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Microscopic origin of the ‘0.7-anomaly’ in quantum
point contacts
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Werner Wegscheider4, Jan von Delft1,2 & Stefan Ludwig1

Quantum point contacts are narrow, one-dimensional constric-
tions usually patterned in a two-dimensional electron system, for
example by applying voltages to local gates. The linear conductance
of a point contact, when measured as function of its channel width,
is quantized1–3 in units of GQ 5 2e2/h, where e is the electron charge
and h is Planck’s constant. However, the conductance also has an
unexpected shoulder at 0.7GQ, known as the ‘0.7-anomaly’4–12,
whose origin is still subject to debate11–21. Proposed theoretical
explanations have invoked spontaneous spin polarization4,17, fer-
romagnetic spin coupling19, the formation of a quasi-bound state
leading to the Kondo effect13,14, Wigner crystallization16,20 and vari-
ous treatments of inelastic scattering18,21. However, explicit calcu-
lations that fully reproduce the various experimental observations
in the regime of the 0.7-anomaly, including the zero-bias peak that
typically accompanies it6,9–11, are still lacking. Here we offer a detailed
microscopic explanation for both the 0.7-anomaly and the zero-bias
peak: their common origin is a smeared van Hove singularity in the
local density of states at the bottom of the lowest one-dimensional
subband of the point contact, which causes an anomalous enhance-
ment in the Hartree potential barrier, the magnetic spin susceptibility
and the inelastic scattering rate. We find good qualitative agreement
between theoretical calculations and experimental results on the
dependence of the conductance on gate voltage, magnetic field, tem-
perature, source–drain voltage (including the zero-bias peak) and
interaction strength. We also clarify how the low-energy scale govern-
ing the 0.7-anomaly depends on gate voltage and interactions. For
low energies, we predict and observe Fermi-liquid behaviour similar
to that associated with the Kondo effect in quantum dots22. At high
energies, however, the similarities between the 0.7-anomaly and the
Kondo effect end.

In our measurements, we use the multigate layout on the surface of a
GaAs/AlGaAs heterostructure shown in Fig. 1a. By suitably tuning the
central- and side-gate voltages, Vc and Vs, at a fixed top-gate voltage, Vt,
we can use the device to define a short, one-dimensional (1D) channel,
containing a smooth, symmetric barrier, in the two-dimensional elec-
tron system (2DES) buried in the heterostructure. To describe such a
quantum point contact (QPC), we adopt a 1D model with local inter-
actions and a smooth potential barrier. We treat interactions perturba-
tively, using either second-order perturbation theory23 (SOPT) or the
functional renormalization group24–26 (FRG) approach (Supplementary
Information, sections 7 and 6, respectively). The lowest 1D subband of
the device is modelled by
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Here n̂js~d{
jsdjs counts the number of electrons with spin s (spin up,

s 5 " or 1; spin down, s 5 # or 2) at site j of an infinite, tight-binding
chain with hopping amplitude tj, on-site interaction Uj and potential

energy Ejs~Ej{s~B=2 (Supplementary Fig. 8), and ‘h.c.’ denotes
Hermitian conjugate. The Zeeman energy, ~B~ gelj jmBB, describes the
effect of a uniform external parallel magnetic field B, where mB is the
Bohr magneton and gel is the effective g factor (,0 in GaAs). (When
similar symbols are used for model parameters and experimental para-
meters, we add tildes to the former to distinguish them from the latter.)
We neglect spin–orbit interactions and other orbital effects. The para-
meters Ej, Uj and tj vary smoothly with j and differ from their bulk
values, Ebulk 5 Ubulk 5 0 and tbulk 5 t (taken as the unit of energy), only
within a central constriction region (CCR) of N sites around j 5 0,
representing the QPC. Sites j , 2N/2 and j . N/2 represent two
non-interacting leads, each with bandwidth 4t, chemical potential m
and bulk Fermi energy eF 5 2t 1 m; we choose m 5 0, implying half-
filled leads (Fig. 1b). We set Uj to a fixed value, U, for all but the
outermost sites of the CCR, where it drops smoothly to zero.

Within the CCR, we define the QPC barrier by specifying the shape
of the ‘band bottom’ as vmin

j ~Ej{ tj{1ztj
� �

{m (Fig. 1b, solid
black line). We choose vmin

j to define a smooth, symmetric barrier
within the CCR, parabolic near the top3, where we parameterize it as
vmin

j <~Vc{V2
xj2
�

4t0 (Supplementary Information, section 4D). Here
~Vc sets the barrier height with respect to m (Fig. 1b, dashed black line),
and Vx=t characterizes its curvature. We first consider the theoretical
case of zero temperature, ~T~kBT (kB, Boltzmann’s constant), source–
drain voltage, ~Vsd~ ej jVsd, and field, ~B: ~T~~Vsd~~B~0. As ~Vc is
decreased below 0, the conductance, g 5 G/GQ, increases from 0 to
1, showing a step of width ,Vx (about 1.5 meV in our experiment),
whose shape depends on U (Fig. 1k). In the upper part of the step, say
0:5= g = 0:9, we say that the QPC is ‘sub-open’; the sub-open regime
is of special interest because for measured g(Vc) curves it contains the
0.7-anomaly.

The bare local density of states (LDOS), A0
j vð Þ, for equation (1)

has a strong maximum just above the band bottom18, seen as a
yellow–red ridge-like structure in Fig. 1b. In a semiclassical picture,
A0

j vð Þ!1
�

vj vð Þ, where vj(v) is the velocity at site j of an electron with
energy v with respect to m. The ridge-like maximum of A0

j vð Þ above
the barrier reflects the fact that electrons move slowest there. In the
CCR’s outer flanks, this ridge develops smoothly into the van Hove

singularity, A0
bulk! v{vmin

bulk

� �
t

� �{1=2
, in the bulk LDOS at the bulk

band bottom in the leads, vmin
bulk~{eF. We therefore call this LDOS

structure a ‘van Hove ridge’. Near the barrier’s centre, its curvature causes
the singularity to be smeared out on a scale set by Vx. This limits the
amplitude of the van Hove ridge to max A0

j vð Þ
h i

!O Vxt0ð Þ{1=2 and

shifts it upwards in frequency relative to the band byO Vxð Þ (Fig. 1f–h).
The van Hove ridge has a strong, ~Vc-dependent effect on numerous

QPC properties. Near those spatial locations where the ridge intersects
the chemical potential (v 5 0), the LDOS is enhanced, thus amplifying
the effects of interactions by O Vxt0ð Þ{1=2 (which grows with QPC
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length). In semiclassical terms, slow electrons feel interactions parti-
cularly strongly. When lowering the barrier top, ~Vc, to open the QPC,
the van Hove ridge sweeps downwards (Fig. 1f–h); its interaction-
amplifying effects are strongest in the ~Vc regime where its apex, which
has most weight, crosses m. This happens for 0> ~Vc >{O Vxð Þ
(Fig. 1g), which, very importantly, encompasses the sub-open regime
containing the 0.7-anomaly. Below, we show that the 0.7-anomaly and
the zero-bias peak (ZBP) stem precisely from the amplification of
interaction effects where the van Hove ridge intersects m. The relevant
implications are enhancements in the effective Hartree barrier governing
elastic transmission, the spin susceptibility and the inelastic scattering
rate, all of which lead to an anomalous reduction of g in the sub-open
regime, especially for T, B, Vsd . 0.

Figure 1c–e illustrates several local properties, calculated at ~T~0
using FRG, for the sub-open QPC barrier shown in Fig. 1b. We note
four salient features, all intuitively expected. First, the local density,
nj~ n̂j:zn̂j;

	 

, is minimal at the barrier centre (Fig. 1c). Second, the

local magnetization, mj~ n̂j:{n̂j;
	 
�

2, vanishes at ~B~0 (Fig. 1d, blue
line); this reflects a physical assumption entailed in our calculations
(Supplementary Information, section 6), namely that no spontaneous

magnetization occurs, in contrast to the spontaneous spin splitting
scenario advocated in refs 4, 8, 17. Third, mj increases without satura-
tion when ~B becomes large (Fig. 1d, inset), indicating a smooth redis-
tribution of spin, as expected for an open structure. Fourth, the local
spin susceptibility, xj~ Lmj

�
L~B

� �
~B~0, is strongly enhanced with

increasing U (Fig. 1e), because interactions amplify any field-induced
spin imbalance.

The j dependence of xj is governed by that of A0
j 0ð Þ (in fact,

xU~0
j ~A0

j (0)=2), which is maximal near those sites where the van
Hove ridge intersects m. When ~Vc is decreased through 0 (Figs 1f–h),
these intersection points sweep out a parabolic arch in the ~Vc�j plane,
along which xj

~Vc
� �

(Fig. 1i, colour scale) is peaked, with most weight
near the arch’s apex. This leads to a corresponding peak in the total spin
susceptibility, xtot~

PCCR
j xj, as a function of ~Vc (Fig. 1j). This peak

is strongly enhanced by increasing U (in accordance with the fourth
feature above) and is located near the ~Vc value where g < 0.7 (Fig. 1k).
We will see further below that this peak strongly affects the ~B depend-
ence of the conductance (Fig. 1l).

Note that the spatial structure for xj
~Vc
� �

in Fig. 1i, namely two
peaks merging into one as ~Vc is lowered, is consistent with that, shown
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Figure 1 | Experimental set-up and model. a, Scanning electron microscope
picture of the gate layout, featuring a top gate (t) at voltage Vt, two central gates
(c) at voltage Vc and four side gates (s) at voltage Vs. Negative voltages Vc and Vs

locally deplete the 2DES, which is 85 nm beneath the sample surface. Together
with Vt, they induce a tunable electrostatic potential landscape in the 2DES.
b, Barrier shape and LDOS. The bare (Uj 5 0, ~B~0) 1D LDOS per spin species,
A0

j vð Þ (colour scale), as a function of energy, v, and site index, j, for
~Vc~{0:28Vx . The barrier shape is defined by the solid black line, showing the
band bottom, vmin

j . The LDOS vanishes exponentially rapidly below vmin
j

(Supplementary Fig. 11), and has a van Hove ridge (yellow–red) just above it,
followed by Friedel oscillations (white fringes) at higher energies (up to
v= ~Vc). c–e, Local properties of a sub-open QPC: FRG results for the sub-
open barrier shown in b. c, d, The local density, nj (c), and the magnetization, mj

(d), for several values of magnetic field, ~B. Inset of d, mS~
X
jjjƒ10

mj as a

function of ~B. e, The local spin susceptibility, xj, for several values of interaction

strength, U. The shapes of mj and xj are modulated by Friedel oscillations
inherited from the bare LDOS (b), with locally varying wavelength, l < 1/nj.
f–l, Changing barrier height. f–h, The bare LDOS, A0

j vð Þ, for three successively
lower barrier heights, ~Vc

�
Vx~1 (f), 20.28 (g) and 22 (h). The LDOS pattern

is fixed with respect to ~Vc (grey dashed lines) but shifts with respect to m (black
dashed lines). i–l, FRG results for the ~Vc dependence of the local spin
susceptibility, xj (colour scale), at fixed U 5 0.5t (i); the total spin susceptibility,
xtot~

PCCR
j xj, for several U values (solid lines), and the inverse low-energy

scale, 1
�

~B�, for U 5 0.5t (dashed line) (j); the zero-temperature linear-response
(Vsd 5 0) conductance, g 5 G/GQ, for several U values (at fixed ~B~0) (k) and
for several ~B values (at fixed U 5 0.5t) (l). For a large enough interaction,
U 5 0.5t, even for ~B~~T~~Vsd~0 (blue lines in k and l), g ~Vc

� �
has a shoulder

(red arrow) at g < 0.7, the 0.7-anomaly. Three vertical dashed lines in i–l mark
the three ~Vc values used in f–h, as indicated by dots of matching colours.
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in fig. 2b of ref. 14, for the density of spin-up electrons calculated using
spin-density-functional theory, initialized in a small applied field to
break spin symmetry. In ref. 14, the local maximum in the spin-up
density was interpreted as evidence for a ‘quasi-bound state’ that was
argued to host a spin-1/2 local moment; in contrast, features one and,
especially, three above imply that our model yields no local moment.

Next we discuss the effect of the van Hove ridge on the conductance,
g ~Vc
� �

, starting with its U dependence at ~B~~T~0 (Fig. 1k). Increasing
U skews the shape of the step in g ~Vc

� �
, which eventually develops a

shoulder near g<0:7 (red arrow). This shoulder develops because the
increase in local density with decreasing ~Vc is slightly nonlinear when
the apex of the van Hove ridge drops past m, causing a corresponding
nonlinear upward shift in the effective Hartree barrier. For a parabolic
barrier top, this occurs for g<0:7. If the shape of the barrier top is
changed to be non-parabolic, both the shape of the bare conductance
step and the energy distance between the van Hove ridge apex and m
will change, which can cause the interaction-induced shoulder in g to
shift away from 0.7. This explains the experimentally observed
spread6,12 of shoulders (that is, plateau values of the 0.7-anomaly) for
0:5= g = 1.

