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After a quantum quench, i.e. a sudden change of the Hamiltonian describing a quantum

system, its subsequent dynamics is governed by energy scales that become ever lower with

increasing time. Time- or frequency-resolved probes of this evolution thus offer insight into

how correlations emerge with decreasing energy. Here we study a quantum quench for a

semiconductor quantum dot coupled to a Fermionic reservoir, induced by the sudden cre-

ation of an exciton via optical absorption. The subsequent emergence of correlations between

spin degrees of freedom of dot and reservoir, culminating in the Kondo effect, can be read off

from the absorption lineshape and understood in terms of the three fixed points of the single-

impurity Anderson model. At low temperatures the lineshape is dominated by a power-law

singularity, with an exponent that depends on gate voltage and, in a universal, asymmetric
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fashion, on magnetic field, indicative of a tunable Anderson orthogonality catastrophe.

When a quantum dot (QD) is tunnel-coupled to a Fermionic reservoir (FR) and tuned such

that its topmost occupied level harbors a single electron, it exhibits at low temperatures one of the

most spectacular phenomena of many-body physics – the Kondo effect1, 2. In transport studies3–5,

the latter manifests itself via a zero-bias anomaly in the conductance, which reflects the presence

of strong correlations between the spin degrees of freedom of the QD and FR, leading to a fully

screened spin singlet at T = 0. A quantum quench into a parameter regime conducive to such

Kondo correlations would allow detailed insight into their emergence as a function of increasing

time or decreasing energy. Whereas the transient behavior right after the quench depends on high-

energy excitations, the asymptotic long-time evolution is determined by low-lying excitations close

to the final ground state and would hence bear distinct signatures of Kondo correlations. Corre-

sponding predictions6–10 were made in in the context of transport experiments.

Optical transitions in quantum dots11–13 offer an alternative arena for studying Kondo cor-

relations. Since the creation or annihilation of an exciton via photon absorption or emission is

accompanied by a sudden change in the local charge configuration and a sudden switch-on or

switch-off of a strong electron-hole attraction12–14, an optical transition in effect implements a

quantum quench on the QD Hamiltonian. The quench will cause an abrupt change in the nature of

any tunnel-induced QD-FR correlations, leaving tell-tale signatures in the absorption and emission

lineshapes. For example, at low temperatures and small detunings relative to the threshold, the

lineshape has been predicted to show a gate-tunable power-law singularity14. Though optical sig-
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natures of Kondo correlations have not been experimentally observed to date, prospects improved

recently due to two key experimental advances: voltage control of the exciton-FR spin dynam-

ics was demonstrated15, and this was observed to produce non-Lorentzian optical line shapes16.

Although the QD-FR tunnel coupling in these papers was not strong enough to reach the Kondo

regime, the latter is certainly within reach of current technology.

In the present paper, we propose a realistic scenario for an optically-induced quantum quench

into a regime of strong Kondo correlations. We spell out their experimentally observable signa-

tures in detail by making comprehensive predictions for the absorption lineshape over the entire

frequency regime, as function of temperature, gate voltage and magnetic field. In particular, we

show in detail that the emergence of Kondo correlations proceeds via three distinct regimes, which

are clearly mapped out in the absorption lineshape with decreasing detuning (or, in the time do-

main, increasing time): (i) For large detuning (short times), charge fluctuations dominate; (ii) for

intermediate detuning (intermediate times), spin fluctuations dominate; (iii) for small detuning

(long times), the local spin is fully screened and X-ray edge type physics dominates. These three

regimes are associated with the three fixed points of the single-impurity Anderson model (AM)17.

The fact that they all leave their trace in the lineshape illustrates, in paradigmatic fashion, the power

of a quantum quench to probe spectral information on all energy scales.

The evolution towards strong correlations between a system (the QD) and its environment

(the FR) is particularly intriguing and challenging when viewed from the perspective of quantum

optics. The FR is a non-standard reservoir that can not be treated using Born and Markov ap-
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proximations, because these approximations cannot capture the ensuing many-body correlations

between system and environment. Indeed, such approximations would fail completely for regimes

(ii) and (iii), where the dynamics is non-Markovian since the spin-excitations of the FR are long-

lived. In our analysis, we show how the techniques of quantum optics for calculating optical

lineshapes can be extended to correctly capture such correlations, by using the simple but power-

ful analytical method of fixed-point perturbation theory (FPPT): it exploits the fact that the effects

of strong correlations can be encoded in simple effective Hamiltonians, describing the model’s

renormalization group fixed points. Remarkably, the results of such an analysis are in full quan-

titative agreement with our numerical results, obtained by the highly reliable, though much more

involved, numerical renormalization group (NRG).

