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Abstract

e`e~ an nihilation into quark}antiquark pairs is a valuable platform for the investigation of the strong
interaction. The level of sophistication reached by theory and experiment allows one to verify predictions
with signi"cant precision for centre-of-mass energies ranging from the q lepton mass up to about 200 GeV.
This report summarizes studies of the dependence of the strong interaction on the energy scale. Determina-
tions of a

S
from total cross-sections, hadronic branching fractions of the q lepton and of heavy quarkonia, jet

rates, and event shape observables con"rm the energy dependence of the strong coupling constant. Tests of
the #avour independence of the strong interaction and mass e!ects are reviewed. Perturbation calculations of
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mass e!ects allow the determination of the bottom quark mass at high energies and, therefore, the scale
dependence of quark masses predicted by QCD. Experimental studies of theoretical approaches to hadroniz-
ation are presented. Besides fragmentation functions, scaling violations, and longitudinal cross-sections,
successes of the modi"ed leading-logarithmic approximation and local parton}hadron duality are exempli-
"ed. Power suppressed corrections, which are expected to be related to hadronization, are discussed for mean
values and distributions of event shape observables. From the energy dependence of the strong interaction
missing higher-order terms of the perturbation series can be determined. The scrutiny of the scale dependence
of a

S
showed no evidence for power corrections, light gluinos, or anomalous strong couplings. The results on

a
S
from e`e~ annihilation are also very consistent with determinations of the strong coupling constant from

other hard processes. ( 2001 Elsevier Science B.V. All rights reserved.

PACS: 06.20.Tr; 12.38.!t

Keywords: Fundamental constants; Quantum chromodynamics
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Table 1
Elementary fermions and bosons, that are known in the standard model of the electroweak and strong interactions, and
the relevant quantum numbers assigned. Antifermions which are not listed have the signs of the charge, weak isospin, and
colour charge quantum numbers inverted

Fermions Generations Charge Weak Colour charge Spin

1st 2nd 3rd
Q

f
isospin ¹3

f

Leptons l
%

lk lq 0 #1
2

0 1
2

e~ k~ q~ !1 !1
2

0 1
2

Quarks u c t #2
3

#1
2

r, g, or b 1
2

d s b !1
3

!1
2

r, g or b 1
2

Bosons Coupling Charge Weak Colour charge Spin
Q

f
isospin ¹3

f

Photon Electromagn. c 0 0 0 1

Weakons Weak W` #1 #1 0 1
Z 0 0 0 1
W~ !1 !1 0 1

Gluons Strong G 0 0 1 colour#1 anticolour 1

1. Introduction

Over many decades nature has been probed by the scattering of elementary particles at higher
and higher energies in order to reveal more and more the secrets of matter and forces. A fruitful
connection of experimental and theoretical particle physics culminated in what is today called
standard model of the electroweak and strong interactions. Based on quantum "eld theory, it is the
foundation of the current understanding of all elementary particles, and it jointly describes all
known forces but gravitation. Half-integer spin fermions act as the building blocks of matter with
integer spin bosons acting as mediators of forces. Fermions appear in two species: leptons and
quarks. These are, according to their respective quantum numbers, subject to the forces represented
by the coupling and its strength. Each force has its bosons, namely the photon, the Z and the
charged WB for the electroweak interaction, and the gluons for the strong interaction. All this is
summarized in Table 1 which also lists the relevant quantum numbers.

An enormous e!ort of both experimental and theoretical physics has brought knowledge about
the constituents of matter and the forces. On the experimental side this has been achieved
predominantly by scattering particles o! each other, observing the outcome, and analysing and
understanding it in terms of basic and elementary processes between the particles. This would have
been impossible without the theoretical advances. Calculations largely based on perturbation
theory are the key to understanding the results of the measurements. More precise measurements
required more precise calculations and vice versa, thus driving each other.
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During the last 15 yr signi"cant contributions came from high-energy electron}positron scatter-
ing, in particular annihilation. Large particle accelerators such as PEP, SLC, PETRA, TRISTAN, LEP and
others have been built to collide electrons and positrons at very high energy. Particle detectors
have been installed to register and measure the outgoing particles of the scattering processes. Thus
many valuable results on the standard model have been obtained for both the electroweak and the
strong interaction.

The LEP accelerator [1] which is still in operation has achieved a collision energy of electrons and
positrons never reached before. Since the start of the PEP and PETRA colliders [2,3] which are no
longer employed, the energy examined by LEP has almost increased twenty-fold. Results of very
many investigations using the particle detectors installed at LEP have consolidated in particular the
standard model of the electroweak interaction at an unprecedented level of precision [4}7].

This report will focus on results about the standard model of the strong interaction. After
introducing the basic concepts in Section 2, Section 3 will explain how the strong interaction is
scrutinized in electron}positron annihilation. This report will only touch on some topics of the
inconceivably huge variety of investigations of the strong interaction done during the phase
I operation of the LEP collider when it was tuned to produce Z bosons. More detailed reports on the
LEP phase I results on the strong interaction can be found in [8}11] and also in textbooks [7,12].
The main topic of this report will be the combination of results from electron}positron collisions
at various energies, thus taking advantage of the large energy range available. Naturally, the
energy dependence of the strong interaction will be of particular interest. This will be addressed in
Section 4 while Section 5 is dedicated to some recent theoretical developments which could allow
even more precise tests of the standard model of the strong interaction. Before completing the
report with a summary, concluding remarks, and a brief #ash on future examinations of the theory,
Section 6 will show some investigations concerning extensions of and deviations from the standard
model of the strong interaction.

2. QCD } a theory of the strong interaction

The key to the understanding of strong interaction processes observed in the scattering of
elementary particles is Quantum Chromodynamics (QCD) which was developed about 30 yr ago. It is
a quantum "eld theory describing interactions between quarks and gluons based on the concept of
a new charge, similar to but di!erent from electric charge. This new charge appears in three
variations which are usually associated with colours. Quarks are, besides their one third integer
electric charge, carriers of one unit of this colour charge. Thus quarks exist three times each with
a di!erent colour charge.

In QCD hadrons are composed of quarks and are colourless. The concept of colour charge is
supported experimentally for example by the observation of hadrons like X~ and D`` which are
made of three quarks with identical quantum numbers. Pauli's principle is recuperated due to the
three di!erent colour charges of the constituent quarks. Other evidence for colour stems from the
decay rate of n0Pcc. Without a colour factor of three the theoretical estimate for the decay rate
would not agree with the experimentally measured value (for details see, e.g. Ref. [12]). Also in
electron}positron scattering evidence has been found for the existence of colour. The virtual
photon into which an electron and positron annihilate excites from the vacuum all electrically
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2A gauge has to be chosen to "x two of the four degrees of freedom for a massless gluon. This term explicitly breaks
gauge invariance thus causing unphysical interaction terms which are compensated by introducing non-physical ghost
terms. For details see, e.g. [12].

charged pairs of particle and antiparticle, in particular quark and antiquark. As quarks may carry
one out of three colours the total excitement of quark}antiquark pairs is enhanced by a colour
factor of three (see, e.g. Ref. [6]).

In this section we will outline the structure of QCD. The focus will be on the origin of the energy
dependence of the strong interaction.

2.1. Group structure of QCD

QCD is a non-Abelian Yang-Mills type theory. The features of QCD are determined through the
S;(3) group structure of colour. These features are re#ected in the Lagrangian density which
describes the interaction of half-integer spin quarks of mass m

q
and massless spin-1 gluons.

Suppressing a gauge and a ghost "eld term2 the Lagrangian density of QCD is given by [12}14]

LQCD"!

1
4
GAklGkl

A
# +

26!3,4

q6
a
(ickDk!m

q
)
ab

q
b

(1)

where the sum is over all quark #avours. Furthermore, repeated indices indicate a sum. In Eq. (1)
Dk is the covariant derivative and ck are the four gamma matrices. The indices a, b of the quark
spinors q are the quark colour indices running from 1 to the number of colours, i.e. 3. Thus quarks
appear as colour triplets. In addition, the quark spinors and also the gamma matrix ck have spinor
indices that are suppressed for clarity. The "eld strength tensor GAkl depends on the gluon "elds GAk .
It is given by the relation

GAkl"RkGAl!RlGAk!g
S
f ABCGBkGCl (2)

where the indices A, B, C denote the eight elements of the gluon "eld octet of QCD. The last term in
Eq. (2) allows for interactions between gluon "elds as will be demonstrated more clearly below. It
contains the structure constants f ABC of S;(3) which determine the properties of QCD. Thus the last
term is responsible for many peculiar features of QCD, in the "rst place that gluons, carrying two
units of colour charge, may interact with each other. The constant g

S
determines the strength of the

colour interaction. It is related to the strong coupling constant

a
S
"g2

S
/4n (3)

which is the analogue to the "ne structure constant a
%.

of Quantum Electrodynamics (QED). Thus
g
S

can be regarded as the colour charge.
The covariant derivative Dk in Eq. (1) is given by the expression

(Dk)ab"Rkdab#ig
S
(tAGAk )ab . (4)

It depends on the coupling strength g
S

and on the generators tA of S;(3). With three colour charges
forming the fundamental representation of S;(3), the generators are 3]3 matrices. The traditional
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choice for these matrices is the Gell}Mann matrices jA, with A"1,2, 8. These are hermitian and
traceless matrices that can be derived from the usual Pauli matrices. A full representation of the
Gell}Mann matrices can be found in [12]. Using these matrices, the generators are de"ned as

tA"1
2
jA . (5)

The relevant property that the generators inherit from the Gell}Mann matrices is the commutation
relation which reads

[tA, tB]"if ABCtC (6)

thus de"ning the structure constants f ABC. Conventionally the normalization of the generators is
chosen such that

Tr tAtB"¹
F
) dAB with ¹

F
"1

2
. (7)

Two more colour factors can be derived using the generators and the structure constants. The sum
over all colour indices A of the product of two generators de"nes the colour factor C

F
of an S;(N)

theory

+
A

(tA)
ab

(tA)
bc
"C

F
) d

ac
with C

F
"

N2!1
2N

N/3"

4
3

. (8)

Summing the product of two structure constants gives a de"ning relation for the C
A

colour factor
of S;(N)

+
A,B

f ABCfABD"C
A
) dCD with C

A
"NN/3" 3 . (9)

These colour factors play the dominant role in the coupling between quarks and gluons. All
features of QCD are related to the colour factors ¹

F
, C

F
and C

A
. This will become more obvious in

a moment.
The Lagrangian of Eq. (1), even though lacking gauge "xing and ghost terms, is rather involved.

In order to make the physical implications of the Lagrangian visible, we plug in the covariant
derivative Eq. (4). If, furthermore, colour indices of the quark "elds q and the sum over the quark
#avours are suppressed one obtains

LQCD"q6 (ickRk!m
q
)q#ig

S
(q6 cktAq)GAk!1

4
GAklGkl

A
. (10)

Inserting the gluon "eld strength tensor Gkl de"ned in Eq. (2) and recalling that q and G refer to
quark and gluon "elds, respectively, the Lagrangian can be written in a symbolic form which
separates the di!erent interaction terms speci"c to QCD. Each of these terms can be associated to
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a Feynman graph characterizing the interacting particles and the kind of the interaction

LQCD"**q6 q++# **G2++# g
S
) t**q6 qG++# g

S
) f **G3++# g2

S
) f 2**G4++ . (11)

The "rst three terms are well known from their QED analogues. Terms one and two describe the
propagation of a quark and a gluon, respectively. The third term contains the coupling between
quarks and gluons. It can be interpreted as the decay of a gluon into a quark}antiquark pair (as
shown above) and also as gluon radiation o! a quark (antiquark) by crossing the antiquark (quark)
and gluon lines in the picture. The two processes have di!erent colour #ows which result in
di!erent couplings as will be illustrated below. What distinguishes QCD from QED are the last two
graphs which introduce gluon}gluon coupling in the form of a triple and a quartic gluon vertex,
respectively.

The symbolic representation of the QCD Lagrangian in Eq. (11) includes also the parameters that
determine the strength of the couplings. In the case of the quark}gluon coupling, represented by
the third term, the coupling depends on g

S
and on the generators t. Also the details of the colour

#ow determined by the colour indices are involved. Considering the gluon splitting into
a quark}antiquark pair the coupling is

(12)

The additional factor n
f

is due to the n
f

di!erent quark #avours that the gluon may split into. For
the radiation of a gluon from a quark one "nds a coupling of

(13)

In the triple gluon case the coupling is

(14)
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and for a quartic vertex it is

(15)

These are the elementary graphs of QCD. Every interaction between strongly interacting particles
can be described perturbatively using these basic exchange graphs and the colour factors. Any
experimental veri"cation of QCD as the theory of strong interaction, therefore, does not only require
the discovery of colour, of quarks and gluons and their properties, but also requires the measure-
ment of the colour factors and the observation of the consequences of the renormalization of QCD

which we will address next.

2.2. Renormalization of QCD

One of the bizarre features of quantum "eld theory is that it involves divergences when
calculating, e.g. the self-interaction of a particle. Such divergences would render every calculation of
quantum "eld theory unusable. Thus one has to eliminate these poles by renormalizing the terms
containing the poles. A very complete description of renormalization can be found in Ref. [15]. In
brief, renormalization is a prescription to introduce counterterms which absorb in"nities into
physical quantities such as charge or mass of a particle. This concept seems to be rather arti"cial at
"rst. However, an electron moving in a solid interacts with the atoms in the lattice such that its
e!ective mass is di!erent from the nominal mass value. This is analogous to renormalization in
quantum electrodynamics where the electron interacts with the vacuum. The di!erence is that one
can remove the atoms of the solid to measure the mass of a free electron, but one cannot remove the
vacuum. Following the lines of renormalization to absorb in"nities into physical mass or charge,
a price has to be paid. It is that the renormalized theory acquires new properties.

Only in 1971 was the renormalizability of non-abelian "eld theories such as QCD shown [16].
Today, dimensional regularization (see references in [15], particularly Ref. [17]) is frequently
applied in QCD calculations. It uses the space}time dimension, d, as a regulator treating d"4!2e
as a continuous variable. The renormalization prescription, in which counter-terms are pure 1/e
poles at the physical value of d"4, is called the minimal subtraction renormalization scheme (MS)
[18]. A modi"cation of this scheme is the MS scheme [19] which is used throughout this report. It
di!ers from the MS scheme in that it also subtracts ln(4p)!c

E
terms, responsible for large

coe$cients in the perturbation expansion, where c
E
+0.5772 is Euler's constant. The MS and

especially the MS scheme are now widely used owing to their advantages. Both schemes automati-
cally preserve many complicated symmetries except chiral symmetry. They have no problems with
massless QCD theory. The calculations are convenient and the computation of the divergent part is
not too di$cult. However, the MS and MS schemes are both unphysical because there is no physical
reason for the introduction of the counter-terms.

Another complication of minimal subtraction is that it is in e!ect a whole family of renormaliz-
ation prescriptions with a single parameter k. This parameter represents an entirely arbitrary mass
scale. It is introduced in the dimensional regularization process because from Eq. (2) it can be seen
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that the bare coupling g
S

acquires a dimension if dO4. As a consequence every physical quantity
R depends not only on the coupling g

S
and masses m but also on this scale k. In general, g

S
and

m will also depend on k. Since the scale is entirely arbitrary, it cannot be related to any physical
observable and, hence, physical observables should be invariant under the change of variables
(k, g

S
(k),m(k))P(k@, g

S
(k@),m(k@)). This invariance can be expressed by

k2
dR
dk2

"0 . (16)

Replacing g
S

by a
S

with the help of Eq. (3) the total derivative with respect to k can be written as

k2
d

dk2
"k2

R
Rk2

#k2
Ra

S
Rk2

R
Ra

S

#k2
Rm
Rk2

R
Rm

"k2
R
Rk2

#b(k2)
R
Ra

S

!c
m
(k2)m

R
Rm (17)

which de"nes two renormalization group coe$cients b and c
m

which are usually called the
b function and the mass anomalous dimension, respectively. From Eq. (17) both coe$cients can be
read o! respecting the usual sign convention for the mass anomalous dimension [20]

b(k2)"k2
Ra

S
Rk2

, (18)

c
m
(k2)"!k2

1
m
Rm
Rk2

. (19)

The solutions of these two di!erential equations reveal two fundamental properties of QCD and,
hence, the strong interaction } running coupling, a

S
(Q2), and running masses, m(Q2).

2.2.1. The running coupling constant a
S
(Q2)

The value of the coupling a
S

changes with the energy scale of the process under consideration.
This can easily be seen from the renormalization group equation (RGE)

Q2
Ra

S
(Q2)
RQ2

"b(a
S
) (20)

which is obtained from Eq. (18) after separation of variables, integration and derivation with
respect to the squared energy scale of the process, Q2. It still is a di!erential equation but we will
obtain an explicit expression for a

S
(Q2) using the b function. It has been calculated by perturbation

expansion considering counter-terms to the divergent self-energy contributions involving Feynman
diagrams with up to four loops. Joining the results of all calculations [21,22] leads to the expansion

b(a
S
)"Q2

Ra
S

RQ2
"!b

0
a2
S
!b

1
a3
S
!b

2
a4
S
!b

3
a5
S
#O(a6

S
) (21)
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3The coe$cients b
i
are known exactly for i"0,2, 3 (see, e.g. [22]). Here we quote for simplicity only approximate

expressions for b
2

and b
3
.

with3

b
0
"

1
12p

(33!2n
f
) ,

b
1
"

1
24p2

(153!19n
f
) ,

b
2
+

1
p3

(22.320!4.3689n
f
#0.09404n2

f
) ,

b
3
+

1
p4

(114.23!27.134n
f
#1.5824n2

f
#0.00586n3

f
) .

A very important property of QCD is to be noted from b
0
. This coe$cient is positive as long as

n
f
(17 causing a

S
to decrease with increasing Q2. Therefore, in contrast to QED, QCD obeys

asymptotic freedom meaning that quarks and gluons behave at very short distances like free
particles. Turning to very low-energy scales, the strong coupling constant grows, thus suggesting
that coloured objects will eventually be con"ned in colourless compounds. These compounds are
the usual mesons and baryons which one can "nd in the "nal state of scattering processes.

An explicit expression for the running coupling a
S
(Q2) can be obtained by solving the renormal-

ization group equation (20) either numerically or by integration. In [23] the integration has been
done using the 4-loop expression for the b function in the MS renormalization scheme. The result for
the running coupling

a
S
(Q2)"

1
b
0
¸

!

b
1

ln¸

b3
0
¸2

#

1
b3
0
¸3C

b2
1

b2
0

(ln2¸!ln¸!1)#
b
2

b
0
D

#

1
b4
0
¸4C

b3
1

b3
0
A!ln3¸#

5
2

ln2¸#2 ln¸!

1
2B!3

b
1
b
2

b2
0

ln¸#

b
3

2b
0
D

#OA
1
¸5B (22)

is expressed in inverse powers of ¸"ln(Q2/K2
MS

) where K
MS

is the constant of integration which
depends in general on the renormalization scheme. One notes that the explicit expression for
a
S

reveals a pole at Q2"K2
MS

. This is an unphysical Landau pole [24] indicating that the
perturbation expansion cannot be applied at very small scales. Non-perturbative e!ects become
important at such scales. These will be discussed in Section 5. The running of the coupling a

S
(Q2) is

exempli"ed in Fig. 1 using the explicit expression Eq. (22) for various values of K
MS

.
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Fig. 1. Running coupling constant a
S
(Q2) using the 4-loop expression Eq. (22) and di!erent values for K

MS
.

4The coe$cients c
m,i

are known exactly for i"0,2, 3 (see, e.g. [27]). For simplicity only approximate expressions for
c
m,2

and c
m,3

are quoted.

2.2.2. The running masses m(Q2)
The de"ning equation (19) for the mass anomalous dimension c

m
describes the running of quark

masses. Solving this equation by separation of variables and integration one "nds an expression for
the running mass:

m(Q2)"m(k2) expG!P
Q

2

k2

c
m
(k2)

dk2

k2 H
"m(k2) expG!P

aS (Q2)

aS (k2)

c
m
(a

S
)

da
S

b(a
S
)H (23)

when substituting with Eq. (18). One notes that the b function determines, together with c
m
, also the

running of the masses.
As for the b function, a perturbation expression for the mass anomalous dimension c

m
has been

derived [25}27]:

!c
m
(a

S
)"

1
m

Q2
Rm
RQ2

"!c
m,0

a
S
!c

m,1
a2
S
!c

m,2
a3
S
!c

m,3
a4
S
#O(a5

S
) (24)

with4

c
m,0

"

1
p

,

c
m,1

"

1
72p2

(303!10n
f
) ,
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Fig. 2. Running of bottom quark mass with 4-loop precision in the MS renormalization scheme for 5 #avours.

c
m,2

+

1
p3

(19.516!2.2841n
f
!0.027006n2

f
) ,

c
m,3

+

1
p4

(98.943!19.1075n
f
#0.27616n2

f
#0.005793n3

f
) .

The expansions of the mass anomalous dimension c
m

and of the beta function Eq. (21) can now be
inserted into the evolution equation for the quark masses Eq. (23). A 4-loop expansion for the
running of the quark masses m(Q2) in the MS scheme is given in [27]. For the charm (n

f
"4) and

the bottom quark (n
f
"5) these expansions read

m6
#
(Q2)"m6

#
(Q2

0
)A

a
S
(Q2)

a
S
(Q2

0
)B

12@25

]
1#1.0141(a

S
(Q2)/p)#1.389(a

S
(Q2)/p)2#1.09(a

S
(Q2)/p)3

1#1.0141(a
S
(Q2

0
)/p)#1.389(a

S
(Q2

0
)/p)2#1.09(a

S
(Q2

0
)/p)3

(25)

m6
"
(Q2)"m6

"
(Q2

0
)A

a
S
(Q2)

a
S
(Q2

0
)B

12@23

]
1#1.1755(a

S
(Q2)/p)#1.501(a

S
(Q2)/p)2#0.17(a

S
(Q2)/p)3

1#1.1755(a
S
(Q2

0
)/p)#1.501(a

S
(Q2

0
)/p)2#0.17(a

S
(Q2

0
)/p)3

(26)

where MS masses are denoted m6 and a reference scale Q2
0

is introduced. Fig. 2 shows the running of
the bottom quark mass in the MS renormalization scheme for n

f
"5. The reference scale is chosen

such that m6
"
(Q2

0
"(4.25GeV)2)"4.25GeV. This mass value is the central value derived from the

compilation of the Particle Data Group [28].
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Recalling Eq. (20) and Eq. (21) it should be pointed out that the b function and consequently also
a
S
(Q2) explicitly depend on the number of #avours n

f
. This is of practical importance due to the

very di!erent quark masses (see Ref. [28]). The dependence of a
S

on the energy scale means that
one has to carefully consider how many quark #avours n

f
actively contribute to the running of a

S
.

In particular, crossing the production threshold of a further quark #avour means a change of
n
f

and, hence, of a
S

and m. This has to be taken into account when solving the renormalization
group equations (21) and (24). For practical reasons, one usually evolves a

S
using Eq. (22) for

n
f
!1 #avours to the mass scale of the heavy quark #avour n

f
. From a matching condition at this

scale, a(nf )
S

is calculated from a(nf~1)
S

, and a(nf )
S

is evolved for n
f

active #avours using Eq. (22) again.
In [23,29] the matching conditions for a

S
and for quark masses m have been calculated allowing an

arbitrary matching scale Q2. The matching relation can be signi"cantly simpli"ed when choosing
the MS mass for that scale, that is Q2"m6 2"m6 2(m6 2), where a

S
is matched for n

f
!1 and n

f
active

#avours. Then the ratio becomes [23]

a(nf~1)
S

(m6 2)
a(nf )
S

(m6 2)
"1#

(a(nf )
S

(m6 2))2
p2 A

11
72B#

(a(nf )
S

(m6 2))3
p3

(1.057!0.085n
f
) . (27)

It should be observed that the ratio is greater than unity at this matching point. Thus a
S
(Q2) is

reduced when increasing the number of active #avours.
In summary it should be kept in mind that renormalizing QCD introduces rather peculiar

properties } energy dependent coupling and mass. The coupling reveals that QCD is an asymptotic
free theory. At very short distances or, equivalently, at very high energies quarks and gluons
behave like free particles. On the other hand, we observe the con"nement of coloured objects
in colourless hadrons, an experimental fact which still has to be proven as a result of the equations
of QCD.

2.2.3. Choice of renormalization scale
Up to now all details concerning renormalization have been neglected. In particular, the relation

between the arbitrary renormalization scale k and the scale of a physical process Q has to be
considered. Choosing Q&k would be natural. All calculations, however, will be done in some
limited order of perturbation theory, in which Q&k is not conclusive. This can be readily seen
from an explicit solution of the two-loop approximation of Eq. (20), yielding

a
S
(Q2)"a

S
(k2)C1!a

S
(k2)X#a2

S
(k2)AX2!X

b
1

b
0
B#O(a3

S
)D , (28)

with X"b
0

ln(Q2/k2). This equation reveals the relation between the renormalized coupling
a
S
(k2) and the size of the coupling which is relevant for the physical process under consideration,

that is a
S
(Q2).

Each physical process must be independent of the renormalization scale k, as has been stated in
Eq. (16). When calculating the physical observable R as a power series in a

S
(k2)

R(Q2)"R
0
#R

1
a
S
(k2)#R

2
a2
S
(k2)#R

3
a3
S
(k2)#O(a4

S
) , (29)

O. Biebel / Physics Reports 340 (2001) 165}289178



applying the derivative (17) and, for simplicity, neglecting mass terms, one "nds from this
independence that

0"k2
dR(Q2)

dk2
"k2

RR
Rk2

#b(k2)
RR
Ra

S

"

RR
0

R lnk2
#a

S

RR
1

R lnk2
#a2

SC
RR

2
R lnk2

!b
0
R

1D#a3
SC
RR

3
R lnk2

!(2b
0
R

2
#b

1
R

1
)D#O(a4

S
) .

(30)

In the calculation we have used a
S
"a

S
(k2) and Eq. (21) for b(a

S
). In order to ensure the

independence from the renormalization scale order by order in a
S
, the coe$cients R

n
with n52 of

the perturbation series of R must depend on k. For example, the next-to-leading order coe$cient
R

2
needs to be

R
2A

Q2

k2B"R
2
(1)!b

0
R

1
ln

Q2

k2
. (31)

Only the constant R
0

and the leading order (LO) coe$cient, R
1
, are independent of the scale.

Substituting Eq. (28) in Eq. (29) and comparing with Eq. (30), one "nds that the k scale
dependence of the coe$cients exactly compensates the change in the coupling a

S
(k2), thus yielding

a k-independent result for the full series. If, however, the series is truncated, the k-independence
breaks down.

The scale dependence entails an uncertainty due to the choice of the scale. This needs to be
considered in each perturbation calculation of observable physical quantities. The uncertainty due
to a change of the scale is one order higher than the order of the perturbative calculation. Thus it is
O(a4

S
) only for a next-to-next-to-leading order (NNLO) calculation, while for next-to-leading order

(NLO) it is O(a3
S
) and, hence, more pronounced. Such uncertainties will pop up in each experimental

determination of the strong coupling constant as will be seen in Section 4.

3. The strong interaction in e`e~ annihilation

Strong interaction phenomena have been observed in the scattering of various particles, in
particular protons, antiprotons, electrons and positrons. Among these, the collision and annihila-
tion of electron and positron has several appealing features due to the well-de"ned initial state.
Total centre-of-mass energy and momentum are precisely known as is the colour state. This
rendered the electron}positron annihilation experiments at the colliders PEP, PETRA, TRISTAN, SLC,
and LEP a valuable testing ground for the investigation of the strong interaction and for the scrutiny
of QCD. This section addresses the question of how QCD can be examined in electron}positron
annihilation processes. Broadly speaking, the process can in principle be subdivided into four steps
as is illustrated in Fig. 3:

f the actual annihilation possibly involving initial state photon radiation and the decay of the
intermediate boson into a quark}antiquark pair,
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Fig. 3. Schematic representation of an e`e~ annihilation process into hadrons.

5The word parton is used as a generic notation for quark, antiquark and gluon.

f the radiation of gluons and the gluon-splitting into quark}antiquark pairs leading to a parton5
shower,

f the process of hadronization which summarizes the transition of quarks and gluons into
hadrons,

f and "nally the hadrons and their potential decays.

The very "rst of these steps is well understood from electroweak theory. Details of this step can be
found in many reports and textbooks, for example [4}7]. In this section the two middle steps will
be considered in more detail.

3.1. QCD and e`e~ annihilation

3.1.1. e`e~ annihilation into quark}antiquark pairs
In the collision of an electron and a positron an annihilation of the two into a virtual photon or

a Z boson can occur. Both the virtual photon and the Z decay into pairs of a fermion and an
antifermion, in particular a quark and an antiquark. This is depicted in the language of Feynman
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Fig. 4. Lowest order Feynman graph for the annihilation of an electron}positron pair into a virtual photon cH or
a Z boson and its decay into a quark}antiquark pair.

6Contributions due to W and Z pair production are not included.

graphs in Fig. 4. Relevant for a study of the strong interaction is the fraction of annihilation events
that generate a quark}antiquark "nal state and the amounts of the various quark #avours. Both
quantities are related to the coupling of the virtual photon or the Z to the quark}antiquark pair.
Instead of the absolute production cross-section for quark}antiquark pairs, its ratio to the
lowest-order muon pair production cross-section is usually considered. At energies far below the
mass of the Z this ratio is simply given by the electromagnetic coupling of the photon to the charge
of the quarks Q

q
[13]

Rc"
+

q
p(e`e~Pqq6 )

p(e`e~Pk`k~)
"3+

q

Q2
q
. (32)

The sum is over all quark #avours that can be created in the annihilation process. Additionally
a factor of three enters the relation from the sum over quark colours.

At energies close to the mass of the Z a pole occurs in the cross-section. It is due to the resonance
production of the Z which dominates over the virtual photon exchange. In the vicinity of the
pole the R ratio is expressed using the partial decay width of the Z into quark and muon pairs,
respectively, [12]

R
Z
"

+
q
C(ZPqq6 )

C(ZPk`k~)
"

3+
q
(A2

q
#<2

q
)

A2k#<2k
. (33)

It depends on the axial, A, and vector,<, couplings of the fermions to the Z. These are related to the
third component of the weak isospin ¹3 and the charge Q of a fermion f, and also to the weak
mixing angle h

W
according to

<
f
"¹3

f
!2Q

f
sin2 h

W
, A

f
"¹3

f
. (34)

The fermions known in the standard model of the strong and electroweak interactions are assigned
the following values for the weak isospin and electric charge (see Table 1): Neutrinos and the
up-type quarks (u, c, t) have ¹3

f
"#1/2 while electron, muon, tau, and the down-type quarks

(d, s, b) have ¹3
f
"!1/2. In units of the elementary charge the up-type quarks have electric charge

#2/3, the down-type quarks !1/3, neutrinos are neutral and electron, muon, tau have each !1.
These values change sign when considering the respective antiparticles.

Eqs. (32) and (33) are approximations for restricted energy regions. The complete R ratio is
shown6 (dotted line) in Fig. 5(a) for a large region of centre-of-mass energies, Js, ranging from
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Fig. 5. (a) The ratio of the hadronic and the muonic cross-section R in e`e~ annihilation is shown with all but QCD

corrections (dotted line). The dashed line represents RQCD which includes QCD corrections according to Eq. (37). (b) The
branching ratio B of e`e~ annihilation into quarks is shown separately for up-type, down-type, and bottom quarks.
Bottom quarks (dashed) deviate from the down-type behaviour due to their large mass and due to vertex corrections
involving the top quark, and the W and Higgs bosons. The curves were produced by the ZFITTER program [30]
considering initial state photon radiation. Pair production of W and Z bosons is not included.

7Version 5.0 has been used.

close to the pair production threshold of bottom quarks at about Js"10 GeV to just below the
threshold for top quark pairs at roughly 350GeV. It has been calculated with the ZFITTER program7
[30]. At a centre-of-mass energy of Js"M

Z
the R

Z
ratio dominates while for energies much
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Fig. 6. Lowest-order Feynman graphs for real (left) and virtual radiation (middle and right) of a gluon o! a quark or an
antiquark. Analogous graphs exist for the radiation from the other "nal state quark.

below the Z pole Rc is signi"cant. Above the Z pole the R ratio is given by a combination of
contributions from Z and c exchange.