On increasing ~B for fixed U and ~T~0 (Figs 1l and 2a), the shoulder
in g ~Vc

� �
becomes more pronounced, eventually developing into a

spin-split plateau. Comparison of Fig. 2a with Fig. 2e shows that this
development qualitatively agrees with experiment; the agreement was
optimized by using U as fit parameter. Inspecting how the corresponding

spin-resolved conductances, g" and g#, change with ~B (Fig. 2b), we note a
strong asymmetry: although the bare barrier heights for spins " and # are
shifted symmetrically by {~B

�
2 and ~B

�
2, respectively, g# is decreased

much more strongly than g" is increased. This is due to exchange inter-
actions: increasing the spin-up density near the CCR centre (Fig. 1d)
strongly raises the Hartree barrier, and more so for spin-down electrons
than spin-up, owing to Pauli’s exclusion principle. The consequences are
most pronounced in the sub-open regime, owing to the van-Hove-ridge-
induced peak in xtot there (Fig. 1j). We note, however, that g"5 g# at
~B~0, reflecting our above-mentioned assumption that no spontaneous
spin splitting occurs.

Our FRG approach is limited to the case of zero temperature and
zero source–drain voltage, for which no inelastic scattering occurs. To
access qualitatively the effects of the latter at fixed U, we have instead
used SOPT (Supplementary Information, section 7). Figure 2c–h
shows a comparison of our SOPT results for the linear conductance,
g ~Vc
� �

, calculated for several values of magnetic field, ~B, and temper-
ature, ~T~kBT , and our experimental data for g(Vc). The measured
conductance step shows a shoulder (Fig. 2e, f, red arrows) that
becomes increasingly more pronounced with both increasing field, B
(Fig. 2e), and increasing temperature, T (Fig. 2f), which is the hallmark
of the 0.7-anomaly. Our perturbative calculations qualitatively repro-
duce both trends remarkably well. The only caveat is that the experi-
mental curves in Fig. 2e, f show more pronounced shoulders than do
the respective SOPT curves in Fig. 2c, d. This failure of SOPT to
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Figure 2 | Conductance: theory versus experiment. a, b, FRG results: the
linear response conductance, g ~Vc, ~B

� �
, of a QPC (a), and its spin-resolved

components, g" and g# (b), plotted as functions of ~Vc

�
Vx for several values of ~B

at ~T~0 (but finite interaction U). The grey dashed and solid lines in a show the
low-energy scale ~B� ~Vc

� �
for U 5 0 and U 5 0.5, respectively, plotted on the log-

linear scale indicated on the right-hand axis (as also done in c–f). The small-
field magnetoresponse in a is strongest when ~B� takes its smallest value,
~Bmin
� (vertical dashed lines). Inset of b, the shot noise factor,

Nshot~
P

s gs 1{gsð Þ=2, plotted as function of g. Its asymmetric development
with ~B, which reflects that of g" and g#, agrees qualitatively with experiment (see
fig. 4d of ref. 7). c, d, SOPT results: g ~Vc, ~B

� �
at ~T~0 for several values of ~B

(c) and g ~Vc, ~T
� �

at ~B~0 for several values of ~T (d), both plotted as functions of
~Vc
�

Vx . The low-energy scale ~B� ~Vc
� �

is shown as a thin grey line in c and
repeated in d; ~T� ~Vc

� �
and ~Vsd� ~Vc

� �
are respectively shown as thin black and

brown lines in d. The vertical dashed line indicates where ~B� takes its minimal
value, ~Bmin

� . For ~Vc values below this dashed line, the lines for ~B�, ~T� and ~Vsd� in
d are nearly straight on the log-linear scale, implying the behaviour
summarized by equation (3), and are nearly parallel to each other, implying that
the ratios ~B�

�
~T� and ~Vsd�

�
~T� are essentially independent of ~Vc there.

e, f, Experiments—pinch-off curves. e, g(Vc) measured at a low 2DES

temperature, T0, for various magnetic fields parallel to the 2DES, plotted as a
function of DVc 5 Vc 2 V0.5, where V0.5 is the gate voltage for which the
conductance at B 5 0 and T 5 T0 is g(V0.5) 5 0.5. f, Analogous to e, but for
B 5 0 and various temperatures T. Colours in e and f are chosen to provide
comparability with theory curves in a, c and d (with the correspondence
ej jDVc!{~Vc). g, h, Experiments—Fermi-liquid behaviour: g(B)/g(0) as

function of B at temperature T0 (g), and g(T)/g(T0) as function of T at B 5 0
(h), shown on log-linear scales (insets show their differences from unity on log-
log scales) to emphasize small values of B and T. Coloured symbols distinguish
data taken at different fixed Vc values, indicated by dashed lines of
corresponding colour in e and f. The quadratic B and T dependences observed
in g and h for each fixed Vc value confirm equation (2) and were used to
determine the corresponding scales B�(Vc) and T�(Vc). (Black lines in g and
h show 1 2 (B/B�)

2 and 1 2 (T/T�)
2, respectively.) The resulting energies,

E�5 mBB�(Vc) and E�5 kBT�(Vc), are shown as functions of Vc in e (for B�)
and f (for both B� and T�) on a log-linear scale. The shape of these measured
functions agrees qualitatively with the SOPT predictions in c and d, confirming
the nearly exponential ~Vc dependences and the nearly Vc-independent B�=T�
ratio, discussed above. (For additional data, similar to that in g and h, see
Supplementary Information, section 2B.)
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produce real shoulders is present both in the low-field dependence
at low temperature (compare Fig. 2e with Fig. 2c; the former, but
not the latter, shows a weak shoulder even at zero field) and in the
temperature dependence at zero field (compare Fig. 2f and Fig. 2d). In
contrast, the more powerful FRG approach does reproduce the weak
shoulder even for ~B~~T~0, as discussed above; compare the black
g ~Vc
� �

curves in Fig. 2a (FRG) and Fig. 2c (SOPT). (That the latter
curve, in contrast to the former, lies above its non-interacting version,
g0 ~Vc
� �

, is an artefact of SOPT; see Supplementary Information,
section 7D.)

We next focus on the limit of small energies ~B, ~T and ~Vsd. Here our
SOPT calculations yield three predictions, enumerated below, that are
all consistent with our measurements. First, for fixed ~Vc, the leading
dependence of the nonlinear conductance, gnl~ dI

�
d ~Vsd

� ��
GQ, on ~B,

~T and ~Vsd is predicted to be quadratic, as confirmed by the measured
data in Figs 2g, h and 3a. This implies an expansion of the form

gnl ~B, ~T, ~Vsd
� �

gnl 0, 0, 0ð Þ <1{
~B2

~B2
�
{

~T2

~T2
�
{

~V2
sd

~V2
sd�

ð2Þ

for ~B
�

~B�, ~T
�

~T�, ~Vsd

�
~Vsd�=1, where ~B�, ~T� and ~Vsd� are ~Vc-dependent

crossover scales that govern the ‘strength’ of the 0.7-anomaly for U ? 0:
the smaller these scales, the stronger the dependence on ~B, ~T and ~Vsd

for a given ~Vc. Our SOPT results for these crossover scales are shown as
thin lines on log-linear scales in Fig. 2c and Fig. 2d, respectively.
Second, in that part of the sub-open regime where gnl 0, 0, 0ð Þ<1, they
all depend exponentially on ~Vc:

~B�, ~T�, ~Vsd�!exp {p~Vc
�

Vx
� �

ð3Þ

Third, and again for gnl 0, 0, 0ð Þ<1, the ratios ~B�=~T� and ~Vsd�=~T� are
essentially independent of ~Vc (Supplementary Fig. 4). Remarkably,
both the second and third predictions are confirmed by our experi-
mental results (Fig. 2e for B*, Fig. 2f for T* and Supplementary Fig. 3 for
Vsd*). The behaviour predicted by equation (3) for ~T� is also in accord
with previous experiments6 and with a perturbative treatment of inter-
actions using Wentzel–Kramers–Brillouin wavefunctions21. Remarkably,
the exponential ~Vc dependence of the crossover scales stated in equa-
tion (3) can be understood from a non-interacting (U 5 0) theory, by
using the bare transmission probability3

T0
s vð Þ~ e{2p v{~Vczs~B=2ð Þ=Vx z1

h i{1
ð4Þ

in the Landauer–Büttiker formula. A detailed analysis (Supplementary
Information, section 5) shows that the crossover scales experience a fur-
ther exponential reduction with increasing effective interaction strength,
U
� ffiffiffiffiffiffiffiffiffiffi

Vxt0
p

.
When plotted as a function of ~Vc, 1

�
~B� has a peak in the sub-open

regime just before the onset of the exponential dependence of equa-
tion (3) (Fig. 1j). This peak is roughly similar in shape and position to
that in xtot

~Vc
� �

(compare dashed and solid blue lines in Fig. 1j), except
that the latter has a finite offset, reflecting the non-zero spin suscept-
ibility of an open QPC. Thus, we predict, fourth, that 1

�
~B�, which

characterizes the strength of the low-field magnetoconductance, is
roughly proportional to the spin susceptibility, xtot, of the CCR.

Next we address the remarkable experimental fact6 that many low-
energy properties of the 0.7-anomaly (including our first and third
predictions) are similar to those seen in transport through a Kondo
quantum dot (KQD). This led to the proposal13,14 that a QPC harbours
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Figure 3 | Finite excitation energies. a–f, Zero-bias peak. a, Experimental
data for the nonlinear conductance, gnl, as a function of source–drain voltage,
measured for several Vc values at a fixed low temperature and zero field.
b, Keldysh SOPT results for gnl ~Vsd

� �
for several ~Vc values at ~T~~B~0, showing

qualitative agreement with a. c, The linear-response conductance,
g~gnl ~Vsd~0

� �
, as a function of ~Vc. d–f, gnl ~Vsd

� �
as in b, but for three different

~Vc values (compare colour-matched dots in c and b) and five different magnetic
field values in each panel. Increasing ~B causes the ZBP to split into two subpeaks
once ~B> ~B�; the splitting is therefore most pronounced in e, for which ~B� is
smallest. A detailed discussion of the ZBP, including its T dependence, will be
published elsewhere. Here we would like to point out the qualitative agreement
of d–f with published data; see, for example, fig. 2d of ref. 6. g, h, Interacting
LDOS: Aj vð Þ, calculated using SOPT, shown for two fixed gate voltage values,
~Vc
�

Vx~0 (g) and 20.75 (h) (red dashed lines). i–n, Equilibrium transmission

probabilities: the corresponding elastic, inelastic and total transmission
probabilities, Tel

s (i, j), T in
s (k, l) and Ts (m, n), calculated using SOPT and

shown as functions of energy, v, for three different temperatures. At ~T~0
(black curves) T in

s vð Þ vanishes at v 5 0, where there is no phase space for
inelastic scattering. However, it increases as v changes from zero, causing a
corresponding reduction in the elastic transmission for v ? 0, such that Tel

s vð Þ
has a narrow ‘low-energy peak’ around v 5 0. On increasing the temperature,
the probability of inelastic scattering increases, causing the minimum in T in

s vð Þ
and the peak in Tel

s vð Þ to be smeared out. This leads to a net ~T-induced
reduction in the total transmission, Ts vð Þ near v 5 0, causing a corresponding
reduction in the conductance (Fig. 2d, f). This reduction is stronger for
~Vc
�

Vx~0 (m) than for ~Vc
�

Vx~{0:75 (n), because the probability of
electron–hole pair creation during inelastic scattering is largest when apex of
the van Hove ridge lies closest to m (compare g and h).
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a quasi-bound state, whose local moment gives rise to the Kondo effect.
In contrast, our van-Hove-ridge scenario fully explains the 0.7-anomaly
without invoking the Kondo effect. In particular, we find no indications
that a smooth parabolic barrier hosts a discrete, localized spin (com-
pare with the third feature above), and no Kondo effect/0.7-anomaly
similarities (experimentally or theoretically) at high energies (> ~B�),
where the Kondo effect is governed by an unscreened local moment.
Nevertheless, the two phenomena do have similar low-energy beha-
viour. This is because both involve a spin-singlet ground state featuring
spatially confined spin fluctuations. For a KQD they result from screen-
ing of the localized spin, whereas for a QPC they result from the
extended structure of the van Hove ridge (Fig. 1i); but this distinction,
which is important on short length scales (high energies), does not
matter on long ones (low energies). These spin fluctuations are char-
acterized by exponentially small energy scales, the Kondo temperature
for a KQD, and ~T� for a QPC, both scaling inversely with the local spin
susceptibility (for a QPC, this follows from prediction four). For a KQD,
the local spin fluctuations can be described by Nozières–Fermi-liquid
theory27,28 in terms of scattering phase shifts, which determine its low-
energy properties. Because a QPC, like a KQD, harbours spatially con-
fined spin fluctuations, a similar Nozières–Fermi-liquid framework
applies, explaining why its low-energy transport properties are similar
to those of a KQD.

