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Appendix C. Second Quantization

C.1 Rules
C.1.1 States

Begin with a complete orthonormal set of basis functions ;. Any collection of
1dentical particles can be described by sums of products of these functions. In the
formalism of second quantization, one focuses upon many-body basis functions,
which describe how many particles are in each state. For example,

0,2,3, 10, .. .) (C.1)

means that no particles are in state 1. two particles are in state 1, three are in
state 13, and so on. The integers describing the numbers of particles are called
occupation numbers.

C.1.2 Operators

The operators of second quantization change the numbers of particles in these
quantum states. There is a creation Operator with index / that adds one particle
o state / and an annihilation operator with index ] that takes one particle away
from state /.

Fermions. The Pauli principle prohibits more than one electron from occupying
any given quantum state, so the occupation numbers all are zero or one. The cre-
ation and annihilation operators are usually denoted by ¢/ and & respectively, The
way they operate is

0 ifrm=0
. _ .
CEJHIHE S } { [HIHE S | } ]'f'H; =1 (C_a)
~F 0 ifﬂg =1
C"[Hlﬂz”'m‘”)—{jnmg...l...} ifn; =0. (C.25)
The operators anticommute:
el +élél =0 (C.33)
CiCyp +Epcr =) | (C.3b)
EgEET, —+ E;Eg = dp. (C.3¢)
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Bosons. Bosons can inhabit any quantum state as often as they please, so the
occupation numbers range over all non-negative integers. The creation and an-
nihilation operators are usually denoted by 4; and d; respectively. The way they

operate 1s
ﬁglmﬂg PN | 1 } = \/?Tglnlﬂg " w. Rg—l - ) (C.4a)
ajlmma . ..np .. ) =+/m+1lany o100, (C.4b)
The operators commute:
alal —aha =0 (C.52)
daiay —apd; =10 (C.5b)
aay, —al,ar = oy . (C.5¢)

C.1.3 Hamiltonians

A Hamiltonian that is given as a sum of operators on single particles can be rewrit-
ten in second quantized notation as
fﬁ[ — Z fj fj means an operator such as f(7;) that acts  (C.6)
J

in some identical fashion upon each particle
j 1n turn.

— Z Ejr- (“ga{eg [ 1 ) |_}E1 [‘l;i’gf (1) >Eff . The wave functions 1; and operator f all act (C?]
T on particle 1. The expression for bose opera-
tors is identical.
The notation |ty (1)) means that particle number 1 is in state ¥y . For example, if
f is the kinetic energy operator and 1y is the product of a Wannier function w; and

a spin function y;, then -
272
b (I b (1)) = § 47 **ﬂ,(—*) (C.8)
(1) Falr (1) = xex, [ @71 w0 (F1) S (7 ..
The leading delta function requires the spins of the two states to be the same.
The Laplacian V2 acts on variable 7.

A Hamiltonian that is given as a sum of operators on pairs of particles can be o
rewriften in second quantized notation as |
I = z fn i fip means an operator such as f (7j, F;) that (C.9)
vy acts in some identical fashion upon pairs of
J7i particles.
ST éleh e e (i (1)4r (2)| Frzltbr (1) (2)) (C.10)

I”.l' Ilf.H' EFH‘
For example, if fi; is the Coulomb interaction and ¢/; is the product of some spatial
wave function ¢; and a spin function y;, then

(1 (1)y (2)] frzltbw (1) (2))
= SO | A2 61(1) 63 (72

Often one does not write down spin sums or spin delta functions explicitly and just
multiplies the final answer by appropriate factors of two.

& L
—~ o (F1)pp (F2). (C.11)
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C.2 Derivations

C.2.1 Bosons

A collection of Bose particles can be described by a wave function of the form

1
]H]Hgﬂg . } = \/N!Hi!ﬂg.! | : Z H iﬂ;g (7) Sj (C.12)

" Permntations s; i =1

The function s; gives some permutation of the integers j, and by summing over
all permutations the wave function is guaranteed to be symmetric under interchange
of all indices.

The function /() is some function into the positive integers. The idea is that the
states iy are numbered in a way that may be quite arbitrary. Suppose one decides
to build a many-body state with one particle in state 1 and two particles in state 3.
The function [(j) could then be

(1)=3, (2)=1 [(3)=3. (C.13)

Notation of the form [1)2(6)) means that particle number 6 is in state 1.

The number of times a certain integer /() appears as j ranges from 1 to N is
n;, 80 m; gives the number of particles in state [. The factors of n1!mo! . . . account
for the fact that any given term in the sum where n; particles are in state 1 appears
ni! times. To illustrate that the factorials are correctly employed, suppose first of
all that there is only one particle in each distinct state. Then there are N! distinct
orthogonal functions appearing in the sum (C.12), and the normalization must be
1/+/N!. On the other hand, suppose all particles are in state /1. Then all the V!
terms 1n the sum are identical, and the sum must be divided by N! to produce a
normalized wave function.

To study the behavior of this wave function, it is helpful to define the operator

Y1 (7)) (e (7). (C.14)

Ejep =
J
The effect of this operator 1s to search one at a time for each particle in state 1y

and move it to state 1.
To use this operator, consider a Hamiltonian of the form (C.6),

| 1

= > [N i (G) | filww ) (o (7)) (C.15)

.
j=1 ij

=3 Bucr (D) falghr (1)). Toe mstixlemensof e oe-pice cper - (C.16)
i

ator f' do not depend upon which particle is
mvalved, so the label 1 can be used instzad of

J.

