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The planar on-shell form

 The on-shell form Q is the integrand without the delta
functions

* This can be written in different ways:
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Symmetries (non-planar)

e Conformal

e N =4 Supersymmetry

e Dual conformal (?)

[Bern, Herrmann, Litsey, Stankowicz, Trnka]
[Arkani-Hamed, Bourjaily, Cachazo, Trnka]

— Evidence at 3-loops that a related structure exists: the
amplitude is still of dlog form!

— Suggests that there may be yet more hidden symmetries
tofindin V' = 4 SYM



Non-planar on-shell diagrams
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What do we know about non-planar on-shell diagrams?

— Which diagrams contribute to a given process? Are there any
recursion relations?

— What part of the nice mathematical structure survives?
— How do we evaluate the contribution from each diagram?

— How do we combine loop momenta from different diagrams?



The non-planar on-shell form

* Explicit dlog form:

o Directly from edges of diagram' 2 3
dX,
= 1_[ Vol GL(1) X,
internal 0 ( V) edges Xe
nodes v 1 4

o Using generalized face variables (gauge-invariant):
1_[ df; 1_[ dbg 1_[ day dfm [Franco, D.G.,
~ 1 a, Pn Penante, Wen]

* Explicit Grassmannian:

o Use map between d.o.f. of diagram and C € G(k,n), and do a
variable transformation from face variables to d.o.f. of C:

dkxnC @

Vol(GL(k)) (1--k)(2--k+1)-- (n--k —1) [Franco, D.G.,

o There is a fast, combinatorial way of obtaining F Penante, Wen]




Understanding non-planar
on-shell diagrams:

Singularity Structure



Singularity structure (planar)

dXe kxXn 1
- — =
On-shell form Hedges Xe X d**"C ) (kD)
Singularity  Turn off X, i.e. Turn off minors
structure remove edges < of Grassmannian

from diagram

* For planar diagrams
(i--i+k)=0

= Turning off a minor is like
going to a geometric
boundary of the space

(— “singularities of the

”_n

amplitude”="boundaries
of the amplituhedron”)

[Arkani-Hamed, Bourjaily, Cachazo,
Goncharov, Postnikov, Trnka]



Equivalence moves
* Question: Sometimes turning off different sets of edges

takes you to the same singularity. Why?

* Equivalence moves: certain graphical operations don’t
change the Grassmannian

ol W 3
SOC » < 4

* Question: Dol have to look for all possible moves, just in
case two boundaries are equivalent?

-

* Diagnostic: It’s enough to look at which minors (i ---i + k)
are > 0 and which are = 0.
(< look at zig-zag paths on the graph)



Singularity structure (non-planar)

. . dx
Since also here the on-shell formis Q = [] B 2

e

we reach singularities by removing edges

Diagnostic for equivalent configurations?

: o (=0
— It’seno at whic 1+ k)
= no longer have same
a ich are = 0.

boundaries (---) = 0

- s Iookwmgraphd

"Good news”: we can still by hand look for all possible
equivalence moves



Geometric identification

Most general equivalence identification:

If two diagrams are equivalent, their subgraphs must also be
equivalent

“Geometric identification”

Works for planar diagrams too,
but it’s less efficient than
lookingat (+-+) > 0
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Landscaping G(3,6)
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We used our techniques to study the singularity structure of all
possible on-shell diagrams in G(3,6)

We found that there are only 24 distinct diagrams of maximal
dimension (mod. color swaps and equivalence moves)

Not all of these will be relevant to possible recursion relations —it’s
nonetheless important to understand our building blocks

We also found that there are only 10 leading singularities in G(3,6)
(plus their color-inverted partners!)

We found several interesting things / surprises



Surprises in G(3,6)

 Complicated denominators:
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QIQIQIQIQ NI [ =OOIOOEOE0)



Surprises in G(3,6)
Complicated denominators:
1
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Top-dimensional diagram doesn’t have nonstandard poles,
but lower-dimensional singularities do

|dea of geometric boundary operator not so obvious:

3 4
o\c . q/o X, 0o (234)-0
i ] -0 (123)-0
6_ Xe—> 0o (236)-0
20— Q\i 2 Any pair of these edges:
T (234) - 0,(123) - 0,
. T (236) » 0,(235) = 0



Stratification structure

& (# of singus of each dimension)

1 {1,6,21,56,114,180,215,180,90,20} | 13 | {1,9,40,147,271,332,294,201,90,20}
6 | {1,7,27,83,166,239,249,190,90,20} | 10 | {1,7,25,93,186,259,260,193,90,20}
8 | {1,8,30,98,198,274,268,195,90,20} | 9 | {1,7,29,103,206,281,272,196,90,20}
11 | {1,8,34,116,215,282,271,196,90,20} | 7 | {1,5,26,94,187,259,260,193,90,20}
16 | {1,9,36,138,252,315,288,201,90,20} | 10 | {1,6,31,116,220,288,275,197,90,20}
9 | {1,9,38,122,236,309,285,199,90,20} | 12 | {1,7,39,151,280,341,299,202,90,20}
5 | {1,8,36,102,189,256,257,192,90,20} | 8 | {1,8,36,117,223,293,277,197,90,20}
8 |1{1,10,45,142,267,334,297,202,90,20} | 4 {1,3,15,66,153,231,246,189,90,20}
5 | {1,6,25,78,158,231,245,189,90,20} | 9 | {1,6,28,108,216,289,276,197,90,20}
10 | {1,7,29,107,209,280,271,196,90,20} | 13 | {1,9,38,132,236,298,279,198,90,20}
7 | {1,7,33,104,194,261,260,193,90,20} | -4 | {1,12,54,166,348,420,339,210,90,20}
8 | {1,8,35,120,231,299,279,197,90,20} | 6 | {1,6,21,74,157,232,246,189,90,20}




BipartiteSUSY package

(coming soon)



Summary

On-shell diagrams make dlog form manifest

There is intriguing evidence (dlog form up to 3 loops) that
such a description exists for non-planar amplitudes

Must understand non-planar on-shell diagrams before using
them

We found several ways of obtaining the integrand
contribution from a non-planar on-shell diagram

We can now efficiently obtain the full singularity structure,
and hence the geometric data, of any on-shell diagram

We landscaped all on-shell diagrams in G(3,6)

Found many surprises along the way