We next study finite excitation energies (~T , ~Vsdw0), where inelastic
scattering becomes important (Fig. 3). We begin by considering the
nonlinear differential conductance, gnl, as a function of source–drain
voltage, Vsd. Experimentally, gnl shows a narrow peak at Vsd 5 0 (Fig. 3a;
see also refs 6, 9, 10). This ZBP appears strongest in the sub-open
regime, but remains visible even very close to pinch off10 (g R 0). It
splits with increasing field once B exceeds a Vc-dependent crossover
value that is smallest when g<0:7 (see fig. 2d of ref. 6). Remarkably, our
model, treated using Keldysh SOPT (Supplementary Information,
section 7B), yields a ZBP (Fig. 3b, d–f) that qualitatively reproduces this
behaviour. In the sub-open regime (0:5= g = 0:9), a ZBP arises even
without interaction (this follows from equation (4)), but interactions
modify it in two ways (Supplementary Information, section 7C): a finite
Vsd causes a net charge enhancement at the barrier, resulting in a reduc-
tion of transmission due to Coulomb repulsion; and opens up a finite
phase space for inelastic backscattering. Both effects strongly depend on
the LDOS near m (Fig. 3g, h), and are thus strongest when the apex of the
van Hove ridge lies near m (as in Figs 3g and 1g). However, the van Hove
ridge intersects m also for g , 0.5 (as in Fig. 1f), which explains why a
ZBP is experimentally observed even close to pinch off10.

The two modification mechanisms just discussed also apply to the
case of increasing temperature. To highlight the role of inelastic scat-
tering, we now discuss (for ~B~~Vsd~0) the transmission probability
Ts vð Þ~Tel

s vð ÞzT in
s vð Þ, written as the sum of elastic and inelastic

contributions corresponding respectively to transmission without or
with the creation of electron–hole pairs (see Supplementary Informa-
tion, section 7A, for their precise definition). Figure 3i–n shows exam-
ples of these quantities. With increasing temperature, the probability
for inelastic scattering increases, causing T in

s vð Þ to increase (Fig. 3k, l)
and Tel

s vð Þ to decrease (Fig. 3i, j). This leads to a net temperature-
induced reduction in the total transmission, Ts vð Þ (Fig. 3m, n), near
v 5 0, causing a corresponding reduction in the conductance (Fig. 2d, f).
Importantly, this reduction is ~Vc dependent: it is strongest when the apex
of the van Hove ridge lies near m (as in Fig. 3m) and decreases away from
this point (as in Fig. 3n), because the probability for electron–hole pair
creation during inelastic scattering increases with the LDOS near m. The
fact that Ts vð Þ acquires a non-trivial, interaction-induced dependence
on ~T in the sub-open regime is consistent with the fact that near g < 0.7
the measured thermopower violates the Mott relation5, which is based
on the assumption of non-interacting electrons.

Finally, we note that we have studied the magnetic field dependence
of the transconductance, dG/dVc, both experimentally and by using
FRG. We obtain excellent qualitative agreement between experiment

and theory, showing that such measurements can be understood with-
out invoking spontaneous spin polarization, as is often advocated to
explain them4,8,17. A detailed analysis (Supplementary Information,
section 2C, and Supplementary Fig. 5) establishes that the g factor is
enhanced significantly by interactions, and that interaction strength
can be tuned experimentally using a top gate.

We have presented detailed microscopic calculations that qualita-
tively reproduce the full phenomenology of the 0.7-anomaly. We
argued that a van Hove ridge in the LDOS, combined with interactions,
provides a natural explanation for the anomalous behaviour of the
conductance of a sub-open (g > 0:5) QPC. The experimentally
observed6 similarities between the 0.7-anomaly and the Kondo effect
at low energies arise because both phenomena involve spatially loca-
lized spin fluctuations; at high energies, the similarities cease. We
verified our Fermi-liquid predictions for the QPC conductance by
systematic measurement of the conductance as a function of Vc, B
and T. Strikingly, we demonstrated that the zero-bias peak in a QPC
arises from the interplay of interactions and geometry. By implication,
anomalous zero-bias behaviour might also arise in other systems
involving interacting electrons traversing 1D low-density regions with
slowly varying spatial inhomogeneities, such as the gated nanowires
being studied in the search for Majorana fermions29.

METHODS SUMMARY
The nanostructure is laterally defined in a 2DES located 85 nm beneath the surface
of a GaAs/AlGaAs heterostructure. The low-temperature carrier density and
mobility are 1.9 3 1011 cm22 and 1.2 3 106 cm2 V21 s21, respectively. Electron-
beam lithography was used to create the Ti/Au gates. The top gate is electrically
insulated from the others by cross-linked poly(methyl methacrylate). Perfect
alignment of magnetic fields parallel to the 2DES and the 1D channel defining
the QPC was ensured by using a two-axis magnet and was controlled by magne-
totransport measurements. We used a dilution refrigerator and reached electron
temperatures as low as T2DES < 30 mK.

Our most accurate theoretical results were obtained by using FRG24–26 to calculate
T 5 0 properties. FRG amounts to doing renormalization-group-enhanced per-
turbation theory in the interaction U. In setting up our FRG flow equations, we
made two approximations, both exact to second order in U: we truncated the infinite
hierarchy of flow equations by neglecting the flow of the three-particle vertex; and we
set to zero all components of the two-particle vertex that are not already generated to
second order in the interaction (coupled-ladder approximation).

To access the effects of inelastic scattering for ~Tw0 or ~Vsdw0 at fixed U, we
used SOPT: we dressed bare Green’s functions by evaluating the self-energy per-
turbatively to second order in the interaction. For ~Vsd~0, we calculated the linear
conductance following the strategy in ref. 23, generalized to ~B=0 and broken
electron–hole symmetry. For ~Vsdw0, we calculated the nonlinear conductance,
gnl~ dI

�
d ~Vsd

� ��
GQ, using the Meir–Wingreen formula for the current (equa-

tion (6) of ref. 30).
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S-1. OVERVIEW

The following supplementary material provides addi-
tional information related to various aspects of the main
article. Its sections can be read independently and in ar-
bitrary order. They are grouped into two parts: Part I
(Secs. S-2 and S-3) is devoted to experiments and their

comparison with theory; Part II (Secs. S-4 to S-7C) pro-
vides further theoretical details.

Section S-2 gives supplementary information about
our measurements discussed in the main article. Sec-
tion S-2A describes the experimental setup. In Sec. S-
2B we present the raw data on which the experimen-
tal tests of Fermi liquid predictions in the main article
are based, together with corresponding results obtained
by the functional renormalization group (fRG) (Fig. S2).
We also present additional data (Fig. S3) illustrating the
gate-voltage dependence of the crossover scales in mag-
netic field, temperature and source-drain-voltage, B∗, T∗
and Vsd∗, together with corresponding calculations using
second-order perturbation theory (SOPT). Sec. S-2C ex-
plains in detail how the effective g-factor gss is extracted
from the transconductance for large fields (Fig. S5), and
offers some comments on the much-discussed scenario
that the 0.7-anomaly is due to spontaneous spin polar-
ization in the QPC region.

Sec. S-3 presents further T = 0 fRG results (Figs. S6
and S7) that demonstrate qualitative agreement with
shot noise and compressibility measurements by other
groups. These fRG results, and those in Sec. S-5, were
calculated using “static” fRG, which differs from the “dy-
namic” fRG approach used in the main text by neglecting
the frequency dependence of the self-energy and all ver-
tices (see Sec. S-6 F). Static fRG yields results that are
very similar to those of dynamic fRG (see Fig. S15), while
being numerically cheaper by a factor ∼ 103.

Section S-4 describes our theoretical model in detail.
We have used two slightly different parametrizations of
the QPC barrier shape, called “model I” and “model II”,
which both describe parabolic barrier tops and hence give
essentially equivalent results for QPC properties. They
are defined in Secs. S-4B and S-4D, respectively (the
main article uses only model II). Sections S-4C and S-
4E explain how the effects of geometry are encoded in
the bare local density of states (LDOS), focussing in par-
ticular on the van Hove ridge of a QPC, which is key to
understanding the 0.7-anomaly.

Section S-5 focuses on the low-energy scale B̃∗(Ṽc) for

a QPC: it shows that its exponential Ṽc-dependence has
a purely geometric origin, and that the strength of its U -
dependence likewise depends on the shape of the barrier.

Sections S-6 and S-7 discuss details of the two theoreti-
cal methods used here to incorporate the effect of inter-
action: the functional Renormalization Group (fRG) and
second order perturbation theory (SOPT), respectively.
Section S-7C is devoted to a detailed description of our
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SOPT results for finite temperature or finite source-drain
voltage, offering a summary of the features of the 0.7-
anomaly which SOPT does or does not capture quali-
tatively. Finally, Sec. S-7D discusses an SOPT artefact
that arises with increasing U .

Equation and figure and section numbers from the
main article or the supplementary material are pref-

aced below by A (for “article”) vs. S (for “supplemen-
tary”), respectively, e. g. Eq. (A1), Fig. A1f, Sec. A-
2 vs. Eq. (S1), Fig. S2b, Sec. S-4. As in the main
article, we use tildes to distinguish theory parameters

from those used in experiment, writing, e. g. T̃ = kBT ,

B̃ = |gel|µBB, and Ṽc,s ∝ −|e|Vc,s.

PART I: EXPERIMENT VS. THEORY

S-2. OUR EXPERIMENTAL DATA VS.
THEORY

A. Experimental setup

The gate layout of our sample, shown in Fig. A1a for
a dummy sample whose layout is identical to that of the
actual sample, provides a particularly high tunability of
the central constriction region (CCR). The gates can be
used to laterally define either a quantum point contact
(QPC) or a quantum dot (QD) in the two-dimensional
electron system (2DES) 85 nm beneath the surface of
a GaAs/AlGaAs heterostructure. In this work, we fo-
cus exclusively on the QPC geometry; a study of the
crossover from QD to QPC will be published elsewhere.1

More information about the experimental conditions is
provided in the methods summary section of the main
article.
In our two-terminal transport measurements the cur-

rent Isd flows through the nanostructure between ohmic
contacts marked by ”source” and ”drain” in Fig. A1a,
and we measure the differential conductance g =
(dIsd/dVsd)/GQ (henceforth simply called conductance)
using lockin methods. In all measurements discussed in
this paper we apply a negative voltage Vc to both center
gates and a negative voltage Vs to all four side gates. This
depletes the 2DES in the vicinity of the gates, so that
propagation between source and drain through the CCR
is confined to a narrow channel, leading to the quantiza-
tion of transverse modes. (Further variations of individ-
ual gate voltages allow additional control of the lateral
symmetry properties of the CCR, but such studies are
not included in this work.) Moreover, our sample also
contains a global top gate (see Fig. A1a).
In this work, we focus on gate voltages such that trans-

port is carried solely by the first subband, corresponding
to the lowest transverse mode. Its behavior can be de-
scribed by a one-dimensional effective model for motion
in the longitudinal (say x-) direction. The shape of the
effective potential Veff(x) in the CCR can be changed by
tuning Vc, Vs and Vt. Increasing the top gate voltage Vt

increases the carrier density of the 2DES in the contacts
of the CCR and hence the chemical potential, thereby
deepening (w. r. t. µ) the trenches between the regions
of high potential energy caused by the central and side
gates4. This changes not only the shape of Veff(x), but
also causes the transverse wave functions to be more lo-

calized and hence increases the effective one-dimensional
on-site interaction strength U within the CCR. For future
reference, we summarize this trend as follows:

The effective interaction strength U can

be increased experimentally by increasing Vt. (S1)

For a QPC geometry, increasing Vt has an additional
effect: due to the deepened trenches in the potential land-
scape, the energy spacing of the transverse eigenmodes
increases, resulting in an increased subband spacing5.
This trend is demonstrated in Fig. S1 based on mea-
sured pinch-off curves of our QPC for varying top-gate
voltages. It can be used, in principle, to quantify the Vt-
induced increase in U in terms of the Vt-induced increase
in subband spacing6, as will be elaborated in Sec. S-5C
below.

