
String Theory I Assignment Sheet 8 Due: January 18, 2010

Exercise 1 – Closed string vertex operator

Consider the operator
ζµν : ∂Xµ∂̄Xνeik·X : , (1)

where ζµν is a constant tensor. Determine the condition for this operator to be primary, by looking
at the OPE with the energy momentum tensor T = (−1/α′) : ∂Xρ∂X

ρ :. What is its weight?

Exercise 2 – Unitary CFT’s

Show that a unitary CFT (i.e. one without negative norm states) has the following two characteristics:

(i) c ≥ 0 , where c is the central charge,

(ii) h ≥ 0, where h is the weight of any primary field (and similar for h̃).

Hint: You need to make use of the Virasoro algebra [Lm, Ln] = (m− n)Lm+n + c
12

(m3 −m)δm,−n.

Exercise 3 – Determinants and Graßmann numbers

Determinants of operators can formally be written as (path) integrals over a new set of auxiliary
variables. In order for this to be possible, these auxiliary variables have to be anti-commuting rather
than ordinary commuting numbers. Two anti-commuting numbers (or Graßmann numbers) θ and η
satisfy

θη = −ηθ (2)

and hence θ2 = 0. Because of this, the most general function of one Graßmann variable θ is

f(θ) = A+Bθ (3)

with A,B ∈ C. Integrals over Graßmann variables (“Berezin integrals”) are defined by∫
dθ[A+Bθ] := B. (4)

a) Defining the derivative

d

dθ
θ = 1 ,

d

dθ
A = 0 , (A ∈ C) , (5)

show that the Berezin integral of a total derivative is zero and that the Berezin integral is translation
invariant, i.e., ∫

dθ
d

dθ
f(θ) = 0 , (6)∫

dθf(θ + a) =

∫
dθf(θ) , for a ∈ C . (7)

These properties mimic similar properties of ordinary integrals of the type
∫∞
−∞ dxf(x), which is

the motivation for the unusual definition (4). Note that, for Graßmann variables, integration and
differentiation are equivalent operations.



b) If one has several linearly independent Graßmann variables θi (i = 1, . . . , n), where

∀i,j : θiθj = −θjθi , (8)

one defines ∫
dθ1 . . . dθnf(θi) = c , (9)

where c is the coefficient in front of the θnθn−1 . . . θ1-term in f(θi) (note the order):

f = . . .+ cθnθn−1 . . . θ1 . (10)

Let n be even and split the θi into two sets ψm, χm (m = 1, . . . , n
2
):

(θ1, . . . , θn) = (ψ1, χ1, ψ2, χ2, . . . , ψn
2
, χn

2
) . (11)

Show that ∫ ( n
2∏

m=1

dψmdχm

)
e

P n
2
k=1 χkλkψk =

n
2∏

m=1

λm , (12)

where λm ∈ C are ordinary c-numbers and the exponential is defined via its power series expansion.
Moreover, show that this implies∫ ( n

2∏
m=1

dψmdχm

)
e

P n
2
k,l=1 χkΛklψl = det Λ , (13)

for a symmetric n
2
× n

2
matrix Λ with eigenvalues λm (this can be easily generalized to complex

Graßmann numbers and Hermitian matrices).

c) Compare (12) with the result of the integral over commuting numbers αm, βm (m = 1, . . . , n/2),
with λm ∈ R. More concretely, show∫ ∞

−∞

( n
2∏

m=1

dαmdβm

)
e2πi

P n
2
k=1 αkλkβk =

n
2∏

m=1

1

λm
. (14)

Comments: The fact that one can invert the result of a Gaussian integral by replacing the commuting
variables by Graßmann valued variables, carries over to path integrals. This is commonly used in
QFT where fermionic path integrals are used to express the determinant of a differential operator.
For instance, formula (13) can be generalized to the context of a path integral over Graßman valued
fields ψ(x), χ(x), resulting in ∫

DψDχ e
R
dDxχ∆ψ = det ∆ , (15)

where ∆ is some self-adjoint differential operator. This can be seen as follows. The fields ψ(x)
and χ(x) can be expanded in (c-number valued) eigenfunctions Ψi(x) of ∆ with Graßmann valued
coefficients ψi and χi, i.e.

ψ(x) =
∑
i

ψiΨi(x) , χ(x) =
∑
i

χiΨi(x) ,

∆Ψi(x) = λiΨi(x) . (16)

The eigenfunctions can be chosen in an orthonormal way, i.e.∫
dDxΨi(x)Ψj(x) = δij , (17)

and the measure can be defined as DψDχ =
∏

i dψidχi.
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