Model for a tunable, optically active quantum impurity. We consider a QD, tunnel-coupled

to a FR, whose charge state is controllable via an external gate voltage Vg applied between a

top Schottky gate and the FR (see Fig. 1 and Supplementary Discussion 1 for details). In a gate

voltage regime for which the QD is initially uncharged, a circularly polarized light beam at a

suitably chosen frequency ωL propagating along the z-axis of the heterostructure will create a so-

called neutral exciton18 (X0), a bound electron-hole pair with well-defined spins σ and σ̄ = −σ

(∈ {+,−}) in the localized s-orbitals of the QD’s conduction- and valence bands (to be called e-

and h-levels, with creation operators e†σ and h†σ̄, respectively). The QD-light interaction is described

by HL ∝ (e†σh
†
σ̄e−iωLt + h.c.). We model the system before/after absorption by the initial/final
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Hamiltonian H i/f = H
i/f
QD +Hc +Ht, where

Ha
QD =

∑
σ

εaeσneσ + Une↑ne↓ + δafεhσ̄ (a = i, f) (1)

describes the QD, with Coulomb cost U for double occupancy of the e-level, neσ = e†σeσ, and

hole energy εhσ̄ (> 0, on the order of the band gap). The e-level’s initial and final energies before

and after absorption, εaeσ (a = i, f), differ by the Coulomb attraction Ueh(> 0) between the newly

created electron-hole pair, which pulls the final e-level downward, εaeσ = εeσ − δafUeh (Fig. 1b).

This stabilizes the excited electron against decay into the FR, provided that εf
eσ lies below the FR’s

Fermi energy εF = 0. Since H f 6= H i, absorption implements a quantum quench, which, as elab-

orated below, can be tuned by electric and magnetic fields. Furthermore, Hc =
∑

kσ εkσc
†
kσckσ

represents a noninteracting conduction band (the FR) with half-width D = 1/(2ρ) and con-

stant density of states ρ (εk) = ρθ(D − |εk|) per spin, while Ht =
√

Γ/πρ
∑

σ(e†σcσ + h.c.),

with cσ =
∑

k ckσ, describes its tunnel-coupling to the e-level, giving it a width Γ. A mag-

netic field B along the growth-direction of the heterostructure (Faraday configuration) causes a

Zeeman splitting, εeσ = εe + 1
2
σgeB, εhσ = εh + 3

2
σghB (see Supplementary Discussion 1;

the Zeeman splitting of FR states can be neglected for our purposes, see Supplementary Discus-

sion 7.) We set µB = ~ = kB = 1, give energies in units of D = 1 throughout, and assume

T,B � Γ� U,Ueh � D � εhσ̄. Supplementary Discussion 1 gives a set of realistic parameters,

discusses the range of validity of our model, and explains why it need not explicitly include the

effects of electron-hole recombination (very small rate) and intra-dot electron-hole exchange. The

latter is anisotropic, which would spoil Kondo screening; however, its effects can be fully compen-

sated by applying a magnetic field fine-tuned to a value, say Bσ̄
eh, that restores degeneracy of the
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e-level’s two spin configurations (see Fig. S2). In the text below, B is understood to be measured

relative to Bσ̄
eh.

We focus on the case where the e-level is essentially empty in the initial state and singly-

occupied in the ground state of the final Hamiltonian, n̄i
e ' 0 and n̄f

e ' 1. (Here n̄ae =
∑

σ n̄
a
eσ,

and n̄aeσ = 〈neσ〉a is the thermal average of neσ with respect to Ha.) This requires εi
eσ � Γ, and

−U + Γ . εf
eσ . −Γ. The initial ground state, needed below, will thus be approximated by the

free Fermi sea, |G〉i '
∏

εkσ<εF
c†kσ|Vac〉, neglecting terms of order Γ/εi

eσ. In particular, some (but

not all) parts of the text will focus on the case thatH f represents the symmetric excitonic Anderson

model (H f=SEAM), with εf
eσ = −U/2, for which n̄f

e = 1 exactly.

Time evolution of the charge and spin after a quantum quench induced by absorption. To

gain intuition for how the system would respond to the sudden creation of an exciton at time t = 0,

it is instructive to calculate the subsequent time evolution (defined in Methods) of the average

charge ñe(t) = (ñe+ + ñe−)(t) and spin polarization m̃e(t) = 1
2
(ñe+ − ñe−)(t) of the e-level.

(The hole has no dynamics; its only role is to pull the e-level down and implement a quench.)

Fig. 2 shows a typical result for T = 0 and H f=SEAM, obtained using time-dependent NRG9, 10.

