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2-Channel Kondo Scaling in Conductance Signals from 2-Level Tunneling Systems
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The temperature (T') and voltage (V') dependence of conductance signals in metal point contacts,
previously asserted to be due to 2-channel Kondo scattering from atomic 2-level tunneling systems,
collapse onto a universal scaling curve dependent on eV/kgT, for all T and eV/kp below a char-
acteristic Kondo scale. Measurements determine a conductance exponent of 1/2, as expected from
conformal field theory solution of the 2-channel Kondo model. The magnetic field (H ) dependence
at low T is nonanalytic at H = 0 (o |H|) in contrast to Fermi-liquid theory but in agreement with

conformal field theory.

PACS numbers: 72.15.Qm, 63.50.+x, 71.25.Mg, 72.10.Fk

The multichannel Kondo model [1] has recently at-
tracted significant interest due to its non-Fermi-liquid
properties. Its exact conformal field theory (CFT) so-
lution (see [2,3] and references therein) provides a phys-
ical understanding of its unusual low temperature (T")
behavior in terms of a generalization of spin-charge sep-
aration. The 2-channel model exhibits properties remi-
niscent of the marginal Fermi-liquid phenomenology [4]
of high-T. superconductors [5-7] and has been proposed
as a model for the observed non-Fermi-liquid features in
certain U-containing heavy-fermion materials [8-10]. It
is also predicted to describe the interaction between con-
duction electrons and symmetric atomic 2-level tunneling
systems (TLSs) in metals [11-15]. To date, however, no
experimental system has been unambiguously shown to
realize the 2-channel Kondo model.

Previously, some of us have suggested that conduc-
tance signals observed in ballistic metal point contacts
may be due to 2-channel Kondo scattering from TLSs
in the constriction, and that such devices may thus pro-
vide a realization of the 2-channel Kondo fixed point at
T=0 [15]. In this Letter we confirm this suggestion by
showing that the conductance signals as a function of T
and voltage (V) may be rescaled at low T and low V to
collapse onto a single universal curve, with a scaling ex-
ponent of %, expected from CFT [2]. We thus report the
first transport measurements in accord with 2-channel
Kondo scattering in the low-T" regime. We determine
Taylor coefficients of the universal scaling curve for fu-
ture comparison with theory. Furthermore, we show that
the magnetic-field dependence of the signals, very differ-
ent from the ordinary Fermi liquid, scales precisely as
predicted by CFT [16].

The devices we analyze are ballistic Cu constrictions,
with diameters less than 10 nm. Details of the fabrica-
tion and properties of these samples have been described
previously [15,17]. The samples exhibit zero-bias min-
ima in the differential conductance (G = dI/dV) and
V-symmetric spikes in G at larger V' [15]. We have ar-
gued previously that the signals are due to structural
defects, likely dislocation kinks, which act as TLSs in
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the constriction region [15,17]. We have detailed how
G is approximately logarithmically dependent on T and
eV/kp above 2 K, indicative of a high-T' Kondo regime.
In this Letter we examine closely the lower-T', V regime.
Figure 1(a) displays the V' dependence of G(V, T) for one
Cu sample, for T ranging from 400 mK to 5.6 K.

Scaling analysis.—Consider the conductance signal
G(V,T) due to scattering off an individual 2-channel
Kondo defect with energy asymmetry A. First put
A = 0. To be in the scaling regime of the T=0 fixed
point, T" and eV /kp must both be well below the Kondo
temperature Tk, but the ratio eV/kpT may be arbitrary.
In the scaling regime G should obey a homogeneous scal-
ing relation, governed by the fixed point:
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FIG. 1. (a) Differential conductance of sample 1 at various
T, from 0.4 K (bottom) to 5.6 K (top). (Specific values are
listed in Fig. 2.) (b) Zero-bias conductance for 3 samples.
Extrapolated values of G(0,0) are for sample 1: 2830e2/h,
sample 2: 3970e%/h, and sample 3: 30.8¢2/h.
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G(V,T) - G(0,0) = BT® r(ﬁ;—/m) Q)

The parameters A and B are nonuniversal constants
which may vary, for instance, as a function of the dis-
tance of the defect from the narrowest point of the con-
striction. However, ['(x) should be a universal function
of z, a fingerprint applying to any microscopic realiza-
tion of the 2-channel Kondo model. It must have the
asymptotic form I'(z) o z° as z — oo, so that G(V,T)
is independent of T for eV > kgT. We use the normal-
ization conventions that I'(0) = 1 and I'(z) vs zP has
slope of 1 at large z8. A small applied V enters only in
the argument of Fermi functions for the leads, i.e., in the
combination V/T, implying a=0 [18].

For a bulk metal, an exact CFT calculation has found
such a scaling form due to the T'=0 fixed point, with
o =1/2, for the electron self-energy ¥(w,T), which di-
rectly determines the bulk conductivity [2(b)]. This re-
sult for « is in contrast to the exponent a=2 that holds
for the (Fermi-liquid) 1-channel Kondo problem [1]. In a
point contact geometry, a homogeneous scaling relation
should also describe G(V, T) due to the T'=0 fixed point,
and we do not not expect the value of the 2-channel con-
ductance exponent, a=1/2, to differ from the bulk case.
The calculation of the exact universal scaling function for
G(V,T) from CFT is in progress.

