that

the gradient vector ∇rf stands perpendicular to the contour surface Sf(r) through r.

To see this, let r(t) be a curve lying within the contour surface Sf(r), running through the point r at

r(0) = r. The function f then remains stationary along the curve, i.e. d
dtf(r(t)) = 0. Application

of Eq. (V71) at t = 0 thus yields 0 = ∇fr(t) · ṙ(t)
∣∣
t=0

=∇fr · ṙ(0). From this we conclude that the

gradient vector is perpendicular to the tangent vector at r of an arbitrary curve running within the

surface and passing through r, and therefore is perpendicular to the surface as such.

V3.2 Gradient fields

REMARK Throughout this section, Cartesian coordinates, x, are used.

As mentioned above, vector fields can be imagined as ‘swarms’ of vectors in space. They
often contain universal (i.e. independent of details) features which determine the structure of
the swarm at large scales. For example, the field describing the steady flow of a fluid in a
cylinder resembles a regular ‘stream’ of vectors, cf. Fig. V11(a). The (electric) field created by
charged particles contains regions from which vectors emanate, Fig. V11(b). The vector field
describing a fluid with vortices contains centers around which the vectors rotate, Fig. V11(c).
Other fields may show all these features simultaneously..

In the following three sections, we will introduce concepts to describe the universal features
of vector fields. We begin with a discussion of the simplest type of vector fields, those describing
regular flow. In the subsequent two sections, we will learn how to identify whether a vector
field contains sources or centers of rotation, respectively.
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(a) (b) (c)

Figure V12: (a) Source-free and rotation-free vector field. (b) Vector field containing a source. (c)
Vector field with vorticity.

Definition of gradient fields

Gradient fields are the simplest type of vector fields. Their defining feature is that they
can be represented as the gradient of a function. Given a smooth vector field, v : U ⊂ Rd →
Rd,x 7→ v(x), a natural first question to ask is whether v is a gradient field, i.e. whether
there exists a smooth scalar field, ϕ(x), such that v(x) =∇ϕx. If so, the function ϕ is called
the potential of the field.

7
Notice that for a gradient field, the target space Rd and the base

manifold U must have the same dimension, e.g. a field of planar vectors, v(x) ∈ R2, defined
in three-dimensional space, x ∈ R3, cannot be a gradient field.

If v is a gradient field, its Cartesian components can be written as vi = ∂iϕ = ∂iϕ, where
we noted that in an orthonormal basis the positioning of indices is immaterial, and ∂i = ∂i.
Now compute the difference of ‘mixed’ derivatives,

∂iv
j − ∂jvi = ∂i∂jϕ− ∂j∂iϕ = 0, (V78)

where the last equality follows from the commutativity of partial derivatives acting on a smooth
function [Eq. (C32)]. Eq. (V78) represents a necessary condition for v to be a gradient field,
meaning that if a field fails the condition, it cannot be a gradient field. However, the condition
is not sufficient, i.e. there exist fields for which Eq. (V78) holds although they are not gradient
fields. This point, and the extension of (V78) to a full criterion for ensuring that a vector field
is a gradient field, will be discussed later in this section.

Gradient fields play an important role in physics. For example, physical forces are described
by vector fields, F, where the vector F(x) represents the force acting at point x. As discussed
in section V1.4, the work done by such a force along a path γ is described by the line integral

W [γ] =

ˆ
γ

dr · F .

Many forces occurring in physics have the property that no work is done if a body is moved
along a closed path (cf. figure),

¸
γ

dr · F = 0, where we used the standard symbol,
¸

, to
denote the line integral along a closed path. This happens if the work done against the
force along some portions of the path balances against the work done by the force along

7

In physics, it is customary to include a minus sign in the definition of the potential, writing v = −∇ϕ.
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others. A vector field F whose line integral along an arbitrary closed path vanishes is called
a conservative vector field. Gravitational forces, electrostatic forces, and several others are
examples of conservative force fields.

2γ−

1γ

Another way of expressing the fact that a force field
F is conservative is to say that its line integral along
any path connecting two points, say x′ and x, is in-
dependent of the choice of path. To see this, consider
two different curves, say γ1 and γ2, that both run from
x′ to x (cf. the dashed lines in the figure). Let −γ2

denote the curve γ2 traversed in reverse order, from x
to x′. The line integral along γ2 is the negative

8
of that along −γ2, W [−γ2] = −W [γ2]. The

curves γ1 and −γ2 may now be combined to a single closed curve, γ. The integral along γ is
the sum of the integrals along the two segments, W [γ] = W [γ1] +W [−γ2] = W [γ1]−W [γ2].
Now, if the field is conservative, then W [γ] = 0, implying that W [γ1] = W [γ2], thus the value
of the line integral is indeed independent of the choice of path.

The above construction shows that if the line integral of a vector field around any closed
path vanishes, then its line integral along any path connecting two arbitrary points is indepen-
dent of the choice of the connecting path. It is easy to show (try it!) that the converse is also
true, so that we have the equivalence:

∀x′,x ∈ U :

ˆ
γx′→x

dr · v is independent of γ ⇐⇒
˛
γ

dr · v = 0 . (V79)

It turns out that there is another equivalence which connects these criteria to the gradientness
of a field:

∀x′,x ∈ U :

ˆ
γx′→x

dr · v is independent of γ ⇐⇒ v is a gradient field. (V80)

)t(r=x

)s(r

(0)r=′x

This is a non-trivial statement whose two different directions, ⇒ and ⇐,
need to be proven separately. We first assume that v(x) = ∇ϕx is a
gradient field. Let γx′→x be a curve parametrized by r : [0, t] → Rd,
s 7→ r(s), with r(0) = x′, r(t) = x. The line integral of the gradient field
is then computed as

ˆ
γx′→x

dr · v =

ˆ t

0

ds
dr(s)

ds
·∇ϕr(s)

(V71)
=

ˆ t

0

ds
dϕ(r(s))

ds

= ϕ(r(t))− ϕ(r(0)) = ϕ(x)− ϕ(x′).

This expression depends on x′ and x, but not on the choice of the connecting path γx′→x.

8

Verify this statement from the definition of the line integral, using the fact that if r(t), t ∈ (0, 1) is a
parametrization of γ2, then the reverse path −γ2 can be parametrized by r(1− t), t ∈ (0, 1).



V3.2 Gradient fields 425

Conversely, let us assume that the line integral between any two points x′,x ∈ U is
independent of the connecting path γx′→x. Pick a fixed point x′ and define the function

ϕ(x) =

ˆ
γx′→x

dr · v . (V81)

This is a valid definition of a function of x because ϕ does not depend on the choice of γx′→x.
Using the same path parametrization as above, ϕ(r(t)) may be represented as

ϕ(r(t)) =

ˆ
γx′→r(t)

dr · v =

ˆ t

0

ds
dr

ds
· v(r(s)) .

Differentiating this expression w.r.t. t and processing its left and right sides by the chain rule
(V71) and the fundamental theorem of calculus Eq. (C19), respectively, we obtain

ϕ̇(r(t)) = ṙ(t) ·∇ϕr(t) = ṙ(t) · v(r(t)). (V82)

This relation must hold for any value of ṙ(t) and any r(t) ≡ x, which requires v(x) =∇ϕx,
showing that v is a gradient field. This construction also provides a constructive method for
computing the potential, through (V81). Notice that the potential of a vector field is defined
only up to a constant, i.e. ϕ(x) + c, with c ∈ R, is a potential too. The freedom to add
a constant reflects the arbitrariness of the starting point x′ in the definition, i.e. a different
starting point would lead to a potential differing from ϕ only by a constant (why?).

A topological criterion for gradient fields

Above, we have argued that Eq. (V78) must necessarily hold if v is a gradient field.
Whether or not this condition is sufficient depends on the ‘topology’ (see info section below)
of the domain, U , of definition of v:

A vector field, v : U → Rd is a gradient field if its components obey the condition

∂iv
j − ∂jvi = 0, i = 1, . . . , d (V83)

and its domain of definition, U , is simply connected.

The meaning of the attribute ‘simply connected’ is defined as follows: a subset U ⊂ Rd is
called connected if any two of its elements can be connected by a continuous path in U . For
example, the set shown in the left panel of Fig. V13 is not connected because it contains pairs
of points which cannot be connected by a path inside the set. The set shown in the center
panel is connected but not simply connected: Although all points are connectible, there exist
closed paths which cannot be contracted to a point-like trivial path inside the set. The set
shown in the right panel is connected and simply connected: All points are connectible and
every closed path in the set is contractible to a trivial one.
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Figure V13: Left panel: a disconnected subset of R2. Points in separate subsets cannot be connected
by a path that lies fully in the set. Center panel: a connected but not simply connected set. Closed
paths exist which cannot be contracted to a point-like path inside the set. Right panel: a simply
connected set. All points are connectible inside the set, and all paths are contractible.

INFO The connectedness of a subset is an example of a topological criterion. Topology is the

discipline of mathematics addressing structures which do not change under continuous deformation.

Topological features of a set remain invariant unless it is subjected to discontinuous operations such

as tearing or gluing. (Of course, the terms ‘continuous’, ‘tearing’, and ‘gluing’ all require a precise

mathematical definition. However, these are closely related to the meanings that these words have

in daily life.) For example, a simply connected set remains simply connected unless a hole is drilled

into it, which would be an example of a discontinuous change. In particular, topological features

do not depend on notions related to geometric distance, angles, etc. Topology often describes

mathematical structures in terms of integer-valued topological ‘indices’. For example, the number of

holes contained in a surface defines a topological invariant. Topological structures are of interest to

physics because they are the most ‘universal’ (independent of details) features a system can have, and

explaining universality is a prime objective of physics. For example, the vortex shown in Fig. V12(c)

is an example of a topological structure in a two-dimensional vector field — it cannot be removed by

any continuous operation and the number of times the field rotates around the center (once in the

figure) is an example of a topological invariant. For their explanation of the important role played

by such vortices in real two-dimensional materials, J.M. Kosterlitz and D.J. Thouless were awarded

the 2016 Nobel prize in physics (shared with D. Haldane).

The proof showing that simple connectedness and Eq. (V83) define a criterion for gradient
fields is beyond the scope of this text. However, the following counter-example demonstrates
that the vanishing of the mixed derivative Eq. (V83) is not sufficient to establish that a vector
field is a gradient field.

EXAMPLE Consider the vector field,

B : U = R2\{(0, 0)} 7→ R2,

(
x

y

)
7→ 1

x2 + y2

(
−y
x

)
, (V84)
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defined in the ‘punctured plane’, R2\{(0, 0)}. The origin {(0, 0)}
needs to be excluded from the domain of definition, U , because de-

nominator in Eq. (V84) diverges at this point. Due to the exclusion of

the origin, U is a non-simply connected set: paths winding around the

origin cannot be contracted to a trivial point-like path.

The vector field B rotates around origin, as indicated in the figure.

In physics, fields of this type are realized as magnetic fields generated

by currents. For example, an infinitely long, straight wire carrying a

uniform current will generate a magnetic field whose profile in the plane

perpendicular to the wire equals our B. We now ask whether B is a gradient field.

It is straightforward to verify that ∂xBy − ∂yBx = 0 everywhere in U , so Eq. (V83) holds.

However, the domain of definition, U , is not simply connected, and so B may still turn out not

to be a gradient field. To see that this is indeed the case, we compute the line integral along a

circular closed path in the xy-plane, of radius R and centered on the origin. Parameterizing this

path as r(t) = R(cos(2πt), sin(2πt))T , we have ṙ(t) = 2πR(− sin(2πt), cos(2πt))T and B(r(t)) =

(1/R)(− sin(2πt), cos(2πt))T , and hence

ˆ
γ

dr ·B =

ˆ 1

0
dt ṙ(t) ·B(r(t)) =

ˆ 1

0
dt (2πR)

1

R

[
sin2(2πt) + cos2(2πt)

]
= 2π.

We have thus identified a closed path along which B integrates to give a non-vanishing result;

according to Eqs. (V79) and (V80), this means that B cannot be a gradient field.

It is instructive to modify the above setup slightly so as to convert B into a proper gradient

field. To this end, we choose a more restricted domain of definition Ũ = R2\R+, i.e. we remove

the positive real axis (indicated by a wavy line in the figure). This manipulation has two notable

consequences: first, the domain of definition now is simply connected, since any path in Ũ (i.e. any

path not intersecting the now forbidden wavy line) can be contracted to a point. Second, Ũ represents

the domain of definition of a polar coordinate system, y = (ρ, φ)T , which allows us to formulate

calculations in more intuitive ways. It is straightforward to verify (try it!) that in the coordinate basis

for polar coordinates, B can be expressed as B(y) = vφ
1
ρ2 . This equals the gradient, ∇ϕy, of the

function ϕ(y) = ϕ(ρ, φ) ≡ φ, as can be checked using Eq. (V75): ∇φ = (vρ∂ρ+vφ
1
ρ2∂φ)φ = vφ

1
ρ2 .

We conclude that ∇φ = B, i.e. B is indeed a gradient field on the domain Ũ . Notice that the

non-vanishing of its line integral along γ does not contradict the conditions Eqs. (V79) and (V80)

requiring the vanishing of the integral of a gradient field along closed curves. The reason is that the

restriction of the path γ to the domain Ũ yields a path that is not closed. This restriction implies

the removal of the boundary points of the un-restricted path and a parametrization r : (0, 1)→ Ũ ,

t 7→ r(t). The removal of the boundary points, t = 0 and 1, ensures that the curve does not touch

the positive real axis and hence stays inside the domain of definition. In effect this means that the

previously closed curve is now cut open, so that the gradient condition does not apply to it.

The cutting of a curve at a single point should not affect the value for the line integral over the

continuous field B. To verify this statement, we note that in polar coordinates, r(t) = R(vρ)(R,φ(t)).

This implies ṙ = R(∂φvρ)φ̇ = vφ(2π). On the integration contour we have B = R−2vρ and hence

B · ṙ = 2πR−2gφφ = 2π, where Eq. (V28)] was used. From these relations we readily recover the
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result obtained above:
ˆ
γ

dr ·B =

ˆ 1

0
dt ṙ(t) ·B(r(t)) =

ˆ 1

0
dt 2π = 2π.

To conclude this section, let us summarize the criteria for a vector field being a gradient
field. A vector field v is a gradient field

. if there exists a potential, ϕ, such that v =∇ϕ; or

. if its line integral around any closed loop, γ, in its domain of definition vanishes,
¸
γ

dr·v = 0;
or

. if the line integral between any two points in its domain of definition does not depend on
the choice of the path connecting these two points; or

. if the criterion (V83) holds.

V3.3 Sources of vector fields

REMARK Requires chapter C4. Readers who have not read that chapter in full may consult the first

subsection of section C4.4 for a definition of the integral of functions over two-dimensional surfaces

embedded in three-dimensional space.

In the beginning of section V3.2, we introduced a number of qualitative characteristics describ-
ing a vector field. We pointed out that a vector field may contain ‘sources’ from which vectors
appear to emanate, or ‘vortices’, i.e. centers of circulation (cf. Fig. V12). In the following
we introduce tools to detect such structures. In fact, we already know one test criterion —
a gradient field cannot contain vortices: if a vortex were present, as in Fig. V12(c), the field
vectors’ approximate alignment with a closed curve encircling the vortex center would imply a
non-vanishing line integral along that curve. This would be in violation of the criterion that
gradient fields have vanishing line integrals along closed curves. The argument also conveys
another lesson: there appears to be a connection between ‘local structures’ of vector fields
(such as point-like vortex centers), and ‘global structures’ (such as the integrals around curves
surrounding the center).

In this section and the next, we discuss these connections and learn how to apply them to
characterize the sources and the vorticity of vector fields, respectively.

Divergence in Cartesian coordinates

Let u : Rd ⊃M → Rd, x 7→ u(x) be a smooth d-component vector field in d-dimensional
space where a Cartesian parameterization of the argument domain u(r) = u(r(x)) ≡ u(x) is
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assumed. Its divergence is a scalar field defined as

div u ≡∇ · u : M → R, x 7→ (div u)(x) = (∇ · u)(x) ≡
d∑

i=1

∂iu
i(x), (V85)

where ui are the Cartesian components of u = eiu
i. The generalization of the divergence to

curvilinear coordinate systems is discussed in the info section on p. 433.
The divergence of a vector field is a scalar function that measures its source content, i.e. to

what extent it can be associated with the presence of sources. To understand this statement,
imagine a vector field containing a point source, as in Fig. V12(b). The figure shows how
the x-component ux grows in the x-direction (∂xu

x > 0) and the y-component grows in the
y-direction (∂yu

y > 0). According to Eq. (V85), the divergence div u will thus be positive at
the source. This observation indicates that the divergence is a local probe for the presence
of sources. It is local in the sense that it describes u(x) in terms of derivatives taken at x.
In the following, we will discuss sources from the complementary global perspective, and then
connect the global and local views to obtain a powerful unified description.

Surface integrals of vector fields

Consider a two-dimensional surface, S ⊂M , embedded in a three-
dimensional domain M , and a vector field u defined on M . For
a given r ∈ S one may picture u(r) as a vector specifying the
direction and velocity of a ‘liquid’ streaming through the surface
(as if the latter were a sieve). If S is a closed surface and the net
amount of outward flow is positive/negative then the vector field

must contain sources/sinks inside S. The non-vanishing of the flux through closed surfaces
therefore is a measure for the presence of sources, where a sink is interpreted as a ‘negative
source’.

To make this statement quantitative, we need to determine the flux of vector fields through
surfaces (open or closed) via a suitably-defined surface integral. We start by giving a surface
an orientation. By definition, the orientation of a surface is a convention identifying one
of its faces as the ‘outside’ and the opposite face as the ‘inside’. Not all surfaces admit such
an assignment (see info section below), however most of practical relevance do. For example,
the closed surface of a sphere has a natural out- and inside, and for a planar sheet one may
assign one side to be the outside.

INFO A surface is called orientable if it permits the global assign-

ment of an ‘inside’ and an ‘outside’ face. Planes, spheres, cylinders,

and ‘most’ other surfaces are orientable in this sense. By contrast,

the Möbius strip (see figure) is an example of a non-orientable sur-

face. Inspection of the figure shows that it has just one face, not two.

However it it not entirely obvious how to cast this pictorial observation

into sound mathematical language. One of several equivalent ideas is
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as follows: a surface is non-orientable if it is possible to continuously deform a closed curve which

is traversed anticlockwise, into one which is traversed clockwise. The figure illustrates how this is

achieved for the Möbious strip. By contrast, the direction of traversal of a closed curve on a sphere

cannot be altered. For further discussion of orientability, see p 476.

u
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Quantitatively, the flux of u through a surface
element δS at r is defined as δΦ ≡ |δS| (n ·u),
where n(r) is the outward-pointing unit vector
orthogonal to δS (see figure). The scalar prod-
uct n · u is the component of u perpendicu-
lar to δS, and multiplication of this component
with the geometric area, |δS|, of the surface
element defines the flux through this element.
Concrete expressions for these quantities may
be obtained by parameterizing the surface as
r : U ⊂ R2 → S, y 7→ r(y), in terms of a two-
component coordinate vector, y ≡ (y1, y2)T (cf.

section C4.4). For a coordinate domain discretized via a rectangular grid with spacings δ1 and
δ2, the induced surface element δS at r(y) is then spanned by the two vectors δi∂yir(y) ≡ δivi
(i = 1, 2, no summation). It has geometric area |δS| = δ1δ2‖v1×v2‖, and n ≡ v1×v2

‖v1×v2‖ is its

normal unit vector. We thus obtain the flux through the surface element as
9

δΦ = |δS| (n · u) = δ1δ2(v1×v2) · u. (V86)

Note that δΦ = δΦ(r) depends on the point r through the choice of the corner point used in
its construction. There is arbitrariness in this choice, we might have picked a different corner,
or taken any other point in δS as a reference point. However, all these different choices, r′,
are close to each other in the sense that ‖r − r′‖ = O(δ). Since all r-dependent functions
entering the construction of δΦ are smooth, the differences δΦ(r) − δΦ(r′) = O(δ3) (δΦ is
O(δ2) and a third power in δ comes from the Taylor expansion of the smooth function Φ(r′)
around r) are negligibly small in the limit δ1, δ2 → 0. Local approximations during which
smooth functions will be read out at arbitrary points of convenience within infinitesimally small
geometric structures will be used frequently throughout.

The total flux of u through the surface, ΦS, is obtained as the (Riemann) sum over all
such elements, leading to a vector field surface integral, or flux integral, of the following
form:

ΦS ≡
ˆ
S

dS · u ≡
ˆ
U

dy1dy2 (∂y1r× ∂y2r)
∣∣
r=r(y)

· u(r(y)). (V87)

9

In the physics literature δS ≡ |δS|n = δ1δ2(v1 × v2) is often called an oriented surface element. This
denotation emphasizes that δS contains information on both, the geometric area and the orientation of the
surface element.
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Here,
´
S

dS · u is a formal symbol for the flux, whose concrete meaning is given by the
coordinate integral on the right.

Gauss’ theorem

Our discussion above identified two different criteria for the presence of sources in a vector
field: a non-vanishing flux through a closed surface, and a non-vanishing divergence at the
sources of a vector field, respectively. There must be a connection between the two.
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Figure V14: On the derivation of Gauss’ theorem.

To establish a relation between vector field divergence and surface integrals, we consider an
infinitesimal volume element, δV , shaped as the box shown in Fig. V14. Imagine the box sits
inside the domain of definition of a smooth vector field u. Let us calculate the outward flux of
u over the surface, δS, of the box. Choosing coordinates as indicated in the figure, ez is a unit
vector normal to the top surface of the box and its opposite, −ez, is normal to the bottom
surface. Since the vector field is smooth, we can choose the box so small that the variation
of u across the extension of the box is very weak. Therefore the surface integral over each
of the faces of the box can be accurately described by the local approximation, Eq. (V86).For
example, the sum of the integrals over the top and bottom faces is given by

δΦtop + δΦbot ' δxδy
[
ez · u(x, y, z + δz)− ez · u(x, y, z)

]
' δxδyδz∂zu

z(x, y, z). (V88)

Here, the differences in the values of the z-coordinate, although of O(δ) are of importance
because a function difference u(. . . , z+δ)−u(. . . , z) is at hand. However, once this difference
has been evaluated to obtain a result of O(δ3) the precise choice of the coordinates x, y within
the box faces become irrelevant, due to the local approximability principle discussed above.

Adding analogous contributions from the remaining surfaces one arrives at the result

ˆ
δS

dS · u ' δxδyδz(∂xu
x + ∂yu

y + ∂zu
z) = δxδyδz(∇ · u) '

ˆ
δV

dV ∇ · u. (V89)
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Johann Carl Friedrich
Gauss (1777-1855)
German astronomer, physicist
and mathematician. Gauss
made breakthrough contri-
butions to a wide spectrum
of mathematical disciplines.
He worked on non-Euclidean
geometry, algebra, the theory of special
functions, and may be regarded the found-
ing father of modern statistics. Gauss was
one of the last ‘universal scholars’. His
interests extended beyond the boundaries
of physics and mathematics into the realm
of geography, literature, cartography, and
other fields of science.

In the first step we observed that the contri-
butions of the three surfaces combine to give
the divergence of u. For the final equality we
once more used the assumed near-constancy
of the vector field over the extension of the
box to identify the term δxδyδz(∇ · u) with
a volume integral. The result (V89) confirms
the expectation that a non-vanishing flux of
a vector field through a closed surface implies
a non-vanishing divergence inside the surface,
and vice versa.

Although this correspondence has been es-
tablished only for the case of an infinitesimally
small box, a simple argument shows that the
result carries over to more general volumes,
such as the extended structure shown in Fig.

V14. Imagine a volume V , with boundary surface (outer hull) S, filled up with a large num-
ber of infinitesimal boxes, δV`, bounded by surfaces δS`. By a standard Riemann sum type
argument, the volume integral of ∇ · u over the full volume V can be expressed as

ˆ
V

dV ∇ · u '
∑

`

ˆ
δV`

dV (∇ · u) =
∑

`

ˆ
δS`

dS · u '
ˆ
S

dS · u . (V90)

In the crucial last step we observed that the sum of the surface
integrals over all boxes approximately equals the surface integral
over the outer hull, S. To understand this, consider the sum of the
surface integrals over just two adjacent boxes. The contributions
to the integral from their touching faces cancel.

10
The sum of the

two surface integrals thus equals the integral over the outer surface of the two merged boxes.
By the same argument, the integral over a stacked array of boxes equals the integral over its
outer hull, and this fact was exploited for the last step in Eq. (V90). In the limit of an infinitely
fine box decomposition, the approximate equalities in Eq. (V90) become exact.

Summarizing, we have found that the volume integral of a divergence equals the flux
integral over the volume’s outer hull,

ˆ
V

dV ∇ · u =

ˆ
S

dS · u , (V91)

a result known as Gauss’ theorem. The theorem states that non-vanishing flux integrals
over closed surfaces – obtained for surfaces surrounding sources of outward/or inward directed
flow – reflect a non-vanishing vector field divergence. We reiterate that the choice of the

10

The reason is that the two touching faces have equal area, but normal vectors pointing in opposite
directions. The surface integrals over these two faces thus have equal magnitude but opposite sign.
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volume bounded by S is arbitrary, as long as it remains within the domain of definition of
the vector field. This result may actually be used to define the divergence as the outward
flux of the underlying vector field per unit volume. To this end, let δV be an infinitesimal
test volume of unspecified shape, with outer surface δS and geometric volume |δV |. Then,´
δV

dV div(u) ' |δV | div(u), so that we may define

div(u) ≡ lim
|δV |→0

1

|δV |

ˆ
δS

dS · u . (V92)

This definition has the advantage of not being tied to a specific system of coordinates. It may
thus be used to express the divergence in arbitrary coordinates, see the info section below.

Divergence in general coordinates

Eq. (V85) describes the divergence of a vector field in Cartesian coordinates. However,
the presence or absence of sources in a vector field is an ‘invriant’ feature not depending on
coordinates. Indeed, the derivation of Gauss’ theorem can be straightforwardly adapted to
arbitrary coordinates, and as a result yields a generalized representation of the divergence.
Such representations are useful if the symmetry of a problem disfavors Cartesian coordinates.

1v
1δ

2v
2δ

3v
3δ

)2v×1v(
2δ1δ+

)2v×1v(
2δ1δ−

)3δ3e+y(r

)2δ2e+y(r
)1δ1e+y(r

)y(r

Equation (V92) may be applied to derive a for-
mula for the divergence in generalized co-
ordinates. Assume V to be described by a
three-dimensional coordinate map r : U → V ,
y 7→ r(y). An infinitesimal cuboid in U , with
corner points y and y + eiδ

i (with i = 1, 2, 3,
no summation), then maps onto a distorted
cuboid, δV , as shown in the figure. The edges
of δV are approximately defined by the vectors
δi∂yir(y) = δivi(y), evaluated at the appro-
priate corners. We aim to compute

´
δS

dS · u,
the outward flux of u through the surface, δS, of δV . In analogy to Eq. (V88), the top and
bottom faces yield a contribution δΦtop + δΦbot =

(
|δS|n · u

)
top

+
(
|δS|n · u

)
bottom

where,

however, the Cartesian surface elements δxδyuz of (V88) need to be replaced by the more
general triple products, δ1δ2(v1×v2) · u, of Eq. (V86). This leads to the expression

δ1δ2
[
((v1×v2) · u)(y + e3δ

3)− ((v1×v2) · u)(y)
]
' δ1δ2δ3∂y3

[
((v1×v2) · u)(y)

]
.

To simplify the right-hand side, we expand u =
∑

i viu
i in the coordinate basis. Only the

3-component survives in the triple product, yielding
11

(v1×v2) ·u = (v1×v2) ·v3 u
3 =
√
g u3.

Here we recalled the connection (C58) to the metric tensor and used the shorthand no-
tation

√
g ≡

√
| det g|. Thus, the net contributions from the top and bottom faces is

11

We assume a right-handed coordinate system, so that the triple product (v1×v2) · v3 is positive.
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δ1δ2δ3∂y3

(√
gu3). Adding the contributions from the remaining surface pairs we obtain the

total outward flux as
´
δS

dS · u = δ1δ2δ3
∑

i ∂yi(
√
g ui). Since the volume of the distorted

cuboid is given by |δV | ' δ1δ2δ3|(v1 × v2) · v3| = δ1δ2δ3√g (see Eq. (L89)), we can express
the flux as |δV | 1√

g

∑
i ∂yi(

√
g ui). Division by |δV | and comparison with Eq. (V92) leads to

div(u) =
1√
g

∑

i

∂yi(
√
g ui) (V93)

for the divergence of a vector field, expanded in the coordinate basis of a generic coordinate
system. For example, in spherical coordinates, where Eq. (V36) yields

√
g = r2 sin θ, one

obtains

div(u) =
1

r2
∂r(r

2 ur) +
1

sin θ
∂θ(sin θu

θ) + ∂φu
φ. (V94)

INFO The sources of vector fields describing physical quantities generally have a clearly-defined

physical meaning. For example, Gauss’ (!) law of electromagnetism states that

∇ ·E = 4πρ, (V95)

where E is the electric field, ρ the charge density, i.e. the amount of charge per unit volume, and

so-called CGS units are used. Integrating Eq. (V95) over a volume V bounded by a surface S and

using Gauss’ theorem (V91), one obtains an equivalent statement of Gauss’ law,ˆ
S

dS ·E = 4πQ, (V96)

where Q =
´
V dV ρ is the charge contained in the volume V . Eqs. (V95) and (V96) are called the

differential and the integral formulations of Gauss’ law, respectively. Both state that electic fields are

created by electric charge. While Eq. (V96) may be easier to understand intuitively, the differential

representation Eq. (V95) does not make reference to a specific volume and hence is better suited to

the mathematical description of electrodynamics.

Another (independent) statement of electrostatics is that a static charge distribution, ρ, generates

an electric field which is a gradient field, E = −∇ϕ, where ϕ is the so-called electrostatic potential.

(For time-varying charge distributions, ρ(x, t), the electric field need no longer be a gradient field.)

Gauss’ law then assumes the form ∇ ·∇ϕ = −4πρ, known as the Poisson equation.

Laplace operator

The second-order differential operator

∆ =∇ ·∇ (V97)

is known as the Laplace operator or Laplacian. In Cartesian coordinates it assumes the
form ∆φ =

∑
i ∂i(∂iφ), or just ∆ =

∑
i ∂

2
i . The Laplacian governs many important equations

in physics, including (f , q are functions depending on space and/or time)



V3.3 Sources of vector fields 435

Pierre Simon Laplace
(1749-1827)
French mathematician,
physicist and astronomer.
Important contributions
include a five volume work
on celestial mechanics, the
development of Bayesian statistics (which
is of paramount importance to current
date statistical analysis in all sciences), the
formulation of the Laplace equation and
the Laplace transform, and many others.
Laplace is remembered as one of the great-
est scientists of all times, and sometimes
referred to as the ‘French Newton’.

∆f = 0 Laplace equation,

∆f = q Poisson equation,

∆f − ∂2
t f = q wave equation.

It is also a central building block of the Schrö-
dinger equation of quantum mechanics. An
expression for the Laplace operator in gen-
eral coordinates is obtained by applying the
covariant divergence operation Eq. (V93) to
the covariant gradient,

∆f = div(∇f) =
1√
g

∑

i

∂yi(
√
g (∇f)i),

If we then apply Eq. (V77) to represent the
latter in coordinates, we arrive at the gener-

alized representation of the Laplace operator:

∆f =
1√
g

∑

ij

∂yi(
√
g gij∂yjf) . (V98)

For example, the Laplace operator in spherical coordinates is given by

∆f =
1

r2
∂r
(
r2∂rf

)
+

1

r2 sin2 θ
∂θ
(
sin θ∂θf

)
+

1

r2 sin2 θ
∂2
φf, (V99)

and this formula is heavily used in electrodynamics and quantum mechanics.

EXERCISE Consider a radially symmetric charge distribution characterized by a density ρ(r). The

electric field generated by this distribution will have the radial form E = vrE
r(r) in the coordinate

basis, where the absence of components in θ and φ directions reflects the rotational symmetry of

the distribution. For the same reason, the strength of the field, Er(r), depends only on the radial

coordinate. A formula for the field strength is obtained by applying the integral version of Gauss’

law, Eq. (V96), to a ball, B, of radius r centered around the charge. The charge contained in the

ball is then obtained as

Q(r) =

ˆ
B
dV ρ = 4π

ˆ r

0
ds s2ρ(s).

The l.h.s. of Gauss’ law (V96) contains an integral over the surface, ∂B, of the ball, i.e. a sphere of

radius r. Computing this integral using Eq. (V87), with ∂θr = vθ and ∂φr = vφ, we obtain

ˆ
∂B

dS ·E =

ˆ π

0
dθ

ˆ 2π

0
dφ (vθ × vφ) · vrEr(r) =

ˆ π

0
dθ

ˆ 2π

0
dφ r2 sin θ Er(r) = 4πr2Er(r),
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where we used (vθ × vφ) · vr (C64)
=
√
g

(C65)
= r2 sin θ. Equating the two sides of Eq. (V96) we obtain

Er(r) =
Q(r)

r2
=

4π

r2

ˆ r

0
ds s2ρ(s). (V100)

Finally, one may apply Eq. (V94) to compute div(E) and verify that this solution satisfies the

differential form of Gauss’ law, Eq. (V95). Notice that if r lies outside the support of the charge

distribution (i.e. if ρ(s) = 0 for s ≥ r), the charge Q(r) within the ball equals the total charge of

the distribution, say Q, so that Er(r) = Q/r2. This is the electric Coulomb field generated by a

charge Q.

V3.4 Circulation of vector fields

The presence of circulation (see Fig. V12(c)) can be addressed by methods similar to
those introduced in the previous section. The defining characteristic of a vector field u wind-
ing around a region in space is that there exist closed curves, γ, (encircling the region in
question) such that the line integrals

¸
γ

ds · u, assume non-vanishing values. These line inte-
grals now assume a role similar that of the surface integrals in the previous section. As with
the divergence, the non-vanishing of these ‘test integrals’ is equivalent to the non-vanishing
of a differential quantity, the ‘curl’ of a vector field:

Curl

Let u : R3 ⊃ M → R3, x 7→ u(x) be a three-dimensional vector field defined in three
dimensional space where a Cartesian parameterization of the argument domain is assumed,
u(r) ≡ u(r(x)) ≡ u(x). Its curl is a vector field, defined as

curl u ≡∇× u : M → R3, x 7→ (curl u)(x) = (∇× u)(x) = eiε
ijk ∂ju

k
∣∣
x
. (V101)

Notice the erratic appearance of co– and contravariant indices on the right hand side. As in
previous cases (e.g. the definition of the cross product) this is a sure sign that elements of
a metric tensor are missing and that we are working with a formula that makes sense only in
Cartesian coordinates (where gij = δij). We will return to this point below, when we discuss
the curl in generalized coordinates.
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2u

1u

1x

2x A few comments: the symbol ∇ × u serves as a
mnemonic indicating that the curl looks like the cross
product of the ‘vector’∇ = (∂1, ∂2, ∂3)T and u. How-
ever, one shouldn’t read too much into this interpre-
tation. To get the gist of the definition, consider the
3-component, (∇ × u)3 = ∂1u

2 − ∂2u
1. A positive

curl means that u2 has a tendency to grow in the 1-
direction, while u1 tends to diminish in 2-direction.
Now, this is what we would expect from a vector field
showing finite circulation in the 12-plane (see the fig-

ure, where vertical and horizontal bars indicate how u1 and u2 change with position). As in the
previous section, we now have two tentative criteria for the presence of circulation, a global
one (the non-vanishing of closed loop line integrals) and a local one (the non-vanishing of the
curl). It remains to establish a connection between these two.

u
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Figure V15: On the derivation of Stokes theorem. For a discussion, see the text.

Stokes theorem

Sir George Gabriel Stokes
(1819-1903)
Irish physicist and mathe-
matician. Stokes worked on
the theory of hydrodynamics,
wave propagation, and the
theory of sound. He was the
first to understand the princi-
ples of fluorescence.

Consider an infinitesimally small rectangle, δS,
in the xy-plane of a three-dimensional coor-
dinates system as indicated in Fig. V15. We
aim to compute the line integral

¸
γδS

ds·u of a
smooth vector field u around the closed rect-
angular boundary, γδS, of δS. The integral is
done in mathematically positive orientation,
i.e. the integration path winds in counter-
clockwise direction around the z-axis. As is
obvious from the figure, the integration path
γ consists of two pairs of parallel edges. Since these edges are traversed in opposite direc-
tion, we expect the respective integrals to nearly cancel against each other. For example, the
integral along the pair of edges parallel to the x-axis yields
ˆ

front

dr · u +

ˆ
back

dr · u ' δx ex · u︸ ︷︷ ︸
ux

(x, y, z)− δxex · u(x, y + δy, z) ' −δxδy∂yux(x, y, z).
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Once more, the local approximation principle discussed on p. 430 implies near constancy of
u along the edges, and this justifies the first approximation. In the second step, we perform
a first order Taylor expansion in the small difference of the vector field component ux on the
opposing edges with their slightly different y-coordinate. In doing so, the precise value of the
readout coordinate x is of no significance, once more due to the locality principle. Adding to
this expression the sum of integrals,

´
left

+
´

right
of the other edge pair, we obtain

˛
γδS

dr · u ' δxδy(−∂yux + ∂xu
y)(x, y, z) = δxδy(∇× u) · ez '

ˆ
δS

dS · (∇× u),

(V102)

where in the final step we noted that the third expression is approximately equal to the area
integral of ∇ × u over the surface element. Here, the orientation is such that the positively
oriented traversal of the line integral corresponds to a surface normal vector pointing in the
positive z-direction (give this point some consideration).

As in the discussion of Gauss’ law the construction above is straightforwardly generalized
from infinitesimal rectangular to arbitrarily shaped extended integration domains: consider the
curve γ shown in Fig. V15. Let Sγ ⊂ M be an arbitrary surface bounded by γ. Imagine an
approximate ‘tiling’ of Sγ by infinitesimal, rectangular surface elements, δS`, as indicated in
the figure. We then obtain (cf. the analogous Eq. (V90))

ˆ
Sγ

dS · (∇× u) '
∑

`

ˆ
δS`

dS · (∇× u) =
∑

`

˛
γ
δS`

dr · u '
˛
γ

dr · u. (V103)

In the crucial last step we observed that the sum of the line in-
tegrals round all rectangles approximately equals the line integral
over the boundary, γ, of the surface Sγ. To understand this, con-
sider the sum of the line integrals over just two adjacent rectan-
gles. The contributions to the integral from their touching edges

cancel, because they are traversed in opposite directions. The sum of the two line integrals
thus equals the line integral around the outer boundary of the two merged rectangles. By the
same argument, the sum of line integrals around a set of rectangles tiling a more complex
surface equals the line integral along the outer perimeter of the surface. In Eq. (V103) that
perimeter approximately equals γ, so we obtain the last equality of the equation. In the limit
that the tile size goes to zero, the approximate equalities Eq. (V103) become exact.

Summarizing, we have found that the surface integral of a curl equals the line integral
around the boundary of the surface,

ˆ
Sγ

dS · (∇× u) =

˛
γ

dr · u, (V104)

a result known as Stokes’ theorem. It states that non-vanishing line integrals around closed
curves – obtained for curves surrounding regions of circulating flow – reflect a non-vanishing
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vector field curl. We reiterate that the choice of the surface bounded by γ is arbitrary, as
long as it remains within the domain of definition of the vector field. This result may actually
be used to define the curl of a vector field in a manner that does not make reference to a
particular system of coordinates (cf. the analogous Eq. (V92)): for an infinitesimal surface
element δS, bounded by the curve γ

δS
and with normal unit vector n, we define

n · (∇× u) ≡ lim
|δS|→0

1

|δS|

˛
γ
δS

dr · u. (V105)

Curl in generalized Coordinates

As with the divergence before, the infinitesimal-area Eq. (V105) can be applied to derive
a formula for the curl in general coordinates. We assume a three-dimensional coordinate
system, r : U ⊂ R3 → R3, y = (y1, y2, y3)T 7→ r(y). An infinitesimal rectangle in U
with corner points y and y + eiδ

i (with i = 1, 2, no summation) then maps onto a distorted
rectangle, δS, as shown in the figure. The edges of δS are approximately defined by the
vectors δi∂yir(y) = δivi(y), evaluated at the appropriate corners. Its geometric area is
|δS| = δ1δ2‖v1 × v2‖, and n ≡ v1×v2

‖v1×v2‖ is its normal unit vector. Rearranging Eq. (V105),
we thus obtain the following relation:

˛
γ
δS

dr · u ' |δS|n · (∇× u) ' δ1δ2(v1 × v2) · (∇× u) . (V106)

We now expand the curl in the coordinate basis,∇×u = vi(∇×u)i. Using (v1×v2)·v1,2 = 0

and recalling the relation (v1 × v2) · v3 =
√
| det g| ≡ √g, Eq. (C58), we can represent the

r.h.s. as

)2δ2e+y(r

)1δ1e+y(r

1v
1δ)y(r

n
2v

2δ−
δ1δ2(v1 × v2) · v3(∇× u)3 = δ1δ2√g (∇× u)3.

Next we consider the l.h.s. of Eq. (V106), involving the line in-
tegral round the perimeter, γ

δS
. The contribution of the ‘front’

and ‘back’ edges can be obtained using the local approximation in a manner analogous to
Eq. (??), yielding δ1(v1 · u)(y) − δ1(v1 · u)(y + δ2e2) ' −δ1δ2∂y2(v1 · u)(y). Adding a
similar contribution from the right and left edges, we find that

¸
γ
δS
dr · u is given by

δ1δ2
[
∂y1(v2 · u)−∂y2(v1 · u)

]
= δ1δ2ε3jk∂yj(vk · u) = δ1δ2ε3jk∂yj(vk · vlul) = δ1δ2ε3jk∂yj(gklu

l).

For the first equality we used the antisymmetric tensor, ε3jkajbk = a1b2 − a2b1, to simplify
the alternating sum, for the second expanded u in the coordinate basis, and for the last
inserted vk · vl = gkl. Equating the left- and right-hand sides of Eq. (V106) we obtain√
g (∇×u)3 = ε3jk∂yj(gklu

l). Analogous relations hold for the 1- and 2-components, so that
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we have the representation

(∇× u)i =
1√
g
εijk∂yj(gklu

l), (V107)

for the components of the curl in arbitrary coordinates. For Cartesian coordinates, with
gkl = δkl and g = 1, the formula reduces to Eq. (V101). Explicit representations in other
coordinate systems are somewhat more complicated. For example, a short calculation (try it!)
shows that the curl in spherical coordinates is given by,

(∇× u)r =
1

sin θ
∂θ
(
sin2 θuφ

)
− ∂φuθ,

(∇× u)θ =
1

r2 sin θ
∂φu

r − sin θ

r2
∂r
(
r2uφ

)
,

(∇× u)φ =
1

r2 sin θ
∂rr2uθ − 1

r2 sin θ
∂θ
(
ur
)
. (V108)

Gauss’ theorem Stokes’ theorem
addresses sources of vector fields circulation of vector fields
local description ∇ · u ∇× u
global description

´
S

dS · u
¸
γ

dr · u
correspondence Eq. (V91) Eq. (V104)

Table V3.1: Parallels between Stokes’ and Gauss’ theorem

addresses local global correspondence
Gauss’ theorem ∇ · u ´

S
dS · u

Stokes circulation ∇× u
¸
γ

dr · u
´
Sγ

dS · (∇× u)
(V104)
=
¸
γ

dr · u

Table V3.2: Parallels between Stokes’ and Gauss’ theorem

Finally notice the striking parallels between Stokes’ theorem and
Gauss’ theorem, summarized in Tab. V3.2. In fact, the two
theorems are special cases of a more general mathematical law,
known as the generalized Stokes’ theorem. (The basic identity´ b
a

df
dx

= f(b)− f(a) is another variant of that theorem. Like the
higher dimensional variants of Stokes’ theorem, it establishes a

connection between the behavior of a function on the ‘boundary’ {a, b}, to the integral of the
derivative of that function over the interior [a, b].) The general version of Stoke’s theorem is
discussed in section ?? (see Eq. (V184) there) after the required mathematical terminology
has been introduced.
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INFO The curl of physically relevant vector fields generally carries physical significance itself. Let

us illustrate this point on the example of magnetism: Ampère’s law states that the line integral

of the magnetic field, B, along a closed loop, γ, equals the electric current ISγ (i.e. the charge per

unit time) flowing through any area, Sγ , bounded by that loop.
12

This equality is expressed by the

formula ˛
γ

dr ·B =
4π

c
ISγ , (V109)

where c is the speed of light and so-called CGS units are used. The current may be expressed as a

surface integral,

ISγ =

ˆ
Sγ

dS · j, (V110)

over the current density, j. (In fact, the current density is defined through the condition that its

integral over any surface equal the physical current flowing through that surface.) Stokes’ law states

that ˛
γ

dr ·B =

ˆ
Sγ

dS · (∇×B). (V111)

Comparing Eqs. (V109), (V110), and (V111), we arrive at

∇×B =
4π

c
j. (V112)

This equation, known as the differential form of Ampère’s law, states that the circulation of the

magnetic field is caused by a flow of current.

Figure V16: Current distribution and magnetic field of an infinite cylindrical wire (shaded).

EXERCISE Apply Eq. (V107) to verify that the curl in cylindrical coordinates, Eq. (V35), is

given by

(∇× u)ρ =
1

ρ
∂φu

z − ρ∂zuφ,

12

We here assume time-independent current flow. If it is time-dependent, the situation becomes more
complicated, cf. discussion in chapter V7.
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(∇× u)φ =
1

ρ
∂zu

ρ − 1

ρ
∂ρu

z,

(∇× u)z =
1

ρ
∂ρρ

2uφ − 1

ρ
∂φu

ρ. (V113)

Consider an infinite cylindrical wire as in Fig. V16, carrying a radially dependent current profile,

j = vzf(ρ). (For example, f(ρ) = cΘ(R − ρ) would describe a wire of radius R and constant

current density, |j| = c.) Let D be a disk of radius ρ in the xy-plane centered on the axis of the

wire. Confirm that the current flowing through D, I =
´
D dS · j, is given by I = 2π

´ ρ
0 dρ′ ρ′f(ρ′).

The magnetic field generated by this current distribution winds circularly around the axis of the

wire, B = vφB
φ(ρ), where the translational symmetry of the problem in z-direction (the current

does not depend on the z-coordinate) and the rotational symmetry in φ-direction (the current profile

does not depend on φ) implies that the coefficient Bφ(ρ) can only depend on the radial coordinate

ρ. Compute the line integral along the boundary ∂D (i.e. a circle of radius ρ) and confirm that´
∂D dr ·B = 2πρ2Bφ(ρ). According to Eq. (V109) this must be proportional to the current, i.e. we

have the identification

Bφ(ρ) =
4π

cρ2

ˆ ρ

0
dρ′ ρ′f(ρ′).

Compute the curl of this magnetic field to confirm that the current density is given by Eq. (V112).

INFO In the previous two sections we discussed the sources and the circulation of vector fields.

When employing general coordinates to describe these, the basis of coordinate vectors, vi = ∂ir, is

most convenient, both from a conceptual and methodological point of view. However, in the physics

community, the local basis, ei = vi/‖vi‖, is more widely used, since its vectors have unit length. For

reference purposes, we here summarize the form of the essential vector analysis operations, gradient,

divergence, curl, and the Laplace operator in their local basis representation. The spherical and

cylindrical systems in which these formulas are generally applied are special in that their metric is

diagonal, gij = giiδij = ‖vi‖2δij , so that vi =
√
giiei. We assume this property throughout in

what follows. We will distinguish between local and coordinate basis representations by temporarily

denoting vector components of the latter by ṽi. The expansions u =
∑

i eiu
i =

∑
i viũ

i then imply

ui =
√
gii ũ

i (no summation). From this formula we can anticipate that the covariant structure of

pairwise index contractions will be lost in the local basis representation.

The components of the gradient in the local basis are obtained from those in the coordinate

basis as ∇f i =
√
gii ∇̃f

i
. Using that ∇̃f i (V69)

= gij∂yjf , and gij = δij/gii we obtain leading to

∇f i =
1√
gii
∂yif.

The divergence is obtained from Eq. (V93) a replacement ui ≡ ũi → ui/
√
gii:

∇ · u =
1√
g

∑

i

∂yi

(√
g

gii
ui
)
.
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In an analogous manner the components of the curl, Eq. (V107), are transcribed to the local basis

as

(∇× u)i =

√
gii
g

∑

jk

εijk∂yj
(√

gkk u
k
)
.

Finally, the Laplace operator, ∆ = ∇ · ∇, makes no reference to vector components and hence

retains the form given by Eq. (V98):

∆f =
1√
g

∑

i

∂i

(√
g

gii
∂iφ

)
.

The representations of these formulas in cylindrical and spherical coordinates are frequently needed

in courses of theoretical physics and we summarize them for reference purposes:
13

Cylindrical coordinates (local basis): (
√
gρρ = 1,

√
gφφ = ρ,

√
gzz = 1,

√
g = ρ)

gradient: ∇f = eρ ∂ρf + eφ
1

ρ
∂φf + ez ∂zf,

divergence: ∇ · u =
1

ρ
∂ρ
(
ρuρ
)

+
1

r
∂φu

φ + ∂zu
z,

curl: ∇× u = eρ

[
1

ρ
∂φu

z − ∂zuφ
]

+ eφ

[
∂zu

ρ − ∂ρuz
]

+ ez
1

ρ

[
∂ρ
(
ρuφ

)
− ∂φuρ

]
,

Laplacian: ∆f =
1

ρ
∂ρ
(
ρ ∂ρf

)
+

1

ρ2
∂2
φf + ∂2

zf. (V114)

Spherical coordinates (local basis): (
√
grr = 1,

√
gθθ = r,

√
gφφ = r sin θ,

√
g = r2 sin θ)

gradient: ∇f = er∂rf + eθ
1

r
∂θf + eφ

1

r sin θ
∂φf,

divergence: ∇ · u =
1

r2
∂r
(
r2ur

)
+

1

r sin θ
∂θ
(
sin θuθ

)
+

1

r sin θ
∂φu

φ,

curl: ∇× u = er
1

r sin θ

[
∂θ(sin θu

φ)− ∂φuθ
]

+ eθ
1

r

[
1

sin θ
∂φu

r − ∂r
(
ruφ
)]

+

+ eφ
1

r

[
∂r
(
ruθ
)
− ∂θur

]
,

Laplacian: ∆f =
1

r2
∂r
(
r2 ∂rf

)
+

1

r2 sin θ
∂θ
(
sin θ ∂θf

)
+

1

r2 sin2 θ
∂2
φf. (V115)

13

When deriving these formulas, notice that when ∂yi acts on
√
g or
√
gii, those factors independent of the

variable yi can be pulled upfront; e.g. for spherical coordinates, ∂r
√
g = sin θ ∂rr

2, ∂φ
√
g = r2 sin θ ∂φ, etc.
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REMARK This chapter requires familiarity with chapter L11. As in that chapter, we abandon the

boldface notation for vectors, e.g. we write r instead of r. As in previous chapters, the components

of coordinate vectors will mostly be denoted by y ∈ Rd and their components by yj . If no confusion

is possible, a fixed coordinate system y has been chosen, and different points r, p, q on a manifold

are under consideration, we will label their coordinates as rj ≡ yj(r), pj , qj , etc. In this way, the

introduction of ever new symbols for coordinate vectors is avoided. However, this notation must be

used with due care. Throughout the chapter we will frequently need to differentiate curves y(t) at

t = 0. To keep the notation slim, we will often abbreviate dty(0) ≡ dt
∣∣
t=0

y(t).

Smooth geometric structures define the ‘arena’ for the formulation of various fields of physics
and mathematics. Many of these structures are easy to understand on an intuitive level,
consider empty space, a two-dimensional sphere, or a circle as examples. Others can be
more challenging to visualize — a sphere in five dimensional space — or may have no obvious
visualization at all. For example, we have seen that the set of all rotations of three dimensional
space defines a group. There is a sense of ‘smoothness’ in this set, because any rotation can be
generated by a continuous deformation of any other rotation, and clearly the set of rotations
is ‘geometrical’ in some sense. Yet it may not be evident how to conceptualize its geometry
in any obvious way.

In this chapter, we will introduce the foundations of differential geometry, a comprehen-
sive framework to understand smooth geometric objects in a unified fashion. The gateway into
differential geometry is the realization that all the structures alluded to above have in common
that they look locally (but in general not globally) like some Rd. A circle looks locally like a
segment of a line, i.e. a subset of R1. Globally, however, the circle is different from a segment
of a line, and this difference between the global and the local level is of defining importance
to its geometric description. Likewise, the set of rotations of three-dimensional space may
be parameterized by three rotation angles, and this set of angles defines a three-dimensional
cuboid, a subset of R3. Globally, however, there is a difference between the set of rotations
and a cuboid, etc.

Building on our earlier discussion of curvilinear coordinates, we here introduce the frame-
work for to describe smooth geometric structures both locally and globally. In the next chapter
we will then introduce differential forms as a key tool to actively work with these objects in
mathematical and physical contexts.

444
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V4.1 Differentiable manifolds

The overarching mathematical terminology for ‘smooth geometric structures’ is differen-
tiable manifolds (differenzierbare Mannigfaltigkeit), or just manifolds for short. Prominent
examples of manifolds are spheres, tori, balls, smooth curves, various group structures, and
many others more. In this section we elaborate on the local and the global description of such
objects and show how to advance from one to the other.

The local and the global perspective of manifolds

y

y

y

r(y)

r(y)

r(y)

A reasonable first attempt to define
what a manifold, M , is might be to con-
sider it as the image of a diffeomorphic
(infinitely often differentiable, and bijec-
tive) map r : U → M, y 7→ r(y), where
U ⊂ Rd is an open coordinate domain
in Rd. This approach introduces what we
will later understand as the ‘local view’;
it provides a 1-to-1 identification between
M and an open subset of Rd. A few ex-
amples of manifolds for which this local
perspective is sufficient are shown in the
figure.

For others, however, it falls short of
providing the full picture. As a simple ex-
ample, consider the (d = 1)-dimensional

circle S1 of unit radius. If the sole intention is to perform integral operations, then S1 may
be described as a circular curve parametrized on an open interval in such a way that its end
points (almost) touch (see Fig. V17 below). In other cases, however, we need to describe
a circle as what it is, a closed curve. For example, this distinction played a key role in our
discussion of gradient fields on non-simply connected domains on p. 426. The closed circle
cannot be represented as the diffeomorphic image of an open, i.e. end-point-excluding, pa-
rameter interval (think about this point). In the next subsection we explain how extended
coordinate descriptions can be designed to obtain a ‘global’ definition, including objects that
cannot be represented as images of single coordinate maps.

However, before turning to this generalization let us mention a second aspect key to the
general understanding of manifolds: without even noticing, many people conceptualize the
unit circle as a circle embedded in R2, such as a circle drawn on a piece of paper. However,
circles may be realized in different ways. Think of a circle in R3, or in a space of even higher
dimensionality; the set of rotations around a fixed axis can be understood as a circle where
the rotation angle is a one-dimensional coordinate and a full rotation gets one back to the
origin; we saw that the set of unit-modular complex numbers exp(iφ), φ ∈ R is a circle in the
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complex plane, etc. These are examples of circles ‘embedded’ in different sets. Now suppose
we defined the circle as the diffeomorphic image of a map U → S1 ⊂ X, where X is one
of these embedding sets. This approach would make reference to differentiability in the ‘host
medium’ X. In this way, X would become an essential part of the definition, and different
realizations of X would lead to different definitions. Clearly, we should aim to avoid this
excess baggage. Rather we should aim for a ‘universal’ definition not referring to any specific
embedding and describing the circle as a ‘stand-alone object’.

In the next subsection we introduce a powerful definition of manifolds which includes
objects that cannot be described in terms of a single coordinate map, and avoids the problems
mentioned above by not making reference to host media. This definition will provide us with
a solid foundation on which all further discussion will be based.

Definition of manifolds

π

π2

φ1

φ1

φ1

φ2

φ2

φ2

φ2(φ1)

U1
U2

Figure V17: Coordinate representation of a circle employing two coordinate maps. Discussion, see
text.

The key to a comprehensive description of manifolds lies in the realization that more
than one coordinate map may be needed to parameterize M . The situation is illustrated
in Fig. V17 on the example of the unit circle, M = S1, embedded in R2 for graphical
representability. One coordinate, φ1 ∈ U1 ≡ (0, 2π), is chosen to parameterize the circle as
r1(φ1) ≡ (cosφ1, sinφ1)T . This map does not reach the point (1, 0)T ∈ S1, because U1 is
an open interval and the end-points 0 and 2π are excluded. However, a second coordinate,
φ2 ∈ U2 ≡ (0, 2π),

1
may now be engaged to parameterize a different portion of S1 as

r2(φ2) ≡ (cos(φ2 − π), sin(φ2 − π))T . This map does reach the previously excluded point,
since (1, 0)T = r(φ2 = π); however, it excludes the point (−1, 0)T . We conclude that each
point on the circle is included in at least one of the images r1(U1) and r2(U2) of the coordinate
maps, and the majority, i.e., all except (±1, 0)T , lie in both images.

1

Although the two coordinate intervals U1 = U2 = (0, 2π) are identical, it is expedient to think of them
as separate domains and label them differently.
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Let M12 ≡ r1(U1) ∩ r2(U2) = S1 \ {(1, 0)T , (−1, 0)T} be the intersection of the two
coordinate images, i.e. the set of points reached by both maps. For each r ∈M12, we have two
coordinate representations, r = r1(φ1) = r2(φ2). This defines a map r−1

1 (M12)→ r−1
2 (M12),

φ1 7→ φ2(φ1) = r−1
2

(
r1(φ1)

)
, assigning to each coordinate φ1 the corresponding coordinate

φ2. By construction, the transition map r−1
2 ◦ r1 is a diffeomorphic map from r−1

1 (M12) to
r−1

2 (M12). It defines the change from the r1 to the r2 language in the description of S1.

EXERCISE Verify that r−1
1 (M12) = (0, 2π) \ {π} = (0, π) ∪ (π, 2π). Show that on this union of

(open) intervals, φ2(φ1) = φ1 + π for φ1 < π and φ2 = φ− π for φ1 > π. The switch between the

two branches occurs at the limiting point between two almost touching open intervals. However this

point is excluded from the definition of the transition map. Within their respective open domains

of definition the maps φ2 = φ1 ± π are trivially invertible and infinitely often differentiable, i.e. they

represent diffeomorphisms. Notice that nowhere in the construction did we require differentiability

in the space R2 within which the manifold S1 is embedded.

The circle as discussed above serves as a role model for the general definition of differentiable
manifolds. Referring for a rigorous discussion to the literature, a differentiable d-dimensional
manifold, M , is a set covered by the combined image, M =

⋃k
a=1 ra(Ua), of k coordinate

maps, ra : Ua → M, y 7→ ra(y), where Ua are open coordinate domains in Rd.
2

Each
individual coordinate map, ra, is called a chart of the manifold and a collection of charts,
{r1, r2, . . . , rk} that fully covers the manifold is called an atlas. In the above example, we
parameterized M = S1 through an atlas involving two charts, r1 and r2.

The maps ra : Ua → Ma ⊂ M between the coordinate domains and their images in
ra(Ua) ≡Ma ⊂M are required to be invertible and continuous.

3
We introduce their inverses,

ya ≡ r−1
a , as ya : Ma → Ua, r 7→ ya(r) = r−1

a (r). The images Ma of different charts in M
generally overlap. Where this happens the intersections Mab ≡ Ma ∩Mb define regions with
more than one coordinate representation, r = ra(ya) = rb(yb) (see Fig. V18 for an illustration
with two charts). The crucial condition of smoothness now is that the transition functions

yb ◦ ra : ya(Mab)→ yb(Mab), ya 7→ yb(ya) ≡ yb(ra(ya)), (V116)

must be diffeomorphic maps between their domains of definition ya(Mab) and yb(Mab). In
the above example of the unit circle S1 we had just one such function, φ2(φ1), one overlap
region, M12 ⊂ S1, and the intersection domain of coordinates was (0, π) ∪ (π, 2π). If the
above condition is met, M is a differentiable manifold. Notice that the differentiability cri-
terion applies to maps yb(ya) between different coordinates, but not to the maps r(ya) from

2

To avoid confusion between the vector-valued maps, ra, and covariant components, ri, we index the
former with early Latin letters, a, b, . . . .

3

A technical remark: if M is embedded in a vector space such as Rc, the continuity of the maps ra may
be defined using the mathematical structure of that embedding space. However, even if this is not the case
it is still possible to define continuity, provided M does possess the mathematical structure of a so-called
topological space. Although a comprehensive discussion of topological spaces at this point would lead too
far, and the manifolds relevant to our discussion are embedded in vector space structures, it may be worth
keeping in mind that the definition of manifolds has a more general scope. For further discussion we refer to
textbooks on differential geometry.
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coordinate domains into M . This is an important feature, which makes it possible to define
manifolds which need not be embedded in Rc.

M

1r

2r
1U

2U

)12M(1y

)12M(2y

2y

)r(2y

12M

12M

)r(1y

1r◦2y

Figure V18: On the coverage of manifolds by multiple charts. Discussion, see text.

How important are multi-chart representations of manifolds in practice? The an-
swer depends on the context. As discussed previously, single-chart coverages are often sufficient
to ‘approximately’ cover manifolds, i.e. to cover them up to subsets of lower dimensionality.
For example, the description of a circle by polar coordinats misses an isolated point, and the
description of the two-sphere by spherical coordinates misses a line connecting the north and
south poles along a great half-circle, cf. section (V2.1). Incomplete or ‘local’

4
coverages of

this type are often sufficient to compute integrals over manifolds (cf. discussion on p. 229 in
section C4.2), or to describe their local geometric structure. In such cases, no extension to a
complete coordinate description is required.

By contrast, full coverages provided by multi-chart atlases and their transition functions be-
come important when ‘global’ or topological aspects play a role. (For example, a Möbius strip
is ‘locally’ diffeomorphic to a rectangular strip, but is ‘globally’ different. This difference shows
in the transition functions mediating between a minimal atlas of two charts parameterizing the
Möbius strip, think about this point.)

In either context, differential forms will emerge as powerful tools to describe the geometry
of manifolds, and that of physically relevant structures defined on them. In the following the
focus will be put more on the local perspective, and we will mostly work with the local
descriptions provided by single charts. The extension to a global framework is left for lecture
courses in topology, differential geometry, or advanced courses in theoretical physics.

4

A remark on a possibly disconcerting wording convention: single charts of manifolds are often said to
provide a ‘local’ description, even if ‘local’ means everything-except-one-point. Confusion can be avoided if
one accepts that mathematicians define the attribute ‘local’ as ‘non-global’.
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V4.2 Tangent space

Much like a smooth function looks locally linear, a smooth manifold looks locally flat.
For example, the surface of earth is globally a sphere, but looks locally planar. The planes
locally approximating a general d-dimensional manifold are d-dimensional vector spaces called
tangent spaces. In the example of earth, this is all easy to imagine: the neighborhood of
each location on earth is locally approximated by a two-dimensional plane in the embedding
three-dimensional space. These planes differ from point to point, and it may also be intuitively
evident that the infinite collection of all of them, a set called the ‘tangent bundle’ and to be
defined in the next subsection, contains exhaustive information on the geometric structure of
earth’s surface.

Tangent spaces and the tangent bundle play a very important role in the geometric de-
scription of manifolds. In the following, we will learn how to describe them, both intuitively
and in more formal mathematical terms. Our approach will be flexible enough to encompass
manifolds not embedded in a host vector space, and for which the visual picture of tangent
spaces may be not quite as obvious as in the example above.

r
TrM

Figure V19: The setup considered in this section. A manifold is a ‘smooth’ object, which means that
locally it looks flat (much like the surface of earth looks locally flat). The asymptotic vicinity of any
point r in a d-dimensional manifold M can be approximated by a d-dimensional vector space, called
the tangent vector space to r at M and denoted by TrM . Differential forms will emerge as objects
describing the geometry of tangent spaces and, upon extrapolation, the geometry of M at large.

Smooth functions on manifolds

The principal tool required for the description of tangent space (and, in fact, that of any
other geometric structure on manifolds, too) are smooth functions f : M → R. Although
the concept of a smooth real valued function seems innocent enough, it may not be entirely
evident how the attribute ‘smooth’ is actually defined in the present context. We agreed to
refrain from differentiating (the principal operation required to detect smoothness) in M , and
so we define the smoothness of a function with reference to a coordinate system, see Fig. V20:
a function f : M → R, r 7→ f(r), is smooth if its coordinate representation, f(r(y)) is a
smooth function of the coordinates y. More precisely, the composition of f with a coordinate
map y : U → M 3 r enclosing the point r, namely f : U → R, y 7→ f(r(y)) ≡ f(y), must
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be a smooth function from U ⊂ Rd into the real numbers. Following common conventions
we denote f : M → R and its coordinate representation, f : U → R, by the same symbol.

5

U

M

r

f

y r(y)

f(y)

R

Figure V20: A function on a manifold f : M → R, r 7→ f(r) is smooth if its coordinate represen-
tations f : U → R, y 7→ f(y) ≡ f(r(y)) are smooth functions from U ⊂ R into the real numbers.
Likewise, a curve in a manifold is smooth if its coordinate representation is a smooth curve.

Likewise, a curve r : I → M , t 7→ r(t) is smooth if its coordinate representation r : I → U ,
t 7→ y(t) ≡ y(r(t)) is smooth. The smoothness of other objects defined on M is defined
in similar ways. Perhaps a good way to think about the situation is to consider functions,
curves, etc. as absolute objects, and their coordinate representations as descriptions of these
objects in a given language (different coordiantes means different languages). Mathematical
calculations require a language description and are therefore performed in coordinates. The
functions f(y) = f(r(y)) and f(y′) = f(r(y′)) are descriptions of the same f(r) in different
languages, and f(y′) = f(y(y′)) is the translation from one to the other.

INFO The seemingly indirect definition of smoothness via coordinate representations is motivated

by quite practical considerations. To understand why, consider M = S2 ⊂ R3, i.e. the two-sphere

embedded in R3. Let f : S2 → R be a function defined on the sphere, and only on the sphere, such

that f does not have any meaningful extension into the embedding space. For concreteness, consider

a sphere coated by a material of varying mass distributions, and let f describe the corresponding

surface mass density. Assume R3 to be parameterized by Cartesian coordinates, (x1, x2, x3). The

function f is then defined on the subset of coordinates obeying the condition
∑

j(x
j)2 = 1. This

implies that its partial derivatives Eq. (C30) cannot be defined in R3. (If x is on the sphere, then

x+δxj is not, no matter how small δ, i.e. the difference quotient δ−1(f(x+δxj)−f(x)) is not defined.

(Why does this problem not arise with partial derivatives ∂yjf(x(y)) in coordinate representations?)

Tangent vectors as equivalence classes of curves

5

Note that if f passes the smoothness criterion in one coordinate representation, then it will be smooth
in all other representations, too. This is because the transition maps mediating between different coordinates
are smooth functions, so f(y′) ≡ f(y(y′)) will be a smooth function of the coordinates y′ if f(y) is a smooth
function of y.
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r

rv

MrT

M

)t(r
Let r(t) be a smooth curve in M passing through the point r at
t = 0, i.e. r(0) = r (see figure). The velocity vector at t = 0,

vr ≡ dtr(0) ≡ dt
∣∣
t=0
r(t), (V117)

is tangent to the curve at r and therefore tangent to M . Intu-
itively, it is tempting to define the tangent space at r as the set of all tangent velocity vectors
that can be built in this way.

This is indeed almost, but not quite, what we are going to
do. A drawback of Eq. (V117) is that it is breaking the
promise to not differentiate in M : the derivative dtr(t) =
limδ→0(r(t + ε)− r(t)) can only be built if the manifold is
embedded in a vector space, M ⊂ Rn, and differences of
vectors r(t) are taken within that space. As a consequence,
the tangent space to a circle, for example, would depend on
whether the circle is embedded in R2 (see the figure for a

realization of one of its tangent spaces as a one-dimensional subspace of R2) or in R3, and
this is a complication we would prefer to avoid.

As a first step towards a better definition we note that different curves passing through
r can have the same tangent vector. For example, the dashed curve indicated in the figure
above will have the same tangent vector at r as the solid curve r(t) if it is traversed at
the same speed. This observation motivates the following construction: let f : M → R

be a smooth function on M (or at least in a neighborhood containing r). We may then
build the directional derivative of f along r(t) as dtf(r(0)), i.e. the ordinary derivative
of the real function t 7→ f(r(t)), evaluated at t = 0. Two curves r(t) and r′(t) are called
‘equivalent’, r(t) ∼ r′(t), at r = r(0) = r′(0) if they lead to the same directional derivative,
dtf(r(0)) = dtf(r′(0)), for any smooth function f . The set of all curves which are equivalent
in this sense define an equivalence class of curves, [r(t)], and this equivalence class in turn
defines a tangent vector, which we denote as v̂r.

Although this definition may seem abstract, it is in fact very ‘geometric’. It associates
tangent vectors with ‘bushels’ of curves in M touching at a point r where they are all traversed
in the same direction and at the same speed. Intuitively, the vector v̂r is the common tangent
vector of these curves at this point. To make the description quantitative and give the vector
v̂r a coordinate representation in terms of d components, we need to employ a system of
coordinates y = (y1, . . . , yd)T of the manifold. The components, vjr , are then defined as

vjr = dty
j(r(0)). (V118)

i.e. each component is the directional derivative of a coordinate function yj along any of v̂r’s
representing curves. The resulting set of d components defines the coordinate representation
vr ≡ (v1

r , . . . , v
d
r )
T of v̂r, which, of course, is specific to the coordinate system used.

We emphasize that the values obtained for the components do not depend on the choice
of the representing curve. The coordinate functions yj(r) are smooth in a neighborhood of
r and by virtue of the equivalence relation any other curve r′(t) ∈ [r(t)] will give the same
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value, dty
j(r(0)) = dty

j(r′(0)). Notice also that definition (V118) is equivalent to, and in
fact generalizes the ‘naive’ definition (V117). This formula is recovered if the d-dimensional
M is embedded in a vector space Rd of equal dimension, and Cartesian coordinates are
used parameterize the latter. In this case, r = {rj} may be identified with its Cartesian
coordinate representation. For these coordinates, yj = rj, and vjr = dtr

j(t) is the coordinate
representation of the tangent vector according to both Eqs. (V117) and (V118).

EXERCISE Consider M = R2 and the point r = (R, 0)T in a Cartesian coordinate system. Show

that the curves r1(t) = R(cos(t), sin(t))T , r2(t) = R(2 − cos(t), sin(t))T , and r3(t) = R(1, t)T

satisfy the conditions ra(0) = r and dtf(ra(0)) for any smooth function, i.e. that they all lie in the

same equivalence class at r. (Hint: check that in the chosen coordinates, dtf(ra(0)) for all curves.)