The non-equilibrium dynamics following such a quantum quench shows two distinct time scales:

(i) Fluctuations in both charge and spin set in around the time scale t ' 1/|εf
eσ| (= 2/U for

H f=SEAM) associated with virtual transitions of electrons between e-level and FR. Whereas the

charge equilibrates (towards 1) shortly thereafter, (ii) the spin decays (towards ' 0) much more

slowly, on the scale t ' 1/TK, where TK =
√

ΓU/2e−π|ε
f
e(εfe+U)|/(2UΓ) is the Kondo temperature19
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associated with H f . The decay is due to spin-flip processes, mediated by electrons of opposite spin

hopping between e-level and FR, leading to non-Markovian dynamics because the bath remembers

its spin state between two e-level spin-flips. As a result a FR screening cloud builds up over time,

which ultimately screens the localized spin into a singlet.

The time-evolution depicted in Fig. 2 could in principle be observed by a π-pulse excita-

tion of the QD followed by polarization-resolved detection of the photoluminescence. However,

the fingerprints of the non-equilibrium dynamics can be more clearly discerned by measuring the

absorption lineshape of a continuous-wave laser field, as we show next.

Absorption lineshape of a Kondo exciton. Absorption sets in once ωL exceeds a threshold

frequency ωth = Ef
G −Ei

G, which is on the order of εf
eσ + εhσ̄ (minus corrections due to tunneling

and correlations). By Fermi’s golden rule the absorption lineshape at temperature T and detuning

ν = ωL − ωth is proportional to the spectral function Aσ(ν) = Aν [e†σ;H f ], where we use the

general notation

Aν [X̂†;H f ] = 2π
∑
mm′

ρi
m

∣∣∣f〈m′|X̂†|m〉i∣∣∣2 δ(ωL − Ef
m′ + Ei

m) (2)

for the spectral function of the observable X̂† with respect to the final and initial Hamiltonians H f

and H i (the dependence on the latter is implied but will not be displayed.) Here |m〉a and Ea
m are

the exact eigenstates and -energies of Ha and ρi
m = e−Ei

m/T/Z i the initial Boltzmann weights. At

T = 0, Eq. (2) reduces to

Aν [X̂†;H f ] = −2 Im i〈G| X̂
1

ν+ − H̄ f
X̂† |G〉i , (3)
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with ν+ = ν + i0+ and H̄ f = H f − Ef
G. Note that Eq. (3) equals −2 Im

∫∞
0

dt eitν+〈Ψ(0)|Ψ(t)〉,

with |Ψ(0)〉 = X̂†|G〉i and |Ψ(t)〉 = e−iH̄
f t|Ψ(0)〉. Thus the absorption lineshapeAσ(ν), for which

X̂† = e†σ, directly probes the post-quench dynamics, with initial state e†e|G〉i, of a photo-generated

e-electron coupled to a FR.

We used NRG to calculateAσ(ν) from Eq. (2), generalizing the approach of Ref. 14 to T 6= 0

by following Ref. 20 (see Methods and Supplementary Discussion 2 for details). For clarity, we

focus first on H f=SEAM with B = 0. Fig. 3a shows a typical result: As temperature is grad-

ually reduced, an initially rather symmetric lineshape becomes highly asymmetric, dramatically

increasing in peak-height as T → 0. At T = 0, the lineshape displays a threshold, vanishing for

ν < 0 and diverging as ν tends to 0 from above. Fig. 3b analyzes this divergence on a log-log plot,

for the case that T , which cuts off the divergence, is smaller than all other relevant energy scales.

Three distinct functional forms are discernible in the regimes of “large”, “intermediate” or “small”

detuning, labeled (for reasons discussed below) FO, LM and SC, respectively:

(FO) |εf
eσ| . ν . D : AFO

σ (ν) =
4Γ

ν2
θ(ν − |εf

eσ|) ; (4a)

(LM) TK . ν . |εf
eσ| : ALM

σ (ν) =
3π

4ν
ln−2(ν/TK); (4b)

(SC) T . ν . TK : ASC
σ (ν) ∝ T−1

K (ν/TK)−ησ . (4c)

The remarkable series of crossovers found above are symptomatic of three different regimes

of charge and spin dynamics that cannot be described by standard quantum optical techniques.

Below we harness Wilson’s concept17, 21 of associating different dynamical regimes with different

renormalization group (RG) fixed points of the model to propose a simple analytical approach for
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calculating spectral functions, using fixed point perturbation theory (FPPT). We show that this

scheme correctly captures the behavior of the spectral function in all three dynamical regimes. To

this end we note that the absorption spectrum at large, intermediate or small detuning probes exci-

tations at successively smaller energy scales (see Fig. 1c), corresponding to ever longer time scales

after absorption, for which H f can be represented by expansions H∗r + H ′r around the three well-

known fixed points17 of the AM: the free orbital, local moment and strong-coupling fixed points

(r = FO,LM, SC), characterized by charge fluctuations, spin fluctuations and spin screening, re-

spectively. By focussing, at each energy scale, on the relevant degrees of freedom (described by

H∗r ) and their mutual interactions (described byH ′r), FPPT captures the complexity of the system’s

many-body correlations in a simple and efficient manner.