B. Fermi liquid properties

Figs. S2b and S2c show the raw experimental data for
the measured linear response conductance of our QPC (a
constant lead resistance has already been subtracted for
all data). They show how the pinch-off curves depend on
magnetic field and temperature, respectively. For com-
parison, Fig. S2a shows corresponding fRG data calcu-
lated for zero temperature as a function of the magnetic

field B̃. Both calculated and measured data exhibit the
expected transition from a weak kink at g � 0.7 at small
T and B to a pronounced 0.7-anomaly if either mag-
netic field (measured and calculated data) or tempera-
ture (measured data) is substantially increased.
The raw data from Figs. S2b and S2c underly the ex-

perimental results presented in Figs. A2e-h of the main
article. Figs. S3a-d shows additional data sets, plot-
ted in the same way as in Figs. A2g and A2h, but
displaying data not shown there for lack of space. To-
gether, these data confirm the Fermi-liquid behavior ex-
pected theoretically for sufficiently low fields and tem-
peratures: Figures A2g and S3a,b show that at suf-
ficiently low temperatures, T0 � T∗ (in our measure-
ments T0 = T2DES � 30mK), the leading magnetic field-
dependence of the linear conductance is quadratic,

g(B)/g(0) = 1− (B/B∗)
2 , B � B∗ , (S2a)
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Figure S1: Vt-dependence of subband spacing. a, Mea-
sured pinch-off curves g(Vc) of our QPC for a series of top-gate
voltages in the range −0.7V ≤ Vt ≤ 0.8V. As Vt is decreased
the carrier density also becomes smaller which, in turn, results
in a larger pinch-off voltage Vc and, clearly, in more narrow
plateaus at integer g. The steep increase of g(Vc) independent
of Vt at Vc � −0.25V indicates the transition from 1D to 2D
transport as the 2DES directly below the center gates is no
longer depleted. b, Energy spacing between the lowest two
1D subbands as a function of Vt. The data points were eval-
uated from finite-Vsd measurements (raw data2 not shown),
using a procedure described in Refs. 2,3, whose uncertainty
is indicated by the error bars. The resulting subband spacing
is approximately proportional to the width of the first con-
ductance plateau in a. As expected from a simple capacitive
model, it is also proportional to Vt (the dashed straight line
is a guide for the eye).

as expected from Eq. (A2). Similarly, Figs. A2h and
S3c,d show that at zero field (B = 0), the leading tem-
perature dependence is likewise quadratic,

g(T )/g(T0) = 1− (T/T∗)
2 , T � T∗ . (S2b)

Fitting Eqs. (S2a) and (S2b) to the data in
Figs. S2b and S2c, respectively, yields the low-energy
scales B∗(Vc) and T∗(Vc) used in Figs. A2g and A2h and
depicted by colored symbols in Figs. A2e and A2f, re-
spectively (and similarly for Figs. S3a-d). The scaled
conductance curves displayed in Figs. S3a-d are plot-
ted only in the restricted ranges g(B)/g(0) � 0.8 and

g(T )/g(T0) � 0.8, respectively. For smaller conduc-
tances, where the conditions B � B∗ or T � T∗ no
longer hold, the measured B- and T -dependences of the
conductance deviate from quadratic behavior by bend-
ing upward, tending toward saturation (as shown in
Figs. A2g,h ).
The fit parameters B∗ and T∗ are compared in the

half-logarithmic presentation in Fig. A2f as functions of
the center gate voltage ∆Vc. For convenience, this data
is shown again in Fig. S3f, together with the low-energy
source-drain voltage scale Vsd∗. The latter was obtained
by determining the curvature of the nonlinear conduc-
tance curves gnl(Vsd) (shown in Fig. A3i) at Vsd = 0:

gnl(Vsd)/gnl(0) = 1− (Vsd/Vsd∗)
2, Vsd � Vsd∗ . (S2c)

Compared to our determinations of B∗ and T∗ from
linear-response data, those for Vsd∗ have rather larger
error margins, since for technical reasons the non-linear
conductance data was measured with a smaller signal-to-
noise ratio.
As mentioned in the main article, SOPT makes two

predictions for the Ṽc-dependence of the crossover scales

B̃∗, T̃∗ and Ṽsd∗ in the Vc-range where g → 1: first, all
three scales depend exponentially on Vc (Fig. S3e); and

second, the ratios B̃∗/T̃∗ and Ṽsd∗/T̃∗ are, to within a

few %, independent of Ṽc (as illustrated in Fig. S4 for
a range of U -values). The experimental results for B∗,
T∗ and Vsd∗ shown in Fig. S3f confirm both predictions.
This demonstrates that at low energies a QPC shows
Fermi-liquid behavior, as argued in detail in the main
article.

C. Top-gate tuning of effective gss-factor

In a QPC geometry, interactions are known to enhance
the effective electronic g-factor7–9. For large fields (B �
B∗), an effective g-factor, say gss, can be extracted from
the transconductance dg/dVc, by exploiting the fact that
the measured field-induced subband splitting of the first
conductance step, say ∆E, increases linearly with field,
∆E = gssB. In previous experiments with in-plane fields
(B in the 2DES plane), |gss|-values have been observed
exceeding the bulk value (gGaAs � −0.45) by up to a
factor of 69,10, an increase that was attributed by Koop
et al. to interaction effects9.
In Fig. S5 we present the results of fRG calculations

and measurements of the transconductance and the top-
gate dependence of gss that confirm this interpretation.
We numerically deduce the transconductance dG/dVc

(dG/dṼc) from both the measured and calculated con-
ductance data. Typical experimental results are plotted
in Fig. S5a for the range 0 < g < 1 as a function of Vc.
They show two peaks whose splitting ∆E increases lin-
early for large fields, as ∆E � gssB + ∆hfo (Fig. S5b),
where both the slope gss and the “high-field offset” ∆hfo

are found to increase with top-gate voltage Vt (Fig. S5c).
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Figure S2: QPC theory versus experiment, raw data: a, fRG data (model II) for the normalized conductance g = G/GQ,

calculated at T = 0 and fixed side gate voltage Ṽs = 1.75τ as function of center gate voltage Ṽc and magnetic field B̃. b, c
Experimental data for the normalized linear response conductance g = (dI/dVsd)/GQ (lead resistance subtracted), measured
at fixed side and top gate voltages, Vs = −0.4V and Vt = 0.8V. b g at T2DES = T0 = 30mK, measured as function of center
gate voltage Vc and inplane magnetic field B aligned along the narrow constriction. c, g at B = 0, measured as function of Vc

and temperature T . The data presented here are the raw data used for Figs. 2e-h in the main article and in Figs. S3a-d below.
For better visibility, the pinch-off curves at minimal and maximal magnetic field / temperature have been highlighted by thick
black lines, serving as guides for the eyes. The best signal-to-noise ratio was achieved by slowly sweeping B at constant Vc in
b, and by sweeping Vc at constant T in c.
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Ṽsd∗

V0.5=−1.224V

˜

eVsd∗µBB∗

kBT∗

g(
B

)/
g(

0)
g(

T)
/g

(T
0)

1−
g(

T)
/g

(T
0)

1-
g(

T)
/g

(T
0)
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SOPT results for model II, for the conductance g (thick black line) and the low-energy scales B̃∗, T̃∗ and Ṽsd∗ (thin grey, black
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The effect of increasing Vt can be mimicked in our model
by increasing U (for reasons explained in Supplemen-
tary Sec. S-2A). Indeed, the results of our fRG calcula-
tions, shown in Fig. S5d-f, qualitatively match the trends
shown by the experimental data in Fig. S5a-c. This es-
tablishes several important points. First, interactions
are the reason why the g-factor extracted from ∆E(B)
is anomalously large. Second, the effective interaction
strength can be tuned experimentally via a top gate volt-
age. Third, the experimental observation of ∆hfo �= 0 can
be understood without adopting the spontaneous spin po-
larization scenario that is often advocated7,9,31 to explain
it. Let us now elaborate these points in more detail.
We theoretically studied the U -dependence of gss by

using fRG to calculate pinch-off curves for parabolic QPC
barrier shapes such as that of Fig. A1b, for a range of

fields B̃ and interaction strengths U . Fig. S5d plots

the transconductance, i. e. the derivative −dg(Ṽc)/dṼc

as function of Ṽc (varied over a range corresponding to

0 ≤ g ≤ 1), for a large number of different B̃-fields, at
U = 0.5τ . In such a plot the field-induced spin splitting
of the conductance step manifests itself as a pair of local

maxima7–9,11. The Ṽc-separation of their peaks, say ∆E,

is proportional to the effective B̃-induced subband split-

ting. Evidently ∆E increases with B̃. Fig. S5e shows

∆E(B̃) vs. B̃ for six values of U , including the data ex-

tracted from Fig. S5d. For large fields (B̃ � B̃∗) we find
a linear relation,

∆E(B̃) � (gss/gel)B̃ +∆hfo , (S3)

where ∆hfo represents the “high-field offset” as defined
by Koop et al.9, i. e. the linear extrapolation of the high-

field behavior to B̃ = 0. Fig. S5f and its inset show that

both the slope and the offset increase with U , implying
that both gss and ∆hfo serve as measures of the effective
interaction strength.

Koop et al. have reported a strong enhancement of
the g-factor as the spacing ω12 between the electronic
subbands of the QPC is increased9. Our theory nicely
explains this finding: an increase in ω12 corresponds to a
smaller transverse channel width, implying an enhanced
interaction strength (as argued at the end of section S-
2A) and hence an increase in gss (see Fig. S5f).

This interpretation is confirmed by the experimental
data shown in Fig. S5a-c. This data was measured using
a second sample (“sample 2”), of similar design than that
used to study the Fermi-liquid properties of Figs. A2e-h
discussed in the main text (“sample 1”). For sample 2,
we measured ∆E(B) = a ·∆Vc (for the values of the con-
version factor a see table in Fig. S5b) as function of top
gate voltage Vt, which corresponds to tuning the effective
interaction strength. According to our theoretical consid-
erations, increasing Vt causes increasing U [see Eq. (S1)]
and hence increasing gss (by Fig. S5f). Fig. S5a-c present
experimental results corresponding to the predictions in
Fig. S5d-f (using Vt instead of U). They qualitatively
confirm our numerical results, especially that both gss
and ∆hfo increase with Vt and, therefore, the interaction
strength. (In contrast to us, Koop et al. did not observe a
systematic correlation between gss and ∆hfo. A possible
reason is that their study varied the shape of the QPC
potential by varying the width and length of the QPC,
whereas we varied Vt. Our studies thus differ from theirs
in the detailed shape of the 2D potential landscape. The
effective interaction strength is very sensitive towards the
latter, as discussed in more detail in Sec. S-5C.)

We conclude our discussion on ∆E(B) with an impor-
tant comment on the high-field offset ∆hfo. In several
experimental studies of the 0.7-anomaly7–9, the observa-
tion of a nonzero value for ∆hfo was interpreted as ev-
idence “that there is a possible spin polarization of the
1D electron gas in zero magnetic field” (the quote is from
Thomas et al.7). Our fRG results show that this inter-
pretation is not compelling, since we obtain ∆hfo �= 0
without any spontaneous spin polarization. ∆hfo �= 0

simply implies that the B̃ = 0 conductance step g(Ṽc) is
somewhat skewed (see Figs. A1k, A1l, A2a), so that the
peak in the transconductance is not symmetric (as seen
in Fig. S5d); as shown here, this can be achieved with a
magnetization that is strictly zero. Indeed, our fRG ap-
proach assumes from the outset that the magnetization

per site, mj = 1
2 (nj↑ − nj↓), is strictly zero at B̃ = 0

(see blue line in Fig. A1d, and introduction of Sec. S-6).
This a priori assumption is justified a posteriori by the
good qualitative agreement between fRG and experiment
found throughout this work, and in Fig. S5 in particular.
Moreover, this assumption is a prerequisite for under-
standing the low-energy Fermi-liquid properties of the
0.7-anomaly discussed in the main text, and the result-
ing analogies between the 0.7-anomaly and the Kondo
effect: for the latter, there is zero spin polarization at
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Figure S5: Determination of the subband-splitting g-
factor gss. a-c. Results from experimental measurements
on a sample (“sample 2”) of similar design as that discussed
in the main text (“sample 1”). d-f, Corresponding results
from fRG calculations. a,d, The transconductance, i. e. the
derivative of the conductance with respect to gate voltage (Vc

in a, Ṽc in d), plotted as a function of gate voltage, for sev-
eral magnetic fields. An increasing magnetic field lifts the
spin degeneracy, causing the conductance step to split into
two spin-resolved sub-steps and giving rise to two local max-

ima in a,d (marked by blue dots). In d, B̃min
∗,0.5 (red square)

stands for B̃min
∗ at U = 0.5. b,e. The peak distance ∆E, de-

termined by fitting a pair of Gaussians (shown by gray lines
in a) to the peak pairs in a,d, is plotted as function of mag-
netic field, in b for three different top gate voltages, and in e
for seven different values of the on-site interaction U . Linear
least-square fits to such curves in the range of large fields,
using ∆E � gssB + ∆hfo, yield the effective g-factor gss and
high-field offset ∆hfo. Errors, s. e.m. (n = 5 - 7). (To convert
∆Vc in a to ∆E in b, we used the Vt-dependent conversion
factors a = ∆E/∆Vc listed in the legend of b, obtained ap-
proximately from nonlinear transport measurements7,9.) c,f,
|gss| (and in insets, ∆hfo), plotted as a function of Vt (in c)
or U (in f). The red straight line in c is a error-weighted
least square fit. Both theory and experiment show the same
trend, namely that gss and ∆hfo increase with the effective
interaction strength U (which increases with Vt in our sample
geometry.

B̃ = T = 0, because lead electrons screen the local spin
into a spin singlet.
It is noteworthy, though, that the linear increase in

∆E(B̃) in Fig. S5e sets in already at rather small fields,

of order O(B̃∗) and similarly for ∆E(B) in Fig. S5b.
The reason is that at small fields the spin polarization
rapidly grows with field, since the spin susceptibility is
large. It is large because it is strongly enhanced by in-
teractions (Fig. A1j), as recognized and emphasized by
Thomas et al.7, and because the effects of interactions
are further enhanced by the van Hove ridge in the QPC,
as discussed in the main article. According to our analy-
sis, the large spin susceptibility goes hand in hand with
a strong interaction-induced enhancement in the inverse
scale 1/B∗(∝ χtot) [Fig. A1j], as discussed in the main
article, and also in Sec. S-5B below.