Due to the di!erent coupling of Z and c to the quarks, also the proportions of the individual
quark #avours change with the centre-of-mass energy. This is shown in Fig. 5(b) for the "ve light
quark #avours. At very low energies, up-type quarks are most frequently produced because of the
dominance of the c exchange which yields a coupling proportional to the square of the quark
charge (cf. Eq. (32)). Around the Z pole, down-type quarks dominate due to the Z boson exchange
(cf. Eq. (33)), whereas at very high energies, the interference of c and Z entails again the domination
of up-type quarks. Bottom quarks follow the trend of the down-type quarks but deviate a little due
to mass e!ects and corrections which involve virtual top quarks, W and Higgs bosons.

3.1.2. Gluon radiation from quarks } full calculation
The strong interaction comes into play with the radiation of gluons o! the quarks. It involves

two contributions: the radiation of virtual and real gluons. These two are exempli"ed in Fig. 6.
Only in the case of real gluon radiation is a gluon left over in the "nal state, together with the quark
and the antiquark. The probability of real gluon emission as shown in Fig. 6 depends on the
coupling strength. Applying Feynman rules (see for example [13]) the di!erential cross-section for
this particular process, e`e~Pqq6 G, has been calculated. The result is [31]

1
p
0

d2p
dx

q
dx

q6
"C

F

a
S

2p
x2
q
#x2

q6

(1!x
q
)(1!x

q6
)
, (35)

where x
i
"2E

i
/Js, i"q, q6 , are the centre-of-mass energy fractions of the massless "nal state

quark and antiquark, respectively, and p
0

is the total cross-section in absence of QCD radiation
which is usually denoted Born or tree level cross-section. The di!erential cross-section is directly
proportional to the coupling strength a

S
as is obvious from Eq. (35).

A complication for this di!erential cross-section is due to infrared and collinear divergences for
real gluon emission. Such divergences occur if the gluon is either very low in energy or if it is
emitted collinearly to the quark. In fact, the collinear divergence is due to neglecting masses in these
calculations. These two fundamental divergences can be made evident in Eq. (35) using four-
momentum conservation for the exchange boson, pc"(p

q
#p

q6
#p

G
) and s"p2c . One "nds for the
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8Further corrections, in particular charm, bottom and top quark mass e!ects and the non-universality of the
Z coupling to the quarks have to be taken into account. These modify the coe$cient but maintain the principle structure.
See Section 4.1.1.

case of a gluon emitted by the antiquark

(p
q6
#p

G
)2"p2c!2p

q
) (p

q6
#p

G
)"p2c!2p

q
) pc"s(1!x

q
)

"2p
q6
) p

G
"2E

q6
E

G
(1!cos h

q6 ,G
)

N1!x
q
"

2E
q6
E

G
(1!cos h

q6 ,G
)

s
(36)

where quarks and gluons are treated as massless which means p2
i
"0 for i"q, q6 , G. An infrared

gluon whose energy, E
G
, is small with respect to the centre-of-mass energy, Js, leaves the

corresponding energy fractions x
q

of the quark close to unity. Hence, the di!erential cross-section
is divergent (Eq. (35)). For the case of collinear gluon emission the angle between antiquark and
gluon, h

q6 ,G
, is small and, again, 1!x

q
is close to zero such that the di!erential cross-section

diverges.
In order to obtain the total cross-section, the di!erential cross-section Eq. (35) is to be integrated

over the phase-space x
q
, x

q6
"021 and x

G
"2!x

q
!x

q6
. In addition to this integration which

includes the regions of the divergences, the Feynman graphs involving virtual gluon lines shown in
Fig. 6 have to be added. It can be shown that, for instance, in the total cross-section the divergences
of the di!erential cross-section are cancelled by identical divergences with opposite sign from the
virtual gluon graphs [12]. Thus, the total cross-section is "nite.

Adding the contributions from real and virtual gluon radiation increases the total cross-section
for the annihilation of electron and positron into a "nal state of partons. The increase can be
expressed by a simple a

S
dependent factor. This correction factor to the R ratio is known up to

third order in a
S

[28]. In leading order the corrected R ratio8 is

RQCD"RA1#
a
S
p
#O(a2

S
)B . (37)

In Fig. 5(a) the RQCD ratio is shown as a dashed line versus the centre-of-mass energy Js. The size
of the correction can be seen from the di!erence to the dotted line in this "gure which represents the
R ratio without the QCD correction from Eq. (37). The a

S
dependence entering the R ratio through

this correction allows a measurement of the strong coupling from total cross-sections alone. It is
a fully inclusive measurement in the sense that nothing needs to be known about the details of the
"nal state except that it has quarks. Experimentally the measurement is hampered because the
correction is a rather small e!ect on a large R value, as can be seen from Fig. 5(a). This is in
particular the case at higher energies where a

S
assumes a small value.

To determine the coupling strength a
S
, one can also investigate the details of the "nal state itself.

It is the di!erential cross-section from Eq. (35) which determines the "nal state of quark, antiquark
and gluon depending on the coupling strength a

S
. Common to all approaches is the measurement

of the probability of gluon radiation o! the quark or antiquark. A very direct method would be to
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detect quark, antiquark and gluon, to measure their energy fractions x
i
, and to determine the

di!erential cross-section from counting rates.
Other approaches consider the spatial distribution of quark, antiquark and gluon in the "nal

state. At large centre-of-mass energy a quark}antiquark "nal state without a gluon is pencil-like in
its rest frame, with a gluon it is planar, and with many partons the "nal state might look spherical.
Such methods are measurements of the shape of the "nal state. The quantities, commonly called
event shape observables, are calculated from the energies and momenta of the particles in the "nal
state. Again a di!erential cross-section is given for each observable F. It results in leading order
perturbation theory from the integration of the di!erential cross-section for real gluon emission
Eq. (35) over the whole phase-space

1
p
0

dp
dF

"PPdx
q
dx

q6
C

F

a
S

2p
x2
q
#x2

q6

(1!x
q
)(1!x

q6
)
d(F!fF(x

q
, x

q6
, x

G
))#O(a2

S
)

"A(F) )
a
S

2p
#O(a2

S
) (38)

where the function fF represents the value of the event shape observableF for the particular values
of the energy fractions x

i
of quark, antiquark and gluon. The result of the integral is given by the

function A(F) which can be obtained by either analytical or numerical integration. Measuring
this di!erential cross-section for an event shape observable F thus allows a determination of the
coupling constant a

S
.

An example is the thrust observable ¹. It is determined from the fractional energies of quark,
antiquark and gluon according to

¹,f
T
(x

q
, x

q6
,x

G
)"max(x

q
, x

q6
,x

G
) . (39)

Thrust acquires unity for "nal states without gluons whereas its value is 52/3 when gluon
emission is present in the "nal state. Thus being sensitive to gluon radiation, a

S
can be determined

from a measurement of ¹. Further explicit examples of event shape observables will be presented in
Section 4.1.2.

Experimentally it turns out, however, that all such determinations of the strong coupling from
the "nal state of the partons are hampered since hadrons rather than quarks and gluons are
observed by a particle detector. This problem will be addressed in more detail in Section 3.2.

A theoretical complication is due to the aforementioned infrared and collinear divergences of the
di!erential cross-section for the real gluon emission. In the case of the event shape observables
the divergences are present in the function A(F) of Eq. (38). As a consequence the perturbative
calculation of any di!erential cross-section is only applicable in a region of the phase-space not too
close to the kinematical boundaries x

q
, x

q6
"1, or x

q
#x

q6
"1, that is x

G
"0, where the di!erential

cross-section becomes divergent. Interpreted with the help of Eq. (36) this requirement translates
into cut-o!s, namely that the gluon must be su$ciently energetic and not too close to either to the
quark or antiquark. If a gluon in an event fails these requirements the corresponding three-parton
con"guration is experimentally indistinguishable from the back-to-back parton con"guration in
a two-parton "nal state. In other words, one has to require a resolvable gluon in the "nal state. In
consequence, only within this phase-space region is a determination of the strong coupling possible
using perturbative calculations as described above.
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One could improve on this situation. Since the physical cross-section is "nite, the theoretically
calculated one has to be "nite too. This, however, would be the case for a perturbation series for the
di!erential cross-section in Eq. (35) which includes all powers in a

S
. Currently the di!erential

cross-section of three parton "nal states is known to second order O(a2
S
) [32,33] only. At this order

"nal states with up to four partons are possible, for example qq6 q@q6 @ and qq6 GG. The di!erential
cross-section for these "nal states were calculated in leading order O(a2

S
) by several groups [32,34]

and also in next-to-leading order (O(a3
S
)) for some event shape observables [35]. Furthermore

there are computations of the "ve-parton "nal state in leading order, i.e. O(a3
S
) [36], and also the

six-parton "nal state was calculated in leading order [37].

3.1.3. Logarithmic approximation of gluon radiation
Although O(a2

S
) calculations constitute a signi"cant improvement over the O(a

S
) formulae, the

di!erential cross-sections obtained from the calculations still su!er divergences at the kinematical
boundaries. The inclusion of even higher orders is progressing slowly. In particular the computa-
tion of virtual correction terms of such higher orders to the three-parton di!erential cross-section is
very cumbersome. To obtain improved calculations di!erent methods have been developed which
resum to all orders in a

S
contributions to the di!erential cross-section that become large close to

the kinematic limit.
The basic idea is to consider the probability of gluon emission in certain regions of phase-space.

This probability becomes divergent close to the kinematical boundaries where the energy of
the gluon becomes small, or the gluon is collinear with the parton emitting it. In such regions the
simple perturbation expansion in powers of a

S
is not reliable as the di!erential cross-section

Eq. (35) is logarithmically divergent. This can be seen if one considers a region of the phase-space
where, for instance, the gluon is emitted by the antiquark and x

q
is close to unity. Choosing the

nomenclature of Eq. (36), we have a kinematical invariant m2"(p
q6
#p

G
)2"s(1!x

q
). With this

invariant, one can change variables in Eq. (35) from x
q

to m2, yielding to the limit x
q
+1

1
p
0

d2p
dzdm2

+

a
S

2p
1

!m2
C

FC
1#z2
1!z D , (40)

where z"x
q6
/(x

q6
#x

G
) is the fraction of energy of the antiquark. What has been achieved is, in fact,

a factorization of the di!erential cross-section into the product of the subprocesses, namely the
mass of the antiquark}gluon system, m, and the energy fraction of the antiquark, z.

Integrating over m2 or z while keeping the other variable "xed yields in both cases logarithms in
the integration variable, for example

Pdm2
d2p

dzdm2
"

dp
dz

&ln(m2)
a
S

2p
C

FC
1#z2
1!z D , (41)

which become large as the integration approaches the kinematic limit at m2"0 and z"1,
respectively. These large logarithmic terms will dominate the cross-section in such regions of
phase-space whereas contributions due to gluon emission at high energy and large angle are
only important outside. In the framework of the leading-logarithmic approximation (LLA) only
these logarithms in the perturbative expansion are kept and resummed to all orders in a

S
.

Di!erent schemes have been devised such as the double leading-log approximation (DLLA) [38],
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9Likewise antiquark.

the next-to-leading-log approximation (NLLA) [39], or the modixed leading-log approximation (MLLA)
[40,41] in order to take into account some subleading corrections, which are suppressed by additional
logarithmic factors. The leading-log approximation and its re"nements rely on simpli"cations in
kinematic variables. Its predictive power for hard, wide angle parton emission remains limited.
Such cases still have to be treated using the full calculation of the matrix element as in Eq. (35).

What makes LLA a success is that it is possible to understand it together with the resummation in
a probabilistic picture, which allows an implementation in Monte Carlo generators of multi-parton
"nal states (see below). To reveal this picture, the ln(t)"ln(Q2/K2LLA) derivative of Eq. (41), with
m2 replaced by Q2, is integrated over z yielding

dP
q?qG

d ln(t)
&Pdz

a
S
(Q2)
2p

C
FC

1#z2
1!z D . (42)

This equation can be interpreted as the leading order probability P of a quark splitting,9 qPqG,
into a quark of fractional energy z and a gluon. The term in square brackets of Eq. (42) determines
this probability. Similar expressions, known as Altarelli-Parisi splitting functions [42], are derived
for all basic branchings, yielding in leading order

P
q?qG

(z)"C
FC

1#z2
1!z D ,

P
G?GG

(z)"2C
A

[1!z(1!z)]2
z(1!z)

,

P
G?qq6

(z)"¹
F
[z2#(1!z)2] , (43)

where as an additional requirement #avour and energy conservation have to be maintained.
First-order corrections, O(a

S
), to these functions are also known [43,44].

Cascading these branchings according to the probabilities P of Eq. (43), allows the creation of
a multi-parton "nal state. An example is sketched in Fig. 3. A de"nite course of the cascading
requires that t"Q2/K2LLA of Eq. (42) be regarded as a dimensionless evolution or ordering
parameter. One of many possible choices for Q2 would be the square of the virtual mass, m2, of the
branching parton as was chosen for the derivation above. Repeated branchings which occur at
subsequent steps in t of the evolution lead to a parton shower which, at the end, consists of many
partons, mainly gluons due to the larger colour factor C

A
in the gluon}gluon coupling. The

variable K2LLA is related to the constant of integration of the renormalization group equation, see
Eq. (22). It signals that perturbative QCD is applicable only for Q<KLLA. To account for this and,
furthermore, to avoid excessive production of very soft gluons close to the singular region of the
z integration, one has to limit the evolution of the parton shower. This can be achieved by
introducing a cut-o!, Q

0
, on the virtuality of the partons in the shower.

The concept of parton showers, because of its probabilistic nature, can be easily implemented
into Monte Carlo generator programs. Several such programs are available which mainly di!er in
the interpretation of t, Q2 and z, and some also include subleading logarithmic approximations. See
Ref. [45,46] for details on the implementation of the parton shower approach in these programs.
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Fig. 7. Two examples of hadronic "nal states in e`e~ annihilation recorded in a particle detector. The "nal state on the
right results from an additional well separated gluon radiated by the quark}antiquark pair. The measured particles are
shown in the plane perpendicular to the direction of e` and e~ which annihilated in the centre of each plot. Charged
particles, bent by a solenoidal magnetic "eld, are shown as curves. The boxes represent the energy deposit of neutral and
charged particles in outer components of the particle detector.

Predictions of the programs are compared with measurements quite extensively as will be indicated
in the following sections.

In summary, a parton shower calculation is complementary to an order-by-order calculation in
the sense that the former may give a good description of the structure of partons which are close
together. The parton shower approach, however, is not expected to cover the full information
content available in the matrix-element expression, in particular when the partons are well
separated. Nevertheless, patching up the parton shower Monte Carlo generators allows a reason-
able description of hard gluon emission to be retrieved.

3.2. Phenomenology of QCD in e`e~ experiments

In the preceding section "nal states were considered which consisted of partons only.
What remains detectable from an annihilation into quarks and gluons, however, are hadrons
built up from quarks and antiquarks. Fig. 7 shows two examples of e`e~ annihilation into
a quark}antiquark pair developing a hadronic "nal state. It should be noticed that the plots in the
"gure show two and three bundles of detected particles, respectively. Such bundles, usually called
jets, re#ect the processes at the level of the partons. Therefore the right plot of Fig. 7 shows a jet of
a well separated gluon high in energy in addition to the jets of quark and antiquark.

So obvious as the connection between the observed jets and the underlying parton process might
be, it is impossible to calculate the hadronization which is the transition of partons into hadrons in
the framework of perturbative QCD. This is due to the very low energy scale Q involved in this
transition which renders a

S
too large for a useful perturbation expansion. The e!ects of hadroniz-

ation, however, which blur the view of the partons, have to be taken into account when deducing
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Fig. 8. Schematic representation of the independent fragmentation procedure (adapted from Ref. [45]).

information on the partons from the hadronic "nal state. Therefore many models have been
devised which describe the hadronization of partons at the end of the parton shower development
on a phenomenological basis. A detailed overview can be found in Refs. [45,46] and in Ref. [11]
which also summarizes experimental results on hadronization e!ects.

All existing models implement hadronization as a probabilistic and iterative procedure, usually
named fragmentation, which applies one or more types of simple branchings:

(IF) jetPhadron#remainder-jet,
(SF) stringPhadron#remainder-string,
(CF) clusterPhadron#hadron, or clusterPcluster#cluster.

Probabilistic rules prescribe at each branching the production of new #avours and the sharing of
energy and momentum between the fragments. In practice, these fragmentation rules depend on
parameters which cannot be calculated from "rst principles but have to be adjusted to obtain
a useful description of measured data. In the following a brief description of the main types of
models and some relevant parameters is given.

3.2.1. Independent fragmentation
The name of this hadronization model [47] suggests that each quark is hadronized independent-

ly. Fig. 8 illustrates the principle of the iterative fragmentation procedure. The quark jet q is split
into a hadron consisting of qq6

1
and a remainder-jet q

1
. The hadron takes a fraction z of the

available energy and momentum according to a probability function f (z), leaving 1!z for the
remainder-jet. Usually, z is the light-cone energy-momentum fraction de"ned as

z"
(E#p

,
)
)!$30/

(E#p)
q

, (44)

where p
,

is the longitudinal momentum along the jet axis. The fragmentation function f (z) which is
used in the independent fragmentation model is assumed to be energy independent, thus being the
same at each fragmentation step.

The independent fragmentation model has a number of drawbacks. To start with it is not
Lorentz invariant and does not exactly conserve energy, momentum and #avour which all have to
be patched up at the end. On top of that independent fragmentation does not intrinsically contain
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Fig. 9. (a) Peterson et al. [55] and (b) Lund symmetric [58] fragmentation function with parameters taken from Ref. [56].

gluon interference e!ects which are expected from MLLA calculations [41,48] and were observed by
the PETRA and the LEP experiments [49}53]. The independent fragmentation model is, therefore,
now largely disfavoured. A Monte Carlo generator based on this model which is routinely used in
comparisons with data is COJETS [54].

Irrespective of the principal de"ciencies of the independent fragmentation model, the concept is
still commonly used when fragmenting the heavy charm and bottom quarks into hadrons
containing these quarks. In particular, the Peterson et al. fragmentation function [55] is experi-
mentally preferred (see [11]) because of its energy-momentum spectrum which is peaked at large
values of z (see Fig. 9). The function is of the form

f (z)&
1
zA1!

1
z
!

e
Q

1!zB
~2

. (45)

It is controlled by a single free parameter, e
Q
, which is expected to scale between #avours as

e
Q
&1/m2

Q
. Fig. 9(a) shows this fragmentation function, respectively, for charm and bottom quarks,

assuming e
#
"0.031, e

"
"0.0038 as given in Ref. [56].

3.2.2. String fragmentation
The string fragmentation scheme, which was "rst proposed in Ref. [57] and later elaborated by

the Lund group [58], considers the colour "eld between the partons. As a quark}antiquark pair of
complementary colour moves apart the colour "eld between them collapses due to the gluon
self-interaction into a uniform colour #ux tube, which is called a string. It has a transverse
dimension of typical hadronic sizes (1 fm) and a constant tension i+1 GeV/fm. Energetic gluon
emission can be regarded as energy-momentum carrying `kinksa of the string [59]. Hence,
a complicated string moving in space}time is associated with a multiparton state.

The fragmentation into hadrons occurs, if the potential energy stored in the string is su$cient to
create a q@q6 @ pair from the vacuum, by breaking the string up into colour singlet systems as long
as the invariant mass of the string pieces is larger than the on-shell mass of a hadron. Thus, at the
end of the fragmentation each hadron corresponds to a small piece of string. This is illustrated in
Fig. 10.

The creation of the string breaking quark}antiquark pairs is governed by a quantum mechanical
tunneling probability which depends on the hadron transverse mass m

M
and the string tension i.
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Fig. 10. Schematic representation of the string fragmentation procedure (adapted from Ref. [45]). A string stretched
between q and q6 in two-dimensional space}time is repeatedly broken up by quark}antiquark pairs until on-mass-shell
hadrons remain.

The probability is proportional to

expA!
pm2

M
i B"expA!

pm2

i BexpA!
pp2

M
i B , (46)

where the transverse momentum p
M

is locally compensated between quark and antiquark. As
a consequence the dependence on the hadron mass, m, results in a suppression of strange and,
especially, charm and bottom quark production at this step of the fragmentation process.

Finally, energy and momentum have to be shared between the string pieces such that the
symmetry between the two ends of the string is maintained. The symmetry requirement restricts the
choice of the fragmentation function which takes the simpli"ed form

f (z)&
1
z
(1!z)a expA!

bm2
M

z B , (47)

with two free parameters, a and b. These need to be adjusted so that the fragmentation is in
accordance with measured data. The shape of this function is shown in Fig. 9(b) for a"0.11,
b"0.52GeV~2, m"0.7GeV, and p

M
"0.4GeV as given in Ref. [56].

The concept of string fragmentation is implemented in several Monte Carlo generator programs,
for example JETSET [60] and ARIADNE [61].

3.2.3. Cluster fragmentation
The cluster fragmentation scheme, which is implemented in the HERWIG [62] Monte Carlo

generator, assumes a local compensation of colour based on the pre-conxnement property of
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Fig. 11. Schematic representation of the cluster fragmentation procedure (adapted from [45]).

perturbative QCD [63]. The whole process of cluster fragmentation is illustrated in Fig. 11. This
scheme keeps track of the colour #ow during the parton shower evolution. To locally compensate
colour at the end of the parton shower the remaining gluons are split into quark}antiquark pairs.
A quark from such a splitting may form a colour singlet cluster with the antiquark from an adjacent
splitting. Thus clusters are formed which have a typical mass of a couple of GeV.

Finally, to obtain hadrons, a cluster is assumed to decay into two hadrons unless it is either too
heavy, in which case it will decay into two clusters, or too light, in which case the cluster decays into
a single hadron, requiring a rearrangement of energy and momentum with neighbouring clusters.
For the decay into two hadrons, which is assumed to be isotropic in the rest frame of the cluster
except if the primary quark is involved, a decay channel is chosen based on the phase-space
probability only. It involves the density of states, in particular the spin degeneracy of the hadrons.
Due to the phase-space dominance in the hadron formation, the cluster fragmentation has
a compact description with few parameters.

3.2.4. Theoretical approaches to hadronization
Apart from the many phenomenological fragmentation schemes that were proposed (see surveys

in Refs. [45,46]), two approaches will be presented which are characterized by a simple but
experimentally successful concept. Section 5 is devoted to the application of these two approaches
to experimental data.

One is the concept of local parton}hadron duality (LPHD) [41,64]. It assumes an immediate
relation between the properties of the "nal state at the parton and at the hadron level based on the
conjecture that the transition from partons to hadrons is local in phase space, blanching and
hadronization of the coloured partons. The idea arose from the preconxnement property of
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Fig. 12. Schematic representation of the simple tube hadronization model in which hadrons occupy a tube in rapidity
and transverse momentum. It can be deduced from this model that hadronization e!ects cause power corrections to
observables.

perturbative QCD [63]. There is not an explicit formation of hadrons from the partons in the LPHD

approach and, therefore, it does not involve dedicated fragmentation functions. The energy and
momentum distributions at the hadron level are derived from the parton level distributions by
employing a normalization factor.

The other concept, which is now intensively investigated, considers non-perturbative corrections
[65}74] to the perturbatively calculated standard cross-section. Non-perturbative corrections,
which cannot be obtained from an expansion of the di!erential cross-section in powers of a

S
, are

expected to become signi"cant because of hadronization.
The e!ect of hadronization can be qualitatively estimated using the simple longitudinal phase-

space or &tube' model [75] (see also [76]). In this model a parton produces a jet of light hadrons,
each of them characterized by the rapidity y and the momentum p

t
transverse to the direction of the

initial parton. The rapidity is de"ned as y"0.5 ln[(E#p
z
)/(E!p

z
)] where E is the energy and

p
z

is the momentum along the direction of the parton. The hadrons jointly occupy a tube in
(y, p

t
)-space as is illustrated in Fig. 12. The transverse momentum of the hadrons in the tube is due

to the hadronization. Thus, from a hadron density o(p
t
) in the tube, one "nds its hadronization

scale j":d2p
t
o(p

t
)p

t
. Noting that cosh y"E

)!$30/
/m

)!$30/
and sinh y"p

)!$30/
/m

)!$30/
one can

calculate the energy and momentum of a tube of rapidity length > for m
)!$30/

+j, yielding

E"P
Y

0

dy j cosh y"j sinh> ,

P"P
Y

0

dy j sinh y"j(cosh>!1) . (48)

For ><1 one obtains approximately P+E!j.
In order to "nd in this model the e!ects of hadronization on observables like thrust, a two-jet

con"guration should be considered. The full energy of this system is Q. Thus each massless parton
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has E"Q/2 and, hence, x,E/(Q/2)"1 whereas for the tube x
56"%

"2P/Q+2(E!j)/Q. Recall-
ing the de"nition of thrust from Eq. (39) one "nds for the tube

¹"max(x
56"%

)+1!2j/Q . (49)

This exempli"es the impact of hadronization on thrust. Similar conclusions can be drawn for other
observables such that hadronization e!ects are generally expected to be suppressed by one or more
powers of 1/Q.

3.2.5. Treatment of hadronization in measurements
Calculations of observables like thrust rely on perturbation theory, yielding power series in a

S
as

shown in Eq. (38). When performed only up to a certain "nite order in a
S
, the result of the

calculations is applicable to a "nal state with a small number of partons. However, observables are
measured from the particles (hadrons) emerging from the hadronization of the partons which is still
not calculable from basic QCD principles. E!ects due to hadronization are usually not negligible as
one may deduce from the fact that at most four partons are described by an O(a2

S
) calculation

whereas about 40 charged and neutral particles are observed in the detector (see Fig. 7).
The phenomenological models of hadronization, which are implemented in Monte Carlo

programs and some of which have been described in this section, have to be invoked to bridge the
gap between hadrons and partons. Broadly speaking, a measured distribution is numerically
deconvolved for hadronization distortions using events simulated by Monte Carlo event gener-
ators. Given that the di!erential cross-section for an observable is measured as a histogram, two
principal approaches are commonly pursued for the deconvolution: (i) bin-by-bin correction
factors, and (ii) a correction matrix.

In most studies correction factors are well-suited to account for hadronization so long as the
di!erential cross-section varies only slightly with the value of the observable and if the width of the
bins is su$ciently large. Otherwise hadronization may lead to signi"cant distortions due to bin
migration e!ects which need to be corrected using a correction matrix. Such a matrix relates the
values the observable assumes for a partonic "nal state with those of the associated hadronic "nal
state. To apply a correction matrix to a measured distribution, it needs to be inverted. Doing this
analytically usually yields unstable results due to statistical #uctuations. A variety of recipes are on
the market like iterative inversion, singular value decomposition (SVD), Bayesian method and
regularization, which will not be detailed in this report (for details see [77,78]).

Since all these prescriptions rely heavily on the phenomenological hadronization models and
their many non-calculable parameters, one naturally attempts to "nd observables which do not
su!er signi"cant hadronization distortions. Moreover, the determination of the strong coupling
constant, a

s
, is usually restricted to regions with small hadronization e!ects. Examples of such

observables will be described in the following section.

4. Studies of the energy dependence of QCD

To obtain a "nite result for the calculation of cross-sections, renormalization of colour charge
and quark mass has to be invoked. As a consequence both the renormalized charge and mass
depend on the renormalization scale k. However, cross-sections of physical processes must not
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depend on it. This requirement leads to a scale dependence of the strong coupling constant
(Eq. (22)) and the quark masses (Eq. (23)). The scale dependence due to renormalization is
a fundamental prediction of QCD which has to be veri"ed by experiment.

This section presents determinations of the strong coupling at various energy scales using
di!erent methods, thus reducing potential biases of the energy dependence due to the method of
determination. The review of results will be mostly limited to energy scales above the threshold for
bottom quark pairs, that is +10GeV, where perturbative calculations are assumed to be very
reliable. At the end of the section the running of the quark masses will be considered. Experimental
e!ects due to non-vanishing quark masses were looked for in studies of the #avour independence of
a
S
. Direct determinations of the scale dependence of quark masses are becoming available now

since the O(a2
S
) matrix elements including quark masses have been calculated.

4.1. Determination of the running of a
S

Many di!erent approaches to determine the strong coupling constant a
S

in e`e~ annihilation
exist. Recalling the collinear and infrared singularities associated with the perturbative calculation
of cross-sections, one may distinguish two di!erent classes of a

S
determinations depending on the

inclusiveness of the measured quantity. Fully inclusive quantities have real and virtual contribu-
tions added such that infrared singularities cancel while remaining collinear divergences are
factorizable and can be absorbed into process-independent parton distributions and fragmentation
functions. Although inclusive quantities like event shape observables and jet rates consider the full
"nal state, collinear and, in particular, infrared singularities a!ect the measurement through the
sensitivity of the observables to the details of the "nal state.

Another argument in favour of the fully inclusive and inclusive quantities concerns the renormal-
ization scale dependence which has been explained in Section 2.2.3. Many fully inclusive quantities
are calculated in a

S
to orders higher than next-to-leading (NLO), mainly next-to-next-to-leading

(NNLO). While NLO predictions still signi"cantly depend on the choice of the renormalization scale
k, the dependence at NNLO is greatly reduced because it is suppressed by a factor a4

S
, that is one

power more than for NLO. In general, the more terms of the perturbation series are added, the more
stable is the prediction against arbitrary scale choices. Therefore, higher-order perturbation
calculations are expected to yield results less sensitive to an arbitrary choice of the scale.

4.1.1. Fully inclusive quantities: cross-sections and hadronic branching fractions
The total hadronic cross-section, p

)!$
, is obviously a fully inclusive observable. In particular at

the Z pole high statistics measurements of cross-sections were done in order to precisely survey the
Z resonance. With the use of dedicated subdetectors installed in each of the LEP experiments the
luminosity, which is needed in the determination of cross-sections, is measured to an accuracy of
better than 0.1% (see for example [5]). At such high precision, the strong coupling constant a

S
can

be determined from the QCD corrections that have to be applied to the hadronic cross-section.
Away from the Z pole, i.e. at higher energies at LEP II, at lower energies at TRISTAN, PETRA, PEP, and
even near the bottom quark production threshold at about 10GeV at CESR, measurements of the
hadronic cross-section can be used to determine the strong coupling constant.

Inclusive branching fractions of particle decays into hadrons are also fully inclusive quantities
since they do not rely on any details of the "nal state. Precise measurements and perturbative
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10Meanwhile a new parameterization based on the improved version of the ZFITTER program became available in
Ref. [82], which slightly increases the central value of a

S
(m2

Z
) in Eq. (52) by 0.0020.

predictions exist for the q lepton, the J/t(1S) and the B resonances. These have been used to
determine the strong coupling constant at very low scales in the range of 1.8}10GeV. Since a

S
is

rather large at these scales, non-perturbative and mass e!ects are not negligible. Some of the
corrections are even not calculable and, hence, have to be determined from the measured data.
Nevertheless, determinations of a

S
from these particles provide valuable input to test the running of

the strong coupling.

4.1.1.1. Hadronic cross-sections. The total hadronic cross-section, p
)!$

, for e`e~ annihilation has
been calculated to third order in a

S
(NNLO) [79], yielding

p
)!$

"p
0C1#

a
S
p
#1.409A

a
S
p B

2
!12.808A

a
S
p B

3
#O(a4

S
)D , (50)

where p
0

is the Born level cross-section without QCD corrections. This formula receives further
corrections due to the "nite masses of the quarks. One also has to consider the di!erences between
vector and axial contributions due to the Z weak coupling even for massless "nal state quarks. In
Ref. [80] a parameterization applicable at the Z pole is obtained which includes these e!ects.
It approximates the RQCD ratio which has been introduced in Section 3.1.1 at a precision of
*R"0.0005. For a top quark mass of m

501
"173.8GeV [81] and a Higgs boson mass of

m
H*''4

"300GeV the parameterization is [80]

RQCD"
p
)!$

(m
Z
)

p
0
(m

Z
)
+R

0C1#1.060
a
S
p
#0.852A

a
S
p B

2
!15A

a
S
p B

3

D . (51)

Electroweak radiative corrections and the Higgs mass dependence are all absorbed into the factor
R

0
which assumes a value of 19.938 for the aforementioned top quark and Higgs boson masses.

