Amplitudes and form factors from N=4 super Yang-Mills to QCD

Gabriele Travaglini
Queen Mary University of London

based on

Brandhuber, Kostacińska, Penante, GT, Young 1606.08682 [hep-th] & earlier work also with Bill Spence, Congkao Wen and Gang Yang

Brandhuber, Hughes, Panerai, Spence, GT 1608.083277 [hep-th]

New formulations for scattering amplitudes, LMU Munich, 5th September 2016

Scattering amplitudes

fully on-shell

Form factors

partially on-shell

progressively less on shell

- Correlation functions
 - off-shell

Why form factors?

- They share the beautiful simplicity of amplitudes
 - calculation with textbook (i.e. Feynman diagrams) methods cumbersome,
 however final results are often strikingly simple
- Important applications
 - phenomenology
 - dilatation operator
- Work in N=4 SYM, but with QCD in mind....
 - we like models...
 - ...though QCD has non-zero beta function, is not superconformal, (anti)quarks in (anti)-fundamental representation, no scalars

- Example: supersymmetric decomposition of one-loop amplitudes in pur Yang-Mills (Bern, Dixon, Dunbar, Kosower `94)
 - decomposes the calculation of a one-loop amplitude in pure YM into three simpler calculations, two of which are performed in N=4 and N=1 SYM
 - remaining N=0 calculation simpler than the original one
- Apply this kind of ideas to form factors
 - conceptual motivation: explore simplicity of off-shell quantities
 - practical application: surprising connection to Higgs + multi-gluon amplitudes in QCD (no supersymmetry!)

Plan

- Three form factor calculations in N=4 SYM, towards
 QCD
 - 1. Half-BPS quadratic operators Tr $(\phi_{12})^2$ & connection to Higgs amplitudes
 - Leading term in the effective action for Higgs+multi-gluon processes
 - 2. Half-BPS operators of the form $Tr (\phi_{12})^3$ (more in general $Tr (\phi_{12})^k$)
 - 3. Non-BPS operators, operators of the form Tr(X[Y, Z]) (SU(2|3) sector)
 - subleading terms in $1/m^2_{\text{top}}$ in the Higgs + multi-gluon effective action ?

Long-term goal

- Understand better the connection to Higgs+multi-gluon amplitudes
- N=4 super Yang-Mills as a tool to compute Higgs amplitudes in QCD?
- Dilatation operator, Yangian symmetry

What are form factors?

Less on-shell (i.e. partially off-shell) quantities

a gauge-invariant operator in the theory

$$F_{\mathcal{O}} := \int d^4x \, e^{-iqx} \, \langle state | \, \mathcal{O}(x) \, | 0 \rangle = \delta^{(4)}(q - p_{state}) \langle state | \, \mathcal{O}(0) \, | 0 \rangle$$

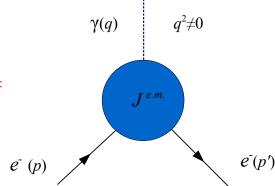
- lacktriangle momentum q carried by the operator is off shell
- Form factors appear in many important contexts:
 - electromagnetic form factor, or g-2
 - deep inelastic scattering $(e^- + p \rightarrow e^- + \text{hadrons})$
 - $e^+e^- \rightarrow \text{hadrons}(X)$

• $e^+e^- \rightarrow \text{hadrons } (X)$, all orders in α_{strong} , first order in $\alpha_{\text{e.m.}}$

hadronic electromagnetic current $e^+(p_2)$

 $e^{-}(p_1)$

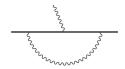
electron g-2: $\langle e^-(p')|J_u^{\text{e.m.}}(0)|e^-(p)\rangle =$



- $J_{\mu}^{\text{e.m.}} = \bar{\psi} \gamma_{\mu} \psi$
- $p^2 = m_e^2$ on shell, but q = p p' off shell

Simplicity of the g-2

• one loop:
$$\frac{g-2}{2} = \frac{\alpha}{2\pi} + \mathcal{O}(\alpha^2)$$

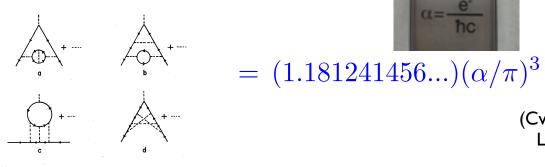


(Schwinger 1948)

$$\qquad \qquad \alpha = \frac{e^2}{4\pi\epsilon_0\hbar c} \; \sim \frac{1}{137} \; \; \text{fine structure constant}$$

Three loops:

72 diagrams like



$$= (1.181241456...)(\alpha/\pi)^3$$

(Cvitanovic & Kinoshita '74; Laporta & Remiddi '96)

- numerical values of each diagram oscillate wildly...
- ... but final result is O(1)
- an example of surprising simplicity outside amplitudes!

A side remark: from form factors to amplitudes

$$\text{ at } q \neq 0 \colon \qquad F_{\mathcal{O}} \ := \ \int \! d^4x \, e^{-iqx} \, \langle state | \, \mathcal{O}(x) \, | 0 \rangle$$

$$\Rightarrow \quad \text{at } q = 0: \qquad F_{\mathcal{O}}|_{q=0} = \int d^4x \left\langle state \right| \mathcal{O}(x) \left| 0 \right\rangle$$

this is the same as the correction to the amplitude $\langle state \mid 0 \rangle$ due to the addition of a new coupling to the action

$$\delta S = g_{\mathcal{O}} \int d^4x \ \mathcal{O}(x)$$

to the first order in $g_{\mathcal{O}}$

a particular soft limit of the form factor...

