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Figure 3 MERLIN contour map of the 6-cm radio emission in the T Tau region.
Right- and left-hand circularly polarized components are shown in red and black
respectively. Contour levels are in each case 0.4, 0.8 and 1.2 mly, right ascension
and declination are in B1950 coordinates. Note the spatially resolved separation
of the emission from T Tau S into two lobes of opposite helicity and the net left-
hand circular polarization of T Tau N. Thus the ‘flow’ and ‘counterflow’ from T Tau
S are both circularly polarized but in opposite senses. The source positions (see
Table 1) are shown as asterisks.

velocities) have been determined through imaging and spectro-
scopic studies’, magnetic field strengths have remained elusive.
Polarization studies at a range of radio frequencies could provide
us with the necessary diagnostic tool. Moreover, given that the radio
emission from a number of other outflows is suspected of being
non-thermal®, such studies could in principle allow us to test
currently favoured models of the magnetic collimation of outflows
from young stars. We intend to continue monitoring T Tau S
outflow at radio wavelengths to see how this outflow evolves with
time. It should be possible not only to test the shock hypothesis but
also, through proper-motion studies, to link unambiguously the
radio outflow activity with what was probably a major accretion
event in the life of a newborn star. O
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Phase measurementina
quantum dot via a double-
slitinterference experiment
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The transport properties of electronic devices are usually char-
acterized on the basis of conductance measurements. Such mea-
surements are adequate for devices in which transport occurs
incoherently, but for very small devices—such as quantum
dots>—the wave nature of the electrons plays an important
role’. Because the phase of an electron’s wavefunction changes
as it passes through such a device, phase measurements are
required to characterize the transport properties fully. Here we
report the results of a double-slit interference experiment which
permits the measurement of the phase-shift of an electron traver-
sing a quantum dot. This is accomplished by inserting the
quantum dot into one arm of an interferometer, thereby introdu-
cing a measurable phase shift between the arms. We find that the
phase evolution within a resonance of the quantum dot can be
accounted for qualitatively by a model that ignores the interac-
tions between the electrons within the dot. Although these
electrons must interact strongly, such interactions apparently
have no observable effect on the phase. On the other hand, we
also find that the phase behaviour is identical for all resonances,
and that there is a sharp jump of the phase between successive
resonance peaks. Adequate explanation of these features may
require a model that includes interactions between electrons.

In a previous interference experiment’, which exploited an
Aharonov—Bohm (AB) ring (see ref. 4 for review) and a quantum
dot (QD) imbedded in it, the conductance was shown to depend not
only on the magnitude of the transmission through the QD, but also
on the phase acquired by electrons traversing the QD. The observed
oscillatory behaviour of the conductance, G, which was periodic
with the flux quantum @, = h/e (h is Planck’s constant, e is the
charge on the electron), confirmed that the QD supports coherent
transport. As the experiment was set up with a two-terminal
configuration, however, current conservation and time reversal
symmetry lead’ to G(B) = G(—B) with B the magnetic field,
restricting the phase of the AB oscillations to be either 0 or .
This means that only abrupt jumps between the two allowed phase
values are possible®’. Physically, this is a direct result of interference
between the multiple paths that traverse the ring, obscuring the
phase evolution of the transmission coefficient of the QD" "*°. This
phase rigidity does not exist in a double-slit-like interference
experiment with a four-terminal configuration®''. We used such a
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Figure 1 a, Schematic description of the double-slitinterference experiment with
a QD replacing one slit. The system is composed of three different regions, an
emitter E, a collector C, and a base region B on both sides of the two slits. A
contact to each region allows a four-terminal measurement. Reflector gates (R)
are drawn in white. The excitation voltage Vgg is applied between emitter and
base. The collector voltage Vg is measured between base and collector. A
voltage Vp on the plunger gate P changes the occupation of the QD. b, A top-view
scanning electron micrograph of the device. The grey areas are metallic gates
deposited on the surface of the heterostructure. The negatively biased gates
define emitter and collector QPCs, a slit and a QD. A special lithographic
technique, involving a metallic air bridge, is used to contact the central gate
(which depletes the area between the two slits). The QD has anarea 0.4 X 0.4 pm?
with both of its QPCs and the plunger gate (P) individually controlled. Reflector
gates are added to increase the measured signal.

configuration to measure directly the magnitude and the phase of
the transmission coefficient through a QD in the Coulomb blockade
(CB) regime.

