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We show how spectral functions for quantum impurity models can be calculated very accurately using a
complete set of discarded numerical renormalization group eigenstates, recently introduced by Anders and
Schiller. The only approximation is to judiciously exploit energy scale separation. Our derivation avoids
both the overcounting ambiguities and the single-shell approximation for the equilibrium density matrix
prevalent in current methods, ensuring that relevant sum rules hold rigorously and spectral features at
energies below the temperature can be described accurately.
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Quantum impurity models describe a quantum system
with a small number of discrete states, the ‘‘impurity,’’
coupled to a continuous bath of fermionic or bosonic
excitations. Such models are relevant for describing trans-
port through quantum dots, for the treatment of correlated
lattice models using dynamical mean field theory, or for the
modeling of the decoherence of qubits.

The impurity’s dynamics in thermal equilibrium can be
characterized by spectral functions of the type ABC�!� �R
dt
2� e

i!thB̂�t�ĈiT . Their Lehmann representation reads

 ABC�!� �
X
a;b

hbjĈjai
e��Ea

Z
hajB̂jbi��!� Eba�; (1)

with Z �
P
ae
��Ea and Eba � Eb � Ea, which implies the

sum rule
R
d!ABC�!� � hB̂ ĈiT . In this Letter, we de-

scribe a strategy for numerically calculating ABC�!� that,
in contrast to previous methods, rigorously satisfies this
sum rule and accurately describes both high and low
frequencies, including ! & T, which we test by checking
our results against exact Fermi-liquid relations.

Our work builds on Wilson’s numerical renormalization
group (NRG) method [1]. Wilson discretized the environ-
mental spectrum on a logarithmic grid of energies ��n

(with �> 1, 1 � n � N ! 1), with exponentially high
resolution of low-energy excitations, and mapped the im-
purity model onto a ‘‘Wilson tight-binding chain,’’ with
hopping matrix elements that decrease exponentially as
��n=2 with site index n. Because of this separation of
energy scales, the Hamiltonian can be diagonalized itera-
tively: adding one site at a time, a new ‘‘shell’’ of eigen-
states is constructed from the new site’s states and the MK
lowest-lying eigenstates of the previous shell (the so-called
‘‘kept’’ states), while ‘‘discarding’’ the rest.

Subsequent authors [2–10] have shown that spectral
functions such as ABC�!� can be calculated via the
Lehmann sum, using NRG states (kept and discarded) of
those shells n for which !���n=2. Though plausible on
heuristic grounds, this strategy entails double-counting

ambiguities [5] about how to combine data from successive
shells. Patching schemes [9] for addressing such ambigu-
ities involve arbitrariness. As a result, the relevant sum rule
is not satisfied rigorously, with typical errors of a few
percent. Also, the thermal density matrix (DM) �̂ �
e��Ĥ=Z has until now been represented rather crudely
using only the single NT th shell for which T ’
��1=2�NT�1� [8], with a chain of length N � NT , resulting
in inaccurate spectral information for! & T. In this Letter
we avoid these problems by using in the Lehmann sum an
approximate but complete set of eigenstates, introduced
recently by Anders and Schiller (AS) [11].

Wilson’s truncation scheme.—The Wilson chain’s ze-
roth site represents the bare impurity Hamiltonian ĥ0 with a
set of d0 impurity states j�0i. It is coupled to a fermionic
chain, whose nth site (1 � n � N) represents a set of d
states j�ni, responsible for providing energy resolution to
the spectrum at scale ��n=2. For a spinful fermionic band,
for example, �n 2 f0; "; #; "#g, hence d � 4. (Bosonic
chains can be treated similarly [10].) The Hamiltonian
Ĥ � ĤN for the full chain is constructed iteratively by
adding one site at a time, using Ĥn � Ĥn�1 � ĥn (acting
in a dnd0-dimensional Fock space F n spanned by the basis
states fj�ni � 	 	 	 � j�0ig), where ĥn links sites n and n�
1 with hopping strength ���n=2. Since the number of
eigenstates of Ĥn grows exponentially with n, Wilson
proposed the following iterative truncation scheme to nu-
merically diagonalize the Hamiltonian: Let n0 be the last
iteration for which a complete set fjsiKn0

