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Second quantization

The purpose of this chapter is 1o introduce and apply the method of second gquantization, a
technigue that underpins the formulation of quantum many-particle theories. The first part
ot the chapter focusses on methodology and notation, while the remainder is devoted to
the development of applications designed to engender familiarity with and fluency in the
technique. Specifically, we will investigate the physics of the interacting electron gas, charge
density wave propagation in one-dimensional guantum wires, and spin waves in a quantum
Heisenberg (antilfferromagnet. Indeed, many of these examples and their descendants will
reappear as applications in our discussion of methods of quantum field theory in subsequent
chapters.

In the previous chapter we encountered two field theories that could conveniently be
represented in the language of “second quantization,” i.e. a formulation based on the
algebra of certain ladder operators a,.' There were two remarkable facts about this
formulation: firstly, second quantization provides a compact way of representing the
many-body quasi-particle space of excitations; secondly, the properties of the ladder
operators were encoded in a simple set of commutation relations (cf. Eq. (1.33)) rather
than in some explicit Hilbert space representation.

Apart from a certain aesthetic appeal, these observations would not be of much rele-
vance if it were not for the fact that the formulation can be generalized to a comprehensive
and highly efficient formulation of many-body quantum mechanics in general. In fact,
second quantization can be considered the first major cornerstone on which the theoretical
framework of quantum field theory was built. This being so, extensive introductions to
the concept can be found throughout the hterature. We will therefore not develop the
formalism in full mathematical rigor but rather proceed pragmatically by first motivating
and introducing its basic elements, followed by a discussion of the “second quantized”
version of standard operations of quantum mechanics (taking matrix elements, changing
bases, representing operators, etc.). The second part of the chapter will be concerned
with developing fluency in the method by addressing a number of applications. Readers
familiar with the formalism may therefore proceed directly to these séctions.

! The term *“second quantization™ is unfortunate. Historically, this terminology was motivated by the observation that the ladder
operator algebra fosters an interpretation of quantum excitations as discrete “quantized” units. Fundamentally, however, there
is nothing like “two™ superimposed guantization steps in single- or many-particle quantum mechanics. Rather, one is dealing

- with a particular representation of the “first and only quantized” theory tailored to the particular problem at hand.
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40 Second gquantization

2 1 Introduction to second quantization
2.1.1 Motivation

We begin our discussion by recapifulating some

Exi ) n fundamental notions of many-body quantum
g - —— —? ——————— — -?_ _ mechanics, as formulated in the traditional
S -—--—% " "T°177 7 —-—--- langnage  of symmetrized/anti-symmetrized
oy o —— 1__i__. {1 _ wavefunctions. Consider the (normalized) set
S B 3 .- oL of wavefunctions |A) of some single-particle
- S Hamiltonian H : H|A) = €,|A), where €, arc

sl —eeeee - S . : . .
| _ the eicenvalues. With this defimtion, the nor-

bosons fermions =

malized two-particle wavefunction Ue(ig) oOf
two fermions (bosons) populating levels A, and A, is given by the anti-symmetrized
(symmetrized) product

Pe(x,x3) = % {{Iﬂf}l]}(:‘fﬂﬂi} — (%Hﬁ{xzmﬁj .

s (1. 13) = % (A (ol ) + (1) (A1)

In the Dirac bracket representation, the latter can be presented as

1 S :
A Aem) = = (A @A)+ A ® A1)
V2

_ where ¢ = —1 for fermions® while /=1 for
2 Enrico Fermi 1901-54 bosons. Note that the exphcit symmetrization
Nobel Laureate in Physics in 1938 of the wavefunctions is necessitated by quan-
for his demonstrations of the . tum mechanical indistinguishability: For
existence of new radioactive fermions (bosons) the wave function has to
?'E”“_‘E_“_'E produced F‘"*’ neutron be anti-symmetric (symmetric) under particle
: :_’amam:n, i”d fTr his Elafe’j exchange. More generally, an appropriately
_ iscovery of nuclear reactions symmetrized N-particle wavefurnttion can be
brought about by slow neutrons. (Image © The :
. expressed in the form
Nobel Foundation.)

