Note: The 1st exam will take place on December 17, 8.15 am , in room A 010 during the tutorial. The result (and also the solutions) will be available on the net shortly after: http://homepages.physik.uni-muenchen.de/~Michael.Haack//ST1_WS09.html. There will be no class on December 21. The first class next year will be on January 11, the first tutorial on January 14.

Exercise 1 - Polarization tensor

Consider the closed string state

$$
\begin{equation*}
|\phi\rangle=\xi_{\mu \nu} \alpha_{-1}^{\mu} \tilde{\alpha}_{-1}^{\nu}|0 ; k\rangle, \tag{1}
\end{equation*}
$$

where $\xi_{\mu \nu}$ denotes the polarization tensor. What do the Virasoro constraints on physical states,

$$
\begin{equation*}
L_{m}|\phi\rangle=\tilde{L}_{m}|\phi\rangle=0 \quad, \quad m>0 \tag{2}
\end{equation*}
$$

imply for $\xi_{\mu \nu}$?

Exercise 2 - Weights of some typical operators of the free X^{μ} CFT

a) By computing the OPEs with $T(z)=-\frac{1}{\alpha^{\prime}}: \partial X^{\mu} \partial X_{\mu}$: and $\tilde{T}(\bar{z})=-\frac{1}{\alpha^{\prime}}: \bar{\partial} X^{\mu} \bar{\partial} X_{\mu}:$, confirm that the following operators have the indicated weights (h, \tilde{h}) :

$$
\begin{equation*}
X^{\mu} \rightarrow(0,0), \quad \partial X^{\mu} \rightarrow(1,0), \quad \bar{\partial} X^{\mu} \rightarrow(0,1), \quad \partial^{2} X^{\mu} \rightarrow(2,0), \quad: e^{i k \cdot X}: \rightarrow\left(\frac{\alpha^{\prime} k^{2}}{4}, \frac{\alpha^{\prime} k^{2}}{4}\right) \tag{3}
\end{equation*}
$$

Which of the operators are tensor operators?
b) Calculate the singular terms in the OPE of $T\left(z_{1}\right) T\left(z_{2}\right)$.

Exercise 3 - The OPE of the energy momentum tensor

In the complex plane, the Virasoro generators L_{n} are given by

$$
\begin{equation*}
L_{n}=\oint_{C_{0}} \frac{d z}{2 \pi i} z^{n+1} T(z) \tag{4}
\end{equation*}
$$

a) Show that

$$
\begin{equation*}
\left[L_{n}, L_{m}\right]=\oint_{C_{0}} \frac{d z_{2}}{2 \pi i} \oint_{C_{z_{2}}} \frac{d z_{1}}{2 \pi i} z_{1}^{n+1} z_{2}^{m+1} T\left(z_{1}\right) T\left(z_{2}\right) \tag{5}
\end{equation*}
$$

Here, C_{0} denotes a contour about $z_{2}=0, C_{z_{2}}$ is a contour about $z_{1}=z_{2}$, and, as usual, the product $T\left(z_{1}\right) T\left(z_{2}\right)$ is meant to be the radially ordered product:

$$
T\left(z_{1}\right) T\left(z_{2}\right) \equiv R\left(T\left(z_{1}\right) T\left(z_{2}\right)\right)=\left\{\begin{array}{ll}
T\left(z_{1}\right) T\left(z_{2}\right) & \text { for }\left|z_{1}\right|>\left|z_{2}\right| \tag{6}\\
T\left(z_{2}\right) T\left(z_{1}\right) & \text { for }\left|z_{2}\right|>\left|z_{1}\right|
\end{array}\right\}
$$

(Hint: Write the commutator as a difference of two double contour integrals and use a contour deformation of the $d z_{1}$ integration for fixed z_{2}, just as was done in class for $\delta_{Q} \phi(\tilde{z})=\epsilon[Q, \phi(\tilde{z})]$.)
b) Use (5) and the (radially ordered) operator product

$$
\begin{equation*}
T\left(z_{1}\right) T\left(z_{2}\right)=\frac{c / 2}{\left(z_{1}-z_{2}\right)^{4}}+\frac{2 T\left(z_{2}\right)}{\left(z_{1}-z_{2}\right)^{2}}+\frac{\partial_{z_{2}} T\left(z_{2}\right)}{\left(z_{1}-z_{2}\right)}+\text { (finite terms) } \tag{7}
\end{equation*}
$$

as well as the Cauchy-Riemann formula,

$$
\begin{equation*}
\oint_{C_{z_{2}}} \frac{d z_{1}}{2 \pi i} \frac{f\left(z_{1}\right)}{\left(z_{1}-z_{2}\right)^{n}}=\frac{1}{(n-1)!} f^{(n-1)}\left(z_{2}\right), \tag{8}
\end{equation*}
$$

to rederive the quantum Virasoro algebra:

$$
\begin{equation*}
\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}+\frac{c}{12} n\left(n^{2}-1\right) \delta_{m+n, 0} \tag{9}
\end{equation*}
$$

c) Use (7) and the general formula for infinitesimal conformal transformations

$$
\begin{equation*}
\delta_{\xi} \phi(z)=\epsilon\left[L_{\xi}, \phi(z)\right], \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
L_{\xi}=-\oint_{C_{0}} \frac{d z}{2 \pi i} \xi(z) T(z) \tag{11}
\end{equation*}
$$

to show that

$$
\begin{equation*}
\delta_{\xi} T(z)=-\epsilon\left[\frac{c}{12} \partial^{3} \xi(z)+2 \partial \xi(z) T(z)+\xi(z) \partial T(z)\right] . \tag{12}
\end{equation*}
$$

What does this imply for $T(z)$?