g of kept eigenstates
of Ĥn0

can be calculated without trunction. For n > n0,
construct the orthonormal eigenstates fjsiXn g of Ĥn (the nth
‘‘shell’’), with eigenvalues Ens , as linear combinations of
the kept eigenstates jsiKn�1 of Ĥn�1 and the states j�ni of
site n,

 js0iXn �
XK
�ns

j�ni � jsi
K
n�1
A


�n�
KX �ss0 ; (2)

with coefficients arranged into a matrix A
�n�KX whose ele-
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ments are labeled by ss0. The superscript X � K or D
indicates that the new shell has been partitioned into
‘‘kept’’ states (say the MK lowest-lying eigenstates of
Ĥn) to be retained for the next iteration and ‘‘discarded’’
states (the remaining ones). Since ĥn acts as a weak per-
turbation (of relative size ��1=2) on Ĥn�1, the d-fold
degeneracy of the states j�ni � jsiXn�1 is lifted, resulting
in a characteristic energy spacing ��n=2 for shell n.
Iterating until the spectrum of low-lying eigenvalues has
reached a fixed point (for n � N, say), one generates a set
of eigenstates fjsiXn g with the structure of matrix product
states [12] (Fig. 1). The states generated for the last Nth
shell will all be regarded as discarded [11].

Anders-Schiller basis.—Recently, AS have shown [11]
that the discarded states can be used to build a complete
basis for the whole Wilson chain: the states fjsiXn g describ-
ing the nth shell are supplemented by a set of dN�n

degenerate ‘‘environmental’’ states fjeni � j�Ni � 	 	 	 �
j�n�1ig spanning the rest of the chain to construct the set of
states fjseiXn � jeni � jsiXn g. These reside in the complete
Fock space F N of the full chain, spanning F N if n � n0.
Ignoring the degeneracy-lifting effect of the rest of the
chain, these states become approximate eigenstates of the
Hamiltonian ĤN of the full chain (‘‘NRG approximation’’),

 Ĥ NjseiXn ’ Ens jseiXn ; (3)

with eigenenergies independent of the (dN�n)-fold degen-
erate environmental index en. (This will facilitate tracing
out the environment below.) By construction, we have
D
mhsejs0e0iDn � �mn�ene0n�ss0 and

 

K
mhsejs

0e0iDn �
�

0; m 
 n
�ene0n
A

�m�1
KK . . .A�nKD�ss0 ; m < n: (4)

The discarded states of shell n are orthogonal to the dis-
carded states of any other shell, and to the kept states of
that or any later shell. Combining the discarded states from
all shells thus yields a complete set of NRG eigenstates of
ĤN , the ‘‘Anders-Schiller basis,’’ that span the full Fock
space F N (

P
n henceforth stands for

PN
n>n0

):

 1 �d0dN� �
X
se

jseiKn0

K
n0
hsej �

X
n

X
se

jseiDn
D
n hsej: (5)

Local operators.—Let us now consider a ‘‘local’’ opera-
tor B̂ acting nontrivially only on sites up to n0. Two

particularly useful representations are

 B̂ �
X
ss0e

jseiKn0

B
n0�

KK �ss0
K
n0
hs0ej �

X
n

X�KK
XX0

B̂
n�XX0 : (6)

The left equality, written B̂ � B̂
n0�
KK in brief, represents the

operator in the complete basis set fjseiKn0
g, with matrix

elements known exactly numerically (possibly up to fer-
mionic minus signs depending on the environmental states,
but these enter quadratically in correlation functions and
hence cancel). The right-hand side (RHS) of Eq. (6) ex-
presses B̂ in the AS basis and is obtained as follows:
starting from B̂
n0�

KK , one iteratively refines the ‘‘kept-
kept’’ part of B̂ from, say, the (n� 1)th iteration in terms
of the NRG eigenstates fjseixng of the next shell, including
both kept and discarded states (X � K;D),

 B̂

n�1�
KK �

X
XX0

X
ss0e

jseiXn 
B

n�
XX0 �ss0

X0
n hs

0ej �
X
XX0

B̂
n�XX0 ; (7)

thereby defining the operators B̂
n�XX0 , with matrix elements


B
n�XX0 �ss0 � 
A

�n�y
XK B
n�1�

KK A
�n�KX0 �ss0 . Splitting off all XX0 �

KK terms (DD, KD,DK) and iteratively refining each KK
term until n � N, we obtain the RHS of Eq. (6). It has two
important features. First, the matrix elements of the time-
dependent operator B̂�t� � eiĤtB̂e�iĤt, evaluated within
the NRG approximation, 
BXX0

n �t��ss0 ’ 
BXX0
n �ss0e

it�Ens�Ens0 �,
contain differences of eigenenergies from the same shell
only, i.e., calculated with the same level of accuracy.
Second, by excluding KK terms it rigorously avoids the
double-counting ambiguities and heuristic patching rules
plaguing previous approaches [2–10].

