
String Theory I Assignment Sheet 9 Due: January 25, 2010

Exercise 1 – Virasoro-Shapiro amplitude

The Virasoro-Shapiro amplitude gives the result of the scattering of four closed string tachyons at
tree-level, i.e. the world-sheet takes the form of a sphere. In class we will obtain this amplitude using
the path integral formalism. There is an alternative way to calculate it, the operator formalism,
which should be employed in this exercise.

After gauge fixing the metric on the sphere (i.e. the plane with a point added at infinity), one still
has some gauge symmetry left: those conformal transformations which are globally defined on the
sphere. This left over gauge symmetry allows to fix the position of any three vertex operators to
arbitrary positions, for instance z1 = 0, z2 = 1 and z3 =∞ (more on that will be discussed in class).
Thus, we are interested in calculating

A(4) ∼
∫
d2z
〈
: eik3·X(∞,∞) :′ : eik4·X(z,z̄) : : eik2·X(1,1) : : eik1·X(0,0) :

〉
, (1)

where the prime at the first vertex operator indicates that it is the operator conformally mapped via
z3 → z′3 = 1/z3; by a slight abuse of notation we still give the position in terms of z3. Moreover, the
z-integral is over the whole plane. Using the state-operator map, this can be rewritten as∫

d2z
〈

0;−k3

∣∣∣R( : eik4·X(z,z̄) : : eik2·X(1,1) :
)∣∣∣0; k1

〉
, (2)

where the asymptotic states have momentum k1 and −k3, as appropriate for in- and out-states,
respectively, and R denotes radial ordering as usual.

For the X-CFT, normal ordering amounts to placing annihilation operators to the right of the
creation operators, i.e.

: eik·X(z,z̄) : = eik·XC(z,z̄)eik·XA(z,z̄) , (3)

and it is conventional to group xµ with the creation operators and pµ with the annihilation operators,
i.e.

Xµ
C(z, z̄) = xµ − i

√
α′

2

∞∑
m=1

1

m
(αµ−mz

m + α̃µ−mz̄
m) ,

Xµ
A(z, z̄) = −iα

′

2
pµ ln |z|2 + i

√
α′

2

∞∑
m=1

1

m

(
αµm
zm

+
α̃µm
z̄m

)
. (4)

a) Use the Campbell-Baker-Hausdorff formula, i.e.

eik1·X1Aeik2·X2C = eik2·X2Ceik1·X1Ae−[k1·X1A,k2·X2C ] , (5)

and the commutators

[αµm, α
ν
n] = [α̃µm, α̃

ν
n] = mηµνδm+n,0 , [α̃µm, α

ν
n] = 0 , m, n ∈ Z ,

[xµ, pν ] = iηµν , [αµn, x
ν ] = 0 , n 6= 0 , (6)

(note that there is no need for a Wick rotation in space-time in the operator formalism), to show for
|z1| > |z2|:

eik1·X1A(z1,z̄1)eik2·X2C(z2,z̄2) = eik2·X2C(z2,z̄2)eik1·X1A(z1,z̄1)|z1 − z2|α
′k1·k2 . (7)



b) Use (3) and (7) to show that (2) is given by

δD
( 4∑
i=1

ki

)∫
d2z|1− z|−α′t/2−4|z|−α′u/2−4 , (8)

up to an overall constant. Here, we used the Mandelstam variables

s = −(k1 + k2)2 , t = −(k1 + k3)2 , u = −(k1 + k4)2 , (9)

which were already introduced at the beginning of the course and which obey

s+ t+ u = −
∑
i

k2
i =

∑
i

m2
i = −16

α′
. (10)

c) Solve the integral (8) by showing

C(a, b) ≡
∫
d2z|z|2a−2|1− z|2b−2 = 2π

Γ(a)Γ(b)Γ(c)

Γ(a+ b)Γ(a+ c)Γ(b+ c)
, a+ b+ c = 1 . (11)

Hint: You will need the integral representation of the Euler beta function, derived in exercise 1 on
sheet 1, i.e. ∫ 1

0

dt tx−1(1− t)y−1 =
Γ(x)Γ(y)

Γ(x+ y)
. (12)

Start by showing

|z|2a−2 =
1

Γ(1− a)

∫ ∞
0

dt t−ae−|z|
2t (13)

and similarly for |1 − z|2b−2. Use this in (11) and decompose the complex coordinate z = x + iy.
Now first perform the integrals over x and y which are simply Gaussian. You should obtain

C(a, b) =
2π

Γ(1− a)Γ(1− b)

∫ ∞
0

dudt
t−au−b

t+ u
e−tu/(t+u) . (14)

To make contact with (12) perform a change of variables t = αβ and u = (1− β)α, with α ∈ [0,∞)
and β ∈ [0, 1].

d) Using (11) in (8) you get the amplitude for the scattering of four closed string tachyons (up to
an overall constant). Where are the poles of the result?

e) Discuss the result in the hard scattering limit, i.e. the limit of large center of mass energy and
fixed (finite) angle. To do so, use that for a scattering process 1 + 2→ 3 + 4 of equal mass particles
(of mass m), the Mandelstam variables are related to the center of mass energy E and the scattering
angle θ as

s = E2 , t = (4m2 − E2) sin2 θ

2
, u = (4m2 − E2) cos2 θ

2
. (15)

What does the hard scattering limit imply for s, t and u? Use Stirling’s formula Γ(x+1) ≈ xxe−x
√

2πx
(valid for |x| → ∞)1 to show that

A(4) ≈ exp
[
− α′

2

(
s ln(sα′) + t ln(tα′) + u ln(uα′)

)]
∼ exp

[
− α′

2
sf(θ)

]
, (16)

1Strictly speaking this formula does not hold along the negative real axis. Implicitly we move away from the real
axis by adding a small imaginary part to s. This is ultimately justified because all the higher mass string states are
actually unstable in the interacting theory and, thus, their poles are shifted away from the real axis. This can be
mimicked by leaving the poles on the real axis, but instead taking the large s limit slightly away from the real axis.
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where in the second step a phase is neglected and f(θ) can be approximated as

f(θ) ≈ − sin2 θ

2
ln
(

sin2 θ

2

)
− cos2 θ

2
ln
(

cos2 θ

2

)
, (17)

which is non-negative. Thus, the amplitude is exponentially suppressed in the hard scattering limit.
This is a general feature of string scattering amplitudes (in particular also valid for the massless
states). This soft high energy behavior is due to the extended nature of strings and in contrast to
the power law fall off found for the scattering of particles.

Exercise 2 – Central charge of the ghosts

The ghost CFT has the energy momentum tensor

T (z) = 2:∂c(z)b(z) : + :c(z)∂b(z) : . (18)

Calculate the central charge of the ghost system by considering the OPE of two energy momentum
tensors. In order to perform the cross contractions you will need the OPEs

b(z1)c(z2) = c(z1)b(z2) =
1

z1 − z2

+ finite , b(z1)b(z2) = finite , c(z1)c(z2) = finite . (19)
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