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We study a quantum quench for a semiconductor quantum dot coupled to a Fermionic reservoir,

induced by the sudden creation of an exciton via optical absorption. The subsequent emergence of

correlations between spin degrees of freedom of dot and reservoir, culminating in the Kondo effect, can be

read off from the absorption line shape and understood in terms of the three fixed points of the single-

impurity Anderson model. At low temperatures the line shape is dominated by a power-law singularity,

with an exponent that depends on gate voltage and, in a universal, asymmetric fashion, on magnetic field,

indicative of a tunable Anderson orthogonality catastrophe.
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When a quantum dot (QD) is tunnel coupled to a
Fermionic reservoir (FR) and tuned such that its topmost
occupied level harbors a single electron, it exhibits at low
temperatures the Kondo effect, in which QD and FR are
bound into a spin singlet. It is interesting to ask how Kondo
correlations set in after a quantum quench, i.e., a sudden
change of the QD Hamiltonian, and corresponding predic-
tions have been made in the context of transport experi-
ments [1–4]. Optical transitions in quantum dots [5–7]
offer an alternative arena for probing Kondo quenches:
the creation of a bound electron-hole pair—an exciton—
via photon absorption implies a sudden change in the local
charge configuration. This induces a sudden switch-on of
both a strong electron-hole attraction [6–8] and an ex-
change interaction between the bound electron and the
FR. The subsequent dynamics is governed by energy scales
that become ever lower with increasing time, leaving tell-
tale signatures in the absorption and emission line shapes.
For example, at low temperatures and small detunings
relative to the threshold, the line shape has been predicted
to show a gate-tunable power-law singularity [8]. Though
optical signatures of Kondo correlations have not yet been
experimentally observed, prospects for achieving this
goal improved recently due to two key experimental ad-
vances [9,10].

Here we propose a realistic scenario for an optically
induced quantum quench into a regime of strong Kondo
correlations. A quantum dot tunnel coupled to a FR is
prepared in an uncorrelated initial state [Fig. 1(a)].
Optical absorption of a photon creates an exciton, thereby
inducing a quantum quench to a state conducive to Kondo
correlations [Fig. 1(b)]. The subsequent emergence of spin

correlations between the QD-electron and the FR, leading
to a screened spin singlet, is imprinted on the optical abso-
rption line shape [Fig. 1(c)]: its high-, intermediate-, and
low-detuning behaviors are governed by the three fixed
points of the single-impurity Anderson model (AM)
[Fig. 1(d)]. We present detailed numerical and analytical
results for the line shape as a function of temperature and
magnetic field. At zero temperature we predict a tunable
Anderson orthogonality catastrophe, since the difference in
initial and final ground state phase shifts of FR electrons

FIG. 1 (color online). A localized QD e level, tunnel coupled
to a FR and (a) assumed empty at t ¼ 0, (b) is filled at t ¼ 0þ
when photon absorption produces a neutral exciton, leading to
Kondo correlations between QD and FR for t ! 1. (c) Starting
from an empty QD state jGii (for T ¼ 0), the absorption rate at
frequency !L ¼ !th þ � (with detuning � from the threshold

!th ¼ Ef
G � Ei

G) probes the spectrum of Hf at excitation

energy �. (d) Cartoons illustrating the nature of the free orbital
(FO), local moment (LM) and strong-coupling (SC) fixed points
of the Anderson impurity model, which are dominated by charge
fluctuations, spin fluctuations (indicated by dashed arrows) and a
screened spin singlet, respectively.
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[indicated by wavy lines in Fig. 1(d)] can be tuned by
magnetic field and gate voltage via their effects on the
level occupancy.

Model.—We consider a QD, tunnel coupled to a FR,
whose charge state is controllable via an external gate
voltage Vg applied between a top Schottky gate and the

FR [see Fig. 1(a) and 1(b)]. In a gate voltage regime for
which the QD is initially uncharged, a circularly polarized
light beam (polarization �) at a suitably chosen frequency
!L propagating along the z axis of the heterostructure
will create a so-called neutral exciton [11] (X0), a bound
electron-hole pair with well-defined spins � and �� ¼ ��
(2 fþ;�g) in the lowest available localized s orbitals
of the QD’s conduction- and valence bands (to be called

e and h levels, with creation operators ey� and hy��, re-
spectively). The QD-light interaction is described by