The actual double-slit interferometer consists of a patterned,
high-mobility, two-dimensional electron gas, electron density
n, = 3.0 X 10" cm ™%, mobility p = 1.6 X 10°cm* V™ 's™ ' at tem-
perature T = 4.2K) formed 60 nm below the surface of a GaAs—
AlGaAs heterostructure, with an elastic mean free path [ = 15 um.
The potential barriers are defined by negatively biased metal gates
deposited on the surface of the heterostructure. Our four-terminal
configuration (see Fig. 1a) consists of emitter E and collector C
constrictions, called quantum point contacts (QPC), and a base
region B in between. The base contacts serve as draining reservoirs
with a chemical potential uz = 0. The E and C constrictions are
separated by a barrier with two openings (slits); one slit consists of
the QD whose behaviour we want to measure, and the other is a
reference slit in a form of another QPC. The number of electrons in
the QD is around N, = 200, with an average energy spacing
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between discrete states AE = E;/N, = 55 eV, where Eg is the
Fermi energy. Collector and emitter QPCs support only one
transverse mode, thus producing a planar electronic wave front in
the far field. As the collector signal is too small to be measured in an
entirely open configuration, we incorporate additional barriers
which reflect the emitted diverging electrons into the two slits and
subsequently towards the collector (the white gates in Fig. la,
called R). All measurements are done in a dilution refrigerator
(Tiawice = 15mK, T, =80mK) with an a.c. excitation voltage
Vs = 10 WV applied across the emitter QPC.

At low temperatures both the phase coherence length and the
elastic mean free path of the electrons exceed the entire sample
size. Using the multiprobe conductance formula®, we can see
that the current at the collector QPC, I, is given by I. =
(2€/h)(1yc Vg = 7 V), where Vig is the injection voltage, and
7gc and 7¢ are the transmission probabilities from emitter to
collector and through the collector QPC respectively. The open-
circuit collector voltage (I = 0), Vg = (Vip/7c)Tgc, leads directly
to the transmission probability 75, which in turn is a coherent sum
over all path amplitudes from E to C. For the double slit case
tec = top + ty, where | tEC‘ ’= Ty, fqp is the transmission ampli-
tude associated with the path traversing the QD, and ¢, refers to the
reference path passing through the QPC slit on the left. A magnetic
flux, @, threading the area, A, enclosed by these two classical paths
results in an AB phase difference Ap = 27®/P,; between the two
interfering paths. For single-channel transmission:

iA 2
Tge = | top + € w'tsll (D

Assuming fully coherent transport through the QD, the interference
term is proportional to | ty|| tqp|cos[Ag + 6(t,) — O(typ)], where
6(tq) and 0(tqp) account for the phase accumulated in the two
corresponding paths. The transmission probability 7g¢ is therefore
expected to oscillate as a function of magnetic field with a period
corresponding to the addition of one flux quantum to the area
enclosed by the paths. As the phase accumulated in the reference
path is to a good approximation constant, a change in the phase of
top leads to a similar change in the phase of the oscillating collector
signal.

One must make sure that the added reflectors (R) are not
preventing backscattered electrons from being collected by the
base contacts; otherwise multiple path interference might occur,
and higher-periodicity AB oscillations and phase rigidity might
dominate’. We checked this by opening the QD, leaving only one of
its QPCs functional, so that this served as an adjustable barrier
adding to the accumulated phase in this path. As hoped, we found a
smooth phase shift in the oscillating collector voltage with no higher
harmonics (with periods ®,/n) as this QPC was adjusted. These
results strongly suggest that the two direct paths predominantly
contribute to the interference.