The RQCD ratio has been inferred very precisely at the LEP collider from a measurement
of the hadronic and leptonic decay widths, C

)!$
and C

-%15
, of the Z boson. A value of

RQCD"20.765$0.026 was determined in Ref. [4]. Solving Eq. (51) for a
S
(m2

Z
) one obtains

a
S
(m2

Z
)"0.1217$0.0039 (exp.) $0.0040 (theor.)

"0.1217$0.0056 , (52)

where the "rst error is due to the uncertainty of RQCD.10 The second error is the quadratic sum of
the contributions from the uncertainties of the electroweak calculations, from missing higher-order
QCD corrections, and from the variation of the unknown Higgs boson mass between 60 and
1000GeV. This result for the strong coupling, however, is based on the assumption that elec-
troweak interactions (see Ref. [83]) are accurately described by the electroweak standard model, in
particular C

)!$
. One can reduce this sensitivity when in addition to R

QCD
also the full decay width,

C
Z
, and the hadronic pole cross-section of Z exchange are considered in a simultaneous "t of

m
501

, a
S
and m

H*''4
. Such a "t has been performed in Ref. [4]. Considering all available electroweak
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Fig. 13. The ratio of hadronic and muonic cross-section measured between 20 and 189GeV is shown [84}90].
Measurements at identical energies are spread horizontally for clarity. For the same reason solely OPAL data are
presented at the Z pole. The curve is calculated using the ZFITTER program [30]. It includes initial state photon radiation
but not contributions from pair production of W and Z bosons.

data, including direct measurements of m
W

and m
501

, the "t yielded

a
S
(m2

Z
)"0.119$0.003 (53)

with m
501

"171.1$4.9GeV and m
H*''4

"76`85
~47

GeV. It should be noted that the lower value of
a
S
from the simultaneous "t is due to the Higgs boson mass for which a value much lower than the

assumed value of 300GeV, is preferred by this "t.
The energy dependence of the strong coupling can be directly deduced from the cross-section

measurements done by the experiments at the LEP collider above the Z pole at centre-of-mass
energies of 130, 136, 161, 172, 183 and 189GeV. The combination of these measurements [84}89],
shown in Fig. 13 including measurements at lower centre-of-mass energies [90], is given in Table 2.

Although the weighted averages of the measurements at each energy have a total relative error of
only about 1.5%, this uncertainty is still too large for a signi"cant determination of a

S
at each

energy. Therefore, the results at the six di!erent energies are combined in a "t in order to extract
a value of the strong coupling at 161GeV, which is just in the middle of the whole range of energies
considered.

Since both Z and c exchange contribute to the total hadronic cross-section above the pole, and
due to the di!erences of the coupling of Z and c to the quark #avours one cannot simply apply
Eq. (50) to determine a

S
. Moreover, a substantial fraction of the total cross-section at these high

energies is due to very high energy initial state photon radiation, such that the e!ective centre-of-
mass energy is close to the Z mass. In order to assess the value of the strong coupling the ZFITTER

program [30] is employed to account for these details which are precisely known from perturbative
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Table 2
Total hadronic cross-sections measured at LEP above the Z pole [84}89]. The R

QCD
ratios are obtained using the

theoretical muon pair cross-sections calculated at the individual centre-of-mass energies by ZFITTER [30]

Js hadr. cross-section (pb) R
QCD

(GeV)

130 334.7$5.0 15.15$0.23
136 275.1$4.6 14.56$0.24
161 152.8$2.3 13.52$0.20
172 124.4$2.2 12.96$0.23
183 106.3$1.2 12.79$0.14
189 98.2$1.1 12.72$0.14

calculations. ZFITTER takes a
S
(m2

Z
) as input, evolving it internally to the appropriate energy scale by

means of the 3-loop b function. Applying the ZFITTER evolution, a s2 "t to the hadronic cross-
section yielded for the coupling at 161GeV

a
S
((161GeV)2)"0.128$0.033 (exp.)`0.011

~0.007
(top,Higgs) , (54)

where the "rst error is due to experimental uncertainties, whereas the second error stems from
a variation of the top quark mass m

5
"173.8$5.0GeV [81] and of the Higgs mass between 60 and

1000GeV. The large error of the result underlines that, even if all LEP II results are combined, the
precision of the measured cross-section limits the sensitivity to the size of the strong coupling
because it contributes a small correction to the total hadronic cross-section only (cf. Eq. (50)). Even
worse, the size of this correction decreases with increasing energies thus rendering this determina-
tion barely usable for a veri"cation of the running of a

S
at LEP II energies.

Since the expected energy dependence of the strong coupling is more pronounced towards lower
scales, determinations of a

S
from measurements of the total hadronic cross-section at lower

centre-of-mass energies might yield a signi"cant test of the running. In Ref. [91] measurements of
the Rc ratio at centre-of-mass energies below approximately 60GeV were used to determine a

S
.

A correction to the erroneous third order coe$cient of the theoretical calculation was applied to
the original results in Ref. [9] which yielded

a
S
((31.6GeV)2)"0.163$0.022Pa

S
(m2

Z
)"0.133$0.015 . (55)

Eq. (22) has been applied to evolve to the m
Z

scale. Within the large errors, which are due to the
uncertainties of the cross-section measurements, this result agrees with the determinations (52) and
(53) at the Z pole.

At around Js"10GeV many experiments precisely measured the R ratio for e`e~ annihili-
ation in the continuum [92,93]. A compilation can be found in Ref. [93]. The weighted average of
these measurements is R(Js+10GeV)"3.53$0.05. To determine a

S
from it one has to consider

the e!ects of quark masses and QED radiation. These were calculated in Ref. [94] to NNLO. The
result is

R
QCD

(Js"10GeV)+R
0C1#1.0179

a
S
p
#1.9345A

a
S
p B

2
!10.7484A

a
S
p B

3

D , (56)
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which di!ers only marginally from the result for massless quarks (cf. Eq. (50)). Since the measure-
ments of R were performed below the B(4S) resonance, bbM production is kinematically forbidden.
Thus only n

f
"4 quark #avours, namely u, d, s, c, need to be considered in the calculation of

R
0

according to Eq. (32), yielding R
0
"10/3. Solving Eq. (56) for a

S
one obtains

a(nf/4)
S

((10GeV)2)"0.169$0.040 . (57)

With the help of Eq. (27) and using m
"
"4.25$0.15GeV [28] this result can be transformed to

a
S
((10GeV)2)"0.173$0.042 for n

f
"5 active quark #avours, where the error includes a negli-

gible uncertainty ($0.0002) due to the error on the bottom quark mass m
"
. Applying Eq. (22) the

value of the strong coupling becomes

a
S
(m2

Z
)"0.116`0.017

~0.020
(58)

at the Z pole which is in agreement with the result obtained directly at the pole.
There also exist many measurements of the R ratio towards even lower energies (see compilation

in Ref. [28]). These, however, do not allow a precise determination of the strong coupling constant.
Measurements of the R ratio at energies in the range of 2}5GeV have been completed by the BES

collaboration [95]. Given an uncertainty of the order of a few per mill, a precise determination of
a
S

will become possible, thus testing its scale dependence at very low energies.

4.1.1.2. Hadronic branching fraction of the q lepton. In the case of hadronic decays of the q lepton,
hadrons are formed from the qq6 @ pair which stems from the virtual W boson of the weak decay. The
hadronic branching fraction of the q lepton, which is given by the ratio of the hadronic and
electronic decay widths C

h
and C

%
, can be expressed as a power series up to third order in a

S
[96]

enhanced by additional correction terms [97]

Rq"
C

h
C

%

"

B
)!$30/4
B
%

"

1!B
%
!Bk

B
%

"3.058C1#
a
S
(m2q )
p

#5.2023
a2
S
(m2q )
p2

#26.366
a3
S
(m2q )
p3

#d
%8

#d
m
#d

/1D . (59)

The electroweak correction d
%8

"5a
%.

(m2q )/(12p)+0.001 is small [98]. The relative sizes of the
corrections owing to "nite quark masses, d

m
,(m

q
/mq )2, and owing to non-perturbative e!ects, d

/1
,

are estimated in Refs. [96,99,100] to be !0.014$0.005 in total.
The ratio Rq is derived in Ref. [28] from the measured branching fractions of the decays

into electrons, B
%
, and muons, Bk , yielding Rq"3.642$0.024. Furthermore, a value Rq"

3.636$0.021 is determined from lifetimes and masses of q and k, from which B
%
"(qq/qk)(mq/mk)5

is calculated assuming lepton universality. Averaging these, a value of a(nf/3)
S

(m2q )"0.35$0.03 can
be derived for the strong coupling constant, where the error is dominated by the estimated
theoretical error from missing a4

S
and higher-order terms in the power series, and from uncertainties

of the non-perturbative contributions.
Instead of theoretically estimating the non-perturbative corrections they may be inferred from

data by "tting to the invariant mass distribution of the hadronic q decay. This way some theoretical
uncertainties can be avoided. One has to consider moments of the mass distribution, since the
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Fig. 14. The running of a
S
(s
0
) obtained in Ref. [101] from "ts of an improved theoretical prediction to the invariant mass

moments restricted to s
0
(m2q . A large correlation is present between the experimental values. The shaded band

represents the experimental errors. Superimposed is the theoretical expectation of the scale dependence for 2 and 3 active
#avours, respectively. Not shown is an overall uncertainty of about 7% due to the scatter from employing various
improved theoretical predictions (see text and Refs. [101,102]).

di!erential partial width dC
h
/ds in the integral

Rq (s0 )"
1
C
%
P

s0

0

ds
dC

h
ds

(60)

is not yet directly accessible within existing theoretical skills. However, k, l-moments of the mass
distribution, which are obtained by introducing a factor (1!(s/m2q ))k(s/m2q )l into the integrand,
were calculated in Ref. [97]. Aside from a mere determination of a

S
at the q mass scale, that

is s
0
"m2q , one may test the running of the coupling by restricting the moments to invariant mass

squared of s
0
(m2q . This allows the size of the strong coupling at various values of s

0
to be

determined.
Investigations of the invariant mass moments were performed by the ALEPH and OPAL collabora-

tions at LEP, exploiting Z decays into q pairs, and also by the CLEO collaboration [101}103]. Fig. 14
exempli"es the results on a

S
(s
0
) from "ts of the restricted moments. The band represents the

experimental error. Also shown is the expected running of a
S

assuming 2 and 3 active #avours.
Despite large correlations between the a

S
values determined at adjacent s

0
, a satisfactory agree-

ment is found. Table 3 provides a compilation of the results on a
S
obtained at s

0
"m2q . These were

found from the application of the "xed order perturbation theory to the values of Rq derived from
the separately measured vector and axial-vector contributions to dC

h
/ds. Due to the large value

of a
S

at the q mass scale the power series in Eq. (59) does not converge well. To improve the
convergence, attempts were made to obtain a resummation of some of the higher-order terms.
Details can be found in Refs. [97,100,102]. In Ref. [102] variations in a(nf/3)

S
(m2q ) of up to $7%,

that is $0.022, were found on average owing to modi"ed perturbative descriptions.
The central result in Table 3 is obtained from a weighted average following the prescription of

Ref. [104]. In brief, the value is calculated using the inverse squares of the total errors of the
individual results as the weights. Ignoring tiny statistical correlations, but taking into account
dominant systematic correlations, the error on the central result is determined by calculating
a weighted average of the errors of the individual results using the same weights.
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Table 3
Compilation of a(nf/3)

S
(m2q ) determined from Rq and from the measured vector and axial-vector decomposition of dC

h
/ds

[101}103]. The results were obtained using "xed-order perturbation theory. An overall error of $7% has to be added to
the results to account for changes due to missing higher-order terms of the perturbative series. The "rst error denotes the
experimental uncertainties which include errors propagated from external branching ratios. The second error is the
theoretical uncertainty. A weighted average is calculated taking into account the correlations of the individual values

Experiment a(nf/3)
S

(m2q )

ALEPH93 0.330$0.043$0.016!

CLEO95 0.306$0.017$0.017
ALEPH98 0.322$0.005$0.019
OPAL98 0.324$0.006$0.013

Average 0.321$0.009$0.015

!Experimental and theoretical error are estimated from the total errors using the respective error contributions quoted
for Rq .

To evolve a
S

from the q mass scale to the Z pole Eq. (22) has to be applied. Since the number of
active #avours at the mq scale is 3, the matching relations (27) have to be used at both the charm
(m6

#
(m6

#
)"(1.25$0.15)GeV [105]) and the bottom MS mass scale (m6

"
(m6

"
)"(4.25$0.15)GeV

[28]). Thus evolved to the Z scale, a(nf/3)
S

(m2q ) assumes a value of

a
S
(m2

Z
)"0.1191$0.0011 (exp.)$0.0019 (theor.)

$0.0029 (pert.)$0.0003 (evol.) , (61)

where the "rst and second errors are experimental and theoretical, the third error is due to modi"ed
perturbation series, and the fourth error propagates from uncertainties of the evolution and
matching equations [29]. This result is in excellent agreement with the value obtained from the
determination of a

S
from R

)!$
at the Z pole and also from the "t to the electroweak data.

4.1.1.3. Hadronic decays of B resonances. Although the J/t meson has a mass of about 3.1GeV
it is su$ciently light that relativistic and non-perturbative e!ects are very signi"cant. However, an
a
S

determination from hadronic decays of the B is possible. From its decay modes, two di!erent
R ratios can be de"ned for the B. Both are known in next-to-leading order NLO [106,107]

R
GGG

"

C(BPGGGPhadrons)
C(BPk`k~)

"

10(p2!9)
9p

a3
S
(k2)

a2
%.
G1#C9.1#6.3 lnA

k2

m2BBD
a
S
(k2)
p H ,

RcGG
"

C(BPcGGPc#hadrons)
C(BPk`k~)

"

8(p2!9)
9p

a2
S
(k2)

a
%.
G1#C3.7#4.2 lnA

k2

m2B BD
a
S
(k2)
p H . (62)
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Table 4
Listing of a

S
determinations from fully inclusive quantities: the total hadronic cross-section and the hadronic branching

fraction of the q lepton and of the J/t and B mesons. The values at m2
Z

were evolved from the values measured at Js by
numerically solving the 4-loop renormalization group equation (20) using m6

#
"1.25$0.15GeV [105] and m6

"
"

4.25$0.15GeV [28]. The weighted average takes correlations into account

Observable quantity Js (GeV) n
f

a
S
(s) a

S
(m2

Z
) Theory

Rq 1.777 3 0.321$0.017 0.119$0.004 NNLO

B [QCD moments] 4.13 4 0.233`0.045
~0.030

0.120`0.010
~0.008

NLO

R
GGG

(J/t,B) 10.0 4 0.167`0.015
~0.011

0.115`0.007
~0.005

NLO

RcGG
(B) 10.0 4 0.163$0.014 0.112`0.006

~0.007
NLO

R
QCD

10.0 4 0.169$0.040 0.115`0.017
~0.019

NNLO

R
QCD

31.6 5 0.163$0.022 0.133$0.015 NNLO

R
QCD

91.2 5 0.122$0.006 0.122$0.006 NNLO

R
QCD

161.0 5 0.130$0.035 0.141$0.044 NNLO

Weighted average 91.2 5 0.1195$0.0025

The "ne structure constant a
%.

in this equation is to be evaluated at the B scale, that is
mB+10GeV. In Ref. [107] a value of a~1

%.
(mB )+132.0 was used in order to determine the strong

coupling constant from measurements of the R
GGG

ratio for the B and the J/t resonance states. At
the B scale the result is [108]

a(nf/4)
S

(m2B)"0.167`0.015
~0.011

Pa
S
(m2

Z
)"0.115`0.007

~0.005
, (63)

where the value of the coupling at the Z pole is obtained from numerically solving Eq. (20).
The ratio RcGG

has been measured to high accuracy by the CLEO experiment [109], yielding

a(nf/4)
S

(m2B)"0.163$0.014Pa
S
(m2

Z
)"0.112`0.006

~0.007
, (64)

where the error is dominated by theoretical uncertainties associated with the scale choice.
In Ref. [110] an investigation of moments of the R(s) ratio for the "rst six B resonances was

performed. From the perturbative series up to O(a2
S
) (NLO) for these moments, which are calculated

using measured masses and electronic decay widths of theB resonances, the MS bottom quark mass
m6

"
"(4.13$0.06)GeV was obtained and the strong coupling constant was determined at this

scale to be

a(nf/4)
S

((4.13GeV)2)"0.233`0.045
~0.030

Pa
S
(m2

Z
)"0.120`0.010

~0.008
. (65)

The dominant contribution to the error comes from uncertainties due to the choice of the
renormalization scales for the bottom quark mass and a

S
.

4.1.1.4. Summary of a
S

determinations from fully inclusive quantities. In Table 4 the various
a
S

determinations presented in this section are listed. Motivated by the di!erent dominance of
theoretical, scale, and statistical uncertainties, the weighted average is calculated from the averages
of each of the three groups of a

S
determinations, viz. from Rq , from quarkonia and from R

QCD
,

respectively. For the quarkonia the average a
S

value and its error is determined using the total
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Fig. 15. The value of the strong coupling constant obtained from fully inclusive quantities at various centre-of-mass
energies is shown. Superimposed on the data is the QCD expectation at 4-loop precision using a

S
(m2

Z
)"0.119.

errors for the weights, while when averaging the R
QCD

results no correlation is assumed due to the
dominance of both the statistical uncertainties and the result at the Z pole. Also it has to be
remembered that the a

S
results obtained from the total hadronic cross-section are a!ected by tiny

uncertainties only due to the choice of the scale. The uncertainty of the overall average is, therefore,
calculated taking the full systematic error from the Rq result as the sole common error for the
a
S

determinations from Rq and the quarkonia decays.
One notes that the value of the coupling falls o! signi"cantly when the energy scale increases.

This can be seen in Fig. 15 which shows these results together with the expectation of QCD for
a
S
(m2

Z
)"0.119. Comparing the a

S
values evolved to the Z pole, one observes a good agreement

between the various results. From this agreement, one may deduce that the energy dependence as
predicted by the renormalization group equation (20), which is used to evolve the a

S
from their

respective to the m
Z

scale, is very consistent with the data. The total error of the individual
a
S

determinations is still signi"cant at the level of several percent.

4.1.2. Inclusive quantities: jet rates and event shapes
In order to determine a

S
, one may directly investigate quarks and gluons in the "nal state of

a hadronic event. Gluon emission by the quarks is connected with the coupling constant. This
becomes immediately obvious from the di!erential cross-section shown in Eq. (35). Thus, to lowest
order, the probability for a parton to radiate a gluon is directly proportional to a

S
. Exploiting this

property, one may pursue two approaches to assess the size of the coupling. One can either
determine a

S
by counting how often a gluon is emitted by a quark, that is by measuring the jet rates

which requires the reconstruction of quarks and gluons from the jets of particles measured by the
detector. Alternatively, one may take advantage of the fact that gluon radiation changes the spatial
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11Usually event shapes are normalized such that 0 corresponds to the 2-jet case.

as well as the energy and momentum distributions of the particles in the detector, that is by
performing a measurement of the shape of an event. Determinations of a

S
based on both jet rates

and event shapes will be presented in this section, starting with a theoretical description of the
observables in each case.

4.1.2.1. Perturbative predictions for jet rates and event shapes. Although jet rates and event shapes
are formally di!erent in how they analyse an event, both are similarly described by perturbation
theory. The general approach to the perturbative description of this kind of observable has already
been presented in Eq. (38). Going beyond leading order (LO), analytical calculations become
di$cult due to the complicated phase space for multiparton "nal state con"gurations. Moreover,
a special treatment of infrared and collinear singularities in real and virtual contributions to the
di!erential cross-section of an observable is necessary.

Due to these di$culties full perturbation calculations of jet rates and event shapes are currently
next-to-leading order (NLO) only. However, there exist improvements on these predictions using
resummation of large logarithmic terms as will be detailed below. In NLO the distribution of an
inclusive observable F is given by a series (cf. Eq. (38))

1
p
0

dp
dF

"

a
S
(k2)
2p

A(F)#
a2
S
(k2)

4p4
(2pb

0
A(F)lnx2k#B(F))#O(a3

S
) , (66)

where A and B are perturbatively calculable coe$cient functions of F which are tabulated in
Ref. [111] for many event shape observables. The variable x2k"k2/s is the renormalization scale
factor, which relates the physical scale Js to the renormalization scale k. In contrast to fully
inclusive quantities one must not neglect the arbitrariness of the choice of the scale k at which a

S
is

renormalized.
Inclusive quantities are a!ected by infrared and collinear singularities since they are related to

the di!erential cross-section for multiparton "nal states. As a consequence the perturbative
prediction becomes unreliable for partons that are close together. This is in particular the case
when approaching the 2-jet region with a back-to-back quark}antiquark "nal state, for which11
FP0. Due to large logarithmic contributions from ln(1/F) (see Section 3.1.3) perturbation
calculations using a

S
as expansion variable are not reliable in this region which occupies a signi"-

cant fraction of the whole phase space (see for instance [12]). To overcome this de"ciency of
"xed-order perturbation theory, an expansion in a

S
¸ is envisaged, where ¸"ln(1/F). For this

purpose the normalized event shape cross-section is rewritten,

R(F)"P
F

0

dF@
1
p
0

dp
dF@

"C(a
S
) expCGAaS , ln

1
FBD#D(a

S
,F) , (67)

using a coe$cient function C(a
S
), an exponential of a function G(a

S
, ln(1/F)), and a remainder

function D(a
S
,F), which vanishes for FP0 if F can be exponentiated this way. The functions
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C and G can be expanded in a
S

and ¸

C(a
S
)"1#

=
+
n/1

C
n

an
S

(2p)n

G(a
S
,¸)"

=
+
n/1

n`1
+

m/1

G
nm

an
S

(2p)n
¸m (68)

"¸

=
+
n/1

G
n,n`1

(a
S
¸)n

(2p)n
#

=
+
n/1

G
n,n

(a
S
¸)n

(2p)n

#

a
S

2p
=
+
n/2

G
n,n~1

(a
S
¸)n

(2p)n
#2

,¸g
1
(a

S
¸)#g

2
(a

S
¸)#a

S
g
3
(a

S
¸)#2 .

The key point of the expansion of G is that some of the power series in a
S
¸ could be summed to all

orders for a number of event shape observables and jet rates [112}121], yielding speci"c functions
g
i

for i"1 and 2. The function g
1

resums all leading logarithmic (LL) contributions, g
2

all
next-to-leading logarithms (NLL). Subleading logarithms are contained in g

3
, etc. Obviously

g
1

becomes important if ¸ is large, that is for F close to the 2-jet region. Provided g
3
, D(a

S
,F), etc.

behave reasonably in this region, one may exploit g
1

and g
2

to predict the distribution of F down
to a

S
¸[1, i.e. much lower than using a "xed-order perturbative expansion, which is applicable for

a
S
¸2;1 only [12]. Thus the resummed expression complements the "xed order calculation

towards the 2-jet region.
Before joining the two calculations, it has to be recalled that the logarithmic approximation

(NLLA) presented above depends on the choice of the renormalization scale similarly to the
"xed-order prediction (O(a2

S
)) in Eq. (66). While g

1
is invariant under changes of the scale x2k"k2/s,

g
2

assumes an explicit scale dependence according to [112]

g
2
(a

S
(k2)¸)"g

2
(a

S
(s)¸)#(a

S
(s)¸)2b

0
lnx2k

dg
1
(a

S
(s)¸)

d(a
S
(s)¸)

. (69)

Since the resummation accounts for large logarithms to all orders, one expects, however, the scale
dependence of a

S
as determined using the NLLA calculations to be reduced. This is, in fact, the case

as will be shown below.
In order to take advantage of the improved prediction in determinations of the strong coupling

constant from event shapes and jet rates, the resummed and the full second-order calculations
[32,111] should be combined. Several prescriptions to match the two calculations have been
proposed [77,112], which di!er in the treatment of subleading terms in third and higher-order of
a
S
¸. In general one considers, for both the NLL approximation and the O(a2

S
) calculation, the

normalized cross-section R(F) given by Eq. (67) and by the integral :F
0
dF@ of Eq. (66), respectively.

To combine the two, one determines the remainder function D(a
S
,F). This can be done by relating

the a
S

expansions of the two R(F) formulae, yielding the so-called R-matching. Alternatively one
can do the same but for the logarithm, lnR(F), of the two formulae which is called lnR-matching.
A di!erent treatment of higher-order terms which do not vanish forFP0, or imposing constraints
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at the kinematic limit FP1 leads, respectively, to modixed R- or modixed lnR-matching prescrip-
tions (see for instance the appendix of Ref. [122]).

The general formulae for these matching prescriptions can be found in Ref. [112]. Detailed
formulae and tables of the coe$cients G

nm
and C

n
for several event shapes are given in Refs.

[77,116,119,120], which include tables of the coe$cients G
nm

and C
n

for several event shape
observables and jet rates.

4.1.2.2. Jet rates. The existence of jets of particles and the connection of a jet to a parton rely on
the fact that the particles emerging from a parton receive during hadronization only a limited
transverse momentum relative to the parton momentum. Thus the dominant direction of the
particles is given by the parton.

Although the existence of jets might be obvious from looking at event displays (see for example
Fig. 7), in practice one has to apply an algorithm to build up a jet from the particles measured in the
detector. A large variety of algorithms has been proposed. Algorithms that reconstruct a "xed
number of jets, for example three jets, were popular in the early time of the PETRA experiments,
when the gluon was discovered (see examples in Ref. [123]).

A reconstruction prescription is widely used which was proposed by the JADE collaboration
[124]. Starting with measured particles, the general principle is to determine a resolution para-
meter y

ij
for pairs of resolvable jets (particles) i and j. Jet pairs whose y

ij
exceeds a chosen threshold

value y
#65

are combined into a single jet. A di$culty arises from jets acquiring mass due to the
recombination since the perturbative calculations are performed for massless partons. To resolve
this potential problem, various algorithms were devised which di!er in the resolution parameter
de"nition and the recombination prescription. Some of the frequently employed algorithms are
listed in Table 5. Further algorithms and more detailed descriptions may be found in Ref. [125].

The CAMBRIDGE C-algorithm, which is a modi"cation of the D-algorithm, was proposed in
Ref. [126]. Its aim is to reduce non-perturbative corrections and to provide a better resolution of
the jet substructure. An implementation and results from an investigation using Monte Carlo
generator events can be found in Ref. [127]. The algorithm applies a two-fold resolution criterion
in order to &freeze' soft resolved jets. It begins by looking for the pair of objects which are closest in
angle h

ij
, that is, the pair with the smallest v

ij
(see Table 5). The least energetic object is considered

a jet if the resolution parameter y
ij

exceeds a given y
#65

, otherwise i and j are combined (see
Ref. [126]).

To assess the size of the strong coupling constant from jets, one may recall that an event with
three jets is due to the emission of a gluon carrying a signi"cant fraction of the centre-of-mass
energy at large angle. Thus the ratio of the number of observed 3-jet to 2-jet events is to leading
order proportional to a

S
, and a measurement of the rate of 3-jet events allows a determination of

the coupling. The n-jet rate R
n
(y), which depends on the choice for y"y

#65
, is de"ned in terms of

the respective cross-sections for n52 jets

R
n
(y,Js),

p
nv+%5

p
)!$

"

=
+

j/n~2

C
n,j

(y,x2k)A
a
S
(k2)
2p B

j

PR
3
(y, Js),

p
3v+%5

p
)!$

"C
3,1

(y)A
a
S
(k2)
2p B#C

3,2
(y,x2k)A

a
S
(k2)
2p B

2
#2 (70)
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Table 5
De"nition of the resolution parameters and recombination prescriptions for various frequently used jet algorithms.
Energy and three-momentum of jets are indicated as E and p, respectively, while upright boldface variables denote four-
vectors. The centre-of-mass energy is Js, but often the total visible energy is used instead in experiments. For massless
quarks the E0- and JADE-algorithms are identical in second-order perturbation theory. The C-algorithm has a two-stage
resolution criterion which is described in the text

Algorithm Resolution parameter Recombination Remarks Theory

E
y
ij
"

(p
i
#p

j
)2

s

p
k
"p

i
#p

j
Lorentz invariant NLO

E0
y
ij
"

(p
i
#p

j
)2

s

E
k
"E

i
#E

j

p
k
"E

k
)

p
i
#p

j
Dp

i
#p

j
D

Conserves +E,

Violates + p

NLO

JADE
y
ij
"

2E
i
E
j
(1!cos h

ij
)

s

E
k
"E

i
#E

j

p
k
"p

i
#p

j

Conserves +E,

+ p

NLO

P
y
ij
"

(p
i
#p

j
)2

s

p
k
"p

i
#p

j

E
k
"Dp

k
D

Conserves + p,

Violates +E

NLO

P0
y
ij
"

(p
i
#p

j
)2

s

p
k
"p

i
#p

j

E
k
"Dp

k
D

As p-scheme,

but +E updated

after each recombination

NLO

D, k
t y

ij
"

2min(E2
i
,E2

j
)(1!cos h

ij
)

s

E
k
"E

i
#E

j

p
k
"p

i
#p

j

Conserves +E,

+ p; avoids exp.

problems

NLO

#

NLLA

G
y
ij
"

8E
i
E
j
(1!cos h

ij
)

9(E
i
#E

j
)2

p
k
"p

i
#p

j
Conserves +E,

+ p; avoids exp.

problems

NLO

C v
ij
"2(1!cos h

ij
)

y
ij
"min(E2

i
,E2

j
)v

ij

E
k
"E

i
#E

j

p
k
"p

i
#p

j

Conserves +E,

+ p; accounts for angular

ordering

NLO

#

NLLA

such that +=
n/2

R
n
"1. In this de"nition the renormalization scale factor x2k"k2/s is introduced.

The coe$cients C
n,j

of the perturbative expansion are known up to order O(a2
S
), which implies

j42. They were calculated by numeric integration of the full second-order matrix elements [32]
and are tabulated in Ref. [111]. The jet rates R

n
are thus predicted for up to n"4 jets. Recently the

4-jet rate was calculated in next-to-leading (up to a3
S

terms) and the 5- and 6-jet rates in leading
order [35}37].

Considering the 3-jet rate obtained using the JADE jet algorithm at a "xed y
#65

"0.08, the scale
dependence of the coupling can be made apparent. In this speci"c case the coe$cients of the
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Table 6
Measured 3-jet rates and total errors using the JADE jet algorithm at y

#65
"0.08. Data are compiled from

Refs. [122,129}132]!

Js (GeV) DELPHI L3 OPAL

130}136 18.2$2.4 19.4$3.3 18.9$2.6
161 19.0$2.8! 14.5$2.8
172 14.0$4.7! 14.9$3.8
183 15.5$2.8
189 16.5$1.6

!Calculated from Sn
+%5

T assuming a negligible 54-jet rate.

perturbative expansion (70) read [111]

C
3,1

"6.76$0.006 and C
3,2

"163.5$0.3 , (71)

thus allowing a determination of a
S
from the 3-jet rate. Measurements of this rate at and below the

Z pole are compiled in Ref. [128]. Comparable results for energies above the Z mass are
summarized in Table 6. All the 3-jet rates are presented in Fig. 16 versus the centre-of-mass energy.
Superimposed is the QCD expectation Eq. (70) with (71) for a

S
(m2

Z
)"0.121.