HL / ðey�hy��e�i!Lt þ H:c:Þ. We model the system before
and after absorption by the initial and final Hamiltonian

Hi=f ¼ Hi=f
e þHc þHt, where

Ha
e ¼ X

�

"ae�ne� þUne"ne# þ �af"h �� ða ¼ i; fÞ (1)

describes the QD, with Coulomb cost U for double

occupancy of the e level, ne� ¼ ey�e�, and hole energy
"h �� (> 0, on the order of the band gap). The e level’s initial
and final energies before and after absorption,
"ae� (a ¼ i, f), differ by the Coulomb attraction Uehð>0Þ
between the newly created electron-hole pair, which
pulls the final e level downward, "ae� ¼ "e� � �afUeh

[Fig. 1(b)]. This stabilizes the excited electron against

decay into the FR, provided that "fe� lies below the FR’s
Fermi energy "F ¼ 0. Since Hf � Hi, absorption imple-
ments a quantum quench, which, as elaborated below,
can be tuned by electric and magnetic fields. The term

Hc ¼
P

k�"k�c
y
k�ck� represents a noninteracting condu-

ction band (the FR) with half-width D ¼ 1=ð2�Þ and

constant density of states � per spin, while Ht ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
�=��

p P
�ðey�c� þ H:c:Þ, with c� ¼ P

kck�, describes its
tunnel coupling to the e level, giving it a width �. A
magnetic field B along the growth-direction of the hete-
rostructure (Faraday configuration) causes a Zeeman
splitting, "e� ¼ "e þ 1

2�geB, "h� ¼ "h þ 3
2�ghB (the

Zeeman splitting of FR states can be neglected for our
purposes [12]). The electron-hole pair created by photon
absorption will additionally experience a weak but highly
anisotropic intradot exchange interaction [12]. Its effects
can be fully compensated by applying a magnetic field
fine-tuned to a value, say B�

eh, that restores degeneracy of

the e level’s two spin configurations [12]. Hence-
forth, B is understood to be measured relative to B�

eh.

We set �B ¼ @ ¼ kB ¼ 1, give energies in units of
D ¼ 1 throughout, and assume T, B � � � U, Ueh �
D � "h ��. The electron-hole recombination rate is as-
sumed to be negligibly small compared to all other
energy scales. We focus on the case, illustrated in

Figs. 1(a) and 1(b), where the e level is essentially empty
in the initial state and singly occupied in the ground state of

the final Hamiltonian, �nie ’ 0 and �nfe ’ 1. (Here �nae ¼P
� �n

a
e�, and �nae� ¼ hne�ia is the thermal average of ne�

with respect to Ha.) This requires "ie� � �, and �Uþ
� & "fe� & ��. The Kondo temperature accociated with

Hf is TK ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
�U=2

p
e��j"fe ð"feþUÞj=ð2U�Þ. If "fe� ¼ �U=2,

so that �nfe ¼ 1, then Hf represents the symmetric
excitonic Anderson model, to be denoted by writing
Hf ¼ SEAM.
Absorption line shape.—Absorption sets in once !L

exceeds a threshold frequency, !th. The line shape at
temperature T and detuning � ¼ !L �!th is, by the
golden rule, proportional to the spectral function (see [13])

A�ð�Þ ¼ 2�
X

mm0
�i
mjfhm0jey�jmiij2�ð!L � Ef

m0 þ Ei
mÞ: (2)

Here jmia and Ea
m are exact eigenstates and energies ofHa,

depicted schematically in Fig. 1(c), and �i
m ¼ e�Ei

m=T=Zi

the initial Boltzmann weights. The threshold frequency

evidently is!th ¼ Ef
G � Ei

G (Ea
G is the ground state energy

of Ha), which is on the order of "fe� þ "h �� (up to correc-
tions due to tunneling and correlations).
We calculated A�ð�Þ using the Numerical

Renormalization Group (NRG) [14], generalizing the ap-
proach of Refs. [8,15] to T � 0 by following Ref. [16]. The
inset of Fig. 2 shows a typical result: As temperature is
gradually reduced, an initially rather symmetric line shape
becomes highly asymmetric, dramatically increasing in
peak height as T ! 0. At T ¼ 0, the line shape displays
a threshold, vanishing for � < 0 and diverging as � tends to
0 from above. Figure 2 analyzes this divergence on a log-
log plot, for the case that T, which cuts off the divergence,
is smaller than all other relevant energy scales. Three
distinct functional forms emerge in the regimes of ‘‘large’’,
‘‘intermediate’’ or ‘‘small’’ detuning, labeled (for reasons
discussed below) FO, LM and SC, respectively, (given here
for Hf ¼ SEAM):

j"fe�j & � & D: AFO
� ð�Þ ¼ 4�

�2
�ð�� j"fe�jÞ; (3a)