The QD is defined by adjusting the resistance of its QPCs to be
greater than h/2¢, so that it is in the CB regime with well separated
energy levels, namely I < AE, where I' is the resonance width.
Moreover, because we adjust the openings so that kT <I
(ky T = 7 p.eV), the width of the conductance peak is determined
by I' and not by the temperature. Scanning the plunger gate voltage,
Vp we find pronounced resonances in Vg, as expected for a QD in
the CB regime (Fig. 2a), on top of a large background that results
from the reference path. The asymmetry of the resonance peaks is a
result of interference with the reference path. When a magnetic
field is applied and the QD is being tuned to conduct, the collector
signal shows AB oscillations with the expected period AB=
®y/A = 3.5mT. This confirms the results of Yacoby et al’ that
transport through the QD is coherent. Figure 2b shows examples of
AB oscillations measured at four specified points on the Coulomb
peak seen in Fig. 2a. A smooth phase shift of the AB oscillations, on
the scale of the resonance width, is observed. This phase shift gives
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Figure 2 a, Resonance peaks as a function of the plunger gate voltage. b, A series
ofinterference patterns taken at specified positions on a peak in a. The traces are
shifted vertically for clarity. ¢, Bare resonance peak |tapl?, obtained from the
magnitude of the AB oscillations, and absolute value of the accumulated phase
6(tap)- The expected phase behaviour in a Breit-Wigner model (solid line) and a
lorentzian fit to the resonance peak (dotted line) are shown.

directly the phase shift of the transmission coefficient of the QD. For
a complete picture we record the AB interference oscillations at
many points along a resonance peak and do a complex Fourier
transform of the data. The phase evolution along one peak, seen in
Fig. 2¢, shows a monotonic rise by almost 7 near the maximum of
the resonance.

We model the QD as a double barrier system confining a well with
quasi-bound states. The transmission amplitude through such a
system shows resonances near the energies of the quasi-bound
states, E,, described by the Breit—Wigner formula'

R ir/2
W= E—F +il/2

where E is the energy of the incident carriers, I' is the width of the

(2
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resonant level, and C, is a complex prefactor. Both depend on the
coupling between the resonant states and the leads connecting the
dot to the reservoirs. The phase of the transmission coefficient,
given by

2
0(tqp) =0, + arctanl—_(E —E,) 3)

changes by 7 from one side of the resonance to the other (6, is the
phase of C,). To find the qualitative behaviour of |fyp| we measure
the magnitude of the AB oscillations, which is proportional to
| top| (see equation (1)). As can be seen in Fig. 2¢, both magnitude
and phase agree well with the prediction of equation (3). These
results clearly show that the phase evolution of the transmission
coefficient within a resonance peak is correctly described by a Breit—
Wigner behaviour.

We now discuss measurements that probe the phase of the
transmission coefficient for different CB peaks. Figure 3c shows
the phase for a series of five successive peaks seen in Fig. 3a. We find
a very similar phase behaviour for all resonances, as suggested by
Yacoby et al.’. As the plunger gate voltage increases, the QPCs of the
QD open slightly because of an electrostatic influence, and coupling
to the reservoirs increases. Therefore, the Coulomb peaks widen and
overlap, thus reducing the overall phase variation. These results
demonstrate unambiguously that successive resonances of a QD
have the same phase behaviour.

Another striking feature of the results is the sharp drop of the
phase, by 7, in the tail of each peak on a scale much smaller than I or
ks T. We stress that even though this sharp phase change resembles
the one observed in a two-terminal measurement that forces rigidity
of the phase, its physical origin is different, directly associated with
the QD. Figure 3b shows the amplitude of the AB oscillations, which
are proportional to | fqp| , as a function of the plunger gate voltage.
We see that the phase jump occurs when the oscillation amplitude
vanishes, namely when fq, = 0. The fact that |fyp| vanishes
although the conductance of the complete system is not at a
minimum (Fig. 3a) is a direct result of interference with the
reference arm.

We now briefly discuss the phase behaviour-of consecutive
resonances. In a simple one-dimensional resonant tunnelling
model, one expects the phase of the transmission coefficient to
differ by = for each successive resonance. This was not observed in
our experiment. For resonant tunnelling through an arbitrary
system, the phase of the prefactor in equation (2), 8(C,) =6,
depends on the overlap between the wavefunctions of the quasi-
bound states in the QD and those in the leads, and thus in general is
expected to be different for successive resonant states. Because at
zero magnetic field time-reversal symmetry holds, the wavefunc-
tions of the quasi-bound states in the QD can be chosen to be real,
leading to a phase 6, with only two possible values": 0, = 6, * /2.
When considering the case of a circular® or a rectangular'® QD, the
phase difference of consecutive resonances, Af =0,—80,,,,
depends on the symmetry of the QD; successive resonances both
in phase (A = 0) and out of phase (Af = ) are possible. In our
system we do not expect a particular symmetry and thus such
single-particle arguments cannot explain why large sequences of
resonances (up to 10 peaks) have the same phase. Another
approach, taken by Levy Yeyati et al®, uses the Friedel sum rule
for the case of a QD embedded in one arm of an AB ring. Our results
indicate that this model, which predicts a phase shift of = for every
added charge e in the whole system (AB ring and QD), is not
applicable in the present case.

