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Introduction

e Scattering amplitudes are the basic quantities used
to compare theory with experiment.

* They also have a rich mathematical structure which
IS interesting in its own right.



Feynman Diagrams

e The traditional method for computing scattering
amplitudes uses Feynman diagrams:

* As the number of legs increases, the number of
Feynman diagrams quickly gets out of hand, even
though the final answer is often surprisingly simple.



* One reason for the complexity of Feynman diagrams
is that they contain off-shell states in the internal
lines, whereas amplitudes only know about on-shell
states.

* These difficulties can be overcome by using the
analytic properties of amplitudes in order to
compute them using only on-shell states.



Spinor-Helicity
 Massless on-shell momentum in 4d:
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* Expressing amplitudes in terms of these
spinors leads to dramatic simplifications.



MHV Amplitudes

At tree-level:
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BCFW Recursion

e Deform two external momenta by a complex
parameter which preserves on-shell properties:
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* Tree amplitudes become rational functions of q,
which can be reconstructed from their poles and
residues. (Britto,Cachazo,Feng,Witten)



Example

* Consider deforming a 4-pt amplitude:
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e The pole in a corresponds to (p,-p;)2=0, and the
residue corresponds to the product of two 3-point
amplitudes.



On-Shell Diagrams

BCFW recursion can be implemented using on-shell diagrams,
first developed for planar N=4 super-Yang-Mills theory by
Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikoy,

Trnka.

The building blocks are 3-point amplitudes:

1 1

>—3 5\10(5\2&5\3 >>—3 )\10()\20()\3

9 2



Tree-Level Recursion

* |In terms of on-shell diagrams, BCFW corresponds to
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where internal lines correspond to integrals over
on-shell states (no virtual particles!):
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Example

* 4-point tree amplitude:




* Mergers:

Equivalence Relations

* Square move: j:():{



Positivity

* On-shell diagrams are in one-to-one correspondence
with permutations.

* They are also in one-to-one correspondence with
cells of the positive Grassmannian.

* This suggests a new interpretation of scattering
amplitudes as the volume of an object known as the
Amplituhedron (Arkani-Hamed, Trnka).



Loop-Level Recursion

* For planar N=4 SYM there is a canonical definition for
the loop integrand, making it possible to extend
BCFW recursion to loop level:




N=8 SUGRA

An important question is how to generalize these ideas
beyond planar N=4 SYM.

In this talk, | will describe on-shell diagrams for N=8

supergravity, which has been argued to be the simplest QFT in
four dimensions (Arkani-Hamed, Cachazo, Kaplan).

Perturbative finiteness of N=8 SUGRA is an important open

problem. (Green, Russo, Vanhove / Bern, Carrasco, Dixon,
Johansson, Kosower, Roiban)

Fantasy: Use on-shell diagrams to deduce
* an all-loop integrand for N=8 SUGRA
* a gravitational “Amplituhedron”



Overview

| will primarily focus on tree-level amplitudes. Reformulating
BCFW recursion in terms of on-shell diagrams will reveal
interesting new relations to N=4 SYM such as:

* non-planar identities
* equivalence relations
* @Grassmannians

Moreover, | will describe a simple algorithm for reading off
formulae for on-shell diagrams.

Finally, | will briefly speculate on the extension of these ideas
to loop level.



Building Blocks
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Tree-Level Recursion

* Naive BCFW bridge doesn’t work; need to decorate it!
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where the sum is over all partitions of particles
{2,...,n-1} into two sets L,R.




Examples




Examples
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5-point:

+ perms(2, 3, 4)

Alternatively:
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+ cyclic perms(2, 3, 4)




Planar Sector

If we always insert the fixed legs of each subdiagram into the recursion
relation to obtain higher-point amplitudes, the result will always be a
sum over planar diagrams which are exactly the same as those
appearing in planar N=4 SYM.

In summary, one can obtain N=8 SUGRA amplitudes simply by
decorating on-shell diagrams of the corresponding amplitude in planar
N=4 SYM and summing over permutations of the unshifted legs!

On the other hand, if we choose to carry out the recursion in a
different way this will generically give non-planar diagrams, implying
remarkable new identities.



Equivalence Relations

* Square move: j:():{

* Mergers:
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Grassmannians

| will now describe an algorithm for reading off expressions for
on-shell diagrams in the form of Grassmannian integral
formulae, which also play a prominent role in the scattering
amplitudes of planar N=4 SYM.

The Grassmannian Gr(k,n) is the space of k-planes in n-
dimensions, or equivalently the set of kxn matrices modulo the
left action of GL(k). In the context of amplitudes, k refers to the
MHV degree and n refers to the number of external legs.

Given a k-plane C, define Ct to be the orthogonal (n-k) plane
whose minors obey
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3-point Amplitudes
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To see that these formulae reduce to the standard ones, use
GL(2) to set C=(A; A, A;) in the first case, and use GL(1) symmetry
to set C=([23] [31] [12]) in the second case.




Canonical Coordinates

e There is a canonical way to choose coordinates of
Grassmannian by assigning arrows and variables to the edges
of the on-shell diagram. For 3-point amplitudes, this choice
can be displayed as follows:
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* |n terms of these variables, C and C! are then determined by
the following rules:
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* For the black and white vertices, this gives respectively
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* Plugging this into the Grassmannian integral formulae
presented earlier then gives the following expressions:
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 Remarkably, these expressions can be generalized to any on-
shell diagram!
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Algorithm

Draw arrows on each edge such that there are two arrows
entering/one arrow leaving every black node and two arrows
leaving/one arrow entering every white node.

Label every edge with a variable a, and set one variable
associated to each vertex to unity.

Associate da/a? with each edge variable leaving a white
vertex or entering a black vertex and do/a® with each edge
variable entering a white vertex or leaving a black vertex.

For each black vertex associate the bracket <ij> where i,j are
the two edges with ingoing arrows. For each white vertex
associate the bracket [ij] where i,j are the two edges with
outgoing arrows.

Determine C and C* using the rules on a previous slide.



Example

* First consider the following undecorated 4-point diagram:

* Using the rules on the previous slide, we obtain
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* We then use the path prescription to rewrite the internal
brackets as external ones:
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* Plugging this into the expression on the previous slide gives
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which uplifts to the following covariant formula:
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* Dividing by the bridge factor <12>[12] and summing over the
permutations of legs 3 and 4 finally gives the following
Grassmannian integral formula for the 4-point amplitude:
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Loops

Remarkably, decorating the on-shell diagram corresponding to
the 4-point 1-loop amplitude in planar N=4 SYM and summing
over permutations of the external legs gives the 1-loop 4-point
amplitude of N=8 SUGRA!




Future Directions

* Loop-level recursion?
e Relation to ambitwistor string theory?

* Integrability?



Thank You