TK & � & j"fe�j: ALM
� ð�Þ ¼ 3�

4�
ln�2ð�=TKÞ; (3b)

T & � & TK: ASC
� ð�Þ / T�1

K ð�=TKÞ���: (3c)

The remarkable series of crossovers found above are
symptomatic of three different regimes of charge and
spin dynamics. They can be understood analytically using
fixed-point perturbation theory (FPPT). To this end, note
that at T ¼ 0 the absorption line shape can be written as

A�ð�Þ ¼ 2Re
Z 1

0
dteit�þ

ihGjei �Hite�e
�i �Hftey�jGii; (4)

where �Ha ¼ Ha � Ea
G and �þ ¼ �þ i0þ. Thus it directly

probes the postquench dynamics, with initial state ey�jGii,
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of a photogenerated e-electron coupled to a FR. Evidently,
large, intermediate or small detuning, corresponding to
ever longer time scales after absorption, probes excitations
at successively smaller energy scales [see Fig. 1(c)], for
which �Hf can be represented by expansions H�

r þH0
r

around the three well-known fixed points [14] of the AM:
the free orbital, local moment and strong-coupling fixed
points (r ¼ FO, LM, SC), characterized by charge fluctua-
tions, spin fluctuations and a screened spin singlet, respec-
tively, as illustrated in Fig. 1(d).

Large and intermediate detuning—perturbative re-
gime.—For large detuning, probing the time interval

t & 1=j"fe�j immediately after absorption, the e level ap-
pears as a free, filled orbital perturbed by charge fluctua-
tions, described by [14] the fixed-point Hamiltonian

H�
FO ¼ Hc þHf

e þ const and the relevant perturbation

H0
FO ¼ Ht. Intermediate detuning probes the times

1=j"fe�j & t & 1=TK for which real charge fluctuations
have frozen out, resulting in a stable local moment; how-
ever, virtual charge fluctuations still cause the local mo-
ment to undergo spin fluctuations, which are not yet
screened. This is described by [14] H�

LM ¼ Hc þ const

and the RG-relevant perturbation H0
LM ¼ Jð�Þ

�
~se � ~sc. Here

~sj ¼ 1
2

P
��0jy� ~	��0j�0 (for j ¼ e, c) are spin operators for

the e level and conduction band, respectively, ( ~	 are Pauli
matrices), and Jð�Þ ¼ ln�1ð�=TKÞ is an effective, scale-
dependent dimensionless exchange constant.

For r ¼ FO and LM, A�ð�Þ can be calculated using
perturbation theory in H0

r. For T ¼ 0, note that

A�ð�Þ ¼ �2 ImihGje�
1

�þ � �Hf
ey�jGii; (5)

set �Hf ! H�
r þH0

r and expand the resolvent in powers of
H0

r. One readily finds (see [13])

Ar
�ð�Þ ’ � 2

�2
ImihGje�H0

r

1

�þ �H�
r

H0
re

y
�jGii; (6)

which reveals the relevant physics: Large detuning
(r ¼ FO) is described by the spectral function of the

operator Hte
y
�; the absorption process can thus be under-

stood as a two-step process consisting of a virtual excita-
tion of the QD resonance, followed by a tunneling event to
a final free-electron state above the Fermi level. In contrast,
intermediate detuning (r ¼ LM) is described by the

spectral function of ~sc � ~seey�, i.e., it probes spin flu-
ctuations. Evaluating these spectral functions is ele-
mentary since H�

FO and H�
LM involve only free fermions.

For B ¼ 0 and j"fe�j ¼ 1
2U, we readily recover Eqs. (3a)

and (3b) (see [13]), which quantitatively agree with the
NRG results of Fig. 2.—Though the latter was calculated
for Hf ¼ SEAM, Eq. (3b) holds more generally as long as

Hf remains in the LM regime, with �nfe ’ 1; then ALM
� ð�Þ

depends on "fe�, U and � only through their influence on
TK, and hence is a universal function of � and TK.
The FPPT strategy for calculating FO and LM line

shapes can readily be generalized to finite temperatures
[12], using the methods of Ref. [17] (Section III.A) for
finding the finite-T dynamic magnetic susceptibility [13].