Another source of uncertainty is assumed negligible, namely the e!ects due to hadronization.
The perturbation calculation, Eqs. (70) and (71), applies only to a "nal state with a small number of
partons. The jets, however, are constructed from the many particles (hadrons) that emerged from
the hadronization of the partons. In order to keep uncertainties low an observable like R

3
should

have a small hadronization correction. Earlier investigations (see, e.g. [108]) demonstrated that the
JADE jet algorithm exhibits small hadronization corrections over a large centre-of-mass energy
range as is shown in Fig. 17. Also shown in the "gure is the DURHAM (D) jet algorithm [118] (see
Table 5) which was devised after LEP came into operation to circumvent some de"ciencies of the
JADE algorithm, for example that leading and next-to-leading logarithms (NLLA) cannot be resum-
med [133]. As can be seen from the "gure both the JADE and D-algorithm have fairly small
hadronization corrections, those for D being smaller at higher centre-of-mass energies. For these
reasons and owing to the resummation of leading and next-to-leading logarithms the DURHAM

algorithm is now frequently used for determinations of a
S

at LEP.
Not long ago the CAMBRIDGE or C-algorithm was proposed [126] (see Table 5) which takes into

account coherence e!ects of the gluon radiation during the parton shower development imple-
mented in the parton shower models as angular ordering of consecutive gluon emissions. Although
very small hadronization corrections were found for the mean jet rate from the C-algorithm,
detailed investigations of n-jet rates showed that the hadronization corrections are larger than for
the D and JADE algorithms [127].

Exploiting the theoretically appealing features of the D algorithm in an investigation of 3- and
4-jet rates measured by the ALEPH collaboration at LEP I [53], the strong coupling was inferred in
Ref. [134], where the R-matched NLO#NLLA calculations for 3- and 4-jet rates were used and
certain soft logarithms were taken into account (K term). The resulting "ts, for which only
statistical errors of the data were considered and the statistical correlation between the data points
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Fig. 16. The 3-jet rate (R
3
) at y

#65
"0.08 using the JADE jet "nder, for values of Js between 22 and 183GeV. The O(a2

S
)

QCD prediction for a
S
(m2

Z
)"0.121 and xk"1 is overlaid.

Fig. 17. Centre-of-mass energy dependence of the hadronization correction of the 3-jet rate for various jet algorithms.
Figure adapted from Ref. [108].

was neglected, are presented in Fig. 18. In general the agreement between data and theoretical
expectation gets better if more higher-order radiative corrections are included. Thus, a remarkably
good description is achieved over a very large y

#65
range and, in particular, in the low y

#65
regime,

when parts of subleading terms (K) are included. Combining both 3- and 4-jet rates one arrives at

a
S
(m2

Z
)"0.1175$0.0018 , (72)
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Fig. 18. Leading order (LO), next-to-leading order (NLO), R-matched NLO#NLLA (next-to-leading-logarithmic approxi-
mation), and QCD prediction with subleading soft logarithms included, NLO#NLLA#K, for 3- (left) and 4-jet rates
(right) are compared to ALEPH data showing statistical errors only. The lower part shows the relative deviation of the
measured data from the NLO#NLLA prediction, where the band is the scale uncertainty from varying xk between 0.5 and
2. Figures adapted from Ref. [134].

where the error is dominated by the scale choice, whereas experimental uncertainties are negligible.
Recently an analytic expression for the 4-jet rate has been calculated in which all the leading and
next-to-leading kinematic logarithms have been resummed [135].

The n-jet rates for adjacent y
#65

values are strongly correlated, thus being favourable for studies
at a single y

#65
value only. Experimental investigations now widely consider the di!erential 2-jet

rate D
2
(y) instead. It may be considered as the di!erential cross-section D

2
(y

3
)"1/p

)!$
dp/dy

3
of

y
3

which is the lowest value of y
ij

in a 3-jet con"guration. The perturbative prediction for D
2

is
obtained from the derivative dR

2
/dy of the 2-jet rate R

2
, calculated as R

2
"1!R

3
!R

4
assuming negligible contributions from '4-jet rates.

Fig. 19 shows some of the many measurements of the di!erential y
3

cross-section based on the
DURHAM jet algorithm (references to the measurements next to the Z pole are listed in Ref. [9],
measurements away from the Z mass can be found in Refs. [129,130,136}139]). The di!erential
cross-section is shown for !ln y

3
instead of y

3
thus stretching the low y

3
region. The "gure reveals

a change of the di!erential 2-jet rate D
2
(!ln y

3
) with the energy scale. The distributions are shifted

towards higher values of !ln y
3

as the centre-of-mass energy increases. This trend is a manifesta-
tion of the running of a

S
, as it corresponds to a reduced amount of highly energetic and well

separated 3-jet events, thus indicating a decrease of a
S
.

Moreover, the "gure shows results from the re-analysis of data measured at lower energies by
experiments which already terminated long before the advent of the D algorithm. Several attempts
have been undertaken [137}139] to re-analyse lower-energy data using the DURHAM algorithm,
in order to accurately test the energy dependence of the strong coupling, to exploit the im-
proved theoretical predictions for the D algorithm, and to exclude uncertainties due to di!erent
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Fig. 19. Di!erential 2-jet rate versus !ln y
3

obtained at centre-of-mass energies between 22 and 183GeV using the
DURHAM jet algorithm. The data, which are displaced vertically by multiples of 0.3, are corrected to hadron level. At each
energy the result of a "t of the combined "xed second-order calculation (O(a2

S
)) and the next-to-leading logarithmic

approximation (NLLA) to the distributions is overlaid. The range of data used in the "t is indicated by a solid line. The
extrapolations are shown as dashed and dotted curves. The upper "gure is taken from Ref. [136], the data of the lower
"gure are compiled from Refs. [138,139].

observables. In combination with measurements obtained at the high energies of LEP II a signi"cant
observation of the running of the strong coupling constant becomes possible.

4.1.2.3. Event shapes. In the spirit of the di!erential cross-section for y
3

in the preceding section,
cross-sections of further observables commonly called event shapes can be used to survey the
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hadronic "nal state. As in the case of the di!erential jet rate these observables assign to each event
a single number whose value indicates the presence of highly energetic, well separated gluon
radiation. Besides the thrust observable already introduced in Section 3.1.2 as a measure of parton
con"gurations, many other variables were proposed (see for instance Refs. [111,123,140]).

In the following a few of the event shape observables will be brie#y introduced. A particular
weight is given to those which are frequently used in investigations of hadronic "nal states, and for
which leading and next-to-leading logarithms were resummed to all orders (NLLA) in addition to the
next-to-leading order (NLO) perturbation calculation. All event shape observables are to be
calculated from the three-momenta p

i
of the particles measured in the detector. Although most

experiments have sophisticated detectors to identify particles, they are usually assumed to be either
pions, if a charged particle is observed, or photons for neutral ones. The particles' energies E

i
, when

required in the following, are calculated under this assumption.
Thrust T is de"ned by the expression [141]

¹"max
n

+
i
Dp

i
) nD

+
i
Dp

i
D

. (73)

The thrust axis n
T

is the direction of the unit vector n which maximizes the ratio. Each event may
be divided into two hemispheres using the thrust axis, such that particle i belongs to hemisphere H

1
(H

2
) if p

i
)n

T
'0 ((0). The vector n

T
is one axis of an orthogonal coordinate system describing

the event. A second axis is the thrust major axis which is found as an axis perpendicular to n
T
,

yielding the thrust major value ¹
.!+

, from the maximization in Eq. (73). The third axis is thrust
minor, given by the vector product of thrust and thrust major axis, from which the thrust minor
value ¹

.*/
is obtained by calculating the ratio in Eq. (73).

Heavy jet mass M
H

or o,M2
H
/s is given by the larger value of the total invariant mass in each of

the hemispheres H
k
, k"1, 2, de"ned by the thrust axis, normalized by the centre-of-mass energy

Js, that is [111,142]

M
H
"

1

Js
max
k/1,2

ASC +
i|Hk

E
iD

2
!C +

i|Hk

p
iD

2

B . (74)

Correspondingly, the light jet mass, M
L
, is the lighter of the two hemispheres, M

D
is the di!erence

and the total jet mass, M
T
, the sum of the heavy and light jet masses.

Jet broadening B is determined for each hemisphere, according to

B
k
"

+
i|Hk

Dp
i
]n

T
D

2+
i
Dp

i
D

, (75)

from which the total, B
T
"B

1
#B

2
, and the wide jet broadening observables, B

W
"max(B

1
, B

2
),

are derived [115].
C-parameter C is obtained from the three eigenvalues j

1
, j

2
, j

3
of the linearized momentum

tensor [32]

hab"+
i

p a
i
) p b

i
Dp

i
D N+

i

Dp
i
D (76)
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Fig. 20. Distributions of C-parameter as measured between 35 and 161GeV. The "t results of lnR-matched
NLLA#O(a2

S
) predictions are superimposed as dotted curves where the solid line indicates the "t range. Data are taken

from Refs. [104,129,130,139].

according to C"3(j
1
j
2
#j

2
j
3
#j

3
j
1
). It can also directly be obtained from the characteristic

equation of the tensor, yielding the expression [12]

C"

3
2
+

i,j
Dp

i
DDp

j
D!(p

i
) p

j
)2/(Dp

i
DDp

j
D)

+
i,j

(Dp
i
DDp

j
D)2

. (77)

All these event shapes except thrust acquire zero value in the extreme two jet region and adopt the
maximum value for isotropic events. For consistency with the other event shapes 1!¹ is usually
considered rather than ¹.

As an example of event shapes, Fig. 20 presents some distributions of the C-parameter obtained
from measurements at various centre-of-mass energies between 35 and 161 GeV [104,129,130,139].
A clear dependence of the di!erential cross-section on the centre-of-mass energy is visible. It can be
considered as being due to a change of the coupling a

S
. The curves overlaid on the distributions

resulted from "ts of NLLA and O(a2
S
) (NLO) calculations combined using the lnR matching scheme.
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Over the whole energy range an excellent description can be observed. Results of a
S
"ts to the

C-parameter data of JADE at 35 and 44GeV were published in Ref. [139], yielding

a
S
((35GeV)2)"0.1480$0.0017 (exp.)$0.0097 (had.)$0.0138 (scale) ,

a
S
((44GeV)2)"0.1470$0.0032 (exp.)$0.0073 (had.)$0.0133 (scale) .

where the experimental errors (exp.) are the statistical and experimental systematic uncertainties
quadratically combined and where the hadronization error (had.) summarizes all MC modelling
uncertainties. The last error stems from the choice of the renormalization scale. As has been
mentioned in the beginning of this section, the uncertainties coming from the choice of the scale
must not be neglected when applying NLO calculations. To estimate this uncertainty the renormal-
ization scale factor xk"k/Js is usually changed from its natural value, 1, to 0.5 and 2, respective-
ly. The result for a

S
at a varied scale, which is xkmZ

in this case, is evolved back to Js"m
Z

by
solving Eq. (20) numerically. Any deviation of a

S
(m2

Z
) obtained for xkO1 from the value obtained

for xk"1 is attributed to the uncertainty due to the choice of the renormalization scale. It yields
the dominating error contribution as can be seen from the result above, thus setting a theoretical
limit on the precision of the a

S
determination.

We performed similar "ts to the OPAL data [104,129,130], which yielded s2/d.o.f. values of about
0.5 to 0.6 and

a
S
((91.2GeV)2)"0.1245$0.0013 (exp.)$0.0062 (had.)$0.0071 (scl.) ,

a
S
((133GeV)2)"0.1097$0.0099 (exp.)$0.0034 (had.)$0.0053 (scl.) ,

a
S
((161GeV)2)"0.1070$0.0060 (exp.)$0.0067 (had.)$0.0046 (scl.) .

The experimental and scale uncertainties are de"ned as for the JADE result. The hadronization
uncertainty has been estimated by varying several parameters of the PYTHIA generator and also by
employing HERWIG and ARIADNE to correct for hadronization e!ects choosing the same parameter
as described in Refs. [104,129,130].

Exploiting the data taken above the Z pole, the ALEPH collaboration performed a simultaneous
analysis of the distributions of thrust, heavy jet mass, wide jet broadening, C-parameter and
!ln y

3
[136]. The data taken at the Z pole were excluded because they would have dominated the

results owing to their large statistical weight. Although the statistical error is larger without the LEP

I data, the systematic uncertainties were found to be essentially reduced because of a decreased
impact of hadronization e!ects and the explicit enforcement of the energy scale dependence
according to perturbative QCD.

In all these results the uncertainty due to the choice of the renormalization scale xk yields a large
contribution to the total error. Consequently, missing higher-orders, whose e!ect on the value of
the coupling are assessed by varying xk , are still important. The "tted value for a

S
changes

considerably for di!erent choices of the scale. This is demonstrated for the C-parameter in Fig. 21.
Plot (a) shows the strong dependence of the "tted a

S
(m2

Z
) on the renormalization scale factor

xk (solid curve) for the lnR-matched "xed order and resummed next-to-leading logs. The s2/d.o.f.
represented by the dotted curve has a #at minimum around xk"1. Juxtaposing this result to the
scale dependence of a

S
in (b), where only the "xed-order calculation was "tted, reveals that the
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Fig. 21. Renormalization scale factor (xk ) dependence of the a
S
"ts to C-parameter data as measured by the OPAL

collaboration at the Z pole [104]. The solid curves show a
S
(m2

Z
), the dotted curves show s2/d.o.f. Plot (a) is the result

obtained from the lnR-matched NLLA#O(a2
S
) calculation, while in (b) only "xed-order calculations (O(a2

S
)) were used.

combination with the resummation results yields some improvement. A pronounced scale depend-
ence is notable in (b) and, in particular, the s2/d.o.f. is much worse so that one "nds a minimum at
extremely low scales of about 0.02 close to the end of the region of stable "ts. Although the
improvement from the inclusion of resummed leading and next-to-leading logs is appreciable, the
calculation of higher orders is desperately needed to reduce the renormalization scale dependence
of the determined a

S
(m2

Z
) value. Until then, given the rather small experimental errors, this scale

uncertainty is a dominant contribution to the total error on a
S

determinations from jet rates and
event shapes.

Keeping in mind the large uncertainty from the scale choice, one "nds evidence for the energy
scale dependence of the strong coupling from a comparison of the results on a

S
(s) not only for the

C-parameter, but also for other event shapes. In general, the correspondence between the measured
data and the perturbative calculations is very good when hadronization Monte Carlo models (MC)
are invoked for the correction of hadronization e!ects.

4.1.2.4. Summary of a
S

determinations from jet rates and event shapes. Although the variety of
event shape observables is large, only a fraction of them has been investigated at LEP II energies, in
particular those for which the resummation of large leading and next-to-leading logarithms is
available. These are the di!erential 2-jet rate D

2
(y

3
)"1/pdp/dy

3
obtained using the DURHAM

jet "nder, thrust ¹, heavy jet mass M
H
, total and wide jet broadening B

T
and B

W
, and the

C-parameter. Table 7 lists the averaged a
S
values at several centre-of-mass energies ranging from 22

to 183GeV. The average value and its error are calculated as weighted means of the individual
measurements and their errors, respectively, using the total error of each single measurement to
determine the weights. Assuming a large correlation between the individual errors, it yields
a conservative estimate of the total error.

Using data from measurements at the Z pole, the L3 collaboration determined a
S
at energy scales

far below m
Z
, down to 30GeV [143]. They exploited photon bremsstrahlung o! electron and

positron before they annihilate (cf. Fig. 3), and also o! the quark and antiquark. Photon radiation
in the initial state obviously lowers the centre-of-mass energy that is available for the annihilation
and, therefore, for gluon radiation. When a photon is radiated from a quark at high energy and at
a large angle to the remaining quark}antiquark "nal state, it can also be assumed to reduce the
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Table 7
Summary of a

S
determinations based on matched "xed order and resummed perturbation calculations (O(a2

S
)#NLLA).

The values are averages of the measurements from the individual experiments (A: ALEPH, D: DELPHI, L: L3, O: OPAL, S: SLD,
TPC: TPC/TWOGAMMA). The a

S
determinations of these experiments were based on measurements of the following

observables: di!erential 2-jet rate D
2

from the DURHAM jet "nder, thrust ¹, heavy jet mass M
H
, total and wide jet

broadening B
T

and B
W

, and C-parameter. Data are compiled from Refs. [87,88,104,129}132,136}139,143}145]

Js (GeV) Exp. Observables a
S
(s) a

S
(m2

Z
)

22 JADE D
2

0.161`0.016
~0.011

0.124`0.009
~0.006

29 TPC D
2

0.160$0.012 0.129$0.008

35 JADE D
2
, ¹, m

H
, B

T
, B

W
, C 0.1448`0.0122

~0.0077
0.1228`0.0086

~0.0055

44 JADE D
2
, ¹, M

H
, B

T
, B

W
, C 0.1394`0.0113

~0.0082
0.1233`0.0087

~0.0064

58 TOPAZ D
2

0.1390$0.0080 0.1286$0.0068

41.2 L ¹, M
H
, B

T
, B

W
0.140$0.013 0.122$0.010

55.3 0.126$0.012 0.117$0.010
65.4 0.134$0.011 0.127$0.010
75.7 0.121$0.011 0.118$0.010
82.3 0.120$0.011 0.118$0.011
85.1 0.120$0.011 0.115$0.011

91.2 A, L, D, O, S D
2
, ¹, M

H
, B

T
, B

W
0.1211$0.0068 0.1211$0.0068

133 A, L, D, O D
2
, ¹, M

H
, B

T
, B

W
, C 0.1132$0.0075 0.1197$0.0085

161 A, L, D, O D
2
, ¹, M

H
, B

T
, B

W
, C 0.1070$0.0069 0.1160$0.0082

172 A, L, D, O D
2
, ¹, M

H
, B

T
, B

W
, C 0.1012$0.0070 0.1102$0.0084

183 A, L, D, O D
2
, ¹, M

H
, B

T
, B

W
, C 0.1084$0.0051 0.1200$0.0063

189 L, O D
2
, ¹, M

H
, B

T
, B

W
, C 0.1076$0.0051 0.1196$0.0064

91.2 Weighted average 0.1212$0.0079

centre-of-mass energy of this "nal state if the (time) scale involved is much less than the scale at
which the parton shower develops from the quark}antiquark pair. This condition has to be
guaranteed by the experimental selection cuts such that radiative events are characterized by
a hadronic system recoiling against an isolated photon with energy Ec and large transverse
momentum k

M
with respect to quark and antiquark. The reduced centre-of-mass energy Js@ is

given in terms of the nominal energy Js by s@"s!2EcJs. The coupling constant was deter-
mined at this scale from the hadronic system using event shape observables.

The averaged results of Table 7 are presented in Fig. 22. In addition to the total errors, which
include the correlated uncertainties due to the hadronization correction and, in particular, the
uncertainties from the choice of the scale, also the statistical and uncorrelated experimental
uncertainties added in quadrature, are indicated in the "gure. The data agree nicely with the QCD

prediction for a
S
(m2

Z
)"0.122. The same conclusion can be drawn from a direct comparison of the

individual a
S

results in Table 7 after being evolved to the m
Z

scale.
The DELPHI collaboration determined a

S
(m2

Z
) from 17 di!erential jet rate and event shape

quantities [146]. The study investigated the dependence of the di!erential distributions on the
polar angle of the thrust axis. Good consistency of the single a

S
values from "ts of the NLO

predictions to the data was achieved when allowing both a
S

and the renormalization scale factor
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Fig. 22. Values of the strong coupling a
S
obtained from jet rates and event shapes, their total errors (outer ticks), and the

quadratically combined statistical and experimental systematic uncertainties (inner ticks). The results from several
determinations, which considered the lnR-matched O(a2

S
)# NLLA perturbation calculation for the di!erential 2-jet rate

D
2

from the DURHAM jet "nder, thrust, heavy jet mass, total and wide jet broadening, and C-parameter, at various
centre-of-mass energies are shown. References for data are given in Table 7. Overlaid to the data is the QCD expectation at
4-loop precision using a

S
(m2

Z
)"0.121.

xk to vary. This observation was also made in Refs. [104,147]. Fig. 23 is a compilation of the results
of a

S
(m2

Z
) obtained for (a) "xed xk"1 and (b) varying xk . The optimized renormalization scale

factors range from xk+0.057 for thrust up to +2.66 for the GENEVA jet "nder. To estimate the
uncertainty due to the choice of the renormalization scale the xk factors were scaled by 1/J2 and
J2, respectively, and the "ts were repeated with the scale "xed to these values. In part (b) of the
"gure, a weighted average, a

S
(m2

Z
)"0.1168$0.0026, is quoted which is in good agreement with

the other results although the error is smaller because of the smaller variation of xk and since it has
been calculated using the `optimized correlationa method of Ref. [148] which takes into account
an unknown correlation between the individual results. In brief, this method yields an average
assuming a common correlation factor between the single measurements obtained from the
requirement that s2/d.o.f. must be unity.

In conclusion, even not fully inclusive quantities yield an energy scale dependence in agreement
with the QCD expectation. It has to be kept in mind, however, that the quoted errors are dominated
by the uncertainty from the choice of the renormalization scale which would have limited any
stringent conclusion if a deviation from the predicted energy dependence had been observed.

4.2. Quark mass ewects

Most experimental investigations of the strong coupling constant which have been presented so
far neglected e!ects due to "nite quark masses since massless quarks were assumed in many
theoretical calculations. In the case of the jet "nders, where many "nal state particles are combined

217O. Biebel / Physics Reports 340 (2001) 165}289



Fig. 23. Values of a
S
(m2

Z
) obtained from "ts of the NLO prediction of QCD for oriented event shapes using (a) "xed xk,1

and (b) allowing xk to vary in the "t. The bars, which are the total errors from experimental, hadronization and scale
uncertainty added in quadrature, are subdivided in (b) to indicate by the dashed lines the contribution due to the choice
of the renormalization scale. Figures taken from Ref. [146].

into jets, one has to take special measures in the recombination to ensure that the jets remain
massless (for instance, rescaling of energy or momentum of the jets). The impact of quark masses is
known for a long time in leading order (O(a

s
)) [149] for c and Z exchange in e`e~ annihilation.

A partial calculation of second-order terms in Ref. [150] was lately extended to full next-to-leading
order (O(a2

S
)) by three independent groups [151}153] yielding consistent predictions [154].

The e!ect of a "nite quark mass is twofold. Besides an obvious reduction of the phase space
available for gluon emission, QCD radiation is also reduced. This follows from the di!erential
cross-section of Eq. (35). After being complemented by further terms which explicitly depend on the
quark mass m

Q
it reads in leading order [149]

1
p
0

d2p
dx

Q
dx

QM
"C

F

a
S

2pC
x2
Q
#x2

QM

(1!x
Q
)(1!x

QM
)
!

4m2
Q

s A
1

1!x
Q

#

1
1!x

QM
B

!

2m2
Q

s A
1

(1!x
Q
)2
#

1
(1!x

QM
)2B!

4m4
Q

s2 A
1

1!x
Q

#

1
1!x

QM
B

2

D , (78)
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where x
i
for i"Q, QM , are the centre-of-mass energy fractions of the massive quark and antiquark,

respectively. The reduction of QCD radiation is immediately apparent in this equation since all
terms that depend on the mass are subtracted.

An important feature should be noted for the di!erential cross-section in Eq. (78). Collinear
singularities do not a!ect the cross-section owing to the quark's "nite mass. When recalling
Eq. (36), it can be seen that the mass of a Q}G system is restricted by the relation
1!x

Q
"m2

QG
/s5m2

Q
/s. Thus the limit x

Q
P1, which is the collinear singularity, does not occur.

The infrared singularity at x
G
P0, however, is still present.

The cross-section in Eq. (78) reveals another remarkable feature if the gluon radiation is quite
collinear with the heavy quark. In this region of the phase space close to the kinematical boundary,
one "nds a dead cone for radiation which is due to the helicity conservation in the radiation of
a spin-1 gluon o! a spin-1

2
massive quark. To derive an expression for the particular phase space

region, one considers a gluon of fractional energy x
G
"2!x

Q
!x

QM
;1 which is close in angle to

the heavy quark, h+0. This yields a simpli"cation of Eq. (78) [12]

1
p
0

d2p
dx

G
dh2

+C
F

a
S
p

1
x
G

h2

(h2#4m2
Q
/s)2

. (79)

Thus gluon radiation is suppressed if h[2m
Q
/Js. This is the dead cone the angular size of which

grows with the quark mass.
In brief, according to QCD heavy quarks radiate fewer gluons than light quarks. Although the

e!ect might be small at high energies, it has to be accounted for in precision determinations of the
strong coupling constant. From the considerations above it is rather obvious that, in particular,
the 3-jet rate is expected to be reduced for heavy quarks. In the energy range considered for this
report the case of the bottom quark will be of special interest since it is the heaviest quark accessible
at centre-of-mass energies between 10 and 190GeV. Furthermore, at the Z pole all "ve quark
#avours are produced at roughly the same frequency owing to their coupling to the Z (cf. Fig. 5(b)).

While the impact of the massive bottom quark is small for investigations that consider all
quark #avours inclusively, it will play a major role in studies of the properties of individual quark
#avours. QCD, however, is a "eld theory in which the coupling a

S
is independent of the quark

#avours. It therefore is a signi"cant test of QCD to verify the independence of the strong interaction
of the #avours involved, and also to test the calculated quark mass e!ects. The latter procedure
may be inverted. A measurement of quark mass e!ects can be exploited to determine the quark
masses assuming #avour independence of the coupling. At this point it has to be recalled from
Section 2.2.2 that within the MS renormalization scheme quark masses depend on the energy scale.
Measuring di!erent quark masses at di!erent scales is therefore another stringent test of QCD and
its renormalization.

4.2.1. Tagging the yavour of a quark
Testing the dependence of the strong interaction on the #avour of a quark requires the

identi"cation of the #avour from the hadronic remnants of quark, antiquark and gluons. In
connection with the large data statistics and the high precision investigations in the bottom and
charm sector at LEP I and SLC many sophisticated methods were established to tag these #avours
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12Unstable particles having lifetimes of '3]10~10 s are usually regarded as stable owing to their tiny probability to
decay within the detector.

which became possible after the installation of high precision silicon vertex detectors (see, e.g.
Ref. [155]).

For bottom quarks one uses the large decay multiplicity, the high mass, the semileptonic decays,
and, in particular, the long lifetime12 of B hadrons (for details see, e.g. [156]) which allow for an
event-by-event classi"cation.

Although charm quarks can be tagged by the decay vertex of a D meson [157] one usually
reconstructs the decay of a charged DH(2010)B meson into a D0 and a pB where the D0 is searched
for in various decay channels [158] whose small branching ratios lead to marginal e$ciencies only.
Since charm mesons also occur in the decay chain of B hadrons one has to "ght against bottom
quarks spoiling the tagged charm events.

To enrich a primary #avour the leading particle e!ect [159,160] is used, that is, one assumes that
the highest energy hadron is likely to contain the primary quark. Exploiting this e!ect even the
light uds quarks can be tagged, for instance the strange quark by looking for K0

S
or charged

KB [161]. Contributions from other quark #avours, however, can only be removed by statistical
methods. More e$ciently and less biased by the demand for high energy particles, but without any
distinction between primary u, d, and s quarks, these light quarks can be selected recalling the fact,
that in such events no hadrons of long lifetime similar to bottom and charm hadrons can occur.
Therefore, reversing the search for decay vertices yields a very pure light quark tag [156,158].

4.2.2. Flavour independence of QCD
All LEP and SLC collaborations performed tests of the #avour independence of the strong

interaction at the Z pole employing various tagging methods to measure #avour dependent jet
rates or event shapes [157,158,161}167]. In general, the studies are designed to determine the ratio
of the coupling for a selected #avour f to the one obtained from the light (from all, or from
the complementary, i.e. all but f ) quark #avours, that is af

S
/a6$4

S
(af

S
/a!--

S
or af

S
/a#0.1-

S
, respectively).

Such ratios have the advantage of reduced systematic uncertainties. For instance, the e!ects of the
choice of the renormalization scale largely cancel in the ratio, thus becoming less signi"cant than
experimental systematics. Instead of this, mass e!ects and the uncertainty of the mass of the bottom
quark contribute to the total error.

Fig. 24 shows results for the ratios a"
S
/a6$4

S
and a#

S
/a6$4

S
which were obtained from 3-jet rates of

several jet "nders and from various event shapes, respectively. Considering di!erent #avours in
numerator and denominator is advantageous in order to avoid correlations between them. Having
included the mass e!ects, which are of the order of 5}7% for b quarks and 1% for c, the #avour
dependent a

S
ratios conform to unity for all 3-jet rates and event shapes considered, as expected for

a #avour independent strong coupling.
Averaging the ratios in order to diminish the statistical and systematic #uctuations of the

individual results, one arrives at the values listed in Table 8, which is a compilation of measure-
ments of the LEP and SLC collaborations [157,158,162,164,166]. A weighted average of the deter-
minations has been calculated deriving the weights from the total errors. For the calculation of the
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Fig. 24. Flavour dependent ratios of a
S
for bottom and charm quarks to the light uds quarks, respectively. Shown are the

results obtained from 3-jet rates measured with di!erent jet algorithms [157], and from several event shapes [158]. All
ratios were determined using NLO calculations with massive quarks [151,153].

total error of the average, the statistical uncertainties of the individual determinations are taken as
uncorrelated. The systematic errors, which are considered as fully correlated, are averaged using
the same weights as before. This prescription closely follows that of Ref. [104] which has already
been outlined in Section 4.1.1.

From the averages of Table 8 one can conclude that the #avour independence of the strong
interaction is proven at the level of the systematic errors of 1}4%. The perturbation calculation to
next-to-leading order (O(a2

S
)) for massive quarks, however, is inseparably connected to it. Even at

energies as high as at LEP I mass e!ects would imitate a #avour dependence at the level of several
percent.

4.2.3. Running quark masses
Assuming the #avour independence of the strong interaction one can turn the tables and use the

perturbation calculations for massive quarks to determine the masses of the quarks. This consti-
tutes another important test of QCD since one expects quark masses in the MS renormalization
scheme to depend on the energy scale (see Section 2.2.2).

In principle one would assume that quarks have a unique and constant mass value. Owing to
con"nement, however, quarks can only be observed inside hadrons. In order to assess the value of
the mass one needs a theoretical prescription that is based on perturbation calculations. Among
several mass de"nitions (for an overview see the notes on quark masses in Ref. [28]), two are widely
used in these calculations: the pole mass M

10-%
and the MS mass m6 (k2). The pole mass is related to

the pole of the heavy quark propagator in perturbation theory. This mass is, in fact, independent of
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Table 8
Compilation of ratios of a

S
determined for bottom and charm quark events to the coupling determined for light uds

quarks, respectively [157,158,162,164,166] (A: ALEPH, D: DELPHI, L: L3, O: OPAL, S: SLD3). The "rst error is statistical, the
second comprises systematic and theoretical uncertainties added in quadrature. The ALEPH and L3 values are derived
from the measured a"

S
/a6$4#

S
by assuming a

S
"+

f/6$4,#,"
cfaf

S
, where cf"B(e`e~P+M ) is the standard model hadronic

branching fraction for Z decays into #avour f. For the determination of the averages and the total errors see the text

Exp. a"
S
/a6$4

S
a#
S
/a6$4

S
Observables Theory

A 1.002$0.009$0.022 ¹,C,y
3
(E0), y

3
(D), Partly massive NLO

D 1.007$0.005$0.009 R
3
(E0) Massive NLO

L 1.07$0.05$0.06 R
3
(E0) Partly massive NLO

O 0.998$0.005$0.012 1.002$0.017$0.027 D
2
(D),¹,M

H
,B

T
, B

W
, C Massive NLO

R
3
(E),

R
3
(E0),

S 1.004$0.005`0.032
~0.042

1.036$0.043$0.047 R
3
(P), Massive NLO

R
3
(P0),

R
3
(D), R

3
(G)

avg. 1.004$0.013 1.009$0.035

the renormalization scheme [25] and, therefore, independent of the energy scale. However, the pole
mass is de"ned only within the context of perturbation theory because, owing to con"nement, the
full quark propagator has no poles.

Perturbatively, however, both M
10-%

and m6 (k2) are related in O(a3
S
) [168]. In O(a2

S
) the relation for

M
10-%

is

M
10-%

"m6 (k2)C1#
a
S
(k2)
p A

4
3
!2pc

m,0
) lB

#

a2
S
(k2)
p2 AK!

8p
3

c
m,0

#pA
2
3
c
m,0

!

