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We present an algorithm for the explicit numerical calculation of SU(N ) and
SL(N ,C) Clebsch–Gordan coefficients, based on the Gelfand–Tsetlin pattern calcu-
lus. Our algorithm is well suited for numerical implementation; we include a computer
code in an appendix. Our exposition presumes only familiarity with the representation
theory of SU(2). C© 2011 American Institute of Physics. [doi:10.1063/1.3521562]

I. INTRODUCTION

Clebsch–Gordan coefficients (CGCs) arise when decomposing the tensor product V S ⊗ V S′
of

the representation spaces of two irreducible representations (irreps) S and S′ of some group into a
direct sum V S′′

1 ⊕ · · · ⊕ V S′′
r of irreducible representation spaces. They describe the corresponding

basis transformation from a tensor product basis {|M ⊗ M ′〉} to a basis {|M ′′〉} which explicitly
accomplishes this decomposition.

CGCs are familiar to physicists in the context of angular momentum coupling, in which the direct
product of two irreps of the SU(2) group is decomposed into a direct sum of irreps. SU(3) Clebsch–
Gordan coefficients arise, for example, in the context of quantum chromodynamics, while SU(N )
CGCs, for general N , appear in the construction of unifying theories whose symmetries contain the
SU(3) × SU(2) × U (1) standard model as a subgroup.1 SU(N ) CGCs are also useful for the numeri-
cal treatment of models with SU(N ) symmetry where they arise when exploiting the Wigner–Eckart
theorem to simplify the calculation of matrix elements of the Hamiltonian. Such a situation arises,
for example, in the numerical treatment of SU(N )-symmetric quantum impurity models using the
numerical renormalization group.2 Such models can be mapped onto SU(N )-symmetric, half-infinite
quantum chains, with hopping strengths that decrease exponentially along the chain. The Hamilto-
nian is diagonalized numerically in an iterative fashion, requiring the explicit calculation of matrix
elements of the Hamiltonian of subchains of increasing length. The efficiency of this process can be
increased dramatically by exploiting the Wigner–Eckart theorem, which requires knowledge of the
relevant Clebsch–Gordan coefficients. (Details of how to implement SU(N ) symmetries within the
context of the numerical renormalization group will be published elsewhere.) Similarly, tremendous
gains in efficiency would result from developing SU(N )-symmetric implementations of the density
matrix renormalization group for treating generic quantum chain models,3, 4 or generalizations of
this approach for treating two-dimensional tensor network models.5

For explicit calculations with models having SU(N ) symmetry, explicit tables of SU(N )
Clebsch–Gordan coefficients are needed. Their calculation is a problem of applied representa-
tion theory of Lie groups that has been solved, in principle, long ago.6–10 For example, for SU(2),
Racah11 has found an explicit formula that gives the CGCs for the direct product decomposition
of two arbitrary irreps S and S′. For SU(N ), explicit CGC formulas exist for certain special cases,
e.g., where S′ is the defining representation.12–14 Moreover, symbolic packages such as the program
“Lie” (Ref. 15) also allow the computation of certain CGCs but rather have been conceived as
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a general-purpose software for manipulating Lie algebras than a high-speed implementation for
calculating CGCs. However, for the general case no explicit CGC formulas are known that would
constitute a generalization of Racah’s results to arbitrary N , S, and S′.

The present paper describes a numerical solution to this problem, by presenting an elementary
but efficient algorithm (and a computer implementation thereof) for producing explicit tables of
CGCs arising in the direct product decomposition of two arbitrary SU(N ) irreps, for arbitrary N .
(Since SU(N ) and SL(N ,C) have the same CGCs, our algorithm also applies to the latter, but for
definiteness we shall usually refer only to the former.) Our work is addressed at a readership of
physicists. Our algorithm uses only elementary facts from SU(N ) representation theory, which we
introduce and summarize as needed, presuming only knowledge of SU(2) representation theory at
a level conveyed in standard quantum mechanics textbooks. Previous attempts at formulating an
algorithm for calculating SU(N ) CGCs are either not sufficiently general for our purposes16, 17 or
require mathematical methods18 much more advanced than ours, far beyond the scope of a standard
physics education.

We begin in Sec. II by formulating the problem to be solved in rather general terms. To set
the scene for its solution, Secs. III–VII summarize the various elements of SU(N ) representation
theory (without proofs, since this is all textbook material). First, in Sec. III we review the calculation
of SU(2) CGCs using a strategy that can readily be generalized to the case of SU(N ). Then we
proceed to SU(N ) representation theory and review in Secs, IV–VII a scheme, due to Gelfand and
Tsetlin (GT),19 for labeling the generators of the corresponding Lie algebra su(N ), its irreps and the
states in each irrep. The GT-scheme is convenient for our purposes since it yields explicit matrix
representations for any SU(N ) irrep (Eqs. (28) and (29) below). With these in hand, we are finally
in a position to formulate, in Secs. VIII–XII, our novel algorithm for computing SU(N ) CGCs: it is
simply a suitably generalized version of the SU(2) strategy of Sec. III.

The main text is supplemented by several technical appendices. Appendix A reviews the relation
between the GT-patterns used in the text and Young tableaux, with which physicists are perhaps
somewhat more familiar. Appendix B deals with the Littlewood–Richardson rule for determining
which irreps V S′′

occur in the decomposition V S ⊗ V S′
. Appendix C describes two algorithms,

needed for indexing purposes, which map the labels of irreps and of carrier states, respectively, onto
natural numbers. Finally, Appendix D, which is available in electronic form,20 gives the source code
for our computer implementation, written in C++. As a service to potential users, we have set up
a website21 containing an interactive “CGC-generator.” It allows visitors to perform a number of
tasks on input data of their own choice, such as finding all irreps S′′ occuring in the decomposition
of S ⊗ S′ or finding the complete set of CGCs arising in the decomposition of S ⊗ S′.

II. STATEMENT OF THE PROBLEM

To fix notation, let us state the problem we wish to solve for a general matrix Lie group G. (In
subsequent sections, we restrict our attention to G = SU(N ) or SL(N ,C).) Let S be an irrep label that
distinguishes different irreps of G and dS the dimension of irrep S. Let V S = span{|M〉} denote the
carrier space for S, spanned by dS carrier states |M〉, where the label M will be understood to specify
both the irrep S and a particular state in its carrier space. (This will be made explicit in subsequent
sections.) Note that, throughout this paper, we adopt the viewpoint of quantum mechanics, where
we consider only representations on complex vector spaces. Besides, a state is to be understood as
a one-dimensional subspace, not a vector. However, we pick a representative vector |M〉 of each
such subspace and subsequently treat a state as a vector. We assume the inner product of two such
normalized vectors |M〉 and |M ′〉 to be given by 〈M |M ′〉 = δM,M ′ unless noted otherwise.

The action of a group element g ∈ G can be represented on V S as a linear transformation,

g : |M〉 →
∑
M ′

(U S
g )M M ′ |M ′〉 , (1)

where the U S
g are dS × dS dimensional unitary matrices respecting the group structure U S

g1
U S

g2
=

U S
g1g2

.
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Now consider the direct product of two carrier spaces,V ⊗ V ′ = span{|M ⊗ M ′〉}, of dimension
dS · dS′ . We are interested in its decomposition into a direct sum of carrier spaces V S′′

of irreps S′′,

V S ⊗ V S′ =
⊕

S′′

N S′′
SS′⊕

α=1

V S′′,α ≡
⊕

S′′
N S′′

SS′V S′′
. (2)

Here, the integer N S′′
SS′ ≥ 0, called the outer multiplicity of S′′, specifies the number of times the irrep

S′′ occurs in this decomposition, and for a given S′′, the outer multiplicity index α = 1, . . . , N S′′
SS′

distinguishes multiple occurrences of S′′. Correspondingly, let {|M ′′, α〉} be a basis for the direct
sum decomposition, i.e., V S′′,α = span{|M ′′, α〉}. Carrier space dimensions add up according to
dS · dS′ = ∑

S′′ N S′′
SS′dS′′ .