For j�j � j"fe�j and max½j�j; T� � TK, we obtain

ALM
� ð�Þ ¼ 3�

4

�=T

1� e��=T


Korð�; TÞ=�
�2 þ 
2

Korð�; TÞ
; (7)

where 
Korð�; TÞ ¼ �T=ln2½maxðj�j; TÞ=TK� is the scale-
dependent Korringa relaxation rate [17]. It is smaller than
T by a large logarithmic factor, implying a narrower and
higher absorption peak than for thermal broadening.
Small detuning and Kondo-edge singularity—strong-

coupling regime.—As � is lowered through the bottom of
the LM regime, Jð�Þ increases through unity into the
strong-coupling regime, and A�ð�Þ monotonically crosses
over to the SC regime. It was first studied for the present
model (for B ¼ 0Þ in Ref. [8], which found a power-law
line shape of the form (3c), characteristic of a Fermi edge
singularity, with an exponent � that followed Hopfield’s
rule [18]. The power-law behavior reflects Anderson
orthogonality [19,20]: it arises because the final ground
state jGfi that is reached in the long-time limit is charac-

terized by a screened singlet. The singlet ground state
induces different phase shifts [as indicated in Fig. 1(d) by
wavy lines] for FR electrons than the unscreened initial

state just after photon absorption, ey�jGii, and hence is
orthogonal to the latter. It is straightforward to generalize
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FIG. 2 (color online). Log-log plot of the absorption line shape
A�ð�Þ for T � TK, B ¼ 0 and Hf ¼ SEAM (for which
�� ¼ 1

2 ), showing three distinct functional forms for high,

intermediate and small detuning, labeled FO, LM, and SC,
respectively, according to the corresponding fixed points of the
Anderson model. Arrows indicate the crossover scales T, TK and

j"fe�j. Fixed-point perturbation theory [FPPT, red dashed lines,
from Eq. (3)] and NRG (thick blue line for �i � 0; thin blue line
for �i ¼ 0) agree well. Inset: A�ð�Þ for five temperatures in
semilog scale, obtained from FPPT for �i ¼ 0 [dashed lines,
from Eq. (7)] and NRG (solid lines).
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the arguments of Refs. [8,18] to the case of B � 0
(see [13]). One readily finds the generalized Hopfield rule

�� ¼ 1�X

�0
ð�n0e�0 Þ2; �n0e�0 ¼ ���0 � �ne�0 ; (8)

�n0e�0 is the displaced charge of electrons with spin �0, in
units of e, that flows from the scattering site to infinity

when ey�jGii is changed to jGfi, and �ne�0 ¼ �nf
e�0 � �nie�0

is the local occupation difference between jGfi and jGii.
According to Eq. (8), �� can be tuned not only via gate

voltage but also via magnetic field, since both modify "ae�
and hence �n0e�0 . This tunability can be exploited to study

universal aspects of Anderson orthogonality physics. In
particular, if the system is tuned such that �nie ¼ 0 and

�nfe ¼ 1 at B ¼ 0, Eq. (8) can be expressed as �� ¼ 1
2 þ

2mf
e�� 2ðmf

eÞ2, where the final magnetization mf
e ¼ 1

2 �
ð �nfeþ � �nfe�) is a universal function of geB=TK. The ex-
ponents �� then are universal functions of geB=TK, with
simple limits for small and large fields [see Fig. 3(b)]:
�� ! 1

2 for jgeBj � TK, while �lower=upper ! �1 for

jgeBj � TK. Here the subscript ‘‘lower’’ or ‘‘upper’’ dis-
tinguishes whether the spin-� electron is photoexcited into
the lower or upper of the Zeeman-split pair (�geB < 0
or >0, respectively). The sign difference �1 for �� arises
since these cases yield fully asymmetric changes in local

charge: �ne;lower ! 1 while �ne;upper ! 0. As a result,

Anderson orthogonality [19] is completely absent
(�n0e�0 ¼ 0) for photo-excitation into the lower level, since

subsequently the e-level spin need not adjust at all. In
contrast, it is maximal (�n0e�0 ¼ 1) for photo-excitation

into the upper level, since subsequently the e-level spin has
to create a spin-flip electron-hole pair excitation in the FR
to reach its longtime value. It follows, remarkably, that a
magnetic field tunes the strength of Anderson orthogonal-
ity, implying a dramatic asymmetry for the evolution of the
line shape A�ð�Þ / ���� with increasing jBj [Fig. 3(a)].
Conclusions.—We have shown that optical absorption in

a single quantum dot can implement a quantum quench in
an experimentally accessible solid-state system that allows
the emergence of Kondo correlations and Anderson or-
thogonality to be studied in a tunable setting.
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e (dash-dotted line), and the corresponding prediction of