In the presence of a small asymmetry A, crossover to a
Fermi liquid is predicted [16] below a characteristic tem-
perature Tx ~ A?/k%Ty which may be very small for
small A.

Comparison with experiment.—The zero-bias conduc-
tance signals in the devices we discuss are large enough
that they are likely due to several defects contributing
simultaneously [15]. If interaction effects among the de-
fects are irrelevant [19], the conductance signal is additive
(now using a=p0):

o AieV

G(V,T) - G(0,0) =T Z:B’F<kBT>' (2)

As a first test of this relation, we plot G(V=0,T) vs T,

using the expected value oo =1/2, for 3 Cu samples in

Fig. 1(b). Agreement with T"1/2 behavior is quite good.

The size of deviations is consistent with amplifier drift.

Fits to a straight line of the data below 2 K in Fig. 1(b)

determine values for the parameter By=}", B;, listed in
Table I.

A much more stringent test of the exponent o of the

conductance signals is provided by the scaling properties
of the combined V and T dependence. It is convenient to
rewrite the scaling ansatz [Eq. (2)] to eliminate G(0,0),
which is not measured directly:

ST ~GO.T) _ §~B,[r(4w) - 1] = Fz), (3)

Ta

where ¢ = eV/kgT. For o = 1/2, this implies that if
one plots the left hand side vs (eV/kpT)/?, then with
no adjustment of free parameters the low-T" curves for a
given sample should all collapse onto the sample-specific
scaling curve F(z) vs x/2, which is expected be linear
for large /2 [indicating T independence of G(V,T)].

Figure 2(a) shows the result of this procedure for the
data of Fig. 1(a). The data at low V and low T, but
varying ratio, collapse remarkably well onto one curve
(with linear asymptote). As a quantitative measure of
the quality of scaling, we plot in the inset of Fig. 2(a), as a
function of a, the mean square deviation from the average
scaling curve for the data at the 5 lowest T (<1.4 K),
integrated over small values of eV/kpT (between —8 and
8). These are the data which a priori would be expected
to be most accurately within the scaling regime about a
T=0 fixed point. The best scaling of the data requires
a=0.48+0.05, in agreement with the CFT prediction for
the 2-channel Kondo model in bulk metal, o =1/2 [20].
Figure 2(b) displays an example of the poor collapse of
the low-V, low-T data using a value for a different than
1/2.

When either V or T' becomes too large (> Tk), the
scaling ansatz is expected to break down. This explains
the downward deviations from the scaling curve seen in
Fig. 2(a) for the higher-T' curves. We estimate Tk as
that T for which the rescaled data already deviate from
the scaling curve at eV/kgT < 1. This gives Tx > 5 K
for the defects of sample 1.

We have also performed the test of the scaling ansatz
on two other Cu samples. The rescaled data for sample 2
[Fig. 2(c)] collapse well onto a single curve at low V and
T, for @=0.52+0.05 and with Tx > 3.5 K. At high V and
high T' the nonuniversal conductance spikes, discussed
previously [15,17], are visible. The data for sample 3
do not seem to collapse as well [Fig. 2(d)] (illustrating
how impressively accurate by comparison the scaling is
for samples 1 and 2). However, we suggest that this
sample in fact displays two separate sets of scaling curves
(see arrows), one for T' < 0.4 K and one for 0.6 K<
T < 5 K, with interpolating curves in between. This

TABLE I. Measured parameters of the scaling functions for the Kondo signals in 3 Cu samples. Bs, F”(0), F, and F; have

units K~1/2¢?/h. T'; and I''(0) are dimensionless.

Sample Bs F"(0) Fo R n=4 FYOPE > 17(0)
0
T 78E02 0.55£0.04 12503 5709 073 % 0.11 08%03
2 25.240.7 1.03+0.09 12.8+0.8 197415 ~0.7840.06 0.6+0.2
3 10.3+0.4 0.8240.06 6.040.6 7716 ~0.75+0.16 0.7+0.3
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FIG. 2. (a),(b) Rescaled conductance of sample 1 for (top
to bottom) T = 0.4, 0.6, 0.8, 1.1, 1.4, 1.75, 2.25, 2.8, 3.5, 3.9,
4.3, 4.9, and 5.6 K. (c) Rescaled conductance of sample 2 at
same T up to 4.3 K. (d) Rescaled conductance of sample 3
from 125 mK to 7.6 K. Arrows show 2 separate scaling curves.
Insets: Integrated mean square deviation from the average
scaling curve for T < 1.4 K and —8 < eV/kgT < 8. The
scale of the deviation axis is iri (a) from 0 to 4 (e?/h)? and in
(c) from 0 to 25 (e*/h)%. Residual deviations for =0.5 are
consistent with amplifier noise.

could be due to defects with a distribution of Tk ’s, some
having Ty ~ 0.4 K and others having Ty > 5 K. The
second (higher-T') set of curves do not collapse onto each
other as well as the first, presumably because there is still
some (approximately logarithmic) contribution from the
Tk ~ 0.4 K defects.