Large and intermediate detuning – perturbative regime. For large detuning, probing the time

interval t . 1/|εf
eσ| immediately after absorption, the e-level appears as a free, filled orbital per-

turbed by charge fluctuations, described by17 the fixed point Hamiltonian H∗FO = Hc + H f
QD and

the relevant perturbation H ′FO = Ht. Intermediate detuning probes the times 1/|εf
eσ| . t . 1/TK

for which real charge fluctuations have frozen out, resulting in a stable local moment; however,

virtual charge fluctuations still cause the local moment to undergo spin fluctuations, which are

not yet screened. This is described by17 H∗LM = Hc + const. and the RG-relevant perturbation

H ′LM = J(ν)
ρ
~se · ~sc (a potential scattering term in H ′LM, being RG-irrelevant, will be neglected in

the discussion of the intermediate-detuning regime). Here ~sj = 1
2

∑
σσ′ j

†
σ~τσσ′jσ′ (for j = e, c)

are spin-operators for the e-level and conduction band, respectively (~τ are Pauli matrices), and
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J(ν) = ln−1(ν/TK) is an effective, scale-dependent dimensionless exchange constant. Constant

contributions to H∗r will not be specified, since they affect only ωth, whose precise value is not of

present interest. It suffices to note that for both r = FO and LM, e†σ|G〉i is an eigenstate of H∗r

with eigenvalue Ef
G (within the accuracy of H∗r ).

For r = FO and LM,Aσ(ν) can be calculated using perturbation theory inH ′r. For T = 0, we

set H̄ f → H̄∗r +H ′r in Eq. (3) (with X̂† = e†σ) and make a resolvent expansion of (ν+−H̄∗r −H ′r)−1

in powers of H ′r. To lowest non-vanishing order, Eq. (3) then reduces to (excluding a δ(ν) term not

relevant for ν & TK):

Arσ(ν) ' ν−2Aν [H ′re†σ;H∗r ] . (5)

This structure reveals the relevant physics with striking clarity. Large detuning (r = FO) is de-

scribed by the spectral function of the operatorHte
†
σ; the absorption process can thus be understood

as a two-step process consisting of a virtual excitation of the QD resonance, followed by a tunnel-

ing event to a final free-electron state above the Fermi-level. In contrast, intermediate detuning

(r = LM) is described by the spectral function of ~sc · ~see
†
σ, i.e. it probes spin fluctuations, as

observed in the dynamics (Fig. 2). Evaluation of these spectral functions is elementary since H∗FO

and H∗LM involve only free fermions. For B = 0 and |εf
eσ| = 1

2
U , we readily recover Eqs. (4a) and

(4b), which quantitatively agree with the NRG results of Fig. 3b.

Depending on the detailed choice of parameters, the crossover from LM to FO shows up in

our numerical results as a small shoulder or side peak in Aσ(ν) at |εf
eσ| (easily seen from the fact

that ALM
σ (|εf

eσ|) 6= AFO
σ (|εf

eσ|)). This crossover reflects the following facts: Transitions from the
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h-level into unfilled states of the FR are possible only for ν > |εf
eσ| (hence the step function in

Eq. (4a)); they are mediated by H ′FO and use the e-level (Lorentzian-broadened by charge fluctu-

ations, hence the ν−2 dependence) as intermediate state, without creating additional particle-hole

excitations. For intermediate detuning (LM) this is not possible; instead, absorption into the e-level

is accompanied by the H ′LM-induced creation of electron-hole pairs in the FR, causing ALM
σ (ν) of

Eq. (4b) to have an additional phase space factor ∝ ν relative to AFO
σ (ν) of Eq. (4a).

The FPPT strategy for calculating FO and LM lineshapes can readily be generalized to finite

temperatures (the details follow, in part, Ref. 22). For example, for TK < |ν| < |εf
eσ| and T � TK

we obtain

ALM
σ (ν) =

3π

4

ν/T

1− e−ν/T
γKor(ν, T )/π

ν2 + γ2
Kor(ν, T )

. (6)

Here γKor(ν, T ) = πT/ ln2[max(|ν|, T )/TK] is the scale-dependent Korringa relaxation rate2, 22. It

is smaller than T by a large logarithmic factor, implying that the absorption peak is considerably

narrower and higher than for the usual case of thermal broadening. For ν > T , Eq. (6) reduces to

Eq. (4b). A comparison of Eq. (6) to NRG results is given in Fig. 3c and its caption.