Verify that the components of the tangent vector in Cartesian coordinates are given by (v1, v2) =

(0, R), and in polar coordinates by (vr, vφ) = (0, 1). Why is the curve r4(t) = (cos(2t), sin(2t))T

not equivalent to the curve r1(t), although it looks identical when sketched on paper?

Tangent vectors as directional derivative operators

The constructions above illustrate how tangent vectors and the curves representing them
always (!) appear in the context of directional derivatives of functions f : M → R; indeed,
the sole purpose of working with ‘equivalence classes of curves’ is to have a means of taking
directional derivatives of functions along these curves. This suggests another way of thinking
of a tangent vector v̂r: it may be identified with a differential operator, ∂v,r. By definition,
this operator acts on functions as f 7→ ∂v,rf , where ∂v,r is the directional derivative of f at r
along any of the curves in the class [r(t)] of v̂r:

∂v,r : f 7→ ∂v,rf = dtf(r(0)). (V119)

The two definitions of tangent vectors, as equivalence classes of curves or as directional
derivative operators, are equivalent to each other and will be used interchangeably throughout
this text. Both require a bit of getting used to but in fact are quite intuitive. In fact, we will
mostly work with the directional derivative notation and identify v̂r = ∂v,r, where the subscript
v is a reference to the vector v̂r defined through a class of representing curves.

Two more remarks on notation: first, the definition of a tangent vector is specific to its
base point, r, as emphasized by the notation ∂v,r. However, the identity of this base point is
usually evident from the context, and in such cases the subscript r is omitted to arrive at the
slimmer notation ∂v,r → ∂v (much like coordinate basis vectors in section V2.3 where usually
denoted in the abbreviated notation vj, rather than vj,r). Second, the object ∂v must not be
confused with a partial derivative. As emphasized above, the definition of partial derivatives
requires coordinates, whereas ∂v is a geometric object. However, we will observe below that
formulas in which ∂v features have undeniable similarity to those involving partial derivatives,
and this is the likely origin of the denotation ∂v for tangent vectors.

Irrespective of which representation for v̂r is used, ∂v,r ↔ [r(t)], the components vjr
representing the vector in a coordinate system {yj} are obtained by (applying the differential
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operator to) ↔ (taking the directional derivative of) the functions yj

vjr = ∂v,ry
j(r) = dty

j(r(0)). (V120)

In the next section we will describe how the present definition of tangent vectors can be applied
to obtain an efficient description of the geometry of tangent space.

Tangent space bases

The set of all tangent vectors, ∂v,r, defined as above defines a vector space, the tangent
space to M at r,

TrM ≡ {∂v,r|∂v,r tangent to M at r}. (V121)

Above we introduced a geometric picture of individual tangent vectors, ∂v, and gave a pre-
scription for computing their components (relative to a coordinate system). Building on this
discussion we now show how to understand TrM as a d-dimensional vector space, and how to
construct suitable bases for this space. All this is best done by shifting as much of the discussion
as possible to the representing coordinate domain. Indeed our construction above was based
on curves r(t) in M , and each such curve has a coordinate representation, y(t) = y(r(t)), in
U . Now consider the special curves yj(t) = y + ejt, where y is the coordinate representation
of the base point r(y) = r and ej is the jth standard unit vector in U . These curves in U
have images r(yj(t)) which define ‘coordinate lines’ in M (cf. Fig. V21). In section V2.2 we
had introduced the concept of coordinate lines for the special case of manifolds embedded in
R2 or R3, cf. Eq.(V19), or Fig. V4, which shows polar coordinate lines for M = R2\{0}.

y
∂i

∂j

TrM

r(y)
iy

jy

)t(iy

)t(jy

))t(jy(r

))t(iy(r

r

Figure V21: Curves yj(t) in U along which all but the jth coordinate are kept constant define ‘co-
ordinate lines’ r(yj(t)) in M . The tangent vectors, ∂j , defined by these curves define the holonomic
basis for the tangent space TrM . If M is embedded in Rc, the c-dimensional representatives of the
vectors ∂j correspond to the coordinate basis vectors vj discussed in section V2.2.

The tangent vector defined by the coordinate curve yj(t) running in the ej direction is
denoted by the symbol ∂j:

∂j : f 7→ ∂jf ≡ dtf(r(yj)) ≡ dtf(yj(0)), (V122)
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where we continue to use the shorthand notation f(y) ≡ f(r(y)) for the coordinate de-
pendence of smooth functions. Observe that ∂j acts on functions as a partial derivative in
yj-direction: ∂jf = dtf(yj(0)) = dt

∣∣
t=0
f(y+ejt) = ∂jf(y), where on the left side ∂j denotes

the vector (represented as differential operator), and on the right side the standard definition
of the partial derivative. In view of this equality it makes perfect sense to denote the tangent
vector associated with the jth coordinate line by the symbol ∂j.

The coordinate representation of the tangent vector ∂j is given by the jth standard vector,
ej = (0, . . . , 1, . . . , 0)T . This is seen by computing its ith component (∂j)

i via Eq. (V120):
we apply ∂j to the ith coordinate function yi = yi(r),

(∂j)
i = ∂j(y

i(r)) = dt
∣∣
t=0
yi(y + ejt) = δij, (V123)

which may be identified as either the jth partial derivative of yi, or equivalently as the derivative
of yi along the jth coordinate curve. Either way we identify (∂j)

i = (ej)
i = δij as the

i-component of the standard vector ej.
The collection of the d vectors {∂j} defines a basis of tangent space. To understand

why, let us try a tentative expansion ∂v = vj∂j of a generic tangent vector in terms of the
vectors ∂j. The expansion coefficients may be identified by applying both sides to a coordinate

function, yj. On the l.h.s. this yields ∂vy
j, and on the r.h.s., (vi∂i)(y

j) = vi(∂iy
j)

(V123)
= vj,

implying vj = ∂vy
j. We conclude that a generic tangent vector can be expanded as

∂v = vj∂j, vj = (∂vy
j), (V124)

where the components vj are obtained by taking directional derivatives of the coordinate
functions yj. Notice that this definition of vector components vj coincides with the earlier
prescription (V118), so that ∂v = vj∂j ∈ TrM and v = vjej ∈ Rd are equivalent representa-
tions of the same geometric object. Also notice that the notation ∂v is nicely compatible with
the understanding of ∂j as a partial derivative in the j-direction: the relation

∂vf(y) = vj∂jf(y) =
∂f(y)

∂yj
(∂vy

j) (V125)

can either be understood as the expansion of ∂v in the basis ∂j, or, equivalently, as the chain
rule applied to the directional derivative of the function f(y).

Bases {∂j} defined with reference to a local coordinate system are called holonomic bases
of tangent spaces. In most cases the holonomic basis associated to a conveniently chosen
coordinate system will be the preferred basis in the geometric description of a manifold.

INFO While our general discussion does not require any embedding, let us now discuss the important

case of a manifold embedded in a vector space, Rn. Notice that the embedding dimension, n,

need not be equal to the manifold dimension, d (think of a (d = 2)-dimensional surface embedded in

R(n=3), etc.). As discussed earlier, the tangent space TrM to a point r ∈M now is a d-dimensional

subspace of Rn. In a Cartesian basis of Rn, each point r ≡ (r1, . . . , rn) ∈ M is described by an

n-component coordinate representation, where ri(y) are smooth functions of M ’s local coordinates.
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This setup leads to another representation of tangent vectors: to a vector ∂v ∈ TrM we assign

the coordinate vector v = (v1, . . . , vn)T , with components vj ≡ ∂vr
j = dtr

j(y(0)) ≡ dtr
j(0),

where rj(y(t)) = rj(t) is the Cartesian representation of a curve r(t) representing ∂v. Each tangent

vector is thus represented by an n-component vector, v ≡ ejvj , in the embedding space Rn. This is

nothing but a somewhat more elaborate formulation of the picture behind the intuitive formula (V117)

discussed in the beginning of the section. Specifically, the vectors of the holonomic basis ∂j now

have the coordinate representation

vj = dtr(yj(0)) =
∂r(y)

∂yj
. (V126)

In these vectors we recognize the elements of the coordinate basis of M at r introduced in sec-

tion V2.3 (there denoted in boldface fonts as vj). Fig. V22 offers a visual recapitulation of this

connection on the example of cylindrical coordinates.

r
))t(φy(r

)t(φy

y
)y(rφv

φe

Figure V22: A two-dimensional cylinder M ⊂ R3 of unit radius can be locally described by cylin-
drical coordinates, r(y), with two-dimensional coordinate vectors y = (φ, z)T ≡ φeφ + zez where
eφ = (1, 0)T , ez ≡ (0, 1)T . (Do not confuse eφ, a vector in the coordinate domain, with the lo-
cal basis vectors eφ of section V2.3.) The tangent vector ∂φ at r(y) is generated by the curve
yφ(t) = (φ + t, z)T = y + teφ, (cf. Eq. (V123)). In the embedding space R3, ∂φ is represented
by a three-component vector, vφ. If r = (r1, r2, r3)T is represented in Cartesian coordinates, the
components of vφ are obtained by differentiating the coordinate functions rj(φ, z) along yφ(t), i.e.
(vφ)j = dtr

j(yφ(0)) = ∂φr
j(φ, z). In this way one obtains vφ = (− sinφ, cosφ, 0)T for the Carte-

sian representation of ∂φ in R3. This equals the vector vφ introduced in section V2.3 as one of the
elements of the cylindrical coordinate basis, cf. Eq. (V36).

Now consider the trivial yet important case that the manifold and its embedding space have equal

dimensionality, d = n, but that the former is an open subset of the latter, M ⊂ Rd (think of a

two-dimensional disk in R2, etc.). Although such a manifold is smaller than the embedding space,

the tangent space at any point is actually equal to the embedding space, TrM = Rd. The intuitive

reason for this is that although the points of a disk are confined to it, the vectors tangent to curves

in the disk may assume arbitrarily large values if only the curves are traversed sufficiently fast (think

about this!). If a Cartesian basis, {ej}, is used to span Rd, both points r ∈ M in the manifold

and vectors ∂v ∈ TrM in the tangent space are represented by d-component coordinate vectors,

r = ejr
j and v = ejv

j , respectively. One might then be tempted to not distinguish conceptually

between points r ∈M and tangent vectors ∂v ∈ TrM . However, such conceptual sloppiness can be

counterproductive and lead to confusion. In the present context it is best to avoid it.
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Finally, let us explore how vector components vi(y) change under a change of coordinates
y 7→ y′(y) where y and y′ are two systems with finite overlap on M . The components of
a vector,

6
∂v = vj(y)∂yj = vi(y′)∂y′i , in these two systems are obtained by application of

the vector to the respective coordinate functions, vj(y) = ∂vy
j and vi(y′) = ∂vy

′i. Given
the components vj(y) the components vi(y′) are obtained by application of the chain rule:

vi(y′) = ∂vy
′i = ∂vy

′i(y) = ∂y′i(y)
∂yj

∂vy
j = ∂y′i(y)

∂yj
vj(y). The right hand side of this expression

yields the components vi(y′) expressed as functions of y. However, one may express all
coordinates y = y(y′) in terms of y′ to obtain the representation

vi(y′) =
∂y′i(y)

∂yj
vj(y)

∣∣∣∣
y=y(y′)

. (V127)

Note how Eq. (V127) generalizes the earlier result Eq. (V48). That relation described how the
components of vectors defined on a subset M ⊂ Rd change if one switches from a Cartesian
basis to a general coordinate basis. Equation (V127) describes the change of components for
more general transformations between arbitrary holonomic bases of (not necessarily embedded)
manifolds. It is also used to transcribe vector components from one coordinate language to
another in cases where a manifold cannot be covered by a single chart, cf. Fig. V18. In either
case, the Jacobi matrix, J ij = ∂y′i

∂yj
, and its inverse, (J−1)ji = ∂yj

∂y′i , are the central ingredients

of the transformation formulas associated with the map y 7→ y′(y).
To summarize, under coordinate transformations vector field expansions behave as

∂v = vj(y)∂yj = vi(y′)∂y′i =

[
vj(y)

∂y′i

∂yj

]

y=y(y′)

∂y′i . (V128)

Notice the structural similarity of the transformation formula (V128) to a ‘chain rule formula’

where ∂yj is understood as a partial derivative, and ∂yj = ∂y′i

∂yj
∂y′i is the chain rule for partial

derivatives, in the form needed to compute the action of ∂yj on a function f(y′(y)).

EXERCISE Consider the set M = {(x, y)| y > 0, |x| < y} (the shaded region in the figure).

Parameterize M by the hyperbolas,

x = ρ sinh(α), y = ρ cosh(α), (V129)

where the set U = {(ρ, α)|ρ, α ∈ R+} defines the coordinate domain. Construct the vector fields

∂ρ and ∂α, i.e. the fields defining the holonomic frame of the hyperbolic coordinate system, and find

their components in Cartesian coordinates, ((∂ρ)
x, (∂ρ)

y)T and ((∂α)x, (∂α)y)T .

6

A word on notational conventions: vector fields can be expanded in different coordinate bases as
v = vj(x)∂xj = vj(y)∂yj = vj(z)∂zj , . . . . In this text, we will use a convention where the argument of the
coefficient functions in vj(y)∂yj indicates which coordinate system they refer to. It is important to keep this

point in mind when coordinate changes are discussed. For example, in the relation vi(y′(y)) = ∂y′i

∂yj v
j(y),

the y-coefficient functions vj(y) should be carefully distinguished from the functions vi(y′(y)), which are the
y′-coefficient functions expressed in terms of the y-coordinates. Although expressions such as vi(y′(y)) may
be unwieldy, the systematic use of this notation avoids errors which often occur in more implicit formulations
of coordinate changes.
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Figure V23: Hyperbolic coordinates parameterizing a ‘cone’ (shaded region) in the two-dimensional
plane.

To summarize our so far discussion, we have seen how to construct tangent vector spaces TrM
describing the asymptotic neighborhoods of individual points r on a manifold. The vectors of
these spaces are in one-to-one relation to equivalence classes of curves, [r(t)], traversing r ‘in
the same direction and at the same speed’. Tangent vectors can be thought of as pointers
along these curves. However, in most applications it is more expedient to understand them as
directional derivatives, ∂v, monitoring how smooth functions f(r) change along these curves.
All three pictures are equivalent, and the connection is made quantitative by representing
tangent vectors through their components in a system of coordinates, y, as discussed above.
We learned how a system of coordinates, yi, defines basis vectors, ∂j, for these tangent spaces,
and how generic tangent vectors ∂v can be expanded in terms of these. Although it is tempting
to visualize tangent vectors within the framework of an embedding of M in a ‘larger’ space,
the tangent space construction as such does not require this additional structure.

Tangent bundle and vector fields

The discussion of the previous subsection was specific to individual points, r, on a man-
ifold. Ultimately, however, we aim to employ tangent spaces as a means to describe the
geometry of manifolds at large. Although tangent spaces at different points all have the same
dimensionality, d, they differ from point to point (much like differently oriented planes in R3

are different two-dimensional vector spaces). This motivates the introduction of a ‘container
set’, the tangent bundle

TM ≡
⋃

r∈M
TrM, (V130)

as the formal union of all tangent spaces. The most important function of the tangent bundle
is that it accommodates the vector fields of a manifold. A vector field ∂v is a smooth map,

∂v : M → TM, r 7→ ∂v,r, (V131)

that assigns a vector ∂v,r to each point r. The set of all vector fields on M is often denoted
vect(M). When M is embedded in a vector space Rn, this definition coincides with our earlier
understanding of vector fields (think about this point).
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A set of vector fields, {∂vj}, j = 1, . . . , d, such that
for all r, the vectors {∂vj ,r} define a basis of TrM , is
called a frame of M . Our preferred frames will be holo-
nomic frames, i.e. frames formed by the vectors {(∂j)r}
for a chosen coordinate system (see figure). In a coordi-
nate frame, any vector field ∂v can be expanded as ∂v = vj∂j, where the d components vj are
now smooth functions on the manifold, vj : M → R, r 7→ vjr . The values of these functions
at r are obtained by taking the directional derivatives, vjr = ∂v,ry

j, of the coordinate functions
according to the prescriptions discussed in the previous subsection (cf. Eq. (V124)).

INFO In practice, vector fields on manifolds are often defined through a flow on the manifold. A

flow, Φ : I ×X 7→ M , (t, r) 7→ Φt(r), X ⊂ M , I ⊂ R is a family of curves (locally) covering the

manifold. These curves, called field lines, can be parameterized such that Φ0(r) = r, i.e. for fixed

r, Φt(r) is a curve passing thorough r at time t = 0. The metaphorical analogy is that of a liquid

streaming through the manifold, hence the name flow. For example, the coordinate lines of the jth

coordinate of a local chart can be understood as a system of field lines with Φt(r) = r(y + ejt),

where y = y(r) is the coordinate representation of r. Likewise, the flow of a system of n differential

equations introduced in section C7.5 defines a system of field lines, where the domain of definition

of the equations, X ⊂ Rn, assumes the role of the manifold. A given flow Φt(r) defines a vector

field, say ∂v, via the following construction: For each r ∈ X in the domain of definition of the flow,

we view Φt(r) as a representative curve for a vector tangent to the corresponding field line at t = 0,

and denote this vector by ∂v,r ∈ TrM . We then define ∂v as the set, {∂v,r}, of all such vectors as r

traverses X. For example, each of the fields ∂i that define the coordinate frame itself is generated by

such a ‘coordinate flow’, namely that along the coordinate lines of the corresponding ith coordinate.

As an example, let M = S2 be the unit sphere, locally parame-

trized by spherical coordinates y = (θ, φ)T (we do not forget that

the standard spherical coordinate chart does not reach all points

in M). Consider the flow locally defined through y(Φt(r)) = (θ +

at, φ+t)T , a ∈ R. This is a system of spiraling curves on the sphere,

as shown in the figure for a = 0.2. The corresponding vector field,

say ∂v, has the local coordinate representation vθr = ∂tΦ
θ
t

∣∣
t=0

(r) =

a and analogously vφr = 1. Its expansion in the holonomic basis

thus reads ∂v = a∂θ + ∂φ.
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REMARK What follows builds on chapter L11; recapitulate, if necessary.

In this chapter, we introduce differential forms as a powerful tool to work with the geometry
of manifolds, both from a mathematical and a physical perspective. Our discussion so far has
shown how manifolds can be described by local linearizations – the system of tangent spaces.
The focus was on the construction of the vectorial elements of these spaces, the tangent
vectors, and on their description in terms of coordinates. We now take an essential next step
and add to our previous description the elements of multi linear algebra. Adapting the concepts
introduced in chapter L11 for general vector spaces to the bundle of tangent vector spaces,
we will introduce dual vectors and tensors of higher degree on manifolds.

These constructions will lead to a synthesis of elements of multilinear algebra and of calcu-
lus. Much like tensors generalize the concept of vectors, smoothly varying (i.e. differentiable)
tensor fields emerge as generalizations of vector fields. Differential forms are a subclass of
tensor fields which play an important role in calculus and differential geometry, and are be-
coming increasingly important as a tool of modern physics. Indeed, many physical objects
traditionally described as vector fields – force fields, vector potentials (sic), magnetic fluxes,
etc. – are in fact differential forms. It is increasingly recognized that a language using differen-
tial forms provides cleaner and more natural descriptions of the physical phenomena related to
these objects. Some of these applications will be touched upon in the final chapter of part V,
chapter V7, where we outline how classical electrodynamics can be formulated in the language
of differential forms.

V5.1 Cotangent space and differential one-forms

In section L11.2 we introduced the dual space of a vector space. Its elements, the dual vectors,
are linear maps of vectors into the reals. In the following, we will explore a particular class
of dual spaces, namely those dual to the tangent spaces of a manifold. We will see that
these spaces play an important role both in the description of manifolds and in applications in
physics.

Cotangent space

459
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The dual space of the tangent space, TrM , of a
manifold is called the cotangent space, TrM

∗,
to M at r. Its elements,

φr : TrM → R, ∂v,r 7→ φr(∂v,r), (V132)

are linear maps of tangent vectors into the real numbers and are called one-forms. In the fig-
ure, a form φr is represented by a pattern of parallel lines, as in Fig. L21(b) (such visualizations
are useful for illustrative purposes but not widely used in concrete applications).

Since each tangent space, TrM , of a manifold is defined with reference to a base point,
r, the dual space, TrM

∗, too, is specific to this point. This dependence is emphasized by the
definition, where both the argument vectors, ∂v,r, and the one-forms, φr, carry a base point
subscript. However, it is customary to suppress this subscript (∂v,r → ∂v and φr → φ) if the
identity of the base point is clear from the context.

In analogy to the tangent bundle, we define the cotangent bundle of the manifold,

TM∗ ≡
⋃

r∈M
TrM

∗, (V133)

as the union of its cotangent spaces. Much like a vector field, ∂v : M → TM , r 7→ ∂v,r (cf.
Eq. (V131)) is a smooth map which assigns a vector, ∂v,r ∈ TrM , to each point r in M , a
differential one-form, or just one-form, is a smooth map,

φ : M → TM∗, r 7→ φr, (V134)

which assigns a dual vector, φr ∈ TrM∗, to each r. The assignment is ‘smooth’ in the sense
that if the form acts on a smooth vector field, ∂v, then φr(∂v,r) is a smooth function of r.
We denote the set of all one-forms satisfying this condition by Λ1(M).

The definition above states that forms may be understood as maps

φ : vect(M)→ Λ0(M), ∂v 7→ φ(∂v), (V135)

assigning to vector fields smooth functions φ(∂v) : M → R, r 7→ φr(∂v,r). In the present
context, it is customary to denote smooth functions as ‘zero-forms’, and to denote the set
of all these functions by the symbol Λ0(M). The rationale behind this notation will become
evident a little further down.

Note that the two equations, Eqs. (V134) and (V135) emphasize different aspects of the
differential form. The first defines the differential form as a smooth assignment of points, r,
to one-forms, φr, while the second defines it via its action on vector fields. These are two faces
of the same coin and it makes sense to use the same symbol φ in both equations although,
strictly speaking, slightly different mappings are described.

Differential of functions

Consider a smooth function f : Rd 7→ R defined in Rd. In section ?? we introduced the
total differential dfx as a map acting on vectors v as dfx(v) = ∂vf ≡ dt

∣∣
t=0
f(x + tv). This
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definition is readily generalized to that of the differential of functions on manifolds acting on
vectors of their tangent spaces. We introduce the differential of a function f : M → R as

dfr : TrM → R, ∂v,r 7→ dfr(∂v,r) ≡ (∂vf)(r) = dtf(r(0)). (V136)

This equation describes the local action of dfr on vectors ∂v,r ∈ TrM , where the directional
derivative appearing on the right is the same as that in Eq. (V119). The corresponding
differential one-form, df , extends the definition to an action on vector fields as

df : vect(M)→ Λ0(M), ∂v 7→ df(∂v) = ∂vf, (V137)

where (df(∂v))r = dfr(∂v,r) = (∂vf)(r) is defined locally as usual. Note that the definition
df(∂v) = ∂vf given in Eq. (V136) can be read in two ways. We may consider df(∂v) as the
action of a fixed function on different vectors via the differential. Previously, in Eq. (V119), the
same expression was interpreted as ∂vf , i.e. the action of a fixed vector on different functions.
In either interpretation the directional derivative of the function along the vector is taken. The
differential is linear in its arguments, dfr(∂u+∂v) = dfr(∂u)+dfr(∂v), and it varies smoothly
with r if ∂v ∈ vect(M) is a smooth vector field. This identifies df as a proper differential
form.

Coordinate bases of cotangent space

Consider the differentials dyi of the coordinate functions, yi : M → R. These differentials
define the dual basis corresponding to the holonomic basis ∂j, i.e. they form a basis of
cotangent space. To see why, consider the action of dyi on ∂j, i.e. the directional derivative
of the ith coordinate in the direction of the jth coordinate basis vector,

dyi(∂j) = ∂jy
i = δij, (V138)

which is the defining relation for a dual basis, cf. Eq. (L254). Arbitrary forms φ ∈ Λ1(M)
can be expanded in the dual basis as φ = φidy

i. As with general dual basis expansions
(Eq. (L256)), the components of the form are found by evaluating the form on elements of
the direct basis. This yields φi = φ(∂i), i.e. we have the result

φ = φidy
i, φi = φ(∂i), (V139)

where the components φi ∈ Λ0(M) are smooth functions, φi(r), on M . Expansions of this
type are called coordinate representations of forms.

1

In the specific case where the form is the differential of a function, φ = df , the components
are obtained as df(∂i) = ∂if = ∂yif(y). The expansion then assumes the form

df =
∂f(y)

∂yi
dyi, (V140)

1

A d-component representation of forms as ‘dual vectors’ can be obtained, if desired, by representing dyi

by the ith standard vector ei, in which case φ is represented by φie
i = (φ1, . . . , φd).



462 V5 Alternating differential forms

and generalizes Eq. (V62) from section V3.1 to the context of general differentiable manifolds.
As with coordinate representations of tangent vectors, one often needs to change coordi-

nates in the representations of forms. Consider a coordinate change expressing y′ through
y-coordinates via the map y 7→ y′(y), and the expansions of a form, φ = φi(y

′)dy′i =
φj(y)dyj, in these two systems.

2
The component functions in the y-system, φj(y), are

obtained from those of the y′-representation as φj(y) = φ(∂yj) = (φi(y
′)dy′i)(∂yj)

(V137)
=

φi(y
′)∂y

′i

∂yj
. Expressing the r.h.s. in terms of y-coordinates we are led to

φ = φi(y
′) dy′i =

[
φi(y

′)
∂y′i

∂yj

]

y′=y′(y)

dyj. (V141)

This formula is the twin of Eq. (V128) for the change of representation of vector fields:
whereas the components of a vector field transform contravariantly with the Jacobi matrix,
J ij = ∂y′i

∂yj
, of the map y 7→ y′(y), i.e. vi(y′) = [J ijv

j(y)]y=y(y′), the components of the

form transform covariantly with the inverse Jacobi matrix, φi(y
′) = [φj(y)(J−1)ji]y=y(y′).

These transformation properties leave the action of a form on a vector invariant, φ(∂v) =
φi(y

′)vi(y′) = φj(y(y′))vj(y(y′)), as they should.

EXAMPLE Let U = R+ × (0, 2π) be the polar coordinate domain of the slit plane, M = R2\R+.

Consider the differential form dφ generated by the angular coordinate function φ. We now switch to

a parameterization of M by Cartesian coordinates, x = (x1, x2)T , with associated holonomic frame

{∂1, ∂2}. The coordinate representations of these vectors are identical to the standard Cartesian

basis vectors, vi = ei, and the corresponding dual vectors are the differential forms dxi. They

form a basis of TM∗, and hence there is an expansion dφ = φ1dx1 + φ1dx2, with coordinate-

dependent coefficients φi(x). To identify the latter, we have to evaluate dφ(∂i) = ∂iφ for φ(x) =

arctan(x2/x1). This gives φ1 = −x2/((x1)2 + (x2)2) and φ2 = x1/((x1)2 + (x2)2), or

dφ =
−x2dx1 + x1dx2

(x1)2 + (x2)2
. (V142)

INFO Consider a point particle moving on a manifold M under the influence of a potential function,

ϕ : M → R. This function describes how the energy of the particle varies with its position. We

define the force acting on the particle as the differential one-form,

f = −dϕ = −∂ϕ(y)

∂yi
dyi, (V143)

where y is a coordinate vector and ϕ(y) = ϕ(r(y)), as usual. To understand the meaning of this form,

let r1 = r(y) and r2 = r(y + ∆) be two points infinitesimally close to each other on the manifold,

where the displacement ∆ = δjej denotes the difference in their coordinates. The infinitesimal

2

As for vectors,6 the argument of a coefficient function indicates which coordinate systems it refers to.
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tangent vector ∂∆ ≡ δj∂j in the tangent space Tr1M to r1 then is a vector, with infinitesimal

components δj , ‘pointing in the direction’ of r2.
3

Equivalently, we may view ∂∆ as a tangent vector

corresponding to a curve connecting the points r1 and r2 on the manifold. The energy difference

δφ ≡ ϕ(r2)− ϕ(r1) can then be expressed as

δφ = ϕ(y + ∆)− ϕ(y) ' ∂ϕ(y)

∂yj
δj

(V138)
=

(
∂ϕ(y)

∂yi
dyi
)

(δj∂j) = −f(∂∆). (V144)

This shows how the potential difference between nearby points equals the (negative of the) force form

applied to the tangent vector, ∂∆, describing their separation. The definition (potential difference)

= (force form acting on vector) differs from the traditional view where force is a vector. Representing

this vector in a boldface notation f , potential differences between points separated by a small vector

∆ are scalar products, δφ = −〈f ,∆〉. We will return to the discussion of the differences between

the two formulations in chapter V6 below.

Finally, a comment on potentially confusing notation: in the physics literature formulations

like ‘let dϕ = ϕ(r2)− ϕ(r1) be the small potential difference between nearby points’ are frequently

used. Here, we express the same difference as dϕ(∂∆). In the present approach, dϕ is a differential

form and not ‘small’ in any sense. The smallness is in the argument vector, ∂∆. What the more

casual physics formulation actually refers to is the differential of the function, dϕ, applied to a small

argument vector. If one is aware of this interpretation, confusion can be avoided.

V5.2 Pushforward and Pullback

At this stage, we have introduced the basic structures used to describe the geometry of
manifolds, coordinates, tangent and co-tangent space, vector fields and forms. We now take
the next step to consider maps on manifolds. This will include maps F : M → L establishing
connections between different manifolds whose dimensions, dim(M) ≡ d and dim(L) ≡ c,
need not even be the same, or maps F : M →M describing structures on a single manifold.
An example with d = c is a coordinate map for the manifold L of the form F ≡ r : U → L,
y 7→ r(y), with M ≡ U ⊂ Rd being the coordinate domain. Further examples include
the flow, Φt, on a manifold (cf. discussion on p. V4.2), described by a map of the form
F = Φt : M → M , r 7→ Φt(r); real-valued functions on a manifold, F : M → L ≡ R

r 7→ F (r); and many others.
Our goal in this section is to understand how the two fundamental geometric structures

defined on manifolds, namely vectors fields and forms, behave under the action of a map. The
general situation is illustrated in Fig. V24: given a map

F : M → L, r 7→ q(r), (V145)

we can ‘pushforward’
4

a vector field ∂v ∈ vect(M) to a vector field F∗∂v ∈ vect(L) on the

3

Quotes are used because the construction does not require M to be embedded in a vector space. All
concrete vector operations are performed in the coordinate domain. Keep an eye on this point.

4

The operation is commonly denoted as ‘pushforward’, although ‘push-forward’ or ‘push forward’ would
seem to be more natural ways of writing.
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image domain. Likewise, a differential form ω ∈ Λ1(L) defined on the image of F can be
‘pulled back’ to a differential form F ∗ω ∈ Λ1(M) on M .

M

L

r )r(F=q

pullback

pushforward

F ∗φq

v,r∂

v,r∂∗F

Figure V24: Pushforward of vectors and pullback of forms: under pushforward, vectors ∂v,r on M
map to vectors F∗∂v,r on L. Forms ωq on L get pulled back to forms F ∗ωq on M . For illustrative
purposes, we have visualized the 1-forms as lines in a two-dimensional manifold M , or as planes in
a three-dimensional manifold L, cf. section L11.6.

Pushforward

r

)t(r

L

)r(F=q

M

))t(r(F) =t(q
∗F

v,r∂∗F

v,r∂

The idea of pushforward is eas-
ily explained: assume that a vec-
tor ∂v,r ∈ TrM describes the
separation between two nearby
points on the manifold M (such
as the separation of two neigh-
boring points on a curve). Un-
der F these points get mapped to points which now are close in L. The image of ∂v,r under
pushforward is the vector F∗∂v,r ∈ TqL describing the separation between these image points.

To make this definition quantitative, let ∂v,r ∈ TrM be represented by a curve r(t).
The vector pushforward, F∗∂v,r ∈ TqL, is then represented by the curve q(t) ≡ F (r(t)).
Pushforward is linear in its arguments,

5
F∗(∂u + ∂v) = F∗(∂u) + F∗(∂v), and so we will

usually write F∗∂v (as with linear maps of vector spaces). For later reference we note that the
pushforward of a vector under a composite map, E ◦ F : M → K, where E : L → K is a
second map acts as

(E ◦ F )∗∂v = E∗(F∗∂v), (V146)

i.e. we push in two steps, first by F∗ from M to the intermediate manifold, L, and from there
by E∗ on to the final destination, K. This composition feature is a direct consequence of the
definition of pushforward.

5

Intuitively, the linearity of this map should be evident. An economic way to verify it explicitly is by
inspection of the coordinate representation to be discussed momentarily.
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Component representations of the pushforward vector F∗∂v are computed in the
usual way: pick a coordinate system x on L and in this way define a holonomic basis ∂xi . The
coefficients of the expansion F∗∂v = (F∗∂v)i∂xi are then obtained by applying F∗∂v to the
coordinate functions, (F∗∂v)i = (F∗∂v)xi = dtx

i(q(0)) = dtx
i(F (r(0))) ≡ dtF

i(r(0)), where
the shorthand F i = xi(F ) was used for the coordinate components of F . One often wants
to express these components in terms of those of the vector ∂v = vj∂yj , where a coordinate
system y on M is assumed. This can be done by representing the map F itself in a coordinate
language as F (y) = F (r(y)). Curves r(t) = r(y(t)) representing ∂v then have coordinate
representations y(t), and vj = ∂vy

j = dty
j(0), as before. In this way, the components of the

pushforward vector are obtained as (F∗∂v)i = dtF
i(y(0)) = ∂F i(y(0))

∂yj
dty

j(0) = ∂F i(y)
∂yj

vj, and

we have the expansion
6

F∗∂v = ∂xi

[
∂F i(y)

∂yj
vj
]

y=y(x)

. (V147)

The architecture of this formula underpins the qualitative definition of pushforward given
above: under F , a vector ∂v representing an ‘infinitesimal’ separation on M gets mapped
to a vector F∗∂v whose coordinate representation has components ∂F i

∂yj
vj. Here, the Jacobi

matrix ∂F i

∂yj
is a generalization of those appearing in Eqs. (V45) and (V128). It describes how

the coordinates F i(y) change under infinitesimal variations of their arguments y, and ∂F i

∂yj
vj is

the change in F i corresponding to the change in y described by the displacement vector ∂v.

If ∂v : M → TM , r 7→ ∂v,r is a vector field, the pushforward F∗ : TM → TL may
be applied to all vectors ∂v,r. If, and only if, F is injective, this yields a vector field, F∗∂v,
defined on the image F (M) ⊂ L. The injectivity condition is essential, for if F would map
different points to the same image, F (r1) = F (r2) = q, a given vector field ∂v could lead
to two different image tangent vectors, F∗∂v,r1 and F∗∂v,r2 , in the tangent space TqL, i.e.
the image vector field would be ill-defined at q. The pushforward operation defined by
injective maps F ,

F∗ : vect(M)→ vect(F (M)), ∂v 7→ F∗∂v, (V148)

can therefore be understood as a map from the space of vector fields on M to those on F (M).

Various mathematical operations routinely applied in physics are pushforwards, although
they are usually not understood in this way. Let us illustrate this point on two examples.

6

Here, ∂xi is a vector, not a partial derivative. We write it to the left to emphasize the structure of the
indices that are pairwise contracted.
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∗γ

γ

te

t

)t(v

)t(q

I

L

. Consider a curve, γ : I → L ⊂ Rc, t 7→ q(t), where I ⊂
R is an open interval. We now have the identifications
M = I, and F = γ. In the present context it does not
make sense to distinguish between the one-dimensional
‘manifold’, I, and its coordinate representation,

7
and

the curve parameter t may be considered as an element of I and as a coordinate at the
same time.

The manifold I has a one-dimensional tangent space, TtI, spanned by a vector ∂t. We may
represent this vector via the representing curve t(s) = t+s, such that the single component
of ∂t is obtained as ds

∣∣
s=0

(t+s) = 1. The pushforward of ∂t under γ, namely γ∗∂t, has the

coordinate representation ds
∣∣
s=0

q(t+s) = dt q(t) = v(t), which is just the curve velocity
in L. We conclude that the velocity vector tangent to a curve can be interpreted as the
pushforward of the single ‘unit vector’ tangent to the parameter interval.

. Consider M = L = Rd and let F = A be a linear map. As in the previous example, we
do not distinguish between M = Rd and its (Cartesian) coordinate representation. The
map then has the coordinate representation y 7→ y′ = A(y) ≡ Ay with y′i = Aijy

j. The

Jacobi matrix of the transformation is given by J ij = ∂y′i

∂yj
= Aij, showing that the Jacobi

matrix of a linear map equals that map. The pushforward of a tangent vector under a linear
map, A∗∂v ≡ ∂v′ , has a coordinate transformation given by v′i = Aijv

j, as follows from
Eq. (V147). As one might have expected, tangent vectors transform contravariantly under
the map.

As an example of physical importance, consider M = L = R4 and let F = Λ be a Lorentz
transformation, i.e. an element of the special orthogonal group, O(1, 3), of linear maps
ΛTηΛ = η leaving the Minkovski metric η = diag(1,−1,−1,−1) invariant (cf. p. 111).
The Lorentz transformations Λ : R4 → R4 are linear and the above discussion implies
that v′µ = Λµ

νv
ν under the pushforward by these maps. In physics parlance it is said that

space-time vectors vµ transform contravariantly under Lorentz transformations, and this is
a well-known statement of special relativity.

Pullback

The reciprocal operation, pullback F ∗, acts on forms, and it works in the reverse direction:
a form φ ∈ Λ1(F (M)) defined on the image of F (M) ⊂ L is ‘pulled back’ to a form
F ∗φ ∈ Λ1(M) on the pre-image M .

7

Fomally, one may consider I parameterized by a ‘coordinate domain’ U = I, where U 3 y(t) = t ∈ I is an
identity coordinate assignment. Clearly, however, this type of overhead is excessive and does not make much
sense, unless different parameterizations of the same ‘manifold’ I are considered, e.g. using a parameter s(t).
This illustrates how in some cases it can be expedient to identify a manifold with its coordinate representation.
(Think how a different choice of parameterization, t 7→ s(t), may be considered as a change of coordinates of
the manifold I. As an instructive exercise, discuss how the formulas below change if the different ‘coordinate’
s is used to parameterize I.)
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r )r(q

φq(r)
F ∗φq(r) v,r∂∗Fv,r∂

M
L

F

∗F

The action of the pullback form is defined
by the relation

(F ∗φq(r))r(∂v,r) ≡ φq(r)(F∗∂v,r), (V149)

i.e. the action of the form (F ∗φq(r))r on a
vector ∂v,r ∈ TrM is found by reading out the action of the form φq(r) on the pushforward
of ∂v,r. This operation is linear, F ∗φ(∂u + ∂v) = F ∗φ(∂u) + F ∗φ(∂v), and hence defines a
one-form. Since it is evident that pullback connects forms at q(r) with forms at r, reference to
the base points are usually omitted in the notation, i.e. we just write F ∗φ, etc. The extension
of the pointwise pullback over the full image of F yields a map between differential forms,

F ∗ : Λ1(F (M))→ Λ1(M), φ 7→ F ∗φ.

For later reference we note that the pullback of a form by a composite map E ◦F : M → K,
where E : L→ K is a second map acts as

(E ◦ F )∗ω = F ∗(E∗ω), (V150)

i.e. we first pull ω from the final target, K, to the intermediary manifold L, and from there
in a second step back to M . This feature is a direct consequence of the definition.

Let us now find the coordinate representation of the pullback. Given coordinate rep-
resentations r(y) for M and q(x) for L, a form φ and its pullback F ∗φ can be expanded in
their respective cotangent spaces as φ = φi dx

i and F ∗φ = (F ∗φ)j dyj, respectively. We
seek to establish a relation between the components φi(x) and (F ∗φ)j(y). To this end, we
recall from Eq. (V139) that the components of φ are found by letting it act on L’s tangent
basis vectors, φi = φ(∂xi). Likewise, the components of the pullback form, F ∗φ, are ob-

tained by applying it to M ’s tangent basis vectors, (F ∗φ)j = (F ∗φ)(∂yj)
(V149)
= φ(F∗∂yj). We

expand the argument vector as F∗∂yj = (F∗∂yj)
i∂xi

(V147)
= ∂F i

∂yk
(∂yj)

k∂xi
(V123)
= ∂F i

∂yj
∂xi to obtain

(F ∗φ)j = φ(∂F
i

∂yj
∂xi) = ∂F i

∂yj
φi. This shows that the expansion of the pullback form is given by

F ∗φ = φi(x(y))
∂F i

∂yj
dyj. (V151)

Note the structural similarity of this formula to Eq. (V147) for the pushforward. Again the
Jacobian matrix features as the central building block. The difference is that this time it
is contracted with the covariant components, φi, of the argument form, whereas for the
pushforward the contraction was with the contravariant components, vj, of the argument
vector.

Let us discuss a few examples of pullback operations:

. Consider the force one-form, f = fidq
i, defined in the vicinity of a curve γ : I → Rc,

t 7→ q(t). (Here, F ≡ γ plays the role of the map, M = I is its one-dimensional argument
manifold, L = Rc the image manifold, and we do not discriminate between these sets and
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their coordinate representations.) The form f may be pulled back to a form γ∗f defined
on the parameter interval I. According to Eq. (V151), this form is given by

γ∗f = fi
dqi

dt
dt. (V152)

Notice how this expression is reminiscent of that appearing in Eq. (V12) in the computation
of the line integral of a force. The difference is that in that context dt referred to an
integration measure, whereas here it is a one-form. We will explain the correspondence
between the two expressions in section V5.4 when we discuss the integration of forms.

. As in the analogous pushforward example, consider M = L = Rd, let F = A be a linear
map with coordinate representation y′i = Aijy

j and φ′ be a form. Then the pullback form,
φ ≡ A∗φ′, has a coordinate representation whose components, found using Eq. (V151), are
given by φj = φ′iA

i
j, showing that the components of forms transform covariantly under

linear maps.

EXERCISE Discuss in what sense the pullback of linear algebra (section L11.9) is a special case of

the pullback defined here.

dy1

dy1

∂y2

∂y2

y

r(y)

r(U) ⊂ M

U

r∗
r∗

r

INFO Let us briefly address a subtlety concerning

the pushforward, pullback and the coordinate
representations of forms and vectors. Consider

the differential of a coordinate function, dyi. We

can think of this form in two different ways: the first

is as the differential dyi of a coordinate function yi :

r(U) 7→ R, where r(U) is the image of a coordinate

domain under the coordinate map, r : U → r(U) ⊂
M , y 7→ r(y), of the manifold (see figure). In this

way, dyi becomes a differential form on the tangent

bundle Tr(U)∗ ⊂ TM∗, and this is the interpretation we have emphasized above. Alternatively, we

may consider the differential dyi of the function yi : U 7→ R, y 7→ yi defined on the coordinate

domain itself. The function yi is now trivial, it just projects a vector y ∈ U to its ith coordinate.

Nevertheless, it is a valid function and dyi is a valid differential form, now defined on the cotangent

bundle of the coordinate domain, TU∗. Of course the two definitions are closely related: dyi

defined on TU∗ is the pullback of dyi defined on Tr(U)∗ under the coordinate map, r : U → r(U).

Conversely, dyi defined on Tr(U)∗ is the pullback of that on TU∗ under the inverse of the coordinate

map, y : r(U) → U , r 7→ y(r). To see this in explicit terms let us, for once, discriminate between

objects defined on U and r(U) by a subscript. For example, the two coordinate functions are denoted

by yiU and yir(U) and their relation is given by yiU (y) = yir(U)(r(y)). If ∂vU is a vector in U with

generating curve y(t), we then have dyiU (v) = dty
i
U (y(0)) = dty

i
r(U)(r(y(0))) = dyir(U)(r∗∂v), where

in the last equality we used the fact that the pushforward vector of ∂v is generated by the curve

r(y(t)). According to the definition of pullback, their equality means that dyiU = r∗dyir(U), as stated

above.
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The two forms dyiU and dyir(U) are so closely related that they are generally denoted by the same

symbol, dyi, and this can sometimes be a source of confusion. (For example, the symbol dθ may

either refer to a differential form defined in the tangent bundle of a two-sphere, or a differential

form in the domain of spherical coordinates, (θ, φ), of the sphere, two subtly different objects.)

Mathematically, there is practically no difference between the two forms, and its is perhaps best to

think of the two definitions above as different incarnations of the same object.

Before discussing why it can nevertheless be useful to discriminate between the two views, let us

consider the analogous situation with the coordinate basis vectors. We have defined ∂yj ≡ ∂yj ,r(U)

as basis vectors on the tangent bundle Tr(U), generated by the curves r(y + tej). These curves

are in correspondence to curves y + tej in the coordinate domain, U , where they generate vectors,

∂yj ≡ ∂yj ,U , of TU commonly denoted by the same symbol. The notation really is to the point

because the vector-differential operator in TU acts on functions as ∂yjf(y) ≡ dt
∣∣
t=0

f(y + tej), i.e.

as the ordinary partial derivative in the coordinate domain. The fact that ∂yj ,r(U) defined in Tr(U) is

obtained from the curve r(y+ tej) means that it is the pushforward of ∂yj ,U defined in TU under the

coordinate map. Combining the pushforward and pullback relation between the vectors and forms,

we obtain identical actions in U and r(U), δij = dyiU (∂yj ,U ) = r∗dyir(U)(∂yj ,U ) = dyir(U)(r∗∂yj ,U ) =

dyir(U)(∂yj ,r(U)), etc.

In the same way, we can think of a form expanded as in (V139) as a form in the cotangent

bundle of the manifold, Tr(U)∗, or in the cotangent bundle TU∗ of the coordinate domain. With

vectors expanded as in Eq. (V124) the situation is analogous. This bivariate picture of forms and

vectors suggests alternative interpretations of operations of differentiable geometry, notably those

relating to coordinate changes. For example, when deriving Eq. (V141) above we interpreted it as

a change of basis in the cotangent bundle TU∗. Alternatively, if we think of φU ≡ φi,U (y)dyiU
as a form in the U -domain of y-coordinates, then φU ′ ≡ φi,U ′(y

′)dy′iU ′ is the form represented

in the U ′-domain of y′-coordinates, and the discussion above implies that the two are related as

φU = (y′ ◦ y−1)∗φU ′ , i.e. one is the pullback of the other under the map describing the coordinate

change, y′◦y−1 : U → U ′, y 7→ y′(y). Of course, the two pictures are fully consistent with each other.

For example, one may verify that the pullback formula (V151) applied to the case F = (y′ ◦ y−1)

is identical to the basis change formula Eq. (V141). As an exercise, discuss the analogous situation

with vectors. Clarify how (V128) is obtained from (V147) if the change of vector expansions under

a change of holonomic bases is interpreted as the pushforward of vector representations between

coordinate domains.

Generally speaking, the form/vector–expanded–on–manifold view may be somewhat more ge-

ometrical, while the form/vector–expanded–in–coordinate domain is closer to the safe grounds of

calculus as it is defined relative to open subsets of Rd. It is often useful to switch between the two

interpretations or to think about an operation in both ways at the same time.

Pushforward and pullback summary

To summarize, a map F : M → L, r 7→ q(r) sends vectors ∂v ∈ TM to vectors F∗∂v ∈ TL
and forms φ ∈ TL∗ to forms F ∗φ ∈ TM∗. If coordinates are used to represent elements of
the manifolds as r(y) ∈ M and q(x) ∈ L, respectively, and F defines a map of coordinates
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as F : y 7→ x(y), the two basic formulas describing these operations read

F∗(v
j∂yj) = ∂xi

∂xi

∂yj
vj,

F ∗(φidx
i) = φi

∂xi

∂yj
dyj. (V153)

The structure of these formulas is easy to remember: simply contract the matrix elements of
the Jacobian ∂xi

∂yj
with the components of either vj or φi.

V5.3 Forms of higher degree

In section ?? we introduced alternating p-forms in vector spaces, i.e. anti-symmetric tensors
acting on sets of p-argument vectors. (If you no longer remember this section well, now would
be a good time to recapitulate.) Differential p-forms are forms of degree p on manifolds, much
like differential one-forms were one-forms on manifolds.

In differential geometry, there is a matching between the degree of a differential form and
the dimensionality of the geometric or physical objects it describes. Specifically, the one-forms
discussed so far are tailored to the representation of one-dimensional objects. For example, the
force form describes a directed quantity (the force), which is to be paired with another directed
quantity (a displacement) to yield a scalar (work). Later on, we will see that one-forms can
be integrated over one-dimensional manifolds (i.e. smooth curves), etc. In this section, we
will first construct the extension to differential p-forms and then discuss how these objects are
applied to the description of higher dimensional structures.

An alternating p-form, or just p-form, ωr, defined with reference to a point r of a manifold
is an antisymmetric map, ωr : ⊗p(TrM) → R, ((∂v1)r, . . . , (∂vp)r) 7→ ωr((∂v1)r, . . . , (∂vp)r),
assigning to p tangent vectors a number. The map is antisymmetric, i.e. the exchange of any
two argument vectors yields a minus sign. We denote the set of all p-forms by Λp(TrM).

Differential p-forms are smooth extensions of pointwise-defined p-forms to forms defined
on all of M ,

ω : ⊗pvect(M)→ Λ0(M), (∂v1 , . . . , ∂vp) 7→ ω(∂v1 , . . . , ∂vp), (V154)

where the function ω(∂v1 , . . . , ∂vp) ∈ Λ0(M) is defined through the pointwise construction,
ω(∂v1 , . . . , ∂vp)(r) = ωr((∂v1)r, . . . , (∂vp)r). The space spanned by all these forms is denoted
by Λp(M) (although Λp(TM) would be a more accurate, if lengthier, notation).

For a tangent space of dimension d = dim(TrM) = dim(M), the space Λp(TrM) is
a vector space of dimension

(
d
p

)
(recall section ??), hence

(
d
p

)
‘coordinate functions’ are

required to specify a differential p-form. (We will see momentarily how these functions are
obtained.) Since a d-dimensional vector space cannot support forms of degree higher than d,
we have Λp>d(M) = { }.
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Wedge product

All operations introduced in section ?? for p-forms of single vector spaces can be generalized
to manifolds by smooth extension of pointwise definitions for the individual tangent spaces
TrM . Specifically, the wedge product, introduced in section ??, is one such operation. Two
forms φr ∈ Λp(TrM) and ψr ∈ Λq(TrM) can be wedge-multiplied together to obtain φr∧ψr ∈
Λp+q(TrM), where the action of the product form on p+q vectors, ∂v1 , . . . , ∂vp+q , is defined by
Eq. (L277). For example, for two one-forms φr, ψr ∈ Λ1(TrM), we have (φr ∧ ψr)(∂v, ∂w) =
φr(∂v)ψr(∂w)−φr(∂w)ψr(∂v), etc. Recall the most important properties of the wedge product,
listed on p. 154.

The extension of this operation over the full manifold defines the wedge product of
differential forms,

∧ : Λp(M)⊗ Λq(M)→ Λp+q(M), (φ, ψ) 7→ φ ∧ ψ, (V155)

where φ ∧ ψ acts on pairs of vectors fields (φ ∧ ψ)(∂v, ∂w) through the point-wise action
((φ ∧ ψ)(∂v, ∂w))r = (φr ∧ ψr)(∂v,r, (∂w)r).

Coordinate representation

The wedge product is the key to the hierarchical construction of forms of higher degree
from one-forms. In particular, it can be used to represent forms in a coordinate language (cf.
Eq. (L280)).

Suppose we have a coordinate system y on a d-dimensional manifold M , with an associated
set of coordinate forms {dyi}. A general form, ω ∈ Λp(M), can then be expanded as

ω =
1

p!
ωi1,...,ip(y) dyi1 ∧ · · · ∧ dyip , (V156)

where the components ωi1,...,ip(y), antisymmetric in their indices, are smooth functions of the
coordinates. These functions are obtained by acting with the form on the basis vector fields,

ωi1,...,ip = ω(∂i1 , . . . , ∂ip). (V157)

Occasionally, it is expedient use the index permutation symmetry of the sum (both the co-
efficients and the wedge products are antisymmetric under exchange, so their product is
symmetric) to convert it into one over ordered indices but without the prefactor 1/p!, i.e.
ω =

∑
i1<···<ip ωi1,...,ip(y) dyi1 ∧ · · · ∧ dyip . (cf. Eq. (L281)).

As with one-forms, the change of representation under a change of coordinates, y 7→
y′(y), is obtained by letting the y′-representation of the form act on the basis vectors ∂yj .

Using dy′i(∂yj) = ∂y′i(y)
∂yj

, we obtain

ω =
1

p!
ωi1,...,ip(y

′) dy′i1∧ · · · ∧ dy′ip =
1

p!

[
ωi1,...,ip(y

′)
∂y′i1

∂yj1
. . .

∂y′ip

∂yjp

]

y′=y′(y)

dyj1∧ · · · ∧ dyjp ,

(V158)
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Figure V25: On the definition of density and current flow via differential forms. Discussion see text

which generalizes the one-form transformation rule (V141).

EXAMPLE In M = R2 consider the Cartesian area two-form, ω = dx1 ∧ dx2. When this form

acts on a pair of vectors, it yields ω(∂u, ∂v) = dx1(∂u)dx2(∂v)−dx2(∂u)dx1(∂v) = u1v2−u2v1, the

oriented area spanned by these vectors. The expansion of ω in a basis of polar coordinate vectors,

{∂ρ, ∂φ}, has only a single component, ωρ,φ (why?), which can be computed using Eq. (V157):

ωρ,φ = ω(∂ρ, ∂φ) = dx1(∂ρ)dx
2(∂φ)− dx2(∂ρ)dx

1(∂φ) = (∂ρx
1)(∂φx

2)− (∂ρx
2)(∂φx

1)
(V15a)
= ρ.

The polar representation of the area form is therefore given by

ω = ρdρ ∧ dφ. (V159)

Similarly, in a basis {∂y1 , ∂y2} corresponding to a general coordinate system y, the area form reads

ω =

(
∂x1

∂y1

∂x2

∂y2
− ∂x2

∂y1

∂x1

∂y2

)
dy1 ∧ dy2. (V160)

Here, the expression in parenthesis is the area of the parallelogram spanned by the two coordinate

basis vectors vj = ∂yjx (j = 1, 2) representing the tangent vectors ∂yj in Cartesian coordinates.

INFO The wedge product can be applied to construct differential forms of immediate physical

significance. Let us illustrate this point on the example of the current three-form. Consider a

situation where a large number of particles is confined to a region of space, V . Add a time axis

to obtain a four-dimensional manifold, M = R × V , parameterized by Cartesian coordinates as

x = (x0, x1, x2, x3), where x1,2,3 are Cartesian coordinate of V and x0 ≡ t is a time-like coordinate.
8

The density of particles, ρ(x), is a space-time dependent function defined such that the number

of particles in an infinitesimal cubical box with geometric volume δ1δ2δ3, located at the space-time

point t, x1, x2, x3, is given by ρ(x)δ1δ2δ3. In form language this is described by a density form,

whose application to the three vectors spanning the box yields the number of particles in it. This

leads to the definition of a differential three-form with coordinate representation

ρ = j123 dx1 ∧ dx2 ∧ dx3,

8

In applications, time, t, is often multiplied with a characteristic velocity, c (such as the speed of light), to
give all four coordinates, xµ, with µ = 0, 1, 2, 3, the same dimension of length. However, we will set c = 1 for
simplicity throughout.
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and j123(x) ≡ ρ(x). Applied to three infinitesimal tangent vectors ∂∆i
= δi∂i (no summation), this

form yields j123 dx1 ∧ dx2 ∧ dx3(∂∆1
, ∂∆2

, ∂∆3
) = j123(x)δ1δ2δ3 = ρ(x)δ1δ2δ3, as required. (Of

course the construction is not specific to cubical boxes. Show that the application of the density form

to three generic, positively oriented, infinitesimal vectors, ∂δu, ∂δv, ∂δw, with Cartesian representations

δu, δv, δw, yields j123 times the geometric volume of the parallelepiped spanned by these vectors. If

necessary, recapitulate section L11.6 on the geometric meaning of volume forms.)

The construction above may be slightly modified to describe the flow of current. The current
density in the 3-direction, j012(x), is a function defined such that the number of particles passing

through an rectangular surface of area δ1δ2 in the 12-plane within time δ0 at x equals j012(x)δ0δ1δ2.

This number equals the number of particles contained in a space-time box of volume δ0δ1δ2, i.e. a

box of spatial area δ1δ2 and temporal extension δ0, see figure V25. In analogy to the density form,

we thus define a current form,

j = j012 dx0 ∧ dx1 ∧ dx2,

whose application to the tangent vectors, ∂∆0
, ∂∆1

, ∂∆2
yields the current density j012 δ

0δ1δ2 at x.

In the same manner, current flow through area elements in the 23 and 31 plane is described by

forms with weight functions j023 and j031, respectively. Application of the form 1
2j0ij dx0∧dxi∧dxj

to an argument (∂∆0
, ∂δv, ∂δw), where δv and δw now are Cartesian coordinate vectors pointing

in spatial directions, with general components δvi and δwi, then yields j0ij δ
0δviδwj . (Verify this

result. In doing so, keep the the anti-symmetry of form-coefficients, j0ij = −j0ji in mind and recall

that summations over Latin indices 1 ≤ i, j ≤ 3 are confined to the spatial sector of the space-time

manifold.) This should be understood as the flow of particles in time δ0 through the spatial area

element spanned by the coordinate vectors δv and δw.

We finally note that the full information on particle densities and currents is contained in the

general current three-form,

j =
1

3!
jµνσ dxµ ∧ dxν ∧ dxσ, (V161)

where 0 ≤ µ, ν ≤ 3 now run over temporal and spatial indices. This form contains four independent

coefficient functions, viz. j123 for the particle density, and j0ij for the current. We finally note

that while the current form has been defined with reference to a Cartesian system, one may subject

Eq. (V161) to a coordinate change x 7→ y(x) to obtain representations of the current in other

systems.

In an info section on p. 500 below we will discuss how the above form-characterization of current

relates to the traditional physics description of the current in terms of vectors. We are not yet in a

position to address this point because the translation between the two languages requires a metric.

EXERCISE The stereographic coordinates are a coordinate system z = (z1, z2)T alternative to

the standard polar coordinates y = (θ, φ)T of the unit sphere S2. As indicated in Fig. V26, they are

defined by projecting points r on the sphere onto points q lying in a plane tangent to the southpole.

(Sometimes, a plane through the equator is used as a projection plane instead.) In this way, the

surface of the sphere gets mapped to a plane. Projections of this type find applications in diverse

fields, including in cartography, geology, or differential geometry.
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Figure V26: Stereographic projection of the sphere. To each point r on the sphere we assign a point
q in a plane tangent to the southpole by shining a light from the northpole through r. The projection
point q is defined as the intersection of the light ray with the plane. Further discussion, see text.

Verify by elementary geometric construction that the transition function between spherical and

stereographic coordinates is given by
9

y : R2 \ (R+ × {0}) −→ (0, π)× (0, 2π),

z =

(
z1

z2

)
7−→

(
θ

φ

)
(z) =


2 arctan

(
2
ρ

)

arctan
(
z2

z1

)

 , ρ ≡

√
(z1)2 + (z2)2,

z : (0, π)× (0, 2π) −→ R2 \ (R+ × {0}),

y =

(
θ

φ

)
7−→

(
z1

z2

)
(y) = ρ

(
cosφ

sinφ

)
, ρ =

2

tan
(
θ
2

) . (V162)

Also verify that sin(θ) = 4ρ
4+ρ2 . On the sphere, we define the so-called area two-form

ω ≡ sin θdθ ∧ dφ. (V163)

Notice the structural similarity between the area two-form and the ‘area-element’ sin θ dθdφ featuring

in the integration over spheres (cf. example on p. 241). In chapter V6 (cf. discussion on p. 493) we

will address the meaning of this connection and discuss how the form ω assigns to pairs of tangent

vectors on the sphere the geometric area spanned by them, hence the name area form and the

connection to the ‘area-element’ of spherical surface integration.

Apply Eq. (V158) to the case of stereographic coordinates, y′ = z, and verify that the z-

coordinate representation of the area form is given by

ω = − 1
(

1 +
(
z1

2

)2
+
(
z2

2

)2)2 dz1 ∧ dz2. (V164)

9

Note that the projection excludes the positive z1-axis, {z1 > 0, z2 = 0}, corresponding to the set
(ρ, φ) ∈ R+ × {0} which is excluded when using polar coordinates. Likewise, the points z = (0, 0)T and
‘z = ∞’ (i.e. the horizon of infinitely large z-values, ρ = ∞), corresponding to θ = π and θ = 0, are also
excluded.
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Observe how stereographic projection maps ‘small areas’ around the north pole on the sphere, where

θ is small, onto large regions in the outer plane, where ρ is large. This explains why the weight

function of the form decreases for large values of the coordinates: large values of z represent only

small geometric areas on the spere. For the same reason, the weight function enters with negative

sign: positive increments in the θ-coordinate, corresponding to positive values of the area form, lead

from north to south and are represented by negative increments in the stereographic coordinates.

This relative sign change is compensated by the sign of the weight functions. If you find this wording

too vague, it may be a good exercise to apply the area form to the pair of spherical basis vectors

(∂θ, ∂φ), in both the polar coordinate representation (V163) and the spherical one, Eq. (V164). To

compute the latter, first use Eq. (V162) to change basis vectors as ∂θ = ∂θ
∂zi∂zi , and then apply

Eq. (V164). Monitor the appearance of signs in the course of the calculation.

Pullback

The pullback of forms ω ∈ Λp(L) under a map F : M → L is computed by an obvious
generalization of the rule for one-forms:

F ∗ω(∂v1 , . . . , ∂vp) ≡ ω(F∗∂v1 , . . . , F∗∂vp), (V165)

where the left hand side defines a form F ∗ω ∈ Λp(M). Let

ω =
1

p!

c∑

i1,...,ip=1

ωi1,...,ip(x)dxi1 ∧ · · · ∧ dxip ,

be a p-form on L expanded in local coordinates, (x1, . . . , xc). The coordinate representation
of its pullback, F ∗ω, to M , is found following the same logic as in the case of one-forms
(cf. Eq.(V151)): application of the pullback form F ∗ω to the basis vectors, ∂j ≡ ∂yj of a
y-coordinate system on M yields the components as (F ∗ω)j1,...,jd = F ∗ω(∂yj1 , . . . , ∂yjd ) =

ω(F∗∂yj1 , . . . , F∗∂yjd ). Using F∗∂yj = ∂F i

∂yj
∂xi , a formula for the pullback in coordinates,

F ∗ω =
1

p!

d∑

j1,...,jp=1

c∑

i1,...,ip=1

ωi1,...,ip(x(y))
∂F i1

∂yj1
. . .

∂F ip

∂yjp
dyj1 ∧ · · · ∧ dyjp , (V166)

is obtained. This expression shows that the pullback of a p-form essentially follows from the
pullback of its constituent one-forms, F ∗dxi = δF i

∂yj
dyj.

EXERCISE Consider the volume form, ω = dx1∧dx2∧dx3. of three-dimensional space R3. (The

denotation ‘volume form’ will be justified in section V5.4.) We aim to find the representation of this

form in spherical coordinates. To this end, apply the Cartesian coordinate forms to the spherical

basis vectors as

dx1(∂θ) = ∂θ(x
1) = ∂θ(r sin θ cosφ) = r cos θ sinφ,
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etc. From these relations compute the change of representation of one-forms,

dx1 = · · ·+ r cos θ sinφ dθ + . . . ,

etc. Substitute these relations into the definition of the Cartesian volume form to obtain the volume
form in spherical coordinates,

ω = r2dr ∧ sin θdθ ∧ dφ. (V167)

Top-dimensional forms and orientation

Much like one-forms, forms of highest degree, so-called top-dimensional forms are simple,
in that they are characterized by a single coefficient function: for a form of degree d on an
d-dimensional manifold, the coordinate representation (V156) reduces to

10

ω = ω(y)dy1 ∧ · · · ∧ dyd. (V168)

Top-dimensional forms play an important role in the ‘global’ characterization of manifolds,
notably in the theory of integration to be discussed in section V5.4. They also serve to
describe the orientation of a manifold.

The heuristic meaning of orientation is that of a global sense of ‘inside and outside’, the
best known example of a non-orientable manifold being the Möbius strip (cf. p 429). A
manifold is orientable if, and only if, a globally non-vanishing top-dimensional form exists,
i.e. a form whose weight function ω(y) is globally non-vanishing. The condition ω(y) 6= 0 is
actually independent of the chosen coordinate system: under a coordinate change y 7→ y′(y),
the top-form (V168) changes according to (V158), which for p = d simplifies to

ω = ω(y′) dy′1 ∧ · · · ∧ dy′d = ω(y′(y))
∂y′1

∂yi1
. . .

∂y′d

∂yid
dyi1 ∧ · · · ∧ dyid

= ω(y′(y))
∂y′1

∂yi1
. . .

∂y′d

∂yid
εi1...iddy1 ∧ · · · ∧ dyd

= det

(
∂y′

∂y

)
ω(y′(y))dy1 ∧ · · · ∧ dyd, (V169)

εi1...in is the antisymmetric tensor, in the second line we used the antisymmetry of the exterior
product and, and in the last line ∂y′

∂y
is the Jacobi matrix of the mapping y 7→ y′(y). The last

line defines the coefficient ω(y) of the form in the y-representation, i.e. we have

ω(y) = ω(y′(y)) det

(
∂y′

∂y

)
. (V170)

The determinant of the Jacobi matrix describing a coordinate change never vanishes. If ω(y′)
is non-vanishing, ω(y) will therefore be non-vanishing, too, and vice versa.

10

Top-forms on higher dimensional manifolds are often (but certainly not always) denoted by with the symbol
ω. We will adopt this convention here.
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An orientable manifold can be covered by coordinate charts
{yi}, {y′i}, . . . such that the weight functions ω(y), ω(y′) · · · > 0
are all globally positive.

11
The result (V170) then shows that

the Jacobi matrices
(
∂y′

∂y

)
corresponding to the transformations

all have positive determinant. At the same time, these matrices
describe the change of tangent space bases, ∂yj = ∂y′i

∂yj
∂y′i (cf.

Eq. (V128)), and the positivity of their determinants means that the bases are oriented in the
same way. This shows how the existence of a globally non-vanishing d-form can be used to
provide the entire manifold with a uniform orientation. The Möbius strip introduced on p. 429
is a basic example of a manifold lacking orientability. Any attempt to extend a basis to one
covering its full tangent space leads to an orientation conflict, see the figure.

Exterior derivative

So far, we did little more than lifting operations of multi-linear algebra from single vector
spaces to the bundles of tangent spaces of of manifolds. This was achieved by the straight-
forward smooth extension of definitions applicable to isolated tangent spaces, TrM , to all of
M . The operation to be introduced next is different in that it essentially relies on the differ-
entiability of smooth structures on manifolds: we will introduce the exterior derivative, d, of
forms, i.e. an operation describing how a differential form changes along specified directions
on the manifold. Being a directional operation, this derivative will need a p-form, ω, and a
directional tangent vector, ∂v, as arguments. The exterior derivative, dω, of a p-form ω then
is an object acting on (p + 1) vectors, comprising the p-arguments of the p-form, and the
directional specifier, ∂v. More precisely, dω will be a (p+ 1)-form, i.e. the action on all of its
arguments is linear and antisymmetric.

The exterior derivative plays a very important role in establishing relations between forms
of different degree, p, and p+ 1. It is so important to the present formalism, that the theory
of differential forms is sometimes called exterior calculus. In physics contexts d maps, e.g.,
one-forms probing changes of physical quantities under directional increments to two-forms
whose arguments are area elements. In the sections below we will see how these connections
play an important role both in the geometry of manifolds and in the formulation of physical
theories.

In concrete terms, the exterior derivative is an operator

d : Λp(M)→ Λp+1(M), φ 7→ dφ, (V171)

subject to the following conditions:

. d is linear,

d(aφ+ bψ) = a dφ+ b dψ, (V172)

for a, b ∈ R.

11

If a coordinate system is such that ω(y) < 0, just sign-invert one of the coordinates, e.g. y1 → −y1,
which will effect a sign change of ω(y).
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. d obeys the graded Leibniz rule

d(φ ∧ ψ) = dφ ∧ ψ + (−)degree(φ)φ ∧ (dψ). (V173)

. d is nilpotent,

d ◦ d = 0. (V174)

. When acting on a zero-form, φ ∈ Λ0(M), i.e. a function, d reduces to the differential
discussed in section V5.1 above.

The definitions above uniquely specify d. This is best seen by letting d act on the coordinate
representation of a form, φ = 1

p!
φi1,...,ip dyi1 ∧ · · · ∧ dyip . Application of the Leibniz rule yields

d(φi1,...,ip dyi1 ∧ · · · ∧ dyip) = dφi1,...,ip ∧ dyi1 ∧ · · · ∧ dyip + φi1,...,ip d(dyi1 ∧ · · · ∧ dyip) =
dφi1,...,ip ∧ dyi1 ∧ · · · ∧ dyip where in the last step the nilpotency d2 = 0 was noted. The
expansion dφi1,...,ip = ∂jφi1,...,ipdy

j then yields

d

(
1

p!
φi1,...,ip dyi1 ∧ · · · ∧ dyip

)
=

1

p!
∂jφi1,...,ip dyj ∧ dyi1 ∧ · · · ∧ dyip . (V175)

Note that the exterior derivative form dφ contains the derivatives of the coefficient functions
∂jφi1,...,ip . This shows how d monitors the rate of change of the form φ along the manifold,
different from the form–operations discussed so far which where defined locally with reference
to individual points in M .

EXAMPLE

. In M = R3 consider the one-form φ = φ1dx1 +φ2dx2 +φ3dx3. Application of Eq. (V175) yields

dφ = (∂1φ2 − ∂2φ1)dx1 ∧ dx2 + (∂2φ3 − ∂3φ2)dx2 ∧ dx3 + (∂3φ1 − ∂1φ3)dx3 ∧ dx1. Does the

structure of the coefficients remind you of a familiar operation of vector calculus?

. In M = R3 consider the two-form j = j1dx2 ∧ dx3 + j2dx3 ∧ dx1 + j3dx1 ∧ dx2. We observe

that dj = (∂1j1 + ∂2j2 + ∂3j3)dx1 ∧ dx2 ∧ dx3.