Recent interest from the CHY perspective (He, Zhang)

- insertion of the operator represented as the sum of two auxiliary null momenta $\ x$ and $\ y$
- compact expression for the supersymmetric form factor of the (chiral part of the) stress-tensor multiplet \mathcal{T}_2 (Brandhuber, Hughes, Panerai, Spence, GT)

$$\mathcal{F}(\{\lambda,\tilde{\lambda}\}) = \langle x\,y\rangle^2 \int \frac{1}{\operatorname{vol} GL(2)} \frac{\mathrm{d}^2\sigma_x\,\mathrm{d}^2\sigma_y}{(x\,y)^2} \prod_{a=1}^n \frac{\mathrm{d}^2\sigma_a}{(a\,a+1)} \times \prod_{i\in\{+,x,y\}} \delta^{(2)}(\lambda_i - \lambda(\sigma_i)) \prod_{J\in\{-\}} \delta^{(2|4)}(\tilde{\lambda}_J - \tilde{\lambda}(\sigma_J), \eta_J - \eta(\sigma_J))$$

- $\begin{array}{ll} \bullet & \textbf{standard definition} \\ \textbf{with} & (ab) := \epsilon_{\alpha\beta} \, \sigma_a^\alpha \sigma_b^\beta \end{array} \\ \lambda(\sigma) := \sum_{J \in \mathbf{m}} \frac{\lambda_J}{(\sigma \, \sigma_J)} \,, \qquad \tilde{\lambda}(\sigma) := \sum_{i \in \bar{\mathbf{p}}} \frac{\tilde{\lambda}_i}{(\sigma_i \, \sigma)} \,, \qquad \eta(\sigma) := \sum_{i \in \bar{\mathbf{p}}} \frac{\eta_i}{(\sigma_i \, \sigma)} \,. \end{array}$
- \blacktriangleright note: auxiliary particles x and y in the "positive-helicity" set
- Parke-Taylor denominator $\prod_{a=1}^{n} \frac{1}{(a\,a+1)}$ does not include the auxiliary particles

- Can be re-expressed in terms of the link variables of Arkani-Hamed, Cachazo, Cheung and Kaplan
 - Ink variables linearise momentum conservation
 - introduced via $1 = \int dc_{iJ} \, \delta \left(c_{iJ} 1/(iJ) \right)$
 - expression in terms of link variables:

$$\mathcal{F}(\{\lambda,\tilde{\lambda}\}) = \langle x\,y\rangle^2 \int \prod_{i\in\{+,x,y\},J\in\{-\}} dc_{iJ} \,U(c_{iJ}) \prod_{i\in\{+,x,y\}} \delta^{(2)}(\lambda_i - c_{iJ}\lambda_J) \prod_{J\in\{-\}} \delta^{(2|4)}(\tilde{\lambda}_J + c_{iJ}\tilde{\lambda}_i, \eta_J + c_{iJ}\eta_i)$$

with
$$U(c_{iJ}) := \int \frac{1}{\text{vol } GL(2)} \frac{d^2 \sigma_x d^2 \sigma_y}{(x y)^2} \prod_{a=1}^n \frac{d^2 \sigma_a}{(a a + 1)} \prod_{i \in \bar{\mathbf{p}}, J \in \mathbf{m}} \delta \left(c_{iJ} - \frac{1}{(i J)} \right)$$

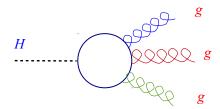
- For amplitudes, re-expressing RSV in terms of link variables leads to a direct connection with BCFW diagrams (Spradlin & Volovich)
- Similarly, here we can relate CHY to BCFW!
 (Brandhuber, Hughes, Panerai, Spence, GT)

One (more) reason SUSY is useful even if there is no SUSY...

Higgs amplitudes and form factors

Higgs production at the LHC

dominant process at low $M_{
m H}$ is gluon fusion



- coupling to gluons through a fermion loop
 - proportional to the mass of the quark \Rightarrow top quark dominates

Effective Lagrangian description

(Wilczek '77; Shifman, Vainshtein, Voloshin, Zakharov '79; Dawson '91; Djouadi, Graudenz, Spira, Zerwas '95)

- for $M_{\rm H} < 2\,m_{\rm top}$, integrate out the top quark (shrink loop to a point-like effective interaction)
- ullet leading order: $egin{bmatrix} {\cal L}_{
 m eff}^{(0)} &\sim & H\,{
 m Tr}F^2 \end{bmatrix}$, coupling independent of $m_{
 m top}$
- efficient MHV rules (Dixon, Glover, Khoze; Badger, Glover & Risager; Boels, Schwinn)
- How do we compute a process with one Higgs + gluons with $\mathcal{L}_{ ext{eff}}^{(0)}$?

• Higgs amplitudes are form factors of $Tr F^2$!

$$\left(F_{\mathrm{Tr}F^{2}}(1,\ldots,n)\right) = \int \! d^{4}x \, e^{-iqx} \left\langle state | \, \mathrm{Tr}\,F^{2}(x) \, |0
ight
angle \quad q^{2} = M_{\mathrm{H}}^{2}$$

in N=4 super Yang-Mills, the form factor of $Tr F_{SD}^2$ (SD = self-dual) is related to that of $Tr (\phi_{12})^2$ (simpler!)

$$F_{\text{Tr}\phi_{12}^2}(1,\ldots,n) = \int d^4x \ e^{-iqx} \ \langle state' | \text{Tr} \phi_{12}^2(x) | 0 \rangle$$

- Tr ϕ^2_{12} and Tr $F_{\rm SD}^2$ part of the same half-BPS supermultiplet
- supersymmetric form factor of the chiral part of the stress tensor multiplet (Brandhuber, Gurdogan, Mooney, GT, Yang)
- Note: a priori no connection between QCD and N=4 SYM form factors, however comparing them will lead to a surprise...

Higgs → 3 gluons at 2 loops

(Brandhuber, GT, Yang)

In N=4 SYM: 2 scalars, one gluon (MHV)

$$F_3(1,2,3) = \langle \phi_{12}(p_1) \phi_{12}(p_2) g^+(p_3) | \operatorname{Tr}(\phi_{12}\phi_{12})(0) | 0 \rangle$$

- ▶ A particularly simple form factor in N=4 super Yang-Mills
 - operator is protected from quantum corrections ("I/2 BPS")
- ▶ Loops: $F_3^{(L)} = F_3^{\text{tree}} \mathcal{G}_3^{(L)}(1,2,3)$
 - $\mathcal{G}_3^{(L)}$ helicity-blind function, totally symmetric under legs exchange
 - one loop: IR divergences + sum of finite two-mass easy box
 - two loops: result encoded in finite remainder function

The form factor remainder

ullet Construct the ABDK/BDS finite remainder, ${\mathcal R}$

$$\mathcal{R}_n^{(2)} := \mathcal{G}_n^{(2)} - \frac{1}{2} (\mathcal{G}_n^{(1)}(\epsilon))^2 - f^{(2)}(\epsilon) \mathcal{G}_n^{(1)}(2\epsilon) - C^{(2)} + \mathcal{O}(\epsilon)$$