4
3
b
0
!pc

m,1Bl#
p2

2
c
m,0

(b
0
#c

m,0
)l2B

# O(a3
S
)D , (80)

where b
0
"(33!2n

f
)/12p, c

m,0
"1/p, and c

m,1
"(303!10n

f
)/72p2 are de"ned in Eqs. (21) and

(24), K+13.3 (12.4) for charm (bottom) quarks [169], and l"ln(m6 (k2)/k). It must be pointed out
that the convergence of the perturbative expansion for the expression of the MS mass via the pole
mass is known to be worse [169] (see Ref. [23] for a review). This is mostly due to non-perturbative
e!ects (NP) which are found to contribute an additional correction of [170]

dNP"!

2p
3

Jj2

m6
(81)

to the coe$cient of the term linear in a
S
, where j is some regulator, acting like a small gluon mass,

to account for the pole at very small energy scales (see Section 5.3).
Many estimates, in particular of the bottom quark mass from bottomonium and B hadron

masses, were done (see compilation in Ref. [28]) which usually su!er large uncertainties due to the
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Fig. 25. The 3-jet rate ratio for bottom and light quarks is shown for the DURHAM and CAMBRIGDE jet algorithms
[164,174]. The curves stem from leading (LO) and next-to-leading (NLO) calculations for the pole mass, M

"
, or the MS

mass at the Z scale. Plots are taken from Ref. [174].

small scales involved and due to non-perturbative e!ects. All values of the MS bottom quark mass
range between 4.1 and 4.4GeV. A combination of some of the estimates in Ref. [171] yielded
m6

c
(m6 2

c
)"(1.30$0.03)GeV and m6

"
(m6 2

"
)"(4.34$0.05)GeV. Next-to-next-to-leading order (NNLO)

corrections were considered in estimating the bottom quark mass, yielding m6
"
(m6 2

"
)"

(4.25$0.09)GeV [172] and m6
"
(m6 2

"
)"(4.19$0.06)GeV [173]. All these results are of the same

magnitude. Given the errors assigned to the masses, however, some results are in contradiction. In
the following, the estimate of the Particle Data Group in Ref. [28] will therefore be adopted, that is
m6

"
(m6 2

"
)"4.1}4.4GeV.

In order to determine the quark masses at energies far above the region of the quarkonia, one has
to employ perturbative calculations which consider massive quarks. Only recently such calcu-
lations became available for the gluon radiation from heavy quarks in O(a2

S
). The calculations

consider both mass de"nitions, the MS mass m6 (k2) [151,152] and the pole mass M
10-%

[153]. The
consistency of these calculations was veri"ed [154].

Using the large data statistics available from e`e~ annihilation at the Z pole and, furthermore,
highly e$cient and very pure bottom quark tagging methods, the DELPHI [164,174] and SLD

collaborations [156] investigated mass e!ects for bottom quarks. In Refs. [151,152] the ratio of the
3-jet rates for bottom and the light uds quarks, R"-

3
"R"

3
/R6$4

3
, was proposed as being sensitive to

the value of the b mass. Fig. 25 shows this ratio versus y
#65

for the DURHAM and the CAMBRIDGE jet
"nders. Taking into account the large correlations between adjacent data points, a good agreement
with the next-to-leading order (NLO) calculation for massive quarks is observed. From a "t of the
theoretical expression to the 3-jet data of the DURHAM algorithm only, the DELPHI collaboration
obtained a bottom quark mass at the Z scale of

m6
"
(m2

Z
)"(2.67$0.25(stat.)$0.34(hadr.)$0.27(theory))GeV . (82)
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Fig. 26. At "xed y
#65

the theoretically expected dependence of the 3-jet rate ratio, r
"
,R"

3
/R6$4

3
, for bottom and light

quarks on the bottom quark mass is shown for various jet "nders as points with error bars and parameterized by a curve.
The gray bands represent the experimentally measured values of the ratio and the respective statistical errors as obtained
by the SLD collaboration. The "gure is taken from [156].

The error on this result has contributions from statistics, the hadronization uncertainty (hadr.),
which is dominated by the choice of the model (either STRING or CLUSTER), and from missing higher
orders in the theoretical expression, which were assessed by varying the scale k by a factor of two
around m

Z
, and by changing from the pole to MS running mass in the "tted expression.

Fixing y
#65

at a value speci"c for the jet "nder under consideration the dependence of the mass
value on the jet algorithm has been investigated in Ref. [156]. The theoretical expectation for the
same ratio for six di!erent jet algorithms is shown versus m

"
in Fig. 26, and the measured ratios

with their statistical uncertainties are overlaid as gray bands. It is remarkable at "rst sight to "nd
some ratios increasing with the bottom quark mass. This can be understood from the resolution
variables y

ij
of the jet "nders. If they are de"ned as a mass, as it is the case for the E, E0, P, P0

schemes, a "nite and large mass results in a shift of the 3-jet rate towards higher values of the
resolution parameter y

#65
since y

ij
has to be at least as large as the quark mass. Since this is not the

case for massless quarks, one may "nd, particularly at rather low values of y
#65

, a higher 3-jet rate
for bottom than for light quarks.
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Fig. 27. Values of the MS bottom quark mass at the Z and the m6
"

mass scales are shown. Overlaid is the theoretically
expected running of the mass assuming a

S
(m2

Z
)"0.119. The dashed lines indicate the uncertainty due to the error on

m6
"
(m6 2

"
), the dotted lines represent the error band when an additional 0.006 uncertainty on a

S
(m2

Z
) is included.

Values for the mass were derived from the data by employing the theoretical expression and by
combining the six results taking into account the correlations. This way an estimate of the MS

bottom quark mass at the Z scale of

m6
"
(m2

Z
)"(2.56$0.27(stat.)`0.38

~1.47
(syst.)`0.42

~0.42
(theory))GeV (83)

was obtained in Ref. [156] where the systematic error includes the hadronization uncertainties. The
theory error comprises hadronization uncertainties and an additional uncorrelated 2% uncertainty
on each ratio r

"
,R"

3
/R6$4

3
, which is attributed due to missing higher-orders.

Although these two determinations of the bottom quark mass at the Z scale agree within the
signi"cant errors, the calculation of an average requires care because of the large spread of the
results for di!erent jet "nders and the signi"cant but unknown correlations between the measure-
ments. As already described in Section 4.2.2, a large correlation of systematic and theory errors is
therefore assumed in the calculation of a weighted average of the two results. The weights are
obtained from the symmetrized total errors. This yields

m6
"
(m2

Z
)"(2.65$0.18(stat.)$0.44(syst.)$0.30(theory))GeV , (84)

where the systematic error is dominated by hadronization uncertainties.
Fig. 27 compares the MS value of the bottom quark mass at the Z mass scale with that at the

m6
"

scale. The solid curve in this "gure is the QCD prediction for the scale dependence of the running
mass, that is Eq. (26), where the bottom quark mass value of the particle data group PDG from Ref.
[28] was used. The dashed and dotted bands indicate the uncertainties from the PDG bottom quark
mass value and from a 0.006 error on a

S
(m2

Z
).
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Although the uncertainty of the determined value for m6
"
(m2

Z
) is large, it supports the predicted

scale dependence of the MS quark masses. This becomes more obvious from the di!erence between
the masses at the two scales

m6
"
(m6 2

"
)!m6

"
(m2

Z
)"(1.60$0.57)GeV , (85)

which deviates from zero by about 2.8 standard deviations. Further investigations of the e!ects on
m6

"
from di!erent jet "nders are clearly necessary. But nevertheless, the agreement of the current

results with the expectation from the perturbative calculations in Fig. 27 is remarkable.

5. Tests of QCD treatments of hadronization

Most of the investigations of strong interactions that have been described in the previous section
rely on phenomenological models in order to account for hadronization e!ects. Although the
models provided a well-suited representation of the e!ects, they contributed an inherent and hardly
reducible uncertainty to each determination of the strong coupling constant. E!orts to open the
hadronization phenomena to a proper treatment in the framework of perturbative QCD theory are
required to diminish the in#uences of the various models. Such approaches necessarily consider
techniques that go beyond a simple perturbative expansion in powers of a

S
.

Two such methods will be presented in this section, viz. the modixed leading logarithm approxima-
tion (MLLA) in conjunction with the conjecture of local parton}hadron duality (LPHD), and the concept
of renormalons which leads to power corrections to the perturbative calculations. As a start, light is
shed on the perturbative picture of fragmentation functions and scaling violation.

5.1. Inclusive fragmentation function and scaling violation

5.1.1. Fragmentation function and evolution equation
Inclusive hadron production in e`e~Pc, ZPhX, where h is either a given hadron species or

a sum over all charged hadrons, is governed by the strong interaction and, therefore, by the
strength of the coupling. The di!erential cross-section of this process in the case of unpolarized
e` and e~ beams receives contributions from the polarization states of the exchange vector bosons
c, Z, viz. transverse and longitudinal polarization, respectively. In addition, there is an asymmetric
component due to the parity-violating interference. Each of these three contributes to the di!eren-
tial cross-section via its characteristic dependence on the polar angle h between the direction of the
incoming e~ and the outgoing hadron h, according to the relation [175]

d2ph

dxdcos h
"

3
8
(1#cos2 h)

dph
T

dx
#

3
4
sin2 h

dph
L

dx
#

3
4
cos h

dph
A

dx
, (86)

where x,x
E
"2E/Q, E being the particle's energy, is the fractional energy of the hadron and

Q"Js is the centre-of-mass energy.
Recalling energy conservation, a sum rule for the inclusive cross-section summed over all

outgoing hadrons h can be obtained

1
2
+
h
Pdx dcos h x

d2ph

dxdcos h
"p

)!$
"p

T
#p

L
, (87)
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13Here, the meaning of the term fragmentation function is slightly di!erent from that introduced in Section 3.2
in the context of hadronization models. The fragmentation function in such models determines the fraction
z"(E#p

,
)
)!$30/

/(E#p)
1!350/

of energy and momentum which is transferred from the parton to the hadron during

hadronization. Experimentally one measures x
E
"2E/Js or x

p
"2p/Js, that is the hadron's energy or momentum

fraction of half of the centre-of-mass energy.
14Dokshitzer, Gribov, Lipatov, Altarelli and Parisi.

where

p
P
,

1
2
+
h
P

1

0

dx x
dph

P
dx

(P"¹,¸, A) . (88)

Thus the total inclusive cross-section is the sum of the transverse and the longitudinal cross-
section. For unpolarized beams and high centre-of-mass energy, Js, the latter contribution is,
depending on the fermion mass m

f
, largely suppressed by a factor m2

f
/s due to the approximate

helicity conservation at the cH/Z-+M vertex [176]. A signi"cant longitudinal cross-section is gener-
ated by gluon radiation o! quarks, rendering it proportional to a

S
.

The three di!erential cross-sections dph
P
/dx, for P"¹, ¸, A, can be expressed by perturbative

QCD, based on the factorization property proven in Ref. [177], as a convolution [175]

dph
P
(s)

dx
(e`e~PhX)" +

f/q,q6 ,G
P

1

x

dz
z

C
P,f

(z, a
S
(k2

R
), k2

F
/s) )Dh

f
(x/z,k2

F
) , (89)

of coezcient functions C
P,f

, being the cross-section for the inclusive production of f" quark q,
antiquark q6 , or gluon G in the given process, and of the fragmentation functions13 Dh

f
(x,k2

F
), which

represent the distributions of the energy fraction x of hadron h stemming from the fragmentation of
parton f. The shape of the Dh

f
functions has to be obtained from experimental measurements,

because the production of a hadron is a non-perturbative process and the parton fragmentation
functions are, therefore, not perturbatively calculable.

The coe$cient functions C
P,f

are known up to corrections of the order a2
S

[43,175,178]. In
leading order the transverse coe$cient is proportional to the Born level production cross-section of
parton f, C

T,f
"d(1!x)p

0,f
(s). It is, for instance, zero for gluons. The longitudinal coe$cient

C
L,f

vanishes at this order. It solely receives corrections of the order a
S
, thus allowing a determina-

tion of the coupling from a measurement of the longitudinal cross-section. The full coe$cient
functions up to O(a

S
) are too involved to be repeated here. They can be found in Ref. [175] for

instance.
Although calculable, the coe$cient functions C

P,f
contain collinear singularities whose renor-

malization renders both the coe$cient and the fragmentation functions dependent on an arbitrary
factorization scale k

F
which is analogous to the renormalization scale k

R
introduced in

Section 2.2.3. However, physical cross-sections as in Eq. (89) must be independent of the k
F

scale if
they are determined from an all-order perturbation calculation. This fact can be used to derive the
scale dependence of the parton fragmentation functions Dh

f
from the one of C

P,f
(see Refs.

[12,175]). In the perturbative regime the scale dependence of Dh
f

is given by the DGLAP14 evolution
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equation [42,179]

RDh
i
(x, s)
R ln s

" +
j/q,q6 ,G

P
1

x

dz
z

a
S
(k2

R
)

2p
P

ji
(z, a

S
(k2

R
))Dh

j
(x/z, s) , (90)

where i"q, q6 , G and

P
ji
(z, a

S
(k2

R
))"P(0)

ji
(z)#

a
S
(k2

R
)

2p
P(1)

ji
(z)#O(a2

S
) (91)

is the perturbative expansion of the Altarelli-Parisi splitting functions, whose leading order
representation has already been introduced in Eq. (43) of Section 3.1.3. The full terms for P(1)

ji
are

lengthy and, therefore, not repeated here. They can be found for instance in Ref. [12].
The remarkable feature of the DGLAP evolution equation (90) is its dependence on a

S
in the

convolution integral. Due to this the scaling of the fragmentation function D
f
(x, s) with the energy

scale Q"Js is violated. A scale-independent x distribution is expected for instance in the
independent fragmentation model. Historically it was this scaling violation which gave a "rst
indication for the running nature of the strong coupling.

5.1.2. Determination of a
S

from scaling violation
An experimental determination of a

S
from the scaling violation was proposed in Ref. [180]. It

su!ers, however, from several complications. Firstly, in the comparison of fragmentation functions
at very di!erent energies care must be devoted to the details of the #avour composition. In
e`e~ annihilation the relative production rates of the various quark #avours change considerably
from the very low energy region, which is dominated by photon exchange only, to the Z region,
where the electroweak couplings dominate (see Section 3.1). Parton fragmentation functions may,
in general, be di!erent for di!erent quark #avours, as can be seen from Eq. (89). Hence the
fragmentation functions have to be measured separately for the di!erent quark #avours. This is
possible with sophisticated #avour tagging methods, some of which have already been described in
Section 4.2.1. Employing these techniques the fragmentation functions shown in Fig. 28 were
obtained separately for bottom, charm and light uds quarks [53,140,181}183]. Another method to
extract #avour dependent fragmentation functions is based on the momentum spectrum of a single
particle species. Conjectures on the production of the particle species from a #avour f have to be
applied in order to reduce the number of unknown fragmentation functions. This approach will not
be described in this report, but details can be found in Ref. [178] (see also Ref. [160] for a di!erent
approach).

A particular property of these #avour-dependent fragmentation functions should be noted for
b quarks. Although bottom quarks have been shown to transfer a large fraction of their energy and
momentum to the b-#avoured hadron (see Section 3.2), the di!erential cross-section for hadrons of
high scaled momentum x

p
is signi"cantly less than for light quarks, u, d, s. This is due to the

cascade decays of the heavy b-#avoured hadrons via charmed into light hadrons. About 5.5
charged hadrons are found on average in the decay of one b-hadron [184]. The available energy is
thus distributed over many particles, the decay products are low in energy, and the fragmentation
function of b quarks is softer than for u, d, and s. As the #avour composition changes with the
centre-of-mass energy, this mimics a scaling violation which has to be taken into account in the
determination of the strong coupling constant.
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Fig. 28. Comparison of the inclusive and the #avour-dependent fragmentation functions obtained at Js"m
Z

by the
ALEPH (A), DELPHI (D), OPAL (D), and MARK II (M) collaborations. Statistical and systematic uncertainties are included
in the error bars. The solid and dotted horizontal lines indicate the JETSET and HERWIG predictions, respectively.
Figure taken from Ref. [181].

A second complication in the determination of a
S

from fragmentation functions is due to the
gluon fragmentation function D

G
(x, s) which is part of the convolution integral in Eq. (90). This

function cannot be measured directly in e`e~ annihilation since gluons enter the hadronic "nal
state only through their radiation o! quarks, thus appearing always in conjunction with the quark
fragmentation functions. One approach is to identify the gluon jet in a clear 3-jet "nal state by
tagging both of the quark jets [185,186]. The results of this method are best at large x where the
identi"cation of the gluon jet and the assignment of particles to the gluon jet is less ambiguous.
Another approach to infer the gluon fragmentation function makes use of the lowest-order
properties of the longitudinal coe$cient function C

L
which, as has been mentioned above, is

proportional to a
S

while the transverse coe$cient function for quarks is a d-function. For this
reason the longitudinal fragmentation function F

L
(x)"(1/p

)!$
)(dp

L
/dx) can be regarded in leading

order as being composed of the transverse and the gluon fragmentation functions [175]

F
L
(x)"

a
S

2p
C

FP
1

x

dz
z CFT

(z)#4A
z
x
!1BDG

(z)D#O(a2
S
) . (92)

Fig. 29 shows gluon fragmentation functions as obtained by the ALEPH, DELPHI, and OPAL

collaborations. DELPHI's result is based on identifying the gluon jet in 3-jet con"gurations (Y and
Mercedes topologies exempli"ed in Fig. 30; an example of the latter is shown in Fig. 7). In such
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Fig. 29. Gluon fragmentation function D
G

at Q2"m2
Z

measured by ALEPH, DELPHI, and OPAL. The data points
correspond to DELPHI's analysis of tagged gluon jets in very symmetric 3-jet events (Y or Mercedes topologies). The curves
are from "ts of the parameterization described in the text to the gluon fragmentation function derived from the measured
longitudinal and transverse fragmentation functions. Figure taken from Ref. [186].

Fig. 30. Y and Mercedes shaped 3-jet topologies used to investigate the properties of gluon jets. Figure taken from
Ref. [52].

a con"guration the most energetic jet is very likely to originate from a quark. The second quark jet
is tagged by "nding a displaced decay vertex of a bottom-#avoured heavy hadron (see Fig. 31 and
Section 4.2.1). The remaining lower energetic jet is assumed to stem from a gluon. Biases due to the
speci"c properties of b jets are avoided by statistical decomposition of gluon and quark jet
contributions for which identical 3-jet con"gurations without tagging are considered.

ALEPH and OPAL determined the gluon fragmentation function from the longitudinal and
transverse fragmentation data by solving Eq. (92). The curves in Fig. 29 result from a purely
phenomenological parameterization of the data [186}188]. Apart from some di!erences at very
low x the agreement is good between the parameterized gluon fragmentation functions D

G
(x) at the

Z scale.
In every determination of a

S
from scaling violation the problem of hadronization e!ects must

be considered which likewise a!ect the measured fragmentation functions and the event shapes.
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Fig. 31. Pictorial representation of the tagging of gluon jets by reconstruction of a displaced decay vertex from
a bottom-#avoured heavy hadron.

On phenomenological and theoretical grounds such e!ects are expected to fall with reciprocal
powers of the centre-of-mass energy Js (see Section 3.2.4), thus leading to power suppressed
corrections. Approaches to account for hadronization e!ects involve either a shift or a rescaling of
the scaled momentum fraction x by terms proportional to 1/Js as is discussed in Refs. [175,188].
The method to obtain a

S
employs purely phenomenological parameterizations of the fragmenta-

tion functions for b, c, uds quarks, and gluons at Js"m
Z

based on the formula

D
f
(x)"N

f
xaf (1!x)bf exp(!c ln2 x) , (93)

where except for c, which is assumed to be #avour independent by MLLA, the normalization N
f
, and

the powers a
f

and b
f

depend on the #avour of the parton f. This function implies a strong
correlation between the parameters N, a, b, and c such that no unique set of parameters may exist.
The value of a

S
(m2

Z
) can then be obtained from "ts to the fragmentation function for the inclusive

hadronic "nal state measured by many experiments over a wide range of centre-of-mass energies.
The scale dependence is treated according to the evolution equation (90). Fig. 32 shows a compila-
tion of some of the data available. The result of a "t is superimposed [188]. The scaling violation is
immediately visible from the change of the slope with the energy scale, particularly at low values of
x. The DELPHI and ALEPH collaborations performed such "ts, taking into account the variation of
the #avour composition, and found consistent values [188}190]

ALEPH: a
S
(m2

Z
)"0.126$0.007 (exp.) $0.006 (theory) (94)

DELPHI: a
S
(m2

Z
)"0.124`0.006

~0.007
(exp.)$0.009 (theory) (95)

average: a
S
(m2

Z
)"0.125$0.009 (96)

which are also in good agreement with the values obtained from completely inclusive quantities,
and from jet rates and event shapes. Theoretical uncertainties, which dominate the total error, were
estimated by the collaborations by varying both the renormalization scale k

R
and the factorization

scale k
F

in the range 0.5Js to 2Js.
Until now the contributions of quarks and gluons have always been separated by the "t

procedure. Exploiting the vast data statistics at LEP I and the high resolution vertex detectors of the
experiments, jets can be classi"ed as to whether they originate from a quark or a gluon using the
method described above. The DELPHI collaboration [191] tagged quark and gluon jets in their LEP

I data. The scale relevant for the gluon jet under scrutiny was taken to be the maximum allowed
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Fig. 32. Inclusive fragmentation functions measured by several experiments at various centre-of-mass energies are shown
vertically displaced. The errors on data points include statistical and systematic uncertainties. The full points were used in
a "t which is shown as a curve. Figure taken from Ref. [188].

transverse momentum in a jet, that is

i"E
+%5

sin
h
.*/
2

, (97)

where h
.*/

is the angle of that jet to the closest jet. The resulting fragmentation functions for quarks
and gluons are shown versus the hardness scale i for "xed x

E
intervals in Fig. 33. Parameterizing

the fragmentation functions at i"6.5GeV for x
E

between 0.15 and 0.90 using Eq. (93) and going
to other scales by means of the DGLAP evolution equations yields a good overall description of the
data, except for very small values of x

E
which were not considered in the parameterization of the

functions. Scaling violation is again clearly visible from the large di!erence between quark and
gluon fragmentation functions regarding the i dependence and also from the slopes of the
evolution.

Since the DGLAP evolution equation (90) relates the logarithmic derivative of the fragmentation
function to the colour factors via the Altarelli-Parisi splitting functions, the DELPHI collaboration
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Fig. 33. Scale dependence of (a) the quark and (b) the gluon fragmentation function. The functions are parameterized at
i"5.5GeV for x

E
between 0.15 and 0.90 using Eq. (93). The evolution to di!erent scales as shown by the solid line is

done using the DGLAP evolution equations. Figures adapted from Ref. [191].

performed a measurement of the ratio

C
A

C
F

"2.44$0.21 (stat.)

from a "t to the data in the range 8 GeV4i429GeV. This ratio is in good agreement with the
QCD expectation of 9/4. The "t also yielded a

S
(m2

Z
)"0.116`0.010

~0.008
to leading order consistent with

the higher-order results presented above within the errors.

5.1.3. Longitudinal and transverse cross-sections
The sum rule in Eq. (87) yields a relation between the total, transverse, and longitudinal

cross-sections. Recalling that the leading contributions to the longitudinal cross-section, p
L
, are of

the order a
S
, the coupling strength may be determined from a p

L
measurement. The cross-section

can be obtained experimentally from the integrals of the longitudinal fragmentation function

1
2P

1

0

dx xF
L
(x)&

p
L

p
)!$

, (98)

where p
)!$

is the total hadronic cross-section de"ned in Eq. (50). Both the longitudinal and the
transverse fragmentation functions are shown in Fig. 34. It may be noticed from the "gure that
F
L

is signi"cantly below F
T

which is due to the additional suppression of the former by a factor of
a
S
/p. From the measured fragmentation functions, the value of the above cross-section ratio was

determined by the OPAL and DELPHI collaborations to be [186,187]

OPAL:
p
L

p
)!$

"0.057$0.005 , (99)
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Fig. 34. Transverse and longitudinal fragmentation functions as measured by the OPAL and DELPHI collaborations at

Js"m
Z
. Figure taken from Ref. [190].

DELPHI:
p
L

p
)!$

"0.051$0.007 , (100)

average:
p
L

p
)!$

"0.055$0.006 , (101)

where a simple weighted average is formed from both individual values and their associated total
errors which are dominated by systematic uncertainties.

Using the perturbative prediction of the cross-section ratio [192]

p
L

p
)!$

+

a
S
p
#A13.583!

11
4

ln
s

k2
R

#

n
f
6 Cln

s
k2
R

!

37
6 DB

a2
S

p2
(102)

for n
f
"5 #avours one arrives at a value for the coupling strength at the Z mass of

a(NLO)
S

(m2
Z
)"0.128$0.011 (exp.)$0.009 (scale) , (103)

which is in agreement with other a
S
determinations from cross-sections and also with those from jet

rates, event shapes and scaling violation. Corrections due to the production of heavy quarks at the
Z scale were investigated in Ref. [193] and were found to be much smaller than the uncertainty due
to the choice of the renormalization scale.

It must be noted, however, that the longitudinal cross-section is known to be a!ected by
signi"cant hadronization corrections, which were estimated under the assumptions of an infrared-
regular e!ective behaviour of a

S
and of an ultraviolet dominance of higher-twist matrix elements

[74,194,195]. These theoretical considerations will be presented in more detail in Section 5.3.
According to these estimates, the corrections, which are suppressed by reciprocal powers of the
centre-of-mass energy Js, may be as large as d(p

L
/p

)!$
)"0.010$0.001, leading to a corrected

value for the coupling of

a(NLO`POW)
S

(m2
Z
)"0.118$0.014 , (104)

which is also in good agreement with the other a
S

determinations mentioned before.
Besides the longitudinal and transverse cross-sections extracted from measurement of frag-

mentation functions in single hadron production, these cross-sections have also been investigated

O. Biebel / Physics Reports 340 (2001) 165}289234



Fig. 35. The di!erential longitudinal cross-section is shown for thrust measured at s"m2
Z

and corrected for detector and
hadronization e!ects (parton level). The dashed curve is the leading-order prediction taking a

S
(m2

Z
)"0.119. The shaded

area represents the NLO prediction and its statistical error. Figure taken from Ref. [197].

for the polar angle of the thrust axis, for which NLO calculations are available. The thrust axis is
a good representation of the primary quark direction which is not accessible directly. Despite the
same naming these cross-sections are di!erent from those measured from single hadron produc-
tion. However, an expression completely analogous to that in Eq. (86) holds for h denoting the
polar angle of the thrust axis instead of the hadron. Here, p

P
, P"¹, ¸, refer to the corresponding

cross-sections, where the asymmetric term is absent since the de"nition of the thrust axis, Eq. (39),
cannot distinguish the sense of the axis. The perturbative QCD prediction for the ratio of the
longitudinal and the total hadronic cross-section is [196]

p
L

p
)!$

"2C
FA!3!8 ln

2
3B

a
S

2pA1#(l!2)
a
S

2pB#O(a3
S
) , (105)

where l"0.7$0.2 governs the size of the next-to-leading term.
The OPAL collaboration has measured both the cross-section ratio p

L
/p

)!$
and the di!erential

longitudinal cross-section dp
L
/d¹ for thrust [197]. Fig. 35 shows the di!erential cross-section with

the superimposed LO and NLO QCD expectation. A poor description of the distribution by the
leading order prediction can be seen, indicating signi"cant higher-order corrections. The next-to-
leading order predictions were calculated in [197] using the program of Ref. [198]. Adding this
contribution yields a much improved agreement although the statistical error on the calculation
close to the kinematical boundary at ¹"1 is still large.

The measurement of the cross-section ratio yielded, after correcting for detector and hadroniz-
ation e!ects,

p
L

p
)!$

"0.0127$0.0016 (stat.)$0.0013 (syst.) .

This can be translated using Eq. (105) into

a
S
(m2

Z
)"0.126$0.016 (stat.)$0.013 (syst.)$0.001 (theory) , (106)

where the theory error is due to the uncertainty of the l parameter. Despite the large error, this
value of a

S
(m2

Z
) is consistent with the results from other determinations.
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5.2. QCD at small x: MLLA and multiplicities

Gluon radiation at large angle and high energy has a small probability. This can be seen from
rewriting Eq. (35) to yield the di!erential spectrum of bremsstrahlung o! a quark (see e.g. Ref. [41])

duq?qG"C
F

a
S
(k2

M
)

2p C1#A1!
k
pB

2

D
dk
k

dk2
M

k2
M

, (107)

where p and k are the momenta of the quark and gluon, respectively, in the "nal state. The relevant
scale for the coupling is set by k

M
, the gluon transverse momentum with respect to the q direction.

When k
M
&k&E, corresponding to gluon emission at large angle and at high energy, E"p for

massless partons, one rediscovers multijet topologies with u&a
S
/p;1, which have been dis-

cussed in the previous section.
The activity inside a jet is governed by quasi-collinear and soft partons which are characterized

by k
M
;k;E. Their emission probability, according to the di!erential spectrum in Eq. (107), is

u&a
S
ln2E&1. In the formation of the parton shower, this `Double-Logarithmica (DL) qPqG

process has to be supplemented by the DL gluon radiation GPGG and the `Single-Logarithmica
(SL) gluon splitting GPqq6 (see also Section 3.1.3). All these are not supposed to yield additional jets
but to contribute to the jet initiated by the highly energetic parton. Furthermore, the contributions
from such DL gluon radiation obey colour coherence which leads to a prominent e!ect: angular
ordering. It means, in a classical picture, that for consecutive emissions of gluons the angle
H between the emitter and the emitted gluon must decrease [41]. This e!ect can be explained by
the transverse wavelength of the last emitted gluon which becomes too large to resolve the system
formed by the emitter and the gluon emitted immediately before. Colour coherence and angular
ordering entail a depletion of soft emission such that particles with intermediate energies are
predominantly created in QCD cascades and, therefore, the particle spectrum has a hump-backed
shape at small values of x.

It follows that quasi-collinear and soft partons determine the details of the fragmentation
function at small values of the scaled energy x. From the evolution equation (90) in this regime
much can be learnt about the dynamics of low energy partons, in particular gluons. A widely used
method to solve the evolution equation for D

i
(x,Q2) is that of the Mellin transformation, i.e.

considering moments with respect to x

DI
i
(N, Q2)"P

1

0

dxxN~1D
i
(x,Q2) . (108)

In lowest order (leading-logarithmic approximation LLA) and using the explicit 1-loop expression
for a

S
the solution of Eq. (90) is of the form [12,199]

DI
i
(N, Q2)" +

j/q,q6 ,G

DI
j
(N,Q2

0
) expCP

Q

Q0

dq
q

c
ji
(a

S
(q2),N)D

" +
j/q,q6 ,G

DI
j
(N,Q2

0
)A

a
S
(Q2

0
)

a
S
(Q2)B

cji (1@(2b0 ),N)
, (109)
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where c
ji

is the Mellin transform of a
S
/2p )P

ji
(z, a

S
), which are the Altarelli-Parisi splitting

functions introduced in Eq. (91). This equation explicitly exhibits the scaling violation due to the
scale dependence of the strong coupling. The power c

ji
is called anomalous dimension.

Including the known next-to-leading corrections [43] Eq. (109) is supplemented by a coezcient
function, C, and becomes

DI
i
(N, Q2)" +

j/q,q6 ,G

C(a
S
(Q2),N)DI

j
(N,Q2

0
) expCP

Q

Q0

dq
q

c
ji
(a

S
(q2),N)D , (110)

which, being of a similar form to Eq. (67), incorporates the exponentiation property of the
elementary splitting processes. The coe$cient function C describes multijet contributions to the
evolution of the system, given by large angle and high-energy parton emission. Small angle
emission and, therefore, the evolution of a jet is determined by the anomalous dimension.