Hopfield’s rule, Eq. (8), for the infrared exponents �lower (solid
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extracted from the near-threshold ���þ divergence of Aþð�Þ.
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We provide below some intermediate steps for the derivation of the main equations of the
main text. For clarity, information contained in the main text is typeset in blue.

Spectral function

The origin of Eq. (2) for the absorption rate can be understood as follows [1]. We begin
with a Hamiltonian slightly more general than those of the main text, in that it includes the
hole degree of freedom: H = Heh + Hc + Ht, where Hc and Ht are given in the main text,
and

Heh =
∑
σ

(εeσneσ + εhσnhσ) + Une↑ne↓ −
∑
σσ′

Uehneσnhσ′ (S1)

describes the QD, with e-level charging energy U(> 0), e-h Coulomb attraction Ueh(> 0),
neσ = e†σeσ, nhσ = h†σhσ. The hole energy εhσ̄ (> 0) is on the order of the band gap.

The QD-light interaction is described byHL ∝ (e†σh
†
σ̄e−iωLt+h.c.). Absorption sets in once

ωL exceeds a threshold frequency, say ωth. According to Fermi’s golden rule, treating HL as
harmonic perturbation, the absorption lineshape at temperature T and detuning ν = ωL−ωth

is proportional to

Aσ(ν) =2π
∑
mm′

ρm|〈m′|e†σh
†
σ̄|m〉|2δ(ωL − Em′ + Em), (S2)

where the ρm are Boltzmann weights. Noting that the dynamics of the optically created hole
is trivial, [nhσ, H] = 0, we can write all initial states |m〉 as |m〉i ⊗ |0〉h and all final states
|m′〉 in the form |m′〉f ⊗ |σ̄〉h, thus arriving at Eq. (2) from the main text:

Aσ(ν) = 2π
∑
mm′

ρi
m|f〈m′|e†σ|m〉i|2δ(ωL − Ef

m′ + Ei
m). (S3)

Here |m〉a (a = i,f) are the many-body eigenstates of the effective initial and final Hamil-
tonians, H i = h〈0|H|0〉h and H f = h〈σ̄|H|σ̄〉h, that only include the QD and FR electronic
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degrees of freedom. They are given by H i/f = H
i/f
e +Hc +Ht, with H

i/f
e given by Eq. (1):

Ha
e =

∑
σ

εaeσneσ + Une↑ne↓ + δafεhσ̄ (a = i, f), with εaeσ = εeσ − δafUeh . (S4)

To bring the spectral function into a resolvent form suitable for fixed point perturbation
theory (FPPT), we use Dirac’s identity

δ(ωL − Ef
m′ + Ei

m) = − 1

π
Im

[
1

ωL − Ef
m′ + Ei

m + i0+

]
, (S5)

to rewrite Eq. (S3) as follows:

Aσ(ν) = −2 Im

[∑
mm′

ρi
m i〈m|eσ

1

ωL − Ef
m′ + Ei

m + i0+
|m′〉f f〈m′|e†σ|m〉i

]
. (S6)

= −2 Im

[∑
m

ρi
m i〈m|eσ

1

ωL −H f + Ei
m + i0+

e†σ|m〉i

]
. (S7)

For the last step, we replaced Ef
m′ by H f and used

∑
m′ |m′〉f f〈m′| = 1.