The decomposition (2) implies that a basis transformation C can be found from the direct
product basis to the direct sum basis which block-diagonalizes the matrix representations of all
group elements (p. 100 of Ref. 22),

C(U S
g ⊗ U S′

g )C† =

⎛
⎜⎜⎜⎜⎜⎝

U S̃1
g

U S̃2
g

U S̃3
g

. . .

⎞
⎟⎟⎟⎟⎟⎠ , (3a)

where each S̃ j is a shorthand for a certain (S′′, α).
Since G is a matrix Lie group (SU(N ) or SL(N ,C)), it is convenient to work with its associated

Lie algebra g (su(N ) or sl(N ,C)). It is obtained by considering the infinitesimal action of G on V S ,
i.e., by taking derivatives of the group at the identity. This derivative acts on the direct product of
two group representations according to the product rule, so that the basis transformation C could
equally be defined by the property that it block-diagonalizes the following algebra representation:

C(U S
A ⊗ IS′ + IS ⊗ U S′

A )C† =

⎛
⎜⎜⎜⎜⎜⎝

U S̃1
A

U S̃2
A

U S̃3
A

. . .

⎞
⎟⎟⎟⎟⎟⎠ . (3b)

When projected to the subspace V S′′,α (denote the corresponding projector by P S′′,α), the action of
the algebra in the direct product representation can thus be written as

C(U S
A ⊗ IS′ + IS ⊗ U S′

A )C† P S′′ ,α−→ U S′′,α
A . (4)

Concretely, the basis transformation C can be expressed in the form

|M ′′, α〉 =
∑
M,M ′

C M ′′,α
M,M ′ |M ⊗ M ′〉 , (5)

where the C M ′′,α
M,M ′ are the Clebsch–Gordan coefficients of present interest. They are understood to be

defined only for N S′′
S,S′ �= 0 and express the carrier states of V S′′,α in terms of linear combinations

of product basis states from V S ⊗ V S′
. The CGCs encode the so-called selection rules, in that

C M ′′,α
M M ′ �= 0 only for a limited number of combinations of M , M ′, and M ′′.

Since the CGCs are the entries of the unitary matrix C , they satisfy the following orthonormality
conditions: ∑

M,M ′
C M ′′,α

M,M ′ (C M̃ ′′,α̃
M,M ′)∗ = δM ′′,M̃ ′′δα,α̃, (6a)

∑
M ′′,α

C M ′′,α
M,M ′ (C M ′′,α

M̃,M̃ ′)
∗ = δM,M̃δM ′,M̃ ′ . (6b)
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FIG. 1. SU(2) weight diagram for S = 2. Arrows show the action of J± on the state |S = 2, m = 1〉.

Actually, the C M ′′,α
M,M ′ can always be chosen to be real, and we shall do so throughout.

The goal of the present work is to present (and implement on a computer) an efficient algorithm
for G = SU(N ) or SL(N ,C), which, for any specified N and any specified irrep labels S and S′,
produces explicit tables of all CGCs arising in the direct product decomposition (2).

III. REVIEW OF SU(2) CLEBSCH–GORDAN COEFFICIENTS

Before considering the general SU(N ) case, we first review a method for calculating SU(2)
CGCs. While there are various ways to accomplish this task, the particular approach presented
below illustrates the general strategy to be used for SU(N ) in later sections. The discussion is
structured as follows: First, we recall the Lie algebra associated with SU(2), then its irreducible
representations, then move on to product representation decompositions, and finally set up equations
specifying the CGCs.

The Lie algebra associated with SU(2), denoted by su(2), consists of all real linear combinations
of three basis elements, Jx , Jy , and Jz , obeying the commutation relation [Jx , Jy] = i Jz (plus cyclic
permutations of the indices). However, it will be more convenient to deal with complex linear
combinations of these, which constitute the algebra sl(2,C). As a basis for the latter, it is common to
choose three elements, J+ = Jx + i Jy , J− = Jx − i Jy , and Jz , obeying the following commutation
relations:

[Jz, J±] = ±J±, (7a)

[J+, J−] = 2Jz . (7b)

Each su(2) irrep, and correspondingly, each SU(2) irrep, can be uniquely (up to an isomorphism)
identified by a nonnegative half-integer, S = 0, 1/2, 1, . . .. The carrier space V S of such an irrep
has an orthonormal basis where the states, denoted by |S, m〉, are labeled by a half-integer, m =
S, S − 1, . . . ,−S, such that the action of Jz and J± is given by

Jz |S, m〉 = m |S, m〉 , (8a)

J± |S, m〉 = √
(S ± m + 1)(S ∓ m) |S, m ± 1〉 . (8b)

The Jz-eigenvalue m will be called the z-weight of the state |S, m〉 (in anticipation of similar
nomenclature to be used for SU(N ) below). The action of J± can be visualized in a so-called weight
diagram, which represents each carrier state |S, m〉 by a mark on an axis at the corresponding m-
value. For example, the carrier space of S = 2 is shown in Fig. 1. In anticipation of the generalization
to SU(N ), we label basis states from now on by a composite index M = (S, m), which includes both
the irrep label S and the basis index m.

Each carrier space V S contains a unique (up to normalization) highest-weight state, |H ′′〉,
defined by the property that

J+ |H〉 = 0. (9)

For su(2), it carries the labels |H〉 = |S, m = S〉.
In the direct product decomposition of two su(2) irreps S and S′, the outer multiplicity N S′′

S,S′ ,
in the notation of Eq. (2) is given by

N S′′
S,S′ =

{
1, for |S − S′| ≤ S′′ ≤ S + S′

0, otherwise
. (10)
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Since N S′′
S,S′ ≤ 1 for su(2), we shall, throughout this section, omit the index α appearing in Eq. (5).

In particular, Eq. (5) now takes the form

|M ′′〉 =
∑
M,M ′

C M ′′
M,M ′ |M ⊗ M ′〉 , (11)

where the CGCs C M ′′
M,M ′ satisfy the following selection rule:

m ′′ �= m + m ′ =⇒ C M ′′
M,M ′ = 0. (12)

It reflects the fact that |M ′′〉, |M〉, and |M ′〉 are eigenstates of J S′′
z , J S

z , and J S′
z , respectively, where

the superscripts on Jz indicate which carrier space the respective operators act on.
To obtain the CGCs for given S and S′ explicitly, we consider each S′′ for which N S′′

S,S′ > 0
separately. Let us make the following ansatz for the expansion of |H ′′〉 in terms of product basis
states:

|H ′′〉 =
∑
M,M ′

C H ′′
M,M ′ |M ⊗ M ′〉 , (13)

where C H ′′
M,M ′ are the CGCs of |H ′′〉 and the sum runs only over values of m and m ′ that satisfy the

selection rule (12). Inserting (13) into (9), we obtain∑
M,M ′

C H ′′
M,M ′ (J S

+ ⊗ IS′ + IS ⊗ J S′
+ ) |M ⊗ M ′〉 = 0. (14)

After evaluating the action of the raising operators on |M ⊗ M ′〉 using Eq. (8b) and requiring the
coefficients in front of each state |M ⊗ M ′〉 to vanish independently, we obtain a homogeneous
linear system of equations. We solve for C H ′′

M,M ′ and fix a solution by the normalization condition
(6a) and by requiring C H

M,M ′ to be real and positive for the largest value of m for which C H
M,M ′ is

nonzero.
The CGCs of lower-weight states (i.e., states other than the highest-weight state) are found by

noting that

|M ′′〉 = |S′′, m ′′〉 = N (J−)S′′−m ′′ |H ′′〉
= N

∑
M,M ′

C H ′′
M,M ′ (J S

− ⊗ IS′ + IS ⊗ J S′
− )S′′−m ′′ |M ⊗ M ′〉 . (15)

(N = √
(S′′ + m ′′)!/(S′′ − m ′′)!(2S′′)! is a normalization constant.) The right-hand side of this

equation is fully known from Eq. (8b). By rewriting it into the form of Eq. (11), the desired C M ′′
M,M ′

can readily be identified.
For given S′′, S, and S′ it is possible to write Eq. (15) as a recursion relation relating CGCs

with different m ′′.23 Moreover, for su(2), there exists a closed formula for C M ′′
M,M ′ .11 Nevertheless, for

present purposes, the approach presented here is the most convenient as its key steps can readily be
generalized to calculate su(N ) Clebsch–Gordan coefficients. The differences in comparison to su(2)
will lie in (i) the more complex structure of raising and lowering operators, (ii) the labeling schemes
for irreps and states, and (iii) the method for finding the irreps occurring in a product representation
decomposition, all of which we tackle in the following sections.

