1. Übung zur Quantenmechanik II (T5) (Abgabe 22.10.2007)

1. Aufgabe: Operatoren und idealer Meßprozeß

Gegeben sind die linearen Operatoren A und B eines dreidimensionalen Hilbertraumes

$$A = \frac{1}{2} \begin{pmatrix} 5 & 0 & 0 \\ 0 & 2 - \sqrt{3} & -3 \\ 0 & -3 & 2 + \sqrt{3} \end{pmatrix} , \quad B = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 (1)

- a) (i) Sind A, B hermitesch? (ii) Sind A, B unitär? (iii) Sind A, B Projektoren?
- **b)** Berechnen Sie [A, B].
- c) Berechnen Sie $(AB)^+$.
- \mathbf{d}) Berechnen Sie die Eigenwerte von A.
- e) In einem ersten Meßprozeß wird die Observable A gemessen und als Meßwert der größte Eigenwert von A ermittelt. Mit welcher Wahrscheinlichkeit wird in einer direkt anschließenden Messung von B der Wert 0 gefunden?
- ${\bf f}$) In welchen Zuständen können A und B gleichzeitig scharf gemessen werden?

2. Aufgabe: Heisenbergbild

Betrachten Sie den Hamiltonoperator $H = \hbar\omega(a^+a + \frac{1}{2})$ eines harmonischen Oszillators eines Teilchens der Masse m, dessen Auf- und Absteiger a^+ bzw. a sind.

- a) Berechnen Sie im Heisenbergbild $a_H^+(t)$ und $a_H(t)$.
- **b)** Berechnen Sie mit Hilfe von Teil a) die Kommutatoren $[x_H(t_1), x_H(t_2)]$ und $[x_H(t_1), p_H(t_2)]$.

3. Aufgabe: Impulsdarstellung

a) Geben Sie die Eigenwerte und die Eigenfunktionen des Impulsoperators \vec{p} in beliebiger Dimension sowohl im Ortsraum als auch im Impulsraum an. Sie haben damit auch einen Satz Eigenfunktionen für den Hamiltonoperator $H = \frac{\vec{p}^2}{2m}$ eines freien Teilchens. Wie lauten dessen Eigenwerte?

Betrachten Sie nun den eindimensionalen Hamiltonoperator für ein Teilchen im homogenen Feld:

$$H = \frac{p^2}{2m} - Fx \ . \tag{2}$$

- b) Wie lautet die zugehörige stationäre Schrödingergleichung in Impulsdarstellung? Bestimmen Sie das Spektrum von H.
- c) Bestimmen Sie die Eigenfunktionen zur Energie E, $\psi_E(p)$, in der Impulsdarstellung. Normieren Sie sie so, daß gilt

$$\int_{-\infty}^{\infty} \psi_E^*(p)\psi_{E'}(p)dp = \delta(E - E') . \tag{3}$$

d) Geben Sie nun unter Verwendung der vorhergehenden Teile die Eigenwerte und die Eigenfunktionen in Impulsdarstellung eines Teilchens im homogenen Feld in drei Dimensionen an:

$$H = \frac{\vec{p}^2}{2m} - \vec{F} \cdot \vec{r} \ . \tag{4}$$

(Hinweis: Wählen Sie das Koordinatensystem geschickt!)

4. Aufgabe: Einfache Auswahlregeln

- a) Welche Parität hat der Bahndrehimpulseigenzustand $|lm\rangle$ eines Teilchens?
- b) Wie wirkt der Rotationsoperator $\exp(-i\phi L_z/\hbar)$ auf den Zustand $|lm\rangle$? (Die Quantisierungsrichtung sei wie üblich in z-Richtung.) Wie transformiert sich der Operator z unter $\exp(-i\phi L_z/\hbar)$?
- c) Wir betrachten die Matrixelemente $\langle l'm'|z|lm\rangle$. Welche dieser Elemente müssen aus reinen Symmetrieargumenten verschwinden, wenn Sie die Symmetrietransformationen P (Parität) und $\exp(-i\phi L_z/\hbar)$ ausnützen?