1
T (0=, ) @A) @ @ Apy) | (2:1)

[;‘Lljﬁj_,,...,hﬁ}z —
‘-fNi H}u:ﬂ (“.JL';} P

where n, represents the total number of particles in state A (for fermions, Pauli exclusion
enforces the constraint n, < 1) — see the schematic figure above. The summation runs Over
all N'! permutations of the set of quantum qumbers {A,, ..., Ay}, and sgnF denotes the
sign of the permutation . (sgn®P =1[—1]if the number of transpositions of two elements
which brings the permutation (P,, Py, .... Py) back 10 its original form (1,2,..., NV 1S
even [odd].) The prefactor 1 //N'T1,(n,!) normalizes the many-body wavefunction. In
the fermionic case, this is known as a Slater determinant. Finally, notice that it will
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2.1 Introduction to second guantizarion 41

be useful to assume that the quantum numbers {A;} defining the state [A;, Ay, ..., Ay)
are ordered according to some convention. (For example, for A; = x; a one-dimensional
coordinate representation, we might order according to the rule x; < x, <--- < xy.) Once
an ordered sequence of states has been fixed we may — for notational convenience —
label our quantum states by integers, A; = 1,2, .... Any initially non-ordered state (e.g.
12, 1,3)) can be brought into an ordered form (|1,2, 3)) at the cost of, at most, a change

of sign.

i
Vi
\'ﬂi. é

¥
iy

For the sake of completeness, let us
spell out the connection between the
permutation group and many-body
quantum mechanics in a more math-
ematical language. The basic arena

3 David Hilbert 1862-1943

His work in geometry had the greatest influence
in that area after Euclid. A systematic study of
the axioms of Euclidean geometry led Hilbert to
propose 21 such axioms and he analyzed their

Bt e e D M M M el o i P i pd s i in."hl

e = ey

.y

[+

Lidom o Iy

e L B S G B DA D S e A S A S s M

wherein N-body quantum mechanics

takes place 1s the product space |
mathematics.

significance. He contributed to many areas of

HN'=HR - QF

N copies

of N single-particle Hilbert® spaces. In this space, we have a linear representation
of the permutation group, SV, assigning to each P € §" the permutation (no
ordering of the As implied at this stage)

PHY > HY, A @ BAy) > [Aer) B @ [Asy).

The identification of all irreducible subspaces of this representation is a formidable
task that, thanks to a fundamental axiom of quantum mechanics, we need not
address in full. All we need to know is that SV has two particularly simple
one-dimensional irreducible representations: one wherein each F & S¥ acts as
the identity transform P(¥) = ¥ and, another, the alternating representation
P(V) =sgnP - V. According to a basic postulate of quantum mechanics, the

state vectors ¥ € A describing bosons/fermions must transform according to
the identity/alternating representation. The subset ¥ C H" of all states showing

this transformation behavior is the physical N-body quantum Hilbert space. To
construct a basis of ¥V, one may apply the symmetrization operator P =) » #

* Recall that a linear representation of a group G is a mapping that assigns to each g £ G a linear mapping g, : V= V
of some vector space V. For notational convenience one usually writes g: V = V instead of p, 1 V — V. Conceptually,
however, it is often important to carefully discriminate between the abstract group slements g and the marrices (also g)
assigned to them by a given representation. (Consider, for example the symmetry group G = 5U(2) of quantum mechanical
spin. SU(2) is the nwo-dimensional group of unitary matrices with determinant one. However, when acting in the Hilbert
space of a guantum spin § = 3/2, say, elements of SU(2) are represented by (25 + 1 = 11)-dimensional matrices.) Two
representations p and p’ that differ only by 2 unitary transformation, ¥g € G:p, = Up, [J—%, are called unitary equivalent.
If a transformation [/ can be found such that glf representation matrices p, assume a block structure, the representation is
called reducible, and otherwise irreducible. Notice that the different sub-blocks of a reducible representation by themselves

form irreducible representation spaces. The identification of all distinct irreducible representations of a given group is one of

the most important objectives of group theory.
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i

(anti-symmetrization operator Ps =Y ,sgnPP) to all basis vectors A)®---B
IAy) of #~. Up to normalization, this operation obtains the states (2.1).

Some readers may wonder why we mention these representation-theoretic
- aspects. Being pragmatic, all we really need to know is the symmetrization/anti-
symmetrization postulate, and its implementation through (2.1). Notice, however,
that one may justly question what we actually mean when we talk about the
. permutation exchange of quantum numbers. For example, when we compare
wavefunctions that differ by an exchange of coordinates, we should, at least in
principle, be able to tell by what physical operation we effect this exchange (for,
otherwise, we cannot really compare them other than in a formal and, in fact, in

0 S AT BR

an ambiguous sense).