IV. THE LIE ALGEBRA ASSOCIATED WITH SU(N)

Instead of working with the group SU(N ) itself, it will be more convenient for our purposes
to consider its associated Lie algebra, su(N ) [ch. 13 of Ref. 24] The latter consists of all traceless
anti-Hermitian n × n matrices, while the ordinary commutator serves as its Lie bracket. Most results
obtained for representations of su(N ) carry over to SU(N ) one-to-one, with the elements of the Lie
algebra representing the generators of the Lie group. Notably, the Clebsch–Gordan coefficients of
their representations are identical.

We begin by specifying a basis for the su(N ) algebra, in order to illustrate its structure. Let E p,q

be the single-entry matrices, i.e., E p,q
r,s = δp,rδq,s . A possible choice of basis is given by the matrices
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i(Ek,l + El,k) and Ek,l − El,k for 1 ≤ k < l ≤ N , and i(El,l − El+1,l+1) for 1 ≤ l ≤ N − 1. su(N )
is spanned by real linear combinations of these matrices. Just as for su(2) and sl(2,C), however,
it will be convenient to work with a basis for sl(N ,C). To this end, define for 1 ≤ l ≤ N − 1 the
complex linear combinations,

J (l)
z = 1

2 (El,l − El+1,l+1), (16a)

J (l)
+ = El,l+1, (16b)

J (l)
− = El+1,l , (16c)

which satisfy, for each l, the familiar su(2) commutation relations of Eq. (7),

[
J (l)

z , J (l)
±

]
= ±J (l)

± , (17a)

[
J (l)
+ , J (l)

−
]

= 2J (l)
z . (17b)

The N − 1 matrices J (l)
z form a maximal set of mutually commuting matrices, [J (l)

z , J (l ′)
z ] = 0

(thus, the i J (l)
z span the Cartan subalgebra of su(N )). Thus, none of the J (l)

± commutes with all

elements of this set, or with all other J (l ′)
± operators.

The matrices J (l)
z and J (l)

± are not anti-Hermitian and thus do not belong to su(N ) but rather to
sl(N ,C). However, it is sufficient to restrict our attention to J (l)

± because, from these, we can recover
an anti-Hermitian basis using

E p,q = [J (p−1)
− , [J (p−2)

− , . . . [J (q+1)
− , J (q)

− ]] . . .] for p > q, (18a)

E p,q = [J (p)
+ , [J (p+1)

+ , . . . [J (q−2)
+ , J (q−1)

+ ]] . . .] for p < q. (18b)

In other words, once we know representations for all J (l)
± on a given carrier space, the representations

of all other elements of both the algebras sl(N ,C) and su(N ) are also known. For definiteness, we
shall refer to su(N ) below, although the constructions apply equally to sl(N ,C).

V. LABELING OF IRREPS AND STATES

The su(N ) basis, defined in Sec. IV, has a feature that makes it particularly convenient for our
purposes: if one also adopts a specific labeling scheme, devised by GT,19 for labeling su(N ) irreps
and the basis states of their carrier spaces, these basis states are simultaneous eigenstates of all the
matrices J (l)

z , and explicit formulas exist for the matrix elements of the J (l)
± with respect to these

basis states. The next three sections are devoted to summarizing the GT labeling scheme without
dwelling on its mathematical roots—the mere knowledge of its rules is sufficient for our purposes.
(The relation of the GT-scheme labeling scheme to a frequently used alternative but equivalent
labeling scheme, employing Young diagrams and Young tableaux, is summarized, for convenience,
in Appendix A.)

Up to equivalent representations, each su(N ) irrep can be identified uniquely by a sequence of
N integers,25

S = (m1,N , . . . , m N ,N ), (19)
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or S = (mk,N ), in short, fulfilling mk,N ≥ mk+1,N for 1 ≤ k ≤ N − 1. We shall call such a sequence
an irrep weight or i-weight, in short. The second index, N , identifies the algebra, su(N ); the reasons
for displaying this index explicitly will become clear below. Two i-weights S and S′ for which all
components differ only by a k-independent constant, i.e., m ′

k,N = mk,N + c with c ∈ Z, designate
the same su(N ) irrep. This fact can be used to bring any i-weight into a “normalized” form having
m N ,N = 0, which will be assumed below, unless otherwise specified.

GT exploited the fact that the carrier space of any su(N ) irrep splits into disjoint carrier
spaces of su(N − 1) irreps to devise a labeling scheme with a very convenient property: it yields
a remarkably simple rule for enumerating which su(N − 1) irreps occur in the decomposition of
S = (mk,N ), namely, all those with i-weights (m1,N−1, . . . , m N−1,N−1) that satisfy the condition
mk,N ≥ mk,N−1 ≥ mk+1,N for 1 ≤ k ≤ N − 1. Note that, here, it is crucial not to set m N−1,N−1 = 0
so that we can distinguish between multiple occurrences of the same su(N − 1) irrep.

Recursively, the carrier spaces of su(N − 1) irreps give rise to su(N − 2) irreps and so on,
down to su(1), the carrier spaces of which are one-dimensional. This sequence of decompositions
can be exploited to label the basis states |M〉 of a given su(N ) irrep S = (mk,N ) using the so-called
Gelfand–Tsetlin patterns (GT-patterns). These are triangular arrangements of integers, to be denoted
by M = (mk,l), with the structure

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

m1,N m2,N . . . m N ,N

m1,N−1 . . . m N−1,N−1

. . .
...

m1,2 m2,2

m1,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (20)

i.e., the first index labels diagonals from left to right, and the second index labels rows from bottom
to top. The top row contains the i-weight (mk,N ) that specifies the irrep, and the entries of lower
rows are subject to the so-called betweenness condition,

mk,l ≥ mk,l−1 ≥ mk+1,l , (1 ≤ k < l ≤ N ). (21)

The dimension of an irrep S = (mk,N ) is equal to the number of valid GT-patterns having S as their
top row. There exists a convenient formula for this number,

dim(S) =
∏

1≤k<k ′≤N

(
1 + mk,N − mk ′,N

k ′ − k

)
. (22)

Note that the SU(2) basis state conventionally labeled as | j, m〉 corresponds to the GT-pattern
(

2 j 0
j−m

)
,

and the above formula reduces to dim( j) = 2 j + 1.
To obtain a complete description of SU(N ) irreps, we need to specify how the Lie algebra su(N )

acts on states labeled by Gelfand–Tsetlin patterns. The following two sections are devoted to this
task, Sec. VI with J (l)

z and Sec. VII dealing with J (l)
± .

VI. WEIGHTS AND WEIGHT DIAGRAMS

A very convenient property of the GT-labeling scheme is that every state |M〉 is a simultaneous
eigenstate of all J (l)

z generators,

J (l)
z |M〉 = λM

l |M〉 , (1 ≤ l ≤ N − 1), (23)

with eigenvalues

λM
l = σ M

l − 1

2
(σ M

l+1 + σ M
l−1), (1 ≤ l ≤ N − 1), (24)

where the row sum σ M
l = ∑l

k=1 mk,l denotes the sum over all entries of row l of GT-pattern M
(σ M

0 = 0 by convention). We shall call the sequence of N − 1 J (l)
z eigenvalues the z-weight of the
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state |M〉 and denote it by Wz(M) = (λM
1 , . . . , λM

N−1). The z-weight of |M〉 is a straightforward
generalization of the quantum number m in quantum angular momentum.