It is a straightforward exercise (do it!) to apply the pullback formula (V166) to compute the
pullback F ∗(dφ) of the exterior derivative of a form Eq. (V175). The same formulas may be
applied to the computation of the exterior derivative d(F ∗φ) of the pullback of the form. The
results agree, i.e. the computation proves that pullback and exterior derivative commute:

dF ∗φ = F ∗ dφ. (V176)

This identity can be applied to compute combinations of pullbacks and derivatives in arbitrary
and most economic orders.
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EXAMPLE The area two-form in polar coordinates, ω = ρdρ ∧ dφ (cf. Eq. (V159)), can be

written as the exterior derivative, ω = dκ, of the one-form κ = 1
2ρ

2dφ. Now consider the pullback

y∗ to Cartesian coordinates x = (x1, x2)T under the map x 7→ y(x) = (θ, φ)T (x). Eq (V176)

implies the relation y∗ω = dy∗κ = y∗dκ, i.e. we may first pull back κ and then differentiate

in Cartesian coordinate, dy∗κ, or first differentiate and then pull back, y∗dκ. Let us verify the

equality of the operations by explicit computation: the pullback of κ is computed by application of

Eq. (V151), y∗κ = 1
2ρ

2(x)∂φ(x)
∂xj dxj = 1

2(x1dx2 − x2dx1), and the subsequent exterior derivative is

d(y∗κ) = dx1 ∧ dx2. Now check that y∗ω, computed from ω using Eq. (V170), yields the same

result. Which of the two routes do you find more economical?

EXERCISE Consider the area two-form on the sphere, ω = sin θdθ∧dφ (cf. Eq. (V163)). It can be

represented as (why?) the exterior derivative of a one-form, ω = dκ, where κ = − cos θdφ. Apply

Eq. (V162) to verify that its pullback, z∗κ, to the stereographic plane (cf. Exercise on p. 473) is

z∗κ =
1−

(ρ
2

)2
(

1 +
(ρ

2

)2)
ρ2

(z2dz1 − z1dz2), ρ2 = (z1)2 + (z2)2.

Now compute d(z∗κ) to check that it coincides with z∗ω
(V176)
= z∗(dκ), as given by Eq. (V164).

V5.4 Integration of forms

In previous chapters, we have introduced different types of integrals, beginning with the ele-
mentary one-dimensional integral of functions, then moving on to higher-dimensional integrals
of functions and integrals of vector fields. Some of these integrals required the construction
of specific ‘area and volume elements’ (cf. chapter C4) or the presence of a metric.

12
Looking

at the situation at large, one may get the impression that each particular environment requires
its own custom-made integral.

In this section we will see that a much nicer, unified understanding of integration can
be developed using differential forms: (i) with few exceptions, in mathematics integration is
always understood as an integration of forms. Specifically, (ii) the objects to integrate over
a d-dimensional manifold are d-dimensional forms, i.e. one-forms over curves, two-forms over
surfaces, three-forms over volumes, etc. (iii) No metric is required to define these integrals,
and (iv) and all variants introduced previously become special cases

13
of the unified concept.
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Figure V27: On the identification of the integral of one-forms with the Riemann integral.

Integration of one-dimensional forms in one-dimensional space

Fortunately, no added work is required to introduce the integration of forms. To start with,
consider a one-dimensional form, φ = φ(y)dy, defined on an interval I = (a, b) ∈ R. We
define the integral of this form over I as the ordinary Riemann integral of the function φ(y)
over I:

ˆ
I

φ ≡
ˆ
I

φ(y)dy =

ˆ b

a

φ(y)dy. (V177)

For example, if φ = ydy, and I = (0, 1), then
´
I
φ =
´ 1

0
ydy = 1

2
. To understand the rationale

behind this identification, we view the interval I = (a, b) as a straight, one-dimensional ‘curve’,
partitioned into N infinitesimal segments (y`, y`+1), with y` = `δ and δ = (b − a)/N . With
each such segment we associate a vector, ∂∆,` = δ∂y, in the corresponding tangent space Ty`I.
This vector is defined so as to ‘connect’ the segment’s endpoints, i.e. its single component in
the y-coordinate system is given by δ, and y`+δ = y`+1. In this way the curve can be identified
with a ‘concatenation’ of infinitesimal tangent vectors, see Fig. V27. The application of the
form φ to each such vector yields an infinitesimal number, φ(∂∆,`) = φ(y`)dy(∂∆,`) = φ(y`)δ,
and it is natural to define the integral of the form over I as the sum of these,

ˆ
I

φ ≡ lim
δ→0

∑

`

φ(∂∆,`) = lim
δ→0

δ
∑

`

φ(y`).

This is a Riemann sum, which shows the identity of the form integral and the Riemann integral.

As a physics example, consider a force form φ = f , and let ∂δr,` be the tangent vector
associated with an infinitesimal displacement along a path. The associated work, i.e. the
integral of the force along the path, is the sum of the works done along all displacements,∑

` f(∂δr,`). Notice that the incremental ‘smallness’ in the construction is not associated with
f = f(y)dy (there is no such thing as a ‘small form’). Instead, it resides in the smallness
of the infinitesimal tangent vectors. This job division may seem odd if one has been exposed
to physics parlance such as, ‘let dy be a small increment of length’, etc. To avoid confusion,
keep in mind that where differential forms are concerned, d does not mean smallness.

12

The integral of a vector field over a surface in three-dimensional space involved a vector field normal to
that surface, cf. Eq. (??). The definition of ‘normal’ requires a metric.

13

In cases where the identification of a ‘traditional integral’ with its more natural form-definition seems
awkward, the former is to blame; e.g. it may require the presence of a metric even when the latter does not.
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Figure V28: The identification of the integral of d-forms with d-dimensional Riemann integrals,
illustrated for d = 3.

Integration of top-dimensional forms

Let ω be a top-dimensional d-form on a d-dimensional manifold M , e.g. a one-form on
a line, a two-form on a surface, or a three-form in space, etc. Further, let r : U → M ,
y 7→ r(y) be a system of coordinates providing an approximate

14
coverage of M . The form ω

then affords the coordinate representation ω = ω(y) dy1 ∧ · · · ∧ dyd.
Following the logic of the previous section, it is natural to define the integral of ω over M as

ˆ
M

ω =

ˆ
M

ω(y) dy1 ∧···∧ dyd ≡
ˆ
U

ω(y) dy1 ∧···∧ dyd ≡
ˆ
U

ω(y) dy1 ... dyd, (V178)

where the individual representations emphasize slightly different aspects of the integral: the
first is the expression we aim to define, and in the second we use the expansion of the form in
coordinates. In the third, we identify the integration of the form over M with the integral of
the pullback of the form to the coordinate domain (see discussion in the info section on p. 468
for added motivation for this identification). In the crucial final definition, the integral of the
form over the open subset U ⊂ Rd is identified with a multi-dimensional Riemann integral,
where the role of the wedge product of coordinate forms is taken by the d-dimensional volume
element, dy1 ∧ dy2 ∧ . . . ∧ dyd → dy1dy2 . . . dyd.

The latter interpretation of the coordinate volume form as a Riemann volume el-
ement replicates the logic of the previous discussion and extends it to higher dimensions.
We consider the coordinate domain U partitioned into a large number of d-dimensional
cuboids at coordinates y`, with infinitesimal side lengths δj (j = 1, . . . , d) (cf. Fig. ??,
left, and section C4.3 on volume integrals). The edges of these cuboids are represented
by tangent vectors, ∂∆j ,` = δj∂j,` (no summation), in Ty`U , and their volume is (dy1 ∧
· · · ∧ dyd)(∂∆1,`, . . . , ∂∆d,`) = δ1 . . . δd. We define the integral over the form in the coordi-
nate domain as the sum of these expressions multiplied by their respective weights, ω(y`),

14

Here, as always in integration theory, we tolerate situations where the coordinates exclude sets of lower
dimension, isolated points on a circle, lines on a sphere, etc. As discussed in the info section on p. 229, such
deficiencies do not affect integrals. In rare cases, where no single coordinate system suffices to represent M
even under these relaxed conditions, the different coordinate domains of a covering atlas need to be treated
separately.
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i.e. as the sum
∑

` ω(y`)δ
1 . . . δd. In the limit δi → 0 this becomes the Riemann integral,´

U
ω(y) dy1 . . . dyd.

As an aside, we note that the ‘distorted volume elements’ discussed extensively in chap-
ter C4 (cf. Fig. C7, and several other related figures in that chapter) are spanned by the
pushforwards of the tangent vectors ∂∆j

= δj∂yj from the coordinate domain TU to the
tangent bundle TM (cf. Fig. V28, right). As discussed in the info section on p. 468 the tan-
gent vectors in TU and TM are denoted by the same symbol, and so are the corresponding
coordinate forms, dyj. The coordinate form dy1 ∧ · · · ∧ dyd defined in TU∗ or TM∗ acts
identically on the corresponding vectors and this identity is expressed by the second equality in
Eq. (V178), which identifies the integral of ω over M with that of the integral of the pullback
of ω to U .

EXAMPLE As a simple example, let M = S2 be the surface of the unit sphere, parametrized by

polar coordinates (θ, φ), and consider the integral of the area form, ω = sin(θ)dθ∧dφ. The integral

formula then gives

ˆ
S2

sin(θ)dθ ∧ dφ ≡
ˆ
U=(0,π)×(0,2π)

sin(θ)dθ ∧ dφ =

ˆ π

0
sin θ dθ

ˆ 2π

0
dφ = 4π. (V179)

Changes of coordinates and general integral transforms

Of course, the definition of the integral must be independent of the choice of coordinates.
Under a change of coordinates, y 7→ y′(y), the representation of the form changes as
specified by Eq. (V170). The integral formula then becomes

ˆ
U ′
ω(y′)dy′1 . . . dy′d =

ˆ
U ′
ω(y′)dy′1 ∧ · · · ∧ dy′d

=

ˆ
U

ω(y′(y)) det

(
∂y′

∂y

)
dy1 ∧ · · · ∧ dyd =

ˆ
U

ω(y′(y)) det

(
∂y′

∂y

)
dy1 . . . dyd,

and outermost equalities establish the compatibility with the general formulas for the change of
variables in multi-dimensional Riemann integrals, cf. Eq. (C73). The inner equality connects
the two integrals over coordinate form representations. It is instructive to read the integral´
U
ω(y)dy1∧ · · · ∧ dyd as the integral of the pullback of the form ω(y′)dy′1∧ . . .∧dy′d from

U ′ to the domain of U -coordinates.
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The latter interpretation suggests a more general and ex-
tremely useful connection between integrals of forms
over different integration domains: consider two ori-
entable manifolds of equal dimension, M and L, repre-
sented by coordinate maps r : U → M , y 7→ r(y) and
q : T → L, x 7→ q(x), respectively. Let F : M → L
be an orientation-preserving diffeomorphism between the
manifolds, i.e. a diffeomorphism such that its coordinate

representations, y 7→ x(y) ≡ F (x), have positive Jacobi matrix, det
(
∂F
∂y

)
> 0. For a

top-form ω, defined on L, we then have the important formula

ˆ
M

F ∗ω =

ˆ
L

ω. (V180)

This identity follows from the fact that the map F ◦ r : U → L, y 7→ F (r(y)), can be
seen as a coordinate representation of L, i.e. a system of coordinates alternative to x. The
definition (V178) applied to this system then states that

´
L
ω =
´
U

(F ◦ r)∗ω =
´
U
r∗(F ∗ω).

For the second equality we used the composition property of pullback, Eq. (V150). F ∗ω
is a top-form on M , and the integral of its pullback r∗(F ∗ω) to U , again according to
Eq. (V178), equals the integral of this form over its ambient manifold M ,

´
U
r∗(F ∗ω) =´

M
F ∗ω. Combining these equalities, we obtain the statement (V180). As a side remark,

notice how ‘non-technical’ this proof is: it is very general, and at the same time does not
involve complicated-looking formulas. This combination of generality and structural elegance
is a hallmark of differential form integration theory.

EXERCISE Consider the area form on the two-sphere, ω = sin(θ)dθ ∧ dφ. Its pullback, y∗ω, to

the stereographic plane is given by Eq. (V164), where y : R2 → S2 is the coordinate transformation

from the plane (modulo singular points) to the two-sphere, defined in Eq. (V162). Show that
ˆ
S2

ω =

ˆ
R2

y∗ω = 4π. (V181)

Integration of lower rank forms

Finally, let us discuss how to integrate a form of degree d, defined on a manifold L of
higher dimension, n > d, over a d-dimensional submanifold, M ⊂ L. Without much loss of
generality, we may assume the embedding manifold to be given by an open subset L ⊂ Rn,
although this identification will not be used throughout. For example, we may consider a one-
form in three-dimensional space (d = 1, n = 3) and integrate it over a curve; or a two-form
in three-dimensional space (d = 2, n = 3) and integrate it over a surface.

The definition of such integrals readily follows from the previous constructions. Let M
be parametrized by a coordinate mapping F : U → M . A form, φ, defined on L is then
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integrated over M by pulling it back to U and integrating there,

ˆ
M

φ ≡
ˆ
U

F ∗φ. (V182)

This makes sense, because in the d-dimensional domain U the d-form F ∗φ is top-dimensional
and therefore integrable via (V178).

For example, consider a one-form, φ = φi(x)dxi, defined in an n-dimensional manifold L
with coordinates x. To compute its integral over a curve, γ = M , one parameterizes the
latter by a coordinate, r : I → L, t 7→ r(t). We then have r∗φ = φi(r(t))ṙ

i(t)dt and henceˆ
γ

φ =

ˆ
I

φi(r(t))ṙ
i(t)dt. (V183)

In this formula we recognize the familiar structure of a line integral, cf. Eq. (V12). The
difference between the two expressions is that Eq. (V183) contains a form acting on the
velocity vector, φ(∂ṙ) =φiṙ

i, whereas the traditional line integral contains the scalar product
of a vector with the velocity vector, f ·ṙ = f jgjiṙ

i. From a mathematical and – as will be argued
below – also from a physical perspective, the form-variant formulation of the line integral is
the more natural. At least, it does not require the excess baggage of a scalar product. For
example, we have argued above that the force one-form, φ = f , provides a definition of work
along infinitesimal path segments that is very natural, since close to experimental protocols.
Eq. (V183) shows how such a form may be integrated to compute the work done along curves
of finite length. All this does not require the presence of a scalar product which one may argue
is conceptual and methodological ballast in the present context.

EXAMPLE As an example, let us compute the work done against the force f = x2dx1 − x1dx2

(Cartesian coordinates in R3) along one revolution of a spiral curve, γ, with parameterization r(t) =

(cos t, sin t, ct)T . This force form has components f1 = x2, f2 = −x1 and f3 = 0, hence Eq. (V183)

yields
ˆ
γ
f =

ˆ 2π

0

[
x2(t)ẋ1(t)− x1(t)ẋ2(t)

]
dt =

ˆ 2π

0
[(sin t)(sin t)− cos t(− cos t)] dt = 2π.

EXERCISE A uniform current density in z-direction (in R3) is described by the differential 2-form

j = j0 dx1∧dx2. Find the current flowing through (a) the northern hemisphere of a sphere of radius

R, (b) the full sphere. First try to find the answers using simple arguments, then check your results

by explicitly integrating j over the (hemi)sphere.

Stokes’ theorem

In the previous sections V3.2, ?? and ?? we discussed various integral identities which were
all of the form (integral of X over the d-dimensional boundary of Y ) = (integral of derivative
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of X over the (d+ 1)-dimensional interior of Y ). In all these cases, integrals over vector fields

where involved. However, the fundamental law of calculus, f(b)− f(a) =
´ b
a

dx f ′(x), too, is
of this form if we interpret {a, b} as the boundary of the interval [a, b]. The common structure
of these identities suggests that a general principle is behind the scenes.

Indeed, all the formulas alluded to above are special cases of one master-identity, the
general Stokes’ theorem. It states that for a (d − 1)-form, φ, defined on a d-dimensional
orientable manifold, M , with (d − 1) dimensional boundary, ∂M , the integral of φ over the
boundary equals the integral of the exterior derivative of the form, dφ, over M itself:

ˆ
∂M

φ =

ˆ
M

dφ. (V184)

Notice the beauty of this formula: an expression containing just a few symbols subsumes all
the different variants of boundary-bulk integral identities discussed previously.

δ1

δ2

∂U

�U

U

INFO The proof of Stokes’ theorem follows the same logic as those

of its more specialized cousins. Thanks to the flexibility of the form-

integration machinery, it can be formulated with minimal technical

effort: let r : U → M , y → r(y) be a coordinate representation of

M . The domain boundary, ∂U , then parameterizes the boundary ∂M .

The definition of form integrals means that Stokes’ theorem assumes

the form ˆ
∂U
ω =

ˆ
U

dω, (V185)

where ω = r∗φ is the pullback of φ to U , and on the r.h.s. we used the commutativity of pullback

and exterior derivative, r∗dφ = dr∗φ = dω. Without loss of generality, we assume U ⊂ Rd to be

a cuboid in Rd (see the figure for a two-dimensional representation). Following the general strategy

of the more specialized proofs discussed earlier, we partition U into many infinitesimal cuboids, U`
with boundary extensions δj , j = 1, . . . , d. The boundary integral over ∂U can then be written

as
´
∂U ω =

∑
`

´
∂U`

ω, where we used the fact that all contributions from integrals over ‘internal’

boundaries (the light gray lines in the figure) of the U`’s cancel, because the touching boundaries of

adjacent cuboids have opposite orientations. At the same time, we have
´
U dω =

∑
`

´
U`

dω, and so

the proof of the theorem reduces to the the verification of
´
∂U`

ω =
´
U`

dω for infinitesimal domains.

Let us expand the form ω with its (d− 1) independent coefficients as

ω = ω2,...,ddy2 ∧ · · · ∧ dyd + . . . + ω1,...,d−1 dy1 ∧ · · · ∧ dyd−1.

The above discussion of form integrals implies that the integral of ω over the pair of faces of cuboid

U` normal to the 1-direction is given by
[
ω2,...,d(y

1 + δ1, y2, . . . , yd) − ω2...d(y
1, y2, . . . , yd)

]
δ2. . . δd

' ∂1ω2,...,d(y`)δ
1δ2. . . δd. Adding to this the contribution of the (d− 1) remaining pairs of faces we

obtain
´
∂U`

ω =
[
∂1ω2,...,d+ · · ·+∂dω1,...,d−1

]
`
δ1. . . δd, which is equal to

´
U`

dω, the integral of the

exterior derivative, dω, of the form over the interior of the cuboid U`. This proves Stokes’ theorem

for each infinitesimal cuboid and, upon extension, for the full integration domain.
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As an example, consider the integral of a one-form φ = φidy
i over a closed curve, γ, i.e.

a curve which is the boundary, γ = ∂S, of some area S. Stokes’s theorem applied to this
situation,

¸
γ
φ =
´
S

dφ, then implies the equality of the coordinate integrals

˛
γ

φidy
i =

ˆ
S

∂jφi dy
j ∧ dyi. (V186)

The l.h.s. is a line integral of the form Eq. (V183). On the r.h.s, the antisymmetric components
∂jφi−∂iφj of the two-form have a structure reminiscent of the curl of a vector field. Eq. (V186)
thus is a formulation, in the language of differential forms, of Stokes’ theorem from vector
analysis, Eq. (V104). In chapter V6 we will discuss how a scalar product may be applied to
relate differential forms to vectors. This tool can then be applied to establish the full connection
between the general Stokes’ theorem and those of vector analysis. For the moment, we just
note that the general theorem works in all dimensions, and does not require a scalar product.
The generality of the theorem reflects that forms, rather than vectors, are the more natural
objects to integrate.

EXERCISE Write down a three-dimensional version of Stokes’ theorem, i.e. one for a two-form

with expansion φ = 1
2φijdy

i ∧ dyj , defined on a 2-dimensional surface, S = ∂V , bounding a

three-dimesional volume, V . Although there are no vector fields involved, try to identify structures

reminiscent of Gauss’ theorem. How many different components does the two-form have, and how

many has its exterior derivative? Do you see index structures similar to those appearing in the vector

field divergence? Can you suggest the construction of a vector field from the components of the

form such that the three-dimensional Stokes’ theorem assumes a form similar to the familiar Gauss

theorem?

EXAMPLE Stokes’ theorem can be applied to compute the volume of an object via a surface

integral over its bounding surface. To illustrate this statement, consider a ball, BR, of radius r = R.

Its volume can be obtained by computing the integral of ω = r2dr∧ sin(θ)dθ∧dφ, the volume form

in spherical coordinates found in Eq. (V167), over the interior of the ball:

VR =

ˆ
BR

ω
(V178)
=

ˆ R

0
r2dr

ˆ π

0
sin θ dθ

ˆ 2π

0
dφ =

1

3
4πR3 .

Alternatively, note that the volume form can be viewed as the exterior derivative, ω = dφ, of the

form φ = 1
3r

3 sin θdθ ∧ dφ. We may thus evoke Stoke’s theorem to compute the volume of BR via

an integral of φ over its surface, ∂BR, i.e. a sphere of radius R:

VR =

ˆ
BR

dφ
(V184)
=

ˆ
∂Br

φ
(V178)
=

1

3
R3

ˆ π

0
sin θdθ

ˆ 2π

0
dφ =

1

3
4πR3.



V6 Riemannian differential geometry

Beginning with section L3.3, metric structures have appeared several times in the text and
were discussed from different perspectives. In this chapter, we introduce the metric into the
framework of differential geometry, and this will reveal its full significance. Specifically, we will
discuss

. how the metric describes geometric structures in terms of lengths, angles, and curvature;

. how it enables us to ‘translate’ between forms and vectors, and also between forms of
different degrees;

. how it defines a unique top-dimensional form on a manifold and along with it ways to
determine the ‘volume’ of the latter.

V6.1 Definition of the metric on a manifold

A metric on a d-dimensional manifold M is a covariant tensor field of second degree,

g : M → TM∗ ⊗ TM∗, r 7→ gr, (V187)

smoothly assigning to each point r in M a bilinear form gr on the tangent space TrM . Much
like a differential two-form, a bilinear form gr takes two tangent vectors ∂v, ∂w ∈ TrM as
arguments to produce a number, gr(∂v, ∂w). In this way, one may interpret a metric as a map

g : vect(M)× vect(M)→ R, (∂v, ∂w) 7→ g(∂v, ∂w), (V188)

assigning to two vector fields a function via the assignment g(∂v, ∂w)r = gr(∂v,r, ∂w,r). As
with the two interpretations of forms (cf. Eqs. (V134) and (V135)), Eqs. (V187) and (V188)
are equivalent but emphasize slightly different aspects of the metric.

The crucial difference distinguishing a metric from a 2-form is that it is symmetric in its
arguments. More specifically, g is required to be

. symmetric, ∀∂v, ∂w ∈ TrM , gr(∂v, ∂w) = gr(∂w, ∂v), and

. non-degenerate, ∀∂w ∈ TrM , gr(∂v, ∂w) = 0⇒ ∂v = 0.

487
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If a metric is positive, i.e. g(∂v, ∂v) > 0 if ∂v 6= 0, it is called positive definite. More general
situations are described via the signature of a metric, i.e. a variable specifying its number
of negative eigenvalues. For a metric with q negative eigenvalues, the signature is sometimes
written as (q, p) where q + p = d, or as (+,+, . . . ,−,−, . . . ) with q pluses and p minuses.
For example, the Lorentz metric of special relativity (see info section below) has signature
(+,−,−,−). As with metrics on single vector spaces, only the sign of the eigenvalues matters
here. (One may change the norm of mutually orthogonal basis vectors to change the magnitude
of the diagonal entries of a metric, but not their sign.) Manifolds equipped with a positive
definite metric, i.e. a metric of signature (+, . . . ,+) are called Riemannian manifolds.

A convenient way of specifying a metric is in terms of the coordinate basis forms of co-
tangent space, i.e. the basis {dyi}. The expansion

g = gij(y) dyi ⊗ dyj ≡ gij(y) dyi dyj, (V189)

then defines the components of the metric tensor g(y) = {gij(y)}. The second represen-
tation, omitting the tensor product sign, is not particularly clean but prevalent in the physics
literature. For example, in Cartesian coordinates the standard metric of Rd has the form
gij = δij, i.e.

g = dx1 ⊗ dx1 + · · ·+ dxd ⊗ dxd, (V190)

and in this case, no reference to the metric tensor is made (resulting in an awkward two-index-
upstairs summation).

In the coordinate representation the action of a general metric on two vector fields, with
expansions ∂v = vi∂i and ∂w = wj∂j, yields the function

g(∂v, ∂w) = vigijw
j.

Under a coordinate change y 7→ y′(y), which expresses y′ through y, with dy′i = ∂y′i

∂yk
dyk,

the metric changes covariantly, i.e. as a covariant tensor of second degree, or a bilinear form:

g = gij(y
′) dy′i ⊗ dy′j = gij(y

′(y))
∂y′i

∂yk
∂y′j

∂yl
dyk ⊗ dyl ≡ gkl(y) dyk ⊗ dyl. (V191)

The representation on the r.h.s. side implies the covariant change of metric coefficients,

gkl(y) ≡ gij(y
′)
∂y′i

∂yk
∂y′j

∂yl

∣∣∣∣
y′=y′(y)

, (V192)

Defining the Jacobi matrix matrix as J ik = ∂y′i

∂yk
, the covariant change of metric components

assumes the form gkl(y) = gij(y
′(y))J ikJ

j
l = (JT ) i

k gij(y
′(y))J jl, and this is sometimes ab-

breviated in a matrix notation as

g(y) = JTg(y′(y))J. (V193)
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For later reference, we note that this equation implies

det g(y) =
(
det JT det (g(y′) det J

)
y′=y′(y)

=
(
det (g(y′) det J2

)
y′=y′(y)

, (V194)

where the notation emphasizes that all y′-dependences on the r.h.s. need to be expressed
through y and det g denotes the determinant of the metric tensor, often abbreviated by
g:

1

g ≡ det g = εi1i2...idgi11gi22 . . . gidd. (V195)

For an orientable manifold, det J can be chosen positive. Then Eq. (V194) implies the relation

√
|g(y)| =

√
|g(y′(y))| det J, (V196)

which we will need below for the transformation properties of forms involving the metric tensor.

INFO Notation as in Eq. (V193) treats the metric as a matrix an should be used with care (or

even avoided at all). The metric tensor is not a matrix, although it is often treated as one in

the physics literature. Matrices are tensors of mixed co-contravariant degree (1, 1), cf. discussion

in section ??, while the metric is a bilinear form (degree (0, 2)). This difference manifests itself

in appearance of a transposition in the ‘matrix’ representation of the transformation Eq. (V193)

whereas no transposition appears in the transformation law for matrices, Eq. (L271).

Within the context of differential geometry it is generally more efficient, and certainly less prone

to errors, to work with the representation (V191), and to avoid the potentially confusing matrix

notation.

EXAMPLE Consider the standard metric of two-dimensional space in Cartesian coordinates, g =

dx1 ⊗ dx1 + dx2 ⊗ dx2. The polar representation x1 = ρ cosφ and x2 = ρ sinφ, implies dx1 =

d(ρ cosφ) = cosφ dρ − ρ sinφ dφ, and similarly for dx2. Substituting these expressions into the

metric, we obtain the standard metric of R2 in polar coordinates,

g = dρ⊗ dρ+ ρ2 dφ⊗ dφ.

Notice that the coefficients gρρ = 1 and gφφ = ρ2 appearing in this expression agree with those

defined in Eq. (V25) of section V2.3. There we had defined the coefficients of the metric as gij =

g(vi,vj) = 〈vi,vj〉, i.e. as the standard scalar products taken between elements of the coordinate

basis. In the notation of the present formalism, this equals gij = g(∂i, ∂j). The latter formula isolates

the coefficients gij in the expansion (V189), showing the equivalence of the formulations. Let us

also verify Eq. (V196): For the map y 7→ x(y) expressing Cartesian in terms of polar coordinates,√
|g(y)| = √gρρgφφ = ρ is indeed consistent with

√
|g(x(y))|det

(
x
y

) (V49)
= 1 · ρ.

1

The overloading of the symbol ‘g’, which is simultaneously used for the abstract metric, its representation
as a tensor, and the determinant of that tensor, should be no cause for concern. The notation is standard and
which particular g is meant generally follows from the context.
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Figure V29: On the definition of the Gaussian curvature of surfaces S in R3. For a given point r ∈ S,
one considers the set of curves defined by the intersection of all planes containing the normal to S at
r. The Gaussian curvature, κ = κminκmax, is defined as the product of the minimum and maximum
curvatures, κmin and κmax, of these curves. Left/center/right: surface of negative/positive/vanishing
curvature.

EXERCISE Show that the standard metric of R3 in spherical coordinates (r, θ, φ) is given by

g = dr ⊗ dr + r2dθ ⊗ dθ + r2 sin2 θ dφ⊗ dφ. (V197)

Check that this result is consist with Eq. (V196) applied to the map y 7→ x(y) between Cartesian

and spherical coordinates.

V6.2 Norm, angles, curvature

Given a metric, we can introduce concepts such as lengths and angles, etc. to the linear
algebra of tangent spaces. For example, the norm of tangent vectors, ‖∂v‖ =

√
g(∂v, ∂v)

may be determined to obtain normalized vectors, ∂n ≡ ∂v
‖∂v‖ , and by extension normalized vector

fields. A basis {∂ei} of normalized and mutually orthogonal vector fields, g(∂ei , ∂ej) = ηij,
with |ηij| = δij, is called an orthonormal basis. For a positive definite metric, orthonormal
bases have ηij = δij, while for a signature (q, d−q) metric, they have ηii = −1 for i = 1, . . . , q
and ηii = 1 for i = q + 1, . . . , d, with δi 6=j = 0.

The curvilinear bases discussed in section V2.3 were orthonormal bases, obtained by nor-
malization of a holonomic basis. For example, in spherical coordinates the holonomic basis
vectors ∂r, ∂θ and ∂φ have norm 1, r and r sin θ, respectively, and this yields ∂er = ∂r,
∂eθ = r−1∂θ and ∂eφ = (r sin θ)−1∂φ. Likewise, we can define the local angle between vec-
tors, cos(θ) = g(∂v, ∂w)/(‖∂v‖ ‖∂w‖) and hence introduce, for example, a vector normal to a
2-dimensional surface embedded in 3-dimensional space.

INFO The metric is instrumental to the description of the elementary geometry of manifolds. For

example, it can be used to quantify the curvature of surfaces in three-dimensional space. To define

the curvature at a surface point r ∈ S one first constructs a normal vector to S at r (how can

this be done?) and then considers the set of all planes containing that normal, see Fig. V29. The

intersection of any such plane with the surface defines a curve in S, and each of these curves has a

local curvature, κ, at r. As discussed in problem xx that curvature is a number, viz. the inverse of
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the radius of a circle locally approximating the curve at r. Denote the maximum and the minimum

of these curvatures over the set of all curves through r by κmin and κmax, respectively. The product

of these two numbers, K ≡ κminκmax, defines the so-called Gaussian curvature of the surface at r.

The Gaussian curvature is given a positive or negative sign depending on whether the two ‘principal’

curves with extremal curvature bend in the same direction or in opposite directions. Fig. V29 shows

situations with negative, positive, and vanishing curvature. For example, a cylinder, although different

from a plane, is a surface of globally vanishing curvature since κmin = 0 everywhere. Generic surfaces

have regions of positive and negative curvature separated by lines of vanishing curvature.

A manifold with globally vanishing curvature is called a flat manifold. A manifold is flat if

coordinate systems with constant metric tensor gij = ηij can be found. The coordinate lines of these

coordinates are curves of vanishing curvature, and they define the vanishing Gaussian curvature of the

manifold. For example, a cylinder of radius R centered along the z-axis may be parameterized by the

coordinates coordinates (ϕ = Rφ, z) ((ρ, φ, z) are standard cylindrical coordinates.) The coordinate

vectors corresponding to these vectors read (cf. Eq. (V126)) ∂ϕ = − sin(R−1ϕ)∂1 + cos(R−1ϕ)∂2,

and ∂z = ∂3, where ∂1,2,3 are cartesian coordinate vectors in R3. (We here assume the cylinder

to be embedded in three dimensional space.) The 2 × 2 diagonal metric tensor defined by these

vectors reads gϕϕ = gzz = 1, i.e. gij = δij , and this demonstrates the flatness of the cylinder. The

condition of the existence of a global representation of this type is of importance here. On a curved

manifold, M , local transformations with representation gr,ij = ηr,ij at any point r ∈ M can be

found. However, it is not possible to extend them to a globally constant metric.

In an orthonormal frame, the metric assumes the form

g ≡ η =
∑

i

ηii dx
i ⊗ dxi, (V198)

where ηii = ±1 according to the signature, and η is standard notation for the metric in or-
thonormal representations. We here introduce the convention to label coordinates which are
orthonormal in this sense by the symbol x. The notation generalizes the concept of Carte-
sian coordinates (orthonormal coordinates of a positive definite metric) to positive indefinite
metrics.

Once a metric has been brought to a diagonal representation, η, it is often expedient to
consider the restricted set of basis transformations which leave this form invariant. According
to Eq. (V193), the corresponding Jacobi matrices satisfy the condition

JTηJ = η.

The set of these transformation matrices, ‘stabilizing’ the metric in this sense defines the
invariance group of the metric. (Why do these matrices form a group?) For example, the
invariance group of the standard metric ηii = 1 in three-dimensional space is the group O(3)
of three-dimensional matrices obeying the constraint JTJ = 1.

INFO The Minkovski metric of four-dimensional space time R4 = R⊕R3 is a metric of signature
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(−,+,+,+) and has the orthonormal representation
2

g = η = ηµν dxµ ⊗ dxν = +dx0 ⊗ dx0 −
∑

i

dxi ⊗ dxi. (V199)

Here xi are space-like coordinates and x0 is understood as a time-like coordinate. It is customary

to set x0 = ct, where t is time and c a characteristic velocity, usually chosen to be the speed of

light. We follow a widespread convention in which Greek indices µ, ν = 0, 1, 2, 3 run through all

coordinates, while Latin indices i, j = 1, 2, 3 are space-like.

Hendrik Antoon Lorentz
1853–1928
Dutch physicist and recipient
of the 1902 Nobel prize (with
Peter Zeeman) for the expla-
nation of the Zeeman effect.
Lorentz identified the coordi-
nate transformation equations
stabilizing the Minkovski metric, and in this
way laid the mathematical foundations of
special relativity. The importance of his
work reflects in Einstein’s quotation (1953):
“For me personally he meant more than all
the others I have met on my life’s journey.”

The invariance group of the Minkovski metric

is called the Lorentz group O(1, 3). Its transfor-

mations, conventionally denoted by Λ ∈ O(1, 3),

obey

ΛT ηΛ = η, (V200)

and are called Lorentz transformations. Im-

portant examples of Lorentz transformations in-

clude time reversal, Λ0
0 = −1, Λij = δij , with

all other elements zero, i.e. the reflection of the

time coordinate; space reflection, Λ0
0 = 1,

Λij = −1; and rotations of space, Λ0
0 = 1,

Λij = Aij , where A is a rotation (i.e. orthogonal)

matrix. However, the most interesting Lorentz

transformations are the Lorentz boosts, transformations that mix space and time coordinates. By

way of example, we consider a transformation that does not affect the coordinates x2 and x3. It is

then straightforward to verify that the condition (V200) requires Λ to have the form

Λ =




coshλ sinhλ

sinhλ coshλ

1

1


 , (V201)

where λ is a free parameter. The Lorentz boost describes the transformation between two coordinate

systems moving relative to each other in x1 direction with relative velocity v. The boost velocity is

related to the boost parameter λ as tanhλ = −v/c. For velocities |v| � c much smaller than the

speed of light, |λ| � 1, hence coshλ ' 1 and sinhλ ' −v/c. The transformed coordinates are then

given by x′1 ' x1+λx0 = x1−vt and x′0 ' x0+λx1 which is equivalent to t′ = t+O(x1v/c2). This

shows how for small velocities the Lorentz transformation leaves time approximately invariant, t′ ' t,
and just describes the change of coordinates x′1 = x1 − vt between two moving coordinate frames.

(These ‘non-relativistic’ transformations are called Galilei transformations.) However, for relativistic

velocities, |v| ∼ c, the Lorentz transformation mixes space and time coordinates inseparably and leads

to the principal effects of special relativity, the dilation of time, length contraction, the non-invariance

of mass, etc. For a physical discussion of these effects we refer to courses in special relativity.

2

In the literature one often finds the alternative definition η = −dx0 ⊗ dx0 +
∑
i dxi ⊗ dxi. The overall

sign difference between the two conventions, η ↔ −η, does not have any significant consequences.
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V6.3 Metric and integration

A metric provides the means to determine the ‘volume’ of d-dimensional manifolds, i.e. the
length of curves, the area of surfaces, the volume of three-dimensional structures, etc. Recall
that the good objects to integrate on a d-dimensional manifold are d-forms. For a coordinate
transformation y 7→ y′(y), the y- and y′-coordinate representations of a d-form have weight
functions related by ω(y) = ω(y′(y)) det(∂y

′

∂y
), cf. Eq. (V169). On a general manifold, the

Jacobian of the coordinate transformation can be an arbitrary invertible matrix, hence the
weight can change arbitrarily: there does not exist a ‘canonical’ choice for the top-form.

The situation is different on (orientable) manifolds with a metric If we choose the weight
function for the y′-system as ω(y′) =

√
g(y′),

3
that of the y-system turns out to have the same

form, ω(y) =
√
g(y′(y) det

(
∂y′

∂y

)
=
√
g(y), where the second step follows from Eq. (V196).

Therefore the form

ω =
√
g(y′) dy′1 ∧ · · · ∧ dy′d =

√
g(y) dy1 ∧ · · · ∧ dyd, (V202)

called the canonical volume form on the manifold, has the distinguishing property of being
invariant under coordinate transformations.
The volume of a manifold is now defined as the integral over the volume form,

vol(M) ≡
ˆ
M

ω. (V203)

For a standard scalar product and Cartesian coordinates, g = 1, and ω = dx1 ∧ . . . dxd, the
integral reduces to the standard ‘volume integral’ discussed in chapter C4. In cases where
the integral does not exist – think of the two-dimensional plane, M = R2 – we speak of a
manifold of undetermined or infinite volume. For a general coordinate system, the volume
integral becomes

vol(M) =

ˆ
M

√
g(y) dy1∧ . . .∧dyd =

ˆ
U

√
g(y) dy1 . . . dyd, (V204)

where the second representation emphasizes that it may be interpreted as the integral of the
pullback of the volume form over the y-coordinate domain (cf. discussion on p. 468).

EXAMPLE In a Cartesian basis, the standard metric in R3 is given by (V190), i.e. it has det g = 1.

Therefore the volume form is ω = dx1 ∧dx2 ∧dx3. If we switch to spherical coordinates, the metric

tensor is given by (V197). We now have
√
g = r2 sin θ, hence the spherical representation of the

volume form reads ω = r2 sin θdr ∧ dθ ∧ dφ. Of course, this result was to be expected from our

discussion of integration in spherical coordinates in section C4.3.

3

On a manifold with indefinite metric, this needs to be replaced by
√
|g(y′)|, however we will drop the

modulus symbol for better readability.
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The two sphere can be locally identified with the coordinate domain U(θ, φ) with the spherical

metric gθθ = 1, gφφ = sin2 θ. This means that its volume form, or in view of the two-dimensionality

better to say its spherical area form, is given by ω = sin θdθ ∧ dφ. We had considered this form

before (cf. Eq.Eq. (V163)) and saw that its full integration indeed yields the area of the sphere, 4π.

V6.4 Hodge star

The spaces of p forms and (d − p)-forms, Λp(M) and Λd−p(M), both have the same
dimensionality

(
d
p

)
. This suggests that there might be a linear bijection Λp(M)→ Λd−p(M),

assigning p-forms to (d− p)-forms. For a given basis, it is indeed straightforward to construct
a map uniquely assigning to the basis p-forms of Λp(M) corresponding basis (d − p)-forms
of Λd−p(M), hence implementing a bijection (think how!). For example, in d = 3 one might
assign the basis 1-forms of a coordinate system to (3−1 = 2)-forms as dy1 ↔ dy2∧dy3, dy2 ↔
dy3 ∧ dy1, and dy3 ↔ dy1 ∧ dy2, or the 0 form 1 to the (3− 0 = 3)-form dy1 ∧ dy2 ∧ dy3.
However, much as with maps between vectors and dual vectors, the dependence of this map
on a basis makes it not canonical.

In the following we will show how a metric can be engaged to modify the assignment above
to a canonical bijection, ∗ : Λp(M) → Λd−p(M), known as the Hodge star. Only then will
we be in a position to motivate the importance of this map and discuss its applications in
mathematics and physics.

Definition of the Hodge star

REMARK Once more the notation assumes a positive metric, so that we are entitled to write square

roots of determinants as
√
g. For an indefinite metric, this needs to be replaced by

√
|g|.

Let us begin by considering d = 3 and writing the above prototypical assignment as dyi 7→
1
2
εijkdy

j ∧ dyk. The non-canonical nature of this map shows in that it will change form under
a change of coordinates, y 7→ y′(y). At the same time, we notice that the index structure of
the expression does not look nice: the index i appears upstairs on the left but downstairs on
the right. Both these deficiencies can be removed in one go via the definition

dyi 7→ ∗dyi = 1
2

√
ggijεjkldy

k ∧ dyl. (V205)

Here, the index raising operation via the matrix elements gij of the inverse metric (cf.
Eq. (L55)) fixes the index positioning, and the presence of the factor

√
g makes the map invari-

ant under transformations y 7→ y′(y). While the latter statement requires proof, it can be made
plausible as follows. Assume Eq. (V205) to hold in the primed system and then transcribe it

to unprimed coordinates as
√
g(y′(y))

(V194)
=
√
g(y) det J−1 where dy′i = ∂y′i

∂ym
dym ≡ J imdym.
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This leads to the appearance of a product of 3 matrix elements of the Jacobi matrix, fully anti-
symmetric in the matrix indices, i.e. the determinant det J , which cancels the factor det J−1.
As a result, the Hodge start operation in the unprimed system looks the same as in the primed
one. For a full formulation of the proof we refer to the info section below.

Before turning to the discussion of this map, we note that the above definition generalizes
to forms of arbitrary degree as

∗(dyi1 ∧ · · · ∧ dyip) =

√
g

(d− p)!g
i1j1 . . . gipjpεj1...jpjp+1...jddy

jp+1 ∧ · · · ∧ dyjd . (V206)

The Hodge star is thus defined as a linear map acting on generic p-forms as

∗ : Λp(M)→ Λ(d−p)(M), φ 7→ ∗φ, (V207)

∗φ = ∗
(

1

p!
φi1,...,ipdy

i1 ∧ dyip
)

=

√
g

p!(d− p)!φ
j1,...,jpεj1...jpjp+1...jddy

jp+1 ∧ · · · ∧ dyjd ,

where φj1,...,jp = φi1,...,ipg
i1j1 . . . gipjp . This definition states that a p-form with components

φi1,...,ip gets mapped to a (d−p)-form with components (∗φ)jp+1,...,jd = 1
p!

√
gφj1,...,jpεj1,...,jd . A

second application of the star maps this (d−p)-form back to a p-form (since d− (d−p) = p).
Indeed it is straightforward to verify that the Hodge star operation is almost self-involutory,

∗ ∗ φ = sgn(g)(−)p(d−p)φ, (V208)

i.e. up to a sign factor, the two-fold application of ∗ leaves forms invariant.

EXERCISE Check this property for d = 3, or perhaps even for general d.

INFO The proof of the coordinate invariance of the Hodge star operation is somewhat technical

but nevertheless instructive.
4

There are different ways of verifying the invariance. One is to start

from the definition (V206) and (i) transform the argument, i.e. the wedge product of basis forms

dyi, to the dy′j-basis. Using the yet–to–be–established invariance, one then (ii) applies ∗ to the

product of dy′j basis forms according to the y′-version of Eq. (V206). The invariance property is

established if the result coincides with the application of the original y-version of the definition to

the original form.

Before testing this feature, we note that we will need to painstakingly discriminate between

gij(y(y′)), i.e. the functions gij(y) expressed in new coordinates and gkl(y′), i.e. the matrix elements

of the inverse metric in new coordinates. The two quantities are related by (cf. Eq. (V191))

gkl(y′) = (J−1)ki(J
−1)ljg

ij(y(y′)), or (iii) (J−1)ljg
ij(y(y′)) = J ikg

kl(y′), where we noted that

the contravariant tensor gkl transforms with the inverse of the Jacobi matrix (recapitulate why, if

4

There exist alternative definitions of the Hodge star which do not utilize coordinate representations. While
the coordinate invariance of these is manifest, they require some more conceptual overhead and are therefore
not discussed here.
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necessary). Finally, it will be expedient to write wedge products of forms as dyi1 ∧ · · · ∧ dyip ≡∧p
a=1 dyia .

If we now apply the ∗-operation (V206) (defined for the y′-coordinate system) to the transformed

basis we obtain

∗
p∧

a=1

dyia
(i)
= ∗

p∧

a=1

(J−1)iakady
′ka =

p∧

a=1

(J−1)iaka ∗ dy′ka =

(ii)
=

√
g(y′)

(d− p)!

p∏

a=1

(J−1)iakag
kala(y′)εl1...ld

d∧

b=p+1

dy′lb =

(iii)
=

√
g(y′)

(d− p)!

p∏

a=1

J lajag
iaja(y(y′))εl1...ld

d∧

b=p+1

dy′lb =

=

√
g(y′)

(d− p)!

p∏

a=1

J lajag
iaja(y(y′))εl1...ld

d∧

b=p+1

J lbjbdy
jb =

=

√
g(y′)

(d− p)!εl1...ld
d∏

c=1

J lcjc

p∏

a=1

giaja(y(y′))
d∧

b=p+1

dyjb =

=

√
g(y′)

(d− p)! det Jεj1...jd

p∏

a=1

giaja(y(y′))
d∧

b=p+1

dyjb =

=

√
g(y′) detJ2

(d− p)!

p∏

a=1

giaja(y(y′))εj1...jd

d∧

b=p+1

dyjb =

=

√
g(y)

(d− p)!g
i1j1(y) . . . gipjp(y)εj1...jddy

jp+1 ∧ · · · ∧ dyjd .

where in the last step we expressed gij(y(y′)) = gij(y) as functions of the y-coordinates. Comparing

the outermost parts of this chain of equalities we observe that consistency with Eq. (V206) is

established using the y′-version of the definition. This establishes its invariance, although it has to

be admitted that the proof lacks elegance.

EXAMPLE Consider three-dimensional space parameterized in terms of spherical coordinates. The

components of the inverse of the diagonal metric are given by grr = 1, gθθ = r−2, gφφ = (r sin θ)−2.

With
√
g = r2 sin θ, Eq. (V205) yields

∗dr = 1
2

√
g grrεrjk dyj ∧ dyk = r2 sin θ dθ ∧ dφ,

∗dθ = 1
2

√
g gθθ εθjkdy

j ∧ dyk = sin θ dφ ∧ dr,

∗dθ = 1
2

√
g gφφεφjkdy

j ∧ dyk = sin θ−1 dr ∧ dθ. (V209)
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V6.5 Vectors vs. one-forms vs. two-forms in R3

REMARK To simplify the notation we consider positive metrics for which
√
|g| = √g throughout.

For an indefinite metric, all formulas remain unchanged, except that the modulus under the square

root has to be put pack in place.

In R3, there are three distinct categories of tensors
5

involving three coefficient functions:

vectors: ∂v = v1∂1 + v2∂2 + v3∂3,

one-forms: φ = φ1dy1 + φ2dy2 + φ3dy3,

two-forms: ω = ω12dy1 ∧ dy2 + ω23dy2 ∧ dy3 + ω31dy3 ∧ dy1. (V210)

All of these play a role in physics, since as we saw above, various physical quantities (forces,
currents, densities, etc.) are best described as differential forms. In contrast, the traditional
physics approach uniformly treats all three-component objects inR3 (and analogously in spaces
of different dimension) as vector fields. This is possible since forms and vectors can be mapped
to each other using ‘translation rules’, which in turn depend on a metric.

However, there is a price to be paid for turning from the more natural form-representation of
observables to the monotonicity of vector fields. For example, in its differential form version the
all-important Stokes’ theorem Eq. (V184) assumes a simple and coordinate invariant form. The
one-, two- and three-dimensional versions of the theorem may be recast in a vector language
to obtain the traditional Stokes’ and Gauss’ theorems for vector field integration. In general
coordinates the vector differential operators ∇,∇×,∇· appearing in these relations assume a
complicated form and this is because the procedure needed to translate them to vector fields
turns something simple to something more complicated.

In view of the importance of the traditional approach to the formulation of physical the-
ories, this section discusses the translation between forms and vectors and its ramifications
in the operations of vector calculus. We will return to the subject from a physical perspec-
tive in chapter V7 where we compare the traditional and the form-oriented approach to the
formulation of electrodynamics.

If we want to pass between forms and vectors in three-dimensional spaces we need to know
how to convert one-forms to vectors, and one-forms to two-forms. The conversion of vectors to
two-forms is then achieved by a composition of these two elementary operations. The passage
between forms and vectors is achieved via the general isomorphism, J : V → V ∗,

6
between

vector spaces and their dual spaces discussed in section L3.3. Recall that to a vector v ∈ V
one may assign a dual vector J(v) ∈ V ∗ by requiring that

g(v, w) = J(v)w, ∀w ∈ V. (V211)

5

All operations discussed in this section are defined ‘locally’, i.e. they work for the vectors and forms of a
vector space, and equally for the vector fields and differential forms of a manifold.

6

The same symbol J is frequently used for both the isomorphism V → V ∗ and the Jacobian of smooth
maps. The two quantities are unrelated and no confusion should arise.
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operation invariant components

vector→ 1-form φ = J(∂v) φi = vjgji

1-form→ vector ∂v = J−1(φ) vj = φig
ij

1-form→ 2-form ω = ∗φ ωij =
√
ggklφlεkij

2-form→ 1-form φ = ∗ω φi = 1
2
√
g
gijε

jklωkl

2-form→ vector ∂v = J−1(∗ω) vi = 1
2
√
g
εijkωjk

vector→ 2-form ω = ∗J(∂v) ωij =
√
gvkεkij

Table V6.1: Passing between vectors, 1-forms and 2-forms in three-dimensional metric space.

In a component language this condition is written as (J(v))i ≡ vi = gijv
j, and J−1(J(v))i =

vi = gijvj for the inverse map, where the dual vector and the vector are distinguished by
the co- and contravariant positioning of the indices, respectively. In the same way a vector
field, ∂v= vj∂yj , defines a differential one-form, J(∂v), with components J(∂v)i ≡ vi = vjgji.
The action of the inverse map on a differential form, φ= φidy

i, yields a vector, J−1(φ), with
components J−1(φ)j ≡ φj = φig

ij. Again, the distinction is solely indicated by the positioning
of indices; if the symbol for a differential form appears with indices upstairs, a vector is at
hand, etc. The action of J on one-forms and vectors is summarized by

J(vj∂j) = vjgjidy
i, J−1(φidy

i) = φig
ij∂j. (V212)

The passage between one-forms and two-forms is defined by the d = 3 version
of the Hodge star. To a one-form, φ, the Hodge star assigns a two-form, ω ≡ ∗φ, with
component representation (cf. Eq. (V207)) ωij =

√
gφkεkij =

√
ggklφlεkij. From a two-

form, ω, we may pass back to a one-form by applying the Hodge star once more, φ = ∗ω.
In components, φi =

√
g

2
ωnoεnoi =

√
g

2
gijg

jmgkngloεmnoωkl = 1
2
√
g
gijε

jklωkl, where we used

εnoi = gijg
jmεmno and in the second step Eq. (L168) to convert the antisymmetrized product

of three metric coefficients in to a determinant. Finally, we may pass from two-forms to
vectors in a two-step transformation, which first maps a two-form, ω, to a one form, ∗ω,
and that to a vector, J−1(∗ω). The component representation of this mapping is given by
vi = gil(∗ω)l = 1

2
√
g
gilglmε

mjkωjk = 1
2
√
g
εijkωjk. The inverse operation, ω = ∗J(∂v), has the

component representation ωij =
√
gvkεkij. An overview of all these operations is given in

table V6.1.
These operations may now be applied to translate the form-representations of various

differential and integral operations to their traditional formulations in vector analysis.

EXERCISE Formulate the general formulas derived below for the example of spherical coordinates

(r, θ, φ) with diagonal metric grr = 1, gθθ = r2, gφφ = r2 sin2 θ. Check that the previously derived

relations (V76), (V94), and (V108) are reproduced.

Gradient: The gradient of a function f is the vector field associated with the one-form df ,
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the exterior derivative of f . It is defined as

∇f = J−1(df) (V213)

and its components are given by

∇f i = gij∂if. (V214)

This representation is equivalent to the earlier definition of the gradient of a function in
curvilinear coordinates, Eq. (V69). As discussed in section ??, the gradient vector field points
in the direction of the steepest ascent of the function f , and to describe this geometric
orientation a metric is required. Within the framework of forms, the variation of f variation
is described without metric by the exterior derivative df .

Divergence: The divergence is an operation assigning to a vector field a scalar function
through a first-oder derivative operation. This is reminiscent of the action of the exterior
derivative on a two-form which, likewise, converts a three-component object (the form) to a
scalar quantity (the single weight function characterizing the resulting three-form) via a first-
order derivative. To make the correspondence concrete, we start from a vector field and map
it to a two-form through the relation, ω = ∗J(∂v). An exterior derivative converts the two- to
a three-form, dω = d(∗J∂v). Finally, the (non-derivative) Hodge star operation is applied to
map the 3-form to a (3−3) zero form, i.e. a function. The succession of the three operations,

∇ · ∂v ≡ (∗ d ∗ J)∂v, (V215)

thus assigns functions to vector fields in a coordinate invariant manner via a single derivative
and may be considered a definition of the divergence of the vector field.

To confirm the equivalence to the previous definition (V93), which was motivated by a
geometric analysis of the sources of a vector field, we apply the succession of operations to a
vector field with components vi according to the prescriptions summarized in table V6.1. This
leads to the coordinate representation (verify!)

∇ · ∂v =
1√
g
∂i
(√

gvi
)
. (V216)

The expression on the r.h.s. is indeed equivalent to Eq. (V93).

Curl: The curl is an operation assigning to a vector field (a three-component object) another
vector field via a first-order derivative operation. In form-language a similar assignment may be
achieved by starting from a one-form (three components), acting with d to obtain a two-form
(again three components). This suggests to define the curl as

∇× ∂v = (J−1 ∗ d J)∂v, (V217)

i.e. we first pass from a vector field ∂v a one-form, J(∂v), act by d to obtain a two-form,
convert that one to a one-form, to finally map back to a vector field. The equivalence of
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this operation to the previous construction, Eq. (V107), i.e. a geometric description of the
circulation content of a vector field, is shown by application of the coordinate representation
of the operations summarized in table V6.1 to a vector field with components vi. This leads
to (check it!)

(∇× ∂v)i =
1√
g
εijk∂j

(
gklv

l
)
, (V218)

which is equivalent to Eq. (V107).
Laplacian: The Laplacian is a second-order derivative operation turning functions into func-
tions.

7
The invariant succession of steps achieving this operation reads

(0-form)
d−→ (1-form)

∗−→ (2-form)
d−→ (3-form)

∗−→ (0-form),

or ∆ ≡ ∗ d ∗ d. This can be written as

∆ = (∗ d ∗ J)(J−1d) = ∇ · ∇, (V219)

i.e. as the divergence of the gradient as defined above. In this way contact with the conven-
tional definition of the Laplace operator (V97) is established. The coordinate representation,
obtained by straightforward composition of Eqs. (V214) and (V216), reads

∆ =
1√
g
∂i
(√

ggij∂j
)
. (V220)

For the the example of the Laplacian in spherical coordinates, see Eq. (V115).

INFO The usefulness of the Hodge star ∗ and the metric isomorphism J is not limited to three-

dimensional situations. As an example, consider physical force which, regardless of dimension, the

present approach describes by a one-form, f , cf. discussion on p. 462. In physics, the same quantity

is represented by a vector ∂f . The translation between the two quantities is achieved by the metric

isomorphism, ∂f = J−1f . This relationship follows directly from their respective definitions: in form

language, the energy difference corresponding to a small displacement vector, ∂∆, is described by the

(negative of the) force form acting on the vector, −f(∂∆). Within the traditional approach, the same

quantity is given by the scalar product of the force vector and the displacement vector, −g(∂f , ∂∆).

Comparing the two expressions, fj(∂∆)j = (∂f )igij(∂f )j , we realize that fj = (∂f )igij , i.e. ∂f and f

are related by the isomorphism J . For a conservative force, there exists a potential function, ϕ, such

that −f = dϕ. In this case, −f(∂∆) = dϕ(∂∆) = ∂∆(ϕ), i.e. energy differences between nearby

points are described by the changes of a potential function ϕ. The force vector, −∂f , corresponding

to dϕ is given by J−1(dϕ)
(V213)
= ∇ϕ and so we re-discover the statement that conservative forces are

the gradients of functions. However, one may argue that the description of forces in terms of forms

7

There exists a generalized variant of the Laplacian acting on forms of arbitrary degree. However, we will
not discuss this extension here.
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is more natural and direct: physical forces are measured (cf. discussion on p. 148) by monitoring the

work required to move a test particle between nearby points in space, that is via linear assignments

(separation in space) → (number). This is precisely what a differential form does, i.e. one-forms

are the ‘natural’ mathematical objects describing forces. The construction of a vector ‘pointing in

the direction of the force’ requires a metric and complicates affairs. For example, in form language

the exterior derivatives of conservative force potentials assume a simple form f = −dϕ = ∂iϕdyi

in any coordinate system. By contrast, gradient vector fields, ∂f = −∂iϕgij∂i contain derivatives

mixed with elements of the metric and this combination of objects complicates the mathematics.

(This reflects in the empirical fact that the discussion of the gradient in spherical coordinates in

introductory lecture courses is a subject generally unpopular with students.)

As a four-dimensional example consider the current three-form defined in the info section on

p. 472. In physics, current is described by a four-component current vector field, ∂j (here,

the subscript refers to current, j, and is not an index). Its zeroth component, j0 = ρ, and spatial

components, ji, are the particle density, ρ(x), and the components, ji(x), of a spatial current density

vector ‘pointing in the direction of current flow’, respectively. The dependence of jµ(x) on the space

time argument x = (x0, x1, x2, x3) = (t, x1, x2, x3) describes spatio-temporal fluctuations of these

quantities.

One may guess on formal grounds how the connection between the current three-form (V161)

and the current vector, ∂j , is established: an application of the Hodge star transforms the 3-form

into a 4 − 3 = 1 form, and a subsequent application of J−1 maps the latter to a vector. For the

space-time manifold with its signature (1,−3) metric, g, these operations are given by

∂j ≡ J−1(∗ j) (V207)
= J−1

(
1

3!
jµνσεµνσρdy

ρ

)
(V212)
=

1

3!
jµνσεµνσρg

ρτ∂τ =

=
1

3!
jλκδg

λµgκνgδσgρτ εµνσρ∂τ
(L168)
= − 1

3!
jλκδε

λκδτ∂τ , (V221)

where in the last step we used det(g) = −1. Using that ελκδτ = −ετλκδ we identify the components

of the current vector field through the r.h.s. of the equation as

jτ =
1

3!
ετλκδjλκδ. (V222)

This construction confirms the physical expectation that the current vector and the current form

are closely related to each other. Specifically, the zeroth component, j0 = ρ = − 1
3!jλκδε

λκδ0 =

+ 1
3!jλκδε

0λκδ = j123ε
0123 = j123, is given by the weight function of the density form, Eq. (??), which

we argued describes the particle density. Turning to the spatial components, j3 = − 1
3!jλκδε

λκδ3 =

−j012ε
0123 = −j012 quantifies the current flow in 3-direction. Up to a sign, the above construction

identifies it with the weight function j012 of the three-form (??) measuring the time dependent flow

of particles through area elements in the 12-plane. In a similar manner, we obtain j2 = −j031ε
0312 =

−j031 and j1 = −j023ε
0231 = −j023. This shows how the current flow in a certain direction (vector

language) is related to the current flow through area elements perpendicular to that direction (form

language).

As with the physical force discussed above, one may reason that the definition of current in

terms of ‘the number of particles flowing through an area per unit time’ is more natural than that in

terms of a ‘vector pointing in the direction of current flow’. This is because any detector measures
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Figure V30: The magnetic field (‘vector’) B ∝ curl j generated by a current density (‘vector’) j
is not in fact a vector, since it does not transform in a contravariant manner. For example, under
space reflection at a plane (indicated by the dashed line), the current vector reflects properly, but the
magnetic field vector (computed according to the right hand rule familiar from introductory physics
courses) reflects and changes sign. No contravariant vector would behave in this way. This is why
the magnetic field is sometimes called an axial vector or a pseudovector.

flow by counting the number of particles per unit area. The form-definition of the current quantifies

just this and therefore directly connects to experiment. On the other hand, the translation between

experiment and the more traditional current=vector approach requires the excess baggage of a

metric. We will return to this point in the next chapter when we discuss current flow in the context

of electrodynamics.
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REMARK This is not an introduction to electrodynamics. However, readers familiar with the subject

at the level of an undergraduate experimental physics course should be able to follow the discus-

sion. Starting from a summary of essential phenomenological facts, we will sketch the construction

of differential equations (the Maxwell equations) encapsulating the laws of electrodynamics in the

language of differential forms. For the benefit of readers familiar with the theory of electrodynamics,

we will also compare to the standard vector field representation of Maxwell theory. In doing so, we

will point out a number of advantages, both methodological and conceptual, of the differential form

approach.

In this chapter, we will frequently compare vectors with their associated one- or two-forms. For

example, the electric field, E, is described as a one-form or a vector, respectively. We will discriminate

between the two objects by denoting differential forms by plain symbols (E) and the corresponding

vectors by underlined symbols, (E). As usual, the components of vectors and forms, Ei and Ei,

respectively, are discriminated by the positioning of indices.

Throughout this chapter, the signature (1, 3) metric of space-time will play an important role. For

convenience, we will work in a representation in which the metric assumes the form of the Minkovski

metric, η = diag(1,−1,−1,−1), and we will denote coordinates by the symbols xµ to highlight that

an orthonormalized basis is used. (The usage of orthonormal coordinates facilitates the comparison

of the vector and the form representation of the theory. The latter is manifestly coordinate invariant

and the choice of coordinates is of secondary importance.)

503
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James Clerk Maxwell
1831–79
Scottish theoretical physicist
and mathematician. Amongst
many other achievements,
he is credited with the for-
mulation of the theory of
electromagnetism, synthe-
sizing all previous unrelated experiments
and equations of electricity, magnetism
and optics into a consistent theory. (He is
also known for creating the first true color
photograph in 1861.)

In this chapter we will illustrate the power
of exterior calculus in physics on the exam-
ple of electromagnetism. The modern the-
ory of electromagnetism was formulated in
the nineteenth century by Maxwell, then in
the language of vectors. Below, we will re-
view the physical principles underlying these
equations and then formulate them in the lan-
guage of forms. Importantly, this is more than
a change of language. The theory of elec-
tromagnetism is intimately related to that of
relativity. In fact, it was the first ‘relativisti-
cally invariant’ theory, i.e. a theory compati-
ble with transformations between coordinate

systems moving relative to each other with velocities comparable to that of the speed of light.
Central to Einstein’s theory of relativity is the metric of space-time. Within special relativ-
ity, the Lorentz transformations stabilizing the Minkovski metric in the sense of Eq. (V200)
describe how coordinates change between different systems, and in the later extension of gen-
eral relativity the metric describes how space time acquires curvature due to the presence of
masses. It is, therefore, evident that attention should be payed to the proper treatment of the
metric in relativistic theories, and this is where the traditional description of electromagnetism
fails.

Within the traditional approach, all physical quantities relevant to electromagnetism —
electric and magnetic fields, and currents — are treated as vectors. However, the true identity
of a physical quantity ultimately follows from a measurement protocol and in the case of
electromagnetic fields and currents this means that they are all differential forms in space-
time, not vectors. As discussed in previous chapters the translation to vectors requires the
metric, and it only helps to complicate the mathematical formulation of the theory. Even
more serious is the fact that the vectorial formulation obscures the role of the metric in a
relativistically invariant context — one can never be sure if the appearance of a metric tensor
is required for ‘physical reasons’ or only serves as a translational tool. That this way of teaching
electrodynamics has not changed in the last 100 years likely is due to social inertia. At any rate,
we hope that the exposition below helps to convince the reader that an alternative formulation,
more in line with various modern developments in physics, is possible and certainly not more
difficult than the traditional one.

V7.1 The ingredients of electrodynamics

In this section we introduce the essential ingredients of the theory of electromagnetism —
space-time, charges and currents, and electromagnetic fields — both from a physical and a
mathematical perspective. This will prepare the discussion of the next section where these
building blocks are put in relation to each other.
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Space-time

The ‘arena’ in which classical electrodynamics is defined is flat space-time, i.e. the manifold
M = R4 equipped with the signature (1, 3) Minkovski metric η = diag(1,−1,−1,−1). The
arrangement of indices in this representation corresponds to a coordinate system x = xµ =
(x0, x1, x2, x3) ≡ (ct, x1, x2, x3), where x0 = ct, t is time, and c the speed of light, and
xi, i = 1, 2, 3 an orthonormal system of spatial coordinates. The theory defined on this
manifold describes electromagnetism in the context of special relativity. As a side remark
we note that the the extension to general relativity and the presence of gravitation requires
the generalization of M to a curved space-time with a non-constant signature (1, 3) metric.
While this represents a major complication, both physically and mathematically, the concept of
Riemannian manifolds introduced above defines the proper mathematical framework to handle
the situation.

Both, within the traditional and the exterior calculus approach we discriminate between a
relativistically invariant and a non-invariant representation of electrodynamics. These
standard denotations are not ideal because electrodynamics is compatible with the laws of rel-
ativity no matter how it is represented. The difference is that the ‘invariant’ formulation treats
space and time on equal footings and is formulated on (R4, η), i.e. space-time with Minkovski
metric. The ‘non-invariant formulation’ splits R4 = R×R3 into a one-dimensional time-axis,
and three-dimensional space. In this reading, R3 assumes the role of the relevant manifold,
while time is a parameter. For example, the electric field, E(t, x) is a three-dimensional vector
field on R3, depending on time, t, as a parameter, and the now three-dimensional spatial co-
ordinate vectors x = {xi}. (Within the invariant formulation, the electric field gets absorbed
into an ‘invariant’ object, the field-strength tensor to be discussed below.) Keep in mind that
when the non-invariant notation (t, x) appears, x is three-dimensional, while the coordinate
x = {xµ} of the invariant formulation contains time as x0 = ct and is four-dimensional.

Following the historical sequence of developments, we will first introduce the theory in its
non-invariant version. Later in the section, we will then pass to the invariant reformulation.

Charges and currents

0ρ <t∂

Charges and currents are the sources of electromagnetic fields. Within
the current framework, the presence of charges and currents is de-
scribed by the current three-form introduced on page 472. The three-
form j and various of its descendants to be discussed momentarily
are sometimes called matter fields because both charge densities
and currents are tied to the presence of matter. (An electron car-

rying a negative unit-charge, for example.) The denotation stresses the difference to the
electromagnetic fields, E,D,B,H which are immaterial.

An important feature of electromagnetism is the conservation of charge. This means
that temporal changes in the charge density, ∂tρ 6= 0 must be compensated by the flow
of currents. For example, if in a certain region of space, the charge density decreases this
implies the presence of a net outward current, see the figure. Within the traditional approach,
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this statement is made quantitative by the non-invariant form of the current conservation
relation

−1

c
∂tρ = ∇ · j,

i.e. a diminishing of charge is equivalent to the presence of sources in the three-component
current vector field.

EXERCISE Gauss’ theorem may be applied to transform the the differential relation above into

a more intuitive integral relation. To this end, define the charge contained in a region of space as

Q =
´
V dV ρ, where we are using the syntax of standard vector analysis. If ρ(t, x) depends on time

then Q = Q(t) becomes time dependent, i.e. the charge inside the volume is allowed to fluctuate.

Apply the continuity relation and Gauss’ theorem (V91) to verify that the rate of changes in Q is

given by

dtQ = −
ˆ
∂V

dS · j, (V223)

i.e. by the integral of the current over the surface ∂V of V . This shows how the loss of charge in

the interior of the volume goes along with current flow through its surface.

Expressed in terms of the four-component current vector field j = {jµ} = (ρ, j1, j2, j3)
introduced in the info section on p. 500 the continuity relation assumes the now relativistically
invariant form ∂0j

0 + ∂ij
i = ∂µj

µ = 0, where we noted ∂0ρ = ∂x0ρ = 1
c
∂tρ.

To translate to the form language, we use the relation between the current vector and the
current three-form Eq. (V222):

∂µj
µ =

1

3!
∂µε

µνρσjνρσ.

Comparison with the component representation of the exterior derivative, Eq. (V175) shows
that this equals the single component of the four-form, dj. Within the exterior calculus
approach, current the continuity relation thus assumes the compact form

dj = 0, (V224)

where j is the current three form Eq. (V161).
Within the non-invariant approach, charge density and current are described by a density

three form, ρ′ and a current two-form, j′, respectively. These quantities are introduced via
their relation to the invariant current three form, viz.

j = ρ′ + j′ ∧ dt, (V225)

where the r.h.s. defines ρ′ and j′. The definition is made more explicit by writing the invariant
j as j =

∑
µ<ν<σ jµνσdxµ ∧ dxµ ∧ dxσ =

∑
i<j j0ijdx

0 ∧ dxi ∧ dxj + j123dx1 ∧ dx2 ∧ dx3.
Comparison with the definition (V225) leads to the identification

ρ′ ≡ ρ dx1 ∧ dx2 ∧ dx3, ρ = j123
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j′ ≡ 1

2
jij dxi ∧ dxj, jij = j0ij. (V226)

The coefficients jij of the current two-form describe current flow through surface elements in
the ij-plane in the same way as the coefficients j0ij = jij of the three-form. The splitting
off of a factor dt in j ∧ dt merely is a matter of convenience that helps to formulate the
non-invariant theory. To keep the notation simple we will write j′ = j and ρ′ = ρ when no
confusion is possible, i.e. within the non-invariant approach, the density form is denoted by
ρ and the current two-form by j. As an exercise verify that the current three-form continuity
relation dj = 0 assumes the form

∂tρ+ dj = 0, (V227)

when expressed in the density-current form decomposition.
We finally note that integration over the density and current density form yields form-

language expressions for macroscopic charges and currents, respectively. Specifically, the
charge contained in a volume V is defined asˆ

V

ρ = Q, (V228)

i.e. the integral of the current three-form over the volume. In cases where ρ(t, x) is time
dependent, Q = Q(t) will depend on time as well. Similarly, the current flowing through a
two-dimensional surface S is defined asˆ

S

j = I, (V229)

i.e. the integral of the two-form j over the surface. For time dependent current densities,
j(t, x), the current I(t) becomes a function of time. The macroscopic law of current
conservation now assumes the form

dtQ =

ˆ
V

∂tρ
(V227)
= −

ˆ
V

dj
(V184)
= −

ˆ
∂V

j = −I. (V230)

This formula is the form-analog of the traditional relation Eq. (V223).

