

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

FAKULTÄT FÜR PHYSIK

JAN VON DELFT, KATHARINA STADLER, FRAUKE SCHWARZ TO: RECHENMETHODEN FÜR PHYSIKER, WISE 2013/14

http://homepages.physik.uni-muenchen.de/~vondelft/Lehre/13t0/

Mathe-Vorkurs, Blatt 04: Vektoren, komplexe Zahlen

07.10.2013

Hausaufgabe 1: Skalar- und Vektorprodukt (*)

Seien
$$x = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}, y = \begin{pmatrix} 9 \\ 3 \\ 6 \end{pmatrix}$$
 und $z = \begin{pmatrix} 2 \\ 0 \\ -3 \end{pmatrix}$. Berechne:

 $a) \quad x \cdot y$

b) $x \cdot x$ (Bedeutung)

c) $y \cdot z$

d) $x \times x$ (Bedeutung)

e) $x \times z$

f) $y \times z$

 $g) \triangleleft (x,y)$

 $h) \triangleleft (x,z)$

 $i) \triangleleft (y,z)$

Hausaufgabe 2: Skalarprodukt (*)

Finde alle Vektoren, die mit $x = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ und $y = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ das konstante Skalarprodukt 2 haben.

Hausaufgabe 3: Komplexe Zahlen (*)

Seien $z_1 = 3 + 5i$ und $z_2 = 1 - 7i$. Berechne

 $a) z_1 + z_2$

b) $z_1 \cdot z_2$

c) $z_1 \cdot z_1$

d) \bar{z}_1

e) $z_1 \cdot \bar{z}_1$

f) $|z_1|$

g) $\Re(z_1)$

h) $\Im(z_1)$

i) $\left|e^{i\Re(z_1)}\right|^2$

 $i) e^{i\frac{\pi}{2}}$

Hausaufgabe 4: Vektorraum der stetigen Funktionen (*)

- 1. Zeige, dass der Raum der stetigen Funktionen von [0,1] nach \mathbb{R} einen Vektorraum bildet. Das heit, sei $V=\{f:[0,1]\to\mathbb{R}:f\text{ stetig}\}$ und die Addition und Multiplikation punktweise definiert durch $(f+g)(x)=f(x)+g(x)\quad \forall x\in[0,1]$ und $(\lambda\cdot f)(x)=\lambda\cdot f(x)\quad \forall x\in[0,1]$. Zeige, dass $(V,+,\cdot)$ einen Vektorraum bildet.
- 2. Zeige, dass $\langle \cdot, \cdot \rangle : v \times V \to \mathbb{R}$, definiert durch $\langle f, g \rangle = \int_0^1 dx \ f(x)g(x)$, auf V ein Skalarprodukt bildet.