The scale B̃∗ governs the “strength” of the 0.7-
anomaly, in that the conductance is significantly reduced

once B̃ or T̃ increase past B̃∗. In an alternative model
proposed by Reilly et al.12, one of the advocates of
spontaneous spin polarization, the strength of the 0.7-
anomaly is governed by the size of the spin gap. This
model was used successfully, for example, to model the
shot noise measurements of Ref. 13. The Reilly model as-
sumes that the spin gap increases strongly with decreas-
ing Vc, i. e. with increasing density in the QPC-region.

Note that this Ṽc-dependence of the proposed spin gap
shows the same tendency as that shown by the Hartree-
enhancement of the barrier size in our work, which like-

wise increases linearly with increasing density as Ṽc is
made more negative. (The density near the CCR cen-
ter also increases as temperature or source-drain volt-
age is increased, and becomes strongly spin-asymmetry

as B̃ increases.) In this sense, our work sheds light on
why the Reilly model is phenomenologically successful at
large energies: it makes qualitatively correct assumptions
about the Vc-dependence of the effective barrier height
that governs the strength of the conductance’s B- or T -
dependence. That having been said, we emphasize once
more that our Hartree-shift in barrier height is not a spin
gap, and that our scenario differs decidedly from that
of the Reilly model for energies below B∗: there we as-
sert the appearance of Fermi-liquid behavior that is not
compatible with spontaneous spin polarization. In our
theory, a spin splitting sets in only once spin symmetry

is broken by finite B̃ (though a spin-symmetric Hartree-

shift in barrier height is present even at B̃ = 0). The spin

gap predicted by our theory for B̃ �= 0 does increase with
the density in the QPC, as in the Reilly model, since it
arises from Hartree contributions to the self-energy (see
Eq. (S42) in our fRG scheme, or the first two diagrams
in Eq. (S53) when doing perturbation theory).
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S-3. OTHER EXPERIMENTAL DATA VS.
FRG

This section presents additional fRG results on the
zero-temperature behavior of the conductance, the shot

noise, and the charge susceptibility. Their Ṽc- and

B̃-dependence is found to be in qualitative agreement
with that observed experimentally by other groups (Di-
Carlo et al. for the shot noise13, Smith et al. for the
compressibility14.

The fRG results presented below were obtained us-
ing “static” fRG, a simplified version of the “dynamic”
fRG scheme used in the main text. Static fRG neglects
the frequency dependence of the self-energy and all ver-
tices (see Sec. S-6 F). This simplification reduces compu-
tational costs by a factor of 103. Nevertheless, for the
model studied here the results of static fRG turn out to
be qualitatively very similar to those of dynamic fRG (see
Fig. S15 below). Hence we have opted to use static fRG
for the results presented in Secs. S-3 and S-5.

A. Spin-resolved conductance, shot noise

This subsection presents a detailed discussion of the
spin-resolved conductance. It is based on calculations
using model I (defined in Sec. S-4B), but the results are
fully analogous to those shown in Figs. A2a,b for model
II (defined in Sec. S-4D).
The role of interactions for the magnetoconductance of

a QPC at zero temperature can be very clearly revealed
by studying the spin-resolved conductance gσ = Tσ and
the shot noise factor15

N =
1

2

∑
σ

gσ(1− gσ). (S4)

Fig. S6 shows these quantities together with the full con-
ductance g = g↑+g↓, all calculated at T = 0 as functions

of Ṽc, for various fields. To highlight the effect of inter-
actions, we also show corresponding results for the bare
(U = 0) model, which we discuss first.

We begin with some elementary observations: First,

the bare transmission probability T 0
σ (Ṽc, 0) at zero field,

studied as function of Ṽc, is antisymmetric w. r. t. the
point T 0

σ (0, 0) = 0.5 [cf. Eq. (S30) below]:

T 0
σ (Ṽc, 0) = 1− T 0

σ (−Ṽc, 0) . (S5)

A finite field B̃ shifts the bare potential in opposite direc-

tions for opposite spins, δṼj = −σ
2 B̃ (with σ = ±1 for ↑,

↓). Thus the bare spin-resolved transmission probability

T 0
σ at finite B̃ is equal to that at B̃ = 0 but for a shifted

value of Ṽc:

T 0
σ (Ṽc, B̃) = T 0

σ (Ṽc − σ
2 B̃, 0). (S6)

This implies that B̃ induces a shift (but not a change in
shape) for the spin-resolved conductance step in gσ by

σ
2 B̃ (see Figs. S6b-c). Nevertheless, since Eqs. (S6) and
(S5) together imply

T 0
σ (Ṽc, B̃) = 1− T 0

σ̄ (−Ṽc, B̃) , (S7)

the full conductance remains antisymmetric w. r. t. the

point T 0
σ (0, B̃) = 0.5 even for finite B̃ (see Fig. S6a):

g0(Ṽc, B̃) = 1− g0(−Ṽc, B̃) . (S8)

Eq. (S7) also implies that the bare shot noise, N 0, is

symmetric w. r. t. Ṽc = 0, or g = 0.5 (see Fig. S6j).

The above antisymmetry of g(Ṽc) w. r. t. Ṽc = 0 is bro-
ken in the presence of interactions, in a manner that
becomes increasingly more pronounced with increasing
field, see Figs. S6d and S6g, for U/τ = 0.2 and 0.45, re-
spectively. In the latter case the broken antisymmetry is
visible already at zero field, in that the fRG conductance
curve shows a slight 0.7-shoulder, in agreement with ex-

periment (cf. Fig. A2e). This shoulder at B̃ = T̃ = 0 oc-
curs because the interaction-induced increase of the effec-
tive potential barrier is enhanced by the van Hove ridge
in the local density of states (LDOS) and hence is non-

uniform in Ṽc (see the main article for a detailed explana-

tion). The breaking of Ṽc-antisymmetry increases with B̃
because (exchange) interactions amplify the field-induced
asymmetry in the population of spin-up and -down elec-
trons in the CCR, in particular near the top of the bar-

rier: a small B̃-induced surplus of spin-up electrons leads
to a significantly increased Hartree barrier, and more so
for spin-down electrons than for spin-up electrons (due
to the Pauli principle), causing a strong decrease of g↓
relative to g↑. This effect, whose strength increases with
U (compare 2nd and 3rd columns of Fig. S6) results in
the field-induced strengthening of the 0.7-shoulder that
is characteristic of the 0.7-anomaly, and its evolution into
a double step for large fields.

The increasing Ṽc-asymmetry (i. e. departure from per-

fect antisymmetry) in gσ(Ṽc) as B̃ increases is also re-
flected in the shot noise factor N (g) [Eq. (S4)], see
Figs. S6k and S6l, for U/τ = 0.2 and 0.45, respectively.
For zero applied field, N (g) is symmetric w. r. t. g = 0.5;
this follows directly from the form of Eq. (S4) (which
holds whenever a Fermi-liquid description applies), and
our assumption that there is no spontaneous breaking of

spin symmetry at B̃ = 0, implying g↑ = g↓. With increas-
ing field, N (g) develops an g-asymmetry w. r. t. g = 0.5,
being somewhat suppressed in the range g > 0.5 relative
to its values in the range g < 0.5. This field-induced
g-asymmetry is in good qualitative agreement with the
experimental measurements of the noise factor by Di-
Carlo et al., cf. Fig. 4(d) of Ref. 13. Note, though, that
the measured noise factor shows an g-asymmetry even at
zero field, in contrast to our fRG predictions; we believe
that this remnant g-asymmetry is a finite-temperature
effect that will gradually disappear if the experimental
temperature is lowered further. Reproducing this behav-
ior explicitly by a finite-temperature calculation of the
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Figure S6: Comparison of results for model I, for its bare U = 0 version (first column), or treated using static fRG for
U/τ = 0.2 and 0.45 (second and third columns, respectively). The top, middle and bottom rows show, respectively, the full

QPC conductance g = g↑ + g↓ and its spin-resolved contributions g↑ and g↓, all plotted as functions of Ṽc/Ωx for several values

of magnetic field B̃. The fourth column shows a similar comparison for the shot noise factor N [Eq. (S4)], plotted as function
of g.

noise factor for our model is left as a task for future
study.

B. Compressibility and charge susceptibility

Recently, Smith et al.14 have experimentally studied
the compressibility of the electron gas of a QPC. In par-
ticular, they measured the Vc-dependence of the com-
pressibility in the vicinity of the 0.7-anomaly and studied
its evolution with increasing temperature and magnetic
field. The compressibility is a measure of the density of
states at the chemical potential. In a QPC geometry,
its Vc-dependence is thus governed by that of the LDOS
maxima at the bottom of the 1D band, i. e. by the van
Hove ridge discussed in detail in the main article and in
Sec. S-4C below (see the yellow ridges in Fig. A1b and
Fig. S10d); and its B-dependence is governed by the spin
splitting of this van Hove ridge.

Within our model, the compressibility can be associ-

ated with the charge susceptibility of the CCR,

χµ =
dntot

dµ
, ntot =

CCR∑
jσ

njσ , (S9)

where ntot is the total charge in the CCR and µ the chem-
ical potential. Figs. S7a and S7b show zero-temperature

fRG results for the conductance g(Ṽc) and the charge

susceptibility χµ(Ṽc), respectively. The results exhibit
a number of features, enumerated below, that are qual-
itatively consistent with features observed by Smith et
al.14.

Consider first the noninteracting case, U = 0 (black

dashed lines for g0 and χ0
µ): When Ṽc is lowered past

0, the bare charge susceptibility χ0
µ(Ṽc) in Fig. S7b tra-

verses a single broad peak, aligned with the center of the
corresponding conductance step in Fig. S7a. This peak
arises because the bare charge susceptibility equals the
bare total density of states at the chemical potential [cf.
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Figure S7: Charge Susceptibility. Static fRG results

(model I) for (a) the conductance g(Ṽc) and (b) the charge

susceptibility χµ(Ṽc) [Eq. S9] as function of Ṽc, calculated for

six values of B̃ at a fixed Ṽs and T̃ = 0. Black dashed lines
in a and b show the bare (U = 0, B̃ = 0) curves, g0 and
χ0
µ = A0

tot(0), respectively. Vertical dashed lines are a guide
for the eyes and mark the weak shoulder or second maximum

of χµ(Ṽc). c, The full (U �= 0) LDOS at the chemical po-

tential, Aj(0), as function of gate voltage Ṽc and site index
j.

Eq. (S39)],

χ0
µ =

CCR∑
jσ

A0
jσ(0) = A0

tot(0), (S10)

which traverses a peak when the spin-degenerate van
Hove ridge is lowered past µ. For nonzero U but still

B̃ = 0 (black solid lines), χµ(Ṽc) is reduced, since in-
teractions tend to counteract the (infinitesimal) increase
in charge induced by an (infinitesimal) increase in µ
[Eq. (S9)]. This reduction occurs in such a way that

(i) χµ(Ṽc) retains a dominant peak, with (ii) a weak

shoulder developing on its right (even though B̃ = 0),

roughly aligned with the roll-over of g(Ṽc) towards the

first conductance plateau. This shoulder arises because

when Ṽc decreases into the open-channel regime, the
van Hove ridge apex drops so far below µ that Aj(0),
the LDOS at µ, decreases rapidly (Fig. S7c). As a re-
sult, its interaction-enhancing effects, and hence also the
Coulomb-blockade reduction in χµ, weaken rapidly, re-
sulting in a shoulder in χµ.

The colored lines in Fig. S7 show the evolution of the

conductance g(B̃) and charge susceptibility χµ(Ṽc) with
magnetic field for U = 0.45τ . While the conductance
step evolves into the familiar spin-split double step with
increasing field (Fig. S7a), (iii) the dominant peak in

χµ(Ṽc) (Fig. S7b) remains aligned with the center of the

first conductance step, while (iv) the shoulder in χµ(Ṽc)
develops into a weak peak that shifts towards the right,
remaining roughly aligned with the roll-over to the sec-
ond conductance plateau (as indicated by dashed col-
ored lines between Figs. S7a and S7b). This reflects the
field-induced spin-splitting of the van Hove ridge into two
spin-resolved sub-ridges, which get lowered past µ at dif-

ferent Ṽc-values. As a result, (v) χµ(Ṽc) develops a weak
minimum between the two peaks.