Thermal averages.—To calculate thermal averages
h. . .iT � Tr
�̂ . . .�, we write the full density matrix
(FDM) �̂ � e��Ĥ=Z using the NRG approximation
Eq. (3),

 �̂ ’
X
n

X
se

jseiDn
e��E

n
s

Z
D
n hsej �

X
n

wn�̂

n�
DD; (8)

where wn � dN�nZDn =Z and ZDn �
PD
s e
��Ens . The RHS of

Eq. (8) expresses �̂ as sum over �̂
n�DD, the density matrix for
the discarded states of shell n, properly normalized as
Tr
�̂
n�DD� � 1, and entering with relative weight wn, withP
nwn � 1. Similarly, for spectral functions we have

 h. . .iT �
X
n

wnh. . .in; A�!� �
X
n

wnAn�!�; (9)

where the averages h	 	 	in and spectral functions An�!�
are calculated with respect to �̂
n�DD of shell n only.

Previous strategies [4–11] for thermal averaging amount
to using a ‘‘single-shell approximation’’ wn � �nNT for the
density matrix and terminating the chain at a length N �
NT set by T ’ ��1=2�NT�1�. As a result, spectral features on
scales ! � T, which would require a longer chain, are
described less accurately [see Figs. 2(a) and 2(b)]. Our

FIG. 1. Diagram for the kept (or discarded) matrix product
state js0iKn (or js0iDn ): the nth box represents the matrix block
A
�n�KX , its left, bottom, and right legs carry the labels of the states
jsiKn�1, j�ni, and js0iKn (or js0iDn ), respectively.
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novel approach avoids these problems by using the full
density matrix (FDM), summed over all shells, letting the
weighting function wn select the shells relevant for a given
temperature yielding a smooth T dependence [see
Fig. 2(c)]. Since wn has a peak width of five to ten shells
depending on �, d andMK and peaks at n values somewhat
above NT [arrow Fig. 2(b)], spectral information from
energies well below T is retained.

Let us now consider the spectral function ABC�!�, for
local operators B̂ and Ĉ. Equations (4), (6), (8), and (9) can
be used to evaluate hB̂�t�Ĉin. Fourier transforming the
result we find (sums over ss0 and �n implied)

 

ABC
n �!� �

Xn
m>n0

X�KK
XX0

C
m�X0X�


mn�
XX �s0s
B


m�
XX0 �ss0��!� E

m
s0s�;


�
m�n�DD �ss0 � �ss0
e��E

n
s

Zn
;


�
m<n�KK �ss0 � 
A

�m�1�
KK . . .A
�n�KD �


nn�
DD A


�n�y
DK . . .A
�m�1�y

KK �ss0 :

(10)

Similarly, the static quantity hB̂ Ĉin equals the first line’s
RHS without the � function. The matrix elements

�
mn�XX �ss0 �

P
e
X
mhsej�̂


n�
DDjs

0eiXm are given by the second
and third lines, together with �
m�n�KK � �
m<n�DD � 0. After
performing a ‘‘forward run’’ to generate all relevant NRG
eigenenergies and matrix elements, ABC�!� can be calcu-
lated in a single ‘‘backward run,’’ performing a sum with
the structure

PN
m>n0

C�redB 	 ����
m�, starting from m �

N. Here �
m�;red
XX �

PN
n
m wn�


mn�
XX (updated one site at a

time during the backward run) is the full reduced density
matrix for shell m, obtained iteratively by tracing out all
shells at smaller scales ��n=2 (n 
 m).