As will be elaborated below, the notion of weights of states is useful for elucidating the structure
of carrier spaces of su(N ) irreps, and in particular for visualizing the action of raising and lowering
operators. The above way of introducing weights is, however, not unique. We shall often find it
convenient to employ an alternative definition of the weight of states, which has the convenient
property that it always yields nonnegative integer elements (in contrast to Wz(M)). This alternative
weight, to be called pattern weight or p-weight, and denoted by W (M), is defined to be a sequence
of N integers, W (M) = (wM

1 , . . . , wM
N ), where

wM
l = σ M

l − σ M
l−1, (1 ≤ l ≤ N ), (25)

is the difference between summing up rows l and l − 1 of the GT-pattern M . Note that the number of
independent elements of W (M) is the same as that of Wz(M), namely N − 1, since the wM

l satisfy
the relation

∑N
l=1 wM

l = σ M
N . The two types of weights are directly related to each other: via Eq.

(24), we obtain λM
l = (wM

l − wM
l+1)/2. For definiteness, we will mostly refer to p-weights below

(noting here that most statements involving p-weights can be translated into equivalent statements
involving z-weights).

At this point, the first of several fundamental differences between su(2) and su(N ) with N ≥ 3
appears. While for su(2), there always exists exactly one state with a given p-weight, this is not the
case for su(N ) in general; for N ≥ 3, several linearly independent states in the carrier space can
have the same p-weight. Indeed, two states have the same p-weight, W (M) = W (M ′), if and only if
they have the same set of row sums (σ M

l = σ M ′
l for 1 ≤ l ≤ N − 1) (i.e., they differ only in the way

in which the “weight” of the row sums is distributed among the entries of each row). For a given
p-weight W , the number of states |M〉 having the same p-weight, W (M) = W , is called the inner
multiplicity of that p-weight, to be denoted by I (W ). Consequently, p-weights or z-weights are not
suited for uniquely labeling states of a carrier space (which is why GT-patterns are used for this
purpose).

z-weights nevertheless do provide a convenient way to visualize the carrier space of an su(N )
irrep. To this end, consider Wz(M) = (λM

1 , . . . , λM
N−1) as a vector in (N − 1)-dimensional space

and, for each state, mark the endpoint of its weight vector in an (N − 1)-dimensional lattice. The
resulting diagram is called a weight diagram. For the su(2) irrep j , weight diagrams consist of a
coordinate axis with markings at − j,− j + 1, . . . , j (see Fig. 1); for su(3), weight diagrams are
two-dimensional (see Fig. 2); for N ≥ 4, weight diagrams cannot be readily drawn on paper because
the corresponding lattices have more than two dimensions.

Note that, in Fig. 2, the z-weight Wz = (0, 0) has inner multiplicity two, since the two states( 2 1 0
2 0

1

)
and

( 2 1 0
1 1

1

)
have the same row sums.

VII. RAISING AND LOWERING OPERATORS

Weight diagrams are also very convenient for visualizing the action of the raising and lowering
operators J (l)

± . The action of J (l)
± on a given state |M〉 produces a linear combination of all states

of the form |M ± Mk,l〉 with arbitrary k, where this notation implies element-wise addition and
subtraction of the single-entry pattern Mk,l having one at position k, l and zeros elsewhere,

Mk,l =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0

0 . . . 0

. . . 1k,l
...

0 0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (26)

(Note that Mk,l on its own is not a valid GT-pattern.) Thus the resulting patterns differ from M only
in row l. All states |M ± Mk,l〉 that are generated in this fashion have the same row sums, z-weights,
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FIG. 2. Weight diagram of the su(3) irrep (2, 1, 0). Each dot represents a z-weight; we also indicate the GT-patterns of the
corresponding states. The double circle around (0, 0) indicates that there are two states with this weight. The solid and dashed
arrows represent the action of J (1)

− and J (2)
− , respectively. (J (l)

+ could be represented by arrows pointing in directions opposite

to those of J (l)
− .) Note that both J (1)

− acting on

(
2 1 0
2 0

2

)
and J (2)

− acting on

(
2 1 0
2 1

1

)
produce linear combinations of

(
2 1 0
2 0

1

)

and

(
2 1 0
1 1

1

)
, albeit different ones. (In the literature it is not uncommon to choose a different su(3) basis that renders this

weight diagram more symmetric.)

and p-weights (independent of k),

Wz(M ± Mk,l) = (
λM

1 , . . . , λM
l−2, λ

M
l−1 ∓ 1/2, λM

l ± 1, λM
l+1 ∓ 1/2, λM

l+2, . . . , λ
M
N−1

)
, (27a)

W (M ± Mk,l) = (
wM

1 , . . . , wM
l−1, w

M
l ± 1, wM

l+1 ∓ 1, wM
l+2, . . . , w

M
N

)
, (27b)

unless states with this weight do not exist, in which case the result vanishes.
The weight-shifting action of lowering operators is illustrated in Fig. 2 for the weight diagram

of the su(3) irrep S = (2, 1, 0). Since the weight diagram is two-dimensional, there are two lowering
operators, J (1)

− and J (2)
− , which shift in different directions (indicated by solid/dashed lines). (J (l)

+
produces a shift in the opposite direction of J (l)

− .) Note that there are two different “paths” to reach the
z-weight (0,0) from the z-weight ( 1

2 , 1
2 ), namely, via either J (1)

− J (2)
− or J (2)

− J (1)
− . Since J (1)

− and J (2)
− do

not commute, these paths are inequivalent; indeed, they produce two different linear combinations
of the two states with z-weight (0, 0). Generally, the fact that inner multiplicities larger than one
arise for su(N ) representations with N > 2 is a direct consequence of the fact that there are, in
general, several different ways of reaching one weight from another via a chain of raising and
lowering operators, and that these ways are not equivalent, because J (l)

± and J (l ′)
± do not commute

for l �= l ′.
Very conveniently, closed expressions have been found by Gelfand and Tsetlin19 for the matrix

elements of all raising and lowering operators with respect to the basis of GT-patterns. Explicitly,
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the only nonzero matrix elements of J (l)
− are given, for any 1 ≤ k ≤ l ≤ N − 1, by [p. 280 of Ref.

26]

〈M − Mk,l |J (l)
− |M〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−

l+1∏
k ′=1

(mk ′,l+1 − mk,l + k − k ′ + 1)
l−1∏
k ′=1

(mk ′,l−1 − mk,l + k − k ′)

l∏
k ′=1

k ′ �=k

(mk ′,l − mk,l + k − k ′ + 1)(mk ′,l − mk,l + k − k ′)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
2

.

(28)

These matrix elements are real and nonnegative, and the right-hand side vanishes if M − Mk,l is not
a valid pattern. As J (l)

+ is the Hermitian transpose of J (l)
− , we can obtain its nonzero matrix elements

by taking the complex conjugate of the preceding formula and replacing |M〉 by |M + Mk,l〉,

〈M + Mk,l |J (l)
+ |M〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−

l+1∏
k ′=1

(mk ′,l+1 − mk,l + k − k ′)
l−1∏
k ′=1

(mk ′,l−1 − mk,l + k − k ′ − 1)

l∏
k ′=1

k ′ �=k

(mk ′,l − mk,l + k − k ′)(mk ′,l − mk,l + k − k ′ − 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
2

.