- particular combination introduced for amplitudes by Anastasiou, Bern Dixon & Kosower and Bern, Dixon & Smirnov
- Ingredients:
 - two-loop form factor $\mathcal{G}_n^{(2)}$, one-loop form factor $\mathcal{G}_n^{(1)}$ in dimensional regularisation (D=4-2 ϵ)
 - $f^{(2)}(\epsilon)=-2\zeta_2-2\zeta_3\epsilon-2\zeta_4\epsilon^2$ contains cusp and collinear anomalous dimensions (integrability!), $C^{(2)}(\epsilon)=4\,\zeta_4$
- Key properties:
 - I. finite: infrared divergences cancel (as in Bloch-Nordsiek)
 - 2. trivial collinear limits $\mathcal{R}_n^{(2)} \to \mathcal{R}_{n-1}^{(2)}$ (in particular: $\mathcal{R}_3^{(2)} \to 0$)

• Result of a unitarity-based two-loop calculation:

$$\frac{F_3^{(2)}}{F_3^{\text{tree}}} = \sum_{i=1}^2 (DTri_i + DBox_i) + TriPent + NBox + NTri + \text{cyclic}$$



- result expressed as rational coefficients X two-loop planar and non-planar integrals

Some features of the result:

- sum of transcendental functions, typically quite complicated:
 Goncharov's polylogarythms
- defined recursively

$$G(a_1;z) := \int_0^z \frac{dt_1}{t_1 - a_1}, \qquad G(a_1, \vec{a}; z) := \int_0^z \frac{dt_1}{t_1 - a_1} G(\vec{a}; t_1)$$

compare to something simpler: classical polylogarithms

$$\operatorname{Li}_{1}(z) = -\log(1-z), \qquad \operatorname{Li}_{n}(z) = \int_{0}^{z} \frac{dt}{t} \operatorname{Li}_{n-1}(t)$$

key finding: our result is a sum of functions of homogeneous degree of "transcendentality". All terms have transcendentality 4 (this will change later...)

Strategy

- Compute the symbol of the finite remainder
 - either by taking the symbol of the known (but complicated answer)...
 - or by computing it directly using symmetry properties & analyticity
 - finite, trivial/understood collinear limits
 - analiticity
 - need to know the possible letters
- "lift" it to a function
 - result might be remarkably simple, and in particular much simpler than the original expression!
 - fix "beyond-the-symbol" terms

The unique symbol satisfying these requirements:

$$\mathcal{S}^{(2)} = -2u \otimes (1-u) \otimes (1-u) \otimes \frac{1-u}{u} + u \otimes (1-u) \otimes u \otimes \frac{1-u}{u}$$

$$-u \otimes (1-u) \otimes v \otimes \frac{1-v}{v} - u \otimes (1-u) \otimes w \otimes \frac{1-w}{w}$$

$$-u \otimes v \otimes (1-u) \otimes \frac{1-v}{v} - u \otimes v \otimes (1-v) \otimes \frac{1-u}{u}$$

$$+u \otimes v \otimes w \otimes \frac{1-u}{u} + u \otimes v \otimes w \otimes \frac{1-v}{v}$$

$$+u \otimes v \otimes w \otimes \frac{1-w}{w} - u \otimes w \otimes (1-u) \otimes \frac{1-w}{w}$$

$$+u \otimes w \otimes v \otimes \frac{1-u}{u} + u \otimes w \otimes v \otimes \frac{1-v}{v}$$

$$+u \otimes w \otimes v \otimes \frac{1-u}{u} + u \otimes w \otimes v \otimes \frac{1-v}{v}$$

$$+u \otimes w \otimes v \otimes \frac{1-w}{w} - u \otimes w \otimes (1-w) \otimes \frac{1-u}{u}$$

$$+ \operatorname{cyclic permutations}.$$

- four-fold tensor product (2L-fold at L loops, transcendentality 2L)
- kinematic variables: $u_1 = u = s_{12} / q^2$, $u_2 = v = s_{23} / q^2$, $u_3 = w = s_{31} / q^2$ where $s_{ij} := (p_i + p_j)^2$ and $u_1 + u_2 + u_3 = 1$
- ▶ Note: coefficients ±1, ±2 (well... -2)

- How to "integrate" the symbol:
 - $ightharpoonup \mathcal{S}^{(2)}$ satisfies a particular relation of Goncharov:

$$\mathcal{S}_{abcd}^{(2)} - \mathcal{S}_{bacd}^{(2)} - \mathcal{S}_{abdc}^{(2)} + \mathcal{S}_{badc}^{(2)} - (a \leftrightarrow c, b \leftrightarrow d) = 0$$

→ can re-express as a linear combination of classical polylogarithms only

 $\log x_1 \log x_2 \log x_3 \log x_4$, $\text{Li}_2(x_1) \log x_2 \log x_3$, $\text{Li}_2(x_1) \text{Li}_2(x_2)$, $\text{Li}_3(x_1) \log x_2$ and $\text{Li}_4(x_i)$

we find the following arguments:

$$\left(u, v, w, 1 - u, 1 - v, 1 - w, 1 - \frac{1}{u}, 1 - \frac{1}{v}, 1 - \frac{1}{w}, -\frac{uv}{w}, -\frac{vw}{u}, -\frac{wu}{v}\right)$$

Final answer is very compact

• Final answer: (Brandhuber, GT, Yang)

$$\mathcal{R}_{3}^{(2)} = -2\left[J_{4}\left(-\frac{uv}{w}\right) + J_{4}\left(-\frac{vw}{u}\right) + J_{4}\left(-\frac{wu}{v}\right)\right] - 8\sum_{i=1}^{3}\left[\text{Li}_{4}\left(1 - u_{i}^{-1}\right) + \frac{\log^{4}u_{i}}{4!}\right] - 2\left[\sum_{i=1}^{3}\text{Li}_{2}(1 - u_{i}^{-1})\right]^{2} + \frac{1}{2}\left[\sum_{i=1}^{3}\log^{2}u_{i}\right]^{2} - \frac{\log^{4}(uvw)}{4!} - \frac{23}{2}\zeta_{4}$$