Electromagnetic fields

Electromagnetism is about the the mutual influence of charged matter — as described by
the current three form — and electromagnetic fields. The non-invariant formulation of the
traditional approach discriminates four fields, E,D,B,H, all three-component vector fields
in space-time. Conceptually, these are vector fields defined on (the tangent bundle) of space,
R3. Following the conventions of the present section, they should, therefore, be denoted as
∂E, etc. However, this notation would be so alien to the traditional approach, that we prefer
to use the more conventional E. Likewise, we will write E = Eiei (instead of ∂E = Ei∂xi)
for the expansion of these fields in the coordinate basis. However, keep in mind that E keeps
being a vector field in the sense of section ??.
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field name nature degree sector

E electric field electric 1 homogeneous
B magnetic induction magnetic 2
D displacement field electric 2 inhomogeneous
H magnetic field magnetic 1

Table V7.1: The four differential forms describing the electromagnetic fields within the framework
of exterior calculus.

Within the exterior calculus approach, the same four objects are described by differential
forms of degree one (E,H) and two (D,B). Both the physical meaning of these forms and
their relation to the vector fields of the traditional approach will be discussed in section ?? after
the fundamental laws of electromagnetism have been introduced. For the moment we just refer
to table V7.1 where a number of essential features characterizing these forms are anticipated.
Note that the fields can be organized in groups of two as indicated in the table. Specifically,
the fields E,D are electric in nature, while D,H are magnetic. The fields E,B describe the
influence of electromagnetic fields on matter, as discussed in section ?? while D,H are created
via the reciprocal influence of charged matter on fields as discussed in section ??. (In the table,
this distinction is indicated by the labels homogeneous vs. inhomogeneous which emphasize
that D,H will ber described by inhomogeneous differential equations in which matter-sources
appear as inhomogeneities.)

electromagnetic
�elds

matter 
�elds

Maxwell equations

Lorentz force

Figure V31: Maxwell theory describes the creation of fields by given distributions of charges and
currents. Conversely, the Lorentz force describes the mechanical feedback of fields on charges via
forces.

Having defined the basic constituents of the theory, we next discuss their interconnections
via the the laws of electromagnetism. These laws describe how charged matter is affected by
electromagnetic fields through a force called the Lorentz force. A second group of laws, known
as the inhomogeneous Maxwell equations, describes the inverse influence, viz. the creation
of fields by charges and currents (see Fig. V31). Third, the homogeneous Maxwell equations
describe intrinsic relations between the fields. In the following we discuss these three groups
of laws in turn.

V7.2 Laws of electrodynamics I: Lorentz force

Consider a point particle carrying charge q. If that particle is exposed to electric and/or
magnetic field it will experience mechanical forces. In the following, we discuss these forces and
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show how they define the electric and magnetic fields as one- and two-forms, respectively. We
will then establish the connection to the traditional language where the fields are understood
as vectors.

Electric and magnetic field forms

In the presence of an electric field the test particle experiences an electrostatic force
whose magnitude is proportional to both the charge and the field strength. In form-language,
this force is described by a one-form, FE ∈ Λ1(R3). The force defines the electric field
one-form as E = F/q ∈ Λ1(R3), i.e. the electric field equals the acting force per charge.
We may consider this statement a definition of the electric field.

If a magnetic field is present and the particle is in motion, it experiences a second force,
the magnetic force, FM. The magnitude of this force is proportional to the particle’s charge
and velocity, and to the magnetic field. As with the electric field, the magnetic field is defined
through the work done against the Lorentz force in a displacement process. To this end, assume
that the particle with its velocity vector ∂v = v is displaced in motion by a vector ∂∆ = ∆.

1

Empirically, one finds that the work W required for this process is proportional to q, linear in v
and ∆, and that it is antisymmetric under exchange of these arguments. This means that the
work is described by the application of a two-form B to these arguments, W = qB(∂v, ∂∆).
This work relation defines the magnetic field two form, B. Recalling the definition of the
inner derivative, Eq. (L283), the work relation may be written as W = q(i∂vB)(∂∆), where the
one form i∂vB is obtained by substitution of the argument ∂v into the two form B. The ensuing
one form FM ≡ qi∂vB defines the (velocity dependent) magnetic force, and its application to
a displacement vector FM(∂∆) = q(i∂vB)(∂∆) = qB(∂v, ∂∆) defines the magnetic work.

The total force acting on a particle in the presence of an electric and a magnetic field,
FE + FM is called the Lorentz force, and given by

F = q (E + ivB) . (V231)

INFO It can be instructive to visualize the electric and magnetic field forms. Following the

conventions defined in Fig. L21(d)), the electric field, E, and the force form, FE, can be represented

through a pattern of parallel planes, as in Fig. V32. The work E(∂∆) done along the displacement

of a charge along a vector ∂∆ = ∆, is represented through the number of planes intersected by the

(Cartesian representation of) the vector.

Similarly, the two-form B is represented by a pattern of parallel lines (cf. the rules defined in

Fig. L21(c)). As indicated in Fig. ??(b), the readout B(∂v, ∂∆) of the form on a pair of vectors,

∂v = v and ∂∆ = ∆ is proportional to the number of flux lines penetrating the area defined by the

vectors (cf. the indicated parallelogram). In line with this picture, the magnetic force one-form, FM ,

is represented by a pattern of planes spanned by the vector v and the flux lines. This yields the work

1

In experimental reality one would consider a thin current carrying wire such whose microscopic charge
carriers move with drift velocity v along the wire axis. One would then study the work required to displace
the wire by ∆.
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B

MF
qE=EF

Figure V32: On the visualization of the electric field one-form, E, the two-form, B, and of the
corresponding force forms FE, FM. The figure also indicates the orientation of the corresponding
vectors of the traditional approach. Further discussion, see text.

to be done against the force under a displacement, FM(∂∆) = B(∂v, ∂∆), as the number of planes

intersected by ∂∆.

Generally speaking, visualizations of this type can facilitate the qualitative understanding of

a situation. However, they usually appear as doodle sketches and are not used as elements of

quantitative constructions.

Vectorial definition of electric and magnetic forces

In traditional language, both the electric and the magnetic field are described by three-
component vector fields E and B in the tangent bundle TR3. The electric field E is dual to
the one-form E under the metric isomorphism FE = J−1(FE) and E = J−1(E). Notice that
the (Minkovski) metric enters the translation. This is important inasmuch as the measurement
of forces defines a form, not a vector, i.e. physically, the form is more ‘fundamental’ than its
vector dual, cf. discussion on p. 500. We thus encounter the first case where the vectorial
language obscures the role of the metric. (Later in our discussion of the Maxwell equations we
will see that there is only one instance where the metric is truly needed for physical reasons,
viz. in the definition of the relation between the fields (E,B) and (D,H).)

In a component language, the electric field form and its associated vector are represented
as

E = Eidx
i, E = Eiei, Ei = ηijEj = −Ei,

where ei ≡ ∂xi are orthonormal coordinate basis vectors, and Ei(t, x) and Ei(t, x) are coeffi-
cients generally depending on space and time. The translation between vector and form coef-
ficients, Ei = ηijEj = −Ei, follows from table V6.1 applied to the case gij = ηij = (−1)δij.
Here, the global sign change is of secondary importance.

2
By definition, the readout of the

form on a displacement vector is then represented as Ei∆
i = Eiηij∆

j, i.e. as the scalar

2

As some authors do, we might have redefined the metric as as −η = diag(−1, 1, 1, 1). This would not
affect the physics and make the relative sign go away. (Sign factors would then appear in the temporal sector
of the theory.)
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product g(E,∆) = η(E,∆) of the vectors E and ∆. This is equivalent to the statement that
the vector E stands perpendicular on the planes representing the form E. (Make sure you
understand this statement graphically.)

According to our discussion of section V6.4, the vector B canonically assigned to the
two-form B is given by B = ∂B = J−1(∗B). In a component representation we have (cf.
table V6.1

3
)

B =
1

2
Bijdx

i ∧ dxj, B = Biei, Bi =
1

2
εijkBjk. (V232)

The vector corresponding to the magnetic force form, FM = qi∂vB = qBijv
idxj is given by

FM = J−1(FM) = qBijv
iηjkek. Using that (check!) Bij = εijlB

l, this can be written as
FM = −qεijlBlviej = qv × B. We thus conclude that the Lorentz force in conventional
language is given by

F = q(E + v ×B).

V7.3 Laws of electrodynamics II: Maxwell equations

The Lorentz force describes the influence of electric and magnetic fields on charged particles
(more generally, charged ‘matter’). Conversely, the Maxwell equations describe the creation
of electric and magnetic fields by charges and currents. Maxwell’s equations are a set of four
first-order linear partial differential equations for the fields E,D,B,H. They can be grouped
into two sets of two, where the first group, the homogeneous Maxwell equations describe
intrinsic connections between the fields E and B. The second group, the inhomogeneous
equations describe how the fields D and H are created by charges and currents as represented
by the forms ρ and j. At this level the two groups are independent, and they do not depend on
the metric (as long as they are formulated in form–, rather than vector–language). The metric
enters the stage, when the connections between the fields E and D (B and H) are considered.
These fields are coupled through (non-differential) equations which need to be included into
the framework on top of the Maxwell equations. In vacuum, the connection between the one
form E (H) and the two-form D (B) is provided by the Hodge star, and it assumes a trivial
form if an orthonormal system is used. The situation becomes more complicated in extended
media, where microscopic properties of the host medium affect the coupling relations. This
complication, which is the subject of macroscopic electrodynamics, will not be addressed
in this text, i.e. we consider vacuum electrodynamics throughout.

In the next section we will substantiate this synopsis and construct Maxwell’s equations
out of experimental observations of electrodynamics.

INFO For later reference, we state Maxwell’s equation in their traditional form, as taught in

standard courses of electromagnetism. Here, the theory is formulated in terms of four vector fields,

3

The formulas of the table apply to a positive metric, g > 0. For an indefinite metric such as the Minkovski
metric we need to replace

√
g →

√
|g| =

√
|η| = 1.
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the electric field E, the magnetic induction B, the electric displacement field D, and the magnetic

field H. These fields are created by electric charge densities, ρ and/or current densities j. All

constituents of the theory are functions of space and time, i.e. X = E,D,B,H, j are vector fields

X : R⊗R3 → R3, (t, x) 7→ X(t, x), and ρ : R⊗R3 → R, (t, x) 7→ ρ(t, x) is a scalar field.

The connection between matter fields (ρ, j) and electromagnetic fields is established by the

Maxwell equations,
4

∇ ·D = 4πρ,

∇×H − 1

c
∂tD =

4π

c
j,

∇ ·B = 0,

∇× E +
1

c
∂tB = 0, (V233)

where c is the speed of light. Here, the first two are the inhomogeneous equations and the second

two the homogeneous ones. These equations need to be augmented with relations connecting the

sets (E,B) and (D,H). In vacuum, these are the simple identifications, E = D, B = H.
5

Figure V33: The ‘homogeneous’ laws of electromagnetism. Left – the law of induction: integration
of the electric one form E (indicated by shaded planes) over a closed curve ∂S bounding a surface S
equals the integral of the negative time derivative, −∂tB, of the magnetic induction-two form over
S. Right – the absence of magnetic charges: integration of the magnetic induction two-form B over
a closed surface equals zero; lines characterizing the form are closed, indicating that the field has no
sources.

4

We here use so called CGS units. In other systems of units, for example the SI system, the equations
assume a form which differs from the present one regarding constant prefactors for some terms.

5

The constants appearing in the Maxwell equations depend on the used system of units. The absence of
proportionality constants between E (B) and D (H) is a specialty of the so-called CGS units used here. For
a discussion of the situation in other systems of units we refer to physics texts.
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Homogeneous Maxwell equations

Empirically, we know that there are no ‘magnetic charges’. In form language, the absence
of magnetic charges means that the integration of the field two-form B over the surface
∂V of any region in space V yields zero,

ˆ
∂V

B = 0, (V234)

i.e. there is no net outward magnetic flux. The situation is illustrated in the right panel of
Fig. V33 where the two-form B is represented through closed field lines

By Stokes’ theorem, this can be written as as a volume integral,
´
∂V
B =

´
V

dB.. The
vanishing of this integral for any volume requires the closedness of the magnetic field form,

dB = 0. (V235)

This is the first of the two homogeneous Maxwell equations. Translated to vector language,
it states that the magnetic induction B is a vector field without sources, cf. the third of
Eqs. (V233).

EXERCISE Apply the relations of table (V6.1) to express the magnetic field two-form through

its corresponding vector components. Then use the expression for the divergence of a vector field,

Eq. (V216) to derive the third of the the traditional Maxwell equations.

The second homogeneous Maxwell equation expresses the law of induction: if a surface is
threaded by a time-dependent magnetic field, B, an electric field winding around the surface
is induced (see Fig. V33 left). Experiment shows that the integral of the field around the
curve bounding the surface,

´
∂S
E, (i.e. the mechanical work required to drag a unit charge,

q = 1, around the curve) equals the negative of the time derivative of the ‘magnetic flux’,´
S
B, through the surface,

ˆ
∂S

E +
1

c

d

dt

ˆ
S

B = 0. (V236)

Applying Stokes’ law to the first integral, and pulling the time derivative into the integral (the
surface itself is static), we obtain

´
S
(dE + c−1∂tB) = 0.

6
Once more, the validity of this

relation for any integration domain implies the vanishing of the integrand,

dE +
1

c
∂tB = 0. (V237)

This is the second homogeneous Maxwell equation.

6

We repeat that ∂tB = ∂t
1
2Bij(x, t)dx

i ∧ dxj acts on the time dependence of the form-coefficients as an
ordinary partial derivative.
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EXERCISE Using the vector representations of B and E, and the coordinate representation of the

curl, Eq. (V218), show the that this equation translates to the fourth Maxwell equation in vector

language.

Figure V34: The ‘inhomogeneous’ laws of electromagnetism. Left – the law of Gauß: an electric
charge density three-form, ρ, generates an electric displacement field, D. Integration of D over any
closed surface equals the integral of ρ over the volume enclosed by the surface. Right – the law
of Ampère-Maxwell: current flow described by a non-vanishing two-form, j, generates a magnetic
field one-form, H, and/or a electric displacement field one-form, D. Empirically it is found tht the
integral of the sum H − 1

c∂tD over a closed curve bounding a surface (such as S or S′ in the figure)
equals the integral of j over that surface.

Inhomogeneous Maxwell equations

The inhomogeneous equations describe the creation of the fields D,H by charges and
currents. Gauss’ law

7
states that electric charge is the source of the electric displacement

field (see Fig. V34 right): The integral
´
∂V
D of D over the surface ∂V of a volume V equals

(4π) times the total charge Q =
´
V
ρ included in V , i.e.ˆ

∂V

D = 4π

ˆ
V

ρ.

Once more we apply Stokes’ theorem,
´
V

(dD − 4πρ) = 0, to conclude that

dD = 4πρ. (V238)

Finally, the law of Ampère-Maxwell states that electric current flow creates a magnetic field
H and/or a time varying electric displacement field D. The relation is such that (see Fig. V34

7

This is Gauss’ law of physics which must not be confused with Gauss’ theorem of mathematics Eq. (V91).
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left) the integral
´
∂S
H of the one-form H over the curve ∂S bounding a surface S is equal to

the sum of 4π/c times the current flow through that surface, 4πI/c = 4π
c

´
S
j, and c−1 times

the time derivative 1
c
dt
´
S
D of the integral of the two-form D over the same surface:

8

ˆ
∂S

H =
4π

c

ˆ
S

j +
1

c

ˆ
S

∂tD.

Once more, we apply Stokes’ theorem to conclude that

dH − 1

c
∂tD =

4π

c
j. (V239)

EXERCISE Apply the same steps as in the context of the homogeneous Maxwell equations to

translate the form-representation of Maxwell’s equations to the inhomogeneous equations of the

vectorial formulation, Eq. (V233).

Invariant formulation

Above, we have formulated Maxwell’s equation in terms of forms defined in three-dimensional
space R3. Time entered through the time dependence of the coefficient functions. To proceed
towards a more ‘invariant’ formulation defined in space time, R4 = R⊗R3, we now introduce
the two-forms

F ≡ E ∧ dx0 +B,

G ≡ −H ∧ dx0 +D. (V240)

The form F is called the field strength tensor, and G is called the dual field strength ten-
sor. Note that F and G contain the forms appearing in the homogeneous and inhomogeneous
Maxwell equations, respectively. At this point, these structures remain decoupled.

Specifically, we may rewrite the homogeneous Maxwell equations Eqs. (V235) and (V237)
as dsB = 0 and dsE+ ∂x0B = 0, where we temporarily use the symbol ds(. . . ) = ∂i(. . . ) dxi

for the exterior derivative in three-dimensional space, i.e. in the space-like sector of the theory.
The partial derivative c−1∂t = ∂x0 differentiates w.r.t. the time-like coordinate. We now
consider the full space-time exterior derivative which acts as d(. . . ) = ds(. . . ) + ∂x0(. . . )dx0.
With these conventions we obtain dF = (dsE ∧ dx0 + dsB + ∂tB ∧ dx0 = (dsE + ∂tB) ∧
dx0 +dsB = 0, i.e. the two homogeneous Maxwell equations are equivalent to the closedness
of the field strength form, dF = 0.

8

To understand the conspiracy of current and displacement field, recall that a time-varying current in a
wire may be ‘interrupted’ by the insertion of capacitor plates, as shown in the figure. No electric current flows
between the plates of the capacitor. Instead, we observe a time-varying field of electric origin between the
plates, the displacement field. Both the displacement field and the electric current create a magnetic field
winding around the wire/capacitor setup.
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Likewise, we recall the definition of the full current-three form Eq. (V225), j ≡ ρ′ +
1
c
j′∧dx0, in terms of the current two-form j′ and the density form ρ′, where we re-introduced

primes to discriminate the non-invariant quantities from the invariant three form. . The two
inhomogeneous Maxwell equations can now be combined to the relation dG = (−dsH +
∂tD) ∧ dx0 + dsD = 4π

c
j′ ∧ dx0 + 4πρ′ = 4πj. Summarizing, we have managed to represent

Maxwell’s equations in the compact, and manifestly space-time invariant form

dF = 0,

dG = 4πj, (V241)

It is remarkable that the Maxwell equations, which describe such a diverse range of physical
phenomena, can be represented in a form of this degree of compactness.

Electrodynamics and Minkovski metric

So far, the fields E,B and D,H entering the homogeneous and the inhomogeneous
Maxwell equations, respectively, remained completely decoupled. The connection between
these fields follows from the empirical observation that in vacuum and in an orthonormal
coordinate system,

Ei =
1

2
εijkDjk, Hi =

1

2
εijkBjk, (V242)

i.e. the components of the electric field equal those of the displacement field, and the com-
ponents of the magnetic field equal those of the magnetic induction. The structure of these
equations suggests that a Hodge star is at work.

To better understand this point, note that the application of Eq. (V206) to the wedge
product of coordinate forms dxµ with diagonal metric gµν = ηµν yields ∗(dxµ ∧ dxν) =
1
2
ηµαηνβεαβγδdx

γ ∧ dxδ. Specifically, for µ = i and ν = 0 we obtain

∗(dxi ∧ dx0) = 1
2
ηiiη00εi0jk dxj ∧ dxk = −1

2
εi0jk dxj ∧ dxk = 1

2
εijk dxj ∧ dxk,

where −εi0jk = ε0ijk = εijk was used. In a similar manner we find ∗(dxi ∧dxj) = −εijkdxk ∧
dx0. Using these relations, the Hodge star may be applied to F

(V240)
= Eidx

i∧dx0+ 1
2
Bijdx

i∧dxj

to obtain ∗F = 1
2
Eiεijkdx

j∧dxk− 1
2
Bijεijkdx

k∧dx0 (V242)
= 1

2
Djkdx

j∧dxk−Hkdx
k∧dx0 (V240)

= G.
In this way the important identification

∗F = G, (V243)

is established. Eqs. (V241) and (V243) provide a complete description of the laws of classical
electromagnetism. Although these equations are coordinate independent, the connections
between the components of F and G assume a simple form only in systems with orthonormal
metric, g = η. The coordinate transformations preserving this form of the metric are the
Lorentz transformations (V200).

9

9

More generally, shifts of the coordinate origin, x→ x+a, a ∈ R4 also preserve the form of the equations.
The generalized set of coordinate transformations, x′ = Λx+ a, Λ ∈ O(1, 3) defines the Poincaré group.



V7.4 Summary and Outlook 517

V7.4 Summary and Outlook

This concludes our survey of electrodynamics in form language. Given the scope of this
text, our discussion had to focus on fundamental structures, rather than applications (but see
the exercises xx). Starting with a survey of experimental observations, we have discussed the
laws of electrodynamics first in the original non-invariant formulation and finally in a manifestly
Lorentz invariant form. Incidentally, one may wonder how the ‘traditional formulation’ of
the invariant approach to electrodynamics looks like. The answer is that it does not really
exist. The description of the theory in terms of four three-component vector fields E,B,D,H
is tailored to the separate treatment of space and time and has no good invariant extension.
Even in traditional teaching it is standard to formulate the invariant approach in terms of
tensor components Fµν , Gµν . These tensors are introduced as 4 × 4-matrices (but notice
that they are contravariant tensors of degree (0, 2), rather than proper ‘matrices’ which have
degree (1, 1) and one index upstairs) containing the components of E and B or D and H as
entries. This, and all other operations are generally carried out in a coordinate heavy way. For
example, the homogeneous Maxwell equation is written as ∂σFµν + ∂µFνσ + ∂νFσµ instead of
dF = 0. In this way, differential forms are effectively introduced but not discussed as such.
Put differently, the proper Lorentz invariant formulation requires the introduction of forms and
the abandoning of the all–is–vector dogma.

There remains the intersting difference that in physics texts theories such as electrodynam-
ics (or special and general relativity) are almost categorically discussed in coordinates (Fµν)
rather than in invariant language (F ). The longevity of this tradition surely has to do with the
fact that practical computations are generally done in coordinates. It is then tempting ‘not
to pay the price’ to learn what a differential form is and to work with the formally introduced
objects Fµν from the outset. At the same time, one may argue that the invariant formula-
tion is much stronger where it comes to understanding the basic structures of the theory, its
connections to other disciplines, or its mathematical foundations.

Which language to prefer ultimately remains a matter of taste and personal inclination. The
reason why an introduction to differential forms has been included in this text is the empirical
observation that their application in physics is on the rise and that future generations of
physicists may likely need this concept as part of their standard portfolio.



PV Problems: Vector Calculus

The solutions to odd-numbered problems are given in part S, section SV. Lecturers can obtain
the solutions to even-numbered problems from the publishers by request.

P.V1 Curves

P.V1.2 Curve velocity

EV1.2.1 Velocity and acceleration

Consider the curve γ = {r(t) | t ∈ (0, 2π/ω)}, r(t) = (aC(t), S(t))T ∈ R2, with C(t) =
cos [π (1− cosωt)], S(t) = sin [π((1− cosωt)], and 0 < a, ω ∈ R.

(a) Calculate the curve’s velocity vector, ṙ(t) and it’s acceleration vector r̈(t). Can r(t) be
expressed in terms of ṙ(t) and r̈(t)?

(b) Can you represent the curve without the parameter t using an equation? Do you recognize
the curve? Sketch the curve for the case a = 2.

(c) Calculate r(t) · ṙ(t). For which values of a is r(t) · ṙ(t) = 0 true for all t?

PV1.2.2 Velocity and acceleration

Consider the curve γ = {r(t) | t ∈ (−∞,∞)}, r(t) = (e−t
2
, aet

2
)T ∈ R2, with 0 < a ∈ R

(0 < a < 1 for (c)).

(a) Calculate the curve’s velocity vector, ṙ(t), and it’s acceleration vector r̈(t). Can r(t) be
expressed in terms of ṙ(t) and r̈(t)?

(b) Can you represent the curve without the parameter t using an equation? Do you recognize
the curve? Sketch the curve for the case a = 2.

(c) Calculate r(t) · ṙ(t). Find the time t(a), for which r(t) · ṙ(t) = 0 holds. [Check your
result: t(e−2) = ±1.]

518
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P.V1.3 Curve length

EV1.3.1 Natural parametrization of a curve

Consider the curve r(t) = (t− sin t, 1− cos t)T ∈ R2 for t ∈ (0, 2π).

(a) Sketch the curve qualitatively.

(b) Determine it’s arc length s(t) in the time interval (0, t). [Check your answer: s(2π) = 8.]

(c) Find the natural parametrization rL(s). [Check your answer: rL(4) = (π, 2)T .]

PV1.3.2 Natural parametrization of a curve

Consider the curve γ = {r(t) | t ∈ (0, τ)}, r(t) = ect(cosωt, sinωt)T ∈ R2, with c ∈ R.

(a) Sketch the curve for the case of τ = 8π/ω and c = 1/τ . [This information only applies
to part (a), not for parts (b-f).]

(b) Calculate the magnitude of the velocity curve, ‖ṙ(t)‖.
(c) Calculate the arc length s(t) in the time interval (0, t).

(d) Determine the natural parametrization rL(s).

(e) Check explicitly that
∥∥drL

ds

∥∥ = 1.

[Check your answer: for c = ω = τ = 1: (b)
√

2et, (c)
√

2(et − 1), (d) rL(s) = [s/
√

2 +

1]
(
cos[ln(s/

√
2 + 1)], sin[ln(s/

√
2 + 1)]

)T
.]

P.V1.4 Line integral

EV1.4.1 Line integral: mountain hike

Two hikers want to hike from the point r0 = (0, 0)T in
the valley to a hut at the point r1 = (3, 3a)T . Hiker 1
chooses the straight path from valley to hut, γ1. Hiker 2
chooses a parabolic path, γ2, via the mountain top at the
apex of the parabola, at r2 = (2, 4a)T (see figure). They
are acted on by the force of gravity Fg = −10 ey, and a
height-dependent wind force, Fw = −y2 ex.

1r

0r

2r

x

y

1γ

2γ

Find the work, W [γi] = −
´
γi

dr · F, performed by the hikers along γ1 and γ2, as function of

the parameter a.
[
Check your results: for a = 1 one finds W [γ1] = 39, W [γ2] = 303/5.

]
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PV1.4.2 Line integrals in Cartesian coordinates

Let F(r) = (x2, z, y)T be a three-dimensional vector field in Cartesian coordinates, with r =
(x, y, z)T . Calculate the line integral

´
γ

dr · F along the following paths from r0 ≡ (0, 0, 0)T

to r1 ≡ (0,−2, 1)T :

(a) γa = γ1 ∪ γ2 is the composite path consisting of γ1, the straight line from r0 to r2 ≡
(1, 1, 1)T , and γ2, the straight line from r2 to r1.

(b) γb is parametrized by r(t) = (sin(πt),−2t1/2, t2)T , with 0 < t < 1.

(c) γc is a parabola in the y-z-plane with the form z(y) = y2 + 3
2
y.

[Check your results: the sum of the answers from (a), (b) and (c) is −6.]

P.V2 Curvilinear Coordinates

P.V2.1 Polar coordinates

EV2.1.1 Coordinate transformations

Consider three points whose Cartesian coordinates (x, y, z) are P1: (3,−2, 4), P2: (1, 1, 1) and
P3: (−3, 0,−2). What is the representation of these three points in cylindrical coordinates,
(ρ, φ, z), and in spherical coordinates, (r, θ, φ)? (Give the angles in radians.)

PV2.1.2 Coordinate transformations

The point P1 has spherical coordinates (r, θ, φ) = (2, π/6, 2π/3). What are its Cartesian
and cylindrical coordinates, (x, y, z) and (ρ, φ, z), respectively? The point P2 has cylindrical
coordinates (ρ, φ, z) = (4, π/4, 2). What are its Cartesian and spherical coordinates? (Give
the angles in radians.)

P.V2.2 Coordinate transformations

P.V2.3 Coordinate basis and local basis

P.V2.4 Cylindrical and spherical coordinates

EV2.4.1 Cylindrical coordinates: velocity, kinetic energy, angular momentum

The relation between Cartesian and cylindrical coordinates is given by: x = ρ cosφ, y = ρ sinφ,
z = z, with ρ ∈ (0,∞), φ ∈ (0, 2π), z ∈ (−∞,∞).
Basis vectors: Construct the basis vectors for cylindrical coordinates, {eyi} = {eρ, eφ, ez},
and show explicitly that they have the following properties:
(a) eyi · eyj = δij and (b) eyi × eyj = εijkeyk .
Physical quantities: Show that in cylindrical coordinates (c) the velocity vector v = d

dt
r,



P.V2.4 Cylindrical and spherical coordinates 521

(d) the kinetic energy T = 1
2
mv2 and (e) the angular momentum L = m(r × v) have the

following forms:

v = ρ̇ eρ + ρφ̇ eφ + ż ez, T = 1
2
m
[
ρ̇2 + ρ2φ̇2 + ż2

]
,

L = m
[
− zρφ̇ eρ + (zρ̇− ρż) eφ + ρ2φ̇ ez

]
.

PV2.4.2 Cylindrical coordinates: velocity, kinetic energy, angular momentum

The relationship between Cartesian and spherical coordinates is given by: x = r sin θ cosφ,
y = r sin θ sinφ, z = r cos θ, with r ∈ (0,∞), φ ∈ (0, 2π), θ ∈ (0, π).
Basis vectors: Construct the basis vectors for spherical coordinates, {eyi} = {er, eθ, eφ},
and show explicitly that
(a) eyi · eyj = δij and (b) eyi × eyj = εijk eyk .
Physical quantities: Show that in spherical coordinates (c) the velocity vector v = d

dt
r, (d)

the kinetic energy T = 1
2
mv2 and (e) the angular momentum L = m(r× v) are as follows:

v = ṙ er + r θ̇eθ + rφ̇ sin θ eφ, T = 1
2
m
[
ṙ2 + r2θ̇2 + r2φ̇2 sin2 θ

]
, L = mr2

[
θ̇ eφ − φ̇ sin θ eθ

]
.

EV2.4.3 Line integral in polar coordinates: spiral

The curve γS = {r(ρ, φ) ∈ R2| ρ = R + 1
2π
φ∆, φ ∈ (0, 2π)}, with 0 < R,∆ ∈ R, describes

a spiral path in two dimensions, parametrized using polar coordinates.

(a) Sketch the spiral path γS and calculate the line integral W1[γS] =
´
γS

dr ·F1 of the field

F1 = eφ along γS. [Check your result: if R = ∆ = 1, then W1[γ] = 3π.]

(b) Calculate the line integral W2[γ] =
´
γ

dr ·F2 of the field F2 = ex along the straight path

γG from the point (R, 0)T to the point (R + ∆, 0)T , and also along the spiral path γS.
Are the results related? Explain!

PV2.4.4 Line integral in Cartesian and spherical coordinates

Consider the vector field F = (0, 0, fz)T, with f ∈ R. Compute the line integral W [γ] =´
γ

dr · F from a=(1, 0, 0)T to b = (0, 0, 1)T explicitly along the following two paths:

(a) γ1: a straight line. [Check your result: if f = 2, then W [γ1] = 1.]

(b) γ2: a segment of a circle with radius R = 1 centered at the origin.
Use spherical coordinates. [Check your result: for f = 3, we have
W [γ2] = 3

2
.]

x

y

z

1γ
2γ

a

b
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EV2.4.5 Line integral in spherical coordinates: satellite in orbit

A satellite travels along an unusual trajectory γ that circles the north-south-axis of the earth
as it travels from a point high above the north pole to a point high above the south pole.
In spherical coordinates the trajectory is given by r(t) = r0, θ(t) = ω1t, φ(t) = ω2t, with
t ∈ (0, π/ω1). Due to the rotation of the earth, there is a wind in the upper atmosphere which
exerts a force F = −F0 sin θ eφ on the satellite.

(a) Make a qualitative sketch of the orbit, for ω2 = 20ω1. How many times does the path
wind around the north-south axis?

(b) What is the velocity vector ṙ written in spherical coordinates?

(c) Give the length L[γ] of the orbit in terms of an integral. (You are not required to solve
it.)

(d) Calculate, using the line integral W [γ] =
´
γ
dr ·F, the work performed against the wind

by the satellite along its orbit. [Check your result: if F0 = r0 = ω1 = ω2 = 1, then
W [γ] = −π

2
.]

PV2.4.6 Line integrals in cylindrical coordinates: bathtub drain

A soap bubble travels along a spiral-shaped path γ towards the drain of a bathtub. In cylindrical
coordinates the path is given by ρ(t) = ρ0e−t/τ , φ(t) = ωt, z(t) = z0e−t/τ , with ρ0 > ρd and
t ∈ [0, td], where ρd is the drain radius and td = τ ln(ρ0/ρd) the time at which the bubble
reaches the drain.

(a) Make a qualitative sketch of the path (e.g. for ω = 6π/τ in ρ0 = 10ρA).

(b) What is the velocity vector v = ṙ in cylindrical coordinates? What is the magnitude of
the final velocity, i.e vd = ‖v(td)‖?

(c) Show that the length of the path is given by L[γ] = τvd (ρ0/ρd − 1).

(d) Using the line integral W [γ] =
´
γ
dr ·F, find the work done by gravity F = −mgez along

the path of the soap bubble. Give a physical interpretation for this result!

[Check your results: if τ = 2/ω, z0 = 2ρ0 and ρd = ρ0/3, then: (b) vd = ρ0/τ , (c) L = 2ρ0,
(d) W [γ] = mgρ04/3.]

P.V2.5 Local coordinate bases and linear algebra

P.V3 Fields

P.V3.1 Scalar fields
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EV3.1.1 Gradient of a mountain slope

A hiker encounters a mountain slope (as shown in the
figure) whose height is given by the function h(r) =
x
r

+ 1 with r = (x, y)T and r =
√
x2 + y2. Describe

the topography of the slope by answering the following
questions. Make use of the properties of the gradient
vector ∇hr.

(a) Calculate the gradient∇hr, and the total differential dhr(n) for the vector n = (nx, ny)
T .

(b) The hiker is at the point r = (x, y)T . In which direction does the mountain slope increase
most steeply?

(c) In which direction do the contour lines run at this point?

(d) Sketch a contour plot of the slope. Also draw the gradient vectors ∇hr at the points
r1 = (−1, 1)T , r2 = (0,

√
2)T and r3 = (1, 1)T .

(e) Is there a contour line in the positive quadrant (x, y ≥ 0) such that x = y? If so, at
what height does it occur?

(f) Find an equation describing the contour line at height h(r) = H in the positive quadrant
(x, y ≥ 0).

(g) Where is the slope at its shallowest? What is its height at that position?

(h) Where is the slope at its steepest? Describe, in detail, how its topography close to that
point depends on x and y.

PV3.1.2 Gradient of a valley

A hiker encounters a valley as shown in the figure. The
height of the valley is described by the equation h(r) =
exy, with r = (x, y)T . Describe the topography of the
valley by answering the following questions. Make use of
the properties of the gradient vector ∇hr.

(a) Calculate the gradient∇hr and the total differential dhr(n) for the vector n = (nx, ny)
T .

(b) The hiker stands at the point r = (x, y)T . In which direction does the slope of the valley
increase most steeply?

(c) In which direction do the contour lines run at this point?

(d) Sketch a figure containing the contour plot of the side of the valley. Also draw the
gradient vectors ∇hr at the points r1 = 1√

2
(−1, 1)T , r2 = (0, 1)T and r3 = 1√

2
(1, 1)T .
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(e) Obtain the equation for the contour line at a height h(r) = H(> 0).

(f) At what point is the valley at its flattest? What is its height at this point?

(g) At a distance of r = ‖r‖ from the origin, where is the valley slope at its steepest?

EV3.1.3 Gradient of e1/r

Consider the scalar field φ(r) = ln (r−1), where r =
√
x2 + y2 + z2. At which spatial points

does |∇φ| = 1 hold?

PV3.1.4 Gradient of f(r)

(a) For r ∈ R3 and r =
√
x2 + y2 + z2 = ‖r‖, compute ∇r and ∇r2.

(b) Let f(r) be a general, twice differentiable function of r. Calculate ∇f(r) in terms of
f ′(r), the first derivative of f with respect to r.

P.V3.2 Gradient fields

EV3.2.1 Scetching a vector field

Sketch the following vector fields in two dimensions, with r = (x, y)T :

(a) A :R2 → R2, r 7→ A(r) = (cos y, 0)T .

(b) B :R2 → R2, r 7→ B(r) =
1√

x2 + y2
(x,−y)T .

For several vectors r in the domain of the vector field map [e.g. A], the sketch should depict
the corresponding vectors A(r) from the codomain of the map. For a chosen point r one
draws an arrow with midpoint at r, whose direction and length represents the vector A(r).
The unit of length may be chosen differently for r vectors from the domain and A(r) vectors
from the codomain, in order to avoid arrows from overlapping and to obtain an uncluttered
figure (e.g. by drawing Â(r) unit vectors shorter than r̂ unit vectors). Indeed, for the visual
depiction of codomain vectors usually only their directions and relative lengths are of interest,
not their absolute lengths.

PV3.2.2 Scetching a vector field

Sketch the following vector fields in two dimensions:

(a) A(x, y) = (cos x, 0)T , (b) B(x, y) = (2y,−x)T .
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EV3.2.3 Potential of a vector field

Given a vector field A(r) = (2xy + z3, x2, 3xz2)
T

.

(a) Calculate the line integral I1 =
´
γ1

dr′ ·A(r′) from 0 = (0, 0, 0)T to b = (1, 1, 1)T , along

the path γ1 = {r(t) = (t, t, t)T | 0 < t < 1}.
(b) Does the line integral depend on the shape of the path?

(c) Calculate the potential φ(r) of the vector field A(r) over the line integral φ(r) =
´
γr

dr′ ·
A(r′) along a suitably parametrized path γr from 0 to r = (x, y, z)T .

(d) Consistency check: Verify by explicit calculation that your result for φ(r) satisfies the
equation ∇φ(r) = A(r).

(e) Calculate the integral I1 from part (a) over the vector field by considering the difference
in potential φ(r) (the antiderivative!) at the integration limits b and 0. Consistency
check: Do you obtain the same result as in part (a) of the exercise?

PV3.2.4 Line integral of a vector field

Calculate the line integral W [γ] =
´
γ

dr ·F of the vector field F(r) = (xeyz, yexz, zexy)T along

the straight line γ from the point 0 = (0, 0, 0)T to the point b = b(1, 2, 1)T , with b ∈ R.
[Check your result: for b2 = ln 2, W [γ] = 7/2.] Does the line integral depend on the path
taken?

EV3.2.5 Line of magnetic field of a current-carrying conductor

This problem illustrates that ∂iBj − ∂jBi = 0 does not necessarily imply
¸

dr ·B = 0.
The magnetic field of an infinitely long current-carrying conductor has the form

B(r) =
c

x2 + y2



−y
x
0


 .

(a) Show that ∂iBj − ∂jBi = 0 holds if
√
x2 + y2 6= 0.

(b) Compute the line integral W [γK ] =
´
γK

dr ·B for the closed path along the circle with

radius R around the origin, γK = {r(t) = R(cos t, sin t, 0)T |t ∈ [0, 2π]}.
(c) Compute the line integral W [γR] =

´
γR

dr ·B for the closed path γR along the edges of

the rectangle with corners (1, 0, 0)T , (2, 0, 0)T , (2, 3, 0)T and (1, 3, 0)T .

(d) Are your results from (a) to (c) consistent with each other? Explain!
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PV3.2.6 Line integral of vector field on non-simply connected domain

Consider the vector field

B(r) =
1

(x2 + y2)2



−yxn
xn+1

0


 .

(a) For what value of the exponent n does ∂iBj − ∂jBi = 0 hold, if
√
x2 + y2 6= 0?

In the following questions, use the value of n found in (a).

(b) Compute the line integral W [γC ] =
¸
γC

dr · B for the closed path along the circle with

radius R around the origin, γC = {r(t) = R(cos t, sin t, 0)T |t ∈ [0, 2π]}.
(c) What is the value of the line integral W [γT ] =

¸
γT

dr ·B for the closed path γT along the

edges of the triangle with corners (−1,−1, 0)T , (1,−1, 0)T and (a, 1, 0)T , with a ∈ R?
Sketch the result as function of a ∈ [−2, 2]. Hint: You may write down the result without
a calculation, but should offer a justification for it.

P.V3.3 Sources of vector fields

EV3.3.1 Gauss’ theorem – cube (Cartesian coordinates)

Consider the cube C, defined by 0 < x < a, 0 < y < a, 0 < z < a, and the vector field v(r) =
(x2, y2, z2)T . Calculate its outward flux through the surface of the cube, Φ =

´
∂C

dS · v, in
two ways:

(a) directly as a surface integral; and

(b) as a volume integral via Gauss’s theorem.

[Check your result: if a = 2, then Φ = 48.]

PV3.3.2 Gauss’ theorem – cuboid (Cartesian coordinates)

Consider the cube C, defined by 0 < x < a, 0 < y < a, 0 < z < a, and the vector field
w(r) = (−y2, x2, 0)T . Calculate its outward flux through all surfaces of the cube except the
top (at z = a), Φ =

´
∂C\top

dS ·w, in two ways:

(a) directly as a surface integral;

(b) as a line integral via Stoke’s theorem.

[Check your result: if a = 2, then Φ = −16.]
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EV3.3.3 Calculating volume of cylinder using Gauss’ theorem

Calculate the volume of a cylinder with height h and radius R via a surface integral using
Gauss’s theorem and a vector field with the property that ∇ · v = 1. One may choose
v = zez, for example.

PV3.3.4 Calculating volume of sphere using Gauss’ theorem

Calculate the volume of a sphere with radius R via a surface integral using Gauss’s theorem
and a vector field with the property that ∇ · v = 1. One may choose v = 1

3
r, for example.

EV3.3.5 Flux integral: flux of vector field through surface with cylindrical symmetry

Consider a cylinder with midpoint at the origin, length 2h and radius R. A point charge Q
sits at the origin, which emits an electric field of the form E(r) = E0r/r

3, with E0 = Q. Find
the outward flux ΦZ = ΦT + ΦB + ΦS of this field through the entire surface of the cylinder,
by first calculating the flux through (a) the top ΦT and bottom ΦB, as well as (b), the side
ΦS. [Check your results: ΦZ = Q/ε0.]

PV3.3.6 Flux integral: flux of vector field through surface with cylindrical symmetry

Given the surface of revolution S = SSide + SBottom + STop, with

SSide = {(x, y, z) ∈ R3 : x2 + y2 = e−2az, z ≥ 0}
STop = {(x, y, z) ∈ R3 : x2 + y2 ≤ 1, z = 0}

SBottom = {(x, y, z) ∈ R3 : x2 + y2 ≤ e−2a, z = 1}.

Sketch S and calculate, for the vector field v(x, y, z) = (x, y,−2z), the flux, Φ =
´

dS · v,
(directed outwards) through each of the three individual surfaces, as well as through the whole
surface S. [Check your results: if a = 1, then ΦSide = −ΦTop = 2πe−2.]

EV3.3.7 Gauss’ theorem – cylinder (cylindrical coordinates)

Let the vector field v defined in cylindrical coordinates by

v = zρeρ

be given, as well as a cylindrical volume V defined by ρ ∈ [0, R], φ ∈ [0, 2π[, z ∈ [0, H] .

(a) Calculate the divergence of the vector field v .
Note: The divergence of a vector field A = Aρeρ+Aφeφ+Azez in cylindrical coordinates
is given by:

∇ ·A =
1

ρ
∂ρ (ρAρ) +

1

ρ
∂φAφ + ∂zAz



528 P.V3 Fields

Calculate the flux Φ of the vector field v through the surface S of the cylindrical volume V
via two methods:

(b) By calculating the surface integral Φ =
´
S

dS · v explicitly.

(c) By using Gauss’s theorem to convert to a volume integral of ∇·v and then calculate this
integral explicitly.

PV3.3.8 Gauss’ theorem – wedge ring (spherical coordinates)

Consider the “wedge-ring”, K, which is
shaded grey in the sketch. This shape can
be expressed in spherical coordinates by the
conditions 0 ≤ r ≤ R and π/3 ≤ θ ≤ 2π/3
(Such a ring-like object, with wedge-shaped
inner profile and rounded outer profile is con-
structed from a sphere with radius R, by re-
moving a double cone centred on the z-axis
with apex angle π/3.).
Calculate the outward flux ΦK of the vector
field F(r) = r2er through the surface ∂K
of the wedge-ring, in two different ways:

z

3
π

3
π

3
π

(a) Calculate the surface integral ΦK =
´
∂K

dS · F explicitly.

(b) Convert the surface integral into a volume integral of the divergence ∇ ·F using Gauss’s
theorem, and calculate the volume integral explicitly.
Hint: In Spherical coordinates:

∇ · F =
1

r2
∂r
(
r2Fr

)
+

1

r sin θ
∂θ (sin θFθ) +

1

r sin θ
∂φFφ .

(c) For the vector field G(r) = − cos θ eθ, calculate the outward flux Φ̃K =
´
∂K

dS · G
through the surface of the wedge-ring, either directly or by using Gauss’s theorem.

P.V3.4 Circulation of vector fields

EV3.4.1 Gradient, divergence, curl

Consider the real function f(x, y, z) = x2y + y2z and the vector field v = (xyz, y2, z2)T .
Calculate ∇f , ∇ · v and ∇× v.
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PV3.4.2 Gradient, divergence, curl

Given a scalar field φ(r) = sin x cos y ez and a vector field v(r) = (xyz, z2y2, z3y)T . Calculate
∇ϕ, ∇ · v and ∇ × v. [Check your answer: At the points r1 = (π/2, π/2, 0)T and r2 =
(1, 1, 1)T , the results ∇φ(r1) = (0,−1, 0)T , ∇ · v(r2) = 6, ∇ × v(r2) = (−1, 1,−1)T are
valid.]

EV3.4.3 Source fields have no curl

Let ϕ : R3 → R be a twice differentiable and continuous scalar field. Show that∇× (∇ϕ) =
0.

PV3.4.4 Rotation fields have no divergence

Let v : R3 → R3 be a twice differentiable and continuous vector field. Show that∇·(∇×v) =
0.

EV3.4.5 Nabla identities

(a) Consider the scalar fields f(x, y, z) = ze−x
2

and g(x, y, z) = yz−1, and the vector fields
A(x, y, z) = x2yex and B(x, y, z) = ex. Compute ∇f , ∇g, ∇ · A, ∇ × A, ∇ · B,
∇×B. [Check your results: at the point (x, y, z)T = (1, 1, 1)T ,∇f = (−2e−1, 0, e−1)T ,
∇g = (0, 1,−1)T , ∇ ·A = 2, ∇×A = −ez, ∇ ·B = 0, ∇×B = 0.]

(b) Prove the following identities for general scalar fields f(x, y, z) and g(x, y, z) and general
vector fields A(x, y, z) and B(x, y, z) (using index notation, i.e. without representing A,
B and ∇ as column vectors):

(i) ∇ (fg) = f (∇g) + g (∇f)

(ii) ∇ (A ·B) = A× (∇×B) + B× (∇×A) + (A · ∇) B + (B ·∇) A

(iii) ∇ · (fA) = f (∇ ·A) + A · (∇f)

Remark: For each identity the fields are assumed to be sufficiently differentiable.

(c) Check the identities from (b) explicitly for the fields given in (a).

PV3.4.6 Nabla identities

(a) Consider the scalar field f(x, y, z) = y−1 cos(z) and the vector fields A(x, y, z) =

(−y, x, z2)
T

and B(x, y, z) = (x, 0, 1)T . Compute ∇f , ∇ ·A, ∇×A, ∇ ·B, ∇×B.

(b) Prove the following identities for a general scalar field f(x, y, z) and general vector fields
A(x, y, z) and B(x, y, z) (using index notation, i.e. without representing A, B and ∇ as
column vectors):

(i) ∇ · (A×B) = B · (∇×A)−A · (∇×B)
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(ii) ∇× (fA) = f (∇×A)−A× (∇f)

(iii) ∇× (A×B) = (B ·∇) A− (A ·∇) B + A (∇ ·B)−B (∇ ·A)

(iv) ∇× (∇×A) =∇(∇ ·A)−∇2A wobei ∇2 = (∇ ·∇)

Remark: For each identity the fields are assumed to be sufficiently differentiable.

(c) Check the identities from (b) explixitly for the fields given in (a). [Check your results:
at the point (x, y, z)T = (1, 1, 0)T : ∇ · (A×B) = 2, ∇ × (fA) = (0, 0, 1)T , ∇ ×
(A×B) = (0, 2, 0)T , ∇× (∇×A) = 0.]

EV3.4.7 Stokes’ theorem – cube (Cartesian coordinates)

Consider the cuboid C, defined by 0 < x < a, 0 < y < b, 0 < z < c, and the vector field
v(r) = (1

2
x2 + x2y, 1

2
x2y2, 0)T . Calculate its outward flux through the surface of the cuboid,

Φ =
´
∂C

dS · v, in two ways:

(a) directly as a surface integral; and

(b) as a volume integral via Gauss’s theorem.

[Check your results: if a = 2, b = 3, c = 1
2
, then Φ = 18.]

PV3.4.8 Stokes’ theorem – cuboid (Cartesian coordinates)

Consider the cuboid C, defined by 0 < x < a, 0 < y < b, 0 < z < c, and the vector field
w(r) = 1

2
(yz2,−xz2, 0)T . Calculate its outward flux through all surfaces of the cuboid except

the top (at z = c), Φ =
´
∂C\top

dS ·w, in two ways:

(a) directly as a surface integral;

(b) as a line integral via Stoke’s theorem.

[Check your results: if a = 2, b = 3, c = 1
2
, then Φ = 3

2
.]

EV3.4.9 Gradient, divergence, curl, Laplace in cylindrical coordinates

Let f(r) be a scalar field and B(r) = euBu + evBv + ewBw be a vector field in a curvilinear
orthogonal coordinate system with r = r(u, v, w) and ∂ur = bueu, ∂vr = bvev, ∂vr = bvev .
Then the gradient, divergence, curl and Laplace operator are given by

∇f = eu
1

bu
∂uf + u v

w

u v

w
+ ,

∇ ·B =
1

bubvbw
∂u (bvbwBu) + u v

w

u v

w
+ ,

∇×B = eu
1

bvbw

[
∂v (bwBw)− ∂w (bvBv)

]
+ u v

w

u v

w
+ ,
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∇2f =∇ · (∇f) =
1

bubvbw
∂u

(
bvbw
bu

∂uf

)
+ u v

w

u v

w
+ .

Consider the cylindrical coordinates defined by r = (ρ cosφ, ρ sinφ, z)T .

(a) Find expressions for eρ, eφ, ez and bρ, bφ, bz .

Starting from the formulae given above, find explicit formulas for

(b) ∇f , (c) ∇ ·B, (d) ∇×B, (e) ∇2f .

(f) Verify explicitly that ∇× (∇f) = 0, using the given formulae for the gradient and curl
in general curvilinear coordinates u, v, w (i.e. not specifically cylindrical coordinates).

PV3.4.10 Gradient, divergence, curl, Laplace in spherical coordinates

We consider a curvilinear orthogonal coordinate system with coordinate y = (y1, y2, y3) ≡
(u, v, w), position vector r(y) = r(u, v, w) and velocity vector ∂ur = bueu, ∂vr = bvev,
∂wr = bwew. Furthermore, f(r) is a scalar field and B(r) = euB

u + evB
v + ewB

w is a vector
field. Then, the gradient, divergence, curl and Laplace operator are given by

∇f = eu
1

bu
∂uf + u v

w

u v

w
+ ,

∇ ·B =
1

bubvbw
∂u (bvbwB

u) + u v

w

u v

w
+ ,

∇×B = eu
1

bvbw

[
∂v (bwB

w)− ∂w (bvB
v)
]

+ u v

w

u v

w
+ ,

∇2f =∇ · (∇f) =
1

bubvbw
∂u

(
bvbw
bu

∂uf

)
+ u v

w

u v

w
+ .

Consider the spherical coordinates defined by r(r, θ, φ) = (r sin θ cosφ, r sin θ sinφ, r cos θ)T .

(a) What do er, eθ, eφ and br, bθ, bφ look like? Based on the formulae given above, find an
explicit formula for

(b) ∇f , (c) ∇ ·B, (d) ∇×B, (e) ∇2f .

(f) Verify explicitly, using the given formulae for the divergence and the curl for general
curvilinear coordinates u, v, w (i.e. not specifically spherical coordinates), that ∇ ·
(∇×B) = 0 .

(g) Calculate ∇f , ∇ ·B, ∇×B and ∇2f for the fields f(r) = ‖r‖2 and B(r) = (0, 0, z)T .
[Check your results: if r = (1, 1, 1)T , then ∇f = (2, 2, 2)T , ∇ ·B = 1, ∇×B = 0 and
∇2f = 6.]
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EV3.4.11 Gradient, divergence, curl (spherical coordinates)

Let f(r) = 1
r

be a given scalar field and a let v(r) = (e−r/a/r)r be a vector field with

r = (x, y, z)T and r =
√
x2 + y2 + z2. Calculate ∇f , ∇ · v, ∇× v and ∇2f explicitly for

r > 0,

(a) in Cartesian coordinates;

(b) in spherical coordinates.

Show that your results from (a) and (b) are consistent with one another.

PV3.4.12 Gradient, divergence, curl (cylindrical coordinates)

Let f(r) = z(x2 + y2) be a given scalar field and let v(r) = (zx, zy, 0)T be a vector field.
Calculate ∇f , ∇ · v, ∇× v and ∇2f explicitly in

(a) Cartesian coordinates;

(b) cylindrical coordinates.

[Compare the results obtained in (a) and (b)!]

EV3.4.13 Stokes’ theorem – magnetic dipole (spherical coordinates)

Every magnetic field can be represented as B = ∇ ×A, where the vector field A is known
as the ‘vector potential’ of the field. For a magnetic dipole,

A =
1

c

m× r

r3
, B =

1

c

3r(m · r)−mr2

r5
,

where c is the speed of light. Let the constant dipole moment m be oriented in the z-direction,
m = mez. Let H be a hemisphere with radius R, oriented with base surface in the xy-plane,
symmetry axis along the positive z-axis and pole on the latter. Compute the flux integral of
the magnetic field through this hemisphere, ΦH =

´
H

dS ·B, in two different ways:

(a) Directly, using spherical coordinates.

(b) Express Φ, using B = ∇ × A and Stokes’ theorem, as a line integral of A over the
boundary of the surface of H. Calculate the latter.

PV3.4.14 Stokes’ theorem – cylinder (cylindrical coordinates)

Let Z be a cylinder with radius R and height aR2, centred on the z-axis, with base in the
xy-plane. For the vector field v = x2+y2

z
(−y, x, 0)T , calculate the flux ΦD =

´
D

dS · (∇× v)
through the top D of the cylinder in two different ways:

(a) Directly, using cylindrical coordinates.

(b) By converting the problem to a line integral of v over the boundary ∂D of the top of the
cylinder via Stoke’s theorem, and then calculating the integral.
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EV3.4.15 Stokes’ theorem – magnetic field of infinite current-carrying wire (cylindrical coordi-
nates)

Let an infinitely long, infinitesimally thin conductor be oriented along the z-axis and carry a
current I. It generates a magnetic field of the following form:

B(r) =
2I

c

1

x2 + y2



−y
x
0


 =

2I

c

1

ρ
eϕ, for ρ =

√
x2 + y2 > 0.

Calculate the divergence and rotation of B(r) explicitly for ρ > 0 in

(a) Cartesian coordinates.

(b) Cylindrical coordinates [Compare your results from (a) and (b)!].

(c) Calculate, using cylindrical coordinates, the line integral
�
γD

r · B of the magnetic field
along the edge γD of a circular disk, D, with radius R > 0, centred on the z-axis, and
oriented parallel to the xy-plane.

(d) Calculate, using Stokes’ theorem and the result from (c), the flux integral
´
DA

dS·(∇×B)

of the curl of the magnetic field over the disk D prescribed in (c).

(e) From your results for ∇ × B from (a) and (d), conclude that the curl of the field is
proportional to a two dimensional δ-function, i.e. it has the form∇×B = ez Cδ(x)δ(y).
Find the constant C. [Hint: The normalization of the two dimensional δ-function is given
by the surface integral

´
D

dS δ(x)δ(y) = 1 for an arbitrary surface D that is parallel to
the xy-plane and encloses the point x = y = 0.]

(f) Write the result obtained in (e) in the form ∇ × B = 4π j(r)/c and determine j(r).
This equation is Ampere’s law (one of the Maxwell equations), where j(r) is the current
density. Can you give a physical interpretation of your result for j(r)?

PV3.4.16 Gauss’ theorem – electrical field of a point charge (spherical coordinates)

The electric field of a point charge Q at the origin has the form

E(r) = Q
1

r3
r = Q

1

r3



x
y
z


 = Q

er
r2
, with r > 0, r =

√
x2 + y2 + z2 .

(ε0 is the-so called dielectric constant). Calculate the divergence and the curl of E(r) explicitly
for r > 0, in

(a) Cartesian coordinates.

(b) spherical coordinates. [Compare your results from (a) and (b)!]
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(c) Calculate, using spherical coordinates, the flux ΦK =
´
OK

dS · E of the electric field
through the surface OK of a sphere K with radius R > 0 centred at the origin.

(d) Calculate, using Gauss’ theorem and the result from (c), the volume integral
´
VK

dV (∇ ·
E) over the volume VK of the sphere K described in (c).

(e) Conclude from your results for ∇ · E from (a) and (d), that the divergence of the field
is proportional to a three dimensional δ-function, i.e. it has the form ∇ · E = C δ(3)(r).
Find the constant C. [Hint: The normalization of δ(3)(r) = δ(x)δ(y)δ(z) is given by the
volume integral

´
V

dV δ(3)(r) = 1, for any volume V that contains the origin.]

(f) Write your result from (a) in the form ∇ · E = 4πρ(r), and determine ρ(r). This
equation is the (physical) Gauss’ law (one of the Maxwell equations), where ρ(r) is the
charge density. Can you interpret your result in terms of ρ(r)?

EV3.4.17 Gauss’ theorem – electrical dipole potential (spherical coordinates)

The potential of an electric dipole with dipole moment p = pez is given by

Φ(r) =
1

4πε0

p · r
r3

=
1

4πε0

pz

r3

(a) Calculate the electric field E = −∇Φ(r) explicitly in Cartesian coordinates.

(b) Represent Φ(r) in spherical coordinates and calculate the electric field explicitly in spher-
ical coordinates. Compare this result with the result obtained in (a).
Hint: ez = cos θer − sin θeθ

(c) Calculate the divergence and the curl of the electric field explicitly in Cartesian coordinates.

(d) Calculate the divergence and the curl of the electric field explicitly in spherical coordinates.
[Compare the results obtained in (b) and (c)!]

(e) According to the (physical) Gauss’ law, we have
´
S

dS · E = Q/ε0, where Q is the total
charge contained within the volume of S and ε0 is the dielectric constant. Now let S be a
surface on sphere centred on the origin with radius R. Calculate Q/ε0 by converting the
flux integral into a volume integral over ∇ ·E using the (mathematical) Gauss’ theorem.
Evaluate this integral using the result from (d). Is your result for Q/ε0 sensible? Explain!

PV3.4.18 Stokes’ theorem – magnetic field of opposite currents in parallel wires (cylindrical
coordinates)

P.V4 Basic concepts of differential geometry

P.V4.1 Differentiable manifolds
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P.V5 Alternating differential forms
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P.V7 Case study: differential forms and electrodynamcs

P.V7.1 The ingredients of electrodynamics

P.V7.2 Laws of electrodynamics I: Lorentz force
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Solutions

The fourth part of this book, labelled S, contains detailed solutions to all odd-numbered
problems and to all case studies presented in the preceding three parts. Lecturers can obtain
the solutions to even-numbered problems from the publishers by request.
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SL Problems: Linear Algebra

S.L1 Mathematics before numbers

S.L1.1 Sets and Maps

EL1.1.1 Composition of maps

(a) Since A maps Z to Z and B maps Z to N0, it follows that C = B ◦ A maps Z to N0.
The image of n is C(n) = B(A(n)) = B(n+ 1) = |n+ 1| . To summarize:

C : Z→ N0, n 7→ C(n) = |n+ 1|.

(b) A, B and C are all surjective. A is also injective and bijective. B is not injective, because
any positive n ∈ N0 is the image of two points in Z, B(n) = B(−n) = n. Consequently,
B is not bijective either. It follows that C, too, is not injective and thus not bijective.

S.L1.2 Groups

EL1.2.1 The group Z2

(a) The composition table implies the following properties:

(i) Closure: the result of any possible addition is listed in the table
and belongs to the set {0, 1}. X

0 1

0 0 1

1 1 0

(i) Associativity:

(1 0) 0 = 1 0 = 1
?
= 1 (0 0) = 1 0 = 1 X

(0 1) 0 = 1 0 = 1
?
= 0 (1 0) = 0 1 = 1 X

(1 1) 0 = 0 0 = 0
?
= 1 (1 0) = 1 1 = 0 X

(1 0) 1 = 1 1 = 0
?
= 1 (0 1) = 1 1 = 0 X

(0 1) 1 = 1 1 = 0
?
= 0 (1 1) = 0 0 = 0 X

(0 0) 1 = 0 1 = 1
?
= 0 (0 1) = 0 1 = 1 X

(ii) The neutral element is 0, since adding it yields no change: 0 0 = 0, 0 1 = 1.

537
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(iii) For every element in the group, there is exactly one inverse, since every row of the
table contains exactly one 0.

(iv) The group is abelian since the table is symmetric with respect to the diagonal.

(b) The group ({+1,−1}, • ), with standard multiplication as group
operation, is isomorphic to Z2, since their composition tables have
the same structure if we identify +1 with 0 and −1 with 1.

• +1 −1

+1 +1 −1

−1 −1 +1

EL1.2.3 Group of discrete translations in one dimension

(a) Consider the group axioms:

(i) Closure: The integers are closed under usual addition: m,n ∈ Z⇒ m+ n ∈ Z. All
x, y ∈ G are integer multiples of λ, hence there exist integers nx, ny ∈ Z such that
x = λnx, y = λny. It follows that T (x, y) = x+y = λ ·nx+λ ·ny = λ · (nx+ny) ∈
λ · Z = G. X

(ii) Associativity: The usual addition rule for real numbers is associative: a, b, c ∈ R
⇒ (a + b) + c = a + (b + c). For x, y, z ∈ G we therefore have T (T (x, y), z) =
T (x+ y, z) = (x+ y) + z = x+ (y + z) = T (x, y + z) = T (x, T (y, z)). X

(iii) Neutral element: The neutral element is 0 = λ · 0 ∈ G: For all x ∈ G we have:
T (x, 0) = x+ 0 = x. X

(iv) Inverse element: The inverse element of n ∈ Z is −n ∈ Z. Thus the inverse of
x = λ · n ∈ G is −x ≡ λ · (−n) ∈ G, since T (x,−x) = λ · n + λ · (−n) =
λ · (n+ (−n)) = λ · 0 = 0. X

(v) Commutativity (for the group to be abelian): For all x, y ∈ G we have T (x, y) =
x+y = y+x = T (y, x), since the usual addition of real numbers is commutative. X

Since (G, T ) satisfies properties (i)-(v), it is an abelian group. X
Remark: For λ = 1, the group (G, T ) is identical to (Z,+).

(b) The group axioms of (T, ) follow directly from those of (G, T ):

(i) Closure: Tx, Ty ∈ T⇒ Tx Ty = TT (x,y) ∈ T, since if x, y ∈ G, then T (x, y) ∈ G
[see (a)]. X

(ii) Associativity: For Tx, Ty, Tz ∈ T we have: (Tx Ty) Tz = TT (x,y) Tz = TT (T (x,y),z)
(a)
= TT (x,T (y,z)) = Tx TT (y,z) = Tx (Ty Tz). X

(iii) Neutral element: The neutral element is T0 ∈ T: For all Tx ∈ T we have: Tx T0 =
TT (x,0) = Tx+0 = Tx. X

(iv) Inverse element: The inverse element of Tx ∈ T is T−x ∈ T, where −x is the inverse
element of x ∈ G with respect to T , since Tx T−x = TT (x,−x) = Tx+(−x) = T0. X

(v) Commutativity (for the group to be abelian): For all x, y ∈ G we have Tx Ty =
TT (x,y) = TT (y,x) = Ty Tx, since the composition rule T in G is commutative. X
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Since (T, ) satisfies properties (i)-(v), it is an abelian group. X

EL1.2.5 The permutation group

(a) The entries of the composition table can found by evaluating the image of 123 under P

followed by P ′. For example 123
[213]7−→ 213

[321]7−→ 231, hence [321] ◦ [213] = [231].

P ′ ◦ P [123] [231] [312] [213] [321] [132]

[123] [123] [231] [312] [213] [321] [132]

[231] [231] [312] [123] [321] [132] [213]

[312] [312] [123] [231] [132] [213] [321]

[213] [213] [132] [321] [123] [312] [231]

[321] [321] [213] [132] [231] [123] [312]

[132] [132] [321] [213] [312] [231] [123]

(b) The neutral element is the permutation that ‘does nothing’, [123] . Each element has a
unique inverse, since every row and column contains the neutral element exactly once.

(c) The composition table is not symmetric, P ′ ◦ P 6= P ◦ P ′, hence S3 is not an abelian
group. For example, [312] ◦ [213] = [132], whereas [213] ◦ [312] = [321].

S.L1.3 Fields

EL1.3.1 Complex numbers – elementary computations

For z1 = 12 + 5i, z2 = −3 + 2i and z3 = a− ib (a, b ∈ R) we find:

(a) z̄1 = 12− 5i

(b) z1 + z2 = 12 + (−3) + (5 + 2)i = 9 + 7i

(c) z1 + z̄3 = 12 + a+ (5 + b)i

(d) z1z2 = 12 · (−3)− 5 · 2 + i [5 · (−3) + 12 · 2] = −46 + 9i

(e) z̄1z3 = 12 · a− (−5) · (−b) + i [(−5) · a+ 12 · (−b)] = 12a− 5b− i(5a+ 12b)

(f)
z1

z2

=
12 + 5i

−3 + 2i
=

(12 + 5i)(−3− 2i)

(−3 + 2i)(−3− 2i)
=
−36 + 10 + i(−15− 24)

9 + 4
= −2− 3i

(g) |z1| =
√
z1z̄1 =

√
144 + 25 = 13

(h) |z1 + z2| =
√

92 + 72 =
√

130

(i) az2 + 3z3 = (−3a+ 2ai) + (3a− 3bi) = i(2a− 3b)

|az2 + 3z3| =
√

i(2a− 3b) · (−i)(2a− 3b) =
√

(2a− 3b)2 = |2a− 3b|
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EL1.3.3 Algebraic manipulations with complex numbers

(a) z + z̄ = x+ iy + x− iy = 2x = 2Re(z) ,

(b) z − z̄ = x+ iy − (x− iy) = i2y = i2Im(z) ,

(c) z · z̄ = (x+ iy)(x− iy) = x2 + y2 ,

(d)
z

z̄

(c)
=
z · z
z̄ · z =

(x+ iy)2

x2 + y2
=
x2 − y2

x2 + y2
+ i

2xy

x2 + y2
,

(e)
1

z
+

1

z̄
=
z̄ + z

z · z̄
(a),(c)
=

2x

x2 + y2
,

(f)
1

z
− 1

z̄
=
z̄ − z
z · z̄

(b),(c)
= i

(−2y)

x2 + y2
,

(g) z2 + z = (x+ iy)2 + (x+ iy) = (x2 − y2 + x) + i(2xy + y) ,

(h) z3 = (x+ iy)3 = (x3 + 3x2iy + 3x(iy)2 + (iy)3 = (x3 − 3xy2) + i(3x2y − y3) .

EL1.3.5 Multiplying complex numbers – geometrical interpretation

(a) With zj = (ρj cosφj, ρj sinφj) and the given trigonometric identities, we have

z3 = z1z2 = ρ1(cosφ1 + i sinφ1)ρ2(cosφ2 + i sinφ2)

= ρ1ρ2 [(cosφ1 cosφ2 − sinφ1 sinφ2)

+i (sinφ1 cosφ2 + cosφ1 sinφ2)]

= ρ1ρ2 [cos (φ1 + φ2) + i sin (φ1 + φ2)]

≡ ρ3 [cosφ3 + i sinφ3]

We read off: ρ3 = ρ1ρ2, φ3 = (φ1 + φ2) mod(2π). X

1φ

2φ
3φ

1z

2z

)zRe(

)zIm(
2z1z=3z

1ρ

2ρ3ρ

(b) The complex number z = x + iy is represented in the complex plane by the Cartesian
coordinates z 7→ (x, y), or the polar coordinates ρ = |z| =

√
x2 + y2, φ = arg(z) =

arctan
(
y
x

)
. The latter formula determines φ only modulo π; to uniquely fix φ ∈ [0, 2π),

we identify the quadrant containing the point (x, y).

z1 =
√

3 + i 7→ (
√

3, 1) ρ1 =
√

3 + 1 = 2 φ1 = arctan
(

1√
3

)
= π

6

z2 = −2 + 2
√

3i 7→ (−2, 2
√

3) ρ2 =
√

12 + 4 = 4 φ2 = arctan
(−2

√
3

2

)
= 2π

3

z3 = z1z2 = (
√

3 + i)(−2 + 2
√

3i) ρ3 =
√

16 · 3 + 16 = 8 φ3 = arctan
(

4
−4
√

3

)
= 5π

6

= −4
√

3 + 4i 7→ (−4
√

3, 4)

z4 = 1
z1

= 1√
3+i

= (
√

3−i)

(
√

3+i)(
√

3−i)
ρ4 = 1

4

√
3 + 1 = 1

2
φ4 = arctan

(−1/4√
3/4

)
= 11π

6

=
√

3
4
− 1

4
i 7→ (

√
3

4
,−1

4
)

z5 = z̄1 =
√

3− i 7→ (
√

3,−1) ρ5 =
√

3 + 1 = 2 φ5 = arctan
(−1√

3

)
= 11π

6
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As expected, we find:
ρ3 = ρ1ρ2

φ3 = φ1 + φ2

ρ4 = 1/ρ1

φ4 = −φ1mod(2π)

ρ5 = ρ1

φ5 = −φ1mod(2π)

1z

2z

)zRe(

)zIm(2z1z=3z

6π/2

4
8

6π/5

1z
1=4z

1z= ¯5z

6π/11

3π/2

EL1.3.7 Field axioms for F4

Multiplication table: The first row and column must contain only zeroes,
since x • 0 = 0 • x = 0 for each element x in the field. (Reason:
x • y = x • (y 0) = x • y x • 0, hence x • 0 = 0.) The second
row and column follow from 1 • x = x. The remaining four entries
must be arranged symmetrically to ensure commutativity. Let us begin
by specifying the inverses of a and b, by entering a 1 in each of their
columns.

