Quantum Quench of a Kondo-Exciton

Hakan Tureci, Martin Claassen, Atac Imamoglu (ETH), Markus Hanl, Andreas Weichselbaum, Theresa Hecht, <u>Jan von Delft</u> (LMU) Bernd Braunecker (Basel), Sasha Govorov (Ohio), Leonid Glazman (Yale)

What happens when an optical excitation is used to "switch on" Kondo correlations?

Transient Dynamics after Quantum Quench

Quantum dynamics after sudden change in Hamiltonian?

$$\begin{array}{c} H_1 \\ \Psi(t) \rangle = ? \\ 0 \\ H(t) = H_0 + H_1 \theta(t) \end{array}$$

Modern Example: "Collapse & Revival" of coherent matter waves of cold atoms. (Greiner et al, Nature '02)

Old, well-known example: X-Ray-Edge Singularity (Mahan, PR '67)

Exciton + Fermi-See: Analogous to X-ray-edge problem (Helmes, Sindel, Borda, von Delft, PRB '04)

Outline

- Experimental background
- Proposed experiment
- Transient dynamics of charge and spin
- Absorption spectrum at T=0
- Finite magnetic field B
- Finite temperature T
- Absorption threshold ω_{th}

What is subsequent transient dynamics of dot + Fermi-sea ?

Transient dynamics after Kondo interaction is suddenly switched on ?

$$\begin{split} H_{\rm QD}^{\rm i} &= \sum_{\sigma} \varepsilon_{\rm e\sigma}^{\rm i} n_{\rm e\sigma} + U n_{\rm e\uparrow} n_{\rm e\downarrow} \\ H_{\rm QD}^{\rm f} &= \sum_{\sigma} \varepsilon_{\rm e\sigma}^{\rm f} n_{\rm e\sigma} + U n_{\rm e\uparrow} n_{\rm e\downarrow} + \varepsilon_{\rm h\bar{\sigma}} \end{split}$$

 ${\rm SAM:} \ \varepsilon^{\rm f}_{{\rm e}\sigma} = -U/2; \ n^{\rm f}_{{\rm e}\sigma} = 1$ (symmetric Anderson model)

 $c_{\sigma} = \sum_{k} c_{k\sigma} = \psi_{\sigma}(0)$

Proposed Parameters

$$\Gamma_{\rm eh}$$
 \ll $T_{\rm K}, T, B \ll \Gamma \ll U, U_{\rm eh} \ll D \ll \varepsilon_{\rm h\bar{o}}$

Electron-hole recombination rate: $\Gamma_{\rm eh}\approx 1\mu eV$

Electron-hole exchange: $J_{\rm eh} \approx 200 \mu {\rm eV} \simeq 2 {\rm K}$

Decay width to reservoir: $\Gamma\approx 1\text{--}10\mathrm{meV}$

Coulomb charging energy: $U\approx 15\text{--}20~\mathrm{meV}$

Electron-hole binding energy: $U_{\rm eh}\approx 20\text{-}25~{\rm meV}$

Reservoir bandwidth: $D = 1/(2\rho) \approx 30 \text{ meV}$

Hole creation energy: $\varepsilon_{\mathrm{h}\bar{\sigma}} \approx 1.3 \text{ eV}$

Electron g-factor: $g_{\rm e}\approx -0.6\text{-}0.7$

Hole g-factor: $g_{\rm h} \approx 1.1$ -1.2

Spectral function: T- dependence

Spectral function: B- dependence