- $u_1 = u = s_{12} / q^2$, $u_2 = v = s_{23} / q^2$, $u_3 = w = s_{31} / q^2$ kinematic invariants
- $J_4(z) := \text{Li}_4(z) \log(-z)\text{Li}_3(z) + \frac{\log^2(-z)}{2!}\text{Li}_2(z) \frac{\log^3(-z)}{3!}\text{Li}_1(z) \frac{\log^4(-z)}{48} .$
- ▶ Block-Wigner-Ramakrishnan(-Zagier) polylogarithmic function
- Result is free of Goncharov polylogarithms

Next: QCD

Higgs amplitudes in QCD

- Higgs + 3 partons (Koukoutsakis 2003; Gehrmann, Glover, Jaquier & Koukoutsakis 2011)
 - $Hg^+g^-g^-$ MHV
 - $ightharpoonup H g^+ g^+ g^+$ maximally non-MHV
 - $H q \bar{q} g$ fundamental quarks

$$F^{\text{tree}}(H, g_1^-, g_2^-, g_3^+) = \frac{\langle 1 \, 2 \rangle^2}{\langle 2 \, 3 \rangle \, \langle 3 \, 1 \rangle}$$

$$F^{\text{tree}}(H, g_1^+, g_2^+, g_3^+) = \frac{q^4}{[1\,2]\,[2\,3]\,[3\,1]}$$

$$q^2 = M_H^2$$

- In N=4 SYM:
 - $(H g^+ g^- g^-)$ and $(H g^+ g^+ g^+)$ both derived from super form factor
 - from supersymmetric Ward identities: (Brandhuber, GT, Yang)

$$\frac{F^{(L)}(g_1^-, g_2^-, g_3^+)}{F^{\text{tree}}(g_1^-, g_2^-, g_3^+)} \ = \ \frac{F^{(L)}(g_1^+, g_2^+, g_3^+)}{F^{\text{tree}}(g_1^+, g_2^+, g_3^+)} = \ \mathcal{G}^{(L)}(u, v, w) \quad \leftarrow \text{what we computed}$$

- QCD answer from Gehrmann, Glover, Jaquier & Koukoutsakis
 - expressed in terms of several pages of Goncharov polylogarithms
 - transcendentality 4, 3, 2, 1 and rational
 - entirely expected because of expansion as \sum (coefficient x integral)!
 - each integral is separately quite complicated
- Next, compare N=4 form factors to Higgs amplitudes:
 - take maximally transcendental piece of $(H g^+ g^- g^-)$ and $(H g^+ g^+ g^+)$

• We find a surprising connection...

$$\left| \mathcal{R}_{H \, g^- g^- g^+}^{(2)} \right|_{ ext{MAX TRANS}} = \left| \mathcal{R}_{H \, g^+ g^+ g^+}^{(2)} \right|_{ ext{MAX TRANS}} = \mathcal{R}_{\mathcal{N}=4 \, ext{SYM}}^{(2)}$$

- N=4 result is a particular part of the QCD result in fact it is the "most complicated part"
- all Goncharov polylogarithms in QCD results can be eliminated in favour of classical polylogarithms
- Nothing similar seems to hold for the form factor (H, q, \bar{q}, g) (see also Duhr '12)
 - maximally transcendental part does not satisfy Goncharov et al criterion

Comments

- Typical presentation of the result of a calculation:
 - result = \sum (coefficient x integral)
 - integrals are separately complicated, but final result is strikingly simple
 - there must be better way to present the result than Σ (coefficient x integral)

- Supersymmetry is a very useful organisational principle!
 - even if there is no supersymmetry...

What next?

- Obvious (but nontrivial) extensions:
 - different operators, more legs (Penante, Spence, GT, Wen; Brandhuber, Penante, GT, Wen)
 - further potential connections to phenomenology, e.g. in Higgs + 4 gluons

- Corrections due to the finiteness of the top mass
 - ▶ leading order term (infinite top mass limit) is the dimension-5 coupling studied earlier

$$\mathcal{L}_{\mathrm{eff}}^{(0)} \sim H \, \mathrm{Tr} F^2$$

• next corrections from four dimension-7 operators, suppressed by powers of $1/m^2_{\text{top}}$ (Buchmüller & Wyler; Neill; Harlander & Neumann)

Look at this question with the N=4 SYM microscope...

identify couplings which are present also in N=4 SYM. Just two:

$$\mathcal{L}_{ ext{eff}}^{(1)} \sim H \operatorname{Tr} F^3$$
 $\mathcal{L}_{ ext{eff}}^{(2)} \sim H \operatorname{Tr} (D_{\mu} F_{\rho\sigma}) (D^{\mu} F^{\rho\sigma})$

- compute in N=4 SYM
- ideal plan: use Ward identities to connect to operators in the same multiplet but containing less derivatives / more scalars
- compare to QCD

Key questions & conjectures:

- does the "maximal-transcendental connection" still holds?
- any other interesting connection?

Perform simpler "toy" calculations

- Form factors of operators containing three fields in N=4 SYM
- \blacktriangleright simpler than $\operatorname{Tr} F^3$. Operators with scalars!
- Naturally leads to the SU(2|3) sector studied by Beisert
- Several possibilities, two broad classes:
 - protected operators (no UV divergences)
 - unprotected operators (with UV divergences)
- interesting, unexpected connections between the two classes!

The two classes of operators:

Protected

- Tr $(\phi_{12})^3$ half-BPS, form factors free of UV divergences
- Generalisation: Tr $(\phi_{12})^k$, also half-BPS $\forall k$

Non-protected

- ▶ Length 3: $\mathcal{O}_B := \text{Tr}(X[Y, Z])$ where $X = \phi_{12}, Y = \phi_{23}, Z = \phi_{31}$
 - same one-loop anomalous dimension as $Tr F^3$
- Carries along a few dimension-three friends via operator mixing:
 - $\mathcal{O}_{BPS} := Tr(X \{Y, Z\})$, which is BPS (symmetric traceless)
 - $\mathcal{O}_F := (1/2) \operatorname{Tr} (\psi \psi)$, which mixes with \mathcal{O}_B (and $\psi := \psi_{123}$)
- This is the SU(2|3) sector! The SU(2|3) "dynamic" spin chain (Beisert '03)
 - key features: I. closed sector, 2. length changing $(\psi\psi \leftrightarrow XYZ)$

Two distinguished combinations:

(Bianchi, Kovacs, Rossi, Stanev; Eden; ...)