Features (i)-(v) can also be found, on a qualitative
level, in Figs. 2 and 3(a) of Smith et al.. Their mea-
sured signal, called dVsg/dVmid there, has minima when
the compressibility has maxima, and vice versa. In
their Fig. 2(a), the red curve shows a strong dip at
Vmid = 0.14 V and a very weak minimum at 0.22 V.
We associate these, respectively, with the dominant peak

(i) and the weak shoulder (ii) in χµ(Ṽc) discussed above.
In their Fig. 2(b), the two dips in the red curve at
Vmid = 0.12 V and 0.19 V, correspond, respectively, to
the two maxima mentioned in (iii) and (iv) above. And
in their Fig. 3(a), the peak marked by an arrow corre-
sponds to the dip mentioned in (v). We thus conclude
that the measured compressibility maxima accompany-
ing the conductance steps are indeed due to maxima in
the density of states at the band bottom, as suggested
by Smith et al. themselves (and in Ref. 16). This sup-
ports our contention that van Hove ridges play a central
role in the physics of the 0.7-anomaly. By implication
it also confirms the presence of the “quasi-bound states”
advocated by Meir and collaborators17–19, provided that
we identify their “quasi-bound states” with our van Hove
ridges – as argued in Sec. S-4E below, both names refer
to the same peaked structures in the LDOS.

This identification was not clear at the time of writ-
ing of Ref. 14, however. Instead, Smith et al. argued
that they see “no evidence of the formation of the quasi-
bound state predicted by the Kondo model”. This state-
ment was based on a comparison of their B = 0 data
for dVsg/dVmid to simulations16 using density-functional
theory (DFT) combined with the local spin density ap-
proximation (LSDA). These data and the simulation re-
sults are shown, respectively, as black and red curves in
Fig. 4(b) of Ref. 14. The simulations yielded an addi-
tional strong dip [indicated by an arrow in Fig. 4(b)],
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aligned with the onset of the conductance plateau, that
had no counterpart in the measured data. We suspect
that this additional strong dip might be an artefact of
the tendency of DFT+LSDA calculations, when initial-
ized using a small nonzero magnetic field19,20, to yield a
nonzero spin polarization in regions where the spin sus-
ceptibility is large (as is the case in the QPC). We assert,
however, that at B = 0 the spin polarization is strictly
zero (in contrast to views expressed in Refs. 7,8,14), since
this is a prerequisite for understanding the Fermi-liquid

properties discussed in the main article. Our fRG cal-

culations for B̃ = 0 thus assume zero spin polarization
from the outset. Remarkably they yield, instead of the
strong additional peak found by DFT+LSDA, only the
weak shoulder (ii) mentioned above, which is consistent
with the compressibility data of Smith et al. Further ar-
guments in support of the absence of spontaneous spin
polarization at zero field are offered at the end of Sec. S-
2C.

PART II: THEORETICAL DETAILS

S-4. MODELS USED FOR BARRIER SHAPE

In the course of our studies of the 0.7-anomaly, we have
explored many different parametrizations of smooth,
symmetric QPC barrier shapes. We found that as long
as the barrier top is parabolic, characterized by a barrier

height Ṽc (w. r. t. to the chemical potential) and a curva-
ture parameter Ωx, the details of the parametrization of
the barrier do not matter.

In this section we present the details of two differ-
ent parametrizations for parabolic barriers, to be called
“model I” and “model II”, whose results for QPC proper-

ties are fully equivalent when expressed as functions of Ṽc

and Ωx. Both models use the same Hamiltonian, choice
of chemical potential and local interaction strength Uj ,
specified in Sec. S-4A, but differ in their choices for the
hopping amplitude τj (which is j-independent for Model
I but not for Model II) and the on-site potential Ej .

Model I is presented in Sec. S-4B: its hopping ampli-
tude is j-independent, τj = τ , and the barrier shape is
specified by parametrizing Ej in terms of a central gate

voltage Ṽc and a side gate voltage Ṽs. It is designed
to allow a theoretic study of the crossover between a
Kondo quantum dot (KQD) and a QPC by continuously
deforming the 1D potential from a double-barrier to a
single-barrier shape (see Figs. S9c and S9d below, re-
spectively). (The results of a corresponding study will
be published elsewhere1.) Here we use model I to calcu-
late numerous QPC properties presented in various parts
of the supplementary material (Figs. S6, S7, S10, S11,
S13 and S14). Moreover, model I allows instructive in-
sights into the similarities and differences between the
bare density of states of a QD and a QPC, which are
key to understanding the similarities and differences be-
tween the Kondo effect and the 0.7-anomaly, as briefly
discussed in Sec. S-4C.

For model II, presented in Sec. S-4D, τj depends non-
trivially on j, and the barrier shape is specified solely in

terms of a central gate voltage Ṽc and the barrier cur-
vature Ωx (adjusted via the length N of the CCR, but
without reference to a side gate voltage). Compared to
model I, model II has technical advantages when treated
using SOPT (as explained below). For clarity, model II

was used for all numerical results (both from fRG and
SOPT) presented in the main article. It was also used
for Figs. S2, S4, S12, S16 in the supplementary material.
We emphasize that the results obtained using models I
and II are qualitatively consistent.
To conclude our introductory comments on the models

used here, we remark that the idea of studying the 0.7-
anomaly using an effective 1D model with a smoothly
varying QPC potential and local interactions has of
course been pursued previously by numerous authors.
For example, a model with local exchange interactions
was studied in Refs. 21 and 22, a model with an un-
screened Coulomb interaction in Ref. 6, and a model
with a point like interaction restricted to the center of
the QPC potential in Ref. 23. Our work is similar in
spirit to these, but our use of fRG allows us to treat the
effects of interactions more systematically than Refs. 21
and 6, and for longer chains than Ref. 22, which also
did not have access to the limit T → 0. Works based
on 2D or 3D density-functional theory calculations16–20

treat the potential landscape more realistically than we
do, but at the expense of not treating correlation effects
as accurately as fRG does. In particular, our fRG treat-
ment allows accurate predictions for the conductance at
zero temperature, which is beyond the scope of all pre-
vious treatments. Moreover, our SOPT calculations at
finite source-drain voltages are first to give a detailed de-
scription of the origin of the ZBP.

A. Hamiltonian, chemical potential, Uj

The model Hamiltonian defined in the main article,

Ĥ =
∑
jσ

[
Ejσn̂jσ − τj(d

†
j+1σdjσ + h.c.)

]
+

∑
j

Uj n̂j↑n̂j↓, (S11)

with Ejσ = Ej− σ
2 B̃, is depicted schematically in Fig. S8.

It shows a tight-binding chain divided into two semi-
infinite, non-interacting, uniform leads on the left and
right, connected to the central constriction region (CCR),
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Figure S8: Schematic depiction of the one-dimensional model
of Eq. (S11) (for a QPC barrier shape). It represents an
infinite tight-binding chain with hopping matrix element τj
(gray); the prescribed local potential Ej (blue) and on-site
interaction Uj (red) are nonzero only within a central con-
striction region (CCR) of N = 2N ′ + 1 sites. The CCR is
connected to two semi-infinite non-interacting leads on the

left and right. A homogeneous Zeeman magnetic field B̃ (or-
ange) can be switched on along the whole chain.

consisting of an odd number N = 2N ′+1 of sites centered
on j = 0. The lattice does not represent actual atomic
sites, but instead is merely used to obtain a discrete,
coarse-grained description of transport in the lowest sub-
band. The position-dependent parameters Uj and Ej ,
nonzero only within the CCR, are taken to vary slowly
on the scale of the lattice spacing a. (We set a = 1 in
our calculations.)
Choice of µ: Since the chemical potential is a prop-

erty of the bulk, we begin by considering our model for
Ej = Uj = 0 and τj = τ , representing a bulk tight-
binding chain (infinite, homogeneous). The eigenergies
εk corresponding to wave number k have dispersion

εk = −2τ cos(ka) ∈ [−2τ, 2τ ] , (S12)

plotted in Fig. S9a. To describe the phenomena of
present interest, the chemical potential µ should lie some-
where within this band, not too close to its edges; the
precise value does not matter. All our numerical calcu-
lations (fRG and SOPT) used µ = 0, implying half-filled
leads; but for the sake of generality, we keep µ arbitrary
below, particularly in Figs. S9a,b and S10a,b.) The en-
ergy difference between the chemical potential and the
bulk band bottom defines the bulk Fermi energy,

εF = 2τ + µ (> 0) . (S13)

Choice of Uj: In choosing a purely on-site interaction
in Eq. (S11), we implicitly assume that screening is strong
enough to render the interaction short-ranged. (A more
realistic treatment of screening is beyond the scope of
this work.) We set the on-site interaction Uj equal to
U throughout the CCR, except near its edges, where it
drops smoothly to zero to avoid spurious backscattering
effects (Fig. S9e):

Uj =



0 , ∀ N ′ ≤ |j| ,

U exp

[
− ( j

N′ )
6

1−( j
N′ )

2

]
∀ |j| ≤ N ′ .

(S14)

U is to be regarded as an effective parameter, whose value
is influenced by the transverse modes not treated explic-
itly in our model. In particular, the effect of increasing

ka

ε k
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Figure S9: a, Dispersion relation εk vs. k [Eq. (S12)] for
a bulk non-interacting tight-binding chain without magnetic
field (infinite, homogeneous, Ejσ = Uj = 0). The filling fac-
tor in the leads is controlled by the global chemical potential
µ (blue dashed line); it is here drawn at µ �= 0 for general-
ity, although our fRG calculations use µ = 0. b, The corre-
sponding j-independent bulk LDOS [Eq. (S19)], shown both
as A0

bulk(ω) (on x-axis) versus ω = εk −µ (on y-axis), and us-
ing a color scale. The distance from the chemical potential to
the bulk band bottom ωmin

bulk is εF = 2τ +µ = −ωmin
bulk (> 0). c

and d, Model I: The one-dimensional potential Ej of Eq. (S15)

(thick dashed black line) for a QD potential (Ṽs > Ṽc) and a

QPC potential (Ṽc > Ṽs), respectively. In the outer region of
the CCR (j0 ≤ |j| ≤ N ′), Ej is described by quartic polyno-
mial, in the inner region (|j| < j0) by a quadratic one (thin
red and blue lines, respectively, shown only for j > 0.) For

given N ′, js, Ṽs and Ṽc, the parameters j0 and Ωx are ad-
justed such that the resulting potential Ej depends smoothly
on j throughout the CCR. e, The on-site interaction Uj of
Eq. (S14).

the top gate voltage Vt can be mimicked by increasing U
[Eq. (S1)], as will be discussed in more detail in Sec. S-
5C. We typically take U to be somewhat smaller than
the maximum value of the inverse bare LDOS, since if
U ·max[A0

j (ω)], is too large, the fRG calculations do not
converge. We remark that we have also explored the op-
tion of taking Uj to be proportional to Ej , or of taking
the range of sites where Uj = U to be several times larger
than that where Ej �= 0. Such modifications change de-
tails of the results, such as the precise shape of the con-
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ductance g(Ṽc, Ṽs) as function of Ṽc or Ṽs, but not the
qualitative trends discussed in the main article, as long
as Uj drops smoothly to zero near the edges of the CCR.

B. Model I

For model I, we choose the the hopping amplitude to
be j-independent, τj = τ , while the on-site potential Ej

describes a reflection-symmetric barrier within the CCR.
Its shape is tunable between a double barrier describ-
ing a QD (Fig. S9c) and a single barrier describing a
QPC (Fig. S9d) (thick dashed black lines). We have
parametrized it as follows:

Ej =





0 , ∀ |j| ≥ N ′,

(Ṽs + εF)

[
2
(

|j|−N ′

js−N ′

)2

−
(

|j|−N ′

js−N ′

)4
]

,

∀ j0 ≤ |j| ≤ N ′,

Ṽc + εF +
Ω

2
xj

2

4τ sgn(Ṽs − Ṽc), ∀ 0 ≤ |j| < j0.

(S15)

The sites ±j0 divide the CCR into two “outer regions”,
where the potential is a quartic polynomial in j, and
an “inner region”, where it is quadratic in j. In the
latter, the magnitude of the curvature is governed by the
parameter Ωx (≥ 0), which has units of energy. (The
quadratic term for the inner region was chosen to have
the form 1

2mω2
xx

2 used in Ref. 5, with ωx = Ωx/�, x = aj

and m = �2/(2τa2) corresponding to the effective mass at
the bottom of a tight-binding chain.) The shape of Ej is
controlled by four independent parameters: (i) N ′, which
sets the halfwidth of the CCR; (ii) js, which governs the

width of the outer flanks of the potential; (iii) Ṽs and

(iv) Ṽc, which give the potential’s height w. r. t. εF at the
sites j = ±js and 0, respectively:

E±js = Ṽs + εF; Ej=0 = Ṽc + εF . (S16)

Once the four parameters N ′, js, Ṽs and Ṽc have been
specified, the dependent parameters j0 and Ωx are chosen
such that Ej is a smooth function of j at the boundaries
±j0 between the inner and outer regions.
An electron incident at the chemical potential has en-

ergy εF w. r. t. to the bulk band bottom and hence sees a

relative potential of height Ej − εF at site j. For Ṽs>Ṽc,
the relative potential describes a QD potential with two

maxima of height Ṽs at j = ±js and a local parabolic

minimum of height Ṽc at j = 0. For Ṽc > Ṽs (the case
of present interest), it describes a QPC potential with a

single parabolic maximum at j = 0, of height Ṽc. The

crossover point between QD and QPC lies at Ṽs = Ṽc

(for which Ωx = 0). Evidently Ṽc and Ṽs respectively
mimick the role of the voltages applied to the central
gates (Vc) and side gates (Vs) in the experiment (with

Ṽc,s ∝ −|e|Vc,s).