(29)

These formulas generalize Eq. (8b) to su(N ).
Each irrep has a unique state |H〉, called its highest-weight state, that is annihilated by all N − 1

raising operators,

J (l)
+ |H〉 = 0, (1 ≤ l ≤ N − 1). (30)

Since |H〉 is a unique state, the inner multiplicity of its p-weight W (H ) is one, and the irrep can
be identified by specifying W (H ). Our labeling scheme indeed exploits this fact: the i-weight of
an irrep is equal to the p-weight of its highest-weight state |H〉, i.e., S = W (H ). Conveniently,
the GT-pattern H = (hk,l) has the highest possible entries fulfilling Eq. (21), i.e., hk,l = hk,N for
1 ≤ k ≤ l ≤ N − 1 (all entries on the k-th diagonal are equal to mk,N ).

This concludes our exposition of those elements of SU(N ) representation theory in the GT-
scheme that are needed in this work. In the following sections we discuss the decomposition of
direct product representations and the calculation of the associated CGCs. The specific details of the
strategy described below are, to the best of our knowledge, original.

VIII. PRODUCT REPRESENTATION DECOMPOSITIONS

The product of two irreps, say S ⊗ S′, is, in general, reducible to a sum of irreps (Eq. (2)).
While it is well-known for su(2) that which irreps occur in such a decomposition (see Eq. (10)), the
corresponding result for su(N ) relies on a relatively simple but hard to prove the method based on
the Littlewood–Richardson rule.27 This method involves writing down all possible GT-patterns for
the irrep S and using each of these to construct, starting from S′, a new irrep S′′. As the outcome
of this method is the same when interchanging S and S′, it is preferable to take the irrep with the
smaller dimension of the two as S.

For given irreps S = (mk,N ) and S′ = (m ′
k,N ), and a particular GT-pattern M = (mk,l) associated

with S, let us introduce some auxiliary notation. For l = 1, . . . , N and k = 1, . . . , l, we set bk,l =
mk,l − mk,l−1 (where mk,l ≡ 0 if k > l, for ease of notation) and Bk,l = m ′

l,N + ∑k
k ′=1 bk,l (note that

here, m ′
k,l carries a prime, while bk,l does not). Then, the irrep S′′ = (m ′′

k,N ) ≡ (Bk,k) occurs in the
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decomposition of S ⊗ S′ if and only if

Bk−1,1 ≥ Bk−1,2 ≥ · · · ≥ Bk−1,l−1 ≥ Bk,l ≥ Bk,l+1 ≥ · · · ≥ Bk,N for all 1 ≤ k ≤ l ≤ N .

(31)

(We emphasize that this condition must hold for each value of k and l.) By checking whether (31)
holds for all GT-patterns associated with S, all S′′ in the decomposition of S ⊗ S′ can be identified.

There exists a more efficient way to validate Eq. (31) than to check each value of k and l
independently. For a given GT-pattern M = (mk,l) associated with S, proceed as follows:

(1) Initialize (t1, . . . , tN ) = (m ′
1,N , . . . , m ′

N ,N ) by the i-weight of S′.
(2) Step through the pattern M along the diagonals from top to bottom and from left to right, i.e.,

in the order m1,N , m1,N−1, . . ., m1,1, m2,N , m2,N−1, . . ., m2,2, . . ., m N ,N .
(3) At each position, say mk,l , replace tl by tl + bk,l .
(4) If l > 1, check whether tl−1 ≥ tl . If this condition is violated, discard this GT-pattern, construct

the next one, and commence again from step (1).
(5) If we reach the end of the pattern M , the current value of (t1, . . . , tN ) specifies the weight of

an irrep S′′ that occurs in the decomposition of S ⊗ S′.

For N > 2, this procedure, in general, can produce several occurrences of the same irrep S′′. The
number of such occurrences, denoted by N S′′

SS′ in Eq. (2), is the outer multiplicity of S′′. (For SU(2),
the outer multiplicity is either 0 or 1.)

Let us illustrate this procedure by an example (individual steps are shown in Table I),

(2, 1, 0) ⊗ (2, 1, 0) = (4, 2, 0) ⊕ (3, 3, 0) ⊕ (4, 1, 1) ⊕ (3, 2, 1) ⊕ (3, 2, 1) ⊕ (2, 2, 2) (32a)

= (4, 2, 0) ⊕ (3, 3, 0) ⊕ (3, 0, 0) ⊕ (2, 1, 0) ⊕ (2, 1, 0) ⊕ (0, 0, 0). (32b)

(For the second line, we adopted “normalized” i-weights with mN ,N = 0.) To check that the di-
mensions are correct, use Eq. (22) to verify the dimensions of the irreps in this equation are
8 × 8 = 27 + 10 + 10 + 8 + 8 + 1, respectively. Note that the irrep (2, 1, 0) occurs twice in the
decomposition, in other words, its outer multiplicity is two.

IX. SELECTION RULE FOR SU(N) CLEBSCH–GORDAN COEFFICIENTS

The fact that all states labeled by GT-patterns are eigenstates of J (l)
z operators implies a selection

rule for SU(N ) CGCs. Explicitly, let us consider a state |M ′′〉 occurring in a decomposition of a
product representation. On the one hand, we have

J (l)
z |M ′′, α〉 = λ

M ′′,α
l |M ′′, α〉 , (33a)

and on the other hand, by Eqs. (4) and (5),

J (l)
z |M ′′, α〉 =

∑
M,M ′

C M ′′,α
M,M ′ (J (l),S

z ⊗ IS′ + IS ⊗ J (l),S′
z ) |M ⊗ M ′〉

=
∑
M,M ′

C M ′′,α
M,M ′ (λM

l + λM ′
l ) |M ⊗ M ′〉 . (33b)

These equations can only be fulfilled if C M ′′,α
M,M ′ vanishes whenever λ

M ′′,α
l �= λM

l + λM ′
l for any l.

Defining an element-wise addition on weights, we write, in short,

Wz(M ′′) �= Wz(M) + Wz(M ′) =⇒ C M ′′,α
M,M ′ = 0. (34)

This equation (or a transcription thereof involving p-weights) represents the generalization of Eq.
(12) to su(N ).
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X. CLEBSCH–GORDAN COEFFICIENTS OF HIGHEST-WEIGHT STATES

After determining which kinds of irreps S′′ appear in the decomposition of a product represen-
tation, we are ready to construct their Clebsch–Gordan coefficients. For each S′′, we start by finding
the CGCs of its highest-weight state, |H ′′, α〉, as defined in Eq. (30). The index α = 1, . . . , N S′′

S,S′

distinguishes between the instances of irreps with outer multiplicity. Nevertheless, we determine the
CGCs of |H ′′, α〉 with given S′′ for all values of α in a single run.

For this purpose, we make an ansatz of the form (5) for the highest-weight state (compare Eq.
(13)),

|H ′′, α〉 =
∑
M,M ′

W (M)+W (M ′)=W (H ′′,α)

C H ′′,α
M,M ′ |M ⊗ M ′〉 , (35)

with CGCs C H ′′,α
M,M ′ , where the sum is restricted to those combinations of states |M ⊗ M ′〉 that respect

the selection rule (34). Now insert Eq. (35) into Eq. (30) to obtain (compare Eq. (14)),

∑
M,M ′

W (M)+W (M ′)=W (H ′′,α)

C H ′′,α
M,M ′ (J (l),S

+ ⊗ IS′ + IS ⊗ J (l),S′
+ ) |M ⊗ M ′〉 = 0, (1 ≤ l ≤ N − 1). (36)

After evaluating the action of the raising operators on the product basis states via Eq. (29), we
obtain a homogeneous linear system of equations in the CGCs C H ′′,α

M,M ′ . It has N S′′
S,S′ linearly inde-

pendent solutions, one for each value of α. Thus, an outer multiplicity larger than one leads to an
ambiguity among the CGCs of the highest-weight states of all irreps of the same kind S′′: a unitary
transformation |H, α〉 → ∑

α′ Uα,α′ |H, α′〉 among the highest-weight states will produce different
but equally acceptable highest-weight CGCs C H ′′,α

M,M ′ . The full set of CGCs of the irreps S′′ will
change accordingly, too. For some applications, there is no need to uniquely resolve this ambigu-
ity. For applications where it must be resolved, we will adopt the following convention, suggested
by Zaránd:28 Write down the independent solutions in the form of a matrix with elements C H ′′,α

M M ′ ,
where α = 1, . . . , N S′′

S,S′ serves as row index and (M, M ′) = 1, . . . , I (H ) as composite column index
(where I (H ) is the inner multiplicity of W (H ) in the product representation). Then use Gaussian
elimination to bring this matrix into a normal form, namely, the reduced row echelon form,

⎛
⎜⎜⎝

· · · · ·
... C H ′′,α

M,M ′
...