Oddly enough, decades passed hefore this crucial issue in quantum mechanics
was critically addressed. In a now seminal work by Leinaas and Myrheim® it was
shown that the standard paradigm of permutation exchange 1s far from innocent.
In particular, it turned out that its applicability is 1n an essential way tied to the
dimensionality of space! Specifically, in rwo-dimensional spaces (in a sense, also
: in d =1) a more alaborate scheme is needed. (Still one may use representation-
. theoretic concepts to describe particle exchange. However, the relevant group —
the braid group — now differs from the permutation group.) Physically, these
phenomena manifest themselves in the emergence of quantum particles different
from both bosons and fermions. For a further discussion of these “anyons’ we

refer to Chapter 9.
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While representations like (2.1) can be used to represent the full Hilbert space of

many-body quantum mechanics, a moment’s thought shows that this formulation is not

at

all convenient.

It takes little imagination to anticipate that practical computation 1n the language of
Eq. (2.1) will be cumbersome. For example, to compute the overlap of two wavefunc-
fions one needs to form no less than (N'!)? different products. )

The representation is tailor-made for problems with fixed particle number N. However,
we know from statistical mechanics that for N = (9(10%) it is much more convenient
to work in a grand canonical earmulation where N is allowed to fluctuate.

Closely related to the above, 1n applications one will often ask questions such as, “What 18
the amplitude for injection of a particle into the systém ata certain space-time coordinate
(x,,1,) followed by annihilation at some later time (x,, ;)7 Ideally, one would work with
arepresentation that supports the intuition afforded by thinking in terms of such processes:
i e. a representation where the quantum numbers of individual quasi-particles rather than
the entangled set of quantum numbers of all constituents are fundamental.

The “second quantized” formulation of many-body quantum mechanics, as introduced 1n
the mext subsection, will remove all these difficulties in an elegant and efficient manner.

5 J. M. Leinaas and J. Myrheim. On the theory of identical particles, 11 Nuovo Cimenio B 37 (1977), 1-23.
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2.1 Introduction to second guantizallon 43

2.1.2 The apparatus of second quantization

Occupation number representation and Fock space

Some of the disadvantages of the representation (2.1) can be cured with relatively little
effort. In our present notation, quantum states are represented by “N-letter words™ of the
form |1,1,1,1,2,2,3,3,3,4, 6,6, ...). Obviously, this notation contains a Jot of redun-
dancy. A more efficient encoding of the state above might read 4,2,3,1,0,2,...), where
the ith number signals how many particles occupy state number #; no more information 1s
needed to characterize a symmetrized state. (For fermions, these occupation numbers take
a value of either zero or one.) This defines the “occupation number representation.”
In the new representation, the basis states of F" are specified by |n;, n,,...), where
>.n, = N. Any state | ¥) in " can be obtained by a linear superposition

i";[-":): Z CHI:H?_____EHL,HE,...>.

I T J—

T =N

As pointed out above, eventually we will want to emancipate ourselves from the
condition of a fixed particle number N. A Hilbert space large enough to accommodate a
state with an undetermined number of particles is given by

Notice that the direct sum contains a curious

. . 1:| 14 E 5
contribution F°, the “vacoum space.” ThiS | & y/aqimir Aleksandrovich Fock 1898-1974

is a one-dimensional Hilbert space which | g of the main participants in the history of the

describes the scctor of the theory with no general theory of relativity in Russia. His ground-
particles present. Its single normalized basis breaking contributions to many-body theory
state, the vacuum state, is denoted by |0). include the introduction of Fock space and the

We will soon see why it is convenient to | development of perhaps the mostimportant
add this strange animal to our family of basis | many-particle approximation scheme, the
states. The space F is called Fock space® Hartree—Fock approximation (see Chapter 5k
and it defines the principal arena of quantum -
many-body theory.

To obtain a basis of F, we need only take the totality of our previous basis states
{ln,,n,,...)}, and drop the condition } ;n, = N on the occupation numbers. A gen-
eral many-body state |¥) can then be represented by a linear superposition ) =
> it Covona |75 Mg, - ). Notice that states of different particle numbers may contribute
to the linear superposition forming |'¥%). We shall see that such mixtures play an important
role, for example in the theory of superconductivity.

