3. Übung zur Quantenmechanik II (T5) (Abgabe 5.11.2007)

9. Aufgabe: Zeitentwicklungsoperator

In der Vorlesung wurde der Zeitentwicklungsoperator $U(t,t_0) = \mathbf{1} + \sum_{n=1}^{\infty} U^{(n)}(t,t_0)$ eingeführt, wobei für die Terme *n*-ter Ordnung zwei verschiedene Formeln angegeben wurden,

$$U^{(n)}(t,t_0) = \left(\frac{1}{i\hbar}\right)^n \int_{t_0}^t dt_1 \int_{t_0}^{t_1} dt_2 \dots \int_{t_0}^{t_{n-1}} dt_n H(t_1) \dots H(t_n)$$
 (1)

und

$$U^{(n)}(t,t_0) = \left(\frac{1}{i\hbar}\right)^n \frac{1}{n!} \int_{t_0}^t dt_1 \int_{t_0}^t dt_2 \dots \int_{t_0}^t dt_n T\Big(H(t_1) \dots H(t_n)\Big) . \tag{2}$$

Hierbei wurde der Zeitordnungsoperator T eingeführt. Er ist definiert durch

$$T(A_1(t_1)\cdots A_n(t_n)) = A_{P(1)}(t_{P(1)})\cdots A_{P(n)}(t_{P(n)}),$$
 (3)

wobei P die Permutation ist, für die gilt $t_{P(1)} \ge \cdots \ge t_{P(n)}$. Zeigen Sie die Gleichheit von (1) und (2) für beliebige n (der Fall n = 2 wurde in der Vorlesung behandelt).

10. Aufgabe: Wechselwirkungsbild

Lösen Sie im Wechselwirkungsbild die Bewegungsleichungen für die Operatoren $\hat{x}^I(t)$ und $\hat{p}^I(t)$ und berechnen Sie die Kommutatoren $[\hat{x}^I(t_2),\hat{x}^I(t_1)],[\hat{p}^I(t_2),\hat{p}^I(t_1)]$ und $[\hat{x}^I(t_2),\hat{p}^I(t_1)]$ für ein Teilchen der Masse m in einem eindimensionalen Potential $\hat{V}_t^S(x)$, das Sie als Störung annehmen können.

11. Aufgabe: Geladener harmonischer Oszillator

Ein eindimensionaler elektrisch geladener linearer harmonischer Oszillator (Ladung e, Kreisfrequenz ω , Masse m) befinde sich für $t < t_0$

im Grundzustand. Zum Zeitpunkt t_0 werde ein konstantes elektrisches Feld E eingeschaltet. Bestimmen Sie in erster Ordnung zeitabhängiger Störungstheorie die Wahrscheinlichkeiten dafür, den Oszillator nach dem Einschalten der Störung in seinem n-ten Energieeigenzustand zu finden.

12. Aufgabe: Zweizustandssystem

Betrachten Sie das Zweizustandssystem $\hat{H}=\hat{H}_0+\hat{V}$ mit (im Schrödingerbild)

$$\hat{H}_{0} = E_{1}|1\rangle\langle 1| + E_{2}|2\rangle\langle 2| ,
\hat{V} = \gamma e^{i\omega t}|1\rangle\langle 2| + \gamma e^{-i\omega t}|2\rangle\langle 1|$$
(4)

mit γ und ω reell und positiv, sowie $E_2 > E_1$. Zum Zeitpunkt t = 0 befinde sich das System im tieferen Zustand $|1\rangle$. Allgemein nimmt der Zustandsvektor im Wechselwirkungsbild die Form $|\Psi(t)\rangle = \sum_{n=1}^2 c_n(t)|n\rangle$ mit $c_1(0) = 1$ und $c_2(0) = 0$ an.

- a) Bestimmen Sie $|c_1(t)|^2$ und $|c_2(t)|^2$ für t>0 exakt durch Lösen des gekoppelten Differentialgleichungssystems für $c_n(t)$.
- b) Lösen Sie dasselbe Problem in zeitabhängiger Störungstheorie bis zur ersten nicht verschwindenden Ordnung. Vergleichen Sie beide Lösungsansätze für kleine γ .