· · · · ·

⎞
⎟⎟⎠ →

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 + 0 · · · 0 0 0 · · · 0 0 ∗ · · · ∗
0 · · · 0 0 0 · · · 0 + 0 · · · 0 0 ∗ · · · ∗
0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 ∗ · · · ∗
...

. . .
...

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 ∗ · · · ∗
0 · · · 0 0 0 · · · 0 0 0 · · · 0 + ∗ · · · ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (37)

where + and ∗ denote positive and arbitrary matrix elements, respectively. This normal form is the
same for all equivalent matrices. To obtain orthonormal highest-weight states, we then do a Gram–
Schmidt orthonormalization of the rows of the resulting matrix from top to bottom. This procedure
uniquely specifies the CGCs for the highest-weight states.

As an aside, we note that the above mentioned ambiguity does not arise for the case of S′ =
(1, 0, . . . , 0) (the defining representation of su(N )) and arbitrary S, since then all outer multiplicites
are either zero or one, i.e., then N S′′

S,S′ = 0 or 1. (However, there would still be a sign ambiguity for
the CGCs, and the above procedure constitutes one way of fixing it.) We note that for this case,
explicit formulas for SU(N ) CGCs can be found.14
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XI. CLEBSCH–GORDAN COEFFICIENTS OF LOWER-WEIGHT STATES

Let us now turn to the CGCs of states of S′′ other than its highest-weight state. These are
obtained by acting on the both sides of Eq. (35) with lowering operators, using Eq. (28) for the
matrix representations of J (l)

− for the carrier space V S′′,α on the left-hand side and for the direct
product carrier space V S ⊗ V S′

on the right-hand side. However, according to Eq. (28), the action of
J (l)
− in general produces not a unique basis state, but a linear combination of basis states of V S′′,α . We

shall therefore calculate, in parallel, the CGCs of all basis states with a given α and given p-weight
W = (wl), i.e., of all |M ′′, α〉 having W (M ′′) = W .

To this end, assume that we have already determined all “parent states” of the desired p-weight
W withinV S′′,α . By parent states we mean those which, when acted upon by a single J (l)

− , yield (linear
combinations of) states of weight W . For a given J (l)

− (with 1 ≤ l ≤ N − 1), the relevant parent states
have p-weight (w1, . . . , wl−1, wl + 1, wl+1 − 1, wl+2, . . . , wN ) and consist of all states of the form
|M ′′ + Mk,l, α〉 with W (M ′′) = W and 1 ≤ k ≤ l, for which M ′′ + Mk,l is a valid GT-pattern. Each
parent state can be expressed as

|M ′′ + Mk,l, α〉 =
∑
M,M ′

C M ′′+Mk,l ,α
M,M ′ |M ⊗ M ′〉 , (38)

where the CGCs are, by assumption, already known. Now, the action of J (l)
− on any parent state can

be written as a linear combination of all states |M ′′′, α〉 with W (M ′′′) = W ,

J (l),S′′
− |M ′′ + Mk,l, α〉 =

∑
M ′′′

bM ′′′
M ′′,k,l |M ′′′, α〉 , (39)

where the coefficients bM ′′′
M ′′,k,l are determined by the matrix representation of J (l)

− within V S′′,α , as

given by Eq. (28). Combining Eqs. (38) and (39) and using the direct product representation of J (l)
−

on V S ⊗ V S′
, we obtain a linear system of equations of the form (compare Eq. (15))∑

M ′′′
bM ′′′

M ′′,k,l |M ′′′, α〉 =
∑
M,M ′

C M ′′+Mk,l ,α
M,M ′ (J (l),S

− ⊗ IS′ + IS ⊗ J (l),S′
− ) |M ⊗ M ′〉 . (40)

Each combination of indices M ′′, k, and l specifies a separate equation, where M ′′ runs over all
GT-patterns such that W (M ′′) = W , l runs from 1 to N − 1, and k runs from 1 to l, provided that
M ′′ + Mk,l is a valid GT-pattern. Actually, only I (W ) of these equations are linearly independent; as
we do not know in advance which ones these are, we include them all, i.e., the system of equations
(40) is, in general, overdetermined. Since the action of the J (l)

− s on the right-hand side is known from
Eq. (28), the sought-after CGCs C M ′′,α

M,M ′ can now be readily obtained by inverting the matrix of the
coefficients bM ′′′

M ′′,k,l in order to bring Eq. (40) into the familiar form of Eq. (5).

XII. ALGORITHM FOR COMPUTER IMPLEMENTATION

Having gathered in the preceding sections all necessary ingredients, we are now ready to
formulate the sought-after algorithm for calculating SU(N ) CGCs. Given two SU(N ) irreps S and
S′, perform the following steps:

(1) Find the irreps S′′ appearing in the decomposition of S ⊗ S′, as described in Sec. VIII.
(2) For each irrep S′′, find the Clebsch–Gordan coefficients of the N S′′

S,S′ highest-weight states
|H ′′, α〉. Resolve outer multiplicity ambiguities, as described in Sec. X.

(3) From each highest-weight state |H ′′, α〉, construct the lower-weight states by repeated appli-
cation of J (l)

− operators, treating each weight of S′′ separately, as described in Sec. XI.

An explicit computer implementation of this strategy is presented in Appendix D. To check that our
algorithm works correctly, we have verified that it satisfies the following consistency checks:

� For SU(2) and SU(3), the results coincide with known formulas and tables, up to sign conven-
tions.

� The selection rule (34) is fulfilled.
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� The matrix C of Clebsch–Gordan coefficients (see Sec. II) is unitary.
� The matrix C block-diagonalizes the representation matrices (Eq. (3)).

The speed of the algorithm depends polynomially on the dimensions of the irreps S and S′. On
a modern computer (2 GHz CPU clock speed), smaller su(3) cases (e.g., dim S = 6, dim S′ = 15)
run instantly, while medium-sized su(5) cases (e.g., dim S = 35, dim S′ = 224) take a few minutes,
and larger su(5) cases (e.g., dim S = 280, dim S′ = 420) require several hours of computing time.

As an outlook, we note that it should be possible to greatly speed up our algorithm by exploiting
the fact that the weight diagrams are symmetric under the Weyl group, which in this context can
be thought of as the group of all permutations of the elements of the p-weights, (wM

1 , . . . , wM
N ) →

(wM
σ (1), . . . , w

M
σ (N )). Exploiting this symmetry is a nontrivial task, since the Gelfand–Tsetlin basis is

not stable under the operation of the Weyl group. Nevertheless, we expect that it should be possible
to do within the general framework of our algorithm, by adopting a suitably modified state labeling
scheme that exploits the Weyl symmetry. Work along these lines is currently in progress.
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APPENDIX A: CORRESPONDENCE BETWEEN GELFAND–TSETLIN PATTERNS AND
YOUNG TABLEAUX

There exists a one-to-one correspondence between i-weights and Young diagrams, and between
GT-patterns and semistandard Young tableaux. Thus, our algorithm could equally well have been
formulated in terms of Young diagrams and Young tableaux. Since the latter are easy to visualize
and are perhaps more widely known in the physics community than the GT-scheme, this appendix
summarizes the relation between the two schemes. Our reason for preferring GT-patterns to Young
tableaux lies in the complexity of the computer implementation: GT-patterns can be stored in a
simpler data structure and allow for a simpler evaluation of the matrix elements (28) and (29).