Zero temperature:

At T = 0, the initial density matrix is |G〉i i〈G|. With the definitions introduced in the
text, H̄a = Ha − EaG, ν = ωL − Ef

G + Ei
G and ν+ = ν + i0+, Eq. (S7) reduces to Eq. (5) of

the main text:

Aσ(ν) = −2 Im i〈G|eσ
1

ν+ − H̄ f
e†σ|G〉i . (S8)

For the parameters considered in the main text, the ground state of H i can be approx-
imated by a free Fermi sea: |G〉i '

∏
εkσ<εF

c†kσ|Vac〉. Next comes the key step of FPPT:

replace H̄ f → H∗r +H ′r and do a perturbation expansion in H ′r of the resolvent

1

ν+ − H̄ f
=

1

ν+ −H∗r
+

1

ν+ −H∗r
T̂r

1

ν+ −H∗r
(S9)

with the T-matrix given by

T̂r = H ′r +H ′r
1

ν+ −H∗r
H ′r + · · · (S10)

According to the main text, the free orbital (FO) regime is described by

H∗FO = Hc +H f
e − EFO =

∑
kσ

εkσc
†
kσckσ +

∑
σ

εf
eσneσ + Une↑ne↓ − EFO , (S11a)

perturbed by

H ′FO = Ht =
√

Γ/πρ
∑
σ

(e†σcσ + h.c.) , (S11b)
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and the local moment (LM) regime by

H∗LM = Hc − ELM =
∑
kσ

εkσc
†
kσckσ − ELM , (S12a)

perturbed by

H ′LM =
J(ν)

ρ
~se · ~sc , (S12b)

with e-level and conduction band spin operators given by ~sj = 1
2

∑
σσ′ j

†
σ~τσσ′jσ′ (for j = e, c).

The subtracted constants EFO and ELM correspond to the subtraction of Ef
G in the definition

of H̄ f = H f −Ef
G → H∗r +H ′r (see the main text after Eq. (4)); they ensure that the ground

state of H∗r has eigenvalue 0. For both r = FO and LM, this ground state is given by
|σ〉 ≡ e†σ|Gi〉.

Now, when inserted into Eq. (S8), the first term in Eq. (S9) gives a δ(ν) not relevant

for the regime ν & TK that we are focusing on. The second term gives −2Im〈σ|T̂r|σ〉/ν2 =

Im[T (1)
r + T (2)

r + · · · ]/ν2. For both r = FO and LM, T (1)
r = 〈σ|H ′r|σ〉 = 0 (for B = 0). Thus,

to lowest non-zero order, we obtain Eq. (6) of the main text, namely

Arσ(ν) = −2 Im[T (2)
r ]/ν2, T (2)

r = 〈σ|H ′r
1

ν+ −H∗r
H ′r|σ〉. (S13)

T (2)
r can be evaluated straightforwardly using Wick’s theorem, since H ′r|σ〉 produces a sum

of uncorrelated free-fermion states, all of which are eigenstates of 1
ν+−H∗r

. For the free orbital

regime, we obtain

T (2)
FO =

(√
Γ/πρ

)2 ∑
ks,k′s′

〈σ|
(
c†kses + h.c.

) 1

ν+ −H∗FO

(
c†k′s′es′ + h.c.

)
|σ〉 (S14)

=
Γ

πρ

∑
k

[
(1− f(εk))

ν+ − (εk − εf
e)

+
f(εk)

ν+ − (−εk + εf
e + U)

]
, (S15)

where f(ε) = θ(−ε) stands for the Fermi function at zero temperature. Inserting this into
Eq. (S13) we obtain (for D � |ν|):

AFO
σ (ν) =

2Γ

ν2

[
θ(ν − |εf

eσ|) + θ(ν − (εf
eσ + U)

]
. (S16)

For the case of H f=SEAM (with εf
e = −U/2) considered in the main text, this reduces to

Eq. (3a):

AFO
σ (ν) =

4Γ

ν2
θ(ν − |εf

eσ|) . (S17)

The calculation for the local moment regime, TK � |ν| � min[|εf
eσ|, εf

eσ+U ], is analogous.
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Writing ~se · ~sc = 1
2 (sσe s

σ̄
c + sσ̄e s

σ
c ) + szes

z
c , we obtain

T (2)
LM =

(
J(ν)

ρ

)2

〈σ|~se · ~sc
1

ν+ −H∗LM

~se · ~sc|σ〉 (S18a)

=
1

4

(
J(ν)

ρ

)2 [
〈Gi|szc

1

ν+ −H∗LM

szc |Gi〉+ 〈Gi|sσ̄c
1

ν+ −H∗LM

sσc |Gi〉
]

(S18b)

=
3

8

(
J(ν)

ρ

)2∑
kq

f(εk) (1− f(εq))

ν+ − εq + εk
. (S18c)

Inserting Eq. (S18c) into Eq. (S13), with J(ν) = ln−1[ν/TK], we recover Eq. (3b):