Studying the fragmentation of quarks and gluons at small x involves the investigation of the "rst
(N"1) moment of the anomalous dimension c

ji
and the coe$cient function C. This region is

dominated by the DL gluon radiation processes for which c
GG

, evaluated to O(an
S
), contains for

NP1 an infrared singularity of the form 1/(N!1)2n~1. Resumming the series to all orders of
a
S

one arrives at the expression [12,199]

c
GG

(a
S
,N)+

1
4S(N!1)2#24

a
S
p
!

1
4

(N!1)
N?1
P S

3a
S

2p
, (111)

which is in fact "nite at N"1. With Eqs. (110) and (111) the characteristics of the small-x regime of
fragmentation, which concerns most of the produced particles, thus becomes accessible to pertur-
bative predictions and their experimental testing. For instance, inserting the Taylor expansion of
Eq. (111) at N!1 into Eq. (109) and performing the integration one "nds a Gaussian function
of N. This yields, employing an inverse Mellin transformation, a Gaussian in the variable
m
p
,ln(1/x

p
) for the small-x fragmentation function (for details see [12])

xD(x, s)&expC!
1

2p2
(m

p
!Sm

p
T)2D . (112)

Two omissions have to be recalled at this stage. First, the calculation of the anomalous dimension
considered so far uses DL terms only, hence it is a double-logarithmic approximation (DLA) which
also disregards energy conservation. It yielded c

GG
&Ja

S
. In the parton shower cascade, however,

the SL terms from GPqq6 contribute as well. The corrections due to these should be of the order of
*c&a

S
. One has to account for such next-to-leading terms, since they will cause essential

energy-dependent factors appearing in front of the exponential in Eq. (110). The approach of Refs.
[41,64,200] adopted the shower picture, implying a dependence of the structure of the elementary
parton decays (see Eq. (43)) on just the nearest forefathers of a considered parton. This yields an
analytic prediction for the small-x fragmentation functions known as the modixed leading logarith-
mic approximation (MLLA) which obeys energy conservation. In Ref. [201] the next-to-leading
corrections to the LLA prediction, which will be referred to as NLLA, were used to calculate higher
moment corrections (skewness and kurtosis, see Ref. [199]) to the Gaussian in Eq. (112) of the
small-x fragmentation function. Predictions of both approaches will be confronted with experi-
mental data in the following section.
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Fig. 36. In standard hadronization models (left) the parton shower, being terminated at some virtuality scale cut-o! Q
0
,

is followed by a hadronization step. The MLLA plus LPHD concept assumes the hadronization phase to be represented on
average by the parton cascade evolved down to Q

0
close to the QCD scale K. Figure taken from Ref. [202].

Secondly, all the calculations quoted refer to partons and are, thus, not directly applicable to
observables measured from the hadronic "nal state. Although phenomenological hadronization
models have been shown in the previous section to be quite successful, a simple and fair assumption
is that the hadronic spectra are directly related to and, in fact, are proportional to the partonic ones
if the conversion from partons to hadrons occurs at a virtuality scale of the order of the hadron
masses. This is depicted in Fig. 36. Thus, the formation of hadrons is independent of the primary
hard process and its energy scale. This concept is known as the hypothesis of Local parton hadron
duality (LPHD) [64] which originates from the preconxnement properties of QCD cascades [63]. It
means, broadly speaking, that the long-range e!ects between partons in phase space are of
secondary importance in the process of the blanching of coloured partons to form hadrons from
them. Although intriguing, LPHD has a conceptual problem describing the production of massive
hadrons such as baryons in the QCD jets [203]. It also assumes the spectrum of hadrons, whether
they originate from decays of other hadrons or directly from the partons, to be reproduced by the
calculated spectrum of the parton shower. Thus, "nding LPHD not to describe experimental data
may open the view on the details of hadronization physics.

5.2.1. Small-x fragmentation function
The spectra of the hadron's energy fraction x were measured by many experiments covering

a vast energy range. In order to focus on the small-x region of the fragmentation function one
usually considers the variable m

p
,ln(1/x

p
) where x

p
is the momentum, rather than the energy

fraction of a particle. Fig. 37 shows (1/N)(dn/dm
p
), the di!erential distribution of the m

p
variable for

charged particles at centre-of-mass energies between 14 and 183GeV [130,204}206]. Shown as
curves are the NLLA and MLLA calculations and the dependence of the hump-backed shape of these
spectra on the energy scale. The scale, which also controls the average multiplicity Sn

h
(>)T as will

be detailed below, is given by the variable >+ln(E
"%!.

/Q
0
)"ln(Js/2Q

0
), where the parton

shower cut-o! Q
0

equals K
%&&

in the limiting spectrum. Both calculations, NLLA and MLLA,
consequently have only one free parameter, K

%&&
, which is connected to the running of the strong

coupling constant. Since the leading and next-to-leading terms in the MLLA and NLLA calculations
are scheme independent, the parameter K

%&&
can be related to K

MS
only once the calculation has

been done in the MS renormalization scheme. In Fig. 37(a) K
%&&

was obtained from a "t of the
distorted Gaussian to the data, whereas in Fig. 37(b), in order to be able to present the MLLA
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Fig. 37. Di!erential distribution of m
p
,ln(1/x

p
) for charged particles. In plot (a) Gaussian curves including skewness

and kurtosis, which correspond to the NLLA calculation of Ref. [201] of the limiting shape, have been simultaneously
"tted to the distributions, excluding the 91GeV data. Plot (b) shows a comparison of the "tted distorted Gaussian (NLLA)
together with the MLLA prediction of Ref. [41], which is a pure prediction with all parameters taken from a "t of the data
at 91GeV. The predictions of three MC hadronization models are also shown. Figures are taken from Refs. [130,206].

prediction of the hump-backed distribution, the respective value was taken from the "t of the
m
p

distribution at 91GeV in Ref. [207].
Although MLLA yields an analytic expression for the shape of the distribution it is not well-suited

for numerical evaluation. In the limit of very high energies, however, the shape of the spectrum
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15Explicit expressions can be found, e.g. in Ref. [201].

becomes insensitive to the cut-o! of very low energy gluon radiation. For this reason, one usually
considers the limiting spectrum, i.e. Q

0
"K

%&&
, for which a more convenient, but still involved

expression was derived, for instance in Ref. [41]. At asymptotically high energies the distribution of
partons is expected to be Gaussian in m

p
(see Eq. (112) above). One can then represent the shape

even more conveniently by a distorted Gaussian [41,201]

DM (m
p
,>),x

p
DM (x

p
,>)+

Sn
h
(>)T

pJ2p
expC

1
8

K!

1
2

Sd!
1
4

(2#K)d2#
1
6

Sd3#
1
24

Kd4D (113)

with d"(m
p
!Sm

p
T)/p. The perturbative predictions for mean Sm

p
T, width p, skewness S, and

kurtosis K of this Gaussian for gluon initiated jets are15

mean: Sm
p
T"

1
2
>A1#

o
24S

12
pb

0
> B#O(>0) ,

width: p,S(m
p
!Sm

p
T)2T ,

skewness: S,
S(m

p
!Sm

p
T)3T

p3
,

kurtosis: K,

S(m
p
!Sm

p
T)4T

p4
!3 , (114)

where o is de"ned as o,11#2n
f
/27 and b

0
has already been given in Eq. (21). Some additional

corrections need to be applied to account for jets initiated by quarks. These are known to leading
order for all four parameters P of Eq. (114), and are of the order *P/P&O(0.1)(1#n

f
/27)/> [201].

Both perturbative calculations, MLLA and NLLA, yield good descriptions of the hump-backed
shape of the small-x fragmentation function data over a large energy range. This becomes even
more convincing when plotting the energy dependence of the peak position of the m

p
spectra, m

0
, as

is done in Fig. 38 using the data from Refs. [87,88,129}131,204,206}214]. In the MLLA framework
the energy scale dependence of the peak position is predicted to be

m
0
,ln(1/x

.!9
)">A

1
2
#oS

a
S
(>)

96p
!o2

a
S
(>)

96p
#O(a3@2

S
)B . (115)

Fitting the single free parameter K
%&&

to the data yields a very satisfactory description. Without
coherence in gluon radiation a decrease at very small x would be of purely kinematic origin due to
the "nite particle masses, x&Js/m. Thus the dependence of the peak position on the energy scale
would be expected to be m

0
&>, which is twice the value including coherent radiation and not in

accordance with the data as can be seen in Fig. 38. Even though the e!ective K may not be related
to K

MS
it is nevertheless instructive to "nd a

S
(m2

z
)+0.118 assuming the crude but plausible

approximation K
MS

&K
%&&

.
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Fig. 38. Evolution of the peak position, m
0
, of the m

p
distribution with the centre-of-mass energy Js. The MLLA QCD

prediction [41] (solid) and the expectation without gluon coherence (dashed) were "tted to the data.

A further test of the MLLA calculation was conducted by the DELPHI collaboration [206] in order
to examine the prediction m

0
!Sm

p
T+o/32+0.351. The m

p
distributions shown in Fig. 37(a) were

re-"tted around the peak region considering Sm
p
T as an additional free parameter since determin-

ing it from the whole spectrum would ignore the fact that the distorted Gaussian is only valid
close to the maximum. Averaging the results on m

0
!Sm

p
T obtained from the data measured

between 14 and 183 GeV, the DELPHI collaboration arrived at 0.35$0.14 which agrees with the
MLLA expectation.

The success of the MLLA plus LPHD approach was continued in an attempt to extend the
perturbative predictions to the soft momentum domain [215}218]. Exploiting the representation
of the analytic results for the spectrum D(m,>) in moments in m [219], an analysis over a large
centre-of-mass energy range available in e`e~ annihilation was performed. The investigation
of moments has a number of advantages over the analysis of the spectrum itself owing to
simpli"ed theoretical calculations. In Refs. [215}218] the invariant hadronic density E(dn/d3p)
was studied in the limit of vanishing absolute hadron momentum p and compared with the
prediction

dn
d3p

"2K
h

C
F

C
A

D
G
(m,>)

4pN
c
E(E2!Q2

0
)
, (116)

where >"ln(E
"%!.

/Q
0
), E"Jp2#Q2

0
is the particle's energy and K

h
is a normalization para-

meter. The factor of 2 accounts for adding both hemispheres of an e`e~Pqq6 annihilation event.
The function D

G
(m,>) is the inclusive energy distribution of soft gluons originating from a primary

gluon for which an approximate solution of the MLLA evolution equation was derived in Refs.
[216,217]. The appropriate leading order colour factor ratio C

F
/C

A
is introduced to translate this

result to the case of a primary quark. Fig. 39 shows the momentum dependence of dn/d3p for
several centre-of-mass energies between 3 and 133GeV in comparison with the extended MLLA

prediction, Eq. (116), using K
h
"0.45 and Q

0
"270 MeV. Besides the overall good agreement

a marginal excursion can be seen for the very high energy data at very small momenta of the order
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Fig. 39. Charged particle distribution dn/d3p versus particle momentum p at several centre-of-mass energies
[204,205,207,212,222]. The data are compared with the extended MLLA calculations which are detailed in the text. The
"gure is taken from Ref. [217].

of 200MeV which remains at even higher centre-of-mass energies (see Ref. [206]). In general,
however, a remarkable agreement of the extended MLLA prediction [215}218] with the data
can be observed and in particular the data in the "gure approach a common limit for pP0 as
expected.

Several further investigations of the analytical perturbative approach (APA,QCD#LPHD) have
been conducted. An overview can be found in Refs. [220,221].

5.2.2. Mean charged particle and mean jet multiplicities
Perturbative calculations of the fragmentation function D(x, s) are primarily applicable in the

neighbourhood of the maximum of the hump-backed m spectrum. Nevertheless, further quantities
can be derived and confronted with experimental data. In the "rst place these are the Mellin
moments of the fragmentation function in m or x

M(N, s)"P
1

0

dxxN~1D(x, s) . (117)

For instance, the N"1 moment, being just the integral of the fragmentation function, corresponds
to the mean parton multiplicity M(1, s),SN

p
(s)T. Both the MLLA and the NLLA calculations arrive
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16There is a minor misprint in Eqs. (23) and (24) of Ref. [225]: the exponent of y should read !a
1
/2B instead of a

1
/2B.

17The analytic expression for a
2

can be found in Ref. [225].

at the same prediction for this multiplicity (see for instance Refs. [41,223]). In Refs. [224,225]16 the
next-to-next-to-leading logarithmic approximation (NNLLA) and in Ref. [226] even the next-to-
next-to-next-to-leading logarithmic approximation (3NLLA) was calculated for the mean parton
multiplicity in jets initiated by a gluon. Rewriting the formula to explicitly show the dependence of
the parton multiplicity on a

S
one obtains

SNG
p
(Q2)T&ab

S
(Q2) expC

c

4pb
0
Ja

S
(Q2) A1#6a

2

a
S
(Q2)
p BD[1#O(a3@2

S
)] (118)

where b
0

is de"ned in Eq. (21) and17

b"
1
4
#

10
27

n
f

4pb
0

c"J96p

a
2
+!0.502#0.0421n

f
!0.00036n2

f
. (119)

5.2.2.1. Gluon to quark multiplicity ratio. Since the parton cascade in an e`e~ annihilation event is
initiated by quarks rather than gluons, the above formulae have to be modi"ed to account for the
di!erent colour factors of quarks and gluons which leads to a lower showering activity for quark
jets compared with gluon jets. A namKve estimate can be derived from the colour factors C

F
and

C
A

since these determine the probability to radiate a gluon o! a quark or a gluon, respectively (see
Eqs. (13) and (14)). The ratio of multiplicities of gluon, SN

G
T, and quark jets, SN

F
T, is thus expected

to be asymptotically r"C
A
/C

F
"9/4 [227]. Including higher-order corrections and explicitly

exhibiting the dependence on a
S
, this ratio becomes

SN
G
T

SN
F
T
,r(Q2)"

C
A

C
F
A1!r

1S
6a

S
(Q2)
p

!r
2

6a
S
(Q2)
p

#O(a3@2
S

)B (120)

where the coe$cients are (see [225] for exact expressions)

r
1
"

1
6
#

1
162

n
f
, r

2
+0.292#0.0457n

f
!0.00041n2

f
. (121)

It should be noted that the above coe$cients were derived by means of generating functions and
Taylor series in such a way that energy conservation is respected in three-parton vertices [224].
The respective values of r

1
and r

2
given in Refs. [228,229] are therefore slightly di!erent.

The multiplicity ratio was measured by the experiments at LEP I. The measurements applied the
general technique of identifying the gluon jet by vertex tagging of the lower energetic bottom quark
jet in very symmetric, Y-shaped 3-jet events and deriving multiplicities of pure gluon and quark jets
by means of statistical decomposition using an identical sample of untagged symmetric 3-jet events
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Fig. 40. (a) The scale dependence of the mean charged multiplicity in quark and gluon jets is shown. Part (b) presents the
ratio of the multiplicities. The curves are results of "ts of the perturbative expression for the mean multiplicity allowing
for a constant o!set. Figures adapted from Ref. [233].

from light quarks (cf. Section 5.1.2). All such investigations yielded a ratio r(m2
z
) of about 1.25 with

a total error of less than 3% [52,185,230,231].
Extending the study by including asymmetric 3-jet con"gurations, where one jet is less energetic

than the others, the DELPHI collaboration [232] determined the energy scale dependence of the
particle multiplicity in quark and gluon jets and of the ratio r(s). The relevant scale, i, of the jet was
taken to be the transverse momentum of the jet with respect to the closest jet according to Eq. (97).
Fig. 40(a) shows the average multiplicities found in quark and gluon jets, respectively, and
Fig. 40(b) the ratio of these multiplicities. The data were "tted using the NLL approximation of the
expressions in Eq. (118) and (120). In addition, a constant o!set was allowed which was determined
to be approximately 2.6 for the quark and zero for the gluon multiplicities. The multiplicity ratio
grows with an increasing scale i, seemingly approaching some asymptotic value, but still staying
signi"cantly below the expectation of +1.7 from Eq. (120).

The determinations of r discussed up to now are all based on the reconstruction of jets from the
hadronic "nal state. The jets from highly energetic partons need not be well separated due to the
collinear singularity. Thus the measurements might be biased by the use of a jet "nder. An
investigation of the TOPAZ collaboration [234] avoids such biases using an approach which is based
on the thrust observable rather than jets. They measured the multiplicity as a function of the thrust
of an event and extrapolated to a thrust value of 2/3 which corresponds to the three-fold symmetric
Mercedes topology of qq6 G events. The mean charged multiplicity of gluon jets follows by
subtracting the qq6 contribution from the extrapolated multiplicity, SNT

T/2@3
. For the subtraction

one can use qq6 events at the appropriate energy scale of Js@"Js/3 (cf. Eq. (36)), that is the mass of
the qq6 system recoiling against the gluon G. The ratio r can then be calculated by

r(s/3)"
SNT

T/2@3
!SNT

qq6

1
2
SNT

qq6

. (122)
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Fig. 41. Topology of 3-jet events in which two quark jets are tagged by a secondary decay vertex in one hemisphere. The
opposite hemisphere is considered as an inclusive gluon jet.

18Ref. [239] quotes the results for r at the scale m2
Z
, but the energy scale of the experimental measurement is +m2

Z
/4.

The Q
0

value quoted in the reference is, therefore, scaled by one-half here.

The TOPAZ collaboration calculated SNT
qq6

at Js/3"57.8GeV/J3 using the next-to-leading-
logarithmic approximation of Eq. (118) which was "tted to mean charged multiplicity data
measured from 12 up to 91GeV. Inserting their extrapolated value for SNT

T/2@3
, they "nally

obtained r((57.8GeV)2/3)"1.46`0.09
~0.13

[234]. This value is less than 1.7 which is expected from
Eq. (120), but it agrees well with the scale dependence of the multiplicity ratio shown in Fig. 40(b).

One has to be aware, however, that the calculation assumes a pair of either gluon or quark jets to
emerge from a colour singlet point source whereas the gluon jets considered in the experimental
investigations are radiated o! a quark and have to be reconstructed by employing some jet
algorithm. In Ref. [235] a measurement was proposed yielding inclusive gluon jets that are similar
to those used for analytic calculations. To this end, 3-jet events are selected, in which the identi"ed
quark and antiquark jets appear in the same hemisphere. This situation is depicted in Fig. 41. All
particles in the hemisphere opposite to the two tagged quark jets are inclusively considered as
belonging to the gluon jet without application of a jet algorithm. Although gluon jets de"ned by
this prescription still do not precisely match the jets considered in the theory calculations, they
were found in Refs. [235,236] to be essentially identical to gluon jets in GG events from a colour
singlet point source generated using a QCD Monte Carlo event generator. The OPAL collaboration
performed a study in which inclusive gluon jets, after accounting for the di!erent mean jet energies,
were compared with 2-jet events of light quarks [237,238]. Fig. 42 shows the multiplicity distribu-
tions for the inclusive gluon and light quark jets, respectively. The ratio of the mean multiplicities
yields

r(m2
Z
/4)"1.471$0.024 (stat.)$0.043 (syst.) . (123)

This result is also shown in Fig. 40 to be consistent with the overall scale dependence of the
multiplicity ratio. Although this value is still below the expectation from Eq. (120) the agreement is
better.

The r(s) ratio was calculated analytically in Ref. [239] by exact numerical integration of the
complete MLLA evolution equations for parton multiplicities, derived from Eq. (90), with full account
of energy conservation and the correct threshold behaviour, i.e. the mean parton multiplicity in
a single jet approaches 1 for JsP0. In particular, this calculation refers to the multiplicity in the full
hemisphere of a gluon jet emerging from a colour singlet state, and thus does not immediately apply
to the symmetric >-shaped 3-jet events [239]. Choosing the parton shower cut-o!18 to be
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Fig. 42. Corrected charged multiplicity distributions for (a) inclusive gluon and (b) light quark jets are shown with
statistical (horizontal ticks) and total uncertainties. For comparison, the expectations from two phenomenological
hadronization models, JETSET and HERWIG, implementing string and cluster fragmentation, respectively, are superim-
posed. Figures taken from Ref. [238].

Q
0
+250MeV, for which the mean particle multiplicities are well described as will be discussed

below, the numerical integration yielded r(m2
Z
/4)+1.56. A similar calculation was done in the

context of the colour dipole cascade model in Ref. [240]. It employed the ARIADNE Monte Carlo
generator [61] to "x the unknown parameters of the calculation, thus yielding r+1.5 consistent
with the experimental measurement.

In addition, the DELPHI collaboration [232] determined the colour factor ratio C
A
/C

F
from the

multiplicities in quark and gluon jets, using multiplicity data from e`e~ events at comparable
scales obtained from previous measurements and also from events with hard photon radiation.
Their result,

C
A

C
F

"2.266$0.053 (stat.)$0.055 (syst.)$0.096 (theory) ,

is, within the statistical, systematic and theoretical uncertainties, in good agreement with the QCD

expectation of 9/4. It is also more precise than the corresponding determinations using 4-jet "nal
states, that will be presented in Section 6.3.1.
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5.2.2.2. Mean charged particle multiplicity. From the combination of Eq. (118) with the multipli-
city ratio for quark and gluon jets (120) and by relating parton and hadron multiplicities by a factor
K

h
according to the LPHD hypothesis, the mean multiplicity in e`e~Phadrons can be derived.

A low-energy constraint has to be considered in addition. In the limit of vanishing centre-of-mass
energy the parton multiplicity should approach some non-zero value. This is most obvious for
massive quarks for which the minimum parton multiplicity must be two since at a centre-of-mass
energy of twice the quark mass there will be no phase space left for the quark}antiquark pair to
radiate gluons [241]. The approximate expression for the mean hadron multiplicity, therefore,
reads [239,241]

SN(s)T+2K
h

SNG
p
(s/4)T

r(s/4)
#c(s) , (124)

where the factor 2 takes into account that both quark and antiquark will initiate a jet. It should be
noted that for both the r ratio and the parton multiplicity the appropriate energy scale is s/4, i.e.
that for a single jet. Moreover, at very high centre-of-mass energies the ratio, r(s), of gluon and
quark multiplicities should approach the asymptotic value of C

A
/C

F
"9/4. The additive term c(s),

therefore, needs to vanish at asymptotic energies which could be achieved by a power suppressed
behaviour like c(s)&const./SNG

p
(s/4)T or c(s)&const./Js.

¹he upper plot of Fig. 43 shows the mean multiplicity of charged hadrons [53,87,88,129,130,
132,182,187,212,214,242}244] measured in e`e~ annihilation at centre-of-mass energies from
about 10 up to 190GeV. The predicted energy scale dependence of the mean multiplicity is
superimposed on the data. The strong coupling constant is chosen to be a

S
(m2

Z
)"0.119 and the

two non-calculable parameters of Eq. (124) are adjusted appropriately. The description of the data
by the NNLLA formula over this large energy range is satisfactory.

The fact that the mean multiplicity exhibits a larger scaling violation than any other moment of
the fragmentation function could render it one of the best quantities to determine K

MS
, the QCD

parameter determining the scale dependence of the coupling a
S
. It would, however, require

a calculation of Eq. (124) in the MS renormalization scheme [199,201].

5.2.2.3. Moments of the multiplicity distribution. From a theoretical point of view, higher moments
of the multiplicity distribution shown in Fig. 42, such as skewness and kurtosis, are more
favourable since these scale with the mean multiplicity such that non-calculable factors like
K

h
cancel. One example of such moments is the second binomial moment R

2
for which a NLLA

prediction was obtained in Refs. [199,228]

R
2
,

SN(N!1)T
SNT2

"

11
8 C1!A

5
2
!

20n
f

891 BS
a
S

6p
#O(a

S
)D . (125)

Some of the experiments also quoted values for R
2
, but in most cases only the average multiplicity

SNT and the ratio, SNT/D of the mean to the dispersion D"JSN2T!SNT2, i.e. the width of the
multiplicity distribution, are given. It is possible, however, to calculate R

2
from these two numbers

according to R
2
"1#(D/SNT)2!1/SNT. This was done in Ref. [9] for the measurements at and

below the Z pole. In the lower part of Fig. 43 the data compiled in this reference, complemented by
the values available or calculable from Refs. [87,88,129,130,132,212,244], are shown. It can be seen
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Fig. 43. In the upper plot, the mean multiplicity of charged particles measured in e`e~ annihiliation by various
experiments is shown. The measurements include contributions from K0

S
and K decays. Overlaid is the NNLLA prediction

using a
S
(m2

Z
)"0.119. The lower plot shows the second binomial moment R

2
of the multiplicity distribution. Superim-

posed as a solid line is the NLLA prediction for this moment. The dashed line shows the result when "tting for the
unknown NNLLA coe$cient of the prediction. In both cases, the indicated errors comprise statistical and systematic
errors added in quadrature. The data are compiled from Refs. [53,87,88,129,130,132,182,187,212,214,242}244].

from the "gure that the NLLA prediction using a
S
(m2

Z
)"0.119 overestimates the R

2
moment.

Adding to Eq. (125) a term CNNLLAa
S
/6p, a satisfactory description of the data with

a s2/d.o.f."13.9/20 is obtained with the "tted value CNNLLA"!0.537$0.021, where the error is
due to the experimental uncertainties only. The "tted NNLLA coe$cient is about 20% of the NLLA

one in Eq. (125) which is approximately !2.38 for n
f
"5. Calculated at the Z scale the value of

the NNLLA correction to Eq. (125) is only about 3.4]10~3.
The MLLA predictions for even higher moments of the multiplicity distribution show perfect

agreement with the measurements. Exploiting the multiplicity distributions measured from the
inclusive gluon hemisphere, as described above and shown in Fig. 42, the OPAL collaboration [238]
determined the cumulant factorial moments K

i
. In terms of the normalized factorial moments F

i
of

rank i,

F
i
,

SN(N!1)2(N!i#1)T
SNTi

(126)

these are de"ned as

K
i
,F

i
!

i~1
+

m/1

(i!1)!
m!(i!1!m)!

K
i~m

F
m

. (127)
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Fig. 44. Cumulant factorial moments K
i

of rank i"2}5 are shown as determined by the OPAL collaboration [238]
separately for (a) quark and (b) gluon jets. Overlaid are the results of NLLA [245] and MLLA [246] calculations.

Thus, R
2

is identical with K
2
. The K

i
moments have several advantages over the F

i
moments

because the former are more sensitive to the e!ects of higher-order QCD, largely independent of each
other, and directly related to dispersion D, skewness S and kurtosis K (see [238]). Fig. 44 shows the
measured cumulant factorial moments K

i
of rank i"2}5 separately for quark and gluon jets. The

results of the NLLA [245] calculations and of the exact numerical solution of the MLLA DGLAP

equation [246] are superimposed. In general, there is a remarkable qualitative and even quantitat-
ive agreement with the OPAL results for both gluon and quark jets, in particular for the exact
numerical MLLA calculations.

5.2.2.4. Mean jet multiplicities. The MLLA calculations give a detailed insight into the low-x
phenomena inside the jets, but they are also able to describe average hadron and jet multiplicities
simultaneously over a wide range of centre-of-mass energies as is shown in Ref. [239]. In order to
obtain predictions in the region of large values of the jet resolution parameter y

#65
(cf. Section 4.1.2),

i.e. for large angle 3-jet events, the lowest order contribution N(1)
q

of the evolution equation is
replaced by the explicit result for e`e~P3 partons in O(a

S
). The full contribution N3v+%5 follows

from numerical integration of Eq. (35) as in Eq. (38), but replacing the d function by the step
function H(y

3
!y

#65
) which depends on y

3
, the value of the jet resolution parameter at the #ip from

3 to 2 jets. In Ref. [239] this value is given for the DURHAM jet "nder in terms of the fractional
energies of quark, antiquark and gluon by y

3
"min(x

q6
/x

G
,x

G
/x

q6
) (1!x

q
). The O(a

S
) corrected

prediction is then applicable to both hadron multiplicities, choosing y
c
,(Q

0
/Q)2, and jet multi-

plicities, i.e. y
c
,(Q

c
/Q)2, and reads [239]

N%
`
%
~

#033
(y

c
)"2N

q
(y

c
)!2N(1)

q
(y

c
)#N3v+%5(y

c
) , (128)
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Fig. 45. The mean jet multiplicity at 91 GeV versus y
c
,y

#65
for the DURHAM jet "nder, and the mean charged particle

multiplicity, the latter scaled by 3/2 to account for the unmeasured contribution from neutral particles, in the range of
Q"1.6 to 91 GeV, versus y

c
"(Q

0
/Q)2 for Q

0
+500MeV are shown. Overlaid is the expectation from the exact

solution of the evolution equation, using the same QCD parameter K
%&&

. Figure taken from Ref. [239].

where N
q
is obtained from the numerical solution of the evolution equation, Q

0
is the usual cut-o!

scale of the parton cascade adjusted to the typical mass of the hadrons produced, and Q
c
"Jsy

#65
.

Fig. 45 shows mean jet multiplicities obtained with the DURHAM jet algorithm at Js"91GeV.
The jet multiplicity is used to "x the QCD parameter K

%&&
which controls the scale dependence of the

coupling a
S
. Moreover, the mean charged particle multiplicities are shown, as measured at

centre-of-mass energies from 1.6 to 91GeV. These are scaled by 3/2 to account for the contribu-
tions from neutral particles. Using the value of K

%&&
from the jet multiplicities, the values of the

parton shower cut-o! Q
0

and the overall normalization factor K
h

which relate parton and hadron
multiplicities in Eq. (128) are adjusted to the data. A remarkably good description of the data is
achieved for Q

0
+500MeV and K

h
+1.

5.2.3. Summary of QCD at small-x
Processes taking place at small values of the fractional energy x are, in general, not expected to

be accessible to perturbative QCD calculations. This small-x regime should be governed by the
physics of con"nement. It turns out, however, that perturbative QCD works down to scales as low as
about 1GeV. Moreover, when energy scales of a few hundred MeV are considered and the
conjecture of local parton-hadron duality (LPHD) is invoked, perturbative calculations can even
describe inclusive distributions of energy and multiplicity of hadrons originating from a hard
process.
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Fig. 46. Graph related to an infrared renormalon. Figure taken from Ref. [247].

Despite the support found for the hypothesis of LPHD adapted to the modi"ed leading-logarith-
mic approximation (MLLA) some questions still have to be addressed. Due to their larger colour
charge and the gluon self-interaction, gluons play the dominant role in the development of the
parton cascade, but the hadrons observed in the detector are built up of quarks and antiquarks.
Although LPHD performs rather successfully it cannot explain the formation of hadrons from
quarks and gluons emerging from the parton cascade. What the experimental veri"cation of LPHD

can tell us is that hadronization and, hence, con"nement is likely to take place at very small energy
scales as low as the mass of the lightest mesons despite the fact that many of these mesons arise
from the decay of heavier hadrons.

5.3. Power corrections

Precision measurements of the strong coupling constant a
S

from hadronic event shapes require
a solid understanding of hadronization e!ects. During the past years the approach of trying to
deduce as much information as possible about hadronization from perturbation theory has been
intensively pursued [66}68,70,72}74,76,194,195,247,248]. When trying, however, to extend the
standard perturbation expansion in powers of the strong coupling, one realizes that in high orders
the coe$cients of the power series start to grow factorially and, hence, the series does not converge
(see for instance Refs. [73,249,250]). At low scales, which one has to deal with in the context of
hadronization, this is connected to the infrared renormalon divergence (see, e.g. Refs. [251,252]) that
arises in the calculation of a propagating gluon with many successive insertions of virtual
quark}antiquark loops as is depicted in Fig. 46. Thus, any perturbative treatment of hadronization
e!ects has to somehow account for the renormalon divergence. By perturbative factorization it is
possible to separate e!ects which are characterized by large energy scales from those of small scales
up to inverse powers of the energy scale. This corresponds to the result, already obtained from the
simple tube model described in Section 3.2.4, that hadronization e!ects induce corrections which
are suppressed by reciprocal powers of the hard interaction energy scale Q,Js. In general, one
expects for a perturbatively calculable (PT) observable, which is safe against collinear and infrared
gluon radiation (see Section 3.1.2), deviations of the type [249]

dpNP

p
&

lnqQ
Qp

(129)

owing to non-perturbative (NP) e!ects from the physics of con"nement. What can be inferred from
perturbation calculations are the powers p and q.