Note that Young tableaux can also be used to label bases that differ from the GT basis used
in this work, notably the one constructed via Young symmetrizers [ch. 7 of Ref. 29]. Thus, the
correspondence between GT-patterns and Young tableaux set forth below is purely of combinatorial
nature.

1. Definition of Young diagrams and Young tableaux

A Young diagram is an arrangement of boxes in rows and columns conforming to the following
rules: (YD.1) there is a single, contiguous cluster of boxes; (YD.2) the left borders of all rows are
aligned; and (YD.3) each row is not longer than the one above.

Note that the empty Young diagram consisting of no boxes is a valid Young diagram. For the
purpose of describing an su(N ) irrep, we additionally require that (YD.4) there are at most N rows;
and (YD.5) columns with N boxes are dropped, i.e., diagrams which differ only by such columns
are identified with each other.

Every Young diagram D satisfying rules (YD.1) to (YD.5) uniquely labels an su(N ) irrep (or
sl(N ,C) irrep), i.e., the label S used in the main text can be associated with a Young diagram D.
Some su(3) examples are shown in Table IIa. A further example is given by the Young diagrams
specifying su(2) irreps: the irrep S = j (describing total angular momentum j) corresponds to a
Young diagram with 2 j boxes in a single row.

A (semistandard) Young tableau is a Young diagram, of which the boxes are filled according to
the following rules: (YT.1) Each box contains a single integer between 1 and N , inclusive; (YT.2)
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TABLE II. (a) Examples of Young diagrams of su(3) irreps. Since columns
with three boxes can be deleted, the last example is effectively equal to the

first one. (b) Set of all of valid su(3) Young tableaux of shape .

the numbers in each row of boxes weakly increase from left to right (i.e., each number is equal to or
larger than the one to its left); and (YT.3) the numbers in each column strictly increase from top to
bottom (i.e., each number is strictly larger than the one above it).

The basis states of an su(N ) representation identified by a given Young diagram D can be
uniquely labeled by the set of all associated valid semistandard Young tableaux (satisfying rules
YT.1 to YT.3), i.e., the label M used in the main text can be associated with a valid Young tableau
T . We shall denote the corresponding state by |T 〉. For example, all eight Young tableaux for the
diagram with respect to su(3) are shown in Table IIb. As another example, let us give the
correspondence between states |S, m〉 of an su(2) irrep and Young tableaux: |S, m〉 corresponds to
a Young tableau with 2S boxes in a single row, containing 1 in the leftmost S + m boxes and 2 in
the remaining S − m boxes.

The dimension of a carrier space labeled by a Young diagram is given by the number of valid
Young tableaux with the same shape as the Young diagram.

2. Translating GT-patterns to Young tableaux

Each GT-pattern M = (mk,l) uniquely specifies a corresponding Young tableau (p. 526 of Ref.
30), which can be constructed as follows. Start with an empty Young tableau (no boxes at all), and
step through the entries of the pattern using either of the following two stepping orders, illustrated
in Table IIIa and IIIb, respectively:

TABLE III. Conversion of a GT-pattern to a Young tableau, stepping (a)
along rows, and (b) along diagonals.
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(a) Proceed from the bottom to top, one row at a time (increasing l from 1 to n), and within each
row from left to right (increasing k from 1 to l) or

(b) Proceed from left to right, one diagonal at a time (increasing k from 1 to n), and within each
diagonal from bottom to top (increasing l from k to n).

For each step to a new entry in the pattern, say mk,l located in diagonal k and row l, extend the length
of the k-th tableau row to a total of mk,l boxes, by adding to its right boxes containing the number l.

According to the above procedure, the topmost row of the GT-pattern specifies the number of
boxes in the rows of the corresponding Young diagram: for the latter, row k of the latter contains
mk,N boxes. In this way, the information specifying the irrep S, which for a GT-pattern resides in
its topmost row, specifies the shape of the corresponding Young diagram. Moreover, the number of
l-boxes (i.e., boxes containing the number l) in tableau row k, say dk,l , is given by

dk,l = mk,l − mk,l−1 , (where mk,l ≡ 0 if k > l). (A1)

Since both stepping orders ensure that pattern entries in the same diagonal k are visited in
order of increasing l, they yield the same final Young tableau. Order (b) has the feature that an
entire tableaux row is completed before the next row is begun. As a result, (b) is more convenient
for transcribing the Littlewood–Richardson rule for decomposing a product representation from the
language of Young tableaux to that of GT-patterns.

The converse process of transcribing a Young tableau to a GT-pattern can be achieved by using
the tableau’s kth row, read from left to right, to fill in the pattern’s kth diagonal, from bottom to top,
in such way as to respect the above rules.

3. Remarks about Young tableaux

In order to aid our intuition for the su(N ) representation theory presented in the main text, this
section restates some of the properties discussed there in terms of Young tableaux.

The p-weight W (M) of a GT-pattern M , as introduced in Sec. VI, has an illustrative interpreta-
tion; wM

l is the number of l-boxes (i.e., boxes containing l) in the tableau corresponding to M . Thus,
for the highest-weight Young tableau (the GT-pattern of the corresponding state |H〉 is specified

at the end of Sec. VII), row l from the top contains only l-boxes (i.e., wM
l = ml,N ), e.g., .

Furthermore, if the states |T 〉 and |T ′〉 have the same p-weight, the tableaux T and T ′ contain the
same set of entries (i.e., the same number of l-boxes) but arranged in different ways. For example,
for su(3) and have the same p-weight W = (1, 1, 1).

The action of the raising and lowering operators J (l)
± on p-weights is given by Eq. (VII). The

corresponding action of J (l)
+ on a state labeled by a Young tableau T produces a linear combination

of states labeled by tableaux containing one more l-box and one less (l + 1)-box. Analogously, J (l)
−

has the reverse effect on Young tableaux: it produces a linear combination of tableaux containing
one less l-box and one more (l + 1)-box.

APPENDIX B: DERIVATION OF OUR FORMULATION OF THE
LITTLEWOOD–RICHARDSON RULE

Our formulation of the Littlewood–Richardson rule in Sec. VIII is based on a version by van
Leeuwen,27 formulated in terms of Young tableaux, which we outline here. We then rephrase this in
the language of Gelfand–Tsetlin patterns to derive the method presented in Sec. VIII, in particular
Eq. (31).

Given two Young diagrams D and D′, write down all possible semistandard Young tableaux
for D, and for each such tableau (to be called the current tableau below), construct a corresponding
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Young diagram (to be called the trial diagram below) in the following manner:

(1) Start the trial diagram as a fresh copy of D′.
(2) Step through the boxes of the current tableau from right to left, from top to bottom.
(3) If the box encountered at a given step is an l-box, add a box at the right end of row l of the

trial diagram.
(4) If this produces a trial diagram that is no longer a valid Young diagram (having a row longer

than the one above), discard it and start a new with the next tableau.
(5) If, however, a valid Young diagram is constructed during each step, the final Young diagram

obtained after the last step represents an irrep occurring in the decomposition of D ⊗ D′.

Let us now translate the above steps into the GT-scheme, thus deriving the rules set forth in Sec.
VIII. There, we assume two i-weights S and S′ to be given instead of two Young diagrams. Naturally,
taking a fresh copy of D′ corresponds to initializing (t1, . . . , tN ) = (m ′

1,N , . . . , m ′
N ,N ) and stepping

through the current tableau in the reading order of step (2) corresponds to stepping through the
GT-pattern M associated with S along the diagonals from top to bottom and from left to right. (This
follows from the rules for translating GT-patterns to Young tableaux given in Sec. A 2; recall that
the kth diagonal of a GT-pattern specifies the content of the kth row of the corresponding Young
tableau.)