Foundations of second quantization

The occupation number representation introduced above provides a step 1n the right
direction, but it does not yet solve our main problem. Lingering behind the compact
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44 Second quantization

representation |n,, n,, ...) are the formidable sums over the permutation group appearing
in Eq. (2.1). Surely, we need a representation of the theory wherein we are spared the need
to explicitly symmetrize an ((10°®) number of particles every time a matrix element is
computed! The formalism of “second quantization” introduced below elegantly removes
this obstacle. |

Let us begin by recalling an elementary fact of linear algebra: a linearmap A: V — V
of a vector space into itself is fully determined by defining the images w; = Av; of the
action of A on a basis {v;}. Now let us use this scheme to introduce a set of linear

operators acting in Fock space. For every i =1, 2, ..., we define operators a F - F
through
f _ 1/2 s5; 2
alng,...,n;, .. =@+D" g, o oon+ 1,000, (2.3)
where s, = Zj.:l n;. In the fermionic case, the occupation numbers »; have to be understood

mod 2. Specifically, (1+1) =0 mod?2, i.e. the application of a] to a state with n, = 1
annihilates this state.

Notice that by virtue of this definition we are able to generate every basis state of F
by repeated application of als to the vacuum state. (From a formal point of view, this
fact alone is motivation enough to add the vacuum space to the definition of Fock space.)
Indeed, repeated application of Eq. (2.3) leads to the important relation

n,ns. .. =]] [n-ll)”? ()™ 10). (2.4)

i

Notice that Eq. (2.4) presents a strong statement: the complicated permutation “entangle-
ment” implied in the definition (2.1) of the Fock states can be generated by straightforward
application of a set of linear operators to a single reference state. Physically, N-fold
application of operators a’ to the empty vacuum state generates an N-particle state, which
is why the a's are commonly called creation operators. Of course, the introduction of
creation operators might still turn out to be useless, i.e. consistency with the properties
of the Fock states (such as the fact that, in the fermionic case, the numbers n, =0, 1 are
defined only mod?2), imply complicated correlations between the different a;. However,
as we shall demonstrate below, this is not the case. =

Consider two operators @, and ::1:, for i # j. From the definition (2.3), one may readily
verify that (.:Ija; — £ EIJTr- a?:l In,, n,,...) = 0. Holding for every basis vector, this relation

implies that 4, , at]. =0, where

ilg
ie. [, J;=1 =[] is the commutator and [.],—_, ={. } the anti-commutator. Turning to
the case { = j, we note that, for fermions, the two-fold application of al® to any state
leads to its annihilation. Thus, a,- = 0 is nilpotent, a fact that can be formulated as
[a], a}]. =0. For bosons we have, of course, [a;, a; | = 0 (identical operators commute!).

Summarizing, we have found that the creation operators obey the commutation relation

Vi,j: [al.a]],=0. (2.5)




2.1 Introduction to second quantization 45

£ I
P ‘?'__2 ‘:1'1'_1 :r'_—D
a a®

Figure 2.1 Visualization of the generation of the Fock subspaces F¥ by repeated action of creation
operators on the vacuum space F°.

Now, quantum mechanics is a unitary theory so, whenever one meets a new operator A,
one should determine its Hermitian adjoint A'. To understand the action of the Hermitian
adjoints (a?)T — g. of the creation operators we may take the complex conjugates of all
basis matrix elements of (2.3):

(Aysees Py ee aln,...,n,...)= {ni.-:—ljt“'rz 5'555?1]*”5 O iy
= (n,...,n, . dalng,snn )T = H}ﬁéﬁfan;rn] N R
Holding for every bra (n}, ..., ., ...|. the last line tells us that
ailnys s M) =”};2!§HEF|”1=---=H='_‘1=---): (2.0)
E

a relation that identifies a; as an operator that annihilates particles. The action of creation
and annihilation operators in Fock space is illustrated in Fig. 2.1. Creation operators
4"« FV s FN+1 increase the particle number by one, while annihilation operators & :
TN _, FN-1 Jower it by one; the application of an annihilation operator to the vacuum
state, a,|0) = 0, annihilates it. (Do not confuse the vector |0} with the number zero.)

| Taking the Hermitian adjoint of Eg. (2.5) we obtain la;, a;]; = 0. Further, a straight-
F forward calculation based on the definitions (2.3) and (2.6) shows that la;, a}] re 0;)-
Altogether, we have shown that the creation and annihilation operators satisfy the alge-
braic closure relation

a;, aﬂfzﬁﬂ-, la;, a;]; =0, [ala?]g = 0. (2.7)

¥

i Given that the full complexity of Fock space is generated by application of als to a
single reference state, the simplicity of the relations obeyed by these operators seems

remarkable and surprising.

