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• The planar on-shell form 

• Non-planar symmetries 

• Non-planar on-shell diagrams and on-shell form 

• Planar singularity structure – very geometric 

• Non-planar singularity structure – obtained through 
”geometric identification” 

• bipartiteSUSY package 

• Summary & future directions 
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• The on-shell form Ω is the integrand without the delta 
functions 

• This can be written in different ways: 

Ω =  
1

Vol(GL 1 𝑣)
internal
nodes 𝑣

 
𝑑𝑋𝑒
𝑋𝑒

edges 𝑋𝑒

 

Ω =
𝑑𝑓1
𝑓1

𝑑𝑓2
𝑓2
⋯
𝑑𝑓𝑑
𝑓𝑑

 

Ω =
𝑑𝑘×𝑛𝐶

Vol(GL(𝑘))

1

1⋯𝑘 2⋯𝑘 + 1 ⋯(𝑛⋯𝑘 − 1)
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• Conformal 

• 𝒩 = 4 Supersymmetry 

• Dual conformal 
 
 

– Evidence at 3-loops that a related structure exists: the 
amplitude is still of 𝑑𝑙𝑜𝑔 form! 

– Suggests that there may be yet more hidden symmetries 
to find in 𝒩 = 4 SYM 
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(?) 
[Bern, Herrmann, Litsey, Stankowicz, Trnka]  
[Arkani-Hamed, Bourjaily, Cachazo, Trnka] 



What do we know about non-planar on-shell diagrams? 

– Which diagrams contribute to a given process? Are there any 
recursion relations? 

– What part of the nice mathematical structure survives? 

– How do we evaluate the contribution from each diagram? 

– How do we combine loop momenta from different diagrams? 

– ... 
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• Explicit 𝑑𝑙𝑜𝑔 form: 

o Directly from edges of diagram: 

Ω =  
1

Vol(GL 1 𝑣)
internal
nodes 𝑣

 
𝑑𝑋𝑒
𝑋𝑒

edges 𝑋𝑒

 

o Using generalized face variables (gauge-invariant): 

Ω = 
𝑑𝑓𝑖
𝑓𝑖

𝐹−1

𝑖=1

   
𝑑𝑏𝑎
𝑏𝑎

𝐵−1

𝑎=1

   
𝑑𝛼𝑚
𝛼𝑚

𝑑𝛽𝑚
𝛽𝑚

𝑔

𝑚=1

 

• Explicit Grassmannian: 

o Use map between d.o.f. of diagram and 𝐶 ∈ 𝐺(𝑘, 𝑛), and do a 
variable transformation from face variables to d.o.f. of 𝐶: 

Ω =
𝑑𝑘×𝑛𝐶

Vol(GL(𝑘))

ℱ

1⋯𝑘 2⋯𝑘 + 1 ⋯ (𝑛⋯𝑘 − 1)
 

o There is a fast, combinatorial way of obtaining  ℱ 

[Franco, D.G., 
Penante, Wen] 

[Franco, D.G., 
Penante, Wen] 
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On-shell form      
𝑑𝑋𝑒

𝑋𝑒
edges 𝑋𝑒

     ⇔      𝑑𝑘×𝑛𝐶
1

1⋯𝑘 ⋯(𝑛⋯𝑘−1)
 

Singularity Turn off 𝑋𝑒, i.e.     Turn off minors 
structure remove edges      of Grassmannian 
  from diagram 

8 

⇔ 

• For planar diagrams 
𝑖 ⋯ 𝑖 + 𝑘 ≥ 0 

⇒ Turning off a minor is like  
     going to a geometric  
     boundary of the space 

     (→ ”singularities of the  
     amplitude”=”boundaries  
     of the amplituhedron”) 

[Arkani-Hamed, Bourjaily, Cachazo, 
Goncharov, Postnikov, Trnka] 



• Question:  Sometimes turning off different sets of edges  
  takes you to the same singularity. Why? 

• Equivalence moves:  certain graphical operations don’t 
      change the Grassmannian 

 

 

 

• Question:  Do I have to look for all possible moves, just in 
  case two boundaries are equivalent? 