- I. an additional BPS operator $\mathcal{O}_{BPS} = (1/2) \operatorname{Tr} (\psi \psi) + g \operatorname{Tr} (X[Y, Z])$
 - can also be obtained by acting with 2 susy transformations on Tr $(\phi_{12})^2$
- 2. A descendant of the Konishi operator

$$\mathcal{O}_K = \operatorname{Tr}(X[Y,Z]) - \frac{gN}{8\pi^2} \operatorname{Tr}(\psi\psi)$$

Four interesting calculations to carry out:

$$\land$$
 \langle $XYZ \mid \text{Tr} (\psi \psi) \mid 0 \rangle$ non-minimal v. easy

$$\downarrow \langle \psi \psi \mid \text{Tr}(X[Y,Z]) \mid 0 \rangle$$
 sub-minimal easy

$$\downarrow \langle \psi \psi \mid \text{Tr} (\psi \psi) \mid 0 \rangle$$
 minimal ("Sudakov")

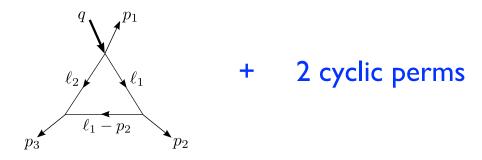
Protected operators

3-point form factor of $Tr\phi^3$ at 2 loops

(Brandhuber, Penante, GT, Wen)

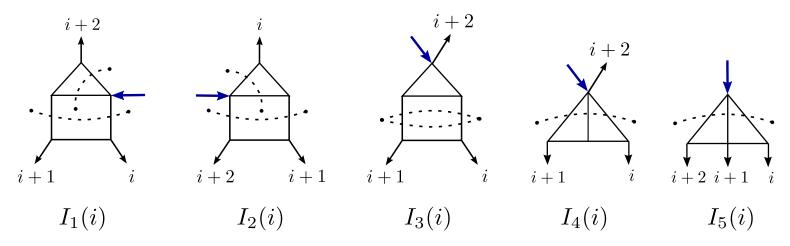
$$F_3(1,2,3) := \langle \phi_{12}(p_1), \phi_{12}(p_2), \phi_{12}(p_3) | \operatorname{Tr}[(\phi_{12})^3](0) | 0 \rangle$$

- "minimal form factor": as many particles as fields
- Tree: $F_3^{(0)}(1,2,3) = 1$
- ▶ One loop: sum of three "one-mass" triangles



Result at two loops:

$$F_{\mathcal{T}_3,3}^{(2)} = \sum_{i=1}^{3} \left[I_1(i) + I_2(i) + I_3(i) + I_4(i) - I_5(i) \right]$$



- Result expressed in terms of two-loop planar integrals
- No sub-triangle and -bubble topologies on the amplitude side (no triangle theorem for N=4 SYM amplitudes)
- All integrals known from work of Gehrmann & Remiddi except I (and 2), decompose remaining ones using FIRE/LiteRed (Smirnov/Lee)
- Compute the symbol and lift it to a function

• The symbol of \mathcal{R}_3 is very simple!

$$\mathcal{S}_{3}^{(2)}(u,v,w) = -\frac{3}{2}u \otimes (1-u) \otimes \frac{v}{w} \otimes \frac{v}{w} + \frac{1}{2}u \otimes u \otimes \frac{v}{w} \otimes \frac{v}{w} + u \otimes v \otimes \left(\frac{u}{w} \otimes \frac{v}{w} + \frac{v}{w} \otimes \frac{u}{w}\right) + \operatorname{perms}(u,v,w)$$

- ▶ transcendentality four function ⇒ rank-four tensor
- entries: (u, v, w, 1-u, 1-v, 1-w) $u := \frac{s_{12}}{q^2}, v := \frac{s_{23}}{q^2}, w := \frac{s_{31}}{q^2},$
- first entry: (u, v, w) for correct branch cuts (Gaiotto, Maldacena, Sever, Vieira)

$$- \mathcal{S}[\mathcal{R}^{(2)}] = \sum_{i,j} P_{i,j}^2 \otimes \mathcal{S}[\operatorname{disc}_{i,j}\mathcal{R}^{(2)}] \text{ with } P_{i,j} := p_i + \dots + p_j$$

- unusual second entry condition
- last entry condition: ratios of simple ratios only
- satisfies Goncharov, Spradlin, Vergu & Volovich's criterion, thus can be reexpressed in terms of classical polylogarithms only

▶ Table of symmetry properties from Goncharov, Spradlin, Vergu & Volovich:

Function	$A \otimes A$	$S \otimes A$	$A \otimes S$	$S \otimes S$
$\operatorname{Li}_4(x)$	×	×	\checkmark	✓
$\operatorname{Li}_3(x) \log(y)$	×	×	\checkmark	✓
$\operatorname{Li}_2(x)\operatorname{Li}_2(y)$	√	√	\checkmark	✓
$\operatorname{Li}_2(x) \log(y) \log(z)$	×	✓	✓	✓
$\log(x) \log(y) \log(z) \log(w)$	×	×	×	✓

- Two more stringent properties of our symbol: $AA[S^{(2)}] = SA[S^{(2)}] = 0$
- Need: Li₄ (x), Li₃ $(x) \log(x)$, $\log(x) \log(y) \log(z) \log(w)$ but no Li₂!

$$\qquad \qquad \textbf{Entries:} \quad \left\{ u, v, w, 1 - u, 1 - v, 1 - w, -\frac{u}{v}, -\frac{u}{w}, -\frac{v}{u}, -\frac{v}{w}, -\frac{w}{v}, -\frac{uv}{w}, -\frac{uw}{v}, -\frac{vw}{u} \right\}$$

• Final answer fits on a couple of lines...