Universality.—If for any sample all the A; in Eq. (3)
were equal, one could directly extract the universal scal-
ing curve from the data. The curve obtained by plotting
[G(V, T)-G(0,T)]/BsT*? vs (AeV/kpT)/?, with A de-
termined by the requirement that the asymptotic slope
of 1, would be identical to the universal curve [I'(z) — 1]
vs £1/2. Such plots are shown in Fig. 3(a). The fact that
the scaling curves for all three samples are indistinguish-
able indicates that the distribution of A;’s in each sample
is quite narrow, and is a measure of the universality of
the observed behavior.

To make possible quantitative comparisons of the data
with future calculations of the universal scaling function
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FIG. 3. (a) Scaling curves for the 3 samples. (b) Magnetic

field dependence of T=0.1 K, V=0 conductance. The field
dependence is symmetric about H=0.

(from CFT, in progress), we now proceed to extract from
the data the value of one universal (sample-independent)
constant and an upper bound on another [essentially Tay-
lor coefficients of I'(z)]. The procedure by which we ex-
tract these parameters is independent of the possible dis-
tribution of 4;’s and B;’s.

Consider the sample-specific scaling function F(z) de-
fined in Eq. (3). By construction, F(0) = 0, and if F(x)
is symmetric and analytic at £ = 0 (as the data sug-
gest) one also has F’(0) = 0. The second derivative,
F"'(0) =T"(0) 3, B; A%, may be measured directly from
the low eV /kgT portion of the scaling curve.

Next, consider the regime z > 1. As argued earlier,
here I'(z) ~ zf, and since f=a=1/2, with our normal-
ization conventions we can write, asymptotically,

M) 1=z +T1+0("'/?). (4)
It follows from Eq. (3) that
F(z) = 2Y/%Fy + F, + O(z™Y/?), (5)

where Fo = 3, B;Al? and F; = I'By. Values for Fy
and F; may be determined from the conductance data by
plotting F versus (eV/kpT)'/2 and fitting the data for
large (eV/ksT)/? to a straight line. For samples 1 and 2
we fit between (eV/kpT)'/?=2 and 3, and for sample 3
(using only the curves below 250 mK) between 2 and
2.5. Values for F”(0), Fy, and F are listed in Table I
The uncertainties listed are standard deviations of values
determined at different T within the scaling regime for
each sample.

From these quantities, we obtain an experimental de-
termination of the universal number I'; = F; /By and an
upper bound on the universal number I'"/(0):
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Values for I'; and this ratio are listed in Table I and are
consistent among all 3 samples.

Magnetic field dependence.—A magnetic field (H)
breaks the spin up-down degeneracy for the conduction
electrons, thus acting as a channel anisotropy of scal-
ing dimension 1/2 [16]. Therefore, the scaling function
[ in Eq. (1) depends now on the argument |H|/T/2.
Since TY/2I'(V=0,|H|/T'/?) must be independent of T
as T — 0, it must be  |H| in this limit. This non-
analyticity in H is precisely the behavior we observe in
the V =0 conductance [Fig. 3(b)] for small H and very
small T' (=0.1 K). The field dependence beyond 1 T is in-
fluenced by the conductance spikes [15,17], and is clearly
nonuniversal.

Asymmetry energy.—It is known [16] that if a TLS
has an energy asymmetry A between its position states,
a crossover to a Fermi liquid occurs at a temperature
scale Tx ~ AZ%/k%T, below which the T dependence
of G(V=0,T) is much weaker. The fact that the data
for samples 1 and 2 show pure (T/Tk)!/? scaling for 0.4
K< T < Tk implies that any nonzero A must be rather
small: for T, ~5 K, good scaling down to 0.4 K implies
Tx < 0.4 K and hence A < 1.4 K. We suggest that the
defects that are selected by (i.e., dominate) our transport
measurements are those with a strong V, T dependence.
Such TLSs must have significant tunneling amplitudes,
and hence cannot have large A ([11(b)], pp. 1599-1600).
Also, the microscopic origin of our TLSs, likely disloca-
tions in clean metal, may well produce lower asymmetries
than for TLSs in glassy materials.

Static disorder.—We have found that the introduction
of impurities (e.g., by coevaporating 1% Au with Cu)
eliminates rather than enhances the effect we observe.
Along with previous arguments [15], this is further evi-
dence that effects of static disorder cannot explain our
data. We suggest that impurities pin the mobile disloca-
tion kinks which may serve as TLSs in the metal.

In summary, we have found that low-T', low-V conduc-
tance signals in point contacts, previously suggested to
be due to 2-channel Kondo scattering from TLSs, obey
a homogeneous scaling relationship with exponent 1/2,
and a magnetic field exponent 1. This agrees with CFT
predictions for 2-channel Kondo scattering in bulk metal.
Deviations from scaling at high V' and T indicate Kondo
temperatures of order 0.5-5 K, depending on the indi-
vidual TLS. We have determined Taylor coefficients of
the universal scaling function for comparison with future
analytic calculations.
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