Note: On Monday, November 30, the class will take place in room B052, and on Wednesday, December 2, the class will take place in room B349!

Exercise 1 - Open string trajectory

Consider the following classical trajectory of an open string,

$$
\begin{align*}
X^{0} & =3 A \tau \\
X^{1} & =A \cos (3 \tau) \cos (3 \sigma) \\
X^{2} & =A \sin (a \tau) \cos (b \sigma) \tag{1}
\end{align*}
$$

and assume the conformal gauge.
a) Determine the values of a and b so that the above equations describe an open string that solves the constraint $T_{\alpha \beta}=0$. Express the solution in the form

$$
\begin{equation*}
X^{\mu}=X_{L}^{\mu}\left(\sigma^{+}\right)+X_{R}^{\mu}\left(\sigma^{-}\right) \tag{2}
\end{equation*}
$$

Determine the boundary conditions satisfied by this field configuration.
b) Plot the solution in the $\left(x^{1}, x^{2}\right)$-plane as a function of τ in steps of $\pi / 12$.
c) Compute the center-of-mass momentum and angular momentum and show that they are conserved. What do you obtain for the relation between the energy and angular momentum of this string?

Exercise 2 - Rotating open string in the light-cone gauge

Consider string motion defined by $x^{-}=x^{I}=0$, and the vanishing of all the coefficients α_{n}^{I} with the exception of

$$
\begin{equation*}
\alpha_{1}^{2}=\left(\alpha_{-1}^{2}\right)^{*}=a \quad, \quad \alpha_{1}^{3}=\left(\alpha_{-1}^{3}\right)^{*}=i a \tag{3}
\end{equation*}
$$

Here a is a dimensionless real constant. We want to construct a solution that represents an open string that is rotating in the $\left(x^{2}, x^{3}\right)$-plane.
a) What is the mass (or energy) of this string?
b) Construct the explicit functions $X^{2}(\tau, \sigma)$ and $X^{3}(\tau, \sigma)$. What is the length of the string in terms of a and α^{\prime} ?
c) Calculate the L_{n}^{\perp} modes for all n. Use your result to construct $X^{-}(\tau, \sigma)$.
d) Determine the value of p^{+}by demanding that $X^{1}(\tau, \sigma)=0$ (as we want to describ a string rotating in the $\left(x^{2}, x^{3}\right)$-plane). Find the relation between t and τ. What is the frequency of the rotation?
e) Calculate the angular momentum $J=\left|M_{23}\right|$ and compare it with the square of the energy.

Exercise 3 - Action of $L_{0}^{\perp}-\tilde{L}_{0}^{\perp}$
In class we showed that in the classical theory $L_{0}-\tilde{L}_{0}$ generates σ-translations, via the Poissonbracket. In the quantum theory the Poisson-bracket is replaced by the commutator. In light-cone gauge, this implies

$$
\begin{equation*}
\left[L_{0}^{\perp}-\tilde{L}_{0}^{\perp}, X^{I}(\tau, \sigma)\right]=i \frac{\partial X^{I}}{\partial \sigma} \tag{4}
\end{equation*}
$$

a) Using (4) and the definition $P \equiv L_{0}^{\perp}-\tilde{L}_{0}^{\perp}$, show that

$$
\begin{equation*}
e^{-i P \sigma_{0}} X^{I}(\tau, \sigma) e^{i P \sigma_{0}}=X^{I}\left(\tau, \sigma+\sigma_{0}\right) \tag{5}
\end{equation*}
$$

b) Use the result of part a) to calculate $e^{-i P \sigma_{0}} \alpha_{n}^{I} e^{i P \sigma_{0}}$ and $e^{-i P \sigma_{0}} \tilde{\alpha}_{n}^{I} e^{i P \sigma_{0}}$.
c) Consider the state

$$
\begin{equation*}
|U\rangle=\alpha_{-m}^{I} \tilde{\alpha}_{-n}^{J}\left|p^{+}, p^{I}\right\rangle \quad, \quad m, n>0 . \tag{6}
\end{equation*}
$$

Use the result of part b) to calculate $e^{-i P \sigma_{0}}|U\rangle$. What is the condition that makes the sate $|U\rangle$ invariant under σ-translations?