==
B

mﬁ.ﬂ

73 Perhaps less surprising is that, behind this phenomenon, there lingers some math-
f i ematical structure. Suppose we are given an abstract algebra A of objects a;, al
. satisfying the relation (2.7). (Recall that an algebra is a vector space whose elements
can be multiplied by each other.) Further suppose that A is irreducibly represented
in some vector space V, i.e. that there is 2 mapping assigning to each a; € A a linear
mapping ¢; : V — V, such that every vector |v) € V can be reached from any other

PEETLIFLIEREE
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46 Second quantization

|w) € V by (possibly iterated) application of operators a, and a; (irreducibility).’

According to the Stone-von Neumann theorem (a) such a representation is unique
. (up to unitary equivalence), and (b) there Is @ unique state |0} € V that is annihilated
a by every a.. All other states can then be reached by repeated application of als.
*  The precise formulation of this theorem, and its proof —a good practical exercise in

working with creation/annihilation operators — are left as Problem 2.4.1. From the
. Stone—von Neumann theorem, we can infer that the Fock space basis could have been
. constructed in reverse. Not knowing the basis {|n;, n,, ...)}, we could have started
from a set of operators obeying the commutation relations (2.7) acting in some a
priori unknown space F . Outgoing from the unique state |0), the prescription (2.4)
would then have yielded an equally unique basis of the entire space F (up to unitary
transformations). In other words, the algebra (2.7) fully characterizes the operator
action and provides information equivalent to the definitions (2.3) and (2.6).

Practical aspects

Our next task will be to promote the characterization of Fock space bases introduced
above to a full reformulation of many-body quantum mechanics. To this end, we need
to find out how changes from one single-particle basis {|A)} to another I1A)} affect the
operator algebra {a, }. (In this section we shall no longer use integers to identify different
elements of a given single-particle basis. Rather, we use Greek labels A, i.e. @, creates
a particle in state A.) Equally important, we need to understand in what way generic
operators acting in many-particle Hilbert spaces can be represented in terms of creation
and annihilation operators.

» Change of basis: Using the resolution of identity id =Y 5, |A) (Al the relations A) =
3 AV (A, [A) = a) | Q). and |A) = a;[(2) immediately give rise to the transformation
law

A

at =Y (AN)a).  ax= Y (AlN)ay. (2.8)
A

!
|

In many applications, we will be dealing with continuous sets of quantum numbers (such
as continuous position coordinates). In these cases, the quantum numbers ire commonly
denoted by a bracket notation @, ~a(x) = 3. {x|A)a, and the summations appearing
in the transformation formula above translate to integrals: a, = [ dx{Alx)a(x).

Example The transformation from the coordinate to the Fourier momentum repre-
sentation in a finite one-dimensional system of length L would read

a, = []L dx (k|x)a(x), a(x) =D (x|k)a, (2.9)

K

where (k|x) = (x]k)* = e~ [/,

7 To appropriately characterize the representation, we need to be a bit more precise. Within .4, a; and a; are independent

objects, i.e. in general there exists no otion of Hermitian adjointmess in 4. We require, though, that the representation
assigns to g, the Hermitian adjoint (in V) of the image of a;. Also, we have to require that [a;, a;] € A be mapped onto

o M . - . ¥ ’
[g;,a;]1: V=V where, in the latter expression, the commutator involves the ordinary product of matrices a;. a; : V. — V.
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2.1 Introduction to second quantization 47

o

e Representation of operators (one-body): Smwle -particle or cane:—bndy operators (),

acting in the NV-particle Hilbert space F* generally take the form O =3 5,, where
&, is an ordinary single-particle Dperamr acting on the nth particle. A typical E:}:ample
is the kinetic energy operator T = S p2/2m, where p, is the momentum operator
acting on the nth particle. Other examples include the one-particle pcrtentlal operator
V=Y V(%,), where V(x) is a scalar potential, the total spin operator } , S, etc. Since
we have seen that, by applying field operators to the vacuum space, We can gencrate
the Fock space in general and any N-particle Hilbert space in particular, it must be
possible to represent any operator (), in an a-representation.