• 0 1 a b

0 0 0 0 0

1 0 1 a b

a 0 a

b 0 b

Suppose that in each column the 1 appears on the diagonal; then the
table’s symmetry requires the remaining off-diagonal entries to contain
the same element x, i.e. a • b = x = b • a. This implies the relations

a • x = a • (a • b)
assoc.
= (a • a) • b = 1 • b = b ⇔ a • x = b

b • x = b • (b • a)
assoc.
= (b • b) • a = 1 • a = a ⇔ b • x = a

• 0 1 a b

0 0 0 0 0

1 0 1 a b

a 0 a 1 x

b 0 b x 1

(contradiction)

which lead to a contradiction, since it is easily verified that no element x ∈ {0, 1, a, b} can
satisfy both equations.

Therefore the 1 must appear as off-diagonal entry in each column, a•b =
1 = b • a. Finally, the two remaining diagonal entries need to be filled
with a or b. If a • a = a, then associativity would again lead to a
contraction: 1 = b • a = b • (a • a)

assoc.
= (b • a) • a = 1 • a = a. Thus

a • a = b must hold, and analogously, b • b = a.

• 0 1 a b

0 0 0 0 0

1 0 1 a b

a 0 a b 1

b 0 b 1 a
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Addition table: To ensure commutativity, the table must be symmetric.
Each element has an additive inverse, hence and each row and column
must contain exactly one 0. Consider the option a 1 = 0. Then
distributivity would yield 0 = b • 0 = b • (a 1)

distr.
= b • a b • 1 = 1 b,

hence 1 would have two additive inverses (a and b), contradicting the
field axioms. Analogously, the option b 1 = 0 would likewise lead to a
contradiction. Thus, the only remaining option, 1 1 = 0, must hold.
The rest of the addition table follows from analogous arguments.

0 1 a b

0 0 1 a b

1 1 0 b a

a a b 0 1

b b a 1 0

S.L2 Vector spaces

S.L2.4 Vector spaces: examples

EL2.4.1 Vector space axioms: rational numbers

(a) First, we show that (Q2,+) forms an abelian group.

(i) Closure holds by definition. X

(ii) Associativity:

[(
x1

x2

)
+

(
y1

y2

)]
+

(
z1

z2

)
=

(
x1 + y1

x2 + y2

)
+

(
z1

z2

)
=

(
x1 + y1 + z1

x2 + y2 + z2

)

=

(
x1

x2

)
+

(
y1 + z1

y2 + z2

)
=

(
x1

x2

)
+

[(
y1

y2

)
+

(
z1

z2

)]
. X

(iii) Neutral element:

(
0
0

)
is the neutral element. X

(iv) Additive inverse:

(
−x1

−x2

)
∈ Q2 is the additive inverse of

(
x1

x2

)
∈ Q2 . X

(v) Commutativity: follows (component-wise) from the commutativity of Q. X

Second, we show that scalar multiplication, · , likewise has the properties required for
(Q2,+, ·) to form a vector space. Since the product of two rational numbers is always

rational

(
p1

q1

· p2

q2

=
(p1p2)

(q1q2)

)
, closure holds by definition. Moreover:

(vi) Multiplication of a sum of scalars and a vector is distributive:

(λ+ µ) ·
(
x1

x2

)
=

(
(λ+ µ)x1

(λ+ µ)x2

)
=

(
λx1 + µx1

λx2 + µx2

)
= λ

(
x1

x2

)
+ µ

(
x1

x2

)
. X

(vii) Multiplication of a scalar and a sum of vectors is distributive:

λ ·
[(
x1

x2

)
+

(
y1

y2

)]
=

(
λx1 + λy1

λx2 + λy2

)
= λ

(
x1

x2

)
+ λ

(
y1

y2

)
. X
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(viii) Multiplication of a product of scalars and a vector is associative:

(λµ) ·
(
x1

x2

)
=

(
λµx1

λµx2

)
= λ

[
µ ·
(
x1

x2

)]
. X

(ix) Neutral element: 1 ·
(
x1

x2

)
=

(
x1

x2

)
. X

Therefore, the triple (Q2,+, ·) represents a Q-vector space.

(b) The set of integers Z does not form a field, since not for each a ∈ Z\{0} a multiplicative
inverse a−1 ∈ Z exists (e.g. the equation 2 · a = 1 has no solution within the integers).
Hence, it is also not possible to construct any vector space over the integers.

EL2.4.3 Vector space of real functions

We have to verify that all the axioms for a vector space are satisfied. First, (F, ) indeed
has all the properties of an abelian group:

(i) Closure holds by definition: adding two functions from F again yields a function in F . X

(ii,v) Associativity and commutativity follow trivially from the corresponding properties of R.
For example associativity:
[
f

[
g h

]]
(x) = f(x) +

[
g h

]
(x) = f(x) +

(
g(x) + h(x)

)

=
(
f(x)+g(x)

)
+h(x) =

[
f g

]
(x) + h(x) =

[[
f g

]
h
]
(x) . X

(iii) The neutral element is the null function, defined by fe : x 7→ fe(x) ≡ 0, since f fe :
x 7→ f(x) + fe(x) = f(x) + 0 = f(x). X

(iv) The additive inverse of f is −f , defined by −f : x 7→ (−f)(x) ≡ −f(x), since
f (−f) : x 7→ f(x) + (−f(x)) = 0. X

Moreover, multiplication of any function with a scalar also has all the properties required for
(F, , •) to be a vector space. Closure holds per definition. Furthermore:

(vi) Multiplication of a sum of scalars and a function is distributive:

[
(γ + λ) • f

]
(x) = (γ + λ)f(x) = γf(x) + λf(x) =

[
γ • f

]
(x) +

[
λ • f

]
(x)

=
[
γ • f λ • f

]
(x) . X

(vii) Multiplication of a scalar and a sum of functions is distributive:

[
λ • (f + g)

]
(x) = λ

([
f g

]
(x)
)

= λ
(
f(x) + g(x)

)
= λf(x) + λg(x)
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=
[
λ · f](x) +

[
λ · g](x) =

[
λ · f λ · g](x) . X

(viii) Multiplication of a product of scalars and a function is associative:

[
(γλ) • f

]
(x) = (γλ)f(x) = γ

(
λf(x)

)
= γ

[
λ • f

]
(x) =

[
γ • (λ • f)

]
(x) . X

(ix) Neutral element:
[
1 · f](x) = 1f(x) = f(x). X

Therefore, the triple (F, , •) is an R vector space.

EL2.4.5 E: Vector space with unusual composition rule – addition

First, we show that (Va, ) forms an abelian group.

(i) Closure holds by definition. X

(ii) Associativity: (vx vy) vz = vx+y+a vz = v(x+y+a)+z+a = vx+y+z+2a

= vx+(y+z+a)+a = vx vy+z+a = vx (vy vz) . X

(iii) Neutral element: vx v−a = vx+(−a)+a = vx , ⇒ 0 = v−a . X

(iv) Additive inverse: vx v−x−2a = vx+(−x−2a)+a = v−a = 0 , ⇒ −vx = v−x−2a . X

(v) Commutativity : vx vy = vx+y+a = vy+x+a = vy vx . X

Second, we show that scalar multiplication, · , likewise has the properties required for (Va, , •)
to form a vector space. Closure holds by definition. Moreover:

(vi) Multiplication of a sum of scalars and a vector is distributive:

(γ + λ)•vx = v(γ+λ)x+a(γ+λ−1) = vγx+a(γ−1)+λx+a(λ−1)+a

= vγx+a(γ−1) vλx+a(λ−1) = γ •vx λ•vx . X

(vii) Multiplication of a scalar and a sum of vectors is distributive:

λ•(vx + vy) = λ•vx+y+a = vλ(x+y+a)+a(λ−1) = vλx+a(λ−1)+λy+a(λ−1)+a

= vλx+a(λ−1) vλy+a(λ−1) = λ•vx λ•vy . X

(viii) Multiplication of a product of scalars and a vector is associative:

(γλ)•vx = v(γλ)x+a(γλ−1) = vγ(λx+a(λ−1))+a(γ−1) = γ •vλx+a(λ−1) = γ •(λ•vx) . X

(ix) Neutral element: 1•vx = vx+a(1−1) = vx . X

Therefore, the triple (Va, , ·) represents an R-vector space.
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S.L2.5 Basis and dimension

EL2.5.1 Linear independence

(a) The three vectors are linearly independent if and only if the only solution to the equation

0 = a1v1 + a2v2 + a3v3 = a1

(
0
1
2

)
+ a2

(
1
−1

1

)
+ a3

(
2
−1

4

)
, with aj ∈ R, (1)

is the trivial one, a1 = a2 = a3 = 0. The vector equation (1) yields a system of three
equations, (i)-(iii), one for each of the three components of (1), which we solve as follows:

(i) 0a1 + 1a2 + 2a3 = 0
(i)⇒ (iv) a2 = −2a3

(ii) 1a1 − 1a2 − 1a3 = 0
(iv) in (ii)⇒ (v) a1 = −a3

(iii) 2a1 + 1a2 + 4a3 = 0
(iv,v) in (iii)⇒ (vi) 0 = 0

(i) yields (iv): a2 = −2a3. (iv) inserted into (ii) yields (v): a1 = −a3. Inserting (iv) and
(v) into (iii) yields no new information. There are thus infinitely many non-trivial solutions
(one for every value of a3 ∈ R), hence v1, v2 and v3 are not linearly independent.

(b) The desired vector v′2 = (x, y, z)T should be linearly independent from v1 and v3, i.e. its
components x, y and z should be chosen such that the equation 0 = a1v1 +a2v′2 +a3v3

has no non-trivial solution, i.e. that it implies a1 = a2 = a3 = 0:

(i) 0a1 + xa2 + 2a3 = 0
(i)⇒ (iv) choose x = 0 , then a3 = 0.

(ii) 1a1 + ya2 − 1a3 = 0
(iv) in (ii)⇒ (v) choose y = 0 , then a1 = 0.

(iii) 2a1 + za2 + 4a3 = 0
(iv),(v) in (iii)⇒ (vi) choose z = 1 , then a2 = 0.

(i) yields (iv): 2a3 = −xa2; to enforce a3 = 0 we choose x = 0. (iv) inserted into (ii)
yields (v): a1 = −ya2; to enforce a1 = 0 we choose y = 0. (iv,v) inserted into (iii) yields
za2 = 0; to enforce a2 = 0 we choose z = 1. Thus v′2 = (0, 0, 1)T is a choice for which
v1, v′2 are v3 linearly indepedent. This choice is not unique – there are infinitely many
alternatives; one of them, e.g. is v′2 = (0, 1, 0)T .

EL2.5.3 Einstein summation convention

(a) aib
i = bjaj is true, since i and j are dummy variables which are summed over, hence we

may rename as we please:

aib
i =

2∑

i=1

aib
i = a1b

1 + a2b
2 = b1a1 + b2a2 =

2∑

j=1

bjaj = bjaj . X



546 S.L3 Euclidean geometry

(b) aiδ
i
jb
j = akb

k is true, since δij is nonzero only for i = j, in which case it equals 1:

aiδ
i
jb
j = a1 (δ1

1)︸︷︷︸
=1

b1 + a1 (δ1
2)︸︷︷︸

=0

b2 + a2 (δ2
1)︸︷︷︸

=0

b1 + a2 (δ2
2)︸︷︷︸

=1

b2 = a1b
1 + a2b

2 = akb
k . X

(c) aib
jajb

k ?
= akb

lalb
i is false, since the indices i and k are not repeated, i.e. they are

not summed over and hence may not renamed. For example, for i = 1 and k = 2 the
left-hand side, a1(b1a1 + b2a2)b2, clearly differs from right-hand side, a2(b1a1 + b2a2)b1.

(d) a1aib
1bi + b2aja2b

j = (aib
i)2 is true, since multiplication is associative and commutative

and we may rename dummy indices as we please:

a1aib
1bi+b2aja2b

j = a1b
1aib

i+a2b
2aib

i = (a1b
1+a2b

2)(aib
i) = (ajb

j)(aib
i) = (aib

i)2 .X

In practice, the arguments illustrated above need not be written out explicitly. Relations such
as (a), (b) and (d) may be simply written down without further discussion.

S.L3 Euclidean geometry

S.L3.1 Scalar product of Rn

S.L3.2 Normalization and orthogonality

EL3.2.1 Angle, orthogonal decomposition

(a) cos(∠(a,b)) =
a · b
‖a‖‖b‖ =

3 · 7 + 4 · 1√
9 + 16 ·

√
49 + 1

=
1√
2
⇒ ∠(a,b) =

π

4

(b) c‖ =
(c · d)d

‖d‖2
=

3 · (−1) + 1 · 2
1 + 4

(
−1

2

)
=

1

5

(
1
−2

)

c⊥ = c− c‖ =

(
3
1

)
− 1

5

(
1
−2

)
=

7

5

(
2
1

)

Consistency check: c⊥ · c‖ = 1
25

(
1 · 14− 2 · 7

)
= 0. X

S.L3.3 Inner product spaces

EL3.3.2 Unconvential inner product

All the defining properties of an inner product are satisfied:



S.L3.3 Inner product spaces 547

(i) Symmetric:

〈x,y〉 = x1y1 + x1y2 + x2y1 + 3x2y2 = y1x1 + y1x2 + y2x1 + 3y2x2 = 〈y,x〉 . X

(ii,iii) Linear:

〈λx + y, z〉 = (λx1 + y1)z1 + (λx1 + y1)z2 + (λx2 + y2)z1 + 3(λx2 + y2)z2

= (λx1z1 + λx1z2 + λx2z1 + 3λx2z2) + (y1z1 + y1z2 + y2z1 + 3y2z2)

= λ〈x, z〉+ 〈y, z〉 . X

(iii) Positive semi-definite:

〈x,x〉 = x1x1 + x1x2 + x2x1 + 3x2x2 = (x1 + x2)2 + 2x2
2 ≥ 0 . X

If 〈x,x〉, then x = (0, 0)T . X

EL3.3.3 Projection onto an orthonormal basis

(a) 〈e′1, e′1〉 = 1
2

[
1·1 + 1·1

]
= 1 , 〈e′1, e′2〉 = 1

2

[
1·1 + (−1)·1

]
= 0 .

〈e′2, e′2〉 = 1
2

[
1·1 + (−1)·(−1)

]
= 1

The two vectors are normalized and orthogonal to each other, 〈e′i, e′j〉 = δij , therefore
they form an orthonormal basis of R2. X

(b) Since the vectors {e′1, e′2} form an orthonormal basis, the component wi of the vector
w = (−2, 3)T = e′iw

i with respect to this basis is given by the projection wi = 〈e′i,w〉:

w1 = 〈e′1,w〉 = 1√
2

[
1·(−2) + 1·3

]
= 1√

2
,

w2 = 〈e′2,w〉 = 1√
2

[
1·(−2)− 1·3

]
= − 5√

2
.

EL3.3.5 Non-orthonormal basis vectors and metric

(a) v̂1 =

(
2

0

)
, v̂2 =

(
1

1

)
; ⇒ ê1 =

(
1

0

)
= 1

2
v̂1 , ê2 =

(
0

1

)
= −1

2
v̂1 + v̂2 .

The vectors v̂1 and v̂2 form a basis, because both standard basis vectors ê1 and ê2 can
be written in terms of them.
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(b) A representation of the vectors x̂ and ŷ as column vectors in the standard basis of R2

can be found as follows:

x̂ = v̂1x
1 + v̂2x

2, x1 = 3, x2 = −4 ⇒ x̂ =

(
2

0

)
3 +

(
1

1

)
(−4) =

(
2

−4

)
.

ŷ = v̂1y
1 + v̂2y

2, y1 = −1, y2 = 3 ⇒ ŷ =

(
2

0

)
(−1) +

(
1

1

)
3 =

(
1

3

)
.

Scalar product: 〈x̂, ŷ〉
R2 =

(
2

−4

)
·
(

1

3

)
= 2 · 1 + (−4) · 3 = −10 .

(c) g11 = 〈v̂1, v̂1〉R2 = 4 , g12 = 〈v̂1, v̂2〉R2 = 2 ,

g21 = 〈v̂2, v̂1〉R2 = 2 , g22 = 〈v̂2, v̂2〉R2 = 2 .

(d) 〈x̂, ŷ〉R2 = 〈x,y〉g = xigijy
j

= 3 · 4 · (−1) + 3 · 2 · 3 + (−4) · 2 · (−1) + (−4) · 2 · 3 = −10 . X [= (b)]

EL3.3.7 Gram-Schmidt orthonormalization

Strategy: iterative orthogonalization and normalization, starting from v1,⊥ = v1:

Starting vector: v1,⊥ = v1 = (1,−2, 1)T

Normalizing v1,⊥ : e′1 =
v1,⊥
‖v1,⊥‖

= 1√
6
(1,−2, 1)T = e′1 .

Orthogonalizing v2 : v2,⊥ = v2 − e′1〈e′1,v2〉 = (1, 1, 1)T − e′1(0)

Normalizing v2,⊥ : e′2 =
v2,⊥
‖v2,⊥‖

= 1√
3
(1, 1, 1)T = e′2 .

Orthogonalizing v3 : v3,⊥ = v3 − e′1〈e′1,v3〉 − e′2〈e′2,v3〉
= (0, 1, 2)T − e′1(0)− 1√

3
(1, 1, 1)T

(
3 1√

3

)
= (−1, 0, 1)T

Normalizing v3,⊥ : e′3 =
v3,⊥
‖v3,⊥‖

= 1√
2
(−1, 0, 1)T = e′3 .

S.L3.4 Complex scalar product

S.L4 Vector product

S.L4.2 Algebraic formulation



S.L4.2 Algebraic formulation 549

EL4.2.1 Elementary computations with vectors

Using a = (4, 3, 1)T and b = (1,−1, 1)T gives:

(a) ‖b‖ =
√

1 + 1 + 1 =
√

3

a− b = (4− 1, 3− (−1), 1− 1)T = (3, 4, 0)T

a · b = 4 · 1 + 3 · (−1) + 1 · 1 = 2

a× b =




4
3
1


×




1
−1
1


 =




3 · 1− 1 · (−1)
1 · 1− 4 · 1

4 · (−1)− 3 · 1


 =




4
−3
−7




(b) a‖ =
a · b
‖b‖2 b =

2

3
b =

2

3
(1,−1, 1)T

a⊥ = a− a‖ = (4, 3, 1)T − (2/3,−2/3, 2/3)T = (10/3, 11/3, 1/3)T

(c) a‖ · b =
2

3
b · b =

2

3
· 3 = 2 = a · b X

a⊥ · b =
10

3
− 11

3
+

1

3
= 0 X

a‖ × b =
2

3




1
−1
1


×




1
−1
1


 =

2

3




(−1) · 1− 1 · (−1)
1 · 1− 1 · 1

1 · (−1)− (−1) · 1


 =




0
0
0


X

a⊥ × b =
1

3




10
11
1


×




1
−1
1


 =

1

3




11 + 1
1− 10
−10− 11


 =




4
−3
−7


= a× b X

As expected, we have: a‖ · b = a · b, a⊥ · b = 0, a‖ × b = 0 and a⊥ × b = a× b. X

EL4.2.3 Levi-Civita tensor

(a) aibjεij2 = −akεk2lb
l is true. Indeed, writing out both sides explicitly, we find:

aibjεij2 = a1b3ε132 + a3b1ε312 = a3b1 − a1b3,

−akεk2lb
l = −a1ε123b

3 − a3ε321b
1 = a3b1 − a1b3.

More compactly, we can bring the r.h.s into the form of the l.h.s by relabeling summation
indices and using the antisymmetry of the ε tensor: −akεk2lb

l = −aibjεi2j = aibjεij2.

For the next two problems, we use the identity εijkεmnk = δimδjn − δinδjm. To be able to
apply it, it might be necessary to cyclicly rearrange indices on one of the Levi-Civita factors.

(b) ε1ikεkj1 = ε1ikεj1k = δ1jδi1 − δ11δij =

{
−1 if i = j ∈ {2, 3},

0 otherwise.

Note: for i = j = 1, the delta functions yield δ1jδi1 − δ11δij = 1 · 1− 1 · 1 = 0.
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As a check, we write out the k-sum explicitly: ε1ikεkj1 = ε1i1ε1j1 + ε1i2ε2j1 + ε1i3ε3j1. The
first term vanishes, because two indices on ε are equal. The second term is nonzero only
for i = j = 3, in which case it yields ε132ε231 = (−1) · (+1) = −1. The third term is
nonzero only for i = j = 2 in which case it yields ε123ε321 = (+1) · (−1) = −1.

(c) ε1ikεkj2 = ε1ikεj2k = δ1jδi2 − δ12δij = δ1jδi2 =

{
1 if i = 2 and j = 1,
0 otherwise.

As a check, we write out the k-sum explicitly: ε1ikε2kj = ε1i1ε21j + ε1i2ε22j + ε1i3ε23j. The
first and second terms vanish, since they contain ε-factors on which two indices are equal.
The third term is nonzero only if i = 2 and j = 1, in which case it yields ε123ε231 = 1.

S.L4.3 Further properties of the vector product

EL4.3.1 Grassmann identity (BAC-CAB) and Jacobi identity

(a) Consider the k-th component of a× (b× c) in an orthonormal basis, for k ∈ {1, 2, 3}:

[a× (b× c)]k
(i)
= ai[b× c]jεijk

(ii)
= aibmcnεmnjεkij

(iii)
= aibmcn(δmkδni − δmiδnk)

(iv)
= aibkci − aibick (v)

= bk(a · c)− ck(a · b)

Explanation: We (i,ii) employed the Levi-Civita representation of the cross product; (iii)
used the identity from the hint to perform the sum over the repeated index j in the
product of two Levi-Civita tensors; (iv) performed the sums on the repeated indices m
and n, exploiting the Kronecker-δs; and (v) identified the remaining sums on i as scalar
products. As a guide for the eye, we used horizontal brackets (‘contractions’) to indicate
which repeated indices will be summed over in the next step.

(b) a× (b× c) + b× (c× a) + c× (a× b)
Grassmann

=
[
b(a · c)− c(a · b)

]
+
[
c(b · a)− a(b · c)

]
+
[
a(c · b)− b(c · a)

]
= 0 .X

(c) a = (1, 1, 2)T , b = (3, 2, 0)T , c = (2, 1, 1)T . a · c = 5 , a · b = 5 .

b× c =

(
3

2

0

)
×
(

2

1

1

)
=

(
2

−3

−1

)
, a× (b× c) =

(
1

1

2

)
×
(

2

−3

−1

)
=

(
5

5

−5

)
.

a× b =

(
1

1

2

)
×
(

3

2

0

)
=

(
−4

6

−1

)
, c× (a× b) =

(
2

1

1

)
×
(
−4

6

−1

)
=

(
−7

−2

−16

)
.

c× a =

(
2

1

1

)
×
(

1

1

2

)
=

(
1

−3

1

)
, b× (c× a) =

(
3

2

0

)
×
(

1

−3

1

)
=

(
2

−3

−11

)
.

b(a · c)− c(a · b) = 5

(
3

2

0

)
− 5

(
2

1

1

)
=

(
5

5

−5

)
= a× (b× c) .X
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a× (b× c) + b× (c× a) + c× (a× b) =

(
5

5

−5

)
+

(
−7

−2

16

)
+

(
2

−3

−11

)
= 0 .X

EL4.3.3 Scalar triple product

(a) S(y) = v1 · (v2 × v3) =




1

0

2


 ·






3

2

1


×



−1

−2

y




 =

=




1

0

2


 ·




2y + 2

−1− 3y

−4


 = (2y + 2) + 0− 8 = 2y − 6

(b) 0 = a1v1 + a2v2 + a3v3 = a1




1

0

2


+ a2




3

2

1


+ a3



−1

−2

y


 , with aj ∈ R.

This vector equation yields a system of three equations which we solve as follows:

(i) 1a1 + 3a2 − 1a3 = 0
(ii)⇒ (iv) a3 = a2

(ii) 0a1 + 2a2 − 2a3 = 0
(iv) in (i)⇒ (v) a1 = −2a2

(iii) 2a1 + 1a2 + ya3 = 0
(iv),(v) in (iii)⇒ (vi) a2(−4 + 1 + y) = 0

(ii) yields (iv): a3 = a2. Inserting (iv) into (i) yields (v): a1 = −2a2. Inserting (iv) and

(v) into (iii) yields (vi): a2(y − 3) = 0. For y 6= 3 we have 0
(vi)
= a2 (v)

= a1 (iv)
= a3, thus

the vectors are linearly independent. For y = 3, however, (vi) yields 0 = 0, hence it does
not fix the value of a2. There are then infinitely many non-trivial solutions (one for every
value of a2 ∈ R), hence v1, v2 and v3 are linearly dependent.

(c) For y = 3 we have S(3)
(a)
= 2 · 3− 6 = 0, hence the volume of the parallelepiped spanned

by the three vectors vanishes. Therefore they all lie in the same plane in R3 and thus are
linearly dependent, as found in (b).

Remark: This example illustrates the following general fact: three vectors in R3 are linearly
dependent if and only if their scalar triple product vanishes.

S.L5 Matrices I: general theory

S.L5.1 Linear maps

S.L5.2 Matrices

S.L5.3 Matrix multiplication
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EL5.3.1 Matrix multiplication

The matrix product AB is defined only when A has the same number of columns as B has
rows. The possible products of two of the matrices P , Q and R therefore are:

PQ =
(

4 −3 1

2 2 −4

)(3 0 1

1 2 5

1 −6 −1

)
=
(

10 −12 −12

4 28 16

)
, PR =

(
4 −3 1

2 2 −4

)(3 0

1 2

1 −6

)
=
(

10 −12

4 28

)
.

QR =

(
3 0 1

1 2 5

1 −6 −1

)(
3 0

1 2

1 −6

)
=

(
10 −6

10 −26

−4 −6

)
, RP =

(
3 0

1 2

1 −6

)(
4 −3 1

2 2 −4

)
=

(
12 −9 3

8 1 −7

−8 −15 25

)
.

QQ =

(
3 0 1

1 2 5

1 −6 −1

)(
3 0 1

1 2 5

1 −6 −1

)
=

(
10 −6 2

10 −26 6

−4 −6 −28

)
.

EL5.3.3 Spin 1
2

matrices

(a) S2 = 1

4

(
0 1

1 0

)(
0 1

1 0

)
+ 1

4

(
0 −i

i 0

)(
0 −i

i 0

)
+ 1

4

(
1 0

0 −1

)(
1 0

0 −1

)

= 1

4

(
1 0

0 1

)
+ 1

4

(
1 0

0 1

)
+
(

1 0

0 1

)
= 3

4

(
1 0

0 1

)
= 3

4
· 1 .

(b) [Sx, Sy] = 1

4

[(
0 1

1 0

)(
0 −i

i 0

)
−
(

0 −i

i 0

)(
0 1

1 0

)]

= 1

4

[(
i 0

0 −i

)
−
(
−i 0

0 i

)]
= 1

2

(
i 0

0 −i

)
= iSz .

[Sy, Sz] = 1

4

[(
0 −i

i 0

)(
1 0

0 −1

)
−
(

1 0

0 −1

)(
0 −i

i 0

)]

= 1

4

[(
0 i

i 0

)
−
(

0 −i

−i 0

)]
= 1

2

(
0 i

i 0

)
= iSx .

[Sz, Sx] = 1

4

[(
1 0

0 −1

)(
0 1

1 0

)
−
(

0 1

1 0

)(
1 0

0 −1

)]

= 1

4

[(
0 1

−1 0

)
−
(

0 −1

1 0

)]
= 1

2

(
0 1

−1 0

)
= iSy .

(c) Commutators are antisymmetric, [A,B] = −[B,A], and [A,A] = 0. From (b) we thus
conclude that the spin 1

2
matrices satisfy the commutation relation [Si, Sj] = iεijkSk,

where εijk is the anti-symmetric Levi-Civita tensor. Thus aijk = iεijk .

Remark: The ‘spin’ of a quantum mechanical particle is a type of internal angular momentum.
The description of quantum mechanical spins in general requires three matrices, Sx, Sy and Sz,
whose commutators satisfy the relation [Si, Sj] = εijkSk. These are the defining relations of
the so-called SU(2) algebra, which underlies the quantum mechanical description of rotations.
The spin 1

2
matrices form a representation of this algebra in terms of 2 × 2 matrices. The

description of quantum mechanical particles with spin d, with 2d ∈ Z, utilizes a representation
of the SU(2) algebra in terms of (2d+ 1)× (2d+ 1) matrices.
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EL5.3.5 Matrix multiplication

(a) A =




0 0 0
A1 A2 A3

0 0 0


, B =




B1 0 0
0 B2 0
0 0 B3


, AB =




0 0 0
A1B1 A2B2 A3B3

0 0 0




(b) (AB)ij =
∑

k

aikb
k
j =

∑

k

Akδ
i
mBkδ

k
j = δimAjBj

AB =
m-th row→




0 . . . 0
...

...
A1 . . . AN
...

...
0 . . . 0







B1 0 . . . 0
0 B2 . . . 0
...

. . .
...

0 . . . . . . BN


 =




0 . . . 0
...

...
A1B1 . . . ANBN

...
...

0 . . . 0




S.L5.4 The inverse of a matrix

EL5.4.1 Gaussian elimination and matrix inversion

(a) We express the system of equations in the form of an augmented matrix, and then bring
the left side of the matrix into diagonal form. To do this, we successively replace each
row by a suitable linear combination of rows [indicated by square brackets] of the previous
extended matrix, i.e in the first step [1]→ [1], [2]→ 1

2
(3[2]− 2[1]) and [3]→ 6[3] + 2[1].

It is advisable to keep the mental arithmetic simple by avoiding the occurrence of fractions
until the left side has been brought into row echelon form (only zeros on one side of the
diagonal).

[1] :

[2] :

[3] :

1
3 (5[1] + 2[2]) :

−[2] :

1
9 (7[2] + 5[3]) :

x1 x2 x3

3 2 −1 | 1

2 −2 4 | −2

−1 1
2 −1 | 0

5 0 3 | −1

0 5 −7 | 4

0 0 1 | −2

−→

↙

−→

[1] :

1
2 (3[2]− 2[1]) :

6[3] + 2[1] :

1
5 ([1]− 3[3]) :

1
5 ([2] + 7[3]) :

[3] :

x1 x2 x3

3 2 −1 | 1

0 −5 7 | −4

0 7 −8 | 2

1 0 0 | 1

0 1 0 | −2

0 0 1 | −2

Hence the solution to the system of equation is: x = (x1, x2, x3)T = (1,−2,−2)T .

(b) If the last equation is taken out of the system, we obtain after the second step (see
above):

[1] :

1
2 (3[2]− 2[1]) :

x1 x2 x3

3 2 −1 | 1

0 −5 7 | −4
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The system is now underdetermined, since there are more unknowns than equations. The
solution thus depends on a free parameter, which we call x3 = λ. We now complete the
system with a corresponding third line and then bring the left side into a diagonal form:

[1] :

[2] :

[3] :

x1 x2 x3

3 2 −1 | 1

0 −5 7 | −4

0 0 1 | λ
−→

1
5

[
1
3 (5[1] + 2[2])− 3[3]

]
:

− 1
5 ([2]− 7[3]) :

[3] :

x1 x2 x3

1 0 0 | − 1
5 (1 + 3λ)

0 1 0 | 1
5 (4 + 7λ)

0 0 1 | λ

There are evidently infinitely many solutions, x = (−1
5
− 3

5
λ, 4

5
+ 7

5
λ, λ)T . They lie along

a straight line in R3, parametrized by λ.

(c) By replacing the last equation by −x1 + 2
7
x2 − x3 = 0, we obtain:

[1] :

[2] :

[3] :

1
3 (5[1] + 2[2]) :

−[2] :

8[2] + 7[3] :

x1 x2 x3

3 2 −1 | 1

2 −2 4 | −2

−1 2
7 −1 | 0

5 0 3 | −1

0 5 −7 | 4

0 0 0 | −18

−→

↙

[1] :

1
2 (3[2]− 2[1]) :

6[3] + 2[1] :

x1 x2 x3

3 2 −1 | 1

0 −5 7 | −4

0 40
7 −8 | 2

The last equation reads 0x1 + 0x2 + 0x3 = −18, which is a logical contradiction. In this
case, this system of equations thus has no solution .

(d) The equation Ax = b has the matrix A =

(
3 2 −1
2 −2 4
−1 1

2 −1

)
. To calculate the inverse,

A−1, we start with an extended matrix, with the identity matrix placed on the right hand
side. We then proceed by following exactly the same steps as in (a):

[1] :

[2] :

[3] :

1
3 (5[1] + 2[2]) :

−[2] :

1
9 (7[2] + 5[3]) :

x1 x2 x3

3 2 −1 | 1 0 0

2 −2 4 | 0 1 0

−1 1
2 −1 | 0 0 1

5 0 3 | 1 1 0

0 5 −7 | 1 − 3
2 0

0 0 1 | 1
3

7
6

10
3

−→

↙

−→

[1] :

1
2 (3[2]− 2[1]) :

6[3] + 2[1]) :

1
5 ([1]− 3[3]) :

1
5 ([2] + 7[3]) :

[3] :

x1 x2 x3

3 2 −1 | 1 0 0

0 −5 7 | −1 3
2 0

0 7 −8 | 2 0 6

1 0 0 | 0 − 1
2 −2

0 1 0 | 2
3

4
3

14
3

0 0 1 | 1
3

7
6

10
3

From this we can now identify the inverse matrix, and verify our answer from (a):

A−1 =
1

3




0 − 3
2 −6

2 4 14

1 7
2 10


 , x = A−1b =

1

3




0 − 3
2 −6

2 4 14

1 7
2 10






1

−2

0


 =




1

−2

−2


 .X
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EL5.4.3 Matrix inversion

(a) The inverse of M2 =
(

1 +m 0
1 m

)
follows from the formula

(
a b
c d

)
= 1

ad−bc

(
d −b
−c a

)
:

M−1
2 =

(
1

1+m 0

− 1
m(1+m)

1
m

)
. Check:

(
1

1+m 0

− 1
m(1+m)

1
m

)
.

(
1 +m 0

1 m

)
=

(
1 0

0 1

)
.X

We compute the inverse of M3 =

(
1 +m 0 0

1 m 0
1 0 m

)
using Gaussian elimination:

[1] :

[2] :

[3] :

1 +m 0 0 | 1 0 0

1 m 0 | 0 1 0

1 0 m | 0 0 1
−→

1
1+m [1] :

1
m ([2]− 1

1+m [1]) :

1
m ([3]− 1

1+m [1]) :

1 0 0 | 1
1+m 0 0

0 1 0 | − 1
m(1+m)

1
m 0

0 0 1 | − 1
m(1+m) 0 1

m

The right side of the augmented matrix gives the inverse matrix M−1
3 :

M−1
3 =




1
1+m 0 0

− 1
m(1+m)

1
m 0

− 1
m(1+m) 0 1

m


. Check:




1
1+m 0 0

− 1
m(1+m)

1
m 0

− 1
m(1+m) 0 1

m






1 +m 0 0

1 m 0

1 0 m


=




1 0 0

0 1 0

0 0 1


.X

(b) The results for M−1
2 and M−1

3 have the following properties: the first diagonal element
equals 1

1+m
, the remaining diagonal elements equal 1

m
, and the remaining elements of the

first column equal − 1
m(1+m)

. The checks performed in (a) illustrate why these properties

are needed. We thus formulate the following guess for the form of M−1
n for a general n:

M−1
n =




1
1+m 0 0 . . . 0

− 1
m(1+m)

1
m 0

. . .
.
.
.

− 1
m(1+m)

0 1
m

. . . 0

.

.

.
.
.
.

. . .
. . . 0

− 1
m(1+m)

0 . . . 0 1
m




Now let us check our guess explicitly: does M−1
n Mn = 1 hold?

M−1
n ·Mn =




1
1+m 0 0 . . . 0

− 1
m(1+m)

1
m 0

. . .
.
.
.

− 1
m(1+m)

0 1
m

. . . 0

.

.

.
.
.
.

. . .
. . . 0

− 1
m(1+m)

0 . . . 0 1
m







1 +m 0 0 . . . 0

1 m 0
. . .

.

.

.

1 0 m
. . . 0

.

.

.
.
.
.

. . .
. . . 0

1 0 . . . 0 m




=




1+m
1+m 0 0 . . . 0

− 1+m
m(1+m)

+ 1
m + 0 + . . . m

m 0
. . .

.

.

.

− 1+m
m(1+m)

+ 0 + 1
m + 0 + . . . 0 m

m

. . . 0

.

.

.
.
.
.

. . .
. . . 0

− 1+m
m(1+m)

+ 0 + · · ·+ 0 + 1
m 0 . . . 0 m

m




=




1 0 0 . . . 0

0 1 0
. . .

.

.

.

0 0
. . . 0

.

.

.
.
.
.

. . .
. . . 0

0 0 . . . 0 1



.X
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(c) Alternative formulation using index notation: (M−1
n )ij = 1

m

(
δij − 1

1+m
δ1
j

)
.

(M−1
n ·Mn)ij =

∑

l

(M−1
n )il(Mn)lj =

∑

l

(
1
m
δil − 1

m(1+m)
δ1
l

) (
mδlj + δ1

j

)

= δij + 1
m
δ1
j − 1

1+m
δ1
j − 1

m(1+m)
δ1
j = δij + δ1

j
1+m−m−1
m(1+m)

= δij .X

S.L5.5 General linear maps and matrices

EL5.5.1 Two-dimensional rotation matrices

(a) For Rθ : ej 7→ e′j = ei(Rθ)
i
j the image vector e′j yields column j of the rotation matrix:

Rθ :

(
1

0

)
7→
(

cos θ

sin θ

)
,

(
0

1

)
7→
(
− sin θ

cos θ

)
⇒ Rθ =

(
cos θ − sin θ

sin θ cos θ

)
.

1e

2e

θ
θ 1

′e
2
′e

(b) For θ1 = 0, θ2 = π
4

, θ3 = π/2 and θ4 = π we have:

R0 =
(

1 0

0 1

)
, R0a = a , R0b = b .

Rπ
4

= 1√
2

(
1 −1

1 1

)
, Rπ

4
a = 1√

2

(
1

1

)
, Rπ

4
b = 1√

2

(
−1

1

)
.

Rπ
2

=
(

0 −1

1 0

)
, Rπ

2
a =

(
0

1

)
, Rπ

2
b =

(
−1

0

)
.

Rπ =
(
−1 0

0 −1

)
, Rπa =

(
−1

0

)
, Rπb =

(
0

−1

)
.

a

b

b
4
πD a

4
πD

aπD

bπD

b
2
πD

D

a
2
πD

4
π

2
π

π

x

y

(c) Using the addition theorems, we readily obtain:

RθRφ =

(
cos θ − sin θ

sin θ cos θ

)(
cosφ − sinφ

sinφ cosφ

)
=

(
cos θ cosφ− sin θ sinφ − cos θ sinφ− sin θ cosφ

sin θ cosφ+ cos θ sinφ − sin θ sinφ+ cos θ cosφ

)

=

(
cos(θ + φ) − sin(θ + φ)

sin(θ + φ) cos(θ + φ)

)
= Rθ+φ .X

(d) Rotating the vector r = (x, y)T by the angle θ leaves its length unchanged:

Rθr =

(
x cos θ − y sin θ

x sin θ + y cos θ

)
⇒ ‖Rθr‖ =

√
(x2 + y2)(cos2 θ+sin2 θ) + (2 cos θ sin θ)(xy−xy)

=
√

(x2 + y2) = ‖r‖ .X
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S.L5.6 Matrices describing coordinate changes

EL5.6.1 Basistransformation und lineare Abbildung in E2

(a) The relation êj = ê′iT
i
j between old and new bases yields the transformation matrix T :

ê1 = 3
4
ê′1 + 1

3
ê′2 ≡ ê′1T

1
1 + ê′2T

2
1

ê2 = −1
8
ê′1 + 1

2
ê′2 ≡ ê′1T

1
2 + ê′2T

2
2

⇒ T =

(
T 1

1 T 1
2

T 2
1 T 2

2

)
=

(
3
4 − 1

8
1
3

1
2

)
=

1

24

(
18 −3

8 12

)
.

(b) Using T−1 and ê′j = êi(T
−1)ij we can write the new basis in terms of the old:

T−1 =
1

detT

(
T 2

2 −T 1
2

−T 2
1 T 1

1

)
=

12

5

1

24

(
12 3

−8 18

)
=

1

10

(
12 3

−8 18

)
≡
(

(T−1)1
1 (T−1)1

2

(T−1)2
1 (T−1)2

2

)
.

ê′1 = ê1(T−1)1
1 + ê2(T−1)2

1 = 6
5
ê1 − 4

5
ê2 .

ê′2 = ê1(T−1)1
2 + ê2(T−1)2

2 = 3
10

ê1 + 9
5
ê2 .

Alternatively, these relations can be derived by solving the equations for ê1 and ê2 to give
ê′1 and ê′2. (This is equivalent to finding T−1.)

(c) The components of x̂ = êjx
j = ê′ix

′i in the old and new bases, x = (x1, x2)T and
x′ = (x′1, x′2)T respectively, are related by x′i = T ijx

j :

x =

(
1

2

)
, x′ = Tx =

1

24

(
18 −3

8 12

)(
1

2

)
=

(
1
2

4
3

)
, ⇒ x̂ = ê1 + 2ê2 = 1

2
ê′1 + 4

3
ê′2 .

(d) The components of ŷ = ê′iy
′i = êjy

j in the new and old bases, y′ = (y′1, y′2)T and
y = (y1, y2)T respectively, are related by yi = (T−1)ijy

′j :

y′ =

(
3
4
1
3

)
, y = T−1y′ =

1

10

(
12 3

−8 18

)(
3
4
1
3

)
=

(
1

0

)
, ⇒ ŷ = 3

4
ê′1 + 1

3
ê′2 = ê1 .

(e) The matrix representation A′ of the map Â in the new basis describes its action on that

basis: the image of basis vector j, written as ê′j
Â7→ ê′iA

′i
j, yields column j of A′:

ê′1 = 2ê′1 + 0ê′2 ≡ ê′1A
′1

1 + ê′2A
′2

1

ê′2 = 0ê′1 + 1ê′2 ≡ ê′1A
′1

2 + ê′2A
′2

2

⇒ A′ =

(
A′11 A′12

A′21 A′22

)
=

(
2 0

0 1

)
.

The basis transformation T now yields the matrix representation A of Â in the old basis:

A′ = TAT−1 ⇒ A = T−1A′T =
1

10

(
12 3

−8 18

)(
2 0

0 1

)
1

24

(
18 −3

8 12

)
=

1

20

(
38 −3

−12 22

)
.
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(f) For x̂
Â7→ ẑ, the components ẑ are obtained by matrix multiplying the components of x̂

with the matrix representation of Â, in either the new or old basis:

z′ = A′x′ =

(
2 0

0 1

)(
1
2
4
3

)
=

(
1
4
3

)
, z = Ax =

1

20

(
38 −3

−12 22

)(
1

2

)
=

8

5

(
1

1

)
.

The results for z′ and z are consistent, Tz =
1

24

(
18 −3
8 12

)
8

5

(
1
1

)
=
(

1
4
3

)
= z′ . X

(g) The component representation of the standard basis of E2 is ẽ1 = (1, 0)T and ẽ2 =
(0, 1)T . Once the old basis has been specified by making the choice ê1 = 3ẽ1 + ẽ2 =
(3, 1)T and ê2 = −1

2
ẽ1 + 3

2
ẽ2 = (−1

2
, 3

2
)T , that also fixes the new basis, as well as x̂ and

ẑ. The components of x̂ and ẑ in the standard basis of E2 can be computed via either
the old or the new basis. In the standard basis we obtain the following representation:

ê′1 = êi(T
−1)i1 =

6

5

(
3

1

)
− 4

5

(
− 1

2
3
2

)
=

(
4

0

)
.

ê′2 = êi(T
−1)i2 =

3

10

(
3

1

)
+

9

5

(
− 1

2
3
2

)
=

(
0

3

)
.

(h)

1′x1x

2x

x̂
ẑ

2′x

1ê
2ê

2
′ê

1
′ê1ẽ

2ẽ

x̂ = êix
i = 1

(
3

1

)
+ 2

(
− 1

2
3
2

)
=

(
2

4

)
, x̂ = ê′ix

′i =
1

2

(
4

0

)
+

4

3

(
0

3

)
=

(
2

4

)
.X

ẑ = êiz
i =

8

5

(
3

1

)
+

8

5

(
− 1

2
3
2

)
=

(
4

4

)
, ẑ = ê′iz

′i = 1

(
4

0

)
+

4

3

(
0

3

)
=

(
4

4

)
.X

By comparing x̂ and ẑ we see that Â stretches the ẽ1 direction by a factor 2.

EL5.6.3 Basis transformations

(a) The effect of the map A on the standard basis, ej
A7→ Aj ≡ eiA

i
j, gives the column

vectors of the matrix representation A = (A1,A2,A3). In this case, we have:




1

0

0


 A7→




cos θ3

sin θ3

0


 ,




0

1

0


 A7→



− sin θ3

cos θ3

0


 ,




0

0

1


 A7→




0

0

1


 .

For the angle θ3 = π we will use the compact notation cos θ3 = sin θ3 = 1√
2
≡ s. Thus:

A =



s −s 0

s s 0

0 0 1


 , B =




3 0 0

0 1 0

0 0 1


 , C =




0 0 1

0 1 0

−1 0 0


 .
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(b)

y = Bx =




3 0 0

0 1 0

0 0 1






1

1

1


 =




3

1

1




(c)

D = CBA =




0 0 1

0 1 0

−1 0 0






3 0 0

0 1 0

0 0 1


A =




0 0 1

0 1 0

−3 0 1





s −s 0

s s 0

0 0 1


 =




0 0 1

s s 0

−3s 3s 0




z = Dx =




0 0 1

s s 0

−3s 3s 0






1

1

1


 =




1

2s

0




(d) On one hand we have ej
A7→ e′j, with ev′j = eiA

i
j, because the image of the standard basis

vector ej under the mapping A, written in the standard basis, is given by the column
vector j of the Matrix A, with components Aij. The inverse relationship is given by
ej = e′i(A

−1)ij. On the other hand however, we have that ej = e′iT
i
j, by the definition of

the transformation matrix. It follows that T = A−1. Using the fact that A is a rotation
matrix, we know that: A−1(θ3) = A(−θ3). Therefore:

T =




s s 0

−s s 0

0 0 1




(e)

x′ = Tx =




s s 0

−s s 0

0 0 1






1

1

1


 =




2s

0

1


, y′ = Ty =




s s 0

−s s 0

0 0 1






3

1

1


 =




4s

−2s

1




(f)

B′ = TBT−1 = A−1BA =




s s 0

−s s 0

0 0 1






3 0 0

0 1 0

0 0 1


A =




3s s 0

−3s s 0

0 0 1





s −s 0

s s 0

0 0 1




=




4s2 −2s2 0

−2s2 4s2 0

0 0 1


 =




2 −1 0

−1 2 0

0 0 1




y′ = Ty = TBx = TBT−1

︸ ︷︷ ︸
B

Tx︸︷︷︸
x′

= B′x′ =




2 −1 0

−1 2 0

0 0 1






2s

0

1


 =




4s

−2s

1


 [= (e) X]
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S.L6 Matrices II: determinants

S.L6.1 Determinant

EL6.1.1 Calculating determinants

We expand the determinant along the indicated row or column:

detA =

∣∣∣∣
2 1

5 −3

∣∣∣∣ = 2 · (−3)− 5 · 1 = −11 .

detB =

∣∣∣∣∣∣

3 2 1

4 −3 1

2 −1 1

∣∣∣∣∣∣
column 3

=

∣∣∣∣
4 −3

2 −1

∣∣∣∣−
∣∣∣∣
3 2

2 −1

∣∣∣∣+

∣∣∣∣
3 2

4 −3

∣∣∣∣ = −8 .

detC =

∣∣∣∣∣∣∣∣

a a a 0

a 0 0 b

0 0 b b

a b b 0

∣∣∣∣∣∣∣∣

row 2
= −a

∣∣∣∣∣∣

a a 0

0 b b

b b 0

∣∣∣∣∣∣
+ b

∣∣∣∣∣∣

a a a

0 0 b

a b b

∣∣∣∣∣∣

= −a
[
a

∣∣∣∣
b b

b 0

∣∣∣∣− a
∣∣∣∣
0 b

b 0

∣∣∣∣
]

+ b

[
0 + 0− b

∣∣∣∣
a a

a b

∣∣∣∣
]

= −a2(−b2) + a2(−b2)− b2(ab− a2) = a2b2 − ab3 .

S.L7 Matrices III: diagonalizing a matrix

S.L7.3 Characteristic polynomial

S.L7.4 Matrix diagonalization

EL7.4.1 Diagonalising real 2× 2 matrices

(a) The zeros of the characteristic polynomial yield the eigenvalues:

Char. polynomial: 0
!

= det(A− λ1) =

∣∣∣∣
−1− λ 6

−2 6− λ

∣∣∣∣ = (−1− λ)(6− λ) + 12

= λ2 − 5λ+ 6 = (λ− 2)(λ− 3)

Eigenvalues: λ1 = 2, λ2 = 3 .

Eigenvectors:

λ1 = 2 : 0
!

= (A− λ11)v1 =

(
−3 6

−2 4

)
v1 ⇒ v1 =

(
2

1

)
.

λ2 = 3 : 0
!

= (A− λ21)v2 =

(
−4 6

−2 3

)
v2 ⇒ v2 =

(
3

2

)
.

Explicitly: The two rows of the matrix (A − λj1) are proportional to each other (as
expected, since the determinant of this matrix equals zero). Thus both rows yield the same
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information about the eigenvector vj. For v1 = (v1
1, v

2
1)T we have −3v1

1 + 6v2
1 = 0,

thus it has the form v1 = a1(2, 1)T . Similarly one finds v2 = a2(3, 2)T . The prefactors a1

and a2 are not fixed by the eigenvalue equation, since if vj satisfies (A−λj1)vj = 0, the
same is true for ajvj, with aj ∈ R. If one desires the eigenvectors to be normalized, the
normalization condition ‖vj‖ = 1 fixes the absolute value of the prefactor, |aj|. However,
that is not the case here, hence we may choose the prefactor as we please – here we take
a1 = a2 = 1.

The similarity transformation S contains the eigenvectors as columns; its inverse follows

via the inversion formula for 2× 2 matrices,
(
a b
c d

)−1

= 1
ad−bc

(
d −b
−c a

)
:

Sim-Tr.: S = (v1,v2) =

(
2 3

1 2

)
, S−1 =

(
2 −3

−1 2

)
.

Check: S−1AS =

(
2 −3

−1 2

)(
−1 6

−2 6

)(
2 3

1 2

)
=

(
2 0

0 3

)
X
=

(
λ1 0

0 λ2

)
.

(b) The zeros of the characteristic polynomial yield the eigenvalues:

Char. polynomial: 0
!

= det(A− λ1) =

∣∣∣∣
11
5 − λ − 8

5

− 8
5 − 1

5 − λ

∣∣∣∣ = (11
5
− λ)(−1

5
− λ)− 64

25

= λ2 − 2λ− 3 = (λ− 3)(λ+ 1)

Eigenvalues: λ1 = 3, λ2 = −1 .

Eigenvectors:

λ1 = 3 : 0
!

= (A− λ11)v1 =
1

5

(
−4 −8

−8 −16

)
v1 ⇒ v1 = a1

(
2

−1

)
, |a1| = 1√

5
.

λ2 = −1 : 0
!

= (A− λ21)v2 =
1

5

(
16 −8

−8 4

)
v2 ⇒ v2 = a2

(
1

2

)
, |a2| = 1√

5
.

Explicitly: For the eigenvector v1 = (v1
1, v

2
1)T we have −4v1

1 − 8v2
1 = 0, hence it has

the form v1 = a1(2,−1)T . Analogously one finds v2 = a2(1, 2)T . In the present case
it is advisable to normalize the eigenvectors by ‖vj‖ = 1 (see below), which fixes the
prefactors up to a sign: a1 = ± 1√

5
, a2 = ± 1√

5
. We here choose both prefactors positive

(a different choice would be equally legitimate).

The similarity transformation S contains the eigenvectors as columns. Since the matrix
A is symmetric, it is possible to choose S to be orthogonal, so that it satisfies S−1 = ST .
To achieve this, the eigenvectors must form an orthonormal system. They already are
orthogonal (for a symmetric matrix, eigenvectors having different eigenvalues are always
orthogonal); since we have normalized them above, they are also orthonormal.

Sim-Tr.: S = (v1,v2) =
1√
5

(
2 1

−1 2

)
, S−1 = ST =

(
vT1
vT2

)
=

1√
5

(
2 −1

1 2

)
.

Check: S−1AS =
1√
5

(
2 −1

1 2

)
1

5

(
11 −8

−8 −1

)
1√
5

(
2 1

−1 2

)
=

(
3 0

0 −1

)
X
=

(
λ1 0

0 λ2

)
.
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Remark: Of course it is also possible to construct the similarity transformation S using
eigenvectors that are not normalized. However then its inverse, S̃−1, will not equal S̃T ,
but will have to be found in an additional step using the appropriate inversion formula.
For example, if we choose the prefactors above as a1 = 1 and a2 = 2, thus taking
ṽ1 = (2,−1)T and ṽ2 = (2, 4)T as eigenvectors, we obtain:

Sim.-Tr.: S̃ = (ṽ1, ṽ2) =

(
2 2

−1 4

)
, S̃−1 =

1

10

(
4 −2

1 2

)
.

Since the columns of S and S̃, and the rows of S−1 and S̃−1, only differ by prefactors,
the check here works analogously to the one above:

Check: S̃−1AS̃ =
1

10

(
4 −2

1 2

)
1

5

(
11 −8

−8 −1

)(
2 2

−1 4

)
=

(
3 0

0 −1

)
X
=

(
λ1 0

0 λ2

)
.

EL7.4.3 Diagonalising complex 2× 2 matrices

(a) The zeros of the characteristic polynomial yield the eigenvalues:

Char. polynomial: 0
!

= det(A− λ1) =

∣∣∣∣
−i− λ 0

2 i− λ

∣∣∣∣ = (−i− λ)(i− λ)

Eigenvalues: λ1 = +i, λ2 = −i .

Eigenvectors:

λ1 = +i : 0
!

= (A− λ11)v1 =

(
−2i 0

2 0

)
v1 ⇒ v1 = a1

(
0

1

)
, |a1| = 1 .

λ2 = −i : 0
!

= (A− λ21)v2 =

(
0 0

2 2i

)
v2 ⇒ v2 = a2

(
1

i

)
, |a2| = 1√

2
.

Explicitly: For the eigenvector v1 = (v1
1, v

2
1)T we have −2iv1

1 + 0v2
1 = 0, thus it has

the form v1 = a1(0, 1)T . Similarly one finds v2 = a2(1, i)T . The prefactors are complex
numbers and thus have the general form aj = |aj|(cosφj + i sinφj), with norm |aj| and
phase φj. The statement of the problem requested normalized eigenvectors, satisfying
‖vj‖ = 1. This fixes the norm |aj| of each prefactor, but not its phase, which we may
choose as we please. We here choose φj = 0, hence a1 = 1 and a2 = 1√

2
.

The similarity transformation S contains the eigenvectors as columns; its inverse follows
via the inversion formula for 2× 2 matrices, which holds also for complex matrices:

Sim-Tr.: S = (v1,v2) =

(
0

1√
2

1
i√
2

)
, S−1 =

(
−i 1√

2 0

)
.

Check: S−1AS =

(
−i 1√

2 0

)(
−i 0

2 i

)(
0

1√
2

1
i√
2

)
=

(
i 0

0 −i

)
X
=

(
λ1 0

0 λ2

)
.
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(b) The zeros of the characteristic polynomial yield the eigenvalues:

Char. polynomial: 0
!

= det(A− λ1) =

∣∣∣∣
1− λ i

−i 1− λ

∣∣∣∣ = (1− λ)2 − 1 = λ(λ− 2)

Eigenvalues: λ1 = 0, λ2 = 2 .

Eigenvectors:

λ1 = 0 : 0
!

= (A− λ11)v1 =

(
1 i

−i 1

)
v1 ⇒ v1 = a1

(
1

i

)
, |a1| = 1√

2
.

λ2 = 2 : 0
!

= (A− λ21)v2 =

(
−1 i

−i −1

)
v2 ⇒ v2 = a2

(
1

−i

)
, |a2| = 1√

2
.

Explicitly: For the Eigenvector v1 = (v1
1, v

2
1)T we have v1

1 + iv2
1 = 0, hence it has the

form v1 = a1(1, i)T . Similarly one finds v2 = a2(1,−i)T . The normalization condition
fixes the norm of both prefactors, but not their phases, which we can choose as we please.
We here take the phases to be zero and use real prefactors: a1 = a2 = 1√

2
.

The similarity transformation S contains the eigenvectors as columns. Since the matrix
A is hermitian, it is possible to choose S to be unitary, so that it satisfies S−1 =
S†. To achieve this, the eigenvectors must form an orthonormal system (with respect
to the complex scalar product). They already are orthogonal (for a hermitian matrix,
eigenvectors having different eigenvalues are always orthogonal); since we have normalized
them above, they are also orthonormal.

Sim-Tr.: S = (v1,v2) =
1√
2

(
1 1

i −i

)
, S−1 = S† =

(
v†1
v†2

)
=

1√
2

(
1 −i

1 i

)
.

Check: S−1AS =
1

2

(
1 −i

1 i

)(
1 i

−i 1

)(
1 1

i −i

)
=

(
0 0

0 2

)
X
=

(
λ1 0

0 λ2

)
.

EL7.4.5 Diagonalising a matrix that depends on a variable

Char. Poly.: 0
!

= det(A− λ1) =

∣∣∣∣∣∣

x− λ 1 0

1 2− λ 1

3− x −1 3− λ

∣∣∣∣∣∣
= (x− λ)(2− λ)(3− λ) + (3− x) + (x− λ)− (3− λ)

= (x− λ)(2− λ)(3− λ)

Eigenvalues: λ1 = x, λ2 = 2, λ3 = 3 ; Eigenvectors:

0
!

= (A− λ11)v1 =




0 1 0

1 2− x 1

3− x −1 3− x


v1

Gauss−→ v1 = a1




1

0

−1


, |a1| = 1√

2
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0
!

= (A− λ21)v2 =



x− 2 1 0

1 0 1

3− x −1 1


v2

Gauss−→ v2 = a2




1

2− x
−1


, |a2| = 1√

6− 4x+ x2

0
!

= (A− λ31)v3 =



x− 3 1 0

1 −1 1

3− x −1 0


v3

Gauss−→ v3 = a3




1

3− x
2− x


, |a3| = 1√

14− 10x+ 2x2

EL7.4.7 Inertia tensor

Point masses: m1 =4 at r1 =(1, 0, 0)T ; m2 =M at r2 =(0, 1, 2)T ; m3 =1 at r3 =(0, 4, 1)T .

Ĩij =
∑

a

ma

(
δijr

2
a − riarja

)
⇒ Ĩ =

∑

a

ma




r2
a − r1

ar
1
a − r1

ar
2
a − r1

ar
3
a

− r2
ar

1
a r2

a − r2
ar

2
a − r2

ar
3
a

− r3
ar

1
a − r3

ar
2
a r2

a − r3
ar

3
a




Ĩ = 4 ·




1− 1 0 0

0 1− 0 0

0 0 1− 0


+M ·




5− 0 0 0

0 5− 1 −2

0 −2 5− 4


+ 1 ·




17− 0 0 0

0 17− 16 −4

0 −4 17− 1




=




5M + 17 0 0

0 4M + 5 −2(M + 2)

0 −2(M + 2) M + 20


 .

The zeros of the characteristic polynomial yield the moments of inertia (eigenvalues):

0
!

= det(Ĩ − λ1) =

∣∣∣∣∣∣

5M + 17− λ 0 0
0 4M + 5− λ −2(M + 2)
0 −2(M + 2) M + 20− λ

∣∣∣∣∣∣

= (5M + 17− λ)
[
(4M + 5− λ)(M + 20− λ)− 4(M + 2)2

]

= (5M + 17− λ)
[
λ2 − 5(M + 5)λ+ 69M + 84

]

Moments of inertia: λ1 = 5M + 17 ,

λ2,3 = 1
2

[
5(M + 5)±

√
25(M + 5)2 − 4(69M + 84)

]

= 1
2

[
5(M + 5)±

√
25M2 − 26M + 289

]
.

For M = 5: λ1 = 42 , λ2,3 = 1
2

[
50±

√
784
]

= 25± 14, hence λ2 = 39 , λ3 = 11 .

EL7.4.9 Degenerate eigenvalue problem

Characteristic polynomial: 0
!

= det(A− λ1) =

∣∣∣∣∣∣

2− λ −1 2

−1 2− λ −2

2 −2 5− λ

∣∣∣∣∣∣
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det(A− λ1)
(i)
= (2− λ)

[
(2− λ)(5− λ)− 4

]
− (−1)

[
(−1)(5− λ) + 4

]
+ 2
[
2− (2− λ)2

]

(ii)
= (2− λ)

[
λ2 − 7λ+ 6

]
+ 5(λ− 1)

(iii)
= (2− λ)

[
(λ− 1)(λ− 6)

]
+ 5(λ− 1)

(iv)
= (λ− 1)

[
(2− λ)(λ− 6) + 5

] (v)
= −(λ− 1)(λ− 1)(λ− 7) .

Remarks: (i) We calculate the determinant using the Laplace expansion along the first column,
and (ii) then simplify. (iii) From the hint that λ = 1 is an eigenvalue, we know that det(A−λ1),
and thus the square bracket, too, must contain a factor of (λ − 1). (iv) We evaluate this
bracket and factorize (v) again, using the quadratic formula for example:

(v): (2−λ)(λ− 6) + 5 = −λ2 + 8λ− 7 = −(λ− 1)(λ− 7), since −8±√64−28
−2

= 4∓ 3 =
{

1
7

Alternatively (if the factorization is not apparent): (iii′) completely multiply out det(A−λ1),
(iv′) then use polynomial division to factorize out the factor (λ − 1), and (v′) factorize the
residual quadratic polynomial as in step (v) above:

det(A− λ1)
(iii′)
= −λ3 + 9λ2 − 15λ+ 7

(iv′)
= (λ− 1)(−λ2 + 8λ− 7)

(v′)
= −(λ− 1)(λ− 1)(λ− 7) .

(ii′) Polynomial division:
(
− λ3 + 9λ2 − 15λ+ 7

)
/
(
λ− 1

)
= − λ2 + 8λ− 7

λ3 − λ2

8λ2 − 15λ
− 8λ2 + 8λ

− 7λ+ 7
7λ− 7

0

Eigenvalue: λ1 = 1, λ2 = 1, λ3 = 7 . The eigenvalues λ1 and λ2 are degenerate.

Determination of the normalized eigenvector v3 of the non-degenerate eigenvalue λ3:

0
!

= (A− λ31)v3 =



−5 −1 2

−1 −5 −2

2 −2 −2


v3

Gauss−→ v3 = a3




1

−1

2


 , a3 =

1√
6
.

Details of the Gauss method:

v1
3 v

2
3 v

3
3

−5 −1 2 0

−1 −5 −2 0

2 −2 −2 0

−→ −[1] :

1
12 ([1]− 5[2]) :

− 1
6 ([3] + 2[2]) :

v1
3 v

2
3 v

3
3

5 1 −2 0

0 2 1 0

0 2 1 0

−→
1
10 (2[1]− [2]) :

1
2 [2] :

[2]− [3] :

v1
3 v

2
3 v

3
3

1 0 − 1
2 0

0 1 1
2 0

0 0 0 0

The system on the right gives two relations between the components of v3 = (v1
3, v

2
3, v

3
3)T ,

viz. v1
3 − 1

2
v3

3 = 0 and v2
3 + 1

2
v3

3 = 0. Since the third row contains only zeros, the
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eigenvector is determined (as expected) only up to a pre-factor a3 ∈ C, which can be freely
chosen: v3 = a3(1,−1, 2)T . The normalization condition ‖v3‖ = 1 implies that a3 = ± 1√

6
;

here we select the positive sign (the negative sign would be equally legitimate).

Determination of the eigenvectors vj of the degenerate eigenvalue λj = 1 (with j = 1, 2):

0
!

= (A− λj1)vj =




1 −1 2

−1 1 −2

2 −2 4


vj.

All three rows are proportional to each other, [3] = 2[1] = −2[2]; therefore they yield only
one relation between the components of vj = (v1

j, v
2
j, v

3
j)
T , namely v1

j − v2
j + 2v3

j = 0.
Therefore, we can choose two components of vj freely and thereby construct two linearly
independent eigenvectors, e.g., v1 = (1, 1, 0)T and v2 = (0, 2, 1)T .
We construct an orthonormal basis of eigenvectors: Since A is a real symmetric matrix,
eigenvectors for different eigenvalues are orthogonal to each other, i.e. vj ·v3 = 0 for j = 1, 2,
as can be verified easily. Thus we just have to orthogonalize the two degenerate eigenvectors,
v1 and v2. We use the Gram-Schmidt process, for e.g. v′1 = v1/|v1| = 1√

2
(1, 1, 0)T and

v′2,⊥ = v2 − v′1 (v′1 · v2) =

(
0
2
1

)
− 1√

2

(
1
1
0

)
2√
2

=

(
−1

1
1

)
; v′2 =

v′2,⊥
|v′2,⊥|

=
1√
3

(
−1

1
1

)
.

{v′1,v′2,v3} now form an orthonormal basis of R3.
Construction of the similarity transformation: Since A is symmetric, we have S−1 = ST , where
the transformation matrix S contains the orthonormalized eigenvectors as column vectors:

S = (v′1,v
′
2,v3) =

1√
6

(√
3 −
√

2 1√
3
√

2 −1

0
√

2 2

)
, S−1 = ST =

(
v
′T
1

v
′T
2

vT3

)
=

1√
6

( √
3
√

3 0

−
√

2
√

2
√

2
1 −1 2

)
.

Check: S−1AS = S−1




2 −1 2

−1 2 −2

2 −2 5


 1√

6



√

3 −
√

2 1√
3
√

2 −1

0
√

2 2




=
1√
6



√

3
√

3 0

−
√

2
√

2
√

2

1 −1 2


 1√

6



√

3 −
√

2 7√
3
√

2 −7

0
√

2 14


 =




1 0 0

0 1 0

0 0 7


 X

=



λ1 0 0

0 λ2 0

0 0 λ3


 .

EL7.4.11 Determinant equals product of eigenvalues

If A is diagonalizable, then we have S−1AS = Λ, where Λ is the diagonalized form of A.
Using the multiplication rule for determinants we find:

∏n
j=1 λj = det Λ = det(S−1AS) = detS−1 · detA · detS = detA . X
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Remark: The above assertion also holds for non-diagonalizable matrices: The eigenvalues
λ1, . . . , λn of A are the zeros of the characteristic polynomial det(A− λ1), thus

det(A− λ1) = (λ1 − λ) · (λ2 − λ) · ... · (λn − λ) .

We now set λ = 0 and immediately obtain detA =
∏n

j=1 λj. X

S.L7.5 Functions of matrices

EL7.5.1 Functions of matrices

(a) For A =
(

0 a
0 0

)
we have A2 = 0, thus the Taylor series for eA contains only two terms:

eA = A0 + A = 1+ A =
(

1 a
0 1

)
.

(b) We seek eA, with A = θσ̃, σ̃ =
(

0 −1
1 0

)
. The matrix σ̃ has the following properties:

σ̃2 =
(

0 −1

1 0

)(
0 −1

1 0

)
= −1, σ̃2m = (σ̃2)m = (−1)m1, σ̃2m+1 = σ̃(σ̃2)m = (−1)mσ̃.

Therefore: eA =
∞∑

l=0

1

l!
Al =

∞∑

m=0

1

(2m)!
θ2m σ̃2n

︸︷︷︸
(−1)m1

+
∞∑

m=0

1

(2m+ 1)!
θ2m+1 σ̃2m+1

︸ ︷︷ ︸
(−1)mσ̃

= 1 cos θ + σ̃ sin θ =

(
cos θ − sin θ

sin θ cos θ

)
.

Remark: This matrix describes a rotation by the angle θ in R2. Evidently eθσ̃ is an
exponential representation of such a rotation matrix.

(c) First equality:

f(A) =
∞∑

l=0

cl
(
SDS−1

︸ ︷︷ ︸
A

)l (i)
=
∞∑

l=0

clSD
lS−1 = S

( ∞∑

l=0

clD
l
)
S−1 = Sf(D)S−1 .

(i) For the third step we used the following relation:
(
SAS−1

)l
=
(
SAS−1

)(
S︸ ︷︷ ︸

=1

AS−1
)(
S︸ ︷︷ ︸

=1

AS−1
)
· · ·
(
SAS−1

)
= SAlS−1 .

Second equality:

[
f(D)

]
ij

=
[ ∞∑

l=0

clD
l
]
ij

=
∞∑

l=0

cl
[
Dl
]
ij

(ii)
=
∞∑

l=0

clλ
l
iδij = δij

∞∑

l=0

clλ
l
i = δijf(λi) .

(ii) For the third step we used the fact that the l-th power of a diagonal matrix D is
diagonal too, with Dl = diag(λl1, . . . , λ

l
n).
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(d) Given: eA, with A = θ
(

0 −1
1 0

)
. We begin by diagonalizing A:

Char. Polynom: 0
!

= det(A− λ1) = λ2 + θ2 ⇒ Eigenvalues: λ± = ±iθ .

Normalized eigenvectors: 0
!

= (A− λ±1)v± ⇒ v± =
1√
2

(
1

∓i

)
.

Similarity transf.: S = (v+,v−) =
1√
2

(
1 1

−i i

)
, S−1 =

1√
2

(
1 i

1 −i

)
.

eA = SeDS−1 : eA = S

(
eiθ 0

0 e−iθ

)
1√
2

(
1 i

1 −i

)
=

1

2

(
1 1

−i i

)(
eiθ ieiθ

e−iθ −ie−iθ

)

=
1

2

(
eiθ + e−iθ ieiθ − ie−iθ

−ieiθ + ie−iθ eiθ + e−iθ

)
=

(
cos θ − sin θ

sin θ cos θ

)
.

This agrees with the result from (b).