ALM
σ =

3π

4ν

1

ln2(ν/TK)
. (S19)

Nonzero temperature

For T 6= 0, the calculations are analogous, with only minor changes: The FPPT expansion
in powers of H ′r is performed on Eq. (S7) (instead of Eq. (S8)), the Fermi occupation function
is f(ε) = 1/[eε/T + 1], and for the local moment regime the exchange coupling now takes
the form J(ν) = ln−1[max(|ν|, T )/TK]. We consider only the local moment regime, with
|ν| � min[|εf

eσ|, εf
eσ + U ] and max[|ν|, T ] � TK. Assuming (as before) that the initial level

position lies so far above the Fermi surface (εi
eσ � Γ) that the initial density matrix contains

no correlations between e-level and Fermi reservoir, we again arrive at Eq. (S18c), which now
yields

ALM
σ =

3π

4ν

1

1− e−ν/T
1

ln2[max(|ν|, T )/TK]
. (S20)

For large positive detuning, ν � T , we recover Eq. (S19), while the line-shape at large
negative detuning, ν � −T , is suppressed by an extra factor e−|ν|/T .

In the limit of small detuning, |ν| � T , Eq. (S20) reduces to

ALM
σ (ν) =

3π

4ν2

T

ln2[T/Tk]
. (S21)

The apparent ν−2 divergence indicates that in this limit, the expansion (S10) of TLM can not
be truncated at second order, as done above, but must be summed to all orders. Instead of
doing this explicitly, one may use methods which were applied to treat the dynamic magnetic
susceptibility at finite temperature in Ref. [2]. These yield

ALM
σ (ν) =

3π

4

ν/T

1− e−ν/T
γKor(ν, T )/π

ν2 + γ2
Kor(ν, T )

, (S22)

(Eq. (7) of the main text), which contains a Lorentzian factor involving a frequency-dependent
Korringa relaxation time,

γKor(ν, T ) =
πT

ln2[max(|ν|, T )/TK]
. (S23)
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For |ν| � γKor(ν, T ), Eq. (S22) reproduces Eq. (S20). For |ν| � T (but T � TK), Eq. (S22)
reduces to a pure Lorentzian

ALM
σ (ν) =

3π

4

γKor/π

ν2 + γ2
Kor

, (|ν| � T ) (S24)

of width γKor ' πT/ ln2[T/TK] (which is � T ). This represents the properly regularized
version of Eq. (S21), to which it reduces for γKor � |ν| � T .

Generalized Hopfield rule

The generalized Hopfield rule that holds when ν � TK and arbitrary B is stated in Eq. (8)
of the main text can be found as follows, using arguments similar to those in Refs. [1, 3]:
First, write the T = 0 spectral function of Eq. (4) as

Aσ(ν) = 2 Re

∫ ∞
0

dt eitν+〈ψ0|ψt〉 , (S25)

where |ψ0〉 = e†σ|Gi〉 is the state just after photon absorption (at t = 0+) and |ψt〉 =

e−iH̄
f t|ψ0〉 its time-evolved version. In the t → ∞ limit (relevant for ν → 0), the dy-

namics is governed by the final ground state, |Gf〉, characterized by a screened spin singlet.
Once the latter begins to dominate (for t & 1/TK), the FR experiences the QD as a site of
pure potential scattering (no spin-flips), just as at t = 0+, but with changed strength. The
adjustment of the FR to this changed potential (via changes in the scattering phase shifts of
its single-particle wave-functions) causes an increasing Anderson orthogonality [4] between

|ψt〉 and |ψ0〉: their overlap decays as 〈ψ0|ψt〉 ∼ t−
∑
σ′ (∆n

′
eσ′ )

2

[5], where, by Friedel’s sum
rule [7, 6], ∆n′eσ′ = δσσ′ −∆neσ′ is the displaced charge (of spin σ′), in units of e, that flows
from the scattering site to infinity as e†σ|Gi〉 evolves to |Gf〉, with ∆neσ′ = n̄f

eσ′ − n̄i
eσ′ the

local occupation difference between |Gf〉 and |Gi〉. Fourier-transforming 〈ψ0|ψt〉 according to
Eq. (S25) yields the powerlaw-decay of Eq. (3c), with exponent

ησ = 1−
∑
σ′

(∆n′eσ′)
2 . (S26)

This is the generalized Hopfield rule, Eq. (8).
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