Now, although the representation of n-body operators is, after all, quite straightior-
ward. the construction can, at first sight, seem daunting. A convenient way of finding
such a representation is to express the operator in terms of a basis in which 1t is
diagonal, and only later transform to an arbitrary basis. For this purpose it is useful to
define the occupation number operator

h, =dla, (2.10)

with the property that, for bosons or fermions (exercise), 7, (a:)n 0) =n (.:z})” 10).
Since n1, commutes with all a} _,» EQ. (2.4) readily implies that 7] A 17, s Py s )=
ny, 74,5 My s - - ), i.e., i1, simply counts the number of particles in state A {hence the
name “occupation number operator”). Let us now consider a one-body operator, E‘}l,
which is diagonal in the basis |A), with & = )_; 0, |A;)(A;], 05, = (A;|0[A;). With this
definition, one finds that

16,

]

I

! ! -
H}I.E!H.rigj -..‘ZL}AFHAE H;‘ilrﬂizjili

Since this equality holds for any set of states, one can infer the second quantized;
representation of the operator U, =

o= [ =]

0, = >_oyiy, = (Alo[A)a,a,.

A=0 A=0
The result is straichtforward: a one-body operator engages a single particle at a time —
the others are just spectators. In the diagonal representation, one simply counts the
number of particles in a state A and multiplies by the corresponding eigenvalue of
the one-body operator. Finally, by transforming from the diagonal representation to a
general basis, one obtains the general result,

= Y (ulolv)ala,. | (2.11)
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8 Wolfgang Pauli 1300-53
Nobel Laureate in Physics in 1940

. Principle, also called the Pauli
* Principle." (Image © The Nobel

“t~r the discovery of the Exclusion

Second guantization

To cement these ideas, let us consider some
specific examples: representing the matrix

" elements of the single-particle spin operator

a8 (S) e = 5(07) > Where @, & 15 a IWO-
component spin index and o; are the Pauli®

spin matrices

Foundation.)

- 0 1 - 0 —i 1 0 (2.12)
= : = , 03— : :
1=\1 0)7 " \i O *Tlo -1
the spin operator of a many-body sysiem assumes the form

(2.13)

o _ T
S=) a},Systia-
A

I- 1 :. -
- ~l - e i
R e e ot L

(Here, A denotes the set of additional quantum numbers, €.8. a lattice site index.)
When second quantized in the position representation, one ¢an show that the one-body
Hamiltonian for a free particle is given as a sum of kinetic and potential energy as

H= f dr a'
B _ ra'(r) [2

where p = —ihd.

FEFEE L

"<

+v(r)1a(r), (2.14)

3

e = B e
B T T e e s '
[ "."?-‘i"':‘-E:'-'I""u"-'

EYWEECISE  Starting with momentum representation (in which the kinetic energy 18
diagonal), transform to the position representation and thereby establish Eq. (2.14).

The local density operator p(r), measuring the particle density at a certain coordinate
r, is simply given by

p(r) =a'(r)a(r). - (2.15)

Finally, the total occupation number operator, obtained by integratingimver the
particle density, is defined by N = [d?r a’(r)a(r).- Ina theory with discrete quantum
numbers, this operator assumes the form N=Y,dla,. |
o Representation of operators (two-body): Two-body operators @, are needed to
describe pairwise interactions between particles. Although pair-interaction potentials
are straightforwardly included ‘n classical many-body theories, their embedding into
conventional many-body quantum mechanics is made cumbersome Dy particle indis-
tinguishability. As compared with the conventional description, the formulation of
interaction processes within the language of second quantization 18 considerably more
straightforward.
Initially, let us consider particles subject 10 the symmetric two-body potential
V(r,,.r,) = V(. r ) between two particles at position I, and r,. Our aim is to find
an operator ¥ in second quantized form whose action on a many-body state gives
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(presently, it is more convenient to use the original representation (2.1) rather than the
occupation number representation)

N N
- 1
Virlt Tz --. rf».f:} -— Z V(rm rm)lrlr I, .. +r1‘~."} — '2_ Z V{rn, rn1)|ri! Iy -- 'rl’-.f}‘

R-<m n==it

When this is compared with the one-point function, one might immediately guess that

ﬁ:%fd“rf dira’ (v)a (r)V(r,t)a()a(r).