EL7.5.3 Exponential representation of 2-dimensional rotation matrix

(a) We use the product decomposition Rθ =
[
Rθ/m

]m
. For m � 1, θ/m � 1 we have

cos(θ/m) = 1 +O
(
(θ/m)2

)
and sin(θ/m) = θ/m+O

(
(θ/m)3

)
. Therefore

Rθ/m =

(
cos θ − sin θ

sin θ cos θ

)
=

(
1 − θ

m
θ
m 1

)
+O

(
( θ
m

)2
)

= 1+ θ
m
σ̃ +O

(
( θ
m

)2
)
, σ̃ =

(
0 −1

1 0

)
.

(b) The identity limm→∞[1 + x/m]m = ex now yields an exponential representation of Rθ:

Rθ = lim
m→∞

[
Rθ/m

]m
= lim

m→∞

[
1+ θ

m
σ̃
]m

= eθσ̃ .

S.L8 Orthogonality and unitarity

S.L8.1 Orthogonal and unitary maps

S.L8.2 Orthogonal and unitary matrices

EL8.2.1 Orthogonal and unitary matrices

(a) The real matrix A is orthogonal, since

AAT =
(

sin θ cos θ
− cos θ sin θ

)(
sin θ − cos θ
cos θ sin θ

)
= 1.

The complex matrix B is not unitary, since

BB† =
1

1− i

1

1 + i

(
2 1 + i 0

1 + i −1 1
0 2 i

)(
2 1− i 0

1− i −1 2
0 1 −i

)
=

1

2




6 1− 3i 2 + 2i

1 + 3i 4 −2− i

2− 2i −2 + i 5


 6= 1.
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(b) x = (1, 2)T , a = Ax = (sin θ + 2 cos θ,− cos θ + 2 sin θ)T ,

‖x‖ =
√

5 , ‖a‖ =
√

5 sin2 θ + 5 cos2 θ + sin θ cos θ(4− 4) =
√

5 .

Since A is orthogonal, the norm is conserved.

(c) y = (1, 2, i)T , b = By =
1

1− i
(2 + 2(1+i), (1+i)− 2 + i, 4+i2)T

‖y‖ =
√

1+4+1 =
√

6 , ‖b‖ =
√

1
2

[
(16+4) + (1+4) + (9)

]
=
√

17 .

Since B is not unitary, the norm is not conserved.

S.L8.3 Special unitary and special orthogonal matrices

S.L8.4 Orthogonal and unitary basis changes

S.L9 Hermiticity and symmetry

S.L9.2 Hermitian and symmetric matrices

S.L9.3 Relation between Hermitian and unitary matrices

S.L10 Linear algebra in function spaces

S.L10.1 The standard basis of a function space

S.L10.2 Linear operators

S.L10.3 Eigenfunctions

S.L10.4 Self adjoint linear operators

S.L10.5 Function spaces with unbounded support

S.L11 Multilinear algebra

S.L11.1 Direct sum and direct product of vector spaces

S.L11.2 Dual space

S.L11.3 Tensors

S.L11.4 Examples of tensor classes

S.L11.5 Alternating forms
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S.L11.6 Visualization of alternating forms

S.L11.7 Wedge product

S.L11.8 Inner derivative

S.L11.9 Pullback



SC Solutions: Calculus

S.C1 Differentiation of one-dimensional functions

S.C1.3 Derivatives of selected functions

EC1.3.1 Derivatives

(a) f ′(x) = 3
4
x2 − 6x+ 9 (b) f ′(x) =

1

2
√

2x3

(c) f ′(x) = ex(2x− 1) (d) f ′(x) = sin
[
π
(
x+ 1

6

)]
+ πx cos

[
π
(
x+ 1

6

)]

(e) f ′(x) = 2π sin(πx) cos(πx) (f) f ′(x) =
cosx cosx+ sinx sinx

cos2 x
=

1

cos2 x

(g) f ′(x) = ln x+ x
1

x
= lnx+ 1

(h) f ′(x) = ln(9x2) + x
1

9x2
18x = ln(9x2) + 2

(i) f ′(x) = 1
2
(ex − e−x) = sinh(x)

(j) f ′(x) =
(ex + e−x)(ex + e−x)− (ex − e−x)(ex − e−x)

(ex + e−x)2
=

4

(ex + e−x)2
=

1

cosh2 x

EC1.3.3 Derivatives of inverse functions

For each of the following cases, we have to restrict our attention to domains on which the
function of interest is bijective, else its inverse is not defined.

(a) ln(y) is the inverse function of exp(x), with exp(ln(y)) = y. Since exp: R → (0,∞)
is monotonic with exp′(x) strictly positive for all x ∈ R, its inverse, ln : (0,∞)→ R, is
monotic too, with ln′(y) strictly positive for all y ∈ (0,∞). Thus

ln′(y) =
1

exp′(x)|x=ln y

=
1

exp(ln y)
=

1

y
.

(b) arctan(y) is the inverse function of tan(x), with tan(arctan(y)) = y. Since tan is a
periodic function, its inverse arctan has infinitely many branches, one for each x-domain

571
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on which a bijection can be defined. We consider only the x-domain centered on zero,
where tan: (−π

2
, π

2
)→ R is monotonic, with tan′(x) = sec2 x strictly positive. Then its

inverse, arctan: R→ (−1, 1), likewise has strictly positive slope:

arctan′(y) =
1

tan′(x)|x=arctan y

=
1

sec2(arctan y)
=

1

1 + tan2(arctan y)
=

1

1 + y2
.

(c) arccos(y) is the inverse function of cos(x), with cos(arccos(y)) = y. Since cos is
a periodic function, its inverse arccos has infinitely many branches, one for each x-
domain on which a bijection can be defined. We consider two branches where arccos
has positive or negative slope, respectively. I: On the domain x ∈ (0, π), the function
cos : (0, π) → (1,−1) has inverse arccos : (−1, 1) → (π, 0), with cos′(x) = − sin(x)
strictly negative. II: On the domain x ∈ (−π, 0), the function cos : (−π, π) → (−1, 0)
has inverse arccos : (−1, 1) → (−π, 0), with cos′(x) = − sin(x) strictly positive. Using
upper/lower signs for branch I/II, we obtain

arccos′(y) =
1

cos′(x)|x=arccos y

=
−1

sin(arccos y)
=

∓1√
1− cos2(arccos y)

=
∓1√
1− y2

.

Unless stated otherways, the notation arccos usually refers to branch I.

S.C2 Integration of one-dimensional functions

EC2.3.1 Integration by parts

(a) I(z) =

ˆ z

0

dx
u

x
v′

e2x =
[u
x

v
1
2
e2x
]z

0
−
ˆ z

0

dx
u′

1 ·
v

1
2
e2x = 1

2
ze2z − 1

4

[
e2z − 1

]

I ′(z) =
[

1
2
(1 + 2z)− 1

4
2
]

e2z X= ze2z I(1
2
)
X
= 1

4

Note the cancellation pattern: I ′ = u′v + uv′ − u′v = uv′. [Similarly for (c,d).]

(b) I(z) =

ˆ z

0

dx
u

x2
v′

e2x =
[ u
x2

v
1
2
e2x
]z

0
−
ˆ z

0

dx
u′

2x
v

1
2
e2x

The integral on the right can be done by integrating by parts a second time, see (a):

I(z)
(a)
= 1

2
z2e2z − 1

2
ze2z + 1

4

[
e2z − 1

]

I ′(z) =
[

1
2
(2z + 2z2)− 1

2
(1 + 2z) + 1

4
2
]

e2z X= z2e2z I(1
2
)
X
= e

8
− 1

4

Since we integrated by parts twice, I ′ yields more involved cancellations than for (a).

(c) I(z) =

ˆ z

0

dx
u

(lnx) ·
v′

1 =
[ u

(lnx)
v

x
]z

0
−
ˆ z

0

dx
u′
1
x

v

x = (ln z)z − z
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I ′(z) = 1
z
z + ln z − 1

X
= ln z I(1)

X
= −1

(d) I(z) =

ˆ z

0

dx
u

(lnx) ·
v′
1√
x

=
[ u

(lnx)
v

2
√
x
]z

0
−
ˆ z

0

dx
u′
1
x

v

2
√
x = (ln z)2

√
z − 4

√
z

To evaluate [ln(x)
√
x]x=0, we used the rule of l’Hopital:

[
(lnx)

√
x
]
x=0

= lim
x→0

lnx

x−1/2
= lim

x→0

d
dx

lnx
d

dx
x−1/2

= lim
x→0

x−1

−1
2
x−3/2

= lim
x→0

[
−2x1/2

]
= 0 .

Thus the divergence of ln(x) for x→ 0 is so slow that
√
x suppresses it.

I ′(z) = 2
[

1
z

√
z + (ln z)1

2
1√
z

]
− 41

2
1√
z

X
= (ln z) 1√

z
I(1)

X
= −4

(e) I(z) =

ˆ z

0

dx
u

sinx
v′

sinx =
[ u

sinx
v

(− cosx)
]z

0
−
ˆ z

0

dx
u′

cosx
v

(− cosx)︸ ︷︷ ︸
sin2 x−1

Reexpress the integral on the right in terms of I(z),

I(z) = − sin z cos z − I(z) +

ˆ z

0

dx 1 , and solve for I(z):

I(z) = 1
2
(− sin z cos z + z)

I ′(z) = 1
2
(− cos2 z + sin2 z + 1)

X
= sin2 z I(π)

X
= π

2

(f) I(z) =

ˆ z

0

dx
u

sin3 x
v′

sinx =
[ u

sin3 x
v

(− cosx)
]z

0
−
ˆ z

0

dx
(
3 sin2

u′

x cosx
) v

(− cosx)︸ ︷︷ ︸
sin2 x−1

Reexpress the integral on the right in terms of I(z),

I(z) = − sin3 z cos z − 3
[
I(z)−

ˆ z

0

dx sin2 x
]
, solve for I(z), and use (e):

I(z)
(e)
= 1

4

[
− sin3 z cos z + 3

2
(− sin z cos z + z)

]

I ′(z) = 1
4

[
−3 sin2 z cos2 z︸ ︷︷ ︸

1−sin2 z

+ sin4 z + 3
2
(− cos2 z + sin2 z + 1)

]
X
= sin4 z I(π)

X
= 3π

8

EC2.3.3 Integration by substitution

(a) I(z) =

ˆ z

0

dx x cos(x2 + π) [y(x) = x2, dy = 2x dx]

= 1
2

ˆ y(z)

y(0)

dy cos(y + π) = 1
2

sin(y + π)
∣∣∣
z2

0
= 1

2
sin(z2 + π)
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I ′(z) = 1
2

cos(z2 + π) d
dz
z2 X

= cos(z2 + π) z I(
√

π
2
)
X
= −1

2

(b) I(z) =

ˆ z

0

dx sin3 x cosx [y(x) = sinx, dy = cosx dx]

=

ˆ y(z)

y(0)

dy y3 = 1
4
y4
∣∣∣
sin z

0
= 1

4
sin4 z

I ′(z) = sin3 z d
dz

sin z
X
= sin3 z cos z I(π

4
)
X
= 1

16

(c) I(z) =

ˆ z

0

dx
√

1 + ln(x+ 1) 1
x+1

[
y(x) = ln(x+ 1), dy = 1

1+x
dx
]

=

ˆ y(z)

y(0)

dy
√

1 + y = 2
3
(1 + y)3/2

∣∣∣
ln(z+1)

0
= 2

3

[(
1 + ln(z + 1)

)3/2 − 1
]

I ′(z) =
(
1 + ln(z + 1)

)1/2 d
dz

ln(z + 1)
X
=
√

1 + ln(z + 1) 1
z+1

I(e3−1)
X
= 14

3

(d) I(z) =

ˆ z

0

dx x3e−x
4

[y(x) = x4, dy = 4x3 dx]

= 1
4

ˆ y(z)

y(0)

dy e−y = −1
4
e−y
∣∣∣
z4

0
= 1

4

[
1− e−z

4
]

I ′(z) = 1
4
e−z

4 d
dz
z4 X

= e−z
4

z3 I(
4
√

ln 2)
X
= 1

8

EC2.3.5
√

1− x2 Integrals by trigonometric substitution

(a) Substitution: x = sin(y), with inverse function y = arcsin(x). Express each occurrence
of x in terms of y: dx

dy
= cos(y), ⇒ dx = dy cos(y). Moreover: 1− sin2(y) = cos2(y).

I(z) =

ˆ z

0

dx
1√

1− x2
=

ˆ arcsin(z)

arcsin 0

dy cos y
1√

1− sin2 y
=

ˆ arcsin(z)

0

dy cos y
1√

cos2 y

=

ˆ arcsin(z)

0

dy = y

∣∣∣∣
arcsin(z)

0

= arcsin(z)

Check your result: I
(

1√
2

)
= arcsin

(
1√
2

)
= π

4
, since sin

(
π
4

)
= 1√

2
. X

Check by differentiating; let arcsin(z) = u, sin(u) = z:

dI(z)

dz
=

d arcsin(z)

dz
=

1
d sin(u)

du

∣∣∣
u=arcsin(z)

=
1

cosu|u=arcsin(z)

=
1√

1− sin2 u
∣∣∣
u=arcsin(z)

=
1√

1− sin2(arcsin(z))
=

1√
1− z2

X
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(b) Substitution: x = 1
2

sin(y), with inverse function y = arcsin(2x). Express each oc-
currence of x in terms of y: dx

dy
= 1

2
cos(y), ⇒ dx = dy 1

2
cos(y). Moreover:

1− sin2(y) = cos2(y).

I(z) =

ˆ z

0

dx
√

1− 4x2 =

ˆ arcsin(2z)

arcsin 0

dy 1
2

cos y

√
1− sin2 y = 1

2

ˆ arcsin(2z)

0

dy cos2 y

We compute the cos2(y) integral by integrating by parts, with u = cos y, v = sin y,
u′ = − sin y, v′ = cos y:

Ĩ(a) =

ˆ a

0

dy
u

cos(y)
v′

cos(y)
uv−
´
u′v

=

[
cos(y) sin(y)

]a

0

−
ˆ a

0

dy [− sin(y)] sin(y)︸ ︷︷ ︸
cos2(y)−1

= a+ cos(a) sin(a)− Ĩ(a)

⇒ Ĩ(a) = 1
2

[
a+ cos(a) sin(a)

]

With a = arcsin(2z) and I(z) = 1
2
Ĩ
(
arcsin(2z)

)
we thus obtain:

I(z) = 1
4

[
a+ sin(a) cos(a)

]

a=arcsin(2z)

= 1
4

[
a+ sin(a)

√
1− sin2(a)

]

a=arcsin(2z)

= 1
4

[
arcsin(2z) + 2z

√
1− 4z2

]

Check your result: I
(

1
2

)
= 1

4

[
arcsin(1) + 1·

√
1− 4·

(
1
4

)2
]

= π
8
X

Check by differentiating:

dI(z)
dz

(a)
= 1

4

[
2√

1−(2z)2
+ 2
√

1− 4z2 + 2z −8z
2
√

1−4z2

]
= 1

4

[
2−8z2√
1−4z2 + 2

√
1− 4z2

]
=
√

1− 4z2

X

EC2.3.7 1/(1− x2) Integrals by hyperbolic substitution

(a) d
dy

tanh(y) = d
dy

sinh(y)
cosh(y)

= cosh2(y)−sinh2(y)

cosh2(y)
= 1

cosh2(y)
= sech2(y) .X

1− tanh2(y) = cosh2(y)−sinh2(y)

cosh2(y)
= 1

cosh2(y)
= sech2(y) .X

(b) Substitution: x = tanh(y), with inverse function y = arctanh(x). Express each oc-
currence of x in terms of y: dx

dy
= sech2(y), ⇒ dx = dy sech2(y). Moreover:

1− tanh2(y) = sech2(y).

I(z) =

ˆ z

0

dx
1

1− x2
=

ˆ arctanh(z)

arctanh 0

dy sech2 y
1

sech2 y
=

ˆ arctanh(z)

0

dy 1 = arctanh(z)
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Check your result: I
(

3
5

)
= arctanh

(
2
3

)
= ln 2, since tanh

(
ln 2
)

= eln 2−e− ln 2

eln 2+e− ln 2 = 2−1/2
2+1/2

=
3
5
. X

Check by differentiating; let arctanh(z) = u, tanh(u) = z:

dI(z)

dz
=

d arctanh(z)

dz
=

1
d tanh(u)

du

∣∣∣
u=arctanh(z)

=
1

sech2 u
∣∣
u=arctanh(z)

= cosh2(arctanh(z)) =
1

1− tanh2(arctanh(z)
=

1

1− z2
X

EC2.3.9 1/(1 + x2) Integral via partial fraction decomposition

(a) The integral has the form I =
´ z

0
dx f(x), with

f(x) =
1

1 + x2
=

1

(1 + ix)(1− ix)
, (1)

and can be computed using a partial fraction decomposition. We make the ansatz

f(x) =
A

1 + ix
+

B

1− ix
, (2)

and determine the constants A and B, by bringing (2) into the form (1):

f(x) =
A(1− ix) +B(1 + ix)

(1 + ix)(1− ix)
=

(A+B) + (B − A)ix

(1 + ix)(1− ix)
. (3)

Comparing coefficients of x0 and x1 in the numerators of (3) and (1) yields A = B and
A = 1

2
. We now insert these coefficients into (2) and integrate:

I(z) =

ˆ z

0

dx f(x) =
1

2

ˆ z

0

dx

[
1

1 + ix
+

1

1− ix

]
=

1

2i
ln

(
1 + iz

1− iz

)
.

(b) Computing the integral using the substitution y = tan(x) yields I(z) = arctan(z). To
establish the equivalence of the latter with the result from (a), we explicitly compute
arctan(x):

y = arctan(x) ⇒ x = tan(y) =
sin(y)

cos(y)
=

eiy − e−iy

i(eiy + e−iy)
=

1− e−i2y

i(1 + e−i2y)
.

We now solve this equation for y:

ix(1 + e−2iy) = 1− e−2iy

e−2iy =
1− ix

1 + ix
, ⇒ y = − 1

2i
ln

(
1− ix

1 + ix

)
=

1

2i
ln

(
1 + ix

1− ix

)
.

Thus arctan(z) is indeed equal to the expression obtained in (a). X
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EC2.3.11 Partial fraction decomposition

(a) The integral has the form I(z) =
´ z

0
dx f(x), with

f(x) =
3x+ 3

(x+ 1)2(x− 2)
=

3

(x+ 1)(x− 2)
, (1)

and can be computed using a partial fraction decomposition. To this end, we make the
ansatz

f(x) =
A

x+ 1
+

B

x− 2
, (2)

and determine the coefficients A and B by writing (2) in the form (1):

f(x) =
A(x− 2) +B(x+ 1)

(x+ 1)(x− 2)
=

(A+B)x− 2A+B

(x+ 1)(x− 2)
. (3)

Comparing coefficients in the numerators of (3) and (1) we obtain:

A+B = 0 ⇒ A = −B , (4)

−2A+B = 3
(4)⇒ −3A = 3 ⇒ A = −1, B = 1 . (5)

Now we insert the coefficients from (5) into (2) and integrate:

I(z) =

ˆ z

0

dx f(x) =

ˆ z

0

dx

[ −1

x+ 1
+

1

x− 2

]
=
[
− ln |x+ 1|+ ln |x− 2|

]z
0

= ln

∣∣∣∣
1− 1

2
z

1 + z

∣∣∣∣ .

Remark: The form of the ansatz (2), as well as the coefficients A and B, follow from the
asymptotic behavior of the function f(x) at its poles x = −1 and x = 2, respectively:

x = −1 + ε : f(−1 + ε) =
3

(−1 + ε+ 1)(−1 + ε− 2)

ε→0−→ −1

ε
+O(ε0) . (6)

x = 2 + ε : f(2 + ε) =
3

(2 + ε+ 1)(2 + ε− 2)

ε→0−→ 1

ε
+O(ε0) . (7)

Eqs. (6) and (7) directly imply that A = −1 and B = 1, because these are the only
values for which ansatz (2) shows the same asymptotic behavior as the function (1) at
its poles.

(b) The integral has the form I(z) =
´ z

0
dx f(x), with

f(x) =
3x

(x+ 1)2(x− 2)
, (8)
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and can be computed using a partial fraction decomposition. To this end, we make the
ansatz

f(x) =
A

x+ 1
+

B

(x+ 1)2
+

C

x− 2
, (9)

and determine the coefficients A, B and C by bringing (9) into the form (8):

f(x) =
A(x+ 1)(x− 2) +B(x− 2) + C(x+ 1)2

(x+ 1)2(x− 2)

=
A(x2 − x− 2) +Bx− 2B + C(x2 + 2x+ 1)

(x+ 1)2(x− 2)

=
(A+ C)x2 + (−A+B + 2C)x− 2A− 2B + C

(x+ 1)2(x− 2)
. (10)

Comparing coefficients in the numerators of (10) and (8), we obtain:

A+ C = 0 ⇒ A = −C , (11)

−A+B + 2C = 3
(11)⇒ B + 3C = 3 ⇒ B = 3− 3C , (12)

−2A− 2B + C = 0
(11)⇒ 3C − 2B = 0 (13)
(12,13)⇒ 3C − 2(3− 3C) = 0 ⇒ C = 2

3
, B = 1, A = −2

3
. (14)

Now we insert the coefficients from (12) into (9) and integrate:

I(z) =

ˆ z

0

f(x) =

ˆ z

0

dx

[
−2

3

1

x+ 1
+

1

(x+ 1)2
+

2

3

1

x− 2

]

=

[
−2

3
ln |x+ 1| − 1

x+ 1
+

2

3
ln |x− 2|

]z

0

=
2

3
ln

∣∣∣∣
1− 1

2
z

1 + z

∣∣∣∣+
z

z + 1
.

Remark: The form of the ansatz (9) as well as the coefficients A, B and C follow from
the asymptotic behavior of the function f(x) at its poles x = −1 and x = 2, respectively:

x = −1 + ε : f(−1 + ε) =
3(−1 + ε)

(−1 + ε+ 1)2(−1 + ε− 2)
=

−3(1− ε)
ε2(−3)(1− 1

3
ε)

(15)

ε→0−→ (1− ε)(1 + 1
3
ε+O(ε2))

ε2
=

1

ε2
− 2

3ε
+O(ε0) . (16)

x = 2 + ε : f(2 + ε) =
3(2 + ε)

(2 + ε+ 1)2(2 + ε− 2)
(17)

ε→0−→ 6(1 +O(ε1))

32 ε
=

2

3ε
+O(ε0) . (18)

For the step from (15) to (16) we used the first two terms of the geometric series,
1

1−y
y→0−→ 1 + y, with y = 1

3
ε. [For a discussion of the geometric series, see Sec. C5.2, cf.

Eq. (??)]. Eqs. (16) and (17) directly imply that A = −2
3
, B = 1 and C = 2

3
, because

these are the only values for which ansatz (9) shows the same asymptotic behavior as the
function (8) at its poles.
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EC2.3.13 Elementary Gaussian integral

(a) We compute I using polar coordinates: x = ρ cosφ, y = ρ sinφ, dxdy = ρ dρ dφ.

I =

ˆ +∞

−∞
dxdy e−(x2+y2) =

ˆ 2π

0

dφ

ˆ ∞
0

dρ ρ e−ρ
2

= 2π

[
−1

2
e−ρ

2

]∞

0

= π .

(b) In the two-dimensional integral I, the x and y integrals are independent and factorize:

I =

ˆ +∞

−∞
dxdy e−(x2+y2) =

[ˆ ∞
−∞

dx e−x
2

] [ˆ ∞
−∞

dy e−y
2

]
=

[ˆ ∞
−∞

dx e−x
2

︸ ︷︷ ︸
I0(1)

]2

= [I0(1)]2

I0(1) = +
√
I =
√
π . (Sign: I0(1) is positive since the integrand e−x

2

> 0.)

The required Gaussian integral I0(a) is obtained using the substitution method x̃ =
√
ax:

I0(a) =

ˆ ∞
−∞

dx e−ax
2 x̃=

√
a x

=

ˆ ∞
−∞

dx̃√
a

e−x̃
2

=

√
π

a
.

EC2.3.15 Definite exponential integrals of the form
´∞

0
dx xne−ax

Below, In stands for In(a), i.e. the a dependence of the integral will not be indicated explicitly.

(a) Repeated partial integration gives:

In =

ˆ ∞
0

dx xne−ax

I0 =

ˆ ∞
0

dx e−ax = −e−ax

a

∣∣∣∣
∞

0

=
1

a

I1 =

ˆ ∞
0

dx
u

x
v′

e−ax
uv−
´
u′v

=

[
x

(
−e−ax

a

)]∞

0

−
ˆ ∞

0

dx 1

(
−e−ax

a

)
= 0 +

1

a
I0 =

1

a2

I2 =

ˆ ∞
0

dx
u

x2
v′

e−ax
uv−
´
u′v

=

[
x2

(
−e−ax

a

)]∞

0

−
ˆ ∞

0

dx 2x

(
−e−ax

a

)
= 0 +

2

a
I1 =

2

a3

· · ·

In =

ˆ ∞
0

dx
u

xn
v′

e−ax
uv−
´
u′v

= xn
[
−1

a
e−ax

]∞

0

−
ˆ ∞

0

dxnxn−1

(
−1

a
e−ax

)
=
n

a
In−1

The resulting pattern is:

In =
n

a
In−1 =

n

a

n− 1

a
In−2 =

n

a

n− 1

a

n− 2

a
In−3 =

n

a

n− 1

a

n− 2

a
· · · 2

a

1

a

1

a
=

n!

an+1
.
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(b) Repeated differentiation gives:

I0 =

ˆ ∞
0

dx e−ax ⇒ I0 = −e−ax

a

∣∣∣∣
∞

0

=
1

a

dI0

da
=

ˆ ∞
0

dx (−x)e−ax = −I1 ⇒ I1 = (−)1 d

da

1

a
=

1

a2

d2I0

da2
=

ˆ ∞
0

dx (−x)2e−ax = (−)2I2 ⇒ I2 = (−)2 d2

da2

1

a
= − d

da

[
1

a2

]
=

2 · 1
a3

d3I0

da3
=

ˆ ∞
0

dx (−x)3e−ax = (−)3I3 ⇒ I3 = (−)3 d3

da3

1

a
= − d

da

[
2 · 1
a3

]
=

3·2·1
a4

The resulting pattern is:

dnI0

dan
=

ˆ ∞
0

dx (−x)ne−an = (−)nIn ⇒ In = (−)n
dn

dan
1

a
= − d

da

[
(n− 1)!

an

]
=

n!

an+1
.

S.C3 Partial differentiation

S.C3.1 Partial derivative

EC3.1.1 Partial derivatives

(a) f(x, y) = x2y3 − 2xy, ∂xf(x, y) = 2xy3 − 2y , ∂yf(x, y) = 3x2y2 − 2x .

(b) f(x, y) = sin
[
xe2y

]
, ∂xf(x, y) = cos

[
xe2y

]
e2y , ∂yf(x, y) = cos

[
xe2y

]
2xe2y .

S.C3.2 Multiple partial derivatives

EC3.2.1 Partial derivates of first and second order

∂xr = ∂x
√
x2 + y2 =

1

2

2x√
x2 + y2

=
x

r
, similarly: ∂yr =

y

r

∂xf(r) = ∂x
x

r
=

1

r
− x · 1

r2
· x
r

=
r2 − x2

r3
=
y2

r3

∂yf(r) = ∂y
x

r
= −x · 1

r2
· y
r

= −xy
r3

∂2
y,xf(r) = ∂y

(
y2

r3

)
=

2y

r3
− y2 · 3

r4
· y
r

=
2yr2 − 3y3

r5
=

2yx2 − y3

r5

∂2
x,yf(r) = ∂x

(
−xy
r3

)
= − y

r3
+ xy · 3

r4
· x
r

=
−yr2 + 3x2y

r5
=

2yx2 − y3

r5
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∂2
xf(r) = ∂x

(
y2

r3

)
= −y2 3

r4
· x
r

= −3xy2

r5

∂2
yf(r) = ∂y

(
−xy
r3

)
= − x

r3
+ xy · 3

r4
· y
r

=
−xr2 + 3xy2

r5
=

2xy2 − x3

r5

S.C3.3 Chain rule for functions of several variables

EC3.3.1 Chain rule for functions of two variables

(a) Direct computation of f(g(x)) and its partial derivatives yields:

f(g(x)) = ‖g(x)‖ =
∥∥∥
(
lnx2, 3 lnx1

)T∥∥∥ = ln2 x2 + 9 ln2 x1 .

∂x1f(g(x)) = ∂x1

[
ln2 x2 + 9 ln2 x1

]
=
[
0 + 9(2 lnx1) ∂x1 lnx1

]
=

18 lnx1

x1
,

∂x2f(g(x)) = ∂x2

[
ln2 x2 + 9 ln2 x1

]
=
[
(2 lnx2) ∂x2 lnx2 + 0

]
=

2 lnx2

x2
.

(b) The chain rule, ∂xkf(g(x)) =
∑

j

[
∂yjf(y)

]
y=g(x)

∂xkg
j(x), yields the same results:

∂x1f(g(x)) = [∂y1f(y)]
y=g(x)
· ∂x1g1(x) + [∂y2f(y)]

y=g(x)
· ∂x1g2(x)

=
[
∂y1

[
(y1)2 + (y2)2

]]
y=g(x)

· ∂x1

[
lnx2

]
+
[
∂y2

[
(y1)2 + (y2)2

]]
y=g(x)
· ∂x1

[
3 lnx1

]

= 0 +
[
2y2
]
y=g(x)
· 3

x1
= 2g2(x)· 3

x1
= 2(3 ln x1)

3

x1
=

18 lnx1

x1

X
= (a).

∂x2f(g(x)) = [∂y1f(y)]
y=g(x)

· ∂x2g1(x) + [∂y2f(y)]
y=g(x)

· ∂x2g2(x)

=
[
∂y1

[
(y1)2 + (y2)2

]]
y=g(x)

· ∂x2

[
lnx2

]
+
[
∂y2

[
(y1)2 + (y2)2

]]
y=g(x)

· ∂x2

[
3 lnx1

]

=
[
2y1
]
y=g(x)

· 1

x2
+ 0 = 2g1(x)· 1

x2
= 2 ln x2 1

x2
=

2 lnx2

x2

X
= (a).

In both (a) and (b), computing the partial derivatives involves first differentiating the
sum of squares, then differenting logarithms. The chain rule route (b) simply makes this
notationally somewhat more explicit than the direct route (a).

S.C4 Multi-dimensional integration

S.C4.1 Cartesian area and volume integrals

EC4.1.1 Two-dimensional integration (Cartesian coordinates)

I(a) =

ˆ
G

dxdyf(x, y) =

ˆ 1

0

dy

ˆ a−y

1

dx xy =

ˆ 1

0

dy y
[

1
2
x2
]a−y

1
= 1

2

ˆ 1

0

dy y
[
(a− y)2 − 1

]
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= 1
2

ˆ 1

0

dy
[
y3 − ay2 + (a2 − 1)y

]
=
[

1
8
y4 − 1

3
ay3 + 1

4
(a2 − 1)y2

]1
0

= −1
8
− 1

3
a+ 1

4
a2 .

EC4.1.3 Area enclosed by curves (Cartesian coordinates)

(a) Along the curve γ1, the components x = t and y = b(1−
t/a) satisfy the equation of a straight line, namely y =
b(1−x/a). Along the curve γ2 the components x = a cos t
and y = b sin t satisfy the equation of an ellipse with semi-
axes a and b, namely x2/a2 + y2/b2 = 1.

2
+γ

2
−γ aa−

b−

b
1γ

x

y

(b) When computing areas it is useful to parametrize curves by one of the coordinates of R2.
Here we use x as the curve parameter (y would work equally well) and parametrize the
upper and lower branches of the ellipse, γ±2 , by y±2 (x) = ±b

√
1− x2/a2, with |x| < a.

Its area is then described by −a < x < a and y−2 (x) < y < y+
2 (x):

S(a, b) =

ˆ a

−a
dx

ˆ y+
2 (x)

y−2 (x)

dy 1 =

ˆ a

−a
dx
[
y+

2 (x)− y−2 (x)
]

= 2

ˆ a

−a
dx b

√
1− x2/a2

x = a sinu
= 2ab

ˆ π/2

−π/2
du cos2 u

part. int.
= 2ab1

2

[
u+ sinu cosu

]π/2
−π/2

= πab .

(c) We parametrize the straight line γ1 by y1(x) = b(1 − x/a). According to the figure,
it intersects the ellipse γ2 at the points (a, 0)T and (0, b)T . This is consistent with the
following algebraic argument: Since y1(x) ≥ 0 for x ≤ a, the straight line γ1 intersects
only the positive branch γ+

2 of the ellipse, namely when

0 = y1(x)− y+
2 (x) = b(1− x/a)− b

√
1− x2

a2 , ⇒ x = a or x = 0 .

The desired area (shaded in sketch) is thus described by 0 < x < a and y1(x) < y <
y+

2 (x):

A(a, b) =

ˆ a

0

dx

ˆ y+
2 (x)

y1(x)

dy 1 =

ˆ a

0

dx
[
y+

2 (x)− y1(x)
]

=

ˆ a

0

dx b

[√
1− x2

a2 −
(
1− x

a

)]

(a)
= 1

4
πab− b

[
x− 1

2
x2

a

]a
0

= ab(1
4
π − 1

2
) .

Geometric consideration: the desired area is a quarter of the area of the ellipse, namely
1
4
πab, minus the area of a triangle with base a and height b, namely 1

2
ab.
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EC4.1.5 Area integral for volume of a pyramid (Cartesian coordinates)

(a) The plane E intersects the three axes at x = a, y = b and z = c.
Therefore the pyramid has base area A = 1

2
ab, height h = c and volume

V = 1
3
Ah = 1

6
abc .

x y

z

a

c

b

(b) The diagonal of the pyramid’s base area in the xy plane is described by yD(x) = b(1 −
x/a), and the base area itself by 0 ≤ x ≤ a and 0 ≤ y ≤ yD(x). The pyramid’s height
above the base are is h(x, y) = c(1− x/a− y/b). Thus the volume is:

V =

ˆ
A

dxdy h(x, y) =

ˆ a

0

dx

ˆ yD(x)

0

dy c
(
1− x

a
− y

b

)
= c

ˆ a

0

dx
[
y
(
1− x

a

)
− 1

2
y2

b

]yD(x)

0

= c

ˆ a

0

dx
[
b
(
1− x

a

)2 − 1
2
b2
(
1− x

a

)2 1
b

]
= 1

2
cb
(
−1

3
a
) [

(1− x
a
)3
]a

0
= 1

6
abc .X

S.C4.2 Curvilinear area integrals

EC4.2.1 Area of an ellipse (elliptical polar coordinates)

(a) In elliptical polar coordinates, the area element is given by:

dx dy = dµ dφ ||∂µr× ∂φr||.

The integration measure can be calculated by using r = µa cosφ e1 + µb sinφ e2:

‖∂µr× ∂φr‖ =

∥∥∥∥∥∥



a cosφ
b sinφ

0


×



−aµ sinφ
bµ cosφ

0



∥∥∥∥∥∥

= ab µ(cos2 φ+ sin2 φ) = ab µ .

The integration limits now correspond to 0 < µ <∞, 0 < φ < 2π. Thus,

I = ab

ˆ ∞
0

dµµ

ˆ 2π

0

dφ f(µ2) = 2πab

ˆ ∞
0

dµµ f(µ2) .

(b) In Cartesian coordinates, an ellipse is defined by (x/a)2+(y/b)2 = 1,
and in elliptical coordinates by µ2 = 1. Using elliptical coordinates,
its area can be computed as follows:

AE =

ˆ

(x/a)2+(y/b)2≤1

dx dy =

ˆ

R2

dx dy f
(
(x/a)2 + (y/b)2

)
with f(µ2) =

{
1 for 0 < µ2 ≤ 1,

0 for µ2 > 1,

=

ˆ 2π

0

dφ

ˆ ∞
0

dµ ab µ f(µ2) = 2πab

ˆ 1

0

dµµ = 2πab
1

2
= πab .
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S.C4.3 Curvilinear volume integrals

EC4.3.1 Volume and moment of inertia (cylindrical coordinates)

In cylindrical coordinates, x = ρ cosφ, y = ρ sinφ, z, the volume element is dV = dφ dz dρ ρ
and the perpendicular distance to the z axis is d2

⊥ = x2 + y2 = ρ2. The homogeneous body F
has density ρ0 = M/VF . The integration region is 0 < φ < 2π, H ≤ z ≤ 2H, 0 < ρ ≤ az,
hence the integral over ρ has a z-dependent upper limit and must be computed before the
integral over z:

(a) VF (a) =

ˆ
K

dV =

ˆ 2π

0

dφ

ˆ 2H

H

dz

ˆ az

0

dρ ρ = 2π

ˆ 2H

H

dz

[
ρ2

2

]az

0

= πa2

ˆ 2H

H

dz z2

= πa2

[
z3

3

]2H

H

=
7πa2

3
H3 .

(b) IF (a) =

ˆ
K

dV ρ0 ρ
2 = ρ0

ˆ 2π

0

dφ

ˆ 2H

H

dz

ˆ az

0

dρ ρ3 = 2π

ˆ 2H

H

dz

[
ρ4

4

]az

0

= ρ0
πa4

2

ˆ 2H

H

dz z4 = ρ0
πa4

2

[
z5

5

]2H

H

= ρ0
31πa4

10
H5 =

93a2

70
MH2 .

EC4.3.3 Volume of a buoy (spherical coordinates)

(a) In spherical coordinates, x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ, the volume
element is dV = r2 sin θdrdθdφ. The inequality for z can be written as r cos θ ≥
a
√
r2 sin2 θ(cos2 φ+ sin2 φ) = ar sin θ, or 1/a ≥ tan θ ⇒ θ ≤ arctan(1/a) ≡ θ̃ .

(b) V (R, a) =

ˆ R

0

dr r2

ˆ θ̃

0

dθ sin θ

ˆ 2π

0

dφ =
[

1
3
r3
]R

0

[
− cos θ

]θ̃
0
· 2π

=
2π

3
R3

[
1− a√

1 + a2

]
since cos θ̃ = a/

√
1 + a2

θ̃

a

1

2
a

1
+√

EC4.3.5 Wave functions of two-dimensional harmonic oscillator (polar coordinates)

(a) The area integral O factorizes into a radial integral P and an angular integral P̃ :

Area integral: Omm′
nn′ =

ˆ
R2

dSΨnm(r)Ψn′m′(r)

=

ˆ ∞
0

dρ ρ

ˆ 2π

0

dφ
(
Rn|m|(ρ)Zm(φ)

)(
Rn′|m′|(ρ)Zm′(φ)

)

= P
|m||m′|
nn′ P̃mm′ ,
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Radial integral: P
|m||m′|
nn′ =

ˆ ∞
0

dρ ρRn|m|(ρ)Rn′|m′|(ρ) (since R = R),

Angular integral: P̃mm′ =

ˆ 2π

0

dφZm(φ)Zm′(ρ) .

(b) The angular integral over the functions Zm(φ) = 1√
2π

eimφ can be calculated easily for

arbitrary m and m′. To evaluate the case m 6= m′ we use the Euler identity, ei2πk = 1 if
k ∈ Z:

P̃mm′ =
1

2π

ˆ 2π

0

dφ ei(−m+m′)φ

=





1

2π

ˆ 2π

0

dφ e0 = 1 for m = m′

1

2π

ei2π(m′−m) − 1

i(m′ −m)
Euler
=

1

2π

1− 1

i(m′ −m)
= 0 for m 6= m′





= δmm′ . X

(c) According to (b), Omm′
nn′ ∝ δmm′ , hence only radial integrals of the form Pmm

nn′ are of
interest here. We compute them using the substitution x = ρ2, dx = 2ρ dρ, and´∞

0
dx xne−x = n! :

P 00
00 =

ˆ ∞
0

dρ ρ
[√

2e−ρ
2/2
]2

=

ˆ ∞
0

dx e−x = 1 .

P 11
11 =

ˆ ∞
0

dρ ρ
[√

2ρe−ρ
2/2
]2

=

ˆ ∞
0

dx x e−x = 1 .

P 22
22 =

ˆ ∞
0

dρ ρ
[
ρ2e−ρ

2/2
]2

=

ˆ ∞
0

dx 1
2
x2e−x = 1

2
· 2 = 1 .

P 00
22 =

ˆ ∞
0

dρ ρ
[√

2(ρ2 − 1)e−ρ
2/2
]2

=

ˆ ∞
0

dx (x2 − 2x+ 1)e−x = (2− 2 · 1 + 1) = 1 .

P 00
20 =

ˆ ∞
0

dρ ρ
√

2(ρ2 − 1)e−ρ
2/2
√

2e−ρ
2/2 =

ˆ ∞
0

dx (x− 1)e−x = 1− 1 = 0 .

It follows that O00
00 = O11

11 = O22
22 = O00

22 = 1 and O00
20 = 0 . X

S.C4.4 Curvilinear integration in arbitrary dimensions

EC4.4.1 Surface integral: area of a sphere

(a) We use r(x, y) = (x, y,
√
R2 − x2 − y2)T to parametrize the upper half-sphere by Carte-

sian coordinates on the disk D. Computing the coordinate basis vectors, we find

∂xr =
(

1, 0, −x√
R2−x2−y2

)T
, ∂yr =

(
0, 1, −y√

R2−x2−y2

)T
.
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‖∂xr× ∂yr‖ =
[
‖∂xr‖2 ‖∂xr‖2 − ‖∂xr · ∂yr‖2

]1/2

=
[(

1 + x2

R2−x2−y2

)(
1 + y2

R2−x2−y2

)
− x2y2

(R2−x2−y2)2

]2

= R√
R2−x2−y2

.

To compute the area of the sphere, AS = 2AS+ = 2
´
D

dxdy ‖∂xr× ∂yr‖, we integrate

over the disk D defined by the inequalities |x| < R and y ≤
√
R2 − x2:

AS =

ˆ R

−R
dx

ˆ √R2−x2

−
√
R2−x2

dy 2R√
R2−x2−y2

=

ˆ R

−R
dx

ˆ √R2−x2

−
√
R2−x2

dy 2R√
R2−x2

1√
1− y2

R2−x2

.

Using the substitution t = y√
R2−x2 , with t ∈ (−1, 1), we obtain

AS =

ˆ R

−R
dx

ˆ 1

−1

dt 2R√
1−t2 = 2R

ˆ R

−R
dx
[
arcsin t

]1
−1

= 2R(2R)
[
π
2
−
(
−π

2

)]
= 4πR2 .

(b) We use r(θ, φ) = R(sin θ cosφ, sin θ sinφ, cos θ)T to parametrize the sphere by spherical
coordinates. Computing the coordinate basis vectors, we find

∂θr = R(cos θ cosφ, cos θ sinφ, cos θ)T , ∂φr = R(− sin θ sinφ, sin θ cosφ, 0)T ,

‖∂θr× ∂φr‖2 = ‖∂θr‖2 ‖∂θr‖2 − ‖∂θr · ∂φr‖2 = R2 − 0 = R2 .

To compute the area of the sphere, we integrate over the full domain U = (0, π)×(0, 2π):

AS =

ˆ
S

dS =

ˆ
U

dθdφ ‖∂θr× ∂φr‖ = R2

ˆ 2π

0

dφ

ˆ π

0

dθ sin θ = −2πR2
[
cos θ

]π
0

= 4πR2 .

EC4.4.3 Volume and surface integral: parabolic solid of revolution

(a) In cylindrical coordinates the paraboloid P is defined by
z(ρ) = ρ2, or equivalently, ρ(z) =

√
z. It’s volume is:

V =

ˆ
K

dV =

ˆ 2π

0

dφ

ˆ zmax

0

dz

ˆ ρ(z)

0

dρ̃ ρ̃ = 2π

ˆ zmax

0

dz
z

2
= π

2
z2

max .

x
y

z

)z(ρ

maxz

(b) The surface A of the parabolic part of the surface of K is calculated as follows:

Parametrization of P : r(φ, z) = ρ eρ + z ez , with ρ = ρ(z) =
√
z .

Tangent vectors: ∂φr = ρ eφ , ∂zr = ρ′ eρ + ez , with ρ′ = ∂zρ(z) = 1
2
√
z
.

This gives: ‖∂φr× ∂zr‖ =
[
(∂φr)2(∂zr)2 − ∂φr · ∂zr

] 1
2

=
[
ρ2
(
ρ′2 + 1

)
− 0
] 1

2 =
√
z

[
1

(2
√
z)

2 + 1

] 1
2

=
[

1
4

+ z
] 1

2 .
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Paraboloid surface:A =

ˆ
P

dS =

ˆ
P

dφ dz ‖∂φr× ∂zr‖ =

ˆ 2π

0

dφ

ˆ zmax

0

dz
[

1
4

+ z
] 1

2

= 2π 2
3

[
1
4

+ z
] 3

2

∣∣∣
zmax

0
= π

6

[
(1 + 4zmax)

3
2 − 1

]
.

EC4.4.5 Area of a circular cone

We place the tip of the cone at the origin, as shown in the sketch. We
adopt polar coordinates, (ρ, φ)T , defined on the domain U = (0, R)×
(0, 2π), such that x = ρ cosφ, y = ρ sinφ. On the conical surface
z = bρ with b = h/R, hence it can be parametrized as

r : U → SC , (ρ, φ)T 7→ r(ρ, φ) =



ρ cosφ
ρ sinφ
ρb


 .

xe

ze

h
ρ

R

The conical area AC =

ˆ
SC

dS =

ˆ
U

dρ dφ ‖∂ρr× ∂φr‖ can thus be computed as follows:

‖∂ρr× ∂φr‖ =

∥∥∥∥∥∥




cosφ
sinφ
b


×



−ρ sinφ
ρ cosφ

0



∥∥∥∥∥∥

= ρ

∥∥∥∥∥∥



b cosφ
−b sinφ

1



∥∥∥∥∥∥

= ρ
√
b2 + 1.

AC =

ˆ R

0

dρ ρ

ˆ 2π

0

dφ
√
b2 + 1 = 1

2
R2(2π)

√
b2 + 1 = πR

√
h2 +R2.

S.C4.5 Changes of variables in higher-dimensional integration

EC4.5.1 Jacobian determinant for cylindrical coordinates

Cylindrical coordinates: x1 = ρ cosφ, x2 = ρ sinφ, x3 = z.

∣∣∣∣
∂(x1, x2, x3)

∂(ρ, φ, z)

∣∣∣∣ =

∣∣∣∣∣∣∣

∂x1

∂ρ
∂x1

∂φ
∂x1

∂z
∂x2

∂ρ
∂x2

∂φ
∂x2

∂z
∂32

∂ρ
∂32

∂φ
∂32

∂z

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣

cosφ −ρ sinφ 0
sinφ ρ cosφ 0

0 0 1

∣∣∣∣∣∣
= ρ(cosφ2 + sin2 φ) = ρ

EC4.5.3 Three-dimensional Gaussian integral via linear transformation

Using the substitution u = a(x+ y), v = b(z − y), w = c(x− z) gives

I =

ˆ
R3

dx dy dz e−[a2(x+y)2+b2(z−y)2+c2(x−z)2] =

ˆ
R3

du dv dw

∣∣∣∣
∂(x, y, z)

∂(u, v, w)

∣∣∣∣ e
−[u2+v2+x2] .
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Because x, y and z are all integrated over (−∞,∞), the same holds for u, v and w. Further-
more, because u, v and w are given as functions of x, y and z, the Jacobian determinant is
calculated simply using the formula:

J =

∣∣∣∣∣∣
det




∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z



∣∣∣∣∣∣

−1

=

∣∣∣∣∣∣
det



a a 0
0 b −b
c 0 −c



∣∣∣∣∣∣

−1

=
∣∣∣abc(−1− 1 + 0)

∣∣∣
−1

=
1

2abc
.

Note: the Jacobian Determinant is always positive, because it is given by the magnitude of
the determinant of the matrix of partial derivatives.

Note: alternatively the Jacobian determinant can also be calculated using J =
∣∣∣ ∂(x,y,z)
∂(u,v,w)

∣∣∣. For

this, however, we must first invert the transformation (i.e. using Gaussian elimination), and
determine x, y and z as functions of u, v and w. This gives x = 1

2
(u/a + v/b + w/c),

y = 1
2
(u/a− v/b− w/c), z = 1

2
(u/a+ v/b− w/c), and

J =

∣∣∣∣∣∣
det




∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w



∣∣∣∣∣∣

=
1

23

∣∣∣∣∣∣
det




1/a 1/b 1/c
1/a −1/b −1/c
1/a 1/b −1/c



∣∣∣∣∣∣

=
1

23abc

∣∣∣2− (−2) + 0
∣∣∣ =

1

2abc
.

Because in this case the Jacobian is independent of u, v and w, the integral
´

du dv dw

decomposes into three independent Gaussian integrals: I =
√
π3/(2abc).

EC4.5.5 General Gaussian integrals

(a) We write the exponent as rTAr, with r = (x, y)T and a symmetric matrix A, with
A12 = A21:

rTAr =
(
x y

)(A11 A12

A21 A22

)(
x

y

)
= A11 x

2 + A12 xy + A21 yx+ A22 y
2

!
= (a+ 3)x2 + 2(a− 3)xy + (a+ 3)y2

We therefore identify

A11 = A22 = a+ 3 , A12 = A21 = a− 3 , ⇒ A =

(
a+ 3 a− 3

a− 3 a+ 3

)
.

Eigenvalues: 0
!

= det (A− λ1) = (2a− λ)(6− λ) ⇒ λ1 = 2a , λ2 = 6 .

Normalized Eigenvectors:

λ1 = 2a : 0
!

= (A− λ11) v1 =

(
−a+ 3 a− 3

a− 3 −a+ 3

)
v1 ⇒ v1 =

1√
2

(
1

1

)
.

λ2 = 6 : 0
!

= (A− λ21) v2 =

(
a− 3 a− 3

a− 3 a− 3

)
v2 ⇒ v2 =

1√
2

(
1

−1

)
.
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There therefore exists a transformation S such that A = SDST , with D =
(

2a 0
0 6

)
.

The columns of this transformation S are the normalized Eigenvectors of A:

S =
1√
2

(
1 1

1 −1

)
.

With r̃ = (x̃, ỹ)T = ST r, the exponent thus takes the following form:

(a+ 3)x2 + 2(a− 3)xy + (a+ 3)y2 = rTAr = rTSDST r = r̃TDr̃

=
(
x̃ ỹ

)(2a 0

0 6

)(
x̃

ỹ

)
= 2ax̃2 + 6ỹ2

(b) Since S−1 = ST , the inverse of the relation r̃ = ST r is r = Sr̃. Explicitly:

x = S11x̃+ S12ỹ =
1√
2

(x̃+ ỹ) , y = S21x̃+ S22ỹ =
1√
2

(x̃− ỹ)

The Jacobian determinant equals 1, since S is orthogonal. Explicitly:

J =

∣∣∣∣det

(
∂x
∂x̃

∂x
∂ỹ

∂y
∂x̃

∂y
∂ỹ

)∣∣∣∣ =

∣∣∣∣det

(
S11 S12

S21 S22

)∣∣∣∣ =

∣∣∣∣det
1√
2

(
1 1

1 −1

)∣∣∣∣ =

∣∣∣∣∣
1− (−1)
√

2
2

∣∣∣∣∣ = 1 .

(c) We now compute I(a), using the Gaussian integral
´∞
−∞ dx e−b

2x2
=
√
π
b

for the last step:

I(a) =

ˆ
R2

dx dy e−[(a+3)x2+2(a−3)xy+(a+3)y2] =

ˆ
R2

dx dy e−r
TAr =

ˆ
R2

dx̃ dỹ J e−r̃
TDr̃

=

ˆ
R2

dx̃ dỹ e−(2ax̃2+6ỹ2) =

ˆ ∞
−∞

dx̃ e−2ax̃2

ˆ ∞
−∞

dỹ e−6ỹ2

=

√
π√
2a

√
π√
6

=
π

2
√

3a
.

The result has the expected form: I =
√

πn

detA
, with n = 2 and detA = λ1λ2 = 12a.

S.C5 Taylor series

S.C5.1 Approximating functions by polynomials

S.C5.2 Taylor expansion

EC5.2.1 Addition theorems for sine and cosine

On the one hand: ei(a+b) = cos (a+ b) + i sin (a+ b) (Euler-de Moivre identity) . (1)

On the other hand: ei(a+b) = eiaeib = (cos a+ i sin a) (cos b+ i sin b)
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= cos a cos b− sin a sin b+ i (sin a cos b+ cos a sin b) . (2)

We compare the real and imaginary parts:

(a) Re (1) = Re (2) : ⇒ cos (a+ b) = cos a cos b− sin a sin b .

(b) Im (1) = Im (2) : ⇒ sin (a+ b) = sin a cos b+ cos a sin b .

S.C5.3 Finite-order expansion

EC5.3.1 Taylor series

(a) Method 1: Use the known formula for the geometric series, 1
1−x =

∑∞
n=0 x

n = 1
1−x (for

|x| < 1), as well as the series expansion for sine, sinx = x− x3

6
+O(x5):

f(x) =
1

1− sinx
=

1

1− [x+ 1
6
x3 +O(x5)]

= 1 +
[
x− 1

6
x3
]

+
[
x− 1

6
x3
]2

+
[
x− 1

6
x3
]3

+
[
x− 1

6
x3
]4

+O(x5)

= 1 + x− 1
6
x3 + x2 − 1

3
x4 + x3 + x4 +O(x5)

= 1 + x+ x2 + 5
6
x3 + 2

3
x4 +O(x5) .

Method 2: Determine the Taylor coefficients via successive derivatives:

f(x) = 1
1−sinx

, ⇒ f(0) = 1 .

f (1)(x) = cos(x)
(1−sin(x))2 ⇒ f (1)(0) = 1 .

f (2)(x) = 2 cos2(x)
(1−sin(x))3 − sin(x)

(1−sin(x))2 ⇒ f (2)(0) = 2 .

f (3)(x) = 6 cos3(x)
(1−sin(x))4 − 6 sin(x) cos(x)

(1−sin(x))3 − cos(x)
(1−sin(x))2 ⇒ f (3)(0) = 5 .

f (4)(x) = 24 cos4(x)
(1−sin(x))5 − 36 sin(x) cos2(x)

(1−sin(x))4 + 6 sin2(x)
(1−sin(x))3 .

− 8 cos2(x)
(1−sin(x))3 + sin(x)

(1−sin(x))2 ⇒ f (4)(0) = 16 .

⇒ f(x) = f(0) + f (1)(0)x+ 1
2!
f (2)(0)x2 + 1

3!
f (3)(0)x3 + 1

4!
f (4)(0)x4 +O

(
x5
)

= 1 + x+ x2 + 5
6
x3 + 2

3
x4 +O(x5) .

Remark: This example shows that taking successive derivatives of products or quotients
is rather tedious, because each application of the product rule generates additional terms.
If the series expansions of the involved factors are known, it is simpler to use these, as
shown in Method 1.

(b) Method 1: Use the substitution x = 1 + y and use the known series expansion of the

logarithm, ln (1 + y) = −∑∞k=0
(−y)k+1

k+1
, as well as the sine function [see (a)]:

g(x) = sin (ln (x)) = sin (ln (1 + y)) = sin
(
−
(
−y + 1

2
y2 +O(y3)

))
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= y − 1
2
y2 +O(y3)

y=x−1
= (x− 1)− 1

2
(x− 1)2 +O

(
(x− 1)3)

)
.

Method 2: Determine the Taylor coefficients via successive derivatives:

g(x) = sin(ln(x)), ⇒ g(1) = sin(ln(1)) = 0 .

g(1)(x) = cos(ln(x))
1

x
, ⇒ g(1)(1) = cos(0) = 1 .

g(2)(x) = − sin(ln(x))
1

x2
− cos(ln(x))

1

x2
, ⇒ g(2)(1) = −1 .

⇒ g(x) = g(1) + g(1)(1)(x− 1) + 1
2!
g(2)(1)(x− 1)2 +O

(
(x− 1)3

)

= (x− 1)− 1
2
(x− 1)2 +O

(
(x− 1)3

)
.

(c) Method 1: Use the Taylor expansions for the exponential and cosine functions:

h(x) = ecosx = e[1− 1
2
x2+O(x4)] = e1e−[ 1

2
x2+O(x4)] = e

[
1− 1

2
x2 +O(x4)

]
.

Factoring out an e1 before Taylor expanding is necessary in order to be able to use the
well-known series expansion of the exponential function in a form (namely e−

1
2
x2

) in which
its argument vanishes in the limit x→ 0, so that the series can be truncated after a few
terms. If instead e1− 1

2
x2

is expanded in powers of its full argument, (1− 1
2
x2), the complete

Taylor series with infinitely many terms is needed to recover the correct result for x→ 0,
namely e1:

e1− 1
2
x2

=
∞∑

l=0

1

l!
(1− 1

2
x2)l

x=0−→ =
∞∑

l=0

1

l!
= e1 .

To recover the second term in the Taylor expansion of h(x) in this way, namely −1
2
x2,

the binomial theorem has to be used: (1 + y)l =
∑l

k=0
l!yk

k!(l−k)!
:

e1− 1
2
x2

=
∞∑

l=0

1

l!
(1− 1

2
x2)l =

∞∑

l=0

1

l!

l∑

k=0

l!(−1
2
x2)k

k!(l − k)!
=
∞∑

l=0

1

l!

[
1 + l(−1

2
x2) +O(x4)

]

=
∞∑

l=0

1

l!
+
∞∑

l=1

1

(l − 1)!
(−1

2
x2) +O(x4) = e1 − e1 1

2
x2 +O(x4) .X

Clearly this approach is much more tedious than directly expanding e−
1
2
x2

!

Method 2: Determine the Taylor coefficients via successive derivatives:

h(x) = ecosx, ⇒ h(0) = e1 .

h(1)(x) = − sinx ecosx, ⇒ h(1)(0) = 0 .

h(2)(x) = − cosx ecosx + (− sinx)2 ecosx, ⇒ h(2)(0) = −e1 .

⇒ h(x) = h(0) + h(1)(0)x+ 1
2
h(2)(0) x2 +O

(
x3
)

= e− e1
2
x2 +O(x3) .
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The question whether or not to factor out an e1, discussed above for Method 1, does not
arise at all for Method 2. The strategy of iteratively taking derivatives and setting x = 0
automatically finds the right answer. In this sense Method 2 is in general easier to apply,
since no subtleties need to be considered.

S.C5.4 Solving equations by Taylor expansion

EC5.4.1 Series expansion for iteratively solving an equation

(a) Equation to be solved: y2 − 1 = 2εy . (1)

Wanted: the Taylor series y(ε) = y0 + y1ε+ 1
2!
y2ε

2 +O(ε3), with yn ≡ y(n)(0) . (2)

Method 1: Determine the Taylor coefficients via successive derivatives:

(1): y2 − 1 = 2εy
ε=0⇒ y2

0 − 1 = 0 ⇒ y0 = y(0) = ±1 . (3)

dε(3): 2yy′ = 2εy′ + 2y
ε=0⇒ 2y0y1 = 2y0 ⇒ y1 = y′(0) = 1 . (4)

dε(4): 2yy′′ + 2y′2 = 2εy′′ + 4y′
ε=0⇒ 2y0y2 + 2y2

1 = 4y1 ⇒ y2 = y′′(0) = ±1 .

This gives two solutions, corresponding to the sign chosen for y0:

y±(ε)
(2)
= ±1 + ε± 1

2
ε2 +O(ε3) . (5)

Method 2: Insert (2) in equation (1) and keep all terms up to order ε2:

(
y0 + εy1 + 1

2
y2ε

2 +O(ε3)
)2 − 1 = 2ε

(
y0 + εy1 +O(ε2)

)

y2
0 + 2εy0y1 + ε2y2

1 + ε2y0y2 − 1 +O(ε3) = 2εy0 + 2ε2y1 +O(ε3)

Matching the coefficients on the left and right hand sides gives, for ε0: y2
0−1 = 0, hence

y0 = ±1 ; for ε1: 2y0y1 = 2y0, hence y1 = 1 ; for ε2: y2
1 + y0y2 = 2y1, hence y2 = ±1 .

Thus we have reproduced the result (5) obtained from method 1. X

(b) Exact solution of the quadratic equation: y± = 1
2

(
2ε±

√
4ε2 + 4

)
= ε±

√
ε2 + 1 .

Is the Taylor series of the exact solution consistent with the answer from (a)?

Check: y±(ε) = ε±
√

1 +
2ε

2
√
ε2 + 1

∣∣∣∣
ε=0

ε+

(
1√
ε2 + 1

− 2ε2

(ε2 + 1)
3
2

)∣∣∣∣∣
ε=0

ε2

2
+O

(
ε3
)

= ε± 1± 1
2
ε2 +O

(
ε3
)
.X
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EC5.4.3 Taylor series for inverse function

(a) ln(x) is the inverse of ex. We are looking for the series expansion of y(x) ≡ ln(1 + x) in
powers of x. This function fulfills the defining equation:

ey(x) = 1 + x . (1)

Wanted: the Taylor seriesy(x) = y0 + y1x+ 1
2!
y2x

2 +O(x3), with yn ≡ y(n)(0). (2)

Method 1: Determine the coefficients by iteratively computing derivatives:

(1): ey(x) = 1 + x
x=0⇒ ey0 = 1 ⇒ y0 = y(0) = 0 . (3)

dx(3): y′ey = 1
x=0⇒ y1ey0 = 1 ⇒ y1 = y′(0) = 1 . (4)

dx(4):
[
(y′)2 + y′′

]
ey(0) = 0

x=0⇒
[
12 + y2

]
e0 = 0 ⇒ y2 = y′′(0) = −1 .

Solution: ln(1 + x) ≡ y(x)
(2)
= x− 1

2
x2 +O(x3) . (5)

Method 2: Insert the ansatz (2) into equation (1) and expand up to order O(x2), using
ez = 1 + z + 1

2!
z2 +O(z3):

ey0+y1x+ 1
2
y2x2+O(x3) = 1 + x ,

ey0
[
1 +

(
y1x+ 1

2
y2x

2
)

+ 1
2!

(y1x)2 +O(x3)
]

= 1 + x .

Comparing coefficients on the left and right hand sides gives, for x0: ey0 = 1, hence
y0 = 0 ; for x1: ey0y1 = 1, hence y1 = 1 ; for x2: ey0 1

2
(y2 + y2

1) = 0, hence y2 = −1 .
Thus we have reproduced the result (5) from method 1. X

(b) ln(x)
ln(2)

is the inverse of 2x. We are looking for the series expansion of y(x) ≡ 2x in powers
of x. This function fufills the defining equation:

ln(y(x))

ln(2)
= x . (6)

Wanted: the Taylor series y(x) = y0 + y1x+ 1
2!
y2x

2 +O(x3), mit yn ≡ y(n)(0). (7)

Method 1: Determine the coefficients by iteratively computing derivatives:

(6):
ln(y(x))

ln(2)
= x

x=0⇒ ln y0 = 0 ⇒ y0 = y(0) = 1 . (8)

dx(8):
y′

ln(2)y
= 1

x=0⇒ y1

ln(2)y0

= 1 ⇒ y1 = y′(0) = ln(2) . (9)

dx(9):
1

ln(2)

[
y′′

y
− (y′)2

y2

]
= 0

x=0⇒ y2

y0

− (y1)2

y2
0

= 0 ⇒ y2 = y′′(0) = ln2(2) .
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Solution: 2x ≡ y(x)
(6)
= 1 + ln(2)x+ 1

2
ln2(2)x2 +O(x3) . (10)

Method 2: insert the ansatz (7) into equation (6) and keep all terms up to order O(x2),
using ln(1 + z) = z − 1

2
z2 +O(z3):

x ln(2) = ln
(
y0 + y1x+

1

2
y2x

2 +O(x3)
)

= ln(y0) + ln
(
1 +

y1

y0

x+
1

2

y2

y0

x2 +O(x3)
)

= ln(y0) +
(y1

y0

x+
1

2

y2

y0

x2 +O(x3)
)
− 1

2

(y1

y0

x+
1

2

y2

y0

x2 +O(x3)
)2

= ln(y0) +
y1

y0

x+
1

2

y2

y0

x2 − y2
1

y2
0

x2 +O(x3) .

Comparing coefficients on the left and right hand sides gives, for x0: ln(y0) = 0, thus
y0 = 1 ; for x1: y1

y0
= ln(2), thus y1 = ln(2) ; for x2: ey0 1

2y2
0
(y2

1 − y2) = 0, thus

y2 = ln2(2) . We therefore recover the result (10) obtained via Method 1.

S.C5.5 Higher-dimensional Taylor expansion

EC5.5.1 Taylor expansions in two dimensions

(a) Multiplication of the series expansion of the exponential and cosine functions:

g(x, y) = ex cos(x+ 2y)

=
[
1 + x+ 1

2
x2 +O(x3)

] [
1− 1

2
(x+ 2y)2 +O(x3, y3, x2y, xy2)

]

=
[
1 + x+ 1

2
x2 +O(x3)

] [
1− 1

2
x2 − 2y2 − 2xy +O(x3, y3, x2y, xy2)

]

= 1− 1
2
x2 − 2y2 − 2xy + x+

1

2
x2 +O(x3, y3, x2y, xy2)

= 1 + x− 2y2 − 2xy +O(x3, y3, x2y, xy2) .

(b) The Taylor series of a function of two variables (including up to second order) reads:

g(x, y) =
[
1 + (x∂x̃ + y∂ỹ) + 1

2
(x∂x̃ + y∂ỹ)(x∂x̃ + y∂ỹ)

]
g(x̃, ỹ)

∣∣∣
x̃=ỹ=0

+O(x3, y3, x2y, xy2)

=
[
1 + x∂x + y∂y + 1

2
x2∂2

x + 1
2
y2∂2

y + xy∂x∂y

]
g(0, 0) +O(x3, y3, x2y, xy2) .

Notation: ∂ig(0, 0) ≡ ∂ig(x, y)|x=y=0, i.e. take the derivative first, then set x = y = 0.

g(x, y) = ex cos(x+ 2y) , ⇒ g(0, 0) = 1 .
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∂xg(x, y) = ex cos(x+ 2y)− ex sin(x+ 2y) , ⇒ ∂xg(0, 0) = 1 .

= g(x, y)− ex sin(x+ 2y) ,

∂2
xg(x, y) = ∂xg(x, y)− ex sin(x+ 2y)− ex cos(x+ 2y)

= −2ex sin(x+ 2y) , ⇒ ∂2
xg(0, 0) = 0 .

∂yg(x, y) = −2ex sin(x+ 2y) , ⇒ ∂yg(0, 0) = 0 .

∂2
yg(x, y) = −4ex cos(x+ 2y) , ⇒ ∂2

yg(0, 0) = −4 .

∂x∂yg(x, y) = −2ex sin(x+ 2y)− 2ex cos(x+ 2y) ⇒ ∂x∂yg(0, 0) = −2 .

∂y∂xg(x, y) = ∂x∂yg(x, y) ⇒ ∂y∂xg(0, 0) = −2 .

⇒ g(x, y) = 1 + x− 2y2 − 2xy +O(x3, y3, x2y, xy2) .

EC5.5.3 Lagrange multipliers

Wanted: the extremum of the function j(r) = x2 + y2 + z2, with constraints g1(r) = x+ y+
z − 1 = 0 and g2(r) = x − y + 2z − 2 = 0. We insert the Lagrange multipliers λ1 and λ2,
and search for the extremum of the auxiliary function J :

J(r;λ1, λ2) = j(r)− λ1g1(r)− λ2g2(r)

= x2 + y2 + z2 − λ1x− λ1y − λ1z + λ1 − λ2x+ λ2y − 2λ2z + 2λ2 .

The conditions for obtaining an extremum, ∂λ1J = 0, ∂λ2J = 0 and ∇J = 0, yield:

[1] : x+ y + z − 1 = 0 , [2] : x− y + 2z − 2 = 0 ,

[1̃] :

[2̃] :

[3̃] :

∂xJ = 2x− λ1 − λ2 = 0 ,

∂yJ = 2y − λ1 + λ2 = 0 ,

∂yJ = 2z − λ1 − 2λ2 = 0 .

We now use Gaussian elimination to remove λ1 and λ2 from equations [1̃] to [3̃]:

[1̃] :

[2̃] :

[3̃] :

x y z λ1 λ2

2 0 0 −1 −1 | 0

0 2 0 −1 1 | 0

0 0 2 −1 −2 | 0

−→
[1̃′] = 1

2

(
[1̃] + [2̃]

)
:

[2̃′] = 2[2̃] + [3̃] :

[3̃′] = 3[1̃′]− [2̃′] :

x y z λ1 λ2

1 1 0 −1 0 | 0

0 4 2 −3 0 | 0

3 −1 −2 0 0 | 0

[3̃′] implies 3x− y − 2z = 0. We now solve this equation, together with the above equations
[1] and [2], for x, y and z, again using Gaussian elimination:

[1] :

[2] :

[3̃′] :

x y z

1 1 1 | 1

1 −1 2 | 2

3 −1 −2 | 0

−→
[1′] = [1] + [2] :

[2′] = [1]− [2] :

[3′] = 1
7

(
3[1]− [3̃′]− 2[2′]

)
:

x y z

2 0 3 | 3

0 2 −1 | −1

0 0 1 | 5
7

−→

1
2 ([1′]− 3[3′]) :

1
2 ([2′] + [3′]) :

[3′] :

x y z

1 0 0 | 3
7

0 1 0 | − 1
7

0 0 1 | 5
7

Thus the desired extremum occurs at x = 3
7
, y = −1

7
, z = 5

7
.
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S.C6 Fourier calculus

S.C6.1 δ-Function

EC6.1.1 Integrals with δ function

(a) I1(a) =

ˆ ∞
−∞

dx δ(x− π) sin(ax) = sin(aπ) .

(b) I2(a) =

ˆ
R3

d3x δ(x− y) x2 = y2 = a2 + 12 + 22 .

(c) I3(a) =

ˆ a

0

dx
δ(x− π)

a+ cos2(x/2)
=





1
a+cos2(π/2)

= 1
a

for a > π
1
2a

for a = π

0 for a < π

.

The δ peak at x = π lies inside the domain of integration [0, a] if a > π, and outside if
a < π. The case a = π yields half the value of the case a > π. (The latter statement
follows from representing the δ function as a series of ever sharper, symmetric, normalized
peaks: if one does not integrate over the full peak, but only up to its maximum, only half
its weight contributes, hence

´ 0

−∞ dx δ(x) = 1
2

and
´∞

0
dx δ(x) = 1

2
.)

(d) I4(a) =

ˆ 3

0

dx δ(x2 − 6x+ 8)
√

eax =

ˆ 3

0

dx

[
δ(x−4)

2
+
δ(x−2)

2

]√
exa =

√
e2a

2
=

ea

2
.