In principle, one may regard hadronization as being governed by soft gluons as is suggested by
the success of LPHD and MLLA. The contribution from these gluons is given by the size of the strong
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Fig. 47. Strong coupling at low energy scales: The scale dependence of the perturbative expression for a
S
which has a pole

at k2
M
"K2 is shown by the dashed line. The solid line represents a possible infrared-"nite behaviour of the strong

coupling at low scales. Figure adapted from Ref. [250].

19A gluon mass would spoil the renormalizability of the theory.

coupling at a low energy scale, which is usually the transverse momentum k
M

of the soft gluon with
respect to the radiating parton. At such a low energy scale the strong coupling is supposed to be
large. From the explicit perturbative expression, Eq. (22), one may read o! that a pole is
encountered when the energy scale approaches the QCD parameter K. It is known as the Landau
pole [24]. The divergence of the coupling a

S
close to k2

M
"K2 is shown by the dashed line in Fig. 47.

On general grounds, the coupling is expected to be free of poles for k2
M
'0 if it is related to physical

observables. Several explicit models were proposed which modify the scale dependence of the
coupling to cancel the Landau pole by the inclusion of non-perturbative contributions at low
k2
M

[253}255].
Instead of detailing these approaches in the following, a method yielding analyticity of the

coupling will be brie#y introduced. It has been applied successfully to predict non-perturbative
corrections to event shape observables (for further details see Ref. [71]). Its basic concept, in order
to remove the Landau pole, is to introduce a gluon mass, which is not a physical mass,19 but is
related to the virtual states of the gluon consisting of various parton con"gurations, like qq6 , GG,
etc. These virtual states, appearing when renormalizing the gluon "eld, can be represented by
a virtual mass m via the dispersion relation

a
S
(Q2)"P

=

0

Q2dm2

(m2#Q2)2
a
%&&

(m2) , (130)
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where a
%&&

is an e!ective coupling constant whose de"nition is inspired by equivalent relations of an
Abelian theory like, for instance, QED. It should be regarded as a continuation of the physical
perturbative coupling, a

S
, into the non-perturbative domain.

Calculations based on the dispersion relation usually split the coupling constant into a pertur-
bative (PT) and a non-perturbative part (NP), formally,

a
S
(k2

M
)"aPT

S
(k2

M
)#aNP

S
(k2

M
) . (131)

When substituting a
S
(k2

M
) according to this relation in the calculation of an observable, the PT part

is connected to a perturbative expansion in powers of a
S
(Q2). The NP contribution is related to the

non-perturbative component of the e!ective coupling, da
%&&

, which is to be calculated from
a
%&&

using the dispersion relation Eq. (130). It is supposed to vanish in the regime of large
momentum transfer such that for some arbitrary "nite value k

I
one has aNP

S
(k2

M
)+0 for k2

M
'k2

I
.

Hence, integrals of the type

P
=

0

dk2
M

k2
M

aNP

S
(k2

M
) (k

M
)p+P

kI

0

dk2
M

k2
M

aNP

S
(k2

M
) (k

M
)p

are convergent and will determine the 1/Qp suppressed non-perturbative contribution to collinear
and infrared safe observables. For instance, the p"1 correction obtained for the mean values of
most event shapes is [71,249]

SFTNP
"

aF

Q
C

F
2p P

=

0

dm2

m2
Jm da

%&&
(m2)

"

aF

Q
2C

F
p2 P

=

0

dk
M

aNP

S
(k2

M
)

"

aF

Q
2C

F
p2 P

kI

0

dk
M

aNP

S
(k2

M
)#OA

k
I

Q
aNP

S B , (132)

where aF is a calculable number depending on the observable. If aNP

S
from Eq. (131) is used for

substitution, one can express the NP coupling by a
S

and aPT
S

, according to

P
kI

0

dk
M

aNP

S
(k2

M
)"P

kI

0

dk
M

a
S
(k2

M
)!P

kI

0

dk
M

aPT

S
(k2

M
) . (133)

The integral over a
S
quanti"es the strength of the strong interaction in the region k2

M
(k2

I
. Its value

is not perturbatively calculable at such low scales. One, therefore, introduces a non-perturbative
quantity

a
p~1

(k
I
),

p
kp
I
P

kI

0

dk
M

a
S
(k2

M
)kp~1

M
, (134)

which, in general, depends on the power p of the non-perturbative correction. An important
property of the di!erence in Eq. (133) should be noted. Both, a

S
and aPT

S
have the same factorial

divergence in high orders which cancel in the di!erence such that the term on the left-hand side has,
in fact, no renormalon embedded.
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Table 9
Coe$cients of the perturbative prediction [32,115,198,256] and the coe$cients of the power correction of various event
shapes [72,73]. In the case of the jet broadenings B

T
and B

W
the leading power correction is enhanced by additional

factors [249,257], see text. The coe$cient a
y3

for the DURHAM 3-jet #ip parameter y
3

is unknown, but the leading power
correction is logarithmically enhanced [71]

Observable F AF BF aF p enhanced 1/Qp

S1!¹T 2.103 44.99 2 1 *

SCT 8.638 146.8 3p 1 *

SM2
H
/sT 2.103 23.24 1 1 *

SB
T
T 4.066 64.24 1 1 O(1/Ja

S
)

SB
W

T 4.066 !9.53 1/2 1 O(1/Ja
S
)

Sy
3
T 0.895 12.68 2 lnQ

20See: Note added at the end of this paper.
21A value of 3 #avours is natural for the parton cascading considered here since the gluon splitting into pairs of heavy

quark #avours is strongly suppressed.

Performing the expansion of aPT

S
in terms of a

S
(Q2), one obtains from Eq. (132) the prediction for

the power corrected mean of an event shape observable F

SFT"SFTPT
#SFTNP

"CAFA
a
S

2pB#(BF!2AF)A
a
S

2pB
2

D#aFP , (135)

where AF , BF and aF are observable-dependent constants. The term in square brackets is the
general perturbative expression up to second order in a

S
for the mean of an observable. The

coe$cients AF and BF can be derived from the O(a2
S
) perturbative calculations [32,115,198,256]. It

should be noted that the term !2AF accounts for the QCD corrections of the total hadronic
cross-section as shown in Eq. (50) of Section 4.1.1. The aF coe$cient of the power correctionPwas
determined in Refs. [72,73]. The numerical values of these coe$cients are shown in Table 9.

With the exception of the DURHAM 3-jet #ip parameter y
3

and the jet broadening measures,
which will be discussed below, the NP parameter P in Eq. (135) is given for the shapes as [74,249]

P"

4C
F
M

p2

k
I

Q Ga0 (k
I
)!CaS (k2

R
)#2b

0
a2
S
(k2

R
)Aln

k
R

k
I

#1#
K

4pb
0
B#2DH , (136)

where the factor

K,C
AA

67
18

!

p2

6 B!
5
9
n
f

(137)

is due to the choice of the MS scheme. The expression in square brackets of Eq. (136) stems from the
expansion of the aPT

S
integral up to second order in a

S
at some renormalization scale k

R
. In addition,

there appears the Milan factor M. From a two-loop analysis of the 1/Q correction in Refs. [72,73],
its value is determined as20 M+1#(2.437C

A
!0.052n

f
)/(4pb

0
)+1.79, for21 n

f
"3. Large
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22Although in Refs. [73,120] the resummed perturbative expression was considered, the inclusion of the "xed-order
calculations does not signi"cantly a!ect the shift. Therefore, for instance in Ref. [66], the ln R matched calculations were
used. In fact, the power corrections are useful only in the regime where F is small, but still larger than P. It is this regime
where the resummed calculations are more appropriate to represent the data.

contributions from the next loop correction are expected such that a 20% uncertainty in the value
cannot be excluded [249].

Universality of the power correction is an important issue since the concept of a "nite coupling at
small scales, Eq. (134), should be independent of the type of event shape observable. The coe$cient
aF contains the whole dependence on the observableF. In the above mentioned two-loop analysis
the Milan factor is found to be universal for the event shapes considered in the following.
Moreover, this analysis resolved the intrinsic ambiguity as to how the e!ects of "nite masses should
be included in the de"nition of the event shape observables. The origin of this ambiguity is the
inclusive treatment of gluon decays, where the actual contribution of "nal-state partons is replaced
by that of a massive parent gluon. The analysis also takes into account that event shapes are not
completely inclusive observables.

In addition to the mean values of event shape observables, it was shown in Refs. [66,67,247] that
di!erential distributions of the observables can also be described by power corrections using the
same NP parameter aFP as in Eq. (135). In the region of small values of the observable F, but still
large compared with the ratio of the QCD parameter K to Q, i.e. P<K/Q, the power correction
shifts the perturbative spectrum,

dp
dF

(F)"
dpPT

dF
(F!DF) , (138)

where the shift of the argument is

DF,aFP . (139)

An extension for FP0 is possible but an additional phenomenological shape function has to be
introduced [258]. The perturbative expression for the di!erential cross-section in Eq. (138)
corresponds to the matched resummed NLLA and O(a2

S
) calculations,22 introduced in Section 4.1.2.

The non-perturbative prediction [73] for jet broadening had to be modi"ed because its
comparison with experiment yielded results for the non-perturbative parameter a

0
which did not

support the conjecture of universality when compared with those obtained for thrust and C-
parameter [259]. In brief, a shift as in Eqs. (138) and (139) was found to be insu$cient to describe
the data without an additional squeeze of the di!erential distribution. The squeeze is due to the
interdependence of the perturbative and non-perturbative treatment. After being appropriately
modi"ed in Refs. [249,257], the non-perturbative contributions to be added to the PT term SBTPT

for the mean values of the respective jet broadening observable are up to terms of O(Ja
S
)

SB
T
TNP

+a
BT
PA

p

2JC
F
a6
S
[1#Ka6

S
/(2p)]

#

3
4
!

2pb
0

3C
F

#g
0B

SB
W

TNP
+a

BW
PA

p

2J2C
F
a6
S
[1#Ka6

S
/(2p)]

#

3
4
!

pb
0

3C
F

#g
0B , (140)
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where a6
S

is to be evaluated at the scale QM "Qe~3@4, K is already given in Eq. (137), and
g
0
+!0.6137 is a constant.
The shift that has to be applied to the argument of the perturbative expression for the di!erential

broadening distributions is rather complicated and will, therefore, not be repeated here. It can be
found in Ref. [257]. For most applications the following approximations of the shifts D

B
can be

used if the study is constrained to the region of B'0.05 and energy scales greater than about
35GeV

D
W

(B
W

)+a
BW

PAln
1

B
W

#g
0B

D
T
(B

T
)+a

BT
PAln

1
B

T

#g
0
#G

p

2JC
F
a6
S
[1#Ka6

S
/(2p)]

#

3
4
!

2pb
0

3C
F

#g
0HB . (141)

The more involved formula for the shift in the B
T

case, although its "rst part is the same as that of
B
W

, includes an additional contribution from the hemisphere where no signi"cant perturbative
gluon contribution is present. It is given by the term in braces and is identical with the correction to
the mean value. In general, the ln(1/B) enhancement of the shift leads to the squeezing of the
di!erential distribution.

5.3.1. Application of power corrections to mean values
A huge collection of data on mean values of event shape observables covering a vast range of

centre-of-mass energies is available [88,104,129}132,140,143,145,204,208,210}212,260}266], in
particular for thrust and jet mass. Although the C-parameter has been known for a long time,
measurements of this observable at energies below the Z pole became available only recently as is
the case for the jet broadening and the DURHAM jet "nder which were proposed too late for the
experiments prior to LEP [139]. All such measurements constitute a broad basis for scrutinizing the
theoretical concept of power suppressed corrections to the mean values of event shape observables.
Such investigations have been done rather extensively [74,131,136,139,145,212,257,267}270].

Considering the most prominent observables which were already used in the previous section,
viz. thrust, heavy jet mass, C-parameter, total and wide jet broadening, and the 3P2-jet #ip
parameter y

3
obtained from the DURHAM jet "nder, one "nds a dependence on the centre-of-mass

energy as is shown in Fig. 48. The solid line shows the result of "ts with a
S
(m2

Z
) and a

0
as the only

free parameters. A very remarkable agreement of the theoretical prediction with the data is
observed. From the di!erence between the dashed line which shows the perturbative contribution
and the solid curve, one can infer the size of the power suppressed contribution.

Since for the jet #ip parameter y
3

the structure of the leading power corrections is only known to
include (lnQ)/Q2 and 1/Q2 terms [71], but the corresponding coe$cients are not yet calculated,
several variations, 1/Q2, (lnQ)/Q2, 1/Q, (lnQ)/Q and omitting power correction terms, were tried in
Refs. [259,268], introducing an unknown coe$cient a

y3
as an additional "t parameter. In general,

none of these corrections is favoured by the s2/d.o.f. of the "ts. When using 1/Q-type corrections
the "ts yielded tiny values for a

y3
of less than 10~2 and values of a

S
(m2

Z
) which exceed the world

average by many standard deviations. Although "ts employing 1/Q2-type corrections yielded
a
S
(m2

Z
)+0.125, the coe$cients a

y3
, which came out as about !0.2 to !0.5, have very large errors

rendering them compatible with zero. In conclusion, there are still insu$cient data on Sy
3
T to
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Fig. 48. The energy dependence of the mean values of thrust S1!¹T, heavy jet mass SM2
H
/sT, total SB

T
T and wide

jet broadening SB
W

T, C-parameter SCT, and of the 3P2-jet #ip parameter Sy
3
T is shown [88,104,129}132,

139,140,143,145,204,208,210}212,260}266,271].The solid curve is the result of the "t using perturbative calculations plus
power corrections, while the dashed line indicates the contribution from the perturbative prediction only.
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Table 10
Fitted values of (a) a

S
(m2

Z
) and (b) a

0
derived for k

I
"2 GeV and xk"1 using the O(a2

S
) calculations and two-loop power

corrections, including the Milan factor and the modi"ed predictions for the jet broadening variables [72,73,249,257].
Statistical and systematic uncertainties are also given. Signs indicate the direction in which a

S
(m2

Z
) and a

0
change with

respect to the standard analysis. The renormalization and infrared scale uncertainties are added asymmetrically to the
errors of a

S
(m2

Z
). a

0
has error contributions from the choice of the renormalization scale and the Milan factor only

(a) S1!¹T SM2
H
/sT SB

T
T SB

W
T SCT Sy

3
T Average

a
S
(m2

Z
) 0.1198 0.1141 0.1183 0.1190 0.1176 0.1215 0.1181

Q range 13}183 14}183 35}183 35}183 35}183 22}183
(GeV)
s2/d.o.f. 52.2/39 22.0/33 22.1/25 18.8/26 18.8/16 13.6/13
exp. $0.0013 $0.0010 $0.0016 $0.0020 $0.0013 $0.0014 $0.0016
xk"0.5 !0.0049 !0.0026 !0.0038 #0.0017 !0.0043 !0.0040 !0.0028
xk"2.0 #0.0061 #0.0037 #0.0048 #0.0003 #0.0053 #0.0054 #0.0029
M!20% #0.0011 #0.0013 #0.0008 #0.0005 #0.0009 * #0.0008
M#20% !0.0011 !0.0001 !0.0007 !0.0005 !0.0009 * !0.0005
k
I
"1 GeV #0.0025 #0.0013 #0.0017 #0.0011 #0.0020 * #0.0014

k
I
"3 GeV !0.0019 !0.0011 !0.0014 !0.0009 !0.0016 * !0.0012

Total error #0.0068 #0.0043 #0.0054 #0.0029 #0.0058 #0.0056 #0.0037
!0.0055 !0.0030 !0.0044 !0.0022 !0.0049 !0.0042 !0.0035

(b) S1!¹T SM2
H
/sT SB

T
T SB

W
T SCT Sy

3
T Average

a
0

0.509 0.614 0.442 0.392 0.451 * 0.473
exp. $0.012 $0.018 $0.015 $0.028 $0.010 * $0.014
xk"0.5 #0.003 #0.011 #0.020 #0.109 #0.005 * #0.018
xk"2.0 !0.002 !0.005 !0.014 !0.042 !0.003 * !0.009
M!20% #0.058 #0.084 #0.046 #0.032 #0.050 * #0.053
M#20% !0.040 !0.064 !0.031 !0.022 !0.034 * !0.037

Total error #0.059 #0.087 #0.052 #0.117 #0.051 * #0.058
!0.042 !0.067 !0.037 !0.055 !0.036 !0.041

determine the details of the power correction for this observable. Recalling, however, that the
expected leading correction is (lnQ)/Q2, a very large coe$cient would be needed for a signi"cant
power correction to Sy

3
T. The fact that the coe$cient is found to be small justi"es the neglect of

any power correction to the mean of the DURHAM 3P2-jet #ip parameter, yielding a very stable "t
with s2/d.o.f. of almost unity.

The individual "t results for each of the six observables considered here are summarized in
Table 10. It shows the dependence of the "t values on the choice of the renormalization scale, k

R
,

varied between 0.5 and 2, and on the arbitrary matching scale, k
I
, varied between 1 and 3GeV,

which enters the de"nition of the parameter a
0

in Eq. (134) and which marks the boundary between
the non-perturbative and the perturbative regime. The dependence on unknown higher-order
corrections of the Milan factor is also included. These are of the order a

S
/p, where the coupling

strength is to be evaluated at some small scale resulting in an estimated uncertainty of about 20%
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for M, according to Refs. [73,249]. All "ts obtained s2/d.o.f. close to unity. A large anticorrelation
of over 90% is observed in all "ts. The individual results agree well within the correlated errors. To
form a weighted average of the a

S
(m2

Z
) results, taking into account the correlations, the procedure of

Ref. [104] which has already been detailed in Section 4.1.1 is applied again. The average a
S
(m2

Z
) is in

very good agreement with other a
S

determinations, quoted in this article, and also with the world
average a

S
(m2

Z
)"0.119$0.004 [272].

Similarly, a fair agreement is found between the values of the non-perturbative parameter a
0
,

which is regarded as universal parameter in the theory calculations. Although the value from B
W

is
a little low, and that from M2

H
/s somewhat high, all values agree within about 20%. In the table the

result of averaging these values is shown using the same procedure as for the strong coupling. The
quoted error is determined from the combined experimental, renormalization scale, and Milan
factor uncertainties only. It therefore does not consider the much larger spread of the individual
a
0

values. This could be accounted for by quadratically adding the r.m.s. of the "ve single
results, which is 0.076, to the quoted error. These results, in general, support the dispersion
method to calculate power suppressed contributions to mean values of event shape observables.
The conjecture of universality of the power correction, which was argued for in Refs.
[66}68,70}73,195,247}249,257], is roughly con"rmed by the data.

Moreover, there is also remarkable agreement of the measured values of a
0

with the value
obtained from explicitly calculating the integral in Eq. (134) using an &analytically-improved'
running coupling (see for instance Ref. [254]). The improvement concerns the cancellation of the
Landau pole by adding to the explicit formula of a

S
a &counter term' of the form K2/(K2!Q2)

depending only on the QCD parameter K and the energy scale Q. No additional parameters are
required. After adjusting K to reproduce the value of the strong coupling constant measured at the
q mass scale, the integration in Eq. (134) yielded the prediction a

0
(2GeV)+0.46 [254] in good

agreement with the measured value.
General properties of power suppressed corrections to mean values of event shapes were studied

in Refs. [131,145,267], allowing also for di!erent integer and half-integer powers of the reciprocal
energy scale Q. In particular, the power parameter p of a c/Qp correction term was found in the case
of the thrust variable to be p"0.92$0.19 from a simultaneous "t of p, a

S
and the constant c that

determines the size of the non-perturbative correction [267]. No indication of higher-order power
corrections was observed for thrust given the present precision of the data.

In Ref. [131] the DELPHI collaboration investigated power corrections to di!erent observables
shown in Fig. 49. Among them were the 3-jet rates, R

3
, at "xed values of y

#65
"0.08 and 0.04 for the

JADE and DURHAM algorithms, respectively. Allowing for corrections of the order 1/Q and 1/Q2
satisfactory "ts were obtained for both quantities as shown in plot (a) of the "gure. While for the
JADE case a signi"cant negative 1/Q correction is found, the DURHAM data yielded a 1/Q contribu-
tion consistent with zero within the errors. This agrees with the expectation mentioned above that
the leading correction in the DURHAM case is of the order (lnQ)/Q2.

Observables are expected to lack signi"cant 1/Q corrections if the regions dominated by 2-jet
events are excluded from the mean value. Such truncated mean values are shown in Fig. 49(b) for
thrust (¹(0.8), heavy jet mass (M2

H
/s'0.1) and the energy}energy correlation EEC (see Ref. [140],

DcostD(0.5). Fixing the value of a
S

in order to obtain satisfactory "ts, the power correction to the
heavy jet mass was found to be predominantly of order 1/Q2 as predicted [70], while both thrust
and EEC require considerable 1/Q corrections.
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Fig. 49. (a) Energy dependence of the 3-jet rates, R
3
, from the JADE and the DURHAM jet "nders, and (b) of the truncated

mean values of thrust ((0.8), heavy jet mass ('0.1), and energy}energy correlation EEC, (Dcos tD(0.5). Results of "ts of
the perturbative calculations plus terms proportional to 1/Q and 1/Q2, considering the coe$cients and a

S
as parameters

of the "ts, are overlaid as solid curves. The bare perturbative contribution is represented by the dotted lines. Figure taken
from Ref. [131].

Even higher moments of the event shape distributions have been invoked to determine the
coupling strength. The non-perturbative contribution to the nth moment of an event shape
distribution is found to be of the order 1/Qn, which leads one to expect a signi"cant suppression of
non-perturbative e!ects here. In fact, if one considers both the perturbative and non-perturbative
contribution to the nth moment of an event shape, one "nds the leading power correction to be of
the order a

S
K/Q, i.e. suppressed by an additional factor of a

S
(Q2) only [249]. Considering

combinations of such moments, one may indeed construct observables in which the leading
power corrections cancel. For instance such a cancellation was shown in Ref. [273] for the
thrust variance

p2
1~T

"S(1!¹)2T!S1!¹T2+0.030a
S
#0.037a2

S
. (142)

It has not yet been experimentally investigated. The measurement of the thrust variance will be
di$cult because its size is tiny. Systematic uncertainties may, therefore, eventually render the
measurement impossible if they are not well under control.
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The situation is more promising for the C-parameter whose variance should not have any
leading power correction. The perturbative prediction is

p2
C
"SC2T!SCT2+0.387a

S
#0.0435a2

S
, (143)

which has a quite small second-order contribution. This prediction was derived from the results of
a numerical integration of the full second-order matrix element for the moments of many event
shape observables [274] using the program of Ref. [198]. Calculating the C-parameter variance
from the high precision LEP I and SLC data [140,262,265] only and estimating the uncertainties
using error propagation yields

DELPHI: SC2T!SCT2"0.0331$0.0025 (stat.)$0.0106 (syst.) ,

L3: SC2T!SCT2"0.0359$0.0016 (stat.)$0.0145 (syst.) ,

SLD: SC2T!SCT2"0.0340$0.0046 (stat.)$0.0084 (syst.) ,

average: SC2T!SCT2"0.0341$0.0013 (stat.)$0.0104 (syst.) ,

where the weighted average and its systematic uncertainty are calculated using the total errors for
the weights while the statistical error is assumed to be uncorrelated. Using the weighted average
and solving Eq. (143) for a

S
(m2

Z
) one obtains

a
S
(m2

Z
)"0.087$0.003 (stat.)$0.026 (syst.)$0.007 (scale.) ,

where the uncertainty due to the choice of the scale is estimated by changing xk from unity to 0.5
and 2. Although the total error is large, the central value is rather small compared with other
determinations possibly indicating larger contributions from missing higher-order terms in a

S
or

from power corrections.

5.3.2. Power corrections to diwerential distributions
The investigation of power corrections to di!erential distributions of event shape observables

has only just begun. A few such studies have been done up to now [136,257,259,267] which are
based on the general concept presented in Ref. [66], extended to next-to-leading order accuracy
and other event shape observables in Refs. [72,73]. The next-to-leading order treatment of the
power corrections changed the shape dependent coe$cients aF and, "nally, yielded the values
shown in Table 9.

Fig. 50 shows results of the application of the power corrections to di!erential distributions of
the thrust and the C-parameter observables. A good description of the distributions is found by
applying the predicted shift to the matched "xed order and resummed calculation. Only at very
small centre-of-mass energies is the agreement between data and expectation moderate. Since
neither the perturbative nor the non-perturbative calculations applied in the "t accounts for "nite
quark masses, one may expect mass e!ects to modify the distributions in the proximity of the
bottom quark production threshold.

The numerical values of a
S
(m2

Z
) and a

0
are summarized in Table 11. It has to be recalled that the

"t parameters a
S
(m2

Z
) and a

0
are strongly anti-correlated (60}84%), as is illustrated in Fig. 51. The

results shown were obtained by the ALEPH collaboration considering only data from the ALEPH

experiment. Therefore, a detailed treatment of the correlation between the data at di!erent energies
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Fig. 50. (a) Thrust and (b) C-parameter distributions, measured at di!erent centre-of-mass energies Js,Q and
corrected for detector e!ects, are shown vertically displaced. Overlaid as a solid curve is the result of a "t of each of the
observables simultaneously for all energies using matched O(a2

S
) and resummed NLLA calculations complemented by

power corrections. The dashed line in (a) shows the result of a corresponding "t applying corrections from the JETSET

Monte Carlo. The dotted line in (b) is the extrapolated "t result. Figures taken from Refs. [259,267].

was possible. The "gure shows the results obtained from both the di!erential thrust and C-
parameter distributions. The impact of each systematic variation is indicated. Combining the
values of Refs. [136,259] yields

a
S
(m2

Z
)"0.1150$0.0036 ,

a
0
(2 GeV)"0.464$0.067 . (144)

These values are in good agreement with the world average of a
S
"0.119$0.004 [272] and with

the average values obtained from the "ts to the mean values of the event shapes, respectively.
Table 11 also lists the results obtained from similar "ts to the di!erential heavy jet mass and total

jet broadening distributions, respectively. Further results on the broadening observables are
available [136] but not listed because they were obtained using the older prediction for the power
correction which neglected the interplay between perturbative and non-perturbative contributions
(see Ref. [249]). Fig. 52 shows the result of the "t to the total jet broadening based on the new
prediction at two distinct centre-of-mass energies. Numerical results of this "t are also listed in
Table 11.

Considering the results of the "ts to the di!erential distributions of single event shape observ-
ables, shown in Table 11, one "nds the overall concept of power corrections to be con"rmed. The
results on a

S
are all compatible with the world average, even though some of them tend to be small.

For the non-perturbative parameter a
0

it has to be noted that the values agree very well with the

O. Biebel / Physics Reports 340 (2001) 165}289262



Table 11
Fitted values of a

S
(m2

Z
) and a

0
for xk"1 using the lnR-matched O(a2

S
) and resummed NLLA calculations completed with

the 2-loop power corrections, including the Milan factor and the modi"cation of the prediction for the jet broadening
variables [72,73,249,257] to describe the di!erential distributions. The errors correspond to the total uncertainties except
for the values marked with an asterisk (H) where only the "t uncertainty is given in the references

(1/p)(dp/d(1!¹))

Ref. Js range a
S
(m2

Z
) a

0
(2 GeV) s2/d.o.f.

[136] 91}183 0.1185 $0.0064 0.449 $0.082 140/42

[259] 35}183 0.1156 `0.0066
~0.0049

0.469 `0.077
~0.060

284/277

(1/p)(dp/dC)

Ref. Js range a
S
(m2

Z
) a

0
(2 GeV) s2/d.o.f.

[136] 91}183 0.1145 $0.0043 0.443 $0.060 30/36

[259] 35}183 0.1137 `0.0058
~0.0044

0.437 `0.081
~0.049

163/170

(1/p)(dp/dM
H
)

Ref. Js range a
S
(m2

Z
) a

0
(2 GeV) s2/d.o.f.

[136] 91}183 0.1157 $0.0039 0.437 $0.003H 2.1

(1/p)(dp/dB
T
)

Ref. Js range a
S
(m2

Z
) a

0
(2 GeV) s2/d.o.f.

[257] 35}183 0.1140 $0.0007H 0.514 $0.007H 61/57

[259] 35}183 0.1125 `0.0082
~0.0061

0.562 `0.099
~0.071

161/171

results obtained from "ts to the mean values of event shape observables in the previous section.
This gives further support for the conjecture of a

0
being a universal non-perturbative

parameter.

5.3.3. Summary of power corrections
In general, a remarkable ability of power corrections to describe non-perturbative hadronization

e!ects is found. This holds for the mean values as well as for the di!erential distributions.
Moreover, the power corrections are also applicable to other processes besides e`e~ annihilation.
In the analysis of deep inelastic scattering of positrons o! protons at the HERA collider at DESY,
for instance, power corrections were also found to be a good description of non-perturbative
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Fig. 51. The correlation contour of a
S
(m2

Z
) and a

0
obtained from combined "ts to thrust and C-parameter distributions is

shown at the 68% con"dence level. For its calculation statistical and systematic errors were considered. The points
indicate the individual results from systematic variations of the analysis. Figure taken from Ref. [136].

Fig. 52. Total jet broadening distributions at 35 and 91 GeV are shown. The curves are from "ts of the lnR-matched
perturbative calculations and the modi"ed prediction for the power correction to the di!erential B

T
distribution. The

data sets considered for the "t ranged from 35 to 183 GeV in centre-of-mass energy. Figures taken from Ref. [257].

contributions to the mean values of event shapes (see summary in Refs. [83,275,276]), yielding
results consistent with those presented in the previous sections (see Fig. 53).

Although the success of power corrections might be surprising, their ability to describe non-
perturbative e!ects could have been expected from the successes of the hypothesis of local
parton}hadron duality (LPHD). In this respect, it is another indication that the strong interaction
physics at very low energy scales is governed by soft gluons. As for the LPHD approach, power
corrections cannot resolve the process of hadronization, but it increases the con"dence that one
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Fig. 53. Compilation of various results on a
S
(m2

Z
) shown versus the corresponding a

0
(2 GeV). The values have been

obtained from e`e~ annihilation using di!erent event shape observables and also from deep inelastic scattering of
positrons o! protons [136,139,259,277].

may consider quarks and gluons for a perturbative treatment even at very small energy scales, close
to the stage of con"nement [249,275].

6. Studies related to the running of aS

The results presented in the previous sections clearly show that the coupling strength of the
strong interaction is dependent on the energy scale. Although the precision of the tests has
improved considerably owing to improved and extended calculations and owing to new experi-
ments at high energy colliders, details of the running are still unclear. Some aspects of possible
deviations from and extensions to the standard S;(3) QCD structure will be brie#y addressed in this
section. As a starting point, however, the exclusive validity of QCD will be assumed, thus allowing
conclusions to be drawn concerning unknown higher-order corrections.

6.1. Higher-order corrections from energy dependence

Higher-order corrections are a major source contributing to the overall uncertainty of every
determination of the strong coupling constant a

S
, in particular from quantities that are not

completely inclusive as was shown in Section 4. The e!ort of calculating the next-to-next-to-leading
order corrections (NNLO) to such observables like jet rates and event shapes has just started (see
Refs. [35,37]) and will very likely require many years until completion. And, in view of the
renormalons as being connected with the factorial divergence of the coe$cients of a high-order
Taylor expansion as discussed in Section 5.3, one might even argue that the next order of the series
will not yield improved predictions.
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Other approaches might achieve useful results earlier, although they may be a!ected by intrinsic
uncertainties. One such approach is related to the Pade& approximants [¸/M] (see Ref. [278] for an
introduction) which expresses a Taylor series S(x) up to xN by the ratio of an ¸th and an Mth order
polynomial. These two polynomials are chosen such that ¸#M"N and that S(x)"[¸/M]
modulo terms of the order xN`1. In detail this means that

S(x)"c
0
#c

1
x#c

2
x2#2#c

N
xN#O(xN`1) (145)

is expressed by

[¸/M],
a
0
#a

1
x#2#a

L
xL

1#b
1
x#2#b

M
xM

#O(xN`1)

"c
0
#c

1
x#c

2
x2#2#c

N
xN#c8

N`1
xN`1#2 . (146)

The PadeH approximant is formally a valid representation of S(x) at a given "nite order in x.
Moreover, the PadeH approximants possess useful properties which are absent in the simple Taylor
series of S(x). For instance, the coe$cient c8

N`1
of the Taylor expansion of [¸/M], which is usually

called Pade& Approximant Prediction (PAP), can provide a good estimate of the c
N`1

coe$cient of the
Taylor series of S(x). The relative deviation of the estimate from c

N`1
decreases exponentially with

N [278].
It seems obvious to apply the PAP to second-order perturbation series which are available for

most observables. In Refs. [278,279] this was done for the 4-loop coe$cient, b
3
, of the b-function in

Eq. (21), among other quantities. Once the exact result became available, it was realized that the
quartic gluon vertices, which start to contribute at this order, were not predicted by simple PAP.
A modi"cation was required to retrieve the exact b

3
coe$cient with better than 1% accuracy. This

indicates a basic de"ciency of the approach due to its purely mathematical nature. Anyhow, it
should be recalled, that no further gluon vertices are expected to contribute beyond that order, and,
hence, PAP might indeed yield satisfactory results.