Figure N ′ Ṽc[τ ] Ṽs[τ ] Ωx js

Fig. S6 150 -0.035 to 0.015 -0.25 0.016 60

Fig. S7 150 -0.032 to 0.01 -0.25 0.016 60

Fig. S9a-b 150 -2 -2 0 -

Fig. S9c 150 -0.6 0.6 0.0416 60

Fig. S9d 150 0.3 -0.3 0.023 60

Fig. S10a 150 -0.5 0.5 0.037 60

Fig. S10b 150 0.5 -0.5 0.027 60

Fig. S10c 150 -0.025 0 0.005 60

Fig. S10d 150 0.008 -0.25 0.016 60

Fig. S11 150 0 -0.25 0.016 60

Fig. S13 150 -0.016 to 0.006 -0.25 0.016 60

Fig. S14 150 -0.02 to 0.02 -0.25 0.016-0.048 60

Table I: Parameters used for model I [defined in Eq. (S15)] for
the fRG results shown in various figures of the supplementary
information.

We emphasize that the QPC barriers studied in this
work are all parabolic near the top. For quantitative
studies of the 0.7-anomaly using model I, we fix N ′, js
and Vs, and tune the QPC from closed to open by low-

ering Ṽc past 0, at which the bare (U = 0) conductance
g0 equals 0.5. The width of the conductance step [see
Fig. A1k, and Eq. (S30)] is governed by the curvature
parameter at this point, Ωx = Ωx|Ṽc=0, which we will

simply call “curvature” henceforth. (Ωx itself changes
slightly during this crossover, but for the barrier shapes
used in this work this change is typically less than 10%

between Ṽc = ±Ωx.) The curvature Ωx also governs the

exponential Ṽc-dependence of B̃∗ [Eq. (S35a)]. Note that
formulas such as Eqs. (S30) and (S35a) would change
for non-parabolic QPC barriers, e. g. barriers with a flat
top. Studying the 0.7-anomaly for such situations would
be an interesting extension of the present work, which
we leave for the future24.

C. Bare local density of states (LDOS)

In the main article we have argued that geometry
strongly influences the 0.7-anomaly, via its effect on the
local density of states (LDOS) and the van Hove ridge
of the latter. Here we elaborate this in detail, by dis-
cussing the geometry-dependence of the noninteracting
LDOS (for model I). We do so not only for the QPC bar-
rier shape of present interest, but also for a QD barrier
shape. This lays the ground for a subsequent comparison,
presented in Sec. S-4E below, of the LDOS structures of
a QPC and a QD, which sheds light on the similarities
and differences between the 0.7-anomaly and the Kondo
effect.

The LDOS per spin species σ at energy ω (measured
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Figure S10: Model I: Noninteracting zero-field LDOS per spin species of a,c, a QD, and b,d, a QPC, for potential shapes
shown by thin black lines (marked by black arrows) for ωmin

j = Ej − εF. (The logarithmic color scale shows A0
j (ω) smeared by

a Lorentzian of width δ = 0.001τ , in order to render very sharp structures visible.) Panels c,d focus on the central region of

the CCR and energies close to µ (black dashed lines); the Ṽc- and Ṽs-choices differ from those used in a,b. Thin green dashed
lines in c,d indicate the shape of the “LDOS ridges” discussed in the text. For the KQD, they enclose an area in the j-ω plane
on which the corresponding LDOS ridge has weight 1; for the QPC, they trace a contour along which A0,QPC

j (ω) = 0.7.

relative to the chemical potential µ) is defined as

Aσ
j (ω) = − 1

π
ImGσR

jj (ω) , (S17)

where GσR
ij (ω) is the Fourier transform of the retarded

T = 0 propagator25,

GσR
ij (t) = −iθ(t)〈G|{diσ(t), d†jσ(0)}|G〉 , (S18)

where |G〉 is the model’s ground state. In this subsection
we will discuss only the spin-degenerate case of zero field

(B̃ = 0) and zero interaction (Uj = 0). We thus drop the
spin index σ (as in the main article) and instead put a
superscript 0 on A0

j (ω) to denote the bare LDOS.
For Ej = 0, representing an infinite, homogenous,

bulk tight-binding chain, the LDOS of Eq. (S17) is j-
independent and equal to the 1D bulk LDOS,

A0
bulk(ω) =

a

π

[
∂k

∂εk

]

εk=ω+µ

. (S19a)

This is nonzero only for ωmin
bulk < ω < ωmax

bulk, where

ωmin
bulk = −εF , ωmax

bulk = −εF + 4τ , (S19b)

denote the bottom and top of the band, measured w. r. t.
µ, respectively. Within these limits, it has the form

A0
bulk(ω) =

1

π
√
(ωmax

bulk − ω)(ω − ωmin
bulk)

, (S19c)

shown in Fig. S9b, featuring square-root van Hove singu-
larities near the band edges (yellow fringes in Fig. S9b).
While the upper van Hove singularity (of unoccupied
states) may be viewed as an artefact of describing the
lowest subband using a tight-binding chain, the lower
one is realistic for effective one-dimensional geometries;
it would also arise, e. g., when using a free-electron model.
Now consider a nonzero potential Ej that is smooth

on the scale of the lattice spacing, modelling a QD or
QPC in the CCR, as shown by the thick black lines in
Figs. S10a-d. The color scale in these figures indicates
the corresponding j-dependent LDOS, A0

j (ω). The latter
has an ω-dependence that, for fixed j, is reminiscent of
the bulk case, but with several differences, caused by the
spatial structure in Ej . First, the band edges now are
j-dependent and follow the shape of the potential, with

ωmin
j = Ej − εF , ωmax

j = Ej − εF + 4τ . (S20)

In particular, the band bottom at the CCR center, j = 0,

is given by ωmin
0 = Ṽc. Second, A0

j (ω) exhibits nar-
row fringes (visible clearly in Figs. S10a-d), due to the
fact that the electronic wave functions form standing
wave patterns. In the central part of the QD potential
(Fig. S10a), and in the central part of the QPC potential
for energies ω > ωmax

bulk (Fig. S10b), these standing waves
correspond to bound state wave functions. (For the case
of the QPC these bound states are artefacts and they are
avoided in model II.) In the outer regions of both QD
and QPC potentials they correspond to Friedel oscilla-
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Figure S11: Inset: The band bottom ωmin
j (black line) as

function of j, for a 301-site CCR with a parabolic QPC bar-

rier (model I) with curvature Ωx and height Ṽc = ωmin
0 = 0.

Main plot: Energy dependence of the LDOS near the band
bottom, showing A0

bulk(ω) (dashed), and A0,QPC
j (ω) (solid)

for three j-values near the center, all plotted as functions of
(ω−ωmin

j )/Ωx (blue line corresponds to Fig. 1 in Ref. 23). Ar-
rows of matching colors in the inset indicate the corresponding
values of j (namely 0, 20 and 40). The short, heavy, colored
vertical lines in the main panel indicate where the energy coin-
cides with the barrier top, ω = ωmin

0 ; the corresponding values
of the x-coordinate (ωmin

0 −ωmin
j )/Ωx (namely 0, 1.6 and 6.4)

give the remaining barrier height as seen from site j. In the
bulk, ωmin

j = −εF. The peak of A0,QPC
j (ω) lies at an energy

ωH
j = ωmin

j +O(Ωx). For j = 0 it lies at ωH
0 = 0.21Ωx and has

height 0.28/
√
τΩx (dotted blue lines). Note that A0,QPC

j (ω)

matches A0
bulk(ω) once the energy ω lies above ωmin

0 by more
than O(Ωx), corresponding to free propagation above the bar-
rier.

tions. Third, the van Hove singularities are somewhat
smeared out on the outer flanks of the QD, and through-
out the entire QPC, in the latter case on a scale set by
Ωx (see Fig. S11).

For the rest of this subsection, we focus on the QPC
barrier of Figs. S10b,d. (The QD barrier of Figs. S10a,c
is revisited in Sec. S-4E below, where we compare its

LDOS to that of a QPC.) For a QPC, A0,QPC
j (ω) de-

pends smoothly on ω and j near the center of the CCR,
its weight being concentrated along a curved, broad
“van Hove ridge” (framed by the green dashed lines in
Fig. S10d). This ridge originates from a van Hove singu-
larity just above the band bottom that has been pushed
upward by the QPC potential barrier. The van Hove
ridge has limited spatial extent when traversed at con-
stant ω, reflecting the limited spatial size of the QPC.
At the outside flanks of the CCR barrier, the tails of the
ridge split up into discrete fringes, representing Friedel
oscillations associated with standing waves that build up
near the barrier (as also seen in Figs. S10a,b). For given
j, the ω-dependence of the van Hove ridge, shown in
Fig. S11, is asymmetric w. r. t. to its maximum, with
a steep, exponentially decaying flank below the maxi-
mum, and above it a long tail, whose envelope decays as

QPC

0

0 0.1

2

–2
–25 25

1

j

ω
/τ

ωmax

ωmin
j

j

Aj (ω)τ0

Vc = – 0.2τ~

Vc
~

N = 101, Ωx = 0.04τ, U = 0

Figure S12: Noninteracting zero-field LDOS per spin species,
A0

j (ω), shown on a logarithmic color scale, for the QPC model
II defined by Eqs. (S22) and (S23). The thin black line
(marked by black arrow) indicates the lower band edge, ωmin

j

[Eq. (S24)]. The curvature of the lower and upper band edges
is, respectively, negative and positive throughout the CCR,
ensuring that no bound states occur.

[τ(ω−ωmin
j )]−1/2, reflecting the ω-asymmetry of the bulk

van Hove singularity of Eq. (S19). The divergence of the
latter is cut off here, due to the absence of translational
invariance, on a scale set by the barrier curvature. In-
deed, the maximum value taken by the van Hove peak in

A0,QPC
j (ω) occurs at an energy, say ωH

j , that lies above
the lower band edge by an amount of order Ωx,

ωH
j = ωmin

j +O(Ωx) . (S21)

For example, for a purely parabolic barrier top, the van

Hove peak in A0,QPC
j=0 (ω), the LDOS at the center of the

QPC, lies at ωH
0 = ωmin

0 + 0.21Ωx. In that case, the
van Hove peak lies precisely at the chemical potential,

ωH
0 = 0, when Ṽc = −0.21Ωx.
Eq. (S21) implies not only that the van Hove peak

energy depends on Ωx, but also that its height (i. e.
the maximum value of the LDOS) scales as 1/

√
τΩx.

As a consequence, all local quantities that depend on

A0,QPC
j (ω), such as the local magnetic susceptibility χj ,

depend on Ωx, too. In this way they acquire an explicit
dependence on the shape of the QPC barrier.

D. Model II

In this section we describe model II, used for all numer-
ical results (fRG and SOPT) presented in the main arti-
cle. For model II, designed to model exclusively a QPC,
we have modified the choice of Ej and τj in two minor
ways relative to model I of Sec. S-4B, which turn out to
facilitate SOPT calculations. The two changes, described
below, are designed (i) to allow using a shorter CCR
while maintaining a small curvature Ωx at the barrier
top, and (ii) to avoid the occurrence of artificial bound
states in the bare density of states of the QPC (such as
those seen in Fig. S10b near the upper band edge, for
energies ω > ωmax

bulk).
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(i) Modified potential shape: We define the onsite po-
tential Ej by

Ej =




0 , ∀ N ′ ≤ |j| ,

(Ṽc + εF)

1 + 2b
exp

[
−

(
j
N ′

)2

1−
(

j
N ′

)2
]

∀ |j| ≤ N ′ ,

(S22)
where the parameter b is defined in (ii) below. This yields
a smooth parabolic barrier near the CCR center and
rapidly decaying flanks, allowing the CCR to be chosen
shorter than for the potential of Eq. (S15). Using a short
CCR is advantageous in particular for SOPT calcula-
tions: due to the matrix structure of the Greens function
and the summation/integration over internal frequencies,
the computation of the self-energy Σ and the vertex cor-
rection P needed for SOPT [see Eq. (S53) and Eq. (S52)]
is rather time-consuming.
(ii) Modified hopping: For model I, the QPC poten-

tial barrier of Eq. (S15) (at B̃ = 0) yields a bare band
whose upper edge has a maximum in energy at j = 0,
causing a large number of bound states in the energy

range ω ∈ [ωmax
bulk, ω

max
bulk + Ṽc] (visible as narrow fringes in

Fig. S10). Though these artificial bound states are com-
pletely irrelevant for the physics of the 0.7-anomaly, the
corresponding poles in the bare Green’s functions never-
theless would have to be treated with due accuracy in the
energy integrals involved in SOPT. To avoid the occur-
rence of such poles, model II takes the hopping matrix
element τj in Eq. (S11) to be site-dependent within the
CCR, τj = τ − δτj , involving a smooth (adiabatic) re-
duction proportional to the local barrier height:

δτj =
1
2 (Ej + Ej+1)b (> 0) , −N ′ ≤ j < N ′, (S23)

and δτj = 0 otherwise. Then the lower and upper band
edges are approximately given by

ωmin
j

ωmax
j

}
= −µ ∓ 2τ j + Ej , τ j =

1
2 (τj + τj−1). (S24)

Here τ̄j , the average hopping matrix element involving
site j, is approximately equal to τ j � τ − bEj , since the
potential varies smoothly with j. Eq. (S24) implies a
j-dependent bandwidth, 4τ j . For the upper band edge
ωmax
j , the upward shift contributed by Ej inside the CCR

is counteracted by a downward shift, contributed by 2τ j ,
of −2δτ j � −2bEj . The latter can be ensured to over-
compensate the former by choosing the numerical factor
b to be larger than 1/2 (we choose b = 0.55). Then the
upper band edge ωmax

j throughout the CCR lies below
the bulk band edge ωmax

bulk, ensuring that no bound states
occur near the upper band edge. This is illustrated in
Fig. S12, which is to be contrasted to the bound states
seen in Fig. S10b for model I, with j-independent hop-
ping.
The prefactor 1/(1 + 2b) in Eq. (S22) ensures that

Ṽc corresponds to the effective barrier height w. r. t.

the chemical potential, Ṽc = ωmin
j=0 [as is the case for

Eq. (S15)]. Finally, the parameter Ωx is defined as the

curvature of the band bottom at Ṽc = 0, obtained by
expanding Eq. (S24) to second order in j [in analogy to
Eq. (S15)]: ωmin

j |Ṽc=0 � −Ω2
xj

2/(4τ0). For the choice

µ = 0 used here, τ0 � τ/(1 + 2b). We have checked that
with this definition of Ωx, the bare transmission probabil-
ity for model II, calculated numerically, agrees well with
the analytic prediction of Eq. (S30) below (and that of
model I). For all calculations performed in this with with
model II, we chose N ′ = 50 and b = 0.55, in which case
Ωx = 0.04τ .