Equations (8)–(10) are the main results of our ‘‘FDM-
NRG’’ approach. They rigorously generalize Hofstetter’s
DM-NRG [8] (which leads to similar expressions, but
using wn � �nNT and without excluding KK matrix ele-
ments), and provide a concise prescription, free from
double-counting ambiguities, for how to combine NRG
data from different shells when calculating ABC�!�. The
relevant sum rule is satisfied identically, since by construc-
tion

R
d!ABC

n �!� � hB̂ Ĉin holds for every n and arbi-
trary temperature and NRG parameters � and MK.

Smoothing discrete data.—We obtain smooth curves for
ABC�!� by broadening the discrete � functions in Eq. (10)
using a broadening kernel that smoothly interpolates from
a log-Gaussian form (of width �) [2,4] for j!j * !0, to a
regular Gaussian (of width!0) for j!j<!0, where!0 is a
‘‘smearing parameter’’ whose significance is explained
below. To obtain high-quality data, we combine small
choices of � with an average over Nz slightly shifted
discretizations [3] (see [13] for more details).

Application to Anderson model.—We illustrate our
method for the standard single-impurity Anderson model
(SIAM). Its local Hamiltonian ĥ0 �

P
��0c

y
0�c0� �

Ucy0"c0"c
y
0#c0# describes a localized state with energy �0,

with a Coulomb penalty U for double occupancy. It is
coupled to a Wilson chain

P
n��n�c

y
n�1�cn� � H:c:�,

which generates a local level width �. We calculated
A<�!� �Acy0�c0���!�, A>�!� �Ac0�c

y
0��!� and

A �A> �A<. An ‘‘improved’’ version Aim thereof
can be obtained by calculating the impurity self-energy
��!; T� [6,13] via FDM-NRG, which is less sensitive to
smoothening details and yields more accurate results for
the Kondo peak height AT’0�0� at zero temperature.

Sum rules.—As expected, we find FDM-NRG to be
significantly more accurate at lower computational cost
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0

1
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A
(ω
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A
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FIG. 2 (color online). FDM-NRG results for the spectral func-
tion AT�!� of the SIAM, with U � 0:12, � � 0:01, �d �
�U=2 (TK � 2:185� 10�4), � � 1:7, and MK � 1024, unless
indicated otherwise. Inset of (a): FDM-NRG result for AT�!�
with ! in units of bandwidth. For (a),(b), an unconventionally
small smearing parameter was used, !0 � 0:005T [except for
thick gray (red) curve in (a)], with !0 � 0:5T), leading to
spurious low-frequency oscillations. These illustrate the differ-
ences (a) between NRG (dashed green curve), DM-NRG [solid
thin (blue) curve), and FDM-NRG (black curve) results for the
regime ! & T, and (b) between different choices of MK and �
for FDM-NRG, which yield different shapes for the weights wn
[shown in inset of (b)]: larger � reduces the scale �T at which
oscillations set in, but yields less accurate values for the Kondo
peak height in the regime �T & ! & TK. (c),(d) Comparison of
high-quality FDM-NRG data (dots, solid curves) with exact
Fermi-liquid results (black dashed lines) for (c) the conductance
G�T� for T � TK, and (d) for Aim

T �!� for T;!� TK. In (c), cfit

was found from a data fit to cfit�T=TK�2 for T < Tfit (arrow).
In (d) we plot �AT�!� � 
A

im
T �!� � A

im
T �0��=A

im
0 �0� vs !=TK

(curves) and �A�T� � 
Aim
T �0�=A

im
0 �0� � 1� vs �T=TK��=

���
3
p

(dots), for a set of 12 temperatures between 0.001 and
0:069TK (with curves and dots having same T in the same color),
to illustrate the leading ! and T behavior of Aim

T �!�; the dashed
black line represents the expected Fermi-liquid behavior in both
cases, ��3c=2�2�x2 vs x.
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than NRG or DM-NRG [8,15]. The sum rules

 

Z
d!Acy0�c0��!� � hcy0�c0�iT;

Z
d!A�!� � 1 (11)

hold exactly to 10�15 for our discrete data, and to 10�4

after smoothing (due to numerical integration inaccura-
cies). Moreover, even for MK as small as 256, our results
for AT’0�0� and Aim

T’0�0� typically agree to within 2% and
0.2%, respectively, with the Friedel sum rule, which re-
quires ��Aexact

T�0 � sin2�hcy0�c0�i0. The exact relation
A<�!� � f�!�A�!� (f is the Fermi function), which
follows from detailed balance, is likewise satisfied well
(though not rigorously so): the left-hand side of Eq. (11)
typically equals

R
d!f�!�A�!� to better than 10�4.