Final answer (including beyond the symbol terms):

$$\mathcal{R}_{3,3}^{(2)} := -\frac{3}{2}\operatorname{Li}_{4}(u) + \frac{3}{4}\operatorname{Li}_{4}\left(-\frac{uv}{w}\right) - \frac{3}{2}\log(w)\operatorname{Li}_{3}\left(-\frac{u}{v}\right) + \frac{1}{16}\log^{2}(u)\log^{2}(v) + \frac{\log^{2}(u)}{32}\left[\log^{2}(u) - 4\log(v)\log(w)\right] + \frac{\zeta_{2}}{8}\log(u)\left[5\log(u) - 2\log(v)\right] + \frac{\zeta_{3}}{2}\log(u) + \frac{7}{16}\zeta_{4} + \text{permutations}(u, v, w)$$

- beyond the symbol terms: fixed using numerics (with GiNaC)
- no Goncharov polylogarithms, no Li₂'s

Non-BPS operators

Form factors in the SU(2|3) sector

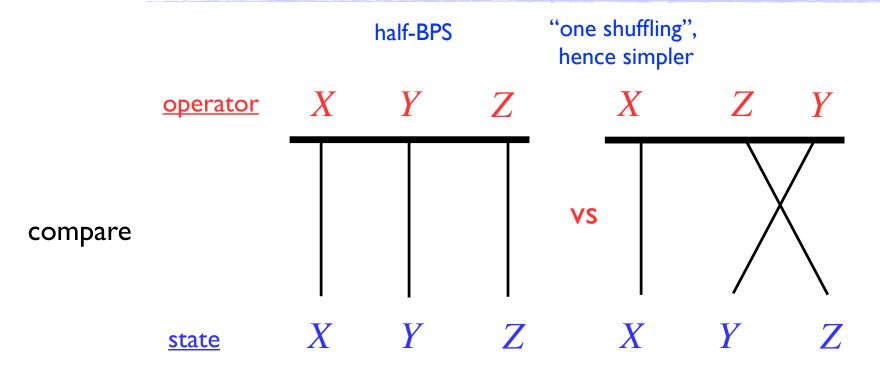
(Brandhuber, Kostacinska, Penante, GT, Young)

• Strategy:

- compute the four form-factors in terms of two-loop integrals, using unitarity (two- and three-particle cuts)
- compute the remainder functions
 - remainders are free of IR divergences; UV divergences still present
- simplify the remainders using symbols, lift back to (simpler) functions
- renormalise the operators, and resolve the mixing
 - eigenvalues of the mixing matrix: anomalous dimensions
 - eigenvectors: operators that diagonalise the dilatation operator

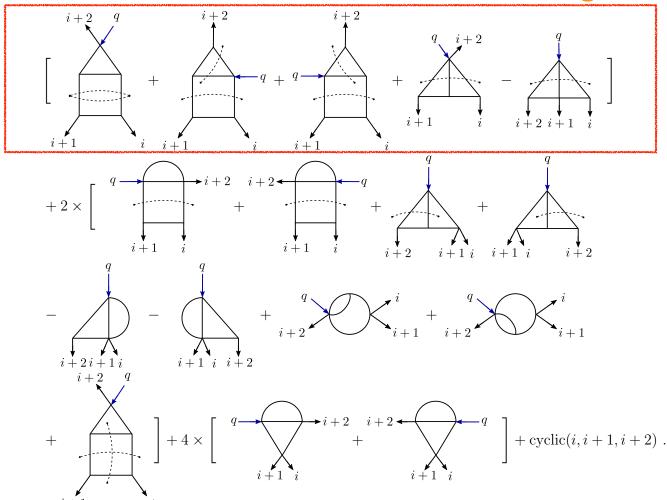
- The most interesting/complicated
 - minimal form factor $\langle XYZ \mid \text{Tr}(X[Y,Z])(0) \mid 0 \rangle$
- Key observation (very simple!)

$$\operatorname{Tr}(X[Y, Z]) = \operatorname{Tr}(X\{Y, Z\}) - 2\operatorname{Tr}(XZY) := \mathcal{O}_{BPS} + \mathcal{O}_{offset}$$



- What does "simple" mean:
 - \land $\langle XYZ \mid \text{Tr}(X\{Y,Z\}) \mid 0 \rangle$ (half-BPS) is maximally transcendental
 - equal to $\langle XXX | \text{Tr}(X^3) | 0 \rangle$ (discussed earlier)
 - - transcendentality equal to 3, 2, 1 and 0 (rational terms) only
- A cute observation in the SU(2) spin chain (Loebbert, Nandan, Sieg, Wilhelm, Yang)
 - ▶ highest transcendentality of a "term" is 4 s where s = # of shufflings
 - same happens here for $\langle XYZ \mid \text{Tr}(XZY) \mid 0 \rangle$
 - one shuffling, hence transcendentality 3, 2, 1 and rational

• Result for the remainder in terms of integral functions:



- first line corresponds to the half-BPS form factor
- dotted lines correspond to numerators in the integral functions
- presence of sub-bubbles points at UV divergences

Remainder can be decomposed as

$$\mathcal{R}^{(2)}_{X[Y,Z]} = \mathcal{R}^{(2)}_{\mathrm{BPS}} + \mathcal{R}^{(2)}_{\mathrm{non-BPS}}$$
 where

$$\mathcal{R}_{\text{BPS}}^{(2)} = F_{\mathcal{O}_{\text{BPS}}}^{(2)}(\epsilon) - \frac{1}{2} \left(F_{\mathcal{O}_{\text{BPS}}}^{(1)}(\epsilon) \right)^2 - f^{(2)}(\epsilon) F_{\mathcal{O}_{\text{BPS}}}^{(1)}(2\epsilon) - C^{(2)} ,$$

$$\mathcal{R}_{\text{non-BPS}}^{(2)} = F_{\mathcal{O}_{\text{offset}}}^{(2)}(\epsilon) - F_{\mathcal{O}_{\text{offset}}}^{(1)} \left(\frac{1}{2} F_{\mathcal{O}_{\text{offset}}}^{(1)} + F_{\text{BPS}}^{(1)} \right) (\epsilon) - f^{(2)}(\epsilon) F_{\mathcal{O}_{\text{offset}}}^{(1)}(2\epsilon)$$