We use δ(g(x)) =
∑

i
δ(x−xi)
|g′(xi)| , where xi are the zeros of g. For g(x) = x2 − 6x + 8 the

zeros are x1 = 4 and x2 = 2. At these points the absolute value of g′(x) = 2x− 6 takes
the values |g′(x1)| = 2 and |g′(x2)| = 2. Since x1 lies outside the integration domain
[0, 3], only x2 contributes to the integral.

EC6.1.3 Lorentz representation of the Dirac delta function

We have to verify that in the limit ε→ 0, δ[ε](x) possesses the defining properties of the Dirac
delta function, namely:

(i) δ(0) =∞ , (ii) δ(x 6= 0) = 0 , (iii)

ˆ ∞
−∞

dx δ(x) = 1 .
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Lorentz peak: δ[ε](x) = δ[ε](x) =
ε/π

x2 + ε2
.

(i) Height: δ[ε](0) =
1

πε

ε→0−→∞ .X

-10 -5 5 10

1 )x(]ε[θ

ε
x

(ii) Width:
1

2
=
δ[ε](xb)

δ[ε](0)
=

ε2

x2
b + ε2

⇒ xb = ε
ε→0−→ 0 .X

δ[ε](x 6= 0)
ε�x−→ ε/π

x2

[
1 +O(ε2/x2)

] ε→0−→ 0 .X
-10 -5

1

5 10

)x(]ε[εδ
π
1

ε
x

=ε
bx

ε
bx

ε
bx−

(iii) Weight, computed using by substitution:

x = ε tan y = ε
sin y

cos y
,

dx

dy
=

ε

cos2 y
, x2 + ε2 =

ε2

cos2 y
.

- 10 -5 5 10

- 0.2

0.2 )x(]ε[′δ2ε

ε
x

ˆ ∞
−∞

dx δ[ε](x) =

ˆ ∞
−∞

dx
ε/π

x2 + ε2
x=ε tan y

=

ˆ π
2

−π
2

dy
dx

dy

ε/π

ε2/ cos2 y
=

1

π

ˆ π
2

−π
2

dy = 1 .X

Thus δ[ε](x) does possess the defining properties (i)-(iii) of a Dirac δ function. X

(iv) Step: θ[ε](x) =

ˆ x

−∞
dx′δ[ε](x′) =

1

π

ˆ y(x)

−π
2

dy′ =
1

π
y′
∣∣∣
y(x)

−π
2

=
1

π

[
arctan(x/ε) +

π

2

]

= 1
2

[
2
π

arctan(x/ε) + 1
] ε→0−→





1 for x > 0,
1
2

for x = 0,
0 for x < 0 .

(v) Derivative: δ′[ε](x) =
d

dx

ε/π

x2 + ε2
= − 2xε/π

(x2 + ε2)2
.

EC6.1.5 Series representation of the coth function

∑

n∈Z
e−y|n| =

∑

n≥0

e−yn +
∑

n≤0

eyn − 1 = 2
∑

n≥0

e−yn − 1

= 2
∑

n≥0

wn − 1 (with w = e−y < 1, thus this is a geometric series)

= 2
1

1− w − 1 =
1 + w

1− w =
1 + e−y

1− e−y
=

e−y/2(ey/2 + e−y/2)

e−y/2(ey/2 − e−y/2)
=

cosh(y/2)

sinh(y/2)
= coth(y/2) .
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S.C6.2 Fourier series

EC6.2.1 Fourier series of the sawtooth function

Sawtooth function: f (x) = x for −π < x < π, is periodic with period L = 2π. The Fourier
series is defined by: f(x) = 1

L

∑∞
k=−∞ eikxf̃k, with k = 2πn/L = n, for n ∈ Z.

n 6= 0 : f̃n =

ˆ π

−π
dx f(x)e−inx =

ˆ π

−π
dx xe−inx part. int.

= − x
in

e−inx
∣∣∣
π

−π
+

ˆ π

−π
dx

1

in
e−inx

=

[
i

n
xe−inx +

1

n2
e−inx

]π

−π
=

2iπ

n
(−1)n .

n = 0 : f̃0 =

ˆ π

−π
dx xe0 =

ˆ π

−π
dx x = 0 .

Thus the Fourier series has the following form:

f(x) =
1

2π

∞∑

n=−∞
einxf̃n =

∞∑

n=−∞
n6=0

i

n
(−1)n einx .

)x(f

x
0

x2 sin

Remark : Evidently f̃n = −f̃−n (a consequence of the fact that the function f(x) is antisym-
metric). The Fourier series can therefore also be rewritten as a sine series (not asked for here),
by using einx − e−inx = 2 sin(nx):

f (x) =
∞∑

n=1

2

n
(−1)n+1 sin(nx) .

EC6.2.3 Cosine Series

(a) Inserting the Fourier ansatz f(x) = 1
L

∑
k′ e

ik′xf̃k′ into the formula for the Fourier coef-
ficient yields:

ˆ L
2

−L
2

dx e−ikxf(x) =
∑

k′

f̃k′
1

L

ˆ L
2

−L
2

dx ei(k′−k)x

︸ ︷︷ ︸
≡ Ikk′ = δkk′

= f̃k X (1)

The orthonormality of the Fourier modes, Ikk′ = δkk′ , is seen as follows:

Ik=k′ =
1

L

ˆ L
2

−L
2

dx = 1 .

Ik 6=k′ =
1

L

ˆ L
2

−L
2

dx ei(k′−k)x =
ei(k′−k)L

2 − e−i(k′−k)L
2

i (k′ − k)
=

ei(k′−k)L
2

i (k′ − k)

(
1− e−i(k′−k)L

)

︸ ︷︷ ︸
=1−e−i 2π

L (n′−n)L=0

= 0 .
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(b) For an even function, we have f(x) = f(−x). Therefore, we can write f̃k as follows
using the substitution x→ −x for the part of the integral where x ∈ [−L/2, 0]:

f̃k =

ˆ L
2

−L
2

dx e−ikxf(x) =

ˆ L
2

0

dx e−ikxf(x) +

ˆ 0

−L
2

dx e−ikxf(x)

=

ˆ L
2

0

dx
[
e−ikxf(x) + e+ikx f(−x)︸ ︷︷ ︸

= f(x)

]
= 2

ˆ L
2

0

dx cos(kx)f(x) . (2)

Since cos(kx) is an even function in k, we have f̃k = f̃−k. It follows that:

f(x) =
1

L

∑

k

eikxf̃k =
f̃0

L
+

1

L

∑

k>0

(
eikxf̃k + e−ikx f̃−k︸︷︷︸

= f̃k

)
=

1

L
f̃0 +

1

L

∑

k>0

f̃k2 cos(kx)

≡ 1

2
a0 +

∑

k>0

ak cos(kx) , with ak ≡
2

L
f̃k

(2)
=

4

L

ˆ L
2

0

dx cos(kx)f(x) . (3)

(c) Cosine coefficients via (3), where only terms with k ≥ 0 occur:

k = 0 : a0
(3)
=

4

L

ˆ L
2

0

dx cos (0)︸ ︷︷ ︸
=1

f(x) =
4

L

ˆ L
4

0

dx 1 +
4

L

ˆ L
2

L
4

dx (−1) = 0 (4)

k > 0 : ak
(3)
=

4

L

ˆ L
2

0

dx cos (kx)f(x) =
4

L

ˆ L
4

0

dx cos (kx)− 4

L

ˆ L
2

L
4

dx cos (kx)

=
4

Lk

[
2 sin(kL/4)− sin(kL/2)

]
. (5)

In comparison, calculting the Fourier coefficients via (1) is a bit more cumbersome:

k = 0 : f̃0
(1)
=

ˆ L
2

−L
2

dx e0f(x) =

ˆ L
4

−L
4

dx−
ˆ −L

4

−L
2

dx−
ˆ L

2

L
4

dx = 0 [
(4)
= L

2
a0X] (6)

k 6= 0 : f̃k
(1)
=

ˆ L
2

−L
2

dx e−ikxf(x) =

ˆ L
4

−L
4

dx e−ikx −
ˆ −L

4

−L
2

dx e−ikx −
ˆ L

2

L
4

dx e−ikx

=
1

−ik

[(
e−ikL/4 − eikL/4

)
−
(

eikL/4 − eikL/2
)
−
(

e−ikL/2 − e−ikL/4
)]

=
2

k
[2 sin(kL/4)− sin(kL/2)] [

(5)
= L

2
ak X] (7)

Now set 0 6= k = 2πn/L in (5), with n ∈ Z:

ak =
2

L
f̃k

(5)
=

2

πn

[
2 sin(πn/2)− sin(πn)︸ ︷︷ ︸

=0

]
=

{
0 for 0 6= n = 2m

4
π(2m+1)

(−1)m for n = 2m+ 1

}
,
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with m ∈ N0. Therefore the cosine representation (3) of f(x) has the following form:

f(x)
(3)
=

4

π

∑

m≥0

(−1)m

2m+ 1
cos

(
2π(2m+ 1)x

L

)

=
4

π

[
cos

(
2πx

L

)
− 1

3
cos

(
6πx

L

)
+

1

5
cos

(
10πx

L

)
+ . . .

]
� L

2
L
2

�1

1

The sketch shows the function f(x) and the approximation thereof that arises from the
first three terms of the cosine series.

EC6.2.5 Parseval’s identity and convolution

(a) Explicit computation of the integral:

ˆ π

−π
dx f (x) g (x) =

ˆ π

−π
dx x sin (x) =

[
−x cos (x) + sin (x)

]π
−π

= π + π = 2π . (1)

Summation of Fourier coefficients: the saw-tooth function f(x) has period L = 2π, hence
its Fourier series has the form f(x) = 1

L

∑
k eikxf̃k = 1

2π

∑
n einxf̃n, with k = 2πn/L =

n ∈ Z. The same is true for the sine function g(x) = sin(x). Their Fourier coefficients
are known to have the following form:

f̃n =
2πi (−1)n

n
for n 6= 0 , and f̃0 = 0 .

g̃n =
π

i
(δn,1 − δn,−1) , since g (x) = sin (x) =

1

2i

(
eix − e−ix

)
=

1

2π

∑

n

einxg̃n .

Parseval’s identity yields:ˆ π

−π
dx f (x) g (x) =

1

L

∑

n

f̃n g̃n =
1

2π

[
f̃ 1g̃1 + f̃−1g̃−1

]

=
1

2π

[
(−2πi)(−1)+1

(+1)
· π

i
+

(−2πi)(−1)−1

(−1)
· (−π)

i

]
= 2π

X
= (1) .

(b) Special case of Parseval’s identity :

ˆ π

−π
dx |f(x)|2 =

1

2π

∑

n

|f̃n|2.

On the one hand:

ˆ π

−π
dx |f(x)|2 =

ˆ π

−π
dx x2 =

1

3
x3

∣∣∣∣
π

−π
=

2π3

3
. (2)

On the other hand:
1

2π

∞∑

n=−∞
|f̃n|2 =

2

2π

∞∑

n=1

(2π)2

n2
= 4π

∞∑

n=1

1

n2
. (3)

Parseval: (2) = (3)
∞∑

n=1

1

n2
=
π2

6
. (4)
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(c) Direct computation of the convolution integral: Since f and g are periodic, with the
same period, the domain of integration can be chosen to be an arbitrary interval of
length equal to this period. We here choose (−π, π) and thus compute the following
covolution integral:

(f ∗ g)(x) =

ˆ π

−π
dx′ f(x− x′)g(x′) =

ˆ π

−π
dx′ g(x− x′)f(x′) = (g ∗ f)(x) . (5)

The formulas on the right express the fact that the convolution of two functions is
commutative. (That can be seen, e.g., in Fourier space, since the convolution theorem

gives (f̃ ∗ g)k = f̃k g̃k = g̃k f̃k = (g̃ ∗ f)k . Also see Eq. (7) below.) In the present
case it is simplest to use the form on the right (the form on the left is discussed further
below):

(g ∗ f)(x)
(5),right
=

ˆ π

−π
dx′ sin(x−x′)x′ =

[
x′ cos(x−x′) + sin(x−x′)

]π
−π

(6a)

= π cos(x−π) + π cos(x+π) + sin(x−π)− sin(x+π) = −2π cosx , (6b)

since cos (x− π) = cos (x+ π) = − cos (x) and sin (x− π) = sin (x+ π).

Alternative computation via summation of Fourier coefficients:

(f ∗ g)(x) =
1

2π

∞∑

n=−∞
f̃n g̃neinx =

1

2π

∞∑

n=−∞
n6=0

2πi (−1)n

n

(π
i

) [
δn,1 − δn,−1

]
einx

= π

[
(−1)+1

(+1)
e−ix − (−1)−1

(−1)
e−ix

]
= 2π

[
−1

2
eix − 1

2
e−ix

]
= −2π cos (x)

X
= (6b) .

Remark: It is instructive to perform the direct computation of the convolution integral
also using the left expression in Eq. (5). The functions occurring therein are defined as
follows, e.g. for x ∈ (0, π) [an analogous discussion holds for x ∈ (−π, 0)]:

g(x′) = sin(x′) for x′ ∈ (−π, π) ⇒ −π < x′ < π . (I)

f(x− x′) =

{
x− x′
x− x′ − 2π

for

for

x− x′
x− x′

∈ (−π, π)

∈ (π, 3π)

⇒
⇒

x− π
x− 3π

< x′ < x+ π ,

< x′ < x− π .
(II)

(III)

When x′ traverses the domain of integration (−π, π),
g(x′) is described by a single formula, (I), throughout the
entire domain, whereas for f(x − x′) two cases have to
be distinguished: since this function exhibits a disconti-
nuity when its argument x − x′ passes the point π, we
need formula (II) for x − π < x′ < π, but formula (III)
for −π < x′ < x− π. [(III) is the ‘periodic continuation’
of (II), shifted by one period]. Two possible strategies for
dealing with this situation are either (i) to shift the domain
of integration, or (ii) to split it into two.

︸︷︷︸
(II)(III)

︸︷︷︸

(I)
︷︷︸ ︸

′x

′x

x

π− π π3π3−

π−x π+xπ3−x

)′x(g

)′x−x(f



602 S.C6 Fourier calculus

(i) Shifting the domain of integration: To avoid the discontinuity the domain of integration
can be shifted from (−π, π) to (−π + x, π + x) (which is allowed, since the integrand is
periodic). This yields (via the substitution x′′ = x− x′)

(f ∗ g)(x) =

ˆ x+π

x−π
dx′f(x−x′)g(x′)

x′′=x−x′
=

ˆ π

−π
dx′′g(x−x′′)f(x′′) = (g ∗ f)(x) , (7)

thus reproducing Eq. (5)right, which constitutes another proof of the fact that a convo-
lution is commutative. For the current example, (5)right has the advantage compared to
(5)left that not only g but also f are each described by only a single formula throughout
the entire domain of integration, g(x − x′) = sin(x − x′) and f(x′) = x′, so that in
the above calculation from (6a) to (6b) it was not necessary to distinguish two cases
separately.

(ii) Splitting the domain of integration: Alternatively, the discontinuity can be accounted
for by accordingly splitting the domain (−π, π) = (−π, x− π) ∪ [x− π, π) into two:

(f ∗ g)(x)
(5)left=

ˆ π

−π
dx′ f(x−x′)g(x′) =

ˆ x−π

−π
dx′ f(x−x′)g(x′) +

ˆ π

x−π
dx′ f(x−x′)g(x′)

=

ˆ x−π

−π
dx′ (x− x′ − 2π)︸ ︷︷ ︸

(III)

sin(x′)︸ ︷︷ ︸
(I)

+

ˆ π

x−π
dx′ (x− x′)︸ ︷︷ ︸

(II)

sin(x′)︸ ︷︷ ︸
(I)

=

ˆ π

−π
dx′ (x− x′) sin(x′) + (−2π)

ˆ x−π

−π
dx′ sinx′

=
[
−x cosx′ + x′ cosx′ − sinx′

]π
−π

+ 2π
[
cosx′

]x−π
−π

= 0− 2π + 0 + 2π[cos(x− π) + 1] = −2π cosx . (8)

For the current example the computation using strategy (i), shifting the domain of in-
tegration (or equivalently, exploiting the commutativity of convolutions), is simpler than
using strategy (ii), splitting this domain. However, if both functions f and g are defined
via periodic continuation and exhibit discontinuities, strategy (i) is not helpful: then the
domain of integration will contain a discontinuity for both (f ∗ g) and (g ∗ f), so that
splitting the domain of integration is unavoidable.

S.C6.3 Fourier transform

EC6.3.1 Properties of Fourier transformations

(a) Fourier transform of f(x− a):

ˆ ∞
−∞

dx e−ikxf(x− a)
x̄=x−a

=

ˆ ∞
−∞

dx̄ e−ik(x̄+a)f(x̄) = e−ika

ˆ ∞
−∞

dx̄ e−ikx̄f(x̄) = e−ikaf̃k .
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(b) Fourier transform of f(ax):

ˆ ∞
−∞

dx e−ikxf(ax)
x̄=ax
=

ˆ ∞·a
−∞·a

dx̄
1

a
e−i

k
a
x̄f(x̄)

=





1

a

ˆ ∞
−∞

dx̄ e−i k
a
x̄f(x̄) , falls a > 0

1

a

ˆ −∞
∞

dx̄ e−i k
a
x̄f(x̄) = −1

a

ˆ ∞
−∞

dx̄ e−i k
a
x̄f(x̄) , falls a < 0





=
1

|a| f̃k/a

The change of the integration measure under the transformation x̄ = ax can also be
determined by considering the Jacobi determinant:

ˆ
R

dx e−ikxf(ax)
x̄=ax
=

ˆ
R

dx̄
1

|a| e
−i
k
a
x̄f(x̄) =

1

|a| f̃k/a

EC6.3.3 Fourier transformation of a Gauss peak

Normalized Gaussian: g[σ](x) =
1√
2πσ

e−x
2/2σ2

,

ˆ ∞
−∞

dx g[σ](x) = 1 . (1)

Fourier transformation: g̃
[σ]
k =

ˆ ∞
−∞

dx e−ikxg[σ](x) =

ˆ ∞
−∞

dx
1√
2πσ

e−
1

2σ2 (x2+2σ2ikx) .

Completing the square:
(
x2 + 2σ2ikx

)
=
(
x+ σ2ik

)2
+ σ4k2 x̄=x+σ2ik

= x̄2 + σ4k2 .

g̃
[σ]
k

dx=dx̄
=

ˆ ∞
−∞

dx̄
1√
2πσ

e−
x̄2

2σ2 e−
σ4k2

2σ2 = e−σ
2k2/2

ˆ ∞
−∞

dx̄ g[σ](x̄)

︸ ︷︷ ︸
(1)
=1

= e−σ
2k2/2 .

Remark: The Fourier transform of a Gaussian distribution with width σ is a Gaussian of
width 1/σ. This is a good example of Fourier reciprocity; the Fourier transform of a narrow
distribution is a wide distribution and vice-versa.

EC6.3.5 Poisson summation formulas

(a) We multiply the completeness relation with f(y/L) and integrate over x = y/L:

Completeness:
1

L

∑

n∈Z
e−i2πny/L =

∑

m∈Z
δ(y − Lm) =

1

L

∑

m∈Z
δ
(
y
L
−m

)
(1)

ˆ
dxf(x)(1):

∑

n∈Z

ˆ ∞
−∞

dx f(x)e−i2πnx =
∑

m∈Z

ˆ ∞
−∞

dx f(x)δ(x−m) =
∑

m∈Z
f(m) .
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The left integral corresponds to the Fourier transform, f̃(k) =
´∞
−∞ dx f(x)e−ikx, with

k = 2πn. Thus we obtain:

∑

n∈Z
f̃(2πn) =

∑

m∈Z
f(m) . (2)

(b) We set f(x) = e−a|x|, and then calculate the Fourier transform:

f̃(k) =

ˆ ∞
−∞

dx e−ikxf(x) =

ˆ ∞
−∞

dx e−(ikx+a|x|) =
2a

k2 + a2
.

The Poisson summation formula
∑

n f̃(2πn) =
∑

m f(m) then gives:

∑

n∈Z

2a

(2πn2 + a2)
=
∑

m∈Z
e−a|m| = 2

∞∑

m=0

e−am − 1

=
2

1− e−a
− 1 =

1 + e−a

1− e−a
=

ea/2 + e−a/2

ea/2 − e−a/2
= coth (a/2) .

(c) We set f(x) = e−(ax2+bx+c), and then calculate the Fourier transform:

f̃(k) =

ˆ ∞
−∞

dx e−ikxf(x) =

ˆ ∞
−∞

dx e
−a
(
x2+

1
a

(b+ik)x
)
−c

=

ˆ ∞
−∞

dx e
−a
(
x+

b+ik
2a

)2

e
a

(
b+ik
2a

)2

−c
=
√

π
a
e

1
4a(b2+2ibk−k2)−c .

The Poisson summation formula
∑

m f(m) =
∑

n f̃(2πn) then gives:

∑

m∈Z
e−(am2+bm+c) =

√
π

a
e

(
b2

4a
−c
)∑
n∈Z

e−
1
a(π2n2+iπnb) .

S.C6.4 Fourier transform applications

S.C6.5 Case Study: Frequency comb for high-precision measurements

A1: We insert the Fourier series for p(t) into the formula for the Fourier transform of p(t):

p̃(ω) =

ˆ ∞
−∞

dt eiωt p(t) =
1

τ

∑

m

ˆ ∞
−∞

dt eiωte−iωmt

︸ ︷︷ ︸
2πδ(ω−ωm)

p̃m = ωr
∑

m

p̃mδ(ω − ωm) ,
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with ωr = 2π/τ . We now see that p̃(ω) is clearly a periodic frequency comb of δ functions,
whose weights are fixed by the coefficients p̃m of the Fourier series.

A2: We insert f(t) =
´∞
−∞

dω
2π

e−iωtf̃(ω) in p(t) and perform the substitution ω = yωr (and
thus ωτ = 2πy):

p(t) =
∑

n

f(t− nτ) =
∑

n

ˆ ∞
−∞

dω
2π

e−iω(t−nτ)f̃(ω)

ω=yωr
=

∑

n

ˆ ∞
−∞

dy ei2πyn
[
e−iyωrt 1

τ
f̃(yωr)

]

︸ ︷︷ ︸
≡F (y)

=
∑

n

F̃ (2πn)
(Poisson)

=
∑

m

F (m)

Where we have defined the function F (y) = e−iyωrt 1
τ
f̃(yωr), with Fourier transform F̃ (k),

and used the Poisson summation formula. Using ωm = mωr = 2πm/τ , we thus obtain:

p(t) =
∑

m

F (m) =
1

τ

∑

m

e−imωrt f̃(mωr)︸ ︷︷ ︸
≡p̃m

ωm=mωr=
1

τ

∑

m

e−iωmtp̃m with p̃m = f̃(ωm) .

The middle term has the form of a discrete Fourier series, from which we can read off the
discrete Fourier coefficients p̃m of p(t). They are clearly given by p̃m = f̃(ωm), and correspond
to the Fourier transform of f(t) evaluated at the discrete frequencies ωm.

A3: From (a) and (b) we directly obtain the following form for the Fourier transform of p(t):

Fourier spectrum: p̃(ω)
(a)
= ωr

∑

m

p̃mδ(ω − ωm)
(b)
= ωr

∑

m

f̃(ωm)δ(ω − ωm) .

For a series of Gaussian functions, pG(t) =
∑

n fG(t − nτ), the envelope of the frequency

comb, f̃G(ω), also has the form of a Gaussian []:

Envelope: f̃G(ω) =

ˆ ∞
−∞

dt eiωt 1√
2πT 2

e−
t2

2T2 = e−
1
2
T 2ω2

.

A4: The Fourier transform of E(t) = e−iωctp(t) is the same as that of p(t), except shifted by
a factor of ωc:

Ẽ(ω) =

ˆ ∞
−∞

dt eiωtE(t) =

ˆ ∞
−∞

dω′

2π
p̃(ω′)

ˆ ∞
−∞

dt ei(ω−ωc−ω′)t

︸ ︷︷ ︸
2πδ(ω−ωc−ω′)

= p̃(ω − ωc)
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(c)
=

2π

τ

∑

m

f̃(ωm)δ(ω − ωm − ωc) m=n−N
=

2π

τ

∑

n

f̃(ωn−N)δ(ω − ωn − ω0) .

In the last step we use ωc = Nωr +ω0 and a renaming of the summation indices, m = n−N ,
such that ωm + ωc = ωn + ω0. Thus Ẽ(ω) forms an ‘offset-shifted’ frequency comb, whose
peaks relative to the Fourier frequencies ωm are shifted by the offset frequency ω0.

A5: We begin with the definition of the Fourier transform of pγ(t):

Definition: p̃γ(ω) =

ˆ ∞
−∞

dt eiωtpγ(t) =

ˆ ∞
−∞

dt eiωt
∑

n

f(t− nτ)e−|n|τγ

t′ = t− nτ : =
∑

n

e−inτωe−|n|τγ

︸ ︷︷ ︸
≡S[γ,ωr ](ω)

ˆ ∞
−∞

dt′ eiωt′f(t′)

︸ ︷︷ ︸
=f̃(ω)

. (3)

Where the sum

S[γ,ωr](ω) ≡
∑

n∈Z
e−inτωe−|n|τγ

τ=2π/ωr
=

∑

n∈Z
e−i2πnω/ωre−2π|n|γ/ωr (4)

has the same form as a damped sum over Fourier modes,

S[ε,L](x) ≡
∑

k∈ 2π
L
Z

e−ikx−ε|k| =
∑

n∈Z
e−i2πnx/Le−2π|n|ε/L , (5)

which may be summed using a geometric series in the variables e−2π(ε±ix)/L [siehe ]:

S[ε,L](x) =
1− e−4πε/L

1 + e−4πε/L − 2e−2πε/L cos(2πx/L)
' L

∑

m∈Z
δ

[ε]
LP(x−mL) . (6)

The result is a periodic sequence of peaks (shaded grey in sketch) at the positions x ' mL,

each with the form of a Lorentzian function (LF), δ
[ε]
LP(x) = ε/π

x2+ε2
for x, ε � L. Using the

association x 7→ ω, ε 7→ γ and L 7→ ωr we obtain:

S[γ,ωr](ω)
(4,6)
= ωr

∑

m∈Z
δ

[γ]
LP(ω −mωr) (7)

und p̃γ(ω)
(3,7)
= ωr

∑

m∈Z
δ

[γ]
LP(ω − ωm)f̃(ω) .

Thus the spectrum of a series of periodic pulses truncated by |n| . 1/(τγ), corresponds to a
frequency comb with broadened Lorentz functions as teeth, each with width ' γ.
Summary: This problem illuminates the following general relationships: (a) Because a periodic
function p(t) is defined by a discrete Fourier series representation, its Fourier integral repre-
sentation p̃(ω) must then consist of a series of δ functions at the discrete Fourier frequencies
ωm. (b) For a periodic function, which is represented by p(t) =

∑
n f(t−nτ) for some source
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function f(t), the envelope of the frequency comb corresponds to the Fourier transform of
the seed function p̃m = f̃(ωm). (c) Fourier reciprocity also applies in this case: the narrower
the function f(t), the the wider the form of the f̃(ωm). (d) When p(t) is multiplied with a
carrier signal, whose frequency is is not commensurable with that of the comb, then the comb
is shifted by an offset frequency. (e) If the p(t) is only periodic within some bounded time
interval, then the teeth of the frequency comb are broadened.

S.C7 Differential equations

S.C7.3 Linear first-order equations

EC7.3.1 Separation of variables

a) The autonomous differential equation ẋ = x2 can be solved by separation of variables
and subsequent integration.

dx

dt
= x2 ⇒

ˆ x(t)

x(t0)

dx̃

x̃2
=

ˆ t

t0

dt̃ ⇒ − 1

x(t)
+

1

x(t0)
= t− t0 .

Initial condition (i) is x(0) = 1: ⇒ − 1

x(t)
+ 1 = t ⇒ x(t) =

1

1− t ,

where the solution is defined on the interval (−∞, 1).

Initial condition (ii) is x(2) = −1: ⇒ − 1

x(t)
− 1 = t− 2 ⇒ x(t) =

1

1− t ,

where the solution is defined on the interval (∞, 1).

b) Graphical analysis of the equation ẋ = x2:

(i) For all x 6= 0, x2 > 0 and also ẋ > 0, i.e the curve
has a monotonic increase. (ii) For x = 1, we have ẋ = 1,
which fixes the slope at x = 1. For x → ±∞ , we have
ẋ → ∞. This suggests that there is a value for t where the
curve diverges. According to the solution to the differential
equation, this happens at t = 1.

t
1

1

)t(x

EC7.3.3 Separation of variables: barometric formula

With a linear temperature gradient, T (x) = T0 − b(x− x0), separation of variables yields:

dp(x)

dx
= −α p(x)

T (x)
= −α p(x)

T0 + bx0 − bx
⇒

ˆ p

p0

dp̃

p̃
= −α

ˆ x

x0

dx̃
1

T0 + bx0 − bx̃

⇒ ln
p(x)

p0

=
α

b
ln
T0 + bx0 − bx

T0

=
α

b
ln

(
T (x)

T0

)
⇒ p(x)

p0

=

(
T (x)

T0

)α
b

.

This result is the so-called barometric height formula.
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EC7.3.5 Substitution and separation of variables

(a) By inserting the substitution y = ux and y′ = u′x + u into the differential equation
y′ = f(y/x) we obtain a separable equation,

u′x+ u = f(u) ⇒ du

dx
=
f(u)− u

x
,

since on the right-hand side of the boxed equation the u and x dependencies factorize.

(b) The equation xy′ = 2y + x is not directly separable, but it can be made separable by
rearranging and substituting y = ux:

y′ = 2y/x+ 1 = f(y/x)
y=ux
= f(u), with f(u) = 2u+ 1 .

du

dx
=
f(u)− u

x
=

2u+ 1− u
x

=
u+ 1

x
⇒

ˆ u

u0

dũ
1

ũ+ 1
=

ˆ x

x0

dx̃
1

x̃

⇒ ln
u+ 1

u0 + 1
= ln

x

x0

⇒ u+ 1

u0 + 1
=

x

x0

.

Initial condition: y(x0 = 1) = 0 ⇒ u0 = u(x0 = 1) = 0 ⇒ u+ 1 = x.
Solution: u(x) = x− 1 ⇒ y(x) = ux = (x− 1)x . Initial condition: y(1) = 0. X

EC7.3.7 Inhomogeneous linear differential equation: variation of constant

(a) The general solution to the differential equation ẋh(t)+2xh(t) = 0 is: xh(t) = xh(0)e−2t .
(We find this by recognizing the integral, or by separating variables.)

(b) Variation of constants: ansatz: xp(t) = c̃(t)xh(t) = c(t)e−2t .
Insert this in the DE with t0 = 0, c(0) = 0:

t = ẋp(t) + 2xp(t) = [ċ(t)− 2c(t) + 2c(t)] e−2t = ċ(t)e−2t ⇒ ċ(t) = te2t .

⇒ c(t) =

ˆ t

0

dt̃ t̃e2t̃ P.I.
= 1

2
t̃e2t̃
∣∣∣
t

0
−
ˆ t

0

dt̃ 1
2
e2t̃ = 1

2
te2t − 1

4
e2t̃
∣∣∣
t

0
= 1

2
te2t − 1

4
e2t + 1

4
.

⇒ xp(t) = c(t)e−2t = 1
2
t− 1

4
+ 1

4
e−2t .

Initial condition is x(0) = 0 ⇒ xh(0) = 0:

x(t) = xh(t) + xp(t) = xh(0)e−2t + 1
2
t− 1

4
+ 1

4
e−2t, ⇒ x(t) = 1

2
t− 1

4
+ 1

4
e−2t .
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S.C7.4 Systems of first order linear differential equations

EC7.4.1 System of linear differential equations with non-diagonizable matrix

(a) Characteristic polynomial:

0
!

= det(A− λI) = (1
3
)3

∣∣∣∣∣∣

7− 3λ 2 0

0 4− 3λ −1

2 0 4− 3λ

∣∣∣∣∣∣
= (1

3
)3
[
(7− 3λ)(4− 3λ)2 − 4

]

= −λ3 + 5λ2 − 8λ+ 4 = −(λ− 1)(λ− 2)2 .

Therefore there is a simple zero, λ1 = 1 , and a double zero, λ2 = λ3 = 2 .

(b) We begin by finding the eigenvector v1 for λ1:

λ1 = 1 : 0
!

= (A− λ11)v1 =
1

3




4 2 0

0 1 −1

2 0 1


v1, ⇒ v1 =

1

3



−1

2

2


 .

The eigenvector v1 can be written down by inspection. It is nevertheless instructive to
also determine it using Gaussian elimination:

[1] :

[2] :

[3] :

[1] :

[2] :

[3] :

4 2 0 | 0

0 1 −1 | 0

2 0 1 | 0

4 2 0 | 0

0 1 −1 | 0

0 0 0 1| α

−→

↙

−→

[1] :

[2] :

[1]− 2([2] + [3]) :

1
4 [1]− 1

2 ([2] + [3]) :

[2] + [3] :

[3] :

4 2 0 | 0

0 1 −1 | 0

0 0 0 | 0

1 0 0 | − 1
2α

0 1 0 | α

0 0 1 | α

Since (A − λ11) = 0, the rows of the extended matrix are not linearly independent,
hence the second system yields a row that contains only zeros. Thus v1 involves one free
parameter, which we chose as v3

1 = α in the third system. By now taking, for example,
α = 2

3
, we obtain v1 = 1

3
(−1, 2, 2)T .

Next we consider the eigenspace of λ2:

λ2 = 2 : 0
!

= (A− λ21)v2 =
1

3




1 2 0

0 −2 −1

2 0 −2


v2, ⇒ v2 =

1

3




2

−1

2


 .

v2, too, can be written down by inspection. But since λ2 is a two-fold zero, the question
immediately arises whether there exists another eigenvector associated with λ2, linearly
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independent from v2. To clarify this, we solve the above system by Gaussian elimination:

[1] :

[2] :

[3] :

[1] :

[2] :

[3] :

1 2 0 | 0

0 −2 −1 | 0

2 0 −2 | 0

1 2 0 | 0

0 2 1 | 0

0 0 1 | α

−→

↙

−→

[1] :

−[2] :

2([1] + [2])− [3] :

[1]− [2] + [3] :
1

2
([2]− [3]) :

[3] :

1 2 0 | 0

0 2 1 | 0

0 0 0 | 0

1 0 0 | α

0 1 0 | −1

2
α

0 0 1 | α

Since (A− λ21) = 0, the rows of the extended matrix are not linearly independent. But
although λ2 is a two-fold zero of the characteristic polynomial, Gaussian elimination here
yields only one row containing purely zeros, hence v2 involves only one free parameter.
(In the third system we chose it as v3

2 = α, and in the end used α = 2
3

to obtain
v2 = 1

3
(2,−1, 2)T .) Therefore the degenerate eigenvalue λ2 has only one eigenvector,

i.e. the eigenspace of λ2 is only one-dimensional, just as the eigenspace of λ1. Hence the
matrix A is not diagonalizable. (For a diagonalizable matrix a two-fold zero would yield
an extended matrix containing two rows consisting purely of zeros. The solution would
then involve two independent parameters, so that it would be possible to construct two
linearly independent eigenvectors, v2 and v3, both with eigenvalue λ2.)

(c) To determine v3, we use Gaussian elimination to solve the equation (A− λ21)v3 = v2:

[1] :

[2] :

[3] :

[1] :

[2] :

[3] :

1 2 0 | 2

0 −2 −1 | −1

2 0 −2 | 2

1 2 0 | 2

0 2 1 | 1

0 0 1 | α

−→

↙

−→

[1] :

−[2] :

2[1] + 2[2]− [3] :

[1]− 2[2] + [3] :
1

2
([2]− [3]) :

[3] :

1 2 0 | 2

0 2 1 | 1

0 0 0 | 0

1 0 0 | 1 + α

0 1 0 | 1

2
(1− α)

0 0 1 | α

The second system contains a row consisting purely of zeros, thus the solution has a free
parameter; in the third system we choose it as v3

3 = α. Setting, for example, α = −1
3
,

we obtain v3 = 1
3
(2, 2,−1)T . This choice is particularly convenient, since then v1, v2

and v3 form an orthonormal system. It yields the following similarity transformation S:

S = (v1,v2,v3) = 1
3



−1 2 2

2 −1 2

2 2 −1


 = ST = S−1 .

(d) For the coefficient c(0) we obtain:

c(0) = S−1x(0) =
1

3



−1 2 2

2 −1 2

2 2 −1






1

1

1


 =




1

1

1


 .
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Thus the solution of the differential equation is:

x(t) = c1(0)etv1 +
(
c2(0) + tc3(0)

)
e2tv2 + c3(0)e2tv3

=
1

3
et



−1

2

2


+

1

3
(1 + t)e2t




2

−1

2


+

1

3
e2t




2

2

−1


 .

(e) Explicit check:

ẋ(t) =
1

3
et



−1

2

2


+

2

3
(1 + t)e2t




2

−1

2


+

1

3
e2t




2

−1

2


+

2

3
e2t




2

2

−1




=
1

3
et



−1

2

2


+

2

3
(1 + t)e2t




2

−1

2


+ e2t




2

1

0


 .

On the other hand:

Ax(t) =
1

3
et



−1

2

2


+

2

3
(1 + t)e2t




2

−1

2


+

1

9
e2t




7 2 0

0 4 −1

2 0 4






2

2

−1




=
1

3
et



−1

2

2


+

2

3
(1 + t)e2t




2

−1

2


+ e2t




2

1

0


 X

= ẋ(t) .

S.C7.5 General nth order linear differential equation

EC7.5.1 Inhomogeneous linear differential equation of order 2: driven overdamped harmonic
oscillator

(a) Simplification of matrix equation:

ẍ+ 2γẋ+ Ω2x = fA(t), x(0) = 0, ẋ(0) = 1 , (1)

can be written as a first order matrix DE, using x ≡ (x, ẋ)T = (x1, x2)T and ẍ = ẋ2.

New variables: ẋ = ẋ1 = x2, ẍ = ẋ2 = −Ω2x1 − 2γx2 + fA(t) .

Matrix form:

(
ẋ1

ẋ2

)

︸ ︷︷ ︸
ẋ

=

(
0 1
−Ω2 −2γ

)

︸ ︷︷ ︸
A

(
x1

x2

)

︸ ︷︷ ︸
x

+ fA(t)

(
0
1

)

︸ ︷︷ ︸
b(t)

.

Compact notation: ẋ = A · x + b(t) . (2)

Initial values: x0 = x(0) = (x(0), ẋ(0))T = (0, 1)T .
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(b) Homogeneous solution:
We first determine the eigenvalues λj and eigenvectors vj (j = +,−) of A:

0
!

= det(A− λ1|) =

∣∣∣∣
−λ 1
−Ω2 −2γ − λ

∣∣∣∣ = λ (2γ + λ) + Ω2 = λ2 + 2γλ+ Ω2 . (3)

Eigenvalues (for γ > Ω): λ± = −γ ± γr, with γr ≡
√
γ2 − Ω2 real . (4)

Eigenvectors: 0 = (A− λj1)vj =

(
−λj 1
−Ω2 −2γ − λj

)
vj ⇒ vj =

(
1
λj

)
.

This works since −Ω2 · 1 + (−2γ − λj)λj
(3)
= 0 if λj is an eigenvalue.

Since xj(t) = vje
λjt satisfies the homogeneous equation ẋj = A ·xj, the first component

of xj(t), i.e. xj(t) = eλjt, fulfills the DE (1)|fA(t)=0. Check that this is the case:

(d2
t + 2γdt + Ω2)eλjt =

(
γ2
j + 2γλj + Ω2

)
eλjt

(3)
= 0 . X (5)

The most general form of the homogeneous solution is xh(t) =
∑

j c
j
hxj(t). For a given

initial value x0, the coefficient vector ch = (c1
h, c

2
h)T is fixed by xh(0) =

∑
j vjc

j
h = x0,

or in matrix notation, Sch = x0, where the matrix S = {vij} has the eigenvectors vj as
columns, i.e. S = (v1,v2):

S =

(
1 1
λ+ λ1

)
, S−1 =

1

λ− − λ+

(
λ− −1
−λ+ 1

)
(4)
= − 1

2γr

(
λ− −1
−λ+ 1

)
, (6)

ch = S−1x0 ⇒
(
c+

h

c−h

)
= − 1

2γr

(
λ− −1
−λ+ 1

)(
0
1

)
=

1

2γr

(
1
−1

)
⇒ c±h = ± 1

2γr

.

The homogeneous solution of the matrix DE (2)|b(t)=0 is thus

xh(t) =
∑

j

cjhxj(t) =
1

2γr

[
eλ+t

(
1
λ+

)
− eλ−t

(
1
λ−

)]
,

and the homogeneous solution of the initial second order DE, (1)|fA(t)=0, is

xh(t) = x1
h(t) =

1

2γr

[
eλ+t − eλ−t

]
=

e−γt

γr

sinh(γrt) .

Check that xh(t) has the required properties (not really necessary, since all relevant
properties have already been checked above, but nevertheless instructive):

(d2
t + 2γdt + Ω2)xh =

1

2γr

[(
γ2

+ + 2γγ+ + Ω2
)

eγ+t −
(
γ2
− + 2γγ− + Ω2

)
eγ−t

]
(3)
= 0 .X

Initial value: xh(0) = 0, ẋh(0) = 1 .X (7)
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(c) Particular solution: The method of variation of constants looks for a particular solution
of the matrix DE (2) of the form xp(t) =

∑
j c

j
p(t)xj(t), with cjp(t) chosen such that

∑

j

ċjp(t)xj(t) = b(t) . (8)

A solution to (8), with c j(0) = 0 (and therefore xp(0) = 0), is given by

cjp(t) =

ˆ t

0

dt̃ b̃j(t̃) e−λj t̃ , (9)

where the b̃j(t) originate from the decomposition of b(t) =
∑

j vj b̃
j(t) into eigenvectors.

In components, bi(t) = vij b̃
j(t), and in matrix notation, b(t) = Sb̃(t), b̃(t) = S−1b(t):

(
b̃+(t)

b̃−(t)

)
(6)
= − 1

2γr

(
λ− −1
−λ+ 1

)
fA(t)

(
0
1

)
=
fA(t)

2γr

(
1
−1

)
⇒ b̃±(t) = ±fA(t)

2γr

.

For the given driving function, we have fA(t) = fA for t ≥ 0, and therefore we obtain:

c±p (t)
(9)
= ± fA

2γr

ˆ t

0

dt̃ e−λ± t̃ = ± fA

2γrλ±

[
1− e−λ±t

]
.

Check initial value: cjp(0)
X
= 0. Check that (8) holds:

∑

j

ċjp(t)xj(t)
(8)?
=

fA

2γr

[
λ+e−λ+t

λ+

(
1
λ+

)
eλ+t − λ−e−λ−t

λ−

(
1
λ−

)
eλ−t

]
= fA

(
0
1

)
X
= b(t) .

The desired particular solution for t > 0 is therefore given by:

xp(t) =
∑

j

cjp(t)vje
λjt =

fA

2γr

[
eλ+t − 1

λ+

(
1
λ+

)
− eλ−t − 1

λ−

(
1
λ−

)]
,

xp(t) = x1
p(t) =

fA

2γr

[
eλ+t − 1

λ+

− eλ−t − 1

λ−

]
.

Check that xp(t) has the required properties (not really necessary, since all relevant
properties have already been checked above, but nevertheless instructive):

(d2
t + 2γdt + Ω2)xp(t) =

fA

2γr

[
(λ2

++2γλ++Ω2)︸ ︷︷ ︸
(4)
=0

eλ+t

λ+

− (λ2
−+2γλ−+Ω2)︸ ︷︷ ︸

(4)
=0

eλ−t

λ−
− Ω2

( 1

λ+

− 1

λ−

)]

= −Ω2 fA

2γr

[
λ− − λ+

λ−λ+

]
(4)
= Ω2 fA

2γr

2γr

Ω2
= fA .X

Initial value: xp(0) = 0, ẋp(0) = 0 . X (10)
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(d) Qualitative discussion: According to (7) and (10), the solution x(t) = xh(t) + xp(t) of
the inhomogeneous DEQ (1) has the required initial values x(0) = 0 and ẋ(0) = 1. Since
λ± < 0, the long time limit t → ∞ is determined by the constant contribution of xp(t)
alone:

xp(t)
t→∞−→ xp(∞) = − fA

2γr

[
1

λ+

− 1

λ−

]
(4)
=
fA

Ω2
.

For t > 0, the driving force FA = mfA is time-independent. Therefore, it leads to a
constant shift in the equilibrium position from 0 to xp(∞) = fA/Ω

2. For this shift, the
restoring force of the harmonic oscillator, FR = −mΩ2xp(∞), cancels the driving force
exactly, i.e. FA + FR = 0.

Concerning the sketch, for fA < 0: According to the given initial condition, x(t) initially
increases for small times (starting from 0), attains a maximum [at ẋp(t) = 0, where
eλ+t = eλ−t i.e. at t = 1/(2γr)], and thereafter tends to the long time limit from above,
xp(∞) < 0.

5 10 t

- 0.4

- 0.2

0.2

xp

5 10 t

- 0.4

- 0.2

0.2

xh

5 10 t

- 0.4

- 0.2

0.2

xh+ xp

Parameters for the sketch: Ω = 1, γ = 1.5, fA = −0.4.

EC7.5.3 Coupled oscillations of two point masses

(a) Equations of motion:

in Matrix form:

(
ẍ1

ẍ2

)
= −

(
K1+K12

m1
−K12

m1

−K12

m2

K2+K12

m2

)

︸ ︷︷ ︸
≡ A

(
x1

x2

)
, (1)

Compact notation: ẍ = −Ax . (2)

(b) Transformation into an eigenvalue problem:

Ansatz for solution: x(t) = v cos(ωt) . (3)

Differentiating the ansatz twice: ẍ(t) = −ω2v cos(ωt) . (4)

Inserting (3), (4) in (2): −ω2v cos(ωt) = −Av cos(ωt) ,

Eigenvalue equation: Av = ω2v . (5)
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(c) For m1 = m2, K2 = m1Ω2, K1 = 4K2 and K12 = 2K2, we have: A = Ω2
(

6 −2
−2 3

)

1

Ω2
·[Eigenvalue equation (5)]:

1

Ω2
Av

(5)
=
ω2

Ω2
v = λv , with λ ≡ (ω/Ω)2 . (6)

Determination of the eigenvalues λj of the matrix 1
Ω2A:

Characteristic polynomial: 0
!

= det

(
6− λ −2
−2 3− λ

)
= (6− λ)(3− λ)− 4

= λ2 − 9λ+ 14 = (λ− 7)(λ− 2) .

Eigenvalues: λ1 = 2 , λ2 = 7 . (7)

Eigenvectors vj: (A− λj1) vj = 0 .

λ1 = 2 :

(
4 −2
−2 1

)
v1 = 0 ⇒ v1 =

1√
5

(
1
2

)
. (8)

λ2 = 7 :

(
−1 −2
−2 −4

)
v2 = 0 ⇒ v2 =

1√
5

(
2
−1

)
. (9)

Eigenfrequency ωj
(6)
=
√
λjΩ: ω1

(7)
=
√

2Ω , ω2
(7)
=
√

7Ω .

Same-phase eigenmode: x1(t)
(3)
= v1 cos(ω1t)

(8)
=

1√
5

(
1
2

)
cos(
√

2Ωt) .

Out-of-phase eigenmode: x2(t)
(3)
= v2 cos(ω2t)

(9)
=

1√
5

(
2
−1

)
cos(
√

7Ωt) .

(d) For the eigenmode x1(t) (left sketch), both the masses swing in phase, and for x2(t) (right
sketch), both the masses swing out of phase. The latter requires stronger expansion and
compression of the springs and therefore costs the out-of-phase mode more energy and
thus has a higher frequency than the same-phase mode. The schematic sketch below
illustrates the positions of the point masses at time t = 0 and the thick arrow illustrates
their velocities a small time (e.g. half a period) later.

Remark: Both the masses at time t = 0 are displaced by x1
0 and x2

0 respectively, and the
subsequent swinging is a superposition of both the eigenmodes, x(t) =

∑
j c

jxj(t), whose

coefficients cj are fixed by the initial displacement x0 = (x1
0, x

2
0)T , with x0 =

∑
j c

jvj.

1
2x1

1x

)t(1x

t t

2
2x2

1x

t t

)t(2x

0 0 0 0



616 S.C7 Differential equations

EC7.5.5 Green’s function of (dt + a)

(a) We first recall two properties of the δ-function: Firstly, it corresponds to the derivative of
the θ-function dtθ(t) = δ(t). Secondly, for an arbitrary function b(t), it holds that δ(t)b(t) =
δ(t)b(0).
Now we verify the validity of the given ansatz for the Green’s function:

Ansatz: G(t) = θ(t)xh(t). (1)

Let it satisfy the homogeneous solution: D̃(dt)xh(t) = 0 , (2)

with initial condition xh(0) = 1 . (3)

Then we have: dt
[
θ(t)xh(t)

]
=
[
dtθ(t)

]
xh(t) + θ(t)dtxh(t)

= δ(t)xh(t) + θ(t)dtxh(t) ,

= δ(t)xh(0)︸ ︷︷ ︸
(3)
=1

+θ(t)dtxh(t) . (4)

⇒ D(dt)G(t)
(1)
= (dt + a)

[
θ(t)xh(t)

] (4)
= δ(t) + θ(t)dtxh(t) + aθ(t)xh(t)︸ ︷︷ ︸

θ(t) [D(dt)xh(t)]
(2)
= 0

= δ(t). X

(b) The homogeneous equation (dt + a)xh(t) = 0, with initial condition xh(0) = 1, has the
solution xh = e−at. Consequently, the Green’s function is:

G(t)
(1)
= θ(t)e−at . (5)

(c) Fourier integral: G̃(ω) =

ˆ ∞
−∞

dt eiωtG(t)
(5)
=

ˆ ∞
−∞

dt θ(t)e(iω−a)t =

ˆ ∞
0

dt e(iω−a)t

[e(iω−a)∞ = 0, da a > 0.] =
1

iω − a
[
e(iω−a)t

]∞
0

=
1

a− iω
. (6)

(d) Consistency check:

Defining Eqn for G(t): DtG(t) = δ(t) , with D(dt) = dt + a . (7)

Fourier transform: D̃(−iω)G̃(ω) = 1 with D̃(−iω) = −iω + a . (8)

(8) solve for G̃(ω): G̃(ω) =
1

D̃(−iω)
=

1

−iω + a
. [= (6) X] . (9)

Here, completeness is the main logic behind the steps (7) to (8):

Fourier representations of G, δ: G(t) =

ˆ ∞
−∞

dω

2π
e−iωtG̃(ω) , δ(t) =

ˆ ∞
−∞

dω

2π
e−iωt .

(10)
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Inserting (10) in (7) :

ˆ ∞
−∞

dω

2π
[D(dt)] e−iωt

︸ ︷︷ ︸
= D̃(−iω)e−iωt

G̃(ω) =

ˆ ∞
−∞

dω

2π
e−iωt . (11)

gives D̃(−iω)G̃(ω) = 1. [agrees with (8) X] (12)

(e) To solve the DE: D(dt)x(t) = f(t), with f(t) = e2at . (13)

Solution ansatz: x(t) =

ˆ ∞
−∞

dt̃ G
(
t− t̃

)
f(t̃)

t′=t−t̃
=

ˆ ∞
−∞

dt′G(t′)f(t− t′) .
(14)

This substitution simplifies the argument of G. In the current example, this is recommended
since G here is a more complicated function that f(t).

x(t)
(5),(13)

=

ˆ ∞
−∞

dt′ θ(t′)e−at
′
e2a(t−t′) = e2at

ˆ ∞
0

dt′ e−3at′ =
1

3a
e2at . (15)

The solution may be verified via explicit insertion into the differential equation:

D(dt)x(t)
(15)
= (dt + a)

1

3a
e2at =

1

3a
(2a+ a)e2at = e2at . X (16)

S.C7.6 General first-order differential equation

EC7.6.1 Field lines in two dimensions

Field lines are curves r(t) such that ṙ ‖ F = (−ay, x)T , i.e. ẋ(t) ∼ −ay, ẏ(t) ∼ x.

This yeilds a DE for the field lines:

dy

dx
=
ẏ

ẋ
=

x

−ay ⇒
ˆ y

y0

dỹ(−aỹ) =

ˆ x

x0

dx̃x̃

−a
2

(
y2 − y2

0

)
=

1

2

(
x2 − x2

0

)
⇒ x2 + ay2 = const.

For a > 0, this equation forms an ellipse.
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S.C7.7 nth-order differential equation

S.C7.8 Linearizing differential equations
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EC7.8.1 Fixed points of a differential equation in one dimension

Differential equation: ẋ = fλ (x) = (x2 − λ)
2 − λ2.

(a) Fixed points: fλ (x∗) = 0⇒ (x∗)2 = ±λ+ λ .

(i) For λ ≤ 0 there is a single fixed point: x∗0 =
0 .

(ii) For λ > 0 there are three fixed points:

x∗− = −
√

2λ , x∗0 = 0 , x∗+ =
√

2λ .

(c) The stability of a fixed point is determined by
the sign of ẋ = fλ(x) directly to the left and
right of the fixed point, i.e. at x = x∗∓ ε (with
ε→ 0+):

x

x

0λ >(ii):

+1−1

I

I

IIII III

III

IVIV

(b) )x(1−f

)x(+1f

0
∗x

0
∗x

+
∗x−

∗x

0≤λ(i):

Left of x∗: for ẋ = fλ(x
∗ − ε)

{
> 0, x(t) increases ⇒ flows towards x∗.

< 0, x(t) decreases ⇒ flows away from x∗.

(I)
(II)

Right of x∗: for ẋ = fλ(x
∗ + ε)

{
> 0 x(t), increases ⇒ flows away from x∗.

< 0 x(t), decreases ⇒ flows towards x∗.

(III)
(IV)

Via a graphical analysis (see sketch) we find that:

(i) λ ≤ 0: x∗0 is semistable (see I,III).

(ii) λ > 0: x∗− is stable (see I,IV); x∗0 semistable (see II,IV); x∗+ unstable (see II,III).

EC7.8.3 Stability analysis in two dimensions

(a) Expressed in vector notation, the differential equation reads:

(
ẋ
ẏ

)
=

(
2x2 − xy
c(1− x)

)
⇒ ẋ = f (x) , with x =

(
x
y

)
, f(x) =

(
2x2 − xy
c(1− x)

)

Fixed point: f (x∗) = 0⇒ x∗ = 1, y∗ = 2x∗ = 2, x∗ =
(

1
2

)

(b) Explicit insertion of x = x∗ + η =

(
1 + η1

2 + η2

)
into the DE:

DE: ẋ = η̇ =

(
2 (1 + η1)

2 − (1 + η1) (2 + η2)
c (1− (1 + η1))

)

linear order: =

(
2η1 − η2

−cη1

)
=

(
2 −1
−c 0

)(
η1

η2

)
= Aη .
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(c)

(
∂f i

∂xj

)
=

(
∂f1

∂x
∂f1

∂y
∂f2

∂x
∂f2

∂y

)
=

(
4x− y −x
− c 0

)
⇒

(
∂f i

∂xj

) ∣∣∣∣∣
x=x∗

=

(
2 −1
−c 0

)
= A.X

(d) Determination of the eigenvalues and eigenvectors of A:

Eigenvalues: 0
!

= det(A− λ1) =

∣∣∣∣
2− λ −1
− c −λ

∣∣∣∣ = (2− λ)(−λ)− c = λ2 − 2λ− c

λ± = 1± 1
2

√
4 + 4c = 1±

√
1 + c .

Eigenvectors: 0
!

= (A− λ±1)v± =

(
2− λ± −1
−c −λ±

)
v± ⇒ v± =

(
λ±
−c

)
.

(e) For short times, the time-dependence of a displacement in the v±-direction is given by
η±(t) = η±(0)eλ±t. The fixed point is unstable in the v+-direction, since the eigenvalue
λ+ is strictly positive (we set c > 0). The fixed point is stable in the v−-direction (since
λ− < 0). The characteristic timescale, for which the displacement η±(t) grows or shrinks
respectively, is given by τ± = |λ±|−1.

Check your results: For c = 3, we have λ± = 1± 2 =
{

3
−1

}
, v+ =

(
1
−1

)
, v− =

(
−1
−3

)
.

S.C7.9 Partial differential equations

S.C8 Functional calculus

S.C8.1 Definitions

S.C8.2 Functional derivative

S.C8.3 Euler-Lagrange equations

S.C9 Calculus of complex functions

S.C9.1 Holomorphic functions

EC9.1.1 Cauchy-Riemann equations

(a) ez = ex+iy = exeiy = ex cos y + iex sin y , ⇒ u(x, y) = ex cos y, v(x, y) = ex sin y .

∂xu = ex cos y , ∂yv = ex cos y , ⇒ ∂xu = ∂yv .X

∂yu = −ex sin y , ∂xv = ex sin y , ⇒ ∂yu = −∂xv .X

The Cauchy-Riemann equations are satisfied. This was to be expected, because ez de-
pends on x and y only as a combined variable z = x+ iy.
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(b) z̄2 = (x− iy)2 = (x2 − y2)− i2xy , ⇒ u(x, y) = x2 − y2 , v(x, y) = −2xy .

∂xu = 2x , ∂yv = −2x , ⇒ ∂xu 6= ∂yv .X

∂yu = −2y , ∂xv = −2y , ⇒ ∂yu 6= −∂xv .X

The Cauchy-Riemann equations are not satisfied. This was to be expected, because z̄2

does not depend on x and y as a combined variable z = x + iy, but rather depends on
z̄ = x− iy.

S.C9.2 Complex integration

EC9.2.1 Cauchy’s theorem

Given: the analytic function f(z) = ez, with antiderivative F (z) = ez. A path integral of this
function along a path γ(t), with t ∈ [0, 1], has the form:

Iγ =

ˆ
γ

dz f(z) =

ˆ 1

0

dt
γ(t)

dt
f(γ(t)) =

ˆ γ(1)

γ(0)

dγ F ′(γ) = F (γ(1))− F (γ(0)) .

(a) Parametrization of the circle: γR(t) = R ei2πt, with t ∈ [0, 1].

IγR =

‰
γR

dz f(z) =

ˆ 1

0

dt
dγR
dt

f(γ(t)) =

ˆ 1

0

dt (i2πR ei2πt) eR ei2πt

=
[
eR ei2πt

]1

0
= eR e2πi − eR e0

= eR·1 − eR·1 = 0 . [as expectedX]

R
γ

φR

zRe

zIm

(b) (i) Parametrization of the line: γ1(t) = (1− i)t, with t ∈ [0, 1].

Iγ1 =

ˆ 1

0

dt
dγ1

dt
f(γ(t)) =

ˆ 1

0

dt (1− i)e(1−i)t =
[
e(1−i)t

]1

0
= e1−i − 1 .

i−

1
1
γ

2
γ

1z

0z zRe
zIm

(ii) Parametrization of the curve: γ2(t) = t3 − it, with t ∈ [0, 1].

Iγ2 =

ˆ 1

0

dt
dγ2

dt
f(γ(t)) =

ˆ 1

0

dt (3t2 − i)et
3−it =

[
et

3−it
]1

0
= e1−i − 1 .

As expected, we obtain I1 = I2 = e1−i − 1 = F (z1)− F (z0). X

S.C9.3 Singularities
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EC9.3.1 Laurent series, residues

(a) The Taylor series of p(z) about z0 reads: p(z) =
∑k

n̄=0
p(n̄)(z0)

n̄!
(z − z0)n̄ . Consequently,

the Laurent series of fm(z) about z0 has the following form:

fm(z) =
p(z)

(z − z0)m
=

k∑

n̄=0

p(n̄)(z0)

n̄!
(z − z0)n̄−m

n=n̄−m
=

k−m∑

n=−m

p(n+m)(z0)

(n+m)!
(z − z0)n .

(b) The Laurent series of fm(z) = z3

(z−2)m
about z0 = 2 follows from the Taylor series of

p(z) = z3 about z0. With p(1)(z) = 3z2, p(2)(z) = 6z and p(3)(z) = 6 we obtain:

p(z) =
3∑

n̄=0

p(n̄)(2)

n̄!
(z − 2)n̄ = 23 + 3 · 22(z − 2) + 1

2!
6 · 2(z − 2)2 + 1

3!
6(z − 2)3 .

fm(z) =
p(z)

(z − 2)m
= 8(z − 2)−m + 12(z − 2)1−m + 6(z − 2)2−m + (z − 2)3−m .

(c) The residues of fm(z) at z0 = 2 (pole of order m) read:

Res(fm, 2) = lim
z→2

1

(m−1)!

dm−1

dzm−1

[
(z − 2)mfm(z)

]
= lim

z→z0

1

(m−1)!

dm−1

dzm−1

[
z3
]
.

Res(f1, 2) = lim
z→2

z3 = 8 . Res(f2, 2) = lim
z→2

d

dz
z3 = lim

z→2
3z2 = 12 .

Res(f3, 2) = lim
z→2

1

2!

d2

dz2
z3 = lim

z→2

3!

2!
z = 6 . Res(f4, 2) = lim

z→2

1

3!

d3

dz3
z3 = lim

z→2

3!

3!
= 1 .

Res(fm, 2) = lim
z→2

1

(m− 1)!

dm−1

dzm−1
z3 = 0 for m ≥ 5 .

As expected, the residue Res(fm, 2) corresponds to the coefficient of (z − 2)−1 in the
Laurent series of fm(z) presented in (b). X

S.C9.4 Residue theorem

EC9.4.1 Circular contours, residue theorem

(a) With the parametrization z(φ) = Reiφ and φ ∈ [0,±k2π] for I
(k)
± we obtain:

I
(k)
+ =

‰
|z|=R

dz

z

I
(k)
− =


|z|=R

dz

z





=

ˆ ±k2π

0

dφ
dz(φ)

dφ

1

z(φ)
=

ˆ ±k2π

0

dφ
iReiφ

Reiφ
= ±k2πi .
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Note: This result holds in general: when g(z) has an isolated pole at z0, and the contour
γk circles this pole k times in the mathematically positive (resp. negative) direction, then¸
γk

dz g(z) = ±k2πi Res(g, z0).

(b) The function g(z) has two poles of order 1 at z± = ±i:

g(z) =
eiaz

z2 + 1
=

eiz

(z − i)(z + i)
=

eiz

(z − z+)(z − z−)
.

i

i

−
1I

2I

The corresponding residues are:

Res(g, z±) = lim
z→z±

[
(z − z±)

eiaz

(z − z+)(z − z−)

]
=

eiz±

(z± − z∓)
=

e∓a

±2i
.

For I1 =
�
|z|= 1

2
dz g(z) both poles lie outside the integration contour, ⇒ I1 = 0 .

For I2 =
�

2 times: |z|=2
dz g(z) both poles lie inside the integration contour, hence we get

I2(a) = −2 · 2πi
[
Res(g, z+) + Res(g, z−)

]
= −4πi

e−a − ea

2i
= 4π sinh a .

(c) The poles of f(z) are located at the zeroes of the denominator. The hint then implies
that the denominator contains a factor of (z + ai). Using polynomial division, we can
factorize as follows:

z3 + (ai− 6)z2 + (9− a6i)z + 9ai = (z + ai)(z2 − 6z + 9) = (z + ai)(z − 3)2 .

Consequently f(z) has one pole of order 1 at za = −ai and a pole of order
2 at z3 = 3:

f(z) =
z

z3 + (ai− 6)z2 + (9− a6i)z + 9ai
=

z

(z − za)(z − z3)2
. 3ia−

4

The residues are thus:

Res(f, za) = lim
z→za

[
(z − za) f(z)

]
=

za
(za − z3)2

=
−ai

(−ai− 3)2
.

Res(f, z3) = lim
z→z3

d

dz

[
(z − z3)2g(z)

]
= lim

z→z3

d

dz

z

z − za
=

(z3 − za)− z3

(z3 − za)2
=

ai

(3 + ai)2
.

The integration contour |z| = 4 encloses both poles for a < 4, however only encloses the
pole at z2 = 3 for a > 4. Hence:

I3(a) =

‰
|z|=4

dz f(z) =





2πi
[
Res(f,−ai) + Res(f, 3)

]
= 0 , for a < 4 ,

2πi
[
Res(f, 3)

]
= − 2πa

(3+ai)2 , for a > 4 .
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To see that I3 vanishes in the first case, we notice that: for a < 4, both poles lie inside the
integration contour, and hence the circular contour with radius |z| = 4 may be extended
to a circle with radius R → ∞ without crossing any poles. Because the integrand
vanishes as f(z) ∼ z−2 ∼ R−2 for large arguments, while the integration measure only
grows proportionally to R, the integral vanishes:

I3(a < 4) = lim
R→∞

‰
|z|=R

dz f(z) = lim
R→∞

‰
|z|=R

dz

z
= lim

R→∞

ˆ 2π

0

dφ
iReiφ

(iReiφ)2
= 0 . X

Note: This is an example of the following general fact: If a complex path integral Iγ =¸
γ

dzf(z) encloses all poles of f(z), then it may be extended to a circular path with

radius R → ∞, without crossing any poles. The integral Iγ = limR→∞
¸

dzf(z) will
vanish as long as the integrand has the property lim|z|→∞

[
zf(z)

]
= 0.

Hence it follows that, for such functions, the sum of all the residues is always equal to zero
– a useful consistency check! (Although this does not apply to part (b), because along
the imaginary axis, where z = iy and f(iy) ∝ e−ay, the limit limy→−∞

[
(iy)f(iy)] =∞.)

EC9.4.3 Integrating by closing contour and using residue theorem

We regard the integral (with a, b ∈ r) as a contour integral in the complex plane,

I(a, b) =

ˆ ∞
−∞

dx f(x) = lim
R→∞

ˆ
Γ0

dz f(z) , with f(z) =
1

z2 − 2za+ a2 + b2
,

where Γ0 : {z(x) = x |x ∈ [−R,R]} is a section of the real axis. The integrand has two poles
of first order, at z± = a± i|b| in the upper/lower half plane respectively:

f(z) =
1

(z − a− i|b|)(z − a+ i|b|) =
1

(z − z+)(z − z−)
.

Residues: Res(f, z±) = lim
z→z±

[
(z − z±)f(z)

]
= lim

z→z±

1

(z − z∓)
=

1

z± − z∓
=

1

±2i|b| . (1)

In order to use the residue theorem, we require a closed con-
tour. We therefore insert the path Γ0, a half circle about the
origin with radius R. We can insert this circle in either the
upper or lower half-planes; which we label Γ+ and Γ− respec-
tively. The choice is arbitrary since in both cases

´
Γ±

dz f(z)
vanishes in the limit R→∞. This can be seen as follows:

+Γ

−Γ

0Γ 0Γ

R−
R−

R

R

The parametrization Γ± : {z(φ) = Reiφ|φ ∈ [0,±π]} gives

ˆ
Γ±

dz f(z) =

ˆ ±π
0

dφ
dz(φ)

dφ
f(z(φ))

R→∞−→
ˆ ±π

0

dφ
(
iReiφ

) 1

(Reiφ)2
= 0 .

The two different integrations paths, Γ0 ∪ Γ+ = and Γ0 ∪ Γ− = , both encircle a
single pole, z+ and z− respectively. The different paths are traversed in the mathematically
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positive or negative directions respectively, which contribute a plus or minus sign in the residue
theorem, cancelling the sign from the poles, and thus giving the same result:

I(a, b) = lim
R→∞





ˆ
dz f(z)

ˆ
dz f(z)





= ±2πi Res(f, z±)
(1)
= ±2πi

1

±2i|b| =
π

|b| .

Note: The above strategy of enclosing a contour in the upper/lower half planes is always
possible whenever lim|z|→∞

[
zf(z)

]
= 0. This applies, for example, to any rational function of

the form f(z) = p(z)/q(z), with polynomials p(z) and q(z) of degree np and nq respectively,
whenever np ≤ nq − 2.

EC9.4.5 Various integration paths, residue theorem

(a) The function f(z) has four poles of order 1, at z±2 = ±2i
and at z±a = ±ai:

f(z) =
z2

(z2 + 4)(z2 + a2)

=
z2

(z − z+
2 )(z − z−2 )(z − z+

a )(z − z−a )
.

ia−

ia

2i

2i−
1γ

2γ
3γ

4γ

zRe

zIm

The associated residues read:

Res(f, z±2 ) = lim
z→z±2

[
(z−z±2 )f(z)

]
=

(z±2 )2

(z±2 −z∓2 )((z±2 )2+a2)
=

−4

2(±2i)(a2 − 4)
=
±i

a2−4
.

Res(f, z±a ) = lim
z→z±a

[
(z−z±a )f(z)

]
=

(z±a )2

((z±a )2+4)(z±a −z∓a )
=

−a2

(a2−4)2(±ai)
=

∓ia

2(a2−4)
.

(b) The circular path γ1 does not encircle any poles, and therefore Iγ1 =
´
γ1

dz f(z) = 0 .

γ2 encloses the pole at z+
2 , and γ3 encloses both the poles z+

2 and z+
a . Consequently, we have:

(c) Iγ1 =

ˆ
γ1

dz f(z) = 2πi Res(f, z+
2 ) = − 2π

a2 − 4
.

(d) Iγ3 =

ˆ
γ3

dz f(z) = −2πi
[
Res(f, z+

2 ) + Res(f, z+
2 )
]

=
2π(1− 1

2
a)

a2 − 4
.

(e) The path γ4 along the real axis can be calculated by closing it with a half-circle of radius
→∞ in the upper or lower half planes, since lim|z|→∞

[
zf(z)

]
= 0. We choose the upper

half-plane, because it allows us to use the fact that encloses that same poles as γ3.
Because the direction of travel is reversed, we have Iγ4 = I = −Iγ3 .
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EC9.4.7 Inverse Fourier transform via contour closure

(a) We consider the Fourier integral (with t 6= 0) as a path integral in the complex plane:

G(t) =

ˆ ∞
−∞

dω

2π

e−iωt

a− iω
= lim

R→∞

ˆ
Γ0

dz f(z) , with f(z) =
1

2π

e−izt

a− iz
(0 < a ∈ R) ,

where Γ0 : {z(x) = x |x ∈ [−R,R]} is a section of the real axis. The integrand has a
single pole of first order at z0 = −ia, with residue

Res(f, z0) = lim
z→z0

[
(z − z0)f(z)

]
= lim

z→−ia

[
(z + ia)

2π

e−izt

−i(z + ia)

]
=

e−at

−2πi
. (1)

In order to use the residue theorem, we require a closed con-
tour. To this end, we close the path Γ0 by a semicircle about
the origin of radius R. We choose this semicircle to be in
either the upper or lower half-plane depending on the sign of
t, and we denote the resulting contours as Γ+ and Γ− respec-
tively. This is in order to ensure that the semicircular integral´

Γ±
dz f(z) vanishes as R→∞.