For clarity, the above discussion was confined to H f=SEAM. However, it can be generalized

straightforwardly to the non-symmetric case with εf
eσ 6= −1

2
U , as long as H f remains in the LM-

regime, with n̄f
e ' 1 (see Supplementary Discussion 4). The lineshape then depends on εf

eσ and U

only through their influence on TK, and hence ALM
σ (ν) is a universal function of ν and TK. This is

illustrated in Fig. 3d for five lineshapes, shown in the lower left panel, corresponding to different

choices of εf
eσ and hence different TK-values (as indicated in inset). When these lineshapes are
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rescaled asAσ(ν)/Aσ(TK) vs. ν/TK (main panel), the ones with n̄f
eσ ' 1 (green, red, blue) collapse

onto a universal scaling curve within the LM regime TK . ν . |εf
eσ|. An experimental observation

of such a scaling collapse would be a smoking gun for the existence of Kondo correlations.

Small detuning and tunable Kondo-edge singularity – strong-coupling regime. As ν is low-

ered through the bottom of the LM regime, J(ν) increases through unity into the strong coupling

regime, andAσ(ν) monotonically crosses over to the SC regime, first studied for the present model

by Helmes et al.14. In this regime the FR is strongly altered by the interactions with the QD (im-

plying the complete inapplicability of a Born-Markov treatment). As mentioned above in the

discussion of Fig. 2, on a timescale 1/TK a screening cloud builds up that tends to screen the local

moment into a spin singlet, (see the decay of m̃e(t→∞)→ 0 in Fig. 2). The screened spin singlet

acts as a source of strong potential scattering for other FR electrons. Its emergence will appear to

be sudden when viewed at very long times (t� 1/TK), corresponding to small detuning, in which

case analogies can be drawn to the X-ray edge problem23, 24. The latter describes the absorption

of an incident X-ray via the sudden transfer of an electron from an atomic core level into the con-

duction band. The remaining core hole is a source of potential scattering for other FR electrons,

causing their phases to shift. This leads to the initial and final FR ground states to be orthogonal

to each other (Anderson’s orthogonality catastrophe25), and a power-law singularity to arise in the

X-ray absorption lineshape. Studying the Kondo exciton absorption line shape for small detuning

and B = 0, Helmes et al. found a similar singularity, of the form (4c); moreover, its exponent ησ

was shown to be tunable via the gate voltage in a way described by “Hopfield’s rule of thumb” (put
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forth in Ref. 26 for the X-ray problem). We show now that ησ also depends on magnetic field, in a

remarkably B-asymmetric fashion, reflecting the fact that once the incident light’s polarization is

fixed, opposite field directions become inequivalent.

Generalizing Hopfield’s rule (see Methods) to the case of B 6= 0, for which spin symmetry

is broken, we find

ησ = 2∆neσ −
∑
σ′

(∆neσ′)
2 , (7)

where ∆neσ = n̄f
eσ − n̄i

eσ is the change in the spin-resolved e-level’s average occupation. Sup-

plementary Discussion 5 offers a detailed derivation of Eq. (7) that puts the heuristic arguments of

Helmes et al. on a rigorous footing using FPPT in the time domain. Eq. (7) has an instructive phys-

ical interpretation, based on rewriting it as ησ = 1−
∑

σ′(∆n
′
eσ′)

2, where ∆n′eσ′ = ∆neσ − δσσ′ is

the charge difference in level eσ′ between the final ground state |∞〉 (at time t→∞) and the initial

state |0+〉 (at t = 0+) just after photo-excitation of a spin-σ electron. The ”1” in ησ represents a ν−1

power law divergence: it may be thought of as arising from a detuned, virtual transition into a nar-

row e-level situated at ν = 0 (giving a Lorentzian detuning factor 1/ν2), followed by the creation

of particle-hole pairs (with phase space ν) to carry off the excess energy ν, resulting in a lineshape

scaling as ν/ν2 = ν−1. The
∑

σ′(∆n
′
eσ′)

2 contribution to ησ reflects Anderson orthogonality25:

since |∞〉 and |0+〉 have localized eσ′-charges that differ by ∆n′eσ′ , their Fermi reservoir electrons

see different scattering potentials, implying25 that their overlap scales with effective system size

L ∼ ν−1 as 〈∞|0+〉 ∼ L−
P
σ′ (∆neσ′ )

2 .

According to Eq. (7), ησ can be tuned experimentally not only via gate voltage but also via
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magnetic field, since both modify εaeσ and hence ∆neσ′ (see upper inset of Fig. 3d, Fig. 4b and

Fig. S4). This tunability can be exploited to study universal aspects of Anderson orthogonality

physics that had hitherto been inaccessible. In particular, if the system is tuned such that n̄i
e = 0

and n̄f
e = 1, Eq. (7) can be expressed as

ησ =
1

2
+ 2mf

eσ − 2(mf
e)

2 , (8)

where the final magnetizationmf
e = 1

2
(n̄f

e+−n̄f
e−) is a universal function of geB/TK. (At very large

fields, however, a bulk Zeeman field, neglected above, will spoil universality, see Supplementary

Discussion 7.) The exponents ησ then are universal functions of geB/TK, with simple limits for

small and large fields (see Fig. 4b):

ηlower/upper →


1
2

(|geB| � TK) ,

±1 (|geB| � TK) .

