Übungen zur T1: Klassische Mechanik, SoSe2007

Prof. Dr. Jan von Delft

Dr. Vitaly N. Golovach

Theresienstr. 37, Zi. 420

vitaly.golovach@physik.lmu.de

Blatt 0 – Hausaufgaben

(Abgabe: 23. April, 13:15)

Dieses Blatt ist als Sondierung Ihrer mathematischen Vorkenntnisse gedacht und wird nicht benotet.

1. Vektorrechnung

a) Es seien

$$\vec{a} = \begin{pmatrix} 0 \\ 3 \\ 4 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} -4 \\ 4 \\ 2 \end{pmatrix}.$$

Bestimmen Sie $|\vec{a}|, |\vec{b}|, \vec{a} \cdot \vec{b}, \vec{a} \times \vec{b}$ sowie den zwischen \vec{a} und \vec{b} eingeschlossenen Winkel.

b) Bestimmen Sie aus den Beziehungen $\vec{a} \times \vec{x} = \vec{b}$ und $\vec{a} \cdot \vec{x} = \phi$ den Vektor \vec{x} in Abhängigkeit von den Vektoren \vec{a} , \vec{b} und dem Skalar ϕ .

2. Vektoranalysis

Es seien

$$\vec{A}(\vec{r}) = \begin{pmatrix} x + y + z \\ xyz \\ yz + xz + xy \end{pmatrix}, \quad \phi(\vec{r}) = \cos(xyz).$$

- a) Berechnen Sie $\vec{\nabla} \cdot \vec{A}$, $\vec{\nabla} \phi$ und $\vec{\nabla} \times \vec{A}$.
- b) Berechnen Sie das Linienintegral $\int_C d\vec{r} \cdot \vec{A}(\vec{r})$ in den Fällen, dass (i) C die Verbindungsstrecke von (1,0,0) nach (0,1,0) ist und (ii) C das Viertel des Einheitskreises zwischen (1,0,0) und (0,1,0) ist.

3. Gewöhnliche Differentialgleichungen

Geben Sie jeweils die allgemeine Lösung an:

- a) $f'(x) + [1 + f^2(x)] \cos^2 x = 0$.
- b) f''(x) + g(f(x)) = 0 wobei g(f) eine beliebige Funktion ist.
- c) $f''(x) + \omega^2 f(x) = 0$.
- d) f'(x) + cf(x) + bx = 0.

4. Diagonalisierung einer Matrix

Finden Sie die Eigenwerte und Eigenvektoren der folgenden Matrix:

$$A = \left(\begin{array}{ccc} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 0 & 2 & 2 \end{array}\right).$$

Blatt 0 – Einstiegsaufgaben

(werden am Fr., 20.4 in der Tutorübung, B52, 14-16 Uhr vorgerechnet)

1. Vektorrechnung

 \vec{a} sei ein beliebiger Vektor und \vec{e} sei ein Einheitsvektor. Zeigen Sie, dass $\vec{a} = (\vec{a} \cdot \vec{e})\vec{e} + \vec{e} \times (\vec{a} \times \vec{e})$ gilt und deuten Sie die Terme der rechten Seite geometrisch.

2. Vectoranalysis

Es seien

$$\vec{A}(\vec{r}) = \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

Berechnen Sie das Linienintegral $\int_C |d\vec{r}\cdot\vec{A}(\vec{r})|$, wobei die Kurve C: $(x^2+y^2)^2=2a^2(x^2-y^2)$, eine sogenannte Lemniskate beschreibt.

3. Gewöhnliche Differentialgleichungen

Geben Sie jeweils die allgemeine Lösung an:

- a) $f'(x) = e^{f(x)} \cos x$.
- b) $f''(x) = [1 f^2(x)]^{-1/2}$.
- c) f''(x) + 2f'(x) + f(x) = 0.
- d) $f'(x) + cf(x) = \cos(x)$.

4. Diagonalisierung einer Matrix

Finden Sie die Eigenwerte und Eigenvektoren der folgenden Matrix:

$$A = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 0 & 0 \end{array}\right).$$