Instead of processing one box of the current tableau at a time, we treat all identical boxes of a
given row at once when stepping through the corresponding GT-pattern. Recalling that bk,l of Eq. (A1)
gives the number of l-boxes in row k of the current tableau, it follows that Bk,l ≡ m ′

l,N + ∑k
k ′=1 bk

then gives the number of boxes in row l of the trial diagram after having processed all boxes of type
l in row k of the current tableau.

The condition (31), which must be fulfilled for all 1 ≤ k ≤ l ≤ N , finally assures that the trial
diagram is a valid Young diagram after each step.

APPENDIX C: IDENTIFYING IRREPS AND STATES BY A SINGLE INTEGER

For numerical codes dealing with i-weights, it is useful to identify each i-weight by a unique
number. To this end, we need a one-to-one mapping between the set of all su(N ) i-weights (for given
N ) and the set of nonnegative integers. We shall construct such a mapping by devising an ordering
rule for i-weights, using this rule to arrange all possible diagrams in a list of increasing order, and
labeling each i-weight by its position in this list.

Similarly, we would like to map GT-patterns to matrix indices, so we also need a one-to-one
mapping between the set of all GT-patterns belonging to a given irrep and the integers from one to
the dimension of that irrep. Therefore, we also define an order on GT-patterns of a given irrep and
proceed analogously.

1. Identifying i-weights with a single number

We adopt throughout the convention for an i-weight S = (mk,N ) that m N ,N = 0 (Sec. V). For
i-weights we choose the following ordering rule: the “smaller” of two i-weights is taken to be the
one with the smaller first element; in case of a tie, compare the second element, and so on. Formally,
given two i-weights S and S′, we assign the order

S < S′ if and only if, for the smallest index (say k) for which mk,N �= m ′
k,N , we have mk,N < m ′

k,N .

(C1)

Table IV shows the first few i-weights of SU(4), arranged in increasing order.
Using this ordering rule, all possible su(N ) i-weights can be arranged in a list of increasing

order and uniquely labeled by a nonnegative integer, say P(S), giving its position in this list,

P(S) = #{S′|S′ < S}. (C2)
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TABLE IV. The first few i-weights of su(4) (excluding weights with m4,4 �= 0), arranged in
increasing order.

To determine P(S) for a given i-weight S, we simply count the number of smaller weights S′: this
number is given by the number (say P1(S)) of all weights S′ with m ′

1,N < m1,N , plus the number of
all S′ with m ′

1,N = m1,N but m ′
2,N < m2,N (say P2(S)), etc. Thus,

P(S) =
N−1∑
k=1

Pk(S), (C3)

where Pk(S) is the number of weights S′ whose first k − 1 entries are the same as those of S (m ′
k ′,N =

mk ′,N for all k ′ < k), while the kth entry is arbitrary but smaller than that of S (m ′
k,N < mk,N ), and the

remaining entries arbitrary (but subject to S′ being a valid i-weight, with m ′
N ,N = 0). The nontrivial

“free” (though constrained) entries of S′, namely (m ′
k,N , m ′

k+1,N , . . . , m ′
N−1,N ), can be viewed as an

i-weight S̃ = (m̃k̃,Ñ ) of length Ñ = N − k, whose entries m̃k̃,Ñ = m ′
k−1+k̃,N

(for 1 ≤ k̃ ≤ Ñ ) satisfy

mk,N − 1 ≥ m̃1,Ñ ≥ m̃2,Ñ ≥ . . . ≥ m̃ Ñ ,Ñ ≥ 0 . (C4)

Pk(S) thus is the number of allowed weights S̃ that satisfy (C4).
To calculate Pk(S), we note that it is equal to the number of ways to draw or “strike out,” from the

set of integers {1, . . . , mk,N − 1 + Ñ }, an ordered subset {dk̃} of Ñ integers, d1 < d2 < . . . < dÑ

[see Fig. 3(a)], since there is a one-to-one correspondence between the set of all possible such
strikeouts and the set of all i-weights S̃ satisfying (C4): for a given struck-out set {dk̃}, with
1 ≤ k̃ ≤ Ñ , set m̃k̃,Ñ equal to the number of nonstruck-out integers smaller than dÑ+1−k̃ (i.e.,
m̃k̃,Ñ = dÑ+1−k̃ − (Ñ + 1 − k̃)). For example, the weight S̃ that is largest (w.r.t. to the ordering rule

(a)

(b)

FIG. 3. Enumeration scheme of i-weights. (a) Illustration of the combinatorics underlying Pk (S). (b) Striking out items such
that each m̃k̃,Ñ takes on the largest possible value.
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TABLE V. (a) Illustrating the row-by-row rule chosen in Appendix. C 2 to define an ordering scheme for the indices of
GT-patterns: (k, l) < (k′, l ′) if l = l ′ and k < k′, or if l > l ′. (b) Ordering of all GT-patterns belonging to the SU(3) irrep
(2, 1, 0), together with the corresponding pattern indices Q(M).

(C1)), namely, having all elements equal to mk,N − 1, is obtained by choosing the struck-out integers
dk̃ to be as large as possible (see Fig. 3(b)). Thus, we have

Pk(S) =
(

mk,N − 1 + Ñ

Ñ

)
=

(
N − k + mk,N − 1

N − k

)
(C5)

and, consequently,

P(S) =
N−1∑
k=1

(
N − k + mk,N − 1

N − k

)
. (C6)

2. Mapping of Gelfand–Tsetlin patterns to matrix indices

In analogy to the ordering we have defined on i-weights, we introduce an ordering on the set
of Gelfand–Tsetlin patterns of a given irrep (i.e., given top row of the pattern). Let M = (mk,l)
and M ′ = (m ′

k,l) (where, 1 ≤ k ≤ l ≤ N ) denote two patterns with mk,N = m ′
k,N for k = 1, . . . , N .

We define a row-by-row ordering of indices (see Table Va), increasing from left to right within a
row, and from top row to bottom row, i.e., (k, l) < (k ′, l ′) if l = l ′ and k < k ′, or if l > l ′. We then
define M ′ < M if and only if for the smallest index for which m ′

k,l �= mk,l , we have m ′
k,l < mk,l . An

example of this ordering is given in Table Vb.
We map each Gelfand–Tsetlin pattern M to a nonnegative integer Q(M) by counting the number

of smaller Gelfand–Tsetlin patterns, i.e.,

Q(M) = #{M ′|M ′ ≤ M}. (C7)

This number can be determined by generating the pattern (say M̃({m̃k,l})) located directly preceding
M in the ordered list of patterns, then the pattern preceding M̃ , and so on, until we arrive at the
beginning of this list. To construct the predecessor of the pattern M , we start by finding the largest
index (k̃, l̃) whose entry mk̃,l̃ can be decreased without violating the betweenness condition (21),
rewritten here as

mk,l+1 ≥ mk,l ≥ mk+1,l+1, (1 ≤ k < l + 1 ≤ N ), (C8)

with respect to smaller indices while disregarding it with respect to larger indices (i.e., without
violating the second inequality but disregarding the first). Thus, (k̃, l̃) is the index for which mk,l =
mk+1,l+1 for all (k, l) > (k̃, l̃) but mk̃,l̃ > mk̃+1,l̃+1. We then decrease mk̃,l̃ by one and reset the entries
of all larger indices to the maximal values that satisfy the new betweenness condition. Concretely,

m̃k,l =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

mk,l for (k, l) < (k̃, l̃) (keep entries with smaller indices unchanged)
mk,l − 1 for (k, l) = (k̃, l̃) (decrease by 1 the entry with largest index

for which this is possible)
m̃k,l+1 for (k, l) > (k̃, l̃) (give entries with larger indices their

largest possible value)

. (C9)
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The number Q(M) is, of course, the number of times we can repeat the process of constructing a
preceding pattern. This procedure maps the lowest-weight and highest-weight states of an irrep S to
the numbers 1 and dim(S), respectively.

APPENDIX D: SOURCE CODE

Published only in electronic form.20
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