(9)

The subscript “lower” or “upper” distinguishes whether the spin-σ electron is photo-excited into

the “lower” or “upper” of the Zeeman-split pair (σgeB < 0 or > 0, respectively); reversing the di-

rection ofB (at fixed incident photon polarization) will thus interchange “lower” and “upper”. The

sign difference between ηlower and ηupper for |geB| � TK arises since the change in local charge be-

comes fully asymmetric, ∆ne,lower → 1 while ∆ne,upper → 0; as a result, Anderson orthogonality

is completely absent (∆n′eσ′ = 0) for photo-excitation into the “lower” level, since subsequently

the e-level spin need not adjust at all. In contrast, it is maximal (∆n′eσ′ = 1) for photo-excitation

into the “upper” level, since subsequently the e-level spin has to create a spin-flip electron-hole

pair excitation in the FR to reach its long-time value. It follows, remarkably, that a magnetic field

tunes the strength of Anderson orthogonality, implying a dramatic asymmetry for the evolution
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of the lineshape Aσ(ν) ∝ ν−ησ with increasing |B| (Fig. 4a): For Alower(ν), the near-threshold

singularity becomes stronger, tending towards ν−1. In contrast, for Aupper(ν) the singularity be-

comes weaker, and once ηupper turns negative, changes to an increasingly strong power-law decay,

tending toward ν+1; this is accompanied by the emergence of an absorption peak near ν = σgeB,

associated with a transition into the upper Zeeman-split level, broadened by Korringa relaxation

of its spin (see Supplementary Discussion 6). The fact that reversing the direction of B will turn

a near-threshold divergence in the lineshape into a suppression that constitutes the low-frequency

side of a broadened peak, is one of the most striking predictions of our analysis.

Magnetic field dependence of the absorption threshold. The shift of the absorption threshold

frequency ωth = Ef
G − Ei

G with magnetic field can be written as ωth(B) − ωth(0) = 3
2
σ̄ghB +

δωe
th(B). The first term reflects the Zeeman energy of the photo-excited hole (which has pseudo-

spin 3/2), the second the B-dependence of the ground-state energy of the electron system. The

general T = 0 relation gem
a
e = ∂Ea

G/∂B implies that the differential threshold shift offers a

direct way of experimentally measuring the local moment difference between the final and initial

ground states: ∂(δωe
th)/∂B = ge[m

f
e(B) − mi

e(B)]. Moreover, for n̄i
e ' 0 and n̄f

e ' 1 the

asymptotic behavior of mf
e for small fields (mf

e = −geBχ0, where χ0 = 1/(4TK) is the linear

static susceptibility) and large fields (|mf
e| = 1

2
) implies:

δωe
th =


−(geB)2/8TK (|B| � TK) ,

−|geB|/2 (TK � |geB| � |εf
e|) .

(10)
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The quadratic B-dependence of δωe
th for small fields (confirmed numerically in Supplementary

Discussion 8) offers a straightforward way to determine the Kondo temperature experimentally.

The accessibility of theB-dependence of the ground state energy and e-level magnetization via the

absorption threshold is a remarkable advantage of the proposed optical probe of Kondo physics in

this paper – these quantities are not accessible via transport measurements.

Conclusion. We have demonstrated that optical absorption in a single quantum dot can be used

to implement a tunable quantum quench in an experimentally accessible solid-state system. In

particular, this allows the Anderson orthogonality catastrophe, a fundamental phenomenon long

known in solid state physics, to be studied in a tunable setting. Our work sets the stage for exploring

numerous further interesting problems, such as (i) the exploration of the anisotropic exchange

interaction between a QD heavy-hole and a FR; (ii) the dynamics following a quantum quench

when the FR is an interacting Luttinger liquid; (iii) attempting to exploit strong correlations to

realize coherent single-spin rotation or a “Fermionic quantum bus” between two distant QD spins,

and (iv) the nonlinear Kondo exciton, where the QD transition is driven by a non-perturbative laser

field and an intriguing interplay between Rabi oscillations of the photon-exciton system and Kondo

correlations of the exciton-FR system can be expected if the Rabi frequency becomes of the order

of the Kondo temperature.
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Methods

Numerical Renormalization Group for calculation of optical absorption lineshape. The opti-

cal absorption lineshape given by Fermi’s golden rule Eq. (2), can be calculated at finite temper-

atures using the full density matrix (FDM) numerical renormalization group (NRG)20. Because

Eq. (2) contains matrix elements between initial and final eigenstates of different Hamiltonians,

H i and H f , two separate NRG runs (NRG run #1 and #2) are required to calculate the initial and

final eigenstates ({|m〉i} and {|m′〉f}) as well as eigenenergies ({Ei
m} and {Ef

m′}). The double

sum in Eq. (2), over all initial and final eigenstates, is performed via a “backwards” run from the

end to the beginning of the Wilson chain9, 10: for each shell k, the contribution towards the initial

density matrix ρi from that shell (obtained using data from NRG run #1), and the matrix elements∣∣
f〈m′|e†σ|m〉i

∣∣2 between shell-k eigenstates from NRG runs #2 and NRG #1 are calculated, and

binned according to the corresponding frequency difference Ef
m′ − Ei

m. See Supplementary Dis-

cussion 2 for further details, and Table S1 there for a summary of the NRG parameters used for

each figure.