• Diagnostic: It’s enough to look at which minors 𝑖 ⋯ 𝑖 + 𝑘   
are > 0 and which are = 0. 
(⇔ look at zig-zag paths on the graph) 
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• Since also here the on-shell form is Ω =  
𝑑𝑋𝑒

𝑋𝑒
 ,  

we reach singularities by removing edges 

• Diagnostic for equivalent configurations? 

– It’s enough to look at which minors 𝑖 ⋯ 𝑖 + 𝑘   
are > 0 and which are = 0. 

– ⇔ look at zig-zag paths on the graph 

• ”Good news”: we can still by hand look for all possible 
equivalence moves 
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     ⋯ ≥ 0  
⇒ no longer have same 
boundaries ⋯ → 0 



• Most general equivalence identification: 

If two diagrams are equivalent, their subgraphs must also be 
equivalent 

• “Geometric identification” 

• Works for planar diagrams too,  
but it’s less efficient than  
looking at ⋯ > 0 
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• We used our techniques to study the singularity structure of all 
possible on-shell diagrams in G(3,6) 

• We found that there are only 24 distinct diagrams of maximal 
dimension (mod. color swaps and equivalence moves) 

• Not all of these will be relevant to possible recursion relations – it’s 
nonetheless important to understand our building blocks 

• We also found that there are only 10 leading singularities in G(3,6) 
(plus their color-inverted partners!) 

• We found several interesting things / surprises 
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• Complicated denominators:  

1

(⋅)(⋅)(⋅)(⋅)(⋅)   ⋯  
          

1

[(⋅)(⋅) − (⋅)(⋅)](⋅)(⋅)(⋅)(⋅)(⋅) 
 



• Complicated denominators:  

1

(⋅)(⋅)(⋅)(⋅)(⋅)(⋅) ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ 2 − 4(⋅)(⋅)(⋅)(⋅)
 

• Top-dimensional diagram doesn’t have nonstandard poles, 
but lower-dimensional singularities do 

• Idea of geometric boundary operator not so obvious: 

17 

6

4

1

3

2 5

𝑿𝑨 → 0 ⇔ 234 → 0 
𝑿𝑩 → 0 ⇔ 123 → 0 
𝑿𝑪 → 0 ⇔ 236 → 0 

Any pair of these edges: 
234 → 0, 123 → 0, 
236 → 0, 235 → 0 



𝓔 
Stratification structure  

(# of singus of each dimension) 

1 {1,6,21,56,114,180,215,180,90,20} 

6 {1,7,27,83,166,239,249,190,90,20} 

8 {1,8,30,98,198,274,268,195,90,20} 

11 {1,8,34,116,215,282,271,196,90,20} 

16 {1,9,36,138,252,315,288,201,90,20} 

9 {1,9,38,122,236,309,285,199,90,20} 

5 {1,8,36,102,189,256,257,192,90,20} 

8 {1,10,45,142,267,334,297,202,90,20} 

5 {1,6,25,78,158,231,245,189,90,20} 

10 {1,7,29,107,209,280,271,196,90,20} 

7 {1,7,33,104,194,261,260,193,90,20} 

8 {1,8,35,120,231,299,279,197,90,20} 

13 {1,9,40,147,271,332,294,201,90,20} 

10 {1,7,25,93,186,259,260,193,90,20} 

9 {1,7,29,103,206,281,272,196,90,20} 

7 {1,5,26,94,187,259,260,193,90,20} 

10 {1,6,31,116,220,288,275,197,90,20} 

12 {1,7,39,151,280,341,299,202,90,20} 

8 {1,8,36,117,223,293,277,197,90,20} 

4 {1,3,15,66,153,231,246,189,90,20} 

9 {1,6,28,108,216,289,276,197,90,20} 

13 {1,9,38,132,236,298,279,198,90,20} 

-4 {1,12,54,166,348,420,339,210,90,20} 

6 {1,6,21,74,157,232,246,189,90,20} 
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• On-shell diagrams make dlog form manifest 

• There is intriguing evidence (𝑑𝑙𝑜𝑔 form up to 3 loops) that 
such a description exists for non-planar amplitudes 

• Must understand non-planar on-shell diagrams before using 
them 

• We found several ways of obtaining the integrand 
contribution from a non-planar on-shell diagram 

• We can now efficiently obtain the full singularity structure, 
and hence the geometric data, of any on-shell diagram 

• We landscaped all on-shell diagrams in G(3,6) 

• Found many surprises along the way 
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