+Γ

−Γ

0Γ 0Γ

R−
R−

R

R

0z 0z

Using the parametrization Γ± : {z(φ) = Reiφ|φ ∈ [0,±π]} gives
ˆ

Γ±

dz f(z) =

ˆ ±π
0

dφ
dz(φ)

dφ
f(z(φ)) =

ˆ ±π
0

dφ
(
iReiφ

) 1

2π

e−itR(cosφ+i sinφ)

a− iz
.

The vanishing of the integrand in the limit R→∞ is determined by the following factor:

etR sinφ R→∞−→
{

0 for t sinφ < 0 ,

∞ for t sinφ > 0 .

To ensure that the semicircular integral vanishes, we require the first case. Thus, for
t < 0 or t > 0 we choose the contour such that sinφ > 0 or < 0 respectively, i.e. Γ+ or
Γ−. The pole of f(z) lies in the lower half plane, and so is not enclosed by the contour

= Γ0∪Γ+ . It is, however, enclosed by the contour = Γ0∪Γ− (which is traversed
in the mathematically negative direction, and so picks up a negative sign in the residue
theorem). Thus we conclude that:

G(t < 0) = I dz f(z) = 0 .

G(t > 0) = I dz f(z) = −2πi Res(f, z0)
(1)
= e−a|t| .

}
⇒ G(t) = θ(t) e−at . X

(b) The procedure here is analogous to (a). The integral has the form L(t) =
´∞
−∞ dz f(z),

with

f(z) =
e−izt

2π
L̃(z) =

a e−izt

π(z2 + a2)
=

a e−izt

π(z − z+)(z − z−)
. +z

−z
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Hence f(z) has two poles of order 1, at z± = ±ia, with residue

Res(f, z±) = lim
z→z±

[
(z − z±)f(z)

]
=

a e−iz±t

π(z± − z∓)
=

a e±at

π(±2ia)
=

e±at

±2πi
. (2)

For t < 0 or t > 0 we close the contour in the upper or lower half-planes respectively:

L(t < 0) = I dz f(z) = 2πi Res(f, z+)
(1)
= e+at

L(t > 0) = I dz f(z) = −2πi Res(f, z−)
(1)
= e−at

}
⇒ L(t) = e−a|t| . X

As expected, the inverse Fourier transform of the Lorentz function has given us back the
exponential function e−a|t|, which was the starting point for our calculations.

S.C9.5 Essential Singularities

S.C9.6 Riemann surfaces



SV Solutions: Vector Calculus

S.V1 Curves

S.V1.2 Curve velocity

EV1.2.1 Velocity and acceleration

(a) Compact notation: C(t) = cos [π (1− cosωt)], S(t) = sin [π((1− cosωt)], with C2 +
S2 = 1.
Derivatives: Ċ = −ωπ sin(ωt)S, Ṡ = ωπ sin(ωt)C.

r(t) =
(
aC, S

)T
, ṙ(t) = ωπ sin(ωt)

(
−aS,C

)T

r̈(t) = ω2π cos(ωt)
(
−aS,C

)T − [ωπ sin(ωt)]2
(
aC, S

)T

= ω cot(ωt)ṙ− [ωπ sin(ωt)]2r

(b) Parameter-free representation: (x/a)2 + y2 = 1 . This traces out
an ellipse. The illustration shows the case for a = 2.

(c) r(t) · ṙ(t) = πω sin (ωt)CS(a2 − 1) ; vanishes when a = 1, which
is the special case of a circle. For a circular trajectory, the velocity
vector is perpendicular to the position vector at every point.

y

x

1

-1

2-2

S.V1.3 Curve length

EV1.3.1 Natural parametrization of a curve

(a)

00

1

2

π 2π x

y

(b) r(t) =
(
t− sin t, 1− cos t

)T
, ṙ(t) =

(
1− cos t, sin t

)T

‖ṙ(t)‖ =
√

(1− cos t)2 + (sin t)2 =
√

1− 2 cos t+ 1 = 2| sin(t/2)|
[
cos 2A = 1− 2 sin2A

]

627
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For t < 2π, sin(t/2) > 0, so the modulus signs may be omitted.

s(t) =

ˆ t

0

du ‖ṙ(u)‖ =

ˆ t

0

du 2 sin (u/2) = −4 cos (u/2)
∣∣∣
t

0
= 4− 4 cos (t/2)

(c) t(s) = 2 arccos (1− s/4) = 2 arccos s̃, with s̃ = 1− s/4 [Inverse function of (b)]

rL(s) =
(
2 arccos s̃− sin [2 arccos s̃] , 1− cos [2 arccos s̃]

)T

=

(
2 arccos s̃− 2 sin(arccos s̃) cos(arccos s̃)

1− cos2(arccos s̃) + sin2(arccos s̃)

)
=

(
2 arccos s̃− 2

√
1− s̃2s̃

1− s̃2 + 1− s̃2

)

S.V1.4 Line integral

EV1.4.1 Line integral: mountain hike

Strategy for the line integral
´
γ

dr ·F =
´
I

dt ṙ(t) ·F(r(t)): find a parametrization r(t) of the

curve, then determine ṙ(t), ·F(r(t)) and ṙ(t) · F(r(t)), then integrate.

Given: r0 ≡ (0, 0)T , r1 ≡ (3, 3a)T , r2 ≡ (2, 4a)T , F(r) = Fg + Fw = (−y2,−10)T .

Hiker 1: Path γ1 is a straight line from r0 to r1 and hence has the form y(x) = ax. A possible
parametrization, with t = x ∈ (0, 3) as curve parameter, is:

γ1 : r(t) = (x(t), y(x))T = (t, at)T

ṙ(t) = (1, a)T ,

F(r(t)) =
(
−y2(t),−10

)T
= (−a2,−10)T[

ṙ(t) · F(r(t))
]
γ1

= −(a2 + 10a)

W [γ1] = −
ˆ
γ1

dr · F =

ˆ 3

0

dt [a2t2 + 10a] =
[

1
3
a2t3 + 10at

]3
0

= 9a2 + 30a .

Hiker 2: Path γ2 is a parabola with apex r2 = (2, 4a)T and has the form y(x) = −k(x −
2)2 + 4a. Inserting r0 = (0, 0)T or r1 = (3, 3a)T yields the curvature, k = a. A possible
parametrization, with t = x ∈ (0, 3) as curve parameter, is:

γ2 : r(t) = (x(t), y(x))T = (t,−a(t− 2)2 + 4a)T

ṙ(t) = (1,−2a(t− 2))T ,

F(r(t)) =
(
−y2(t),−10

)T
= (−[−a(t− 2)2 + 4a]2,−10)T[

ṙ(t) · F(r(t))
]
γ1

= −[−a(t− 2)2 + 4a]2 + 20a(t− 2)

W [γ2] = −
ˆ
γ2

dr · F =

ˆ 3

0

dt
[
[−a(t− 2)2 + 4a]2 − 20a(t− 2)

]
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=

ˆ 3

0

dt
[
a2(t− 2)4 − 8a2(t− 2)2 + 16a2 − 20at+ 40a

]

=
[

1
5
a2(t− 2)5 − 8

3
a2(t− 2)3 − 10at2 + (16a2 + 40a)t

]3

0

=
(

1
5
− 8

3
+ 48 + 32

5
− 64

3

)
a2 + (−90 + 120) a = 153

5
a2 + 30a .

S.V2 Curvilinear Coordinates

S.V2.1 Polar coordinates

EV2.1.1 Coordinate calculations

Cylindrical coordinates: ρ =
√
x2 + y2, φ = arctan(y/x) + nφπ, z = z,

Spherical coordinates: r =
√
x2 + y2 + z2, θ = arccos(z/r), φ = arctan(y/x) + nφπ,

with θ ∈ (0, π), and nφ ∈ Z chosen such that φ ∈ (0, 2π) lies in the correct quadrant.

P1 : (x, y, z) = (3,−2, 4), (ρ, φ, z) = (
√

13, 5.69, 4) , (r, θ, φ) = (
√

29, 0.73, 5.69)

x > 0, y < 0 ⇒ φ lies in the 4th quadrant ⇒ φ ∈ (3π/2, 2π)

φ = arctan(−2/3) + 2π ≈ −0.59 + 6.28 = 5.69 (equals 326◦)

θ = arccos(4/
√

29) ≈ 0.73 (equals 42◦)

P2 : (x, y, z) = (1, 1, 1), (ρ, φ, z) = (
√

2, π/4, 1) , (r, θ, φ) = (
√

3, 0.96, π/4)

x > 0, y > 0 ⇒ φ lies in the 1st quadrant ⇒ φ ∈ (0, π/2)

φ = arctan(1/1) = π/4 (equals 45◦)

θ = arccos(1/
√

3) ≈ 0.96 (equals 55◦)

P3 : (x, y, z) = (−3, 0,−2), (ρ, φ, z) = (3, π,−2) , (r, θ, φ) = (
√

13, 2.16, π)

x < 0, y = 0 ⇒ φ lies on the negative x-axis ⇒ φ = π (equals 180◦)

θ = arccos(−2/
√

13) ≈ 2.16 (equals 124◦)

S.V2.2 Coordinate transformations

S.V2.3 Coordinate basis and local basis

S.V2.4 Cylindrical and spherical coordinates
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EV2.4.1 Cylindrical coordinates: velocity, kinetic energy, angular momentum

In terms of the cylindrical coordinates y1 = ρ, y2 = φ, y3 = z, the Cartesian coordinates
xi = xi(yi) are given by x1 = x = ρ cosφ, x2 = y = ρ sinφ, x3 = z. We also have
exi · exj = δij.

Position vector: r = x ex + y ey + z ez = ρ cosφ ex + ρ sinφ ey + zez = ρ eρ + zez .

(a) Construction of the basis vectors: vyi = ∂r/∂yi, vyi = ‖∂r/∂yi‖ , eyi = vyi/vyi .

vρ = cosφ ex + sinφ ey, vρ = (sin2 φ+ cos2 φ)
1
2 = 1, eρ = cosφ ex + sinφ ey .

vφ = −ρ sinφ ex + ρ cosφ ey, vφ = (ρ2 sin2 φ+ ρ2 cos2 φ)
1
2 = ρ, eφ = − sinφ ex + cosφ ey .

vz = ez, vz = 1, ez = ez .

Normalization is guaranteed by construction: eρ · eρ = eφ · eφ = ez · ez = 1 .

Orthogonality:

eρ · eφ = (cosφ ex + sinφ ey) · (− sinφ ex + cosφ ey) = − cosφ sinφ+ sinφ cosφ = 0 ,

eρ · ez = (cosφ ex + sinφ ey) · ez = 0 , eφ · ez = (− sinφ ex + cosφ ey) · ez = 0 .

Hence: eyi · eyj = δij . X

(b) Cross product: eρ × eρ = eφ × eφ = ez × ez = 0 .

eρ × eφ = (cosφ ex + sinφ ey)× (− sinφ ex + cosφ ey) = cos2 φ ez − sin2 φ(−ez) = ez ,

eφ × ez = (− sinφ ex + cosφ ey)× ez = − sinφ(−ey) + cosφ ex = eρ ,

ez × eρ = ez × (cosφ ex + sinφ ey) = cosφ ey + sinφ(−ex) = eφ .

Hence: eyi × eyj = εijkeyk . X

Remark: In 3 dimensions a set of orthonormal basis vectors “automatically” satisfy the cross
product formula. Above, the explicit calculations show that the cross product is cyclic in it’s
arguments. Alternatively, you can convince yourself of this using a sketch.

(c) v =
d

dt
r(ρ, φ, z) = ρ̇∂ρr + φ̇∂φr + ż∂zr

(a)
= ρ̇ eρ + ρφ̇ eφ + ż ez .

(d) T = 1
2
mv2 = 1

2
m
(
ρ̇ eρ + ρφ̇ eφ + ż ez

)2
= 1

2
m
[
ρ̇2 + ρ2φ̇2 + ż2

]
.

(e) L = m(r× v) = m(ρ eρ + zez)× (ρ̇ eρ + ρφ̇ eφ + ż ez)

= m
[
ρ2φ̇ (eρ × eφ) + zρ̇(ez × eρ) + ρż(eρ × ez) + zρφ̇(ez × eφ)

]

= m
[
− zρφ̇ eρ + (zρ̇− ρż)eφ + ρ2φ̇ ez

]
.
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EV2.4.3 Line integral in polar coordinates: spiral

(a) r = ρ eρ , ∂φr = ∂φρ eρ + ρ eφ , F1(r) = eφ .

W1[γS] =

ˆ 2π

0

dφ (∂φr) · F1 =

ˆ 2π

0

dφ(∂φρ eρ + ρ eφ) · eφ =

ˆ 2π

0

dφ ρ

=

ˆ 2π

0

dφ (R + 1
2π

∆φ) =
[
Rφ+ 1

4π
∆φ2

]2π

0
= 2πR + π∆ .

xR

∆

y

γ

(b) Along the straight path γG we use Cartesian coordinates:

r = xex , ∂xr = ex , F1(r) = ex .

W2[γG] =

ˆ R+∆

R

dx (∂xr) · F2 =

ˆ R+∆

R

dx ex · ex =

ˆ R+∆

R

dx = ∆ .

Along the spiral path γS we use polar coordinates, with F2 = ex = cosφ eρ − sinφ eφ.

W2[γS] =

ˆ 2π

0

dφ (∂φr) · F2 =

ˆ 2π

0

dφ(∂φρ eρ + ρ eφ) · (cosφ eρ − sinφ eφ)

=

ˆ 2π

0

dφ
[

1
2π

∆ cosφ+ (R + 1
2π
φ∆)(− sinφ)

]

= 0 + 0− 1
2π

∆

ˆ 2π

0

dφφ sinφ
part. int.

= − 1
2π

∆(−2π) = ∆ .

Discussion: Since F2 is a gradient field (with F2 = ∇x), the value of a line integral
depends only on the starting point and endpoint of its path. These are the same for γG
and γS, hence W [γG] = W [γS].

EV2.4.5 Line integral in spherical coordinates: satellite in orbit

(a) During the flight, tD = π/ω1, θ varies linearly from 0 to ω1tD = π, and φ
varies from 0 to ω2tD = 10(2π). Therefore the spiral winds itself around
the north-south axis 10 times.

y
z

x

(b) r(t) = r(t) er(t) , with r = r0 , θ(t) = ω1t , φ(t) = ω2t .

ṙ = ṙ er + rθ̇ eθ + rφ̇ sin θ eφ = r0ω1 eθ + r0ω2 sin(ω1t) eφ .

(c) L[γ] =

ˆ π/ω1

0

dt ‖v(t)‖ =

ˆ π/ω1

0

dt r0

√
ω2

1 + ω2
2 sin2(ω1t) .

(d) F = −F0 sin θ eφ , ṙ(t) · F(r(t)) = −F0r0ω2 sin2(ω1t) , since eθ ·eφ = 0 , eφ ·eφ = 1 .

W [γ] =

ˆ
γ

dr · F =

ˆ π/ω1

0

dt ṙ(t) · F(r(t)) = −F0r0ω2

ˆ π/ω1

0

dt sin2(ω1t)

= −F0r0ω2
1

2

[
t− 1

ω1

sin(ω1t) cos(ω1t)
]π/ω1

0
= −F0πr0

ω2

2ω1

.
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S.V2.5 Local coordinate bases and linear algebra

S.V3 Fields

S.V3.1 Scalar fields

EV3.1.1 Gradient of a mountain slope

(a) The gradient and total differential are given by:

∇hr =

(
∂xh
∂yh

)
=




√
x2+y2−x· 2x

2
√
x2+y2

x2+y2

−x· 2y

2
√
x2+y2

x2+y2


 =

y

r3

(
y
−x

)
.

dhr(n) = (∂xh)nx + (∂yh)ny =
y

r3
(ynx − xny) .

(b) The direction of the steepest increase of the slope is
given by the gradient vector ∇hr = (y/r3)(y,−x)T .
It is parallel to the unit vector n̂‖ = ∇hr/‖∇hr‖ =
sign(y)(y,−x)T/r .

0

0.15

0.3

0.45

0.6

0.75

0.9

1.1

1.25

1.4

1.55

1.7

1.85

-2 -1 0 1 2
-2

-1

0

1

2
-2 -1 0 1 2

-2

-1

0

1

2

y

x

(c) The contour lines at the point r are perpendicular to the gradient vector∇hr and therefore
run along the unit vector n̂⊥ = sign(y)(x, y)T/r. (Verify that dhr(n̂⊥) = 0, which
confirms that h does not change along the direction of n̂⊥.)

(d) The arrows with starting points r1 = (−1, 1)T , r2 = (0,
√

2)T and r3 = (1, 1)T depict
the vectors ∇hr1 = 2−3/2(1, 1)T , ∇hr2 = 2−1/2(1, 0)T and ∇hr3 = 2−3/2(1,−1)T ,
respectively.

(e) Yes: For x = y ≥ 0, h(x, x) = 1 + 1/
√

2 is constant. Therefore, this defines a contour
line which is at a height of 1 + 1/

√
2 .

(f) The contour line at a height of h(r) ≡ H is defined by the equation

H ≡ x√
x2 + y2

+ 1.

For a given value of x, we rearrange the equation, then square both sides and solve for y:

(H − 1)2[x2 + y2] = x2

(H − 1)2y2 = x2[1− (H − 1)2] ⇒ y = x

[
1

(H − 1)2
− 1

]1/2

.

Check: The contour at y = x implies that H = 1 + 1/
√

2, and is therefore consistent
with (iv).
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(g) Regions where the slope is completely flat locally are given by the equation ∇hr = 0.
This is satisfied when y = 0 with x 6= 0 . The line {(x, 0)|x < 0} defines the ‘valley’, and
is at a height of h = 0 . The line {(x, 0)|x > 0} defines the ‘ridge’ of the slope and is at
a height of h = 2 .

(h) At the point r = 0 = (0, 0)T , we find an infinitely steep i.e. vertical ‘wall’. This is
evident from the fact that the gradient vector∇hr is not well defined at that point and it
depends on the direction from which r approaches the point 0. For example, on the one
hand limx→0

[∇h(x,0)

]
= (0, 0)T (the valley and the ridges remain flat even for arbitrarily

small |x|), while on the other hand, limy→0

[
∇hT(0,y)

]
= limy→0(1/|y|, 0) = (∞, 0)T (the

gradient in the x-direction along the line x = 0 is greater for smaller values of |y|).
Actually, the ‘vertical’ part of the ‘wall’ is infinitesimally narrow because for all r 6= 0,
∇hr is well defined and finite.

EV3.1.3 Gradient of ln(1/r)

φ(r) = ln
1

r
, r =

√
x2 + y2 + z2

∇φ =



∂x
∂y
∂z


φ = φ′(r)



∂x
∂y
∂z


 r =

1

r
·
(
−1

2

)
1

(x2 + y2 + z2)1/2




2x
2y
2z




= − 1

r2



x
y
z


 = − r̂

r

|∇φ|2 =
1

r4
(x2 + y2 + z2) =

1

r2
⇒ |∇φ| = 1 at r = 1

This describes a spherical surface around the origin with radius 1.

S.V3.2 Gradient fields

EV3.2.1 Scetching a vector field

(a) The direction of the vector field A(r) is always parallel to
ex, independent of r. For a fixed value of y the field has a
fixed value, independent of x, depicted by arrows that all have
the same length and direction. For a fixed value of x, the
length and direction of the arrows change periodically with y,
as cos(y). In particular, A = ex for y = n2π, A = −ex for
y = (n+ 1

2
)2π, and A = 0 for y = (n+ 1

2
)π, with n ∈ Z. -π

0

π

x

y
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(b) The norm of the vector field B(r) is independent of r,
‖B(r)‖ = 1, thus all arrows have the same length. On
the x axis we have B(r) = x

|x|ex = sign(x)ex, thus the

arrows point outward (away from the origin). On the y
axis we have B(r) = −sign(y)ey, thus the arrows point in-
ward (toward the origin). On the diagonal x = y we have
B(r) = sign(x) 1√

2
(1,−1)T , thus for x > 0 (or x < 0) all ar-

rows point with slope−1 towards the bottom right (bzw. or the
top left). Analogously for the other diagonal. Arrow directions
between axes and diagonals follow by interpolation.

-1 0 1

-1

0

1

x

y

In both figures the axes labels refer to the units used for r-arrows from the domain of
the map. The unit of length for arrows from the codomain has not been specified, hence
only their direction and relative length carries any significance, not their absolute length.
Moreover, the size of the arrow heads has been chosen proportional to the arrow length;
this makes it visually clearer how the field strength varies.

EV3.2.3 Potential of a vector field

(a) Along the integration path γ1 = {r(t) = (t, t, t)T | 0 < t < 1}, we have dr
dt

= (1, 1, 1)T

for the velocity vector, and A(r(t)) = (2t2 + t3, t2, 3t3)T for the vector field. Hence:

ˆ
γ1

dr ·A(r) =

ˆ 1

0

dt dr
dt
·A(r(t)) =

ˆ 1

0

dt (3t2 + 4t3) = 2

(b)

A(r) =




Ax(r)
Ay(r)
Az(r)


 =




2xy + z3

x2

3xz2


 ⇒

∂xAy − ∂yAx = −2x+ 2x = 0
∂yAz − ∂zAy = 0− 0 = 0
∂zAx − ∂xAz = −3z2 + 3z2 = 0

Therefore, ∂iAj − ∂jAi = 0 holds. Furthermore, since the domain of A(r), which is R3,
is simply connected, I1 is independent of the path γ1 between 0 and b.

(c) Choose a suitable parametrization, e.g. γr = {r′(t) = tr = (tx, ty, tz) | , 0 < t < 1}.

r′(t) =
(
x′(t), y′(t), z′(t)

)T
= tr = (tx, ty, tz)T , ṙ′(t) = r = (x, y, z)T ,

A(r′(t)) =
(

2x′(t)y′(t) + z′
3
(t), x′

2
(t), 3x′(t)z′

2
(t)
)T

=
(
2(tx)(ty) + (tz)3, (tx)2, 3(tx)(tz)2

)T

ṙ(t)·A(r(t)) = 2x2yt2 + xz3t3 + yx2t2 + 3xz3t3 = 3x2yt2 + 4xz3t3

φ(r) =

ˆ
γr

dr′ ·A(r′) =

ˆ 1

0

dt ṙ(t) ·A(r(t)) =

ˆ 1

0

dt
(

3x2yt2 + 4xz3t3
)

= x2y + xz3



S.V3.2 Gradient fields 635

(d) Consistency check:

∇φ(r) =



∂x
∂y
∂z


 (x2y + xz3) =




2xy + z3

x2

3xz2


 . Evidently ∇φ(r)

X
= A(r) .

(e)

I1 =

ˆ
γ1

dr ·A(r) =

ˆ
γ1

dr · ∇φ(r) = φ(b)− φ(0) = 12 · 1 + 1 · 13 − 0 = 2

This is in agreement with part (a) of the exercise! X

EV3.2.5 Line integral of magnetic field of a current-carrying conductor

(a) All components of the curl of the given field, B = c
x2+y2 (−y, x, 0)T , vanish away from

the z axis (
√
x2 + y2 6= 0):

∂zBx − ∂xBz = 0 , ∂zBy − ∂yBz = 0 .

∂xBy − ∂yBx = c

[
(x2 + y2)− 2x2

(x2 + y2)2
− (−)

(x2 + y2)− 2y2

(x2 + y2)2

]
= 0 .

(b) Along the circular path γK with radius R around the origin, with t ∈ [0, 2π], one finds:

r(t) =
(
x(t), y(t), z(t)

)T
= R(cos(t), sin(t), 0)T , ṙ(t) = R(− sin(t), cos(t), 0)T

B(r(t)) =
c

x(t)2 + y(t)2
(−y(t), x(t), 0)T =

cR

R2
(− sin(t), cos(t), 0)T

ṙ(t)·B(r(t)) = c
[

sin2(t) + cos2(t)
]
= c

W [γK ] =

ˆ
γK

dr · F =

ˆ 2π

0

dt ṙ(t) · F(r(t)) =

ˆ 2π

0

dt c = 2πc .

(c) The line integral has four contributions, corresponding to the four edges of the rectangle:

1

c
W [γR] =

ˆ 2

1

dx
0

x2 + 02
+

ˆ 3

0

dy
2

22 + y2
+

ˆ 1

2

dx
−3

x2 + 32
+

ˆ 0

3

dy
1

12 + y2

ỹ = y
2
, x̃ = x

3= 0 +

ˆ 3
2

0

dỹ
1

1 + ỹ2
+

ˆ 2
3

1
3

dx̃
1

x̃2 + 12
−
ˆ 3

0

dy
1

12 + y2

= [arctan(3
2
)− arctan(0)] + [arctan(2

3
)− arctan(1

3
)]− [arctan(3)− arctan(0)]

= π
2
− π

2
= 0 ,

since arctan(A
B

) + arctan(B
A

) = π
2

holds for arbitrary positive numbers A and B.
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(d) The line integral W [γ] =
¸
γ

dr · B along a closed curve γ ∈ R3 vanishes if, and only

if, there exists a domain Uγ with the following properties: (i) the domain Uγ encloses
the entire curve (γ ⊂ Uγ); the curl of the field B vanishes throughout the domain Uγ
(∇ × B = 0 for all r ∈ Uγ); (iii) the domain Uγ is simply connected. In other words:
the line integral vanishes if, and only if, it is possible to shrink the integration path down
to a point, without leaving the domain on which the curl vanishes.

The curl of the present vector field B vanishes, according to (a), in a domain that is not
simply connected: R3 without the z axis, R3/{(0, 0, z)T |z ∈ R} [or, for fixed z = 0, the
xy plane without the origin, R2/(0, 0)T ]. Therefore the line integral W [γ] along a closed
curve γ vanishes if, and only if, the curve does not encircle the z axis. This is the case
for the rectangular path γR of part (c), but not for the circular path γK of part (b).

The figure shows examples of two domains (shaded), a
rectangle UγR and a ring UγK , that satisfy properties (i)
and (ii): (i) both domains enclose the corresponding inte-
gration paths, γR or γK , respectively, and (ii) the curl of
B vanishes throughout both domains. However, property
(iii) holds only for the first domain: the rectangle UγR is
simply connected, the ring UγK is not.

xe

yeze

Rγ

Kγ
KγU

Rγ
U

Conclusion: ∇×B = 0 is a necessary, but not a sufficient condiction for
¸

dr ·B = 0.
The latter requires ∇×B = 0 to hold on a simply connected domain.

S.V3.3 Sources of vector fields

EV3.3.1 Gauss’ theorem – cube (Cartesian coordinates)

C is a cube with edge length a (see sketch). Let S1 to S6 be its 6 faces
with normal vectors n1,2 = ±ex, n3,4 = ±ey, n5,6 = ±ez. We seek the
flux Φ =

´
∂C

dS · v of the vector field v(r) = (x2, y2, z2)T .

(a) Direct calculation of Φ =
∑6

i=1 Φi, with Φi =
´
Si

dS · v:

Φ1 + Φ2 =

ˆ a

0

dy

ˆ a

0

dz
[
(n1 · v)x=a︸ ︷︷ ︸

a2

+ (n2 · v)x=0︸ ︷︷ ︸
0

]
= a4 .

Analogously: Φ3 + Φ4 = Φ5 + Φ6 = a4. We thus obtain Φ = 3a4 .

x

y

z

a

a

a
3n4n

6n

5n

1n

2n

(b) Alternatively, using Gauss’s theorem: Φ =

ˆ
∂C

dS · v Gauss
=

ˆ
C

dV ∇ · v .

Φ =

ˆ a

0

ˆ a

0

ˆ a

0

dx dy dz∇ · v =

ˆ a

0

ˆ a

0

ˆ a

0

dx dy dz (2x+ 2y + 2z)

=
[
x2
]a

0
·
[
y
]a

0
·
[
z
]a

0
+
[
x
]a

0
·
[
y2
]a

0
·
[
z
]a

0
+
[
x
]a

0
·
[
y
]a

0
·
[
z2
]a

0
= 3a4 . [= (a) X]
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EV3.3.3 Calculating volume of cylinder using Gauss’ theorem

The surface of the cylinder Z consists of a bottom, middle, and top, ∂Z = B ∪M ∪ T . Let
v be a vector field with the property that ∇ · v = 1, then the volume VZ of the cylinder is
determined as follows, by integrating the flux through the surface:

Volume of Z: VZ =

ˆ
Z

dV =

ˆ
Z

dV (∇ · v) =

ˆ
∂Z

dS · v = ΦB + ΦM + ΦT .

In cylindrical coordinates, r = ρeρ+zez, the surface elements of the three sides of the cylinder
are as follows:

Middle: dS = R dφ dz eρ, ρ = R ,

Top: dS = ρ dρ dφ ez, z = h ,

Bottom: dS = −ρ dρ dφ ez, z = 0 .

If we choose v = zez, then ∇ · v = 1, and so dS · v = 0 for the bottom and middle, thus
only the top face contributes:

VZ = ΦD =

ˆ
D

dS · v =

ˆ 2π

0

dφ

ˆ R

0

dρ ρh = πR2h .X

Alternatively, albeit less elegantly, one could also choose for example v = 1
3
r, which also fulfils

the condition ∇ · v = 1. Since r = ρ eρ + z ez, we get:

Middle: ΦM =
1

3

ˆ
M

dS · v =
1

3

ˆ 2π

0

dφ

ˆ h

0

dz R2 =
2

3
πhR2 .

Top: ΦT =
1

3

ˆ
T

dS · v =
1

3

ˆ R

0

ρ dρ

ˆ 2π

0

dφ h =
1

3

1

2
R22πh =

1

3
πhR2 .

Bottom: ΦB =
1

3

ˆ
B

dS · v =
−1

3

ˆ R

0

ρ dρ

ˆ 2π

0

dφ · 0 = 0 .

Combined: VZ = ΦM + ΦD + ΦB =
2

3
πhR2 +

1

3
πhR2 = πR2h .X

EV3.3.5 Flux integral: flux of electric field through cylinder

We choose the symmetry axis of the cylinder to be the z-axis, and use
cylindrical coordinates:

Position vector: r = ρ eρ + z ez , r2 = ρ2 + z2 .

Electric field: E(r) = E0
r

r3
= E0

ρ eρ + zez

(ρ2 + z2)
3
2

.

Rh

h−

z

Q

x

y

Bn̂

Tn̂

Sn̂
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(a) The calculations of the flux through both the top (T ) and the bottom (B) both proceed
in exactly the same way; as such we will show only one calculation (The plus/minus sign
is for the top/bottom faces). The geometry of the problem is especially easy, so we may
simply present the surface integral without any prior calculation:

ΦT/B =

ˆ 2π

0

dφ

ˆ R

0

dρ ρ (n̂T/B · E)z=±h = 2π

ˆ R

0

dρ ρ
E0h

(ρ2 + h2)
3
2

= −
[

2πE0h

(ρ2 + h2)
1
2

]R

0

= 2πEoh

[
1

h
− 1

(R2 + h2)
1
2

]
.

Explanation: The above form of the surface integral results from the following consider-
ations:

For the top/bottom, we have: z = ±h , r(ρ, φ) = ρ eρ ∓ hez .

Tangent vectors: ∂ρr = eρ, ∂φr = ρeφ ⇒ ∂ρr× ∂φr = ρ ez .

The vector ∂ρr × ∂φr is therefore parallel to ez, and hence normal to the top/bottom
surfaces, as expected. We choose the sign of the corresponding normal vector, n̂T or n̂B
respectively, so that it points outwards, hence:

Normal vector: n̂T/B = ± ∂ρr×∂φr
‖∂ρr×∂φr‖

= ±ez , n̂T/B · E
∣∣∣
z=±h

= E0
(±1)(±h)

(ρ2 + (±h)2)
3
2

.

Surface element: dST/B = dS n̂T/B, dS = dρ dφ ‖∂ρr×∂φr‖ = dρ dφ ρ.

As expected, dS = ‖dS‖ = dρ dφ ρ corresponds to the surface element for polar coordi-
nates.

(b) The calculation of the flux through the side (S) proceeds as follows:

ΦS =

ˆ 2π

0

dφR

ˆ h

−h
dz (n̂S · E)ρ=R = 2πR

ˆ h

−h
dz

E0R

(R2 + z2)
3
2

=

[
2πE0z

(R2 + z2)
1
2

]h

−h

=
4πEoh

(R2 + h2)
1
2

.

Explanation: The above form of the surface integral results from the following consider-
ations:

On the side, we have: ρ = R , r(φ, z) = R eρ + zez .

Tangent vectors: ∂φr = Reφ , ∂zr = ez ⇒ ∂φr× ∂zr = R eρ .

The vector ∂φr×∂zr is thus parallel to eρ, and is therefore normal to the side and directed
outwards, as expected. The corresponding normal vector reads:

Normal vector: n̂S =
∂ρr× ∂φr
‖∂φr× ∂zr‖

= eρ , n̂S · E
∣∣∣
ρ=R

= E0
R

(R2 + z2)
3
2

.

Surface element: dSS = dS n̂S, dS = dφ dz ‖∂φr× ∂zr‖ = dφR dz.

As expected, dS is the product of the line element for integration along a circle with
radius R, R dφ, and the line element in the z-direction, dz.
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The integral for Φs may be calculated as follows (with s = z/R):

I =

ˆ
ds

1

(1 + s2)
3
2

[Substitution: s = sinh y, ds = dy cosh y,
√

1 + s2 = cosh y.]

=

ˆ
dy

cosh y

cosh3 y
=

ˆ
dy

1

cosh2 y
= tanh y =

sinh y

cosh y
=

s

(1 + s2)
1
2

.

Check:
d

ds

s

(1 + s2)
1
2

=
1

(1 + s2)
1
2

− s2

(1 + s2)
3
2

=
1 + s2 − s2

(1 + s2)
3
2

=
1

(1 + s2)
3
2

.X

For the total outward flux, ΦS cancels the second term in ΦT + ΦB, with the result:
ΦZ = ΦT + ΦB + ΦS = 4πE0 = 4πQ .

This is an example of Gauss’s law for electrostatics: the flux of an electric field through a
closed surface, which encloses an electric charge Qtot, is always equal to Φ = 4πQtot.

EV3.3.7 Gauss’ theorem – cylinder (cylindrical coordinates)

(a) ∇ · v =
1

ρ

∂

∂ρ

(
zρ2
)

= 2z

(b) The top and bottom faces don’t contribute, since dS ∝ ez ⊥ v .
The flux through the side is given by

ˆ
S

dS · v =

ˆ
Mantel

dS · v =

ˆ 2π

0

dφ

ˆ H

0

dz (Reρ) · (Rzeρ) = πH2R2

(c)
ˆ
VS

dS · v =

ˆ
V

dV∇ · v

=

ˆ 2π

0

dφ

ˆ H

0

dz

ˆ R

0

dρρ (2z) = πH2R2

S.V3.4 Circulation of vector fields

EV3.4.1 Gradient, divergence, curl

f = x2y + y2z , ∇f = (∂xf, ∂yf, ∂zf)T =
(
2xy, x2 + 2yz, y2

)T

v = (xyz, y2, z2)T

∇ · v = ∂xvx + ∂yvy + ∂zvz = yz + 2y + 2z

∇× v = (∂yvz − ∂zvy, ∂zvx − ∂xvz, ∂xvy − ∂yvx)T = (0, xy,−xz)T
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EV3.4.3 Source fields have no curl

∇× (∇ϕ) = ∂i∂jϕ εijkek
(i)
= ∂j∂iϕ εijkek

(ii)
= ∂i∂jϕ εjikek

(iii)
= −∂i∂jϕ εijkek = −∇× (∇ϕ)

(iv)⇒ ∇× (∇ϕ) = 0

Explanation of steps: (i) Follows from Schwarz’s theorem. (ii) Change of summation indices:
i↔ j. (iii) Anti-symmetric property of the Levi-Civita tensor under exchange of indices. (iv)
A = −A⇒ A = 0.

EV3.4.5 Nabla identities

(a)
∇f = e−x

2



−2xz

0

1


 , ∇g =




0

z−1

−yz−2


 ,

∇ ·A = 2xy , ∇×A = −x2ez , ∇ ·B = 0, ∇×B = 0 .

(b) Equations (i) and (ii) are vector equations, which we will consider for a specific component,
say i. In contrast, (iii) is scalar equation.

(i) [∇ (fg)]i = ∂i (fg) = f (∂ig) + g (∂if) = f (∇g)i + g (∇f)i

(ii) [A× (∇×B) + B× (∇×A) + (A ·∇) B + (B ·∇) A]i

= εijkA
j (∇×B)k + εijkB

j (∇×A)k + Aj∂jB
i +Bj∂jA

i

= εijkεklm︸ ︷︷ ︸
=δilδjm−δimδjl

(
Aj∂lB

m +Bj∂lA
m
)

+ Aj∂jB
i +Bj∂jA

i

=Aj∂iB
j − Aj∂jBi +Bj∂iA

j −Bj∂jA
i + Aj∂jB

i +Bj∂jA
i

=Aj∂iB
j +Bj∂iA

j = ∂i
(
AjBj

)
= [∇ (A ·B)]i

(iii) ∇ · (fA) = ∂i
(
fAi

)
= f∂iA

i + Ai∂if = f (∇ ·A) + Ai (∇f)i = f (∇ ·A) + A · (∇f)

(c) Using the results from (a) we obtain:

(i)
∇(fg) =∇(ye−x

2

) = e−x
2



−2xy

1

0




f (∇g) + g (∇f) = ze−x
2




0

z−1

−yz−2


+ yz−1e−x

2



−2xz

0

1


 = e−x

2




0− 2xy

1 + 0

−yz−1 + yz−1




= e−x
2



−2xy

1

0


 =∇(fg) X
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(ii)
∇ (A ·B) =∇ (x2y

)
=




2xy

x2

0




A× (∇×B) + B× (∇×A) + (A · ∇) B + (B ·∇) A

= 0 + ex ×
(
−x2ez

)
+ x2y∂xB + ∂xA = 0 + x2ey + 0 + 2xyex

=




2xy

x2

0


 =∇ (A ·B) X

(iii)
∇ · (fA) =∇ ·



ze−x

2

x2y

0

0


 = yze−x

2 (−2x3 + 2x
)

f (∇ ·A) + A · (∇f) = ze−x
2

(2xy) +



x2y

0

0


 ·



−2xze−x

2

0

0


 = e−x

2 (
2xyz − 2x3yz

)

= yze−x
2 (−2x3 + 2x

)
=∇ · (fA) X

EV3.4.7 Stokes’ theorem – cube (Cartesian coordinates)

C is a cuboid with edge lengths a, b and c (see sketch). Let S1 to S6 be its
6 sides with normal vectors n1,2 = ±ex, n3,4 = ±ey, n5,6 = ±ez. We seek
the flux Φ =

´
∂C

dS · v of the vector field v(r) = (1
2
x2 + x2y, 1

2
x2y2, 0)T .

x

y

z

4n

6n

a

b

c

5n

1n

2n

3n

(a) Direct calculation of Φ =
∑6

i=1 Φi, with Φi =
´
Si

dS · v:

Φ1 + Φ2 =

ˆ b

0

dy

ˆ c

0

dz
[
(n1 · v)x=a︸ ︷︷ ︸
a2( 1

2
+y)

+ (n2 · v)x=0︸ ︷︷ ︸
0

]
= 1

2
a2(b+ b2)c .

Φ3 + Φ4 =

ˆ a

0

dx

ˆ c

0

dz
[
(n3 · v)y=b︸ ︷︷ ︸

1
2
x2b2

+ (n4 · v)y=0︸ ︷︷ ︸
0

]
= 1

6
a3b2c .

Analogously: Φ5 + Φ6 = 0, da n5 · v = n6 · v = 0. Therefore Φ = 1
2
a2bc(1 + b+ 1

3
ab) .

(b) Alternative method, using Gauss’s theorem: Φ =

ˆ
∂C

dS · v Gauss
=

ˆ
C

dV ∇ · v .

Φ =

ˆ a

0

ˆ b

0

ˆ c

0

dx dy dz∇ · v =

ˆ a

0

ˆ a

0

ˆ a

0

dx dy dz (x+ 2xy + x2y)

=
[

1
2
x2
]a

0
·
[
y
]b

0
·
[
z
]c

0
+
[
x2
]a

0
·
[

1
2
y2
]b

0
·
[
z
]c

0
+
[

1
3
x3
]a

0
·
[

1
2
y2
]b

0
·
[
z
]c

0

= 1
2
a2bc(1 + b+ 1

3
ab) . [= (a) X]
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EV3.4.9 Gradient, divergence, curl, Laplace in cylindrical coordinates

(a) Position vector: r = (ρ cosφ, ρ sinφ, z)T .

∂ρr ≡ bρeρ, with bρ = 1 , eρ = (cosφ, sinφ, 0)T .

∂φr ≡ bφeφ, with bφ = ρ , eφ = (− sinφ, cosφ, 0)T .

∂zr ≡ bzez, with bz = 1 , ez = (0, 0, 1)T .

(b) Gradient: ∇f = eρ
1

bρ
∂ρf + eφ

1

bφ
∂φf + ez

1

bz
∂zf = eρ∂ρf + eφ

1

ρ
∂φf + ez∂zf .

(c) Divergence: ∇ ·B =
1

bρbφbz

[
∂ρ (bφbzBρ) + ∂φ (bzbρBφ) + ∂z (bρbφBz)

]

=
1

ρ

[
∂ρ (ρBρ) + ∂φ (Bφ) + ∂z (ρBz)

]

=
1

ρ
∂ρ (ρBρ) +

1

ρ
∂φBφ + ∂zBz .

(d) Curl:

∇×B = eρ
1

bφbz

[
∂φ (bzBz)− ∂z (bφBφ)

]
+ eφ

1

bzbρ

[
∂z (bρBρ)− ∂ρ (bzBz)

]

+ ez
1

bρbφ

[
∂ρ (bφBφ)− ∂φ (bρBρ)

]

= eρ
1

ρ

[
∂φ (Bz)− ∂z (ρBφ)

]
+ eφ

[
∂z (Bρ)− ∂ρ (Bz)

]
+ ez

1

ρ

[
∂ρ (ρBφ)− ∂φ (Bρ)

]

= eρ

[1

ρ
∂φBz − ∂zBφ

]
+ eφ

[
∂zBρ − ∂ρBz

]
+ ez

1

ρ

[
∂ρ (ρBφ)− ∂φBρ

]
.

(e) Laplace: ∇2f =∇ ·∇f
=

1

ρ
∂ρ
(
ρ∂ρf

)
+

1

ρ
∂φ

(1

ρ
∂φf
)

+ ∂z
(
∂zf
)

=
1

ρ
∂ρ
(
ρ∂ρf

)
+

1

ρ2
∂2
φf + ∂2

zf .

(f) Curl-Gradient: D ≡∇f = eu
1

bu
∂uf

︸ ︷︷ ︸
≡ Du

+ ev
1

bv
∂vf

︸ ︷︷ ︸
≡ Dv

+ ew
1

bw
∂wf

︸ ︷︷ ︸
≡ Dw

.

∇×D = eu
1

bvbw

[
∂v (bwDw)− ∂w (bvDv)

]
+ u v

w

u v

w
+ .
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∇× (∇f) = eu
1

bvbw

[
∂v

(
bw

1

bw
∂wf

)
− ∂w

(
bv

1

bv
∂vf
)]

+ u v

w

u v

w
+

= eu
1

bvbw

[
∂v∂w − ∂w∂v

]
f + u v

w

u v

w
+

= 0 [using Schwarz’s theorem] . X

EV3.4.11 Gradient, divergence, curl (spherical coordinates)

(a) Cartesian: r = (x, y, z)T , r =
√
x2 + y2 + z2.

Since both f and v depend on the radius r, it is recommended to calculate the partial
derivatives beforehand: The scalar field f depends only on the radius f(r) = 1/r. Con-
sequently, calculate the partial derivative of f(r(x, y, z)) with respect to xi according to
the chain rule as follows:

∂ir = ∂r/∂xi = xi/r with xi = x, y, z . (1)

∂rf = ∂r(1/r) = −1/r2 . (2)

∂if = (∂rf)(∂ir) = (∂rf)(xi/r)
(1,2)
= −xi/r3 , (3)

∇f =



∂xf
∂yf
∂zf


 (3)

= − 1

r3



x
y
z


 (2)

= − 1

r3
r . (4)

The vector field v = (e−r/a/r)r has the form v = (vx, vy, vz)
T , with vi = R(r)xi, where

R =
e−r/a

r
, with ∂iR = (∂rR)(∂ir) = (∂rR)(xi/r) , (5)

∂rR =

(
− 1

r2
− 1

ar

)
e−r/a =

(
−1

r
− 1

a

)
R . (6)

In the following, we use Einstein summation notation (e.g. xixi = r2).

∇ · v = ∂ivi =
(
∂iR
)
xi +R

(
∂ixi

)

(5)
=
(
∂rR

)
(xi/r)xi︸ ︷︷ ︸

= r2/r = r

+ 3R
(6)
=
[
−1− r

a
+ 3
]
R =

[
2− r

a

] e−r/a

r
.

∇× v = ∂ivjεijkek = ∂i(Rxj)εijkek =
[
(∂iR)xj +R(∂ixj)

]
εijkek

=
[
(∂rR)(xi/r)xj +Rδij

]
εijkek = 0 [using anti-symmetry of εijk] .

∇2f = ∂i[∂if ]
(3)
= ∂i

[
−xi/r3

]
= −

[
(∂ixi)/r

3 + xi∂i(1/r
3)
]

= −
[
3/r3 + xi∂r(1/r

3)(∂ir)
]

= −
[
3/r3 + xi(−3/r4)(xi/r)︸ ︷︷ ︸

−3r2/r5

]
= 0 .



644 S.V3 Fields

(b) Spherical coordinates:

f(r, θ, φ) = 1/r , v(r, θ, φ) = e−r/aer, ⇒ vr = e−r/a, vθ = 0, vφ = 0 .

∇f =

(
er∂r + eθ

1

r
∂θ + eφ

1

r sin θ
∂φ

)
1

r
= − 1

r2
er .

∇ · v =
1

r2
∂r
(
r2vr

)
+

1

r sin θ
∂θ (sin θvθ) +

1

r sin θ
∂φvφ

=
1

r2
∂r
(
r2e−r/a

)
=

1

r2

(
2r − r2

a

)
e−r/a =

(
2− r

a

) e−r/a

r
.

∇× v = er
1

r sin θ
(∂θ (sin θvφ)− ∂φvθ) + eθ

1

r

(
1

sin θ
∂φvr − ∂r (rvφ)

)

+ eφ
1

r
(∂r (rvθ)− ∂θvr) = 0 .

∇2f =
1

r2
∂r
(
r2∂rf

)
+

1

r2 sin θ
∂θ (sin θ∂θf) +

1

r2 sin2 θ
∂2
φf =

1

r2
∂r

(
−r2 1

r2

)
= 0 .

The results calculated in Cartesian and spherical coordinates are in agreement with each
other, but the latter calculate is a bit more elegant since it uses the fact that f and v
depend only on r, and r and er, respectively.

EV3.4.13 Stokes’ theorem – magnetic dipole (spherical coordinates)

(a) Magnetic field: B =
1

c

3rer(mez · rer)−mezr
2

r5

=
m

c

1

r3
(3er(ez · er)− ez)

er·ez=cos(θ)
=

m

cr3
(3 cos(θ)er − ez) .

Surface element: dS = dSer = sin θR2 dφ dθ er .

Flux: Φ =

ˆ
H

dS ·B =
m

cR3

ˆ 2π

0

dφ

ˆ π/2

0

dθ R2 sin(θ)(3 cos(θ)− ez · er)

=
m

cR3
2πR2

ˆ π/2

0

dθ 2 sin(θ) cos(θ)

︸ ︷︷ ︸
sin2(θ)|π/20 =1

=
2πm

cR
.

(b) Stoke’s theorem:
´
H

dS · B =
¸
γ

drA. Hence we must calculate the line integral over

the circle with radius R, r(φ) = Rer with θ = π/2, φ ∈ [0, 2π]:

Vector field in Spherical coordinates : A =
1

c

mez × rer
r3

=
1

c

m

r2
eφ .

Line element : dr(φ) = dφ∂φr = Rdφeφ .

Consequently : dr(φ) ·A = Rdφeφ ·
1

c

m

R2
eφ =

m

cR
dφ .
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Flux: Φ =

˛
γ

dr ·A =
m

cR

ˆ 2π

0

dφ =
2πm

cR
. X

EV3.4.15 Stokes’ theorem – magnetic field of infinite current-carrying wire (cylindrical coordi-
nates)

(a) Cartesian coordinates, with
√
x2 + y2 6= 0:

B =
2I

c

1

x2 + y2

(
− y, x, 0

)T
.

∇ ·B(r) =
∑

i

∂iB
i =

2I

c

(
− 2x(−y)

(x2 + y2)2
− 2yx

(x2 + y2)2

)
= 0 .

∇×B =



∂yB

z − ∂zBy

∂zB
x − ∂xBz

∂xB
y − ∂yBx


 =

2I

c




0
0

1
x2+y2 − 2x2

(x2+y2)2 + 1
x2+y2 − 2y2

(x2+y2)2


 = 0 .

(b) Cylindrical coordinates, with ρ > 0:

B = eφ
2I

c

1

ρ
, ⇒ Bρ = Bz = 0, Bφ =

2I

c

1

ρ
. (1)

∇ ·B =
1

ρ
∂ρ (ρBρ) +

1

ρ
∂φB

φ + ∂zB
z = 0 . (2)

∇×B = eρ

(
1

ρ
∂φB

z − ∂zBφ

)
+ eφ (∂zB

ρ − ∂ρBz) + ez
1

ρ

(
∂ρ
(
ρBφ

)
− ∂φBρ

)
(3)

= ez
2I

c

1

ρ
∂ρ

(
ρ

ρ

)

︸ ︷︷ ︸
=∂ρ1=0

= 0 . (4)

The results of the calculations in Cartesian and cylindrical coordinates agree of course,
however the last calculation is somewhat more elegant, since it exploits the fact that B
depends only on ρ and eφ.

(c) Parametrization of the path: r(φ) = eρR, with φ ∈ [0, 2π], and r(φ)
dφ

= eφR.

‰
γD

dr ·B =

ˆ 2π

0

dφ
r(φ)

dφ︸︷︷︸
=eφR

·B(r) =

ˆ 2π

0

dφRBφ (1)
=

ˆ 2π

0

dφR
2I

cR
= 2π

2I

c
=

4πI

c
. (5)

(d) Using Stokes’s theorem, we see immediately that:
ˆ
D

dS · (∇×B)
Stokes

=

‰
γD

dr ·B (5)
=

4πI

c
. (6)
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(e) On the one hand, it follows from (a) that∇×B = 0 for all spatial points with ρ > 0, i.e.
for all points except those that lie directly on the z-axis. On the other hand, it follows
from (d) that the flux integral of ∇ × B does not vanish over the disk D, but rather
is equal to 4πI/c. This appears paradoxical at first: How can the surface integral of a
vector field yield a finite value if it apparently vanishes everywhere? It would appear that
this is because the calculation in part (a) does not hold for the case ρ = 0. The fact
that the integrand is equal to zero everywhere except for a single value of the integration
variable, and that the integral is finite in total, tells us that we must be dealing with a
δ-function. Therefore, ∇×B must be proportional to a two dimensional δ-function:

∇×B = C ez δ(x)δ(y) . (7)

The direction of ∇ × B is equal to ez from symmetry arguments, since B is in the
eφ-direction, and ez is the sole unit vector that stays parallel to eφ for all angles φ. The
constant C can be determined as follows:

4πI

c

(6)
=

ˆ
D

dS · (∇×B)
(7)
=

ˆ
D

dS ez · C ez δ(x)δ(y) = C

ˆ
D

dS δ(x)δ(y)

︸ ︷︷ ︸
=1

, ⇒ C =
4πI

c
.

(8)

(f) From (7) and (8), it follows that ∇ × B = 4π j(r)/c, with j(r) = ez Iδ(x)δ(y). This
corresponds to Ampere’s law (one of the Maxwell’s equations), where j(r) is the current
density of an infinitesimally thin conductor with current I along z-axis.

EV3.4.17 Gauss’ theorem – electrical dipole potential (spherical coordinates)

(a)

We have: ∂ixi = xi/r with xi = x, y, z .

E = −∇Φ = −



∂xΦ
∂yΦ
∂zΦ


 = − p

4πε0



−3zx

r5

−3zy
r5

−3z2

r5 + 1
r3


 =

p

4πε0

(
3
z

r5
r− 1

r3
ez

)
.

(b) In spherical coordinates, the field takes on the form Φ(r) = p
4πε0

cos θ
r2 .

E = −∇Φ = −
(

er∂r + eθ
1

r
∂θ + eφ

1

r sin θ
∂φ

)
Φ =

p

4πε0

(
2 cos θ

r3
er +

sin θ

r3
eθ

)
.

Since ez = cos θer − sin θeθ, this corresponds to the Cartesian result:

E =
p

4πε0

(
3

cos θ

r3︸ ︷︷ ︸
z/r4

er −
1

r3
(cos θer − sin θeθ)︸ ︷︷ ︸

ez

)
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(c)

∇ · E =
∑

i

∂

∂xi
Ei =

p

4πε0

(
9z

r5
+

3z

r5
− 15

z

r6

(
x2

r
+
y2

r
+
z2

r

)
+

3

r4

z

r

)
= 0

∇× E =
p

4πε0



−15z2y

r7 + 3y
r5 − 3y

r5 + 15z2y
r7

3x
r5 − 15z2x

r7 + 15z2x
r7 − 3x

r5

−15zyx
r7 + +15zxy

r7


 = 0

(d)

∇ · E =
1

r2
∂r
(
r2Er

)
+

1

r sin θ
∂θ (sin θEθ) +

1

r sin θ
∂φEφ

=
p

4πε0

(
1

r2
∂r

(
2 cos θ

r

)
+

1

r sin θ
∂θ

(
sin2 θ

r3

)
=
−2 cos θ

r4
+

2 cos θ

r4

)
= 0

∇× E = er
1

r sin θ
(∂θ (Eφ sin θ)− ∂φEθ) + eθ

1

r

(
1

sin θ
∂φEr − ∂r (Er)

)
+ eφ

1

r
(∂r (rEθ)− ∂θEr)

=
p

4πε0

eφ
1

r



∂r

(
sin θ

r2

)

︸ ︷︷ ︸
−2 sin θ

r3

− ∂θ
(

2 cos θ

r3

)

︸ ︷︷ ︸
−2 sin θ

r3




= 0

(e) The mathematical Gauss’ theorem gives:ˆ
S

dS · E =

ˆ
VS

dV ∇ · E︸ ︷︷ ︸
=0

?
= 0 .

Since ∇ · E = 0 for all r 6= 0, it is an obvious deduction that the integral
´
VS

dV∇ · E
also vanishes. [According to the exercise, it is enough to just deduce this exactly and
therefore is not covered in detail. However, there is still a subtlety which is exactly the
issue which needs to be addressed and we elaborate on that below:] The components of
E, however, diverge at the origin, which raises the question as to whether the volume
integral

´
VS

dV ∇ · E can even have a finite value. . (The latter is for e.g. the case for

the potential of a point charge.) For checking condition, we calculate the flux integral
directly as an integral over the spherical surface S, with area element dS = dSer and
dS = dφdθ sin θR2:ˆ

S

dS · E =

ˆ
S

dS er · E︸ ︷︷ ︸
Er

(r = R) =
3pR2

4πε0R3

ˆ 2π

0

dφ

ˆ π

0

dθ sin θ cos θ

︸ ︷︷ ︸
0

= 0 .

The flux integral indeed yields zero and thus gives the result for the physical Gauss’
theorem as Q/ε =

´
S

dS · E = 0. This again demonstrates the physical fact that the
total charge of an electric dipole is equal to zero.
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δ-function, 259
n-tuple, 35
(Hilbert space) operator, 119

Abbildung, 5
abelian group, 8
Abgeschlossenheit (closure (group

operation)), 7
absence of magnetic charges, 513
absolute value (Absolutwert), 16
acceleration, 390
action functional, 319
addition (of numbers), 11
adjoint matrix (adjungierte Matrix), 68
affine space, 24
algebra, 158
algebra, 71
alternating form, 153
Ampère’s law, 441
Amperère-Maxwell law, 514
analysis, 194
analytic function, 324
angle (Winkel), 40
angle preserving map, 325
angular momentum, 148
angular momentum (Drehimpuls), 60
anti-derivative (Stammfunktion), 207
anti-hermitian matrix, 124
antisymmetric tensor, 11, 57
area element, 232
area two form, 472
area two-form (sphere), 474
argument (argument (of a map)), 5
argument (of complex number

(Argument), 16
Associativity (associativity (group

operation)), 7
asymptotic expansion, 254
atlas of a manifold, 447
autonomous differential equation, 303, 308
axial vector, 56

basis (vector space), 30
bijective (bijective map), 5
Bild, 5
bilinear form, 152
bins (for discretizing integrals), 205
bits (bit), 7
block matrix, 91
bounded subset (beschränkte

Untermenge), 16
branch cut, 339
branch point, 339

calculus, 194
Calculus of complex functions, 322
cardinality, 4
Cartesian coordinates, 396
Cartesian product, 4
Cauchy, 323
Cauchy theorem, 327
Cauchy-Riemann differential equations,

324
Cauchy-Schwarz inequality, 40
chain rule (Kettenregel), 200
change of integration variables, 243
chaos, 310
characteristic polynomial, 99
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chart of a manifold, 447

closure of a set (Abschluss (einer Menge)),
16

co- and contravariant transformation, 147

cofactor (of a matrix element), 90
colinear, 40
column (of a matrix) (Spalte), 65, 66
completeness (vectors), 30
completeness relation, 130

complex conjugate (komplex konjugiert),
15

complex differentiable, 322

complex line integral, 326

complex plane (komplexe Ebene), 15
complex Taylor series, 324

complex vector space, 24
components (of a matrix), 65
composition rule (group), 6
concatenate (vectors) (aneinanderhängen),

19

conformal map, 325

connected set, 425

conservative vector fields, 424

continuity (of one-dimensional functions)
(Kontinuität), 196

contour line, 415

contour plot, 415

contour surface, 422

contraction (of indices), 32
contravariant index, 23
convergence, 204
convergence generating factor, 268

convolution, 277

coordinate basis, 400

cotangent bundle, 460

cotangent space, 460

Coulomb field, 436

countable (set) (abzählbar), 4
countable set, 13
covariant index, 23
covariant notation, 23

covector, 146
cross product (Kreuzprodukt), 54
cuboids (Quader), 227
curl, 436, 499
curl (local basis), 442
current (differential form), 472
current density, 441
current three form, 473
curvature, 490
Curve length, 391
curvilinear coordinates, 398
cyclic invariance (of the trace), 85
cyclic ordering, 57
cylindrical coordinates, 404

dagger (denoting adjoint) (Kreuz), 68
definite integral, 207
Definitionsmenge (domain (of a map)), 5
degeneracy (of eigenvalues), 102
derivative (Ableitung), 196
derivative of inverse function, 200
derivatives of higher order (Ableitungen

höherer Ordnung), 199
determinant (Determinante), 87
diagonal matrix, 97
diffeomorphic map, 399
difference quotient (Differenzquotient),

196
difference set (Restmenge), 4
differentiable, 195
differentiable manifold, 445
differentiable (functional), 317
differentiable manifold, 445
differential p-form, 470
differential (functional), 317
differential equation, 285
differential equation of nth order, 307
differential form, 418
differential geometry, 444
differential of a function, 461
differential one-form, 460
differential operator, 131, 295
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differential operator, separable, 138
differential quotient (Differenzialquotient),

196
differential zero-form, 460
dilatation (Streckung), 63
dimension (vector space), 31
dimension formula, 73
dipole, 257
Dirac, 262
direct sum (of vector spaces), 143
Dirichlet conditions, 271
distributions, 262
divergence, 499
divergence (local basis), 442
divergence (vector field), 428
divergence in curvilinear coordinates, 433
division, 12
dual basis, 146
dual space, 146
dual vector, 146
dynamical system, 309

eigenbasis, 102
eigenfunction, 131
eigenspace, 103
eigenstate, 119
eigenvalue, 98
eigenvector, 98
Einstein summation convention, 32
electrostatic potential, 434
element (of a set) (Element), 3
elliptical integrals, 357
empty set, 3
entire function, 250
equivalence classes (of sets), 4
error function, 214
essential singularity, 331
Euclidean geometry, 40
Euclidean space, 25
Euler formula, 252
Euler-Lagrange equation, 319
expansion (of a vector) (Entwicklung), 30
exponential series, 248

exterior calculus, 477
exterior derivative, 477
exterior product, 157
extremal curve, 317

factorial, 247
factorial, 9
field, 413
field (Körper), 12
field strength tensor, 515
fields, 413
fixed point, 310
flat manifold, 491
flow of a differential equation, 309
flow on a manifold, 458
flux of a vector field, 430
flux through surface element, 430
for all (for all, ∀), 6
force, 462
Fourier convolution theorem, 278
Fourier modes, 268
Fourier series, 266, 267
Fourier transform, 273
fractal dimension, 311
frame, 458
friction force, 293
Fubini’s theorem, 226
functional, 315
functional analysis, 125
fundamental theorem of algebra, 101
fundamental theorem of calculus

(Hauptsatz der Integralrechnung),
207

Galilei transformation, 492
Gallois fields (Gallois field), 12
Gauss, 432
Gauss’ law, 434
Gauss’ theorem, 432
Gaussian, 214, 260
Gaussian curvature, 491
Gaussian integral, 214
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Gauß law, 514
general linear group (allgemeine lineare

Gruppe), 75
general solution of a (differential

equation), 285
geometric series, 249
graded Leibniz rule, 478
gradient, 498
gradient field, 423
gradient in curvilinear coordinates, 421
Gram-Schmidt orthonormalization, 50
Grassmann algebra, 158
Grassmann identity, 59
Green function, 296
group, 6
group homomorphism, 9
group isomorphism, 9
group law, 6

Halbgruppe, 6
harmonic functions, 266
Heaviside step function, 265
Hermitian matrix, 115
Hilbert space, 126
Hodge star, 494
holomorphic function, 322
holonomic frame, 458
holonomic basis, 454
homogeneous differential equation, 287
hyperbolic functions, 201

imaginary numbers, 14
imaginary part (Imaginärteil), 14
imaginary unit (imaginäre Einheit), 14
indefinite integral (unbestimmtes Integral),

207
inertia tensor, 153
infinite-dimensional vector space, 30
infinitesimal quantity, 198
initial condition, 287
injective (injective map), 5

inner derivative, 159
inner product, 44
inner product (complex), 52
inner product, indefinite, 45
inner product, non-degenerate, 46
inner product, semidefinite, 45
integrable singularity, 209
integral (two-dimensional), 225
integral tables, 214
integration by parts (partielle Integration),

210
integration constant, 207
integration in curvilinear coordinates, 228
integration measure (Integrationsmaß),

232, 238
intersection (of sets) (Schnittmenge), 4
invariance group (metric), 491
invariant formulation of electrodynamics,

515
Inverse element (inverse element (of

group)), 7
inverse function (Umkehrfunktion), 200
inverse matrix, 74
irrational number, 12
isolated singularity, 330
isometry, 47

Jacobi determinant, 234
Jacobi identity, 59
Jacobi matrix, 409
Jacobi matrix, 234, 239, 242
Jacobian (of a map), 234
Jacobian (of a matrix), 234
Jordan block, 103
Jordan form, 103

kernel (Kern), 73
Komposition, Verkettung (composition (of

maps)), 6
Kronecker delta, 33

Lagrange identity, 59
Laplace, 434
Laplace equation, 434
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Laplace operator, 434
Laplace operator (generic coordinates),

435
Laplace operator (local basis), 442
Laplace operator, spherical coordinates,

435
Laplace rule (for determinants), 90
Laplace transform, 275, 279
Laplacian, 500
Laurent series, 331
law of induction, 513
Lebesgue integrability, 208
Legendre functions, 138
Legendre polynomials, 134
Leibniz rule (for determinants), 90
length, 40
Levi-Civita symbol (in three dimensions),

57
Levi-Civita tensor, 11
limit (Limes), 195
limit (of a sequence) (Grenzwert einer

Folge), 204
line, 34
line integral, 394
linear combination, 22
linear differential equation, 287
linear functional, 146
linear hull, 28
linear independence, 29
linear map, 62
linear operator, 130
linearly dependent set of vectors, 29
linearly dependent vectors, 29
Liouville theorem, 329
Lipschitz continuous, 305
local approximation, 430
local basis, 402
local functional, 316
logarithm Taylor expansion, 249
logistic differential equation, 304
Lorentz force, 508
Lorentz group, 492
Lorentz group, 111

Lorentz transformation, 492
Lorenz attractor, 310, 311
Lotka-Volterra system, 308
Lyapunov exponent, 310

Möbius strip, 429
Möbius strip, 429, 476
macroscopic electrodynamics, 511
matrix, 65
matrix elements, 65
matrix representation (of a linear map)

(Matrixdarstellung), 65
Maxwell equations, 511
Maxwell equations, traditional form, 511
meromorphic functions, 331
metric, 46, 487
metric tensor, 488
metric tensor, 46
metric, signature, 52
Minkovski metric, 491, 516
Minkovski metric, 45
minor, 90
modulus (of complex number) (Betrag),

16
momentum (Impuls), 38
multi-dimensional Fourier transform, 276
multilinear algebra, 143, 151
multilinear map, 151
multilinearity (Multilinearität), 93
multiplication (of numbers), 11

nabla operator, 420
neutral element, 7
Non-Abelian groups (non-abelian group), 8
norm (of a complex number) (Betrag

(einer komplexen Zahl)), 16
norm (of a real number) (Betrag (einer

reellen Zahl)), 16
norm (of a vector), 39
normalization (Normierung), 42

open interval, 197
open subset, 16
order (of a pole), 330
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ordinary differential equation, 286
orientable surface, 429
orientation (manifold), 476
oriented surface element, 430
orthogonal coordinate system, 401
orthogonal complement, 42
orthogonal group, 108
orthogonal map, 107
orthogonal matrix, 109
orthogonal vectors, 42
orthonormal basis, 49
orthonormal basis (manifold), 490

pair permutations (pair permutation), 10
parallel vectors, 42
parallelepiped, 59
parallelogram area, 43
partial derivative (partielle Ableitung), 216
partial differential equation, 286
partial fraction decomposition, 213
periodic boundary conditions, 267
periodic function, 267
permutation, 9, 88
permutation group, 10, 88
perturbation theory, 256
phase space, 308, 309
phase space (Phasenraum), 38
piston (Kolben), 219
Plancherel theorem, 279
plane, 34
Poincaré group, 516
point (in an affine space), 24
points (of affine spaces), 25
Poisson equation, 434
polar coordinates, 396
polar representation (of complex numbers)

(Polardarstellung komplexer
Zahlen), 16

pole, 330
positive orientation, 57
potential, 423
primitive function (Stammfunktion), 207

principal value integral, 336
principal value integral

(Hauptwertintegral), 209
product rule, 200
projection, 42
pseudo-vector, 56
pullback, 160, 466
pushforward, 464

quadrature (differential equation), 288
quotient set, 4

radius of convergence, 249, 251
Radon transform, 284
rank (of a matrix) (Rang), 73
rational functions, 213
rational numbers, 12
RC-time, 290
real numbers, 12
real part (Realteil), 14
reflection, 56
reflexivity, 4
removable singularity, 330
residue, 331
Rieman sum, 205
Riemann, 205
Riemann integrable, 208
Riemann sheet, 339
Riemann surface, 339
Riemannian manifold, 488
right-hand rule, 55
ring, 12
Rodrigues formula, 135
row (of a matrix) (Reihe), 65, 66

scalar (Skalar), 18
scalar field, 413
scalar multiplication, 22
scalar product (general definition), 44
scalar product (general), 44
scalar triple product (Spatprodukt), 59
Schwarz’ theorem, 218
self adjoint linear operator, 133
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separation of variables, 288
sequence (Folge), 204
set (Menge), 3
signature (metric), 488
signum of a permutation, 11, 89
similarity transformation

(Ähnlichkeitstransformation), 84
simply connected, 425
singularity, 208
singularity of complex function, 324
smooth function, 199
space-time, 46
span (of a vector space) (Spann), 28
sparse matrix, 90
special function, 214
special linear group, 95
special orthogonal group, 111, 112
special unitary group, 112
specical unitary group, 111
spectrum (of hermitean operator), 121
spherical coordinates, 407
spherical harmonics, 137, 139
spherical Laplacian, 137
spin, 145
square matrix (quadratische Matrix), 74
standard scalar product, 39
standard vector space, 20
stereographic coordinates, 473
Stokes, 437
Stokes theorem, 438
Stokes’ theorem, 484
strange attractor, 311
subset (Teilmenge), 3
subspace, 28
substitution of variables, 211
subtraction, 12
superposition principle, 296
support (of function), 260
surjective (surjective map), 5
symmetric group, 10, 88
symmetric matrix, 115
symmetry (equivalence class), 4
system of linear differential equations, 312

System of linear differential equations, 290
system of linear equations (lineares

Gleichungsystem), 76
systems of differential equations, 308

tangent bundle, 457
tangent space, 453
tangent space, basis, 454
tangent vector, differential operator, 452
tangent vector, equivalence class of curves,

450
Taylor series, 248
tensor, 150
tensor product (of vector spaces), 144
tensors, 23
test function, 262
theorem of residues, 332
there exists (there exists, ∃), 6
top-dimensional form, 476
topology, 426
torque (Drehmoment), 55
trace (of a matrix) (Spur), 85
trajectory of a differential equation, 309
transformation matrix, 82
transition function of manifold, 447
transitivity, 4
transpose (of a matrix product)

(transponierte Matrix), 70
transpose (of vector or matrix

(transponiert), 21
transpose matrix (transponierte Matrix),

68
transpose of a tensor, 152
triangle inequality, 45
triangular matrix, 90
true subspace (echter Unterraum), 34

union (Vereinigungsmenge), 4
unit matrix (Einheitsmatrix), 74
unitary group, 108
unitary map, 107
unitary matrix, 109
unitary vector space, 52
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variation of constants, 288
vector, 20
vector addition, 22
vector differentiation, 389
vector field, 457
vector product, 54
vector space, 22
vector space axioms, 22
vector-valued function, 387
volume element, 238
volume element (cylindrical coordinates,

238
volume element (spherical coordinates),

238
volume form, 475, 493
volume form, spherical coordinates, 476
volume of a manifold, 493

wave equation, 313, 434
wave length, 268
wave number, 268
wedge product, 157

Zielelement (image (of a map)), 5
Zielmenge, 5
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