Let £, act upon |niny . . .). If state 14y is not occupied, the result is zero. If
it 18 occupied, then in every term of (C.12), there will be precisely ny values of j



————
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tor which there is a nonzero result, with the population of state 7’ being reduced by
1 and the population of state / being increased by 1. The result will not be properly
normalized because +/ny In;! is in the denominator rather than +/(ny — 1)1(r; - 1)1,
and a factor of ny has been acquired along the way. So

Ercplmmy )= me(m+1) . omp—1. . m+1..). (C.17)
For this reason, define
ﬁ;[leing...}:\/ﬁL..H;—}—l.”) (C.18a)
&g]ﬂl,ﬂg...}:ﬁ|...ﬂg——1...} (C.18b)
so that ) _
Ej_p=aay. (C.19)

It is easy from Eq. (C.18) to check the commutation relations (C.5) by allowing
the creation and annihilation operators to act in various orders upon general states

rﬂlﬂg ‘ }

C.2.2 Fermions

The wave function describing a collection of fermions must be antisymmetric under
interchange of arguments, and it consists of sums of terms of the form

N

1 s
U=|mmny .. )= Nl > - 1 Uiz (s7))s (C.20)
" Permutations s j=1
where the sum is over all permutations s; of j =1 ... N, with s the sign of the

permutation. In order for ¥ not to equal zero, no more than one electron is allowed
to inhabit each individual state. If an electron is in state [, then »; is one and :

otherwise it is zero. .

Given the occupation numbers #; for each state Y, the wave function that can
be formed from the collection is almost unique. There is only one ambiguity, which
has to do with the overall sign of the wave function. The ambiguity is avoided by
requiring that /( j) be an increasing function of ;.

Consider again a Hamiltonian of the form (C.15), acting on antisymmetric
wave functions ¥ as in Eq. (C.20). It is sufficient to examine the behavior of a
single term in the sum (C.15). For example, look at

(Walthr (1)) (2w (1) Wy). (C.21)

(C.21) 1s nonzero only if in [¥p) 1y is occupied, 1; unoccupied, while in [T,)
¥y 18 unoccupied, 1); is occupied, and otherwise U, and U}, are identical. To be
explicity, let

T,) = gf-m%m (1)) 162 (52)) s (53)) C22)

,) zg(—i)hjﬁim (51)) 163 (52)) [ (5)) (€23
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and look at
(Wala(1))(24(1)[Tp). (C.24)

The parts of the wave functions that survive are

@I B~ @lwe)
{ (2(1)l2(1)) | (C.25)
(¥4 (1)[44(1)) |
1 (@)s(3) [ (3))]
:_%_ (C.26)

The general lesson to learn from this example is that one must permute 1); past all
the states below it in the ordering scheme to produce the term |1;(1)), obtaining a
factor of

(—1)Zsm ™ (C.27)

Fl

where r; 1s 1 1f state [ 1s occupied 1n W, and zero otherwise. One also has a factor

(_1}2;1 " (C.28)

similarly, so that

N ’—1 I—1
S (Waltr (7)) (e () [W5) = (—1)22= W (=1)2m ™ (C29)

j=1

if it 1$ not zero.
Therefore, one can again define the operator E;,_p from Eq. (C.14). Write wave
functions in the occupation number representation

U) = |mmans . . ), (C.30)
where each »; can be either zero or one. In the example above,

T,) =|1110000 . . .) (C.31)
U,) = (1011000 . . .). (C.32)

In acting on such a wave function
Erp|mmnans ... (C.33)
= (—I)Ef—l (- 1)EJ—1 "rfinﬂlfﬁn{}[ﬂlﬂgﬁg oonap—1...m+1...).
The creation and annihilation operators are defined so that

Ep=éép. (C.34)
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More explicitly,

i—1
Cilmimans . . ) = 51:m(_1)2f=‘ lminons .. .m—g Ompgy .. .)  (C.352)
=1

EE|H1H3H3 o ) :5&;;;[:—1)21':1 ﬂj|?11ngﬂ3 N (TR I FR ) (C.35b)

The anti-commutation relations in Eq. (C.3) can be verified explicitly from this

definition.
A final relation that should be verified is Eq. (C.10). The special ordering of

the creation and annihilation operators results from the condition j # j' in the sum
over particle numbers. Write

> fir

Jj=J
= 5 WO OGS Dyl e D)o Do)
RS | = R (C.36)
- a0} e DI [ G o FT] e (o e i ()
"3 G IO e O GO Db G () €30

'H_.."_‘- 9

— .

i

= Y By B (1) (2)| frzltor (V)b (2))

I!!'l!.l'El".l'g'.l'll'.l'
— Y v B (Wi(1)r (2)| frzltow (1) (2)) (C.38)
IE.’I.I'J'EI.I’J'
= . &epéém (L) (2)| faltr ()b (2)) )
EIIEJ’J'EJ'J’J‘
S° b & (b (2)| fralvor ()3 (2)) (C.39)
EE."EJ’J’E.’J’J’
= Y el émem (V) (2)] fraldow (1) (2)). (C.40)
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