- recall that $\mathcal{O}_{BPS} := \operatorname{Tr}(X\{Y,Z\})$, $\mathcal{O}_{offset} := -2\operatorname{Tr}(XZY)$
- ▶ BDS remainder free of IR but not UV divergences
- $\mathcal{R}^{(2)}_{BPS}$ computed earlier, transcendentality-4 function

$$\mathcal{R}_{\mathrm{BPS}}^{(2)} = \frac{3}{2} \operatorname{Li}_{4}(u) - \frac{3}{4} \operatorname{Li}_{4} \left(-\frac{uv}{w} \right) + \frac{3}{2} \log(w) \operatorname{Li}_{3} \left(-\frac{u}{v} \right) - \frac{1}{16} \log^{2}(u) \log^{2}(v) - \frac{\log^{2}(u)}{32} \left[\log^{2}(u) - 4 \log(v) \log(w) \right] - \frac{\zeta_{2}}{8} \log(u) \left[5 \log(u) - 2 \log(v) \right] - \frac{\zeta_{3}}{2} \log(u) - \frac{7}{16} \zeta_{4} + \operatorname{perms}(u, v, w)$$

• Focus now on the new part, i.e. $\mathcal{R}^{(2)}_{\text{non-BPS}}$

$$\mathcal{R}_{\text{non-BPS}}^{(2)} = \frac{c}{\epsilon} + \sum_{i=0}^{3} \mathcal{R}_{\text{non-BPS};3-i}^{(2)}$$

- $c = 18 \pi^2$ this is the UV pole, π^2 "spurious" $-f^{(2)}(\epsilon) F^{(1)}_{\mathcal{O}_{\text{offset}}}(2\epsilon)$

• "18" will enter the mixing matrix

$$\mathcal{R}_{\text{non-BPS;3}}^{(2)} = 2 \left[\text{Li}_3(u) + \text{Li}_3(1-u) \right] - \frac{1}{2} \log^2(u) \log \frac{vw}{(1-u)^2} + \frac{2}{3} \log(u) \log(v) \log(w) + \frac{2}{3} \zeta_3 + \text{perms}(u, v, w) \right]$$

$$\mathcal{R}_{\text{non-BPS};2}^{(2)} = -12 \Big[\text{Li}_2(1-u) + \text{Li}_2(1-v) + \text{Li}_2(1-w) \Big] - 2 \log^2(uvw) + 36 \zeta_2$$

$$\mathcal{R}_{\text{non-BPS};1}^{(2)} = -12 \log(uvw) ,$$

$$\mathcal{R}_{\text{non-BPS};0}^{(2)} = 126$$

transcendentality < 4, hence only classical polylogarithms

• Summary so far:

▶ leading transcendental part of $\langle XYZ \mid \text{Tr}(X \mid [Y,Z]) \mid 0 \rangle$ same as for the half-BPS case $\langle XXX \mid \text{Tr}(X^3) \mid 0 \rangle$!

• Future goal: compare to $\langle g g g | \text{Tr } F^3 | 0 \rangle$

- conjecture: maximally transcendental part computed by the form factor of the half-BPS operator $Tr(X^3)$? This would parallel the situation for $Tr(F^2)$ in QCD vs $Tr(\phi_{12})^2$ in N=4 SYM...
- if the conjecture is true, then...
- ... half-BPS operators in N=4 SYM have a prominent role in QCD!
- ▶ Understand multiplet structure for Tr F³
- \blacktriangleright Same one-loop anomalous dimension of Tr (X[Y, Z])

An $SU(2) \Leftrightarrow SU(2|3)$ sector connection

or are we missing a trivial Ward identity?

- An intriguing connection with the remainder densities in the SU(2) spin chain (Loebbert, Nandan, Sieg, Wilhelm, Yang)
- Contrast the two sectors:
 - \blacktriangleright SU(2): two bosons, X and Y (scalars). Closed, no length change
 - SU(2|3): $\phi_{12}=X$, $\phi_{23}=Y$, $\phi_{31}=Z$ and $\psi_{123;\alpha}$, $\alpha=1, 2$. Closed, length change
- LNSWY computed the two-loop spin-chain Hamiltonian
 - "open", equivalent to removing the trace (form factor of a product of fields, without the trace)
 - involves three sites at two loops
 - finite parts expressed in terms of remainder densities

• Interaction range 2 and 3 processes:

- ▶ Range 2: I. $XX \rightarrow XX$, 2. $XY \rightarrow XY$, 3. $XY \rightarrow YX$
- ▶ Range 3: $1.XXX \rightarrow XXX$, $2.XXY \rightarrow XXY$, $3.XYX \rightarrow XYX$, $4.XXY \rightarrow XYX$, $5.XYX \rightarrow XXY$, $6.XXY \rightarrow YXX$

Focus on range 3

- there are only 3 independent processes/remainder densities

$$(R_i^{(2)})_{XXX}^{XXX}, \quad (R_i^{(2)})_{XXY}^{XYX}, \quad (R_i^{(2)})_{XXY}^{YXX}$$

- *i* denotes the site
- each remainder depends on $u_i = \frac{s_{ii+1}}{s_{ii+1i+2}}, v_i = \frac{s_{i+1i+2}}{s_{ii+1i+2}}, w_i = \frac{s_{ii+2}}{s_{ii+1i+2}}$
- no particular symmetry in the u_i , v_i and w_i

We find the following relations:

$$\begin{split} &\frac{1}{2}\mathcal{R}_{\text{non-BPS;3}}^{(2)} = -\sum_{S_3} \left(R_i^{(2)} \right)_{XXY}^{XYX} \Big|_3 \ + \ 6 \, \zeta_3 \ , \\ &\frac{1}{2}\mathcal{R}_{\text{non-BPS;2}}^{(2)} = -\sum_{S_3} \left[\left(R_i^{(2)} \right)_{XXY}^{XYX} - \left(R_i^{(2)} \right)_{XXY}^{YXX} \right] \Big|_2 \ + \ 5\pi^2 \ , \\ &\frac{1}{2}\mathcal{R}_{\text{non-BPS;1}}^{(2)} = -\sum_{S_3} \left[\left(R_i^{(2)} \right)_{XXY}^{XYX} - \left(R_i^{(2)} \right)_{XXY}^{YXX} \right] \Big|_1 \ , \\ &\frac{1}{2}\mathcal{R}_{\text{non-BPS;0}}^{(2)} = -\sum_{S_3} \left[\left(R_i^{(2)} \right)_{XXY}^{XYX} - \left(R_i^{(2)} \right)_{XXY}^{YXX} \right] \Big|_0 \end{split}$$

- $(R_i)|_m$ indicates the transcendentality-m part
- \triangleright S_3 denotes sum over all six permutations of $(u \ v, \ w)$
- Universality of form factors across different sectors?
 - or is there a trivial explanation for this result?