Nonequilibrium dynamics via NRG. The expectation value of an observable X̂ after absorption

is given by X̃(t) = Tr
(
ρ̂f

p(t)X̂
)

where the time evolution is governed by the final Hamiltonian,

ρ̂f
p(t) ≡ e−iH

f tρ̂f
pe
iHf t. For reasons discussed in Supplementary Discussion 3 we find it convenient

to initialize this evolution with the projected initial density matrix ρ̂f
p = e†σ

(
e−Hi/T/Z i

)
eσ/[1 −

n̄i
eσ]. The Fourier transform of X̃(t), X̃ (ω) =

∫
dt eiωtX̃(t), can be expressed in Lehmann repre-
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sentation:

X̃ (ω) =
∑
mm′

f〈m′|ρ̂f
p|m〉f f〈m|B̂|m′〉f · 2π δ

(
ω − Ef

m′ + Ef
m

)
. (11)

This expression can be calculated using FDM-NRG. See Supplementary Discussion 3 for details.

Absorption in the strong-coupling regime and Fermi-edge physics. The strong-coupling regime

features a screened spin singlet that acts as a source of strong potential scattering for other FR elec-

trons, causing the phase of each mode kσ to shift by δσ(εkσ) relative to its value forH i. This regime

can be described by a strong-coupling fixed-point HamiltonianH∗SC+H ′SC due to Nozières27 (given

in Supplementary Discussion 5). It is formulated purely in terms of these phase-shifted c-electrons

and makes no reference to e-level operators at all. Thus, FPPT in the energy domain, as used in

the main text, cannot be applied here.

This hurdle can be overcome by working in the time domain: Eq. (2) can be expressed as

Aν [X̂†;H f ] = −2ImGν [X̂, X̂†] via Gν [X̂, X̂†] =
∫

dt eit(ωth+ν+i0)Gt[X̂, X̂
†], the Fourier trans-

form (with infinitesimal damping factor) of the correlator

Gt[X̂, X̂
†] = −iθ(t) i〈eiH

itX̂e−iH
f tX̂†〉i . (12)

The anomalous time dependence of the latter, involving both H i and H f , reflects the fact that the

creation of a hole during optical absorption abruptly lowers the e-level. Thus, the desired spectral

function Aσ(ν) = Aν [e†σ;H f ] depends on the nonequilibrium correlator Gt[eσ, e
†
σ]. The latter can

be related to a correlator involving only FR operators, Gt[ckσ, c
†
k′σ], using equations of motion,

and subleading terms in the latter can be neglected upon taking the long-time limit. Transforming

back to the frequency domain and summing over
∑

kk′ gives (see Supplementary Discussion 5 for
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details):

ASC
σ (ν) ∼ − 1

πρΓ
Aν [c†σ;H∗SC] , (13)

where we have set H f → H∗SC, in accord with the limit ν → 0 (likewise, H i → Hc is implied;

the contribution of the perturbation H ′SC around the fixed point can be neglected, since H∗SC itself

gives the dominant contribution). Evidently, absorption in the SC regime can be understood as a

transition ”directly” into the FR, since the right-hand side of Eq. (13) features a c-electron spectral

function. This reflects the strong-correlations inherent in the ground state between the e-level

electron and the FR electrons. Indeed, the correlator governing the latter,

Gt[cσ, c
†
σ] ∼ i〈G|eiHctcσe−iH

∗
SCtc†σ|G〉i , (14)

is familiar from the X-ray edge problem23, 24. It decays as ∼ t−[(δσ−π)2+δ2
σ̄ ]/π2 (we show only the

leading power law), where δσ, the phase shifts at the Fermi energy, are found as δσ = π∆neσ from

the Friedel sum rule28, valid for T = 0 and for arbitrary values of B, n̄f
eσ and n̄i

eσ. Collecting

results, we find Eq. (4c) and Eq. (7). See Supplementary Discussion 5 for details.
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Figure 1 Schematics of the absorption experiment. The Fermionic reservoir in the back-

contact (of e.g. a Schottky-diode structure) couples via charge tunneling to the localized

electronic degrees of freedom of the quantum dot (see Supplementary Discussion 1).