The appearance of a second energy scale in the phase jump
between resonances also cannot be understood as well in a non-
interacting picture. Because we find experimentally that each peak
has a similar phase behaviour, we model the QD as a sum of
displaced Breit—Wigner amplitudes each with the same phase. We
find that a phase rise of w within a peak is followed by a phase drop
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Figure 3 a, A series of resonance peaks as a function of plunger gate voltage; b,
the magnitude of the AB oscillations; and ¢, the corresponding phase all obtained
from the interference patterns taken at the marked points. The connecting lines
serve only as a guide to the eye. The phase has a periodic behaviour which
repeats itself at each resonance. Note the sharp phase jump between
resonances.

of , but the fact that this is on the same energy scale is in clear
contradiction to our experimental results. In a recent interference
experiment'’ we measured the phase of the reflection coefficient of a
QD. In this experiment, again, the phase behaviour within a
resonance could be well described by a single-particle model, but
away from the resonance, near the points of minimum conduc-
tance, the behaviour, as in this case, is not well understood. d
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The synthesis of inorganic frameworks with specified and orga-
nized pore networks is of potential importance in catalysis"?,
separation technology’ and biomaterials engineering*’. Ordered
arrangements of porous channels have been produced in silica-
based materials by post-synthetic removal of surfactant templates
from inorganic—organic mesostructures®’. The resulting pore
sizes are commensurate with the packing dimensions of the
organic molecules, and are currently limited to length scales of
up to 10nm. Here we show how a bacterial superstructure,
consisting of a thread of coaligned multicellular filaments of
Bacillus subtilis®®, can be used to extend the length scale of
inorganic materials patterning. We produce ordered macroporous
fibres of either amorphous silica or ordered mesoporous silica®’
(MCM-41) by template-directed mineralization of the interfila-
ment spaces followed by removal of organic material by heating to
600 °C. The inorganic macrostructures consist of a macroporous
framework of 0.5-pm-wide channels with curved walls of either
silica or mesoporous silica, 50 to 200nm in thickness. The
formation of ordered pores in the MCM-41 replica on both the
mesoscopic and macroscopic length scales illustrates how supra-
molecular and supercellular templates might be combined for the
fabrication of inorganic materials with structural hierarchy.

Our approach to using a bacterial superstructure to extend the
length scale of materials templating in silica-based systems is
illustrated in Fig. 1. Individual multicellular filaments of B. sub-
tilis are coaligned by slowly drawing a macroscopic thread from a
web culture®’. The superstructure of the bacterial thread resembles
the arrangement of hexagonal packing of surfactant cylinders in the
surfactant—water H, phase'’, except that there is an increase in
length scale of two orders of magnitude. In both cases, the inter-
stitial spaces and contact edges represent a continuum for patterned
inorganic mineralization. But whereas the 1-nm-wide contact
spaces of the surfactant arrays can be readily bridged through the
condensation of silicate anions associated with the surfactant head-
groups in the synthesis of MCM-41"°, the formation of a coherent
wall structure in the much larger void volume of the bacterial
superstructure requires extensive in situ polymerization. Thus, we
use silica-based nanoparticles, rather than molecular species, as the
primary building block of mineralization within the 100- to 200-nm
wide interfilament spaces.

Previous studies have shown that inorganic minerals can be
precipitated on and within B. subtilis thread by drawing fibres
from web cultures enriched in soluble metal (Ca®*, Fe(1/m),
Cu(m)) salts and drying in air'™'?. To infiltrate the preformed
bacterial superstructure with inorganic nanoparticles, we exploited
the observation that dried unmineralized bacterial thread swells in
water to 1.4 and 1.2 times the original length and width, respec-
tively, without loss of structural integrity'. In addition, the swollen
hydrated thread contracts to its original dimension when dried in
air. We use this reversible swelling property to consolidate the
infiltrated nanoparticles so that interconnecting mineral walls are
formed within the interfilament spaces (Fig. 1). For example, drying
of threads dipped into a silica sol gives rigid white fibres with a
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