Low-frequency data.—Because of the underlying loga-
rithmic discretization, all NRG-based schemes for calcu-
lating finite-temperature spectral functions inevitably
produce spurious oscillations at very low frequencies
j!j � T. The scale �T at which these set in can be under-
stood as follows: the Lehmann sum in Eq. (1) is dominated
by contributions from initial states jai with energy Ea ’ T,
represented by NRG shells with n near NT . The character-
istic energy scale of these states limits the accuracy obtain-
able for energy differences Eba to accessible final states
jbi. Thus the scale �T is set by those shells which contrib-
ute with largest weight wn to the density matrix.

We analyze this in more detail in Figs. 2(a) and 2(b) by
purposefully choosing the smearing parameter to be un-
conventionally small, !0 � T. The resulting spurious os-
cillations are usually smeared out using !0 * �T
[Fig. 2(a), thick gray (red) curve], resulting in quantita-
tively accurate spectral functions only for j!j * !0 ’ �T .
For conventional NRG approaches, the ‘‘single-shell’’ ap-
proximation wn � �nNT typically leads to �T ’ T, as can
be seen in Fig. 2(a) [dashed (green) line and thin solid
(blue) line]. In contrast, FDM-NRG yields a significantly
reduced value of �T ’ T=5 [Fig. 2(a), black line, and
Fig. 2(b)], since the weighting functions wn [inset of
Fig. 2(b)] retain weight over several shells below NT , so
that lower-frequency information is included.

Fermi-liquid relations.—To illustrate the accuracy of
our low-frequency results, we calculated Aim

T �!� for
!; T � TK for the symmetric SIAM, and made quantita-
tive comparisons to the exact Fermi-liquid relations [14],

 AT�!� ’ A0

�
1�

c
2

�
T
TK

�
2
�

3c

2�2

�
!
TK

�
2
�
;

 G�T� �
Z 1
�1

d!A�!; T�
�
�
@f
@!

�
’ A0

�
1� c

�
T
TK

�
2
�
:

Here A0 � 1=��, c � �4=16, and the Kondo temperature
TK is defined via the static magnetic susceptibility [4]
	0jT�0 � 1=4TK. Figures 2(c) and 2(d) show the FDM-
NRG data [gray (colored) dots and lines] to be in remark-
ably good quantitative agreement with these relations
(black dashed curves). The results for the ‘‘conductance’’

G�T�, being a frequency integrated quantity obtained by
summing over discrete data directly without the need for
broadening, are more accurate than for Aim

T �!�, and re-
produce the prefactor c with an accuracy consistently
within 5% (until now, accuracies of the order of 10%–
30% had been customary). The smoothness of the data in
Fig. 2(c), obtained using temperatures not confined to the
logarithmic grid ��n=2 [gray vertical lines in Fig. 2(b)],
together with the remarkable stability with respect to dif-
ferent z shifts illustrate the accuracy of our approach.

Conclusions.—Our FDM-NRG method offers a trans-
parent framework for the calculation of spectral functions
of quantum impurity models, with much improved accu-
racy at reduced complicational cost. Its results satisfy
frequency sum rules rigorously and give excellent agree-
ment with other consistency checks such as the Friedel sum
rule, detailed balance, or Fermi-liquid relations, including
the regime ! & T.
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Note added.—Just before completion of this work we
learned that Peters, Pruschke, and Anders had followed up
on the same idea [15].
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5

APPENDIX

Smoothing Discrete Data:— The FDM-NRG yields the
spectral function in the form of a Lehmann sum over dis-
crete δ-functions, which have to be broadened to obtain
a smooth function. Ideally, this should be done using a
procedure for which the results are independent both of
the parameters used for broadening and for discretizing
the conduction band.