SU(2|3) dilatation operator

$$egin{pmatrix} \mathcal{O}_F^{
m ren} \ \mathcal{O}_B^{
m ren} \end{pmatrix} \, = \, egin{pmatrix} \mathcal{Z}_F^{F} & \mathcal{Z}_F^{B} \ \mathcal{Z}_B^{F} & \mathcal{Z}_B^{B} \end{pmatrix} \, egin{pmatrix} \mathcal{O}_F \ \mathcal{O}_B \end{pmatrix}$$

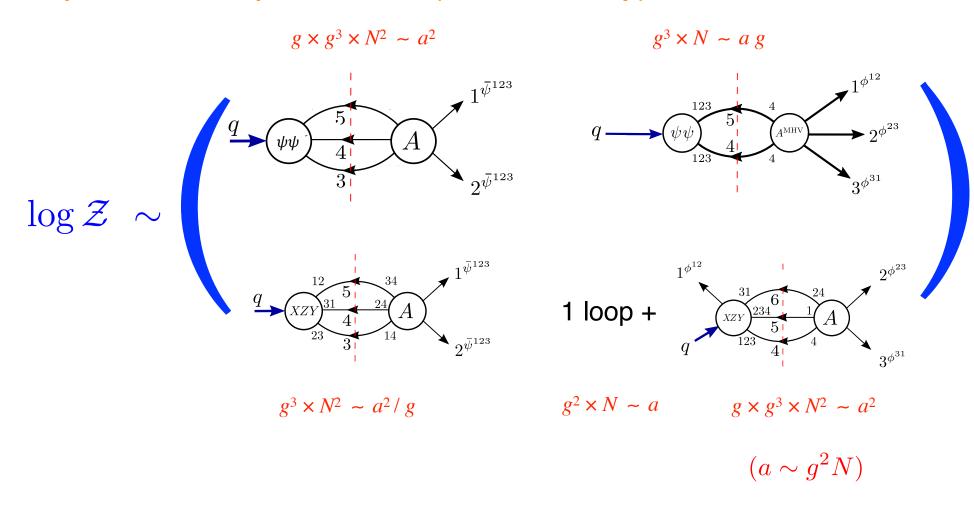
- $\mathcal{O}_{B} := \operatorname{Tr} (X [Y, Z]) \quad \text{and} \quad \mathcal{O}_{F} := (1/2) \operatorname{Tr} (\psi \psi)$
- Extract mixing matrix from requesting finiteness of the renormalised form factors
 - $\land \langle XYZ \mid \operatorname{Tr}(X[Y,Z]) \mid 0 \rangle$
 - $\land \langle XYZ \mid \text{Tr} (\psi\psi) \mid 0 \rangle$

(IR finite, starts at one loop)

(IR finite, starts at two loops)

- Dilatation operator $\delta \mathcal{D} = -\mu_R \frac{\dot{\partial}}{\partial \mu_R} \log \mathcal{Z}$

Up to two loops we have (schematically):



$$\sim \frac{1}{\epsilon} \begin{pmatrix} \mathcal{O}(a^2) & \mathcal{O}(a\,g) \\ \\ \mathcal{O}(a^2/g) & \mathcal{O}(a) + \mathcal{O}(a^2) \end{pmatrix}$$

• Result for log (
$$\mathcal{Z}$$
):
$$\log(\mathcal{Z}) = \begin{pmatrix} a^2(\mu_R) \frac{6}{\epsilon} & -a(\mu_R) \cdot g \frac{6}{\epsilon} \\ -\frac{a^2(\mu_R)}{g} \cdot \frac{6}{\epsilon} & a(\mu_R) \cdot \frac{6}{\epsilon} - a^2(\mu_R) \cdot \frac{18}{\epsilon} \end{pmatrix}$$

running 't Hooft coupling:
$$a(\mu_R) := \frac{g^2 N e^{-\epsilon \gamma}}{(4\pi)^{2-\epsilon}} \left(\frac{\mu_R}{\mu}\right)^{-2\epsilon}$$

two-loop dilatation operator:

$$\delta \mathcal{D} = \lim_{\epsilon \to 0} \left[-\mu_R \frac{\partial}{\partial \mu_R} \log(\mathcal{Z}) \right] = 12 \times \begin{pmatrix} 2a^2 & -ag \\ \\ -2\frac{a^2}{g} & a - 6a^2 \end{pmatrix}$$

't Hooft coupling $a := \frac{g^2 N}{(4\pi)^2}$

$$a := \frac{g^2 N}{(4\pi)^2}$$

Next: eigenvalues and eigenvector

Eigenvalues:

- $\gamma_{BPS'} = 0, \qquad \gamma_{K'} = 12 \ a 48 \ a^2 + \dots$
- one further BPS combination, one descendent of the Konishi.
 Results in agreement with Beisert '03

• Eigenvectors:

$$\begin{cases}
\mathcal{O}_{\text{BPS'}} = \mathcal{O}_F + g \mathcal{O}_B \\
\mathcal{O}_{\mathcal{K'}} = \mathcal{O}_B - \frac{gN}{8\pi^2} \mathcal{O}_F
\end{cases}$$

- recall that $\mathcal{O}_B := \operatorname{Tr}(X[Y, Z])$ and $\mathcal{O}_F := (1/2)\operatorname{Tr}(\psi\psi)$
- $X = \phi_{12}$, $Y = \phi_{23}$, $Z = \phi_{31}$ $\psi := \psi_{123}$
- agrees with Bianchi et al, Eden
- **BPS** combination can also be obtained by explicitly acting with supersymmetry generators on $\text{Tr}\ (\phi_{12}\ \phi_{12})$ (Intriligator & Skiba)

- Other research direction: derive the dilatation operator from amplitudes techniques (no time to discuss this!)
 - complete two-loop dilatation operator still not known
 - amplitudes symmetries (Yangian) could play an important role
 - one-loop approach in Brandhuber, Heslop, GT, Young '15

Summary

- Form factors in N=4 SYM appear in several interesting contexts
 - connection to Higgs amplitudes in QCD
 - possibly true also for higher-dimensional operators describing the corrections to the infinite top-mass approximation
 - can be used to compute the dilatation operator of the theory
- Can the connection between Higgs amplitudes in QCD and form factors in N=4 SYM be made (more) systematic?
- Universality of form factors across different sectors?