Starting from a an uncharged QD at t = 0, optical excitation to a b neutral exciton state

(X0) at t = 0+ featuring a single electron in the e-level of the QD (along with a hole in the

h-level) which may develop Kondo correlations with the Fermionic reservoir in the long-

time limit. (c) Starting from an empty QD state |G〉i (for T = 0) the absorption probability of

a photon at frequency ωL = ωth + ν, given by Aν [e†σ;H f ] of Eq. (2), probes the many body

spectrum of H f at excitation energy ν, where ωth = Ef
G − Ei

G is the absorption threshold.

H f represents the single-impurity Anderson model, which displays three different regimes

of dynamical behavior. The final state spectrum {|m′〉f , Ef
m′} can correspondingly be

divided into regimes of “large”, “intermediate” or “small” excitation energies labeled (for

reasons discussed in the text) by r = FO, LM and SC, for which H f can be represented

by expansions H∗r + H ′r around the model’s three fixed points17. This can be exploited to

obtain a fully analytic understanding of the entire range of dynamical behavior.

Figure 2 Non-equilibrium time evolution of charge and spin of the photo-excited electron.

Plotted is the non-equilibrium time-evolution of charge and spin degrees of freedom of the

photo-excited electron after the sudden creation of an e†+h
†
− exciton at time t = 0. While

fluctuations in both e-level’s total charge ñe and spin set in around the time scale 1/|εf
σ|,

the equilibration of the spin-σ populations ñeσ(t) and screening of the local spin m̃e(t) sets

in on the time scale 1/TK. The deviations (by about 3%) of ñe(∞), ñeσ(∞) and m̃e(∞)
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from their expected equilibrium values (1, 1
2

and 0, respectively, for the case H f=SEAM

depicted here), are known artifacts of time-dependent NRG9,10, presumably due to the

NRG discretization scheme, which is inevitably coarse at large energies (see Supple-

mentary Discussion 3). Here and elsewhere, numerical TK values were determined via

TK = 1/(4χ0) from the static linear susceptibility χ0.

Figure 3 B = 0 absorption lineshape for different temperatures and gate voltages. Solid

lines give NRG results for Aσ(ν), calculated (a,b,c) for H f=SEAM for various tempera-

tures, and (d) for different gate voltages at low temperature. Dashed lines show analytical

predictions for Γi = 0, for a,c from Eq. (6) and for b from Eqs. (4). a, Semi-log plots for

five different temperatures (inset: zoom-in to reveal near-threshold behavior). b, Log-log

plot (inset: linear plot) for T � TK, showing three distinct functional forms for high, in-

termediate and small detuning, labeled FO, LM and SC, respectively, according to the

corresponding fixed points of the Anderson model. Arrows and light yellow lines indicate

the crossover scales T , TK and |εf
eσ|. c, Log-log plot (inset: log-linear plot) for T � TK

(γKor = γKor(0, T )). For ν & 0.5T , the good agreement in b,c between analytics (red

dashed lines) and NRG (thick blue line for Γi 6= 0; thin blue line for Γi = 0, in b only) over

many orders of magnitude illustrates the quantitative accuracy of FPPT. For ν . 0.5T

(c, inset), NRG is not quantitatively accurate (the spurious dip at ν = 0 is explained in

Supplementary Discussion 2, see also Fig. S3); neither is Eq. (6), unless ln(T/TK) � 1

(which is not the case in c), because we specified γKor(ν, T ) only with logarithmic accu-

racy. d, Universality in the LM-regime. Upper inset: n̄i
e, n̄f

e, ∆ne and TK as functions of
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εf
eσ. Lower inset: Log-log plots of lineshapes for five different choices of εf

eσ, indicated by

color-coded dashed lines in upper inset, and arrows in main panel. Main panel: When

appropriately rescaled, the lineshapes collapse onto a universal curve in the LM-regime

TK . ν . |εf
eσ|. In the SC-regime T . ν . TK, the curves do not collapse, since their

exponents ησ depend, via ∆ne, on εf
eσ.

Figure 4 Asymmetric magnetic-field dependence of lineshape at T = 0. a, Depending

on whether the electron is photoexcited into the “lower” or “upper” of the Zeeman-split

e-levels (σgeB < 0 or > 0, solid or dashed lines, respectively), increasing |B| causes the

near-threshold divergence, Aσ(ν) ∝ ν−ησ , to be either strengthened, or suppressed via

the appearance of a peak at ν ' σgeB, respectively. (The peak’s position is shown by the

red line in the σgeB-ν plane.) b, Universal dependence on geB/TK of the local moment

mf
e (dash-dotted line), and the corresponding prediction of Hopfield’s rule, Eq. (7), for the

infrared exponents ηlower (solid line) and ηupper (dashed line) for σ = +. Symbols: ησ-

values extracted from the near-threshold ν−ησ divergence of Aσ(ν), for several magnetic

fields and three values of Γ/U . Symbols and lines agree to within 1 %.
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H ≈ H∗
FO + δHFO
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