Exercise 1 - Integral representation of the Euler beta function

In class we discussed the Veneziano amplitude, which can be expressed in terms of the Euler beta function

$$
\begin{equation*}
B(x, y)=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)} . \tag{1}
\end{equation*}
$$

For $\operatorname{Re}(x)>0$ and $\operatorname{Re}(y)>0$, the Euler beta function has the integral representation

$$
\begin{equation*}
B(x, y)=\int_{0}^{1} d t t^{x-1}(1-t)^{y-1} \tag{2}
\end{equation*}
$$

which arises in the scattering amplitude of four open string tachyons in flat space. Prove this integral representation using the integral representation of the Euler gamma function $(\operatorname{Re}(x)>0)$

$$
\begin{equation*}
\Gamma(x)=\int_{0}^{\infty} d u u^{x-1} e^{-u} \tag{3}
\end{equation*}
$$

Hint: One way to proceed is to start with the integral representation of $\Gamma(x) \Gamma(y)$ and making the change of variables $u=a^{2}$ in (3). Then go over to polar coordinates.

Exercise 2 - Equations of motion for a charged point particle

Consider the variation of the action

$$
\begin{equation*}
S=-m \int_{\mathcal{P}} d s+q \int_{\mathcal{P}} d \tau A_{\mu}(x(\tau)) \frac{d x^{\mu}}{d \tau}(\tau) \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
d s^{2}=-\eta_{\mu \nu} d x^{\mu}(\tau) d x^{\nu}(\tau) \tag{5}
\end{equation*}
$$

under a variation $\delta x^{\mu}(\tau)$ of the particle trajectory. \mathcal{P} is the worldline of the particle and the integral along it amounts to an integral from τ_{i} to τ_{f} when the worldline is parameterised by τ.

Show that the variation of the first term gives

$$
\begin{equation*}
\delta S=-\int_{\tau_{i}}^{\tau_{f}} d \tau \delta x^{\mu}(\tau) \eta_{\mu \nu} \frac{d}{d \tau}\left(m \frac{d x^{\nu}}{d s}\right) \tag{6}
\end{equation*}
$$

and that the final equation of motion is

$$
\begin{equation*}
\frac{d p_{\mu}}{d \tau}=q F_{\mu \nu} \frac{d x^{\nu}}{d \tau} \tag{7}
\end{equation*}
$$

where

$$
\begin{align*}
p_{\mu} & =m u_{\mu}=m \frac{d x_{\mu}}{d s} \tag{8}\\
F_{\mu \nu} & =\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} \tag{9}
\end{align*}
$$

Hint: Begin the second part of your calculation by explaining why

$$
\begin{equation*}
\delta A_{\mu}(x(\tau))=\frac{\partial A_{\mu}}{\partial x^{\nu}}(x(\tau)) \delta x^{\nu}(\tau) \tag{10}
\end{equation*}
$$

Exercise 3 - Constraints

a) In class we derived the Hamiltonian equations in the presence of constraints, i.e.

$$
\begin{align*}
\dot{q}^{n} & =\frac{\partial H}{\partial p_{n}}+u^{i} \frac{\partial \phi_{i}}{\partial p_{n}}, \\
\dot{p}_{n} & =-\frac{\partial H}{\partial q^{n}}-u^{i} \frac{\partial \phi_{i}}{\partial q^{n}}, \\
\phi_{i}(q, p) & =0 \tag{11}
\end{align*}
$$

Show that they can be derived from the variational principle

$$
\begin{equation*}
\delta \int_{t_{1}}^{t_{2}}\left(\dot{q}^{n} p_{n}-H-u^{i} \phi_{i}\right)=0 \tag{12}
\end{equation*}
$$

for arbitrary variations $\delta q^{n}, \delta p_{n}, \delta u^{i}$ subject only to the restriction $\delta q^{n}\left(t_{1}\right)=0, \delta q^{n}\left(t_{2}\right)=0$.
b) Show that the Poisson-bracket of two first class constraints is again a first class constraint.