We calculate the smoothened spectral function us-
ing A (ω) ≡

∫

dω′K (ω, ω′)Araw (ω′). Here Araw(ω′) =
∑

n wnAn(ω′) represents the discrete numerical data ob-
tained from Eq. (10), which in practice we collect in
binned form, typically using 250 bins per decade in ω′,
so that

∫

dω′ becomes a sum over bins. The raw data
is folded with the broadening kernel K(ω, ω′), which we
choose to be of the following form:

K(ω, ω′) = L(ω, ω′)h(ω′) + G(ω, ω′)[1 − h(ω′)] (14a)

where

L(ω, ω′) = θ(ωω′)√
πα|ω|e

−
(

log |ω/ω′|
α −γ

)2

(14b)

= θ(ωω′)√
πα|ω′|e

−
(

log |ω′/ω|
α +γ−α

2

)2

e−α(γ−α
4
) ,

G(ω, ω′) = 1√
πω0

e−
(

ω−ω′

ω0

)2

, (14c)

h(ω′) =

{

1 , |ω′| ≥ ω0 ,

e−
(

log |ω′/ω0|
α

)2

, |ω′| < ω0 .
(14d)

The chosen kernel K constitutes a smooth interpola-
tion, of somewhat arbitrary shape h(ω′), between a log-
Gaussian [2, 4] broadening kernel L on the one hand, used
for all ω′-frequencies but the smallest (with ω and ω′ re-
stricted to have the same sign); and a Gaussian broaden-
ing kernel G of width ω0 on the other, used for |ω′| < ω0

to smoothly connect the regimes of positive and negative
frequencies. We choose ω0 to be roughly a factor of 2
smaller than the smallest energy scale in the problem,
including the Kondo temperature TK (note that by con-
struction in Eq. (14d) the transition to regular Gaussian
sets in below ω0).

The log-Gaussian kernel L(ω, ω′) was purposefully cho-
sen to have the following three desirable features:
(i) Frequency-dependent width: being Gaussian on a log-
arithmic scale, on a linear scale its width as function of ω
is proportional to ω′. This is needed to deal with the fact
that spectral data generated using Wilson’s logarithmic
discretization grid is more coarse-grained at large fre-
quencies than at smaller ones.
(ii) Conservation of weight: we have

∫

dωL(ω, ω′) = 1,
ensuring that

∫

dωA(ω) =
∫

dω′Araw(ω′).
(iii) Conservation of peak height: for the choice γ = α/4

(adopted henceforth) L is symmetric under ω ↔ ω′, so
that also

∫

dω′L(ω, ω′) = 1. This ensures that the loga-
rithmic broadening kernel maps a constant function onto
itself (if Araw(ω′) = A0, then Araw(ω) = A0), and thus
does not change the height of a peak whose width on a
logarithmic scale is broader than α. (In this respect our
L differs from that of [2, 4, 15].)

Since choice (iii) implies that our log-Gaussian Kernel,
as function of ω, describes a peak asymmetric w.r.t. ω′

(shifted by α/4 on a log scale), on a linear ω-scale the
broadened data is stretched relative to the raw data by
factor eα2/4. This effect can be minimized by keeping α
as small as possible. The smoothening of plain NRG data
typically requires α ∼ 1/

√
Λ (e.g. 0.7 for Λ = 2). How-

ever, smaller values (e.g. α ≤ 0.3 or even smaller) can
be achieved by using the “z-trick” [3]: collect several (say
Nz) sets of discrete FDM-NRG data, each obtained from
a different, slightly shifted logarithmic grid {Λ−n−z} of
discrete frequencies, for Nz different values of z between
−0.5 and 0.5, and average the results. The hopping ma-
trix elements along the Wilson chain are recalculated for
each z by carefully tridiagonalizing the underlying loga-
rithmically discretized Hamiltonian.

Self-energy representation:— The accuracy of the re-
sults for Aσ(ω) for the Anderson model can be improved
by expressing it in terms of the impurity self energy [6]:
first, note that Aσ(ω) = −Im[GR

σ (ω)]/π, where GR
σ (ω) is

the Fourier transform of GR
σ (t) = −iθ(t)〈{c0σ(t), c†0σ}〉T .

An improved version for GR
σ (ω) can be obtained by ex-

pressing it as

Gim
σ (ω) =

1

ω − ∆σ(ω) − ΣU
σ (ω)

, ΣU
σ (ω) = U

FR
σ (ω)

GR
σ (ω)

.

Here ∆σ (ω), the U -independent part of the self energy
which characterizes the level’s broadening, can be com-
puted exactly, GR

σ (ω) is the standard (“non-improved”)
version of the correlator, and FR

σ (ω) is the Fourier trans-

form of −iθ(t)〈{[c†0−σc0−σc0σ](t), c†0σ〉T .