Pade& approximant predictions were also employed for the determination of a
S
. In Ref. [280] the

hadronic branching ratio of the q lepton, Rq , was investigated (see Section 4.1.1), to attempt to
estimate the next term of the slow converging perturbative series in Eq. (59) from PAP. The inclusion
of the PadeH approximant term lowered the value of a2

S
(m2q ) by about 10% [280].

In Ref. [281] the a
S

determination from hadronic event shape observables was studied using the
Pade& approximant predictions. In total 15 observables were considered to determine the O(a3

S
) term

from the exactO(a2
S
) prediction. The extended series was then "tted to SLD data to determine a

S
(m2

Z
),

"nding for a "xed renormalization scale factor xk,1 a reduced scatter of the individual results
about their common mean value. A similar study by the DELPHI collaboration [146] using 17
observables yielded a

S
(m2

Z
)"0.1168$0.0054 where the error includes statistical and systematic

uncertainties as well as uncertainties due to the scale choice. Although these results look promising,
they can only be veri"ed upon completion of the full O(a3

S
) perturbative QCD calculation.

A completely distinct approach exploits the wealth of data available at very di!erent centre-of-
mass energies [270]. It makes use of the fact that the basic structure of the perturbative expression
for an event shape observable like thrust, appropriately normalized, is known to be

R(Q)"
a
S
p
#r

1

a2
S

p2
#r

2

a3
S

p3
#2#

j
QA1#j

1

a
S
p
#2B , (147)
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23The value of r
1
"(B

T
!2A

T
)/(2A

T
)+9.7 can be determined from Table 9.

which includes simpli"ed power corrections that have already been introduced in
Section 5.3.23

Using the large range of energies available, one can avoid the renormalization scale uncertainty
entirely by taking the derivative of R(Q) with respect to lnQ, which can be written as [270]

dR
d lnQ

"!2pR2(b
0
#pb

1
R#b

0
o
2
R2#2)#K

0
R~b1 @(2b0)e~1@(2pb0R) ) (1#K

1
R#2)

,!2pb
0
o(R) (148)

where

o
2
"r

2
#

p2b
2

b
0

!

pb
1

b
0

r
1
!r2

1
.

Here, b
0
, b

1
and b

2
are the coe$cients from the renormalization group equation (21), o

2
depends

on the NNLO coe$cient r
2
, which is unknown, and K

0
, in combination with K

MS
, is directly

connected with j.
One may "t Eq. (148) to the observables R(Q) and dR/d lnQ, both of which can be determined

from the data, in order to determine the unknowns, r
2

and K
0
. In fact, in Ref. [270] Eq. (148) was

integrated exploiting asymptotic freedom, that is R(Q)P0 as QPR, leaving, in principle, K
MS

as
the constant of integration. Fig. 54 shows the results of three (o

2
, j, K

MS
) and one parameter (K

MS
)

"ts to the mean value of the thrust observable over a large range of centre-of-mass energies from 14
to 172GeV. When "tting with o

2
and j "xed to zero, K

MS
"266MeV with s2/d.o.f."82/32 was

found in Ref. [270] for 5 #avours. For the three parameter "t, however, the minimum was reached
with s2/d.o.f."40/30 for K

MS
"245`20

~17
MeV, o

2
"!16G11, and j"0.27`0.12

~0.10
GeV. This

corresponds to a
S
(m2

Z
)"0.1194$0.0014 when using the 2-loop relation between K

MS
and a

S
. The

value of o
2

yields r
2
"89$11 which comes out rather large compared with r

1
+9.7, due to

the contribution r2
1
#cr

1
in Eq. (148). Moreover, the value of j is rather small compared with the

results obtained in Section 5.3, which would suggest a value of about 1 GeV. This di!erence is due
to the third-order contribution, o

2
, which is determined from the "t, and the neglect of higher-order

terms when transforming K
0

into a value of j [285]. Since o
2

absorbs a signi"cant fraction of the
power corrections, there is a strong anticorrelation between o

2
and j, which is the reason for the

large relative "t errors for o
2

and j.
In general, exploiting the known structure of the unknown next order of a perturbative series

together with the available data over a vast energy region is a promising approach to constrain the
value of the higher-order coe$cients until the completion of the exact calculation. The approach
should be applicable also to other observables, and maybe even to di!erential distributions. This
method's very appealing feature is that the large uncertainties due to the choice of the renormaliz-
ation scale, which are usually attributed to unknown higher-order corrections, no longer appear.
In fact, a part of these higher-order corrections is calculable and resummable to all orders
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Fig. 54. The energy dependence of the data on S1!¹T [129}132,139,143,145,204,208,210,212,260,262}264,266,282}284] is
shown. Overlaid are the "t results for a three parameter "t (see text) using KMS, o2

, and j as parameters (solid line), and for
a one parameter "t with o

2
"0 and j"0 "xed (dashed). Figure taken from Ref. [270].

[286]. Once the resummation is done, this approach may lead to an improved precision for
a
S

determinations.

6.2. Power corrections to the running

The data on a
S

and the respective uncertainties shown in Figs. 15 and 22 in Sections 4.1.1 and
4.1.2, respectively, agree reasonably well with the expectation of QCD. Deviations from this
expectation, however, cannot yet be ruled out. In fact, the Landau pole [24], appearing at low
scales, induces 1/Q2 corrections at large Q2 [287]. Such corrections are also found from the
investigation of the ultraviolet (UV) renormalons, which dominate the perturbation expansions in
a
S
(Q2) at large orders n, because of factorially divergent coe$cients with alternating signs, in

contrast to the infrared (IR) renormalon discussed in Section 5.3, where the coe$cients have the
same sign.

The emergence of 1/Q2 contributions can easily be seen when one tries to remove the Landau
pole of the coupling, as has been done by various approaches, to render the coupling "nite at low
scales. For instance, in Ref. [254], a scale-dependent term is added to the explicit representation of
a
S

in order to cancel the pole, viz.

a8
S
(Q2)"

1
b
0

ln(Q2/K2)
#

K2

b
0
(K2!Q2)

. (149)
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Fig. 55. Combined results on a
S
from Figs. 15 and 22 are shown. The curves show the results of "ts of the explicit 2-loop

expression for a
S
supplemented by either a 1/Q2 (solid) or a 1/Q4 (dashed) term. Only experimental errors are shown and

were considered in the "t.

This &analytically-improved' coupling a8
S

no longer has a pole at Q2"K2 and remains "nite for all
values of Q2. Admittedly, it introduces a 1/Q2 contribution at large scales, Q2<K2, which has to be
cancelled in quantities that are proportional to a

S
(Q2) to leading order but are not expected to have

1/Q2 corrections, like the total cross-section in e`e~ annihilation [71,253]. To overcome this
potential problem, one could further extend the expression in Eq. (149) by adding K2/(b

0
Q2), which

would remove the 1/Q2 contribution at large Q2 at the expense of bringing in a new pole, which,
however, is now at the limit of the physical regime, i.e. at Q2"0. Moreover, with this extension the
improved coupling di!ers from the standard formula only by 1/Q4 terms.

With the large quantity of available a
S

determinations over a vast energy range in hand, one
could test the possibility of 1/Q2 and 1/Q4 contributions. Fig. 55 presents the data shown in Figs. 15
and 22. The 2-loop part of the explicit expression for a

S
(Eq. (22)) is complemented by adding either

c
2
/Q2 or c

4
/Q4 and then, for illustrative purposes, "tting to the a

S
data using experimental errors

only. Both "ts yield a value of a
S
(m2

Z
)"0.122 with a s2/d.o.f."25/22. The values of the coe$cient

for the additional term are c
2
"!0.66$0.60 and c

4
"!0.18$0.19, respectively. Even though

the sign of the c parameters is just what is expected for the improved coupling, no indication of
such contributions is seen from these data. The same observation has also been made for 1/Qp

corrections for other integer powers in the range of 0}7.
One has to be aware, however, that the a

S
values used in the "t were determined assuming

neither 1/Q2 nor 1/Q4 contributions. Thus, any in#uence of these could already have been absorbed
into the value of a

S
. A new determination of each a

S
value, allowing for 1/Q2 or 1/Q4 corrections,

would be required to "nd the full contribution from such terms. Moreover, the a
S
value determined

from the hadronic q lepton decays is of particular importance for the values of the c
2

and
c
4

parameters. If this a
S

value comes out a little low (high) compared with the determinations at
high energies, the two parameters will have negative (positive) signs. Recalling the importance of
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non-perturbative corrections in the determination of a
S

from the q (see Section 4.1.1), no con-
clusions should be drawn about 1/Q2 or 1/Q4 corrections from the sign of the c

2
, c

4
parameters. In

fact, the "t is done for illustrative purposes only, indicating that, although the data look rather
imprecise, there is no freedom to modify the running of the coupling by additional terms like 1/Qp

for any integer power p50.

6.3. Additional coloured objects

In addition to gluons and quarks which are known to be coloured particles in the standard QCD

theory, other coloured particles which participate in the strong interaction may exist. Two
examples of candidate particles are: the gluino [288], which will be discussed in the following, and
coloured Higgs particles [289]. Even though these particles might be heavy, they could contribute
to loop corrections and, hence, a!ect the energy scale dependence of the strong coupling constant.
The contribution of such particles would, in general, alter the number of active #avours, n

f
, and

also the coe$cients of the b-function in Eq. (21). They might also introduce new and, therefore,
anomalous strong couplings.

6.3.1. Light gluinos
A particle whose existence is conjectured is the gluino, the supersymmetric spin-1

2
partner of the

gluon (for an introduction to supersymmetry (SUSY) see Ref. [28] and references therein and for
the gluino see Ref. [288]). If it is su$ciently light, its appearance will increase the number of active
#avours in lowest non-trivial order by up to 3 [270,290]. A high gluino mass will suppress its
contribution to the loops by a kinematic factor such that the number of active #avours is raised by
an amount less than 3, and which is not constrained to be an integer.

In general, all cross-sections for strong interaction processes depend on the QCD colour factors
C

A
, C

F
, and n

f
¹

F
. It is possible to infer the number of active #avours n

f
from the measured values

of such cross-sections. For this purpose the dependence of the perturbative expansion on n
f

has to
be made explicit for each cross-section. In Ref. [290] such an investigation was performed using, in
addition to the 4-jet events which will be discussed below, the energy dependence of the 3-jet rate
and the thrust distribution, and the R ratios. The result is n

f
"6.3$1.1, where the error is

dominated by systematic uncertainties.
With the bulk of LEP I data being available now, a more signi"cant study has become possible

using 4-jet events. The number of active #avours appears in the determination of the ratios C
A
/C

F
and ¹

F
/C

F
from these events using 4-jet angular distributions which are sensitive to the colour

factors [291]. Various angles were proposed [292] motivated by the notion of an intermediate
gluon splitting into a pair of partons. Due to the spin structure at this vertex a quark}antiquark
pair obeys a di!erent distribution than a gluon}gluon pair. Moreover, the coupling di!ers due to
the colour factors involved (see Eqs. (12) and (14) of Section 2.1). This is the origin of the colour
factor sensitivity of angular distributions when associating the 4 jets with the 2 partons from the
splitting of the intermediate gluon plus quark and antiquark from the primary hard process.

An overview of measurements of the QCD colour factors at LEP can be found in Ref. [293]. Fig. 56
shows a contour plot of the colour factor ratios obtained from angular distributions using LEP

I data. Despite the large statistics available, most of the measurements were statistically limited.
The combination of these results with those from jet rates and event shape observables, whose
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Fig. 56. Colour factor measurements based on 4-jet event angular distributions. The open plus sign shows the increased
value of ¹@

F
/C

F
"3/5 due to the contribution of a massless gluino, without which it is ¹

F
/C

F
"3/8. Figure taken from

Ref. [293].

second order coe$cient of the perturbative prediction depends on the two colour factor ratios,
might improve the precision. The ALEPH collaboration performed a simultaneous determination of
a
S
(m2

Z
), C

A
/C

F
, and n

f
¹

F
/C

F
from the di!erential DURHAM 2-jet rate and the 4-jet angular

distributions [294]. Accounting for mass e!ects, the colour factor ratios were determined to be

C
A

C
F

"2.20$0.09 (stat.) $0.13 (syst.) ,

¹
F

C
F

"0.29$0.05 (stat.) $0.06 (syst.) ,

in agreement with the expectations of C
A
/C

F
"9/4 and ¹

F
/C

F
"3/8 for the S;(3) group structure

of QCD (see Section 2.1). One may now assume these to be the correct colour factors to determine
a
S
(m2

Z
)"0.1162$0.0042 and the number of active #avours n

f
"4.2$1.2, where the errors are

statistical and systematic uncertainties added in quadrature [294]. The upper limit on an excess of
the number of active #avours is thus *n

f
(1.9 at a con"dence level of 95%.

Besides these measurements further investigations were done studying the running of a
S
from the

R ratio and the hadronic cross-section at di!erent scales [295]. None of these found evidence for
contributions from a light gluino (see also Ref. [7]).

6.3.2. Anomalous coupling
New physics beyond the standard model may contribute to the strong interaction if the

new particles involved are carriers of colour charge. Deviations of experimentally measured
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Fig. 57. (a) Relative production of 3-jet events and di!erential distributions of (b) thrust, (c) spherocity, and (d)
C-parameter are shown. The solid line corresponds to the standard QCD prediction. The contribution from the
anomalous couplings described in the text is shown by the dashed line. The spherocity is de"ned as
S"(4/p)2min

no
(+

i
Dp

i
]nD/+

i
Dp

i
D)2 [297]. Figures taken from Ref. [296].

cross-sections from the QCD predictions are to be expected. These may, however, be small if the new
particles are heavy.

Without assuming a particular model for the extension of the standard model, the standard
model Lagrangian was supplemented in Ref. [296] by non-standard operators of (energy) dimen-
sion six. Besides new couplings for left-handed quarks, these operators give rise to new qqG and
qqGG vertices involving right-handed quarks and the Higgs "eld doublet. Recalling the experi-
mental evidence for the #avour independence of the strong coupling presented in Section 4.2.2, the
new couplings are assumed to be universal with respect to the quark #avour. The strength of the
new anomalous couplings is expressed by a constant A

qG(
and by a scale K

!/
which characterizes

the new physics. Fig. 57 shows the net e!ect of the new anomalous coupling on some event shape
distributions compared with the standard QCD expectation. A prominent di!erence in the shape of
the distributions due to the anomalous couplings can be noted.

By "tting the anomalous plus standard distributions to the data with KQCD and the renormaliz-
ation scale "xed, the relative contributions of the anomalous parts were obtained. From these,
bounds on the strength of the anomalous coupling and its characteristic scale were derived in
Ref. [296] for each of the four shape distributions, yielding results of the order A

qG(
/K2

!/
(14

through 16TeV~2 at the 95% con"dence limit. If the unknown coupling strength A
qG(

is chosen to

O. Biebel / Physics Reports 340 (2001) 165}289272



Table 12
Listing of a

S
determinations from processes other than e`e~ annihilation. Excerpt from Refs. [12,108,272,299].

(DIS"deep inelastic scattering, Bj-SR"Bjorken sum rule, GLS-SR"Gross}Llewellyn}Smith sum rule, LGT"lat-
tice gauge theory.)

Process Ref. Q (GeV) a
S
(Q2) a

S
(m2

Z
) Theory

DIS [pol. strct. fctn.] [300] 0.7}8 0.120`0.010
~0.008

NLO

DIS [Bj-SR] [301] 1.58 0.375`0.062
~0.081

0.121`0.005
~0.009

NNLO

DIS [GLS-SR] [302] 1.73 0.295`0.092
~0.073

0.114`0.010
~0.012

NNLO

DIS [l;F
2
, F

3
] [303] 5.0 0.215$0.016 0.119$0.005 NLO

DIS [k;F
2
] [304] 7.1 0.280$0.014 0.113$0.005 NLO

DIS [HERA; F
2
] [305] 2}10 0.120$0.010 NLO

DIS [HERA; jets] [306] 10}100 0.118$0.009 NLO

DIS [HERA; ev.shps.] [307] 7}100 0.118`0.007
~0.006

NLO

QQM states [308] 0.7-8 0.120`0.010
~0.008

LGT

pp6 PbbM X [309] 20 0.145`0.018
~0.019

0.113$0.011 NLO

pp6 , ppPcX [310] 24.2 0.137`0.017
~0.014

0.111`0.012
~0.008

NLO

p(pp6 PW jets) [311] 30}500 0.121$0.009 NLO

be of the order of unity, the scale of new physics associated with the anomalous coupling is above
270GeV at least, and hence beyond the direct reach of LEP II.

A comparable study considering the gluon energy was done by the SLD collaboration [298]. The
gluons were identi"ed by tagging both bottom quark jets in a 3-jet con"guration by the reconstruc-
tion of a displaced decay vertex. The distribution of the gluon energy is potentially sensitive to an
anomalous chromomagnetic moment of the bottom quark, but no evidence was found from the
comparison of the distribution with perturbative QCD predictions [298].

Nevertheless, both results demonstrate the sensitivity of the qqG vertex to anomalous couplings
due to new physics e!ects.

6.4. a
S

determinations from other hard processes

The value of the strong coupling constant a
S

can also be determined from hard processes other
than e`e~ annihilation. It is beyond the scope of this report to present all such determinations in
detail. A compact description of the theoretical predictions used in these determinations can be
found in Ref. [12], experimental details in the references to be mentioned in the following.

Refs. [108,272,299] contain compilations of the most recent determinations of a
S

from various
hard processes. Table 12, which is an excerpt of the results given in Refs. [12,108,272,299] for the
processes other than e`e~ annihilation, complements the results from e`e~ annihilation listed in
Table 4 of Section 4.1.1 and Table 7 of Section 4.1.2. In brief, a

S
was obtained using:

f Deep inelastic scattering (DIS) of either leptons (e or k) or neutrinos o! nucleons from which the
structure functions (polarized in the case of a polarized lepton beam) of proton, neutron, or
deuteron were measured. The value of the strong coupling was extracted either directly from the
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structure functions, F
2
, F

3
, or g

1
for polarized beams, or by exploiting higher-order corrections

to the Bjorken or Gross}Llewellyn}Smith sum rules for the structure functions. At su$ciently
high momentum transfer q2"!Q2, available at the HERA electron}proton collider, a

S
was also

extracted from jet rates and mean values of event shapes including power corrections as
presented in Section 5.3.

f Lattice gauge theory (LGT) calculations which, roughly speaking, discretize the four-dimensional
space}time into hypercubes. The quark "elds reside on the corners of the cubes, the gauge "elds
(gluons) are associated with the cubes' edges. One can explicitly calculate the action on such
a lattice since the "nite lattice spacing serves as an ultraviolet cut-o! and, therefore, regulates the
short distance divergence of the QCD Lagrangian (renormalization on the lattice, cf. Section 2.2).
To obtain the value of the strong coupling constant from the lattice one usually calculates the
B or charmonium spectrum and uses the true mass splitting from experimental measurements to
set the scale for a

S
.

f Hadron}hadron scattering by comparing heavy quark, direct photon and 2-jet cross-sections
with next-to-leading order predictions.

A more elaborate presentation of each topic can be found in Ref. [12].
The agreement of these results with the value of a

S
obtained from the investigation of e`e~

annihilation is remarkable. The values of the coupling at the Z mass scale all cluster closely around
a value of approximately 0.119. Taking into account the unknown correlation between the
individual results by the `optimized correlationa method of Ref. [148], a common average of all
available data on a

S
(m2

Z
) was calculated, yielding [272]

a
S
(m2

Z
)"0.119$0.004 ,

where the overall correlation varies between about 50% and 80% depending on the subset of data
chosen for the average. This average perfectly agrees with the value presented in this report.

6.5. A glance at asymptotic freedom

Utilizing all results on a
S
(Q2) determined from e`e~ annihilation as well as other hard processes

at di!erent scales Q2 one obtains the behaviour depicted in Fig. 58. All individual values agree very
well with the expectation of QCD over a vast energy range covering more than two orders of
magnitude. The expectation of QCD shown in the "gure is the exact solution of the 4-loop
renormalization group equation (21) using the world average of a

S
(m2

Z
)"0.119$0.004. These

data are presented di!erently in part (b) of the "gure, in order to make the property of asymptotic
freedom visible.

Fig. 58(b) shows, in addition, how the running of the strong coupling constant changes when the
threshold to SUSY particle production, which is assumed for this plot to be at 1TeV, is passed.
A clear excursion from the straight path to asymptotic freedom can be seen which is due to new
supersymmetric particles carrying colour charge and, therefore, participating in the strong interac-
tion. Supersymmetry changes the b-function of Eq. (21) and, consequently, the energy dependence
of the coupling constant a

S
. Moreover the running of the quark masses is also a!ected, see for

instance Ref. [312]. The corresponding modi"cations of the 2-loop coe$cients of the b-function
were taken from Ref. [313]. At the 2-loop level of the perturbation theory, one also has to consider
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Fig. 58. (a) Summary of a
S
(Q2). The QCD expectation for the energy scale dependence is shown using the world average

value a
S
(m2

Z
)"0.119$0.004 [272]. (b) shows the same data with the abscissa chosen as to emphasize the property of

asymptotic freedom. The dashed curve shows how the onset of supersymmetry at an assumed threshold of 1TeV would
change the energy dependence of the strong coupling.

the connection of the running of the strong coupling constant with that of the electromagnetic and
weak coupling constants. The dashed curve in Fig. 58(b) is, in fact, the result of a numerical solution
of a coupled system of three di!erential equations of the same type as Eq. (21) (see Ref. [313] for
further details).
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The small size of the excursion indicates that a very precise determination of a
S

is required to
notice the impact of SUSY. It is therefore more likely that SUSY particles will be discovered by
a dedicated search rather than by an excursion in the running of a

S
. Nevertheless, the "gure

demonstrates in principle the sensitivity of the strong interaction to new physics processes. Thus
any signi"cant deviation of the strong coupling from the prediction could be evidence of yet
unknown physics.

7. Summary and outlook

Electron}positron annihilation experiments have reached a high level of sophistication in testing
the predictions of QCD. This became possible only with the employment of colliders providing
highly intense particle beams at very high energies. Below, at, and above the Z resonance an
incredible amount of data statistics on annihilation into quark}antiquark pairs could be accumu-
lated. By the juxtaposition of the results of the precise measurements with the predictions of
perturbative QCD, the theory could be shown to be well-suited to describe the properties of the
strong interaction.

In this report QCD theory was "rst of all investigated using processes involving large energy
scales. The property of asymptotic freedom, meaning that the strong coupling constant a

S
dimin-

ishes as the energy scale goes towards in"nity, renders perturbative QCD predictions particularly
reliable in these regions. The calculations were used to determine the strong coupling constant from
(i) completely inclusive quantities as the hadronic cross-section and hadronic branching fractions of
the q lepton and Bmesons, and also (ii) from inclusive quantities as the production rate of n-jet "nal
states and event shape observables which inclusively measure the distribution of the detected
particles. Since QCD only operates on quarks and gluons, but experiments observe and measure
hadrons, photons, and leptons, completely inclusive observables have a signi"cant advantage over
inclusive quantities due to their insensitivity to the details of the "nal state. Precise determinations
of the strong coupling constant are therefore possible from completely inclusive quantities, in
particular, if next-to-next-to-leading order calculations are available. This is the case for the ratio
R of the hadronic over the leptonic cross-section and for the hadronic q decays. However, the
precision of these results is limited for the R ratio through its weak dependence on a

S
contributing

only a small higher-order correction, and for the q decays by unknown higher-order terms which
are important because of the large size of the coupling at such a low energy scale.

Inclusive quantities as jet rates and event shapes are directly proportional to the coupling, thus
promising an excellent sensitivity to the size of a

S
. To perform any QCD test with them, however,

one needs to consider the e!ects from the transition of quarks and gluons into hadrons, that is, of
hadronization. As the relevant energy scale at this stage is too low and the size of the coupling
constant is too large, perturbation theory cannot be employed to describe this transition. The
better sensitivity is traded for a considerable uncertainty coming from the necessity to use
phenomenological models to account for hadronization e!ects. Perturbation calculations are
available up to next-to-leading order only, but the large leading and next-to-leading logarithms
could be resummed to all orders. Joining "xed order and resummed calculations allowed an
extension of the range that can be used for the determination of a

S
from a "t to the data

signi"cantly towards the 2-jet regime. The 2-jet region comprises the bulk of data characterized by
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hadronic "nal states where gluon emission at large angle and high energy is suppressed. Although
improved, the contribution to the total error on a

S
due to the arbitrariness of the choice of the

renormalization scale in next-to-leading order is still large.
A missing ingredient of the perturbation theory calculation of inclusive quantities has "nally

been added, viz. the exact treatment of "nite quark masses in jet rates and event shapes. Although
mass e!ects may be expected to be small at high energy scales, their impact on #avour-dependent
quantities has long been known. The high data statistics in conjunction with high resolution vertex
detectors yielded very precise tests of the #avour dependence of the strong interaction. Deviations
as large as 5% from the expected #avour independence of the strong coupling can now be fully
explained by the e!ects of heavy bottom and charm quarks. Reversing the assumptions, a deter-
mination of the scale dependence of the bottom quark mass has become possible. It is found to be
of the expected size of approximately 3 GeV at the Z pole, although the measurement is a!ected by
large hadronization and renormalization scale uncertainties.

Several approaches may be pursued to bypass, at least partly, the ignorance about hadroniz-
ation, while still accounting for the details of the hadronic "nal state. The scaling violation, which
yielded the "rst evidence for the energy dependence of the strong coupling in deep inelastic
scattering, has been studied in inclusive fragmentation functions. In addition to the strong
coupling, which was also obtained from the longitudinal cross-section, #avour-dependent frag-
mentation functions for quarks and gluons were determined.

Stepping down the energy scale and looking inside the jets, the combination of the modi"ed
leading-logarithmic approximation with the hypothesis of local parton}hadron duality is found to
provide an excellent description of details connected with hadronization. The successful applica-
tion of perturbative QCD in this framework at scales as low as a few hundred MeV leads to the
conclusion that hadronization and con"nement of coloured partons into colour-neutral objects
takes place at a scale which is of the order of the mass of the lightest mesons.

A completely new approach to advance into the non-perturbative domain of hadronization and
con"nement using the tools of perturbation theory is pursued by the investigation of power
suppressed corrections to event shape observables. Although expected on general grounds from
phenomenological hadronization models as well as from renormalons, their quantitative calcu-
lation became possible only with the assumption of a "nite coupling strength even at very small
scales. The prediction could successfully be applied in the determination of a

S
from both the mean

values and the di!erential distributions of event shape observables.
Finally, the high precision of all the various determinations of a

S
allowed further investigations

on the explicit energy dependence of the strong coupling. The known structure of the next order of
the perturbation theory was used to determine its unknown expansion coe$cient from "ts to the
data exploiting the energy dependence of a

S
. Moreover, since no excursions from the QCD

expectation of energy dependence of the coupling constant were found, there is no evidence for
either additional power suppressed contributions to the running of the coupling or additional
coloured objects.

After all the detailed investigations one might consider QCD as the theory of the strong
interaction whose single unknown parameter is the strength of the coupling, a

S
. Its size can be

obtained from joining the individual results from very many di!erent analyses of hadronic "nal
states in e`e~ annihilation presented in this report and summarized in Table 13. The error of the
a
S

result from cross-sections and branching ratios is dominated by statistical uncertainties. It has,
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Table 13
Summary and weighted average of a

S
(m2

Z
) determinations presented in this article

Quantity a
S
(m2

Z
)

Cross-sections, branching ratios 0.1195$0.0025
Jet rates, event shapes 0.1212$0.0079
Scaling violation 0.125$0.009
Longitudinal cross-section 0.118$0.014
Power corrections to mean values 0.1181`0.0037

~0.0035
Power corrections to di!erential shapes 0.1150$0.0036
Weighted average 0.1189$0.0025

therefore, been regarded as uncorrelated with the other a
S

determinations which have been
averaged taking correlations due to theory uncertainties conservatively into account. Then the
weighted average of all results yields a total relative error of about 2% and is in perfect agreement
with the world average [272] which includes also a

S
determinations from other hard scattering

processes.
Recalling that new physics might slightly alter the running of the coupling, and because of the

importance of knowing the precise value of the strong coupling, and also in view of future
experiments at new e`e~ colliders (see Ref. [314]), the options to further improve on the
precision need to be reviewed. Four major sources of error can be identi"ed, viz. (i) data statistics,
(ii) "nite detector resolution and acceptance, (iii) hadronization, and (iv) the choice of the renormal-
ization scale. Most of these can easily be reduced by improving experimental aspects of the
determination:

(i) data statistics, by improving the e$ciency of the event selection and by increasing the speci"c
luminosity of the collider, and by combining the data of many experiments,

(ii) detector e!ects, by better corrections or optimized detector designs,
(iii) hadronization e!ects, by an ultimate tuning of the parameters of the phenomenological

hadronization models using the vast amount of LEP I data statistics; by using higher centre-of-
mass energies since the size of the corrections decreases like ln(Js)/Js in the worst case; or by
using power corrections, thus avoiding the e!ects completely.

The uncertainty due to (iv) the arbitrariness of the choice of the renormalization scale can be
solely reduced by a complete third-order calculation of jet rates and event shapes. The very "rst
steps towards the completion of the calculation are complete. New computational tools for
numerical integration of matrix elements might accelerate the pace of the progress [198,315]. And
even the energy dependence of the strong interaction can be invoked to gain estimates of the size of
the third-order terms.

Moreover, further experimental tests can be performed at existing colliders using the hadronic
"nal state of cc collisions. In particular the high centre-of-mass energy and huge luminosity at LEP II

populates the region of cc events with high momentum transfer q2,!Q2, eventually allowing to
study jet rates and event shapes over a signi"cant range of Q2 up to 40 000GeV2.
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Beyond the necessity to improve the precision on a
S
, there are still more open questions to

be answered by QCD experiments. Besides topics like top quark physics, many questions concern
the issue of hadronization and con"nement such as the existence of di-meson, di-baryon states, glue
balls, quark}gluon plasma, just to mention a few. More generally, a proof of con"nement from the
basic QCD Lagrangian would, besides asymptotic freedom, be another major supporting pillar of
QCD as the theory of the strong interaction.

Note added

A re-evaluation of the Milan factor in Ref. [316] revealed an omission in the original derivation
of M in Refs. [72,73]. The corrected formula is M+1#(1.575C

A
!0.104n

f
)/(4nb

0
)+1.49 [317]

(cf. Section 5.3). Since this correction became available only after the investigations discussed in
Sections 5.3.1 and 5.3.2 were completed, all results presented in these sections were obtained
assuming M"1.79.

The reduced size of M leads to increased values of a
0

but has a negligible e!ect on the value
obtained for a

S
(m2

Z
). First investigations of power corrections to the mean values of the event shape

observables presented in Section 5.3.1 (cf. Table 10) showed that a
0

is increased by about 9%. The
value of a

4
(m2

Z
) is found to be marginally enlarged by 0.6%. In general, the correction of the Milan

factor does not a!ect the observation that the non-perturbative parameter a
0

has a universal
character at the level of 20%.
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