That this is the correct answer can be confirmed by applying the operator to a many-
body state:

a’(r)a’ (r)a(r)a(r)|r,, s, ... Ty) = a'(r)a’ ()a(a(r)a (r;) - a' (ry) Q)
plr’)

N . .
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N N
Y (=8 —1,) Y 80 —x,)a (r)a (r) - a (- )a (T) @ ()| D)
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N
= ), o(r —1,)6(r' —1,)|r. BTy
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Multiplying by V(r,r’)/2, and integrating over r and r/, one confirms the valid-
ity of the expression. It is left as an exercise to confirm that the naive expression
% [dir [ 47 V(r, r)p(r)p(r") does not reproduce the two-body operator. More gen-
erally, turning to a non-diagonal basis, it 1s straightforward to confirm that a general
two-body operator can be expressed in the form

2T Z m@,;’.:l,h’ala;*ﬂﬂﬂﬂ’ (2.16)
AN !

where 0, x = (s w @, A, X, i

As well as the pairwise Coulomb interaction formulated above, another important’
interaction, frequently encountered in problems of quantum magnetism, is the spin-
spin interaction. From our discussion of the second-quantized representation of spin S
above, we can infer that the general spin—spin interaction can be presented in second-
quantized form as

A 1 . .
V — ;f d‘irf d4r > J(r, I"}S,Iﬁ-S&.r]ﬁfa['x{r)agx,(r’)aﬁ,(r")aﬁ(r},
P ﬂﬂlﬁﬁl

where J(r, ') denotes the exchange interaction.

In principle, one may proceed in the same manner and represent general n-body inter-
actions in terms of second-quantized operators. However, as n > 2 interactions appear
infrequently, we refer to the literature for discussion.
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This completes our formal introduction to the method of second quantization. To
remove some of the abstraction, and to develop fluency the operation of the method, we
will close this chapter by addressing a number of problems chosen from the realm of con-
densed matter. In doing so, we will see that, although second quantization provides merely
a representation and not a solution, its application often leads to considerable simplifica-
tion of the analysis of many-particle systems. To further motivate our discussion, we will
endeavor to classify some of the characteristic “phases” of the interacting electron gas in
solid state media. The effective model Hamiltonians that appear below provide the input
for subsequent applications of the methods of quantum field theory considered in this text.

It is, however, 1mportant to emphasize that the present text is necessarily limited in its
scope. Although a detailed survey of modern aspects of condensed physics s 2 worthwhile
and welcome enterprise, we do not wish to detract from our main focus, the development
of modern methods of quantum field theory in the condensed matter setting. Readers
primarily interested 1n methodological aspect may safely skip the next sections and furn
directly to Chapter 3 below. For later reference. it is worthwhile keeping in mind that the
physical motivation for the study of various prototypical model systems considered later
in the text is given in Section 2.2.

e By o g e by e e S SRS AL F i e o T R,

2.2 Applications of second quantization

Starting from the prototype Hamiltonian (1.1) introduced in Chapter 1, we have already
explored generic aspects of lattice dynamics in condensed matter systems. In much of the
remaining text we will explore examples from the complementary sector focussing on the
electronic degrees of freedom. Drawing on the first of the principles discussed in Chap-
tar 1. we will begin our discussion by reducing the full many-body Hamiltonian to a form
that contains the essential elements of the electron dynamics. As well as the pure electron
sub-Hamiltonian H., the reduced Hamiltonian will involve the interaction between the
electrons and the positively charged 1onic background lattice. However, typically, lattice
distortions due to both the motion of the ions and the jon—ion interaction couple only indi-
rectly. (Exercise: Try to think of a prominent example where the electron sector is crucially
influenced by the dynamics of the host lattice.) To a first approximation, wg ‘may, there-
fore, describe the electron system through the simplified Hamiltonian, H=H,+ V.., where

ty = fatras ) 2+ Y0 ot &

r 1 * T ’ /
Vo= L atr [t Vo =) )0 () ()2, )

V(r) =Y., Vi (R, —1) denotes the lattice potential experienced by the electrons, and the
coordinates of the lattice ions R; are assumed fixed. For completeness, we have also
endowed the electrons with a spin index, & —4 / . The Hamiltonian defines the problem
of the interacting electron gas embedded 1n a solid state system. |

Despite its seemingly innocuous structure, the interacting electron Hamiltonian (2.17)
accommodates a wide variety of electron phases from metals and magnets to insulators,
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