We calculate the imaginary parts of GR
σ (ω) and FR

σ (ω)
using FDM-NRG from Lehmann representations of the
form (10), smoothen the discrete data as described above,
Kramers-Kronig transform the smoothened results to ob-
tain their real parts, and finally calculate ΣU

σ (ω). Small
wavy features in GR

σ (ω) and FR
σ (ω) that reflect the loga-

rithmic discretization grid largely cancel out in the ratio
ΣU

σ (ω). Thus, smooth results for Gim
σ (ω) and Aim

σ (ω) can
be obtained using much less (or even no) z-trick averag-
ing, thus reducing the number of distinct FDM-NRG runs
required to get good results. Moreover, since ΣU

σ (ω → 0)
at T = 0 is found to approach 0, the self-energy represen-
tation also improves the accuracy with which the Friedel
sum rule is fulfilled.
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FIG. 1: Comparison of the Friedel sum rule of our FDM-NRG to the previous methods of plain NRG (‘nrg’) and Hofstetter’s
DM-NRG (‘hof’). This is done for the same model parameters as in our paper while sweeping the onsite energy εd (Λ = 2,
MK = 256, Nz = 8, α = 0.3, U = 0.12, εd = −U/2, Γ = 0.01, B = 0 and TK = 2.2 10−4). Panel (a) Relative error of the
Friedel sum rule. Panel (b) – Absolute error with respect to maximum peak height of full spectral function Amax. Panels (c)
and (d) show a zoom into the spectral function around ω = 0 for the symmetric point εd = −U/2 for the methods presented
in our paper (panel c) and for the previous methods (panel d), respectively.

Friedel Sum Rule:— The Friedel sum rule A(0) =
sin2(n0π/2)/πΓ is a well known analytic result that is
exact at zero temperature and can be used to check our
data. Figure 1 shows a comparison of our method for
calculating spectral functions to previous methods. As
will be seen our method clearly leads to more accurate
agreement with the Friedel sum rule for arbitrary param-
eter combinations. Since we know the dot occupancy n0

numerically from our FDM-NRG method, we compare
the actual value of our spectral function at ω = 0 to
the expected value predicted by Friedel sum rule. We do
this for our FDM-NRG method, but also for the older
versions of plain NRG (‘nrg’ in Fig. 1 and Hofstetter’s
DM-NRG (‘hof’). In all three cases, the spectral func-
tion was calculated using the self-energy representation
(Ref [6]) as outlined in the Appendix of our paper.

Panels 1a and 1b show the comparison for the single
impurity Anderson model (the same as used in our pa-
per), but here for a whole sweep of the onsite energy εd.
Figure 1a shows the relative error of A(ω = 0) with re-
spect to the value expected from the Friedel sum rule.
Figure 1b shows the same data, but normalized with re-
spect to the maximum of the full spectral function. This
is just to show that the increase of the error as εd is
changed from its value −0.5 (the symmetry point of the
model) seen in Fig. 1a is due to fact that absolute value
of A(ω = 0) then becomes smaller, because the dominant

peak then shifts increasingly further away from ω = 0.
All data in Figure 1 were obtained using exactly the

same broadening procedure as described in the attach-
ment to our paper. for the discrete data obtained from
the three different methods. The origin of the artificial
oscillations in the error for the previous methods (‘nrg’
and ‘hof’ in the figure) can be easily understood by look-
ing at the underlying smooth spectral functions that were
used to obtain Figs. 1a and 1b. For εd = −0.5 U a
zoom into the spectral function is shown around ω = 0
for FDM-NRG in Fig. 1c and for the other methods in
Fig. 1d. The solid lines are the smoothened discrete data,
the dashed curves the subsequently improved data us-
ing self-energy (Ref [6]). Evidently, the data in Fig. 1d
shows problematic artifacts (dips and other oscillations)
not present in Fig. 1c.

Of course, the broadening parameters employed here
could have been chosen such that the previous methods
(‘nrg’ and ‘hof’ in the figure) also yield more satisfactory
results, in that the data around ω = 0 could have been
‘tailored’ to look smoother by using a few crutches such as
increased broadening parameter α. However, we did not
do that here to emphasize the greatly improved quality
of our FDM-NRG approach compared to standard NRG
and DM-NRG. Clearly, FDM-NRG gives the best data
quality throughout.
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