We emphasize that transport and local properties are
not modified in any essential way by the changes (i) and
(ii) of model II w. r. t. model I. Their effect is solely to
reduce the computation time.

E. Comparison: bare LDOS of QPC and QD

In this subsection, we offer a detailed comparison of
the bare LDOS structures for a QPC and a QD. They are
shown in Figs. S10d and S10c, respectively, which focus
on the CCR-center and energies near ω = 0. They evi-
dently exhibit numerous differences, but also some sim-
ilarities. These are key to understanding the differences
and similarities between the 0.7-anomaly and the Kondo
effect.

For a QPC, A0,QPC
j (ω) exhibits a prominent, smooth

van Hove ridge (Fig. S10d), as discussed in detail in

Sec. S-4C. In contrast, for a QD, A0,QD
j (ω) has appre-

ciable weight only along a set of “ridges” at discrete
energies, one of which is marked by the green box in
Fig. S10c. Each ridge is associated with a discrete eigen-
state of the bare QD potential: it is characterized by a
discrete eigenenergy, say ωα, and its spatially confined,
oscillatory j-dependence reflects that of |ψα(j)|2, where
the wavefunction ψα(j) represents a confined standing
wave. Its spatial extent is approximately set by the clas-
sical turning points (where ωα = ωmin

j ), though it tunnels
a bit beyond these. Each ridge has a small but nonzero
width in ω, due to tunneling into the leads outside the
QD, and a quantized total weight of 1 when j-summed
over the range of ψα(j) and ω-integrated over its width,
as indicated by the green box in Fig. S10c.

(Parenthetic remark: When interactions are turned on,
the detailed shape of the LDOS will change, since barrier
heights and energy levels will be renormalized. Neverthe-
less, the full Aj(ω) will retain the generic properties illus-
trated in Figs. S10c,d, namely discrete ridges for the QD
and a single broad ridge for the QPC. Many-body corre-
lations may lead to additional fine structures in the full
LDOS, such as a narrow Kondo resonance at the Fermi

energy for AKQD
j (ω). However, such many-body effects

do not concern us at the present qualitative level of argu-
mentation, which merely seeks to identify the geometric
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prerequisites for their occurrence.)

The most important difference between the bare LDOS
of a QD and a QPC lies in the following fact, evident

from Figs. S10a-d: near the center of the CCR, A0,QD
j (ω)

consists of a series of discrete ridges of quantized weight,

whereas A0,QPC
j (ω) does not, being dominated by just a

single ridge of nonquantized weight. The physical reason
for this difference clearly is that a QD constitutes a closed
structure that hosts discrete, localized states, whereas
a QPC, being truly open, does not. This difference is
responsible for the different behavior between a KQD and

a QPC for large fields: for B̃ � B̃∗, the magnetization
of a KQD saturates, whereas that of a QPC does not (as
seen in Fig. A1d and its inset). This behavior reflects
the fact that for the KQD the spin of only the single odd
electron in the topmost nonempty level is being polarized
in a large field, whereas for the QPC, whose LDOS has
no discrete structure, there is no intrinsic limit for the
magnitude of the magnetization.

While the differences between the LDOS ridge struc-
tures of KQD and QPC matter at high energies, the low-

energy behavior (B̃, T̃ � B∗) is governed by a generic
common feature shared by the LDOS of both geometries:

the very existence of a Ṽc-tunable ridge with a strongly
peaked dependence on both ω and j. (Details such as the
number of such ridges or their internal spatial structure
are irrelevant for the ensuing argument.) The existence
of such a ridge guarantees a strong magnetic response in

both the conductance and the magnetization when Ṽc is
tuned such that the (interaction-shifted version of the)
ridge is located energetically somewhat below µ. For a
KQD, this is the local moment regime; for the QPC, it is
the regime where g � 0.7. This situation is particularly
inductive to a strong local magnetic response, for two
reasons: First, when spin symmetry is broken by turning

on a magnetic field (say B̃ > 0), the B̃-induced surplus
of spin-up over spin-down electrons is enhanced by the
presence of an LDOS ridge below the chemical potential,
because this ridge constitutes a large density of states
in a confined region of space. Second, interactions will
generally act to further increase this surplus by repelling
spin-down electrons, and will be aided in this by the fact
that the ridge, and hence the region in which the surplus
is large, has a limited spatial extent.

This microscopic mechanism generates a strong, lo-
cal magnetic response irrespective of whether the LDOS
ridge has quantized weight or not. Thus, this mecha-
nism applies equally to a KQD and a QPC, and in this
respect the low-energy behavior of the Kondo effect and
the 0.7-anomaly are indeed similar. This similarity was
first pointed out in Ref. 26 and emphasized, in particular,
by Meir and collaborators17–19: the “narrow transmis-
sion resonances above the barrier” or “quasi-bound state”
evoked in their arguments correspond to the van Hove

ridge in A0,QPC
j (ω) described above. Indeed, the asym-

metric bare LDOS peak at the QPC barrier center found

by us [Fig. S11, blue line for A0,QPC
j=0 (ω)] is qualitatively

similar to that found in Ref. 17 [see Fig. 3a there, right in-
set, solid line for ν↑(ε)] by spin-density-functional theory
(SDFT) in a small applied field. Moreover, the van Hove
ridge in our Figs. S10b,d corresponds to the bright spot
seen in the center of Fig. 3a of Ref. 19 by Rejec and Meir,
which shows the full spin-up LDOS Aj(ω) as function of
position and energy, again calculated by SDFT in a small
applied field. Though SDFT includes interactions and
our bare LDOS does not, interactions affect the minor-
ity species much more strongly than the majority species.
We therefore expect that the geometry-dependence of the
majority LDOS obtained from SDFT should be similar
to that of a noninteracting theory. Thus, we believe that
Meir and Rejec’s “quasi-bound states” are synonymous
to our “van Hove ridges”. (We somewhat prefer the latter
nomenclature, since it indicates the origin of these LDOS
structures.) It would be highly desirable to have a plot

similar to Fig. S10d for the full AQPC
j (ω) calculated using

fRG, but its energy dependence is not accessible by static
fRG. To obtain a first impression, we have calculated it
using perturbation theory, see Fig. A3g,h; calculating it
with Keldysh fRG would be an interesting goal for future
studies.
We wish to emphasize that the details of the magnetic

response of a KQD and a QPC will be similar only as

long as the conditions B̃, T̃ � B̃∗ hold ; once they are vio-
lated, the differences in the LDOS ridges, discrete for QD
vs. continuous for QPC, begin to matter. This caveat,
not discussed in Refs. 17–19, prevents the similarity be-
tween Kondo effect and 0.7-anomaly from extending to
the regime of large energies.
A detailed comparative study of the similarities and

differences in the behavior of a KQD and QPC, all origi-
nating from the similarities and differences between their
LDOS ridges, will be published elsewhere1.

S-5. THE LOW-ENERGY SCALE B̃∗

This section covers the influence of geometry and inter-

actions on the low-energy scale B̃∗ for a QPC. In Sec. S-
5A we show that the exponential dependence of the low-

energy scale B̃∗(Ṽc) has a purely geometric origin, and
contrast this to the more complicated case of the Kondo
temperature for a KQD. Sec. S-5B discusses the effects of

interactions on B̃∗ and T̃∗ for a QPC. Finally, Sec. S-5C
discusses the extent to which the interaction parameter
U itself depends on the 2D potential landscape.

A. Exponential Ṽc-dependence of B̃∗

In the main article we reported that for a QPC the
low-energy scale B∗(Vc) depends exponentially on Vc (see
Eq. (A3), Figs. A2a, c, e). The same is true for T∗(Vc)
(see Eq. (A3), Figs. A2d, f), as was first found in Ref. 26.
In this subsection, we explain the origin of this exponen-
tial Vc-dependence. It is present already for the nonin-
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teracting (U = 0) version of our model, hence we begin
by discussing the latter.
According to the Landauer-Büttiker formula, the non-

interacting differential conductance g0nl(T̃ , B̃, Ṽsd) as a

function of temperature T̃ = kBT , magnetic field B̃ =

|gel|µBB and source-drain voltage Ṽsd = −|e|Vsd is given
by

g0nl(T̃ , B̃, Ṽsd) =
d

dṼsd

1

2

∑
σ=±

∫ ∞

−∞
dω T (ω + 1

2σB̃)

×
[
f(ω − 1

2 Ṽsd)− f(ω + 1
2 Ṽsd)

]
(S25)

where f(ω) = [eω/T̃ + 1]−1 is the Fermi function,
and T (ω) is the noninteracting transmission probability
across the QPC barrier of a lead electron incident with

energy ω w. r. t. µ, at B̃ = 0. Let us expand it in powers
of energy:

T (ω) = T (0) + T (1)ω +
1

2
T (2)ω2 + . . . , (S26)

where T (0) = T (0) is the transmission probability at the
chemical potential. Inserting Eq. (S26) into (S25) leads
to the following expression for the leading dependence of

the bare conductance on T̃ 2, B̃2 and Ṽ 2
sd (at fixed Ṽc and

Ṽs)

g0nl(T̃ , B̃, Ṽsd)

T (0)
=


1−

(
T̃

T̃ 0∗

)2

−
(

B̃

B̃0∗

)2

−
(

Ṽsd

Ṽ 0
sd∗

)2

 ,

(S27)

with low-energy scales T̃ 0
∗ , B̃0

∗ and Ṽ 0
sd∗ given by

− 8T (0)

T (2)
=

(
B̃0

∗
)2

=
(
Ṽ 0
sd∗

)2

=
4π2

3

(
T̃ 0
∗
)2

. (S28)

Their mutual ratios hence are independent of Ṽc:

B̃0
∗

T̃ 0∗
=

2π√
3
,

Ṽ 0
sd∗
B̃0∗

= 1 . (S29)

(Remark: Depending on the height and shape of the po-
tential barrier, T (2) can be either negative or positive; in

the latter case, the scales B̃0
∗ , T̃ 0

∗ and Ṽ 0
sd∗ as defined here

would be imaginary. In the following, we are interested
only in the former case.)
Now consider a purely parabolic QPC potential barrier

with height Ṽc and longitudinal curvature 1
4τΩ

2
x [as in

Eq. (S15)]. Then the bare transmission T (ω) at B̃ = 0
is given by5

T (ω) � 1

e−2π(ω−Ṽc)/Ωx + 1
. (S30)

Recall that Ṽc = ωmin
j=0 is the height of the band bottom’s

maximum at the central site w. r. t. the chemical poten-

tial. When Ṽc is decreased to open up the QPC, the

bare transmission of an electron incident at the chemical
potential (ω = 0) increases past T (0) = 0.5 when Ṽc de-
creases past 0. [We obtained Eq. (S30) from Eq. (4) of
Ref. 5, which in turn was derived by a semiclassical treat-
ment of transmission through a parabolic barrier27,28, as-
suming a quadratic dispersion of the form p2/2m. The
latter assumption is applicable for our situation in the
limit that our tight-binding band is much wider than
the energy range over which the transmission changes
rapidly, τ � Ωx. This allows a quadratic approxima-
tion for the dispersion [Eq. (S12)] near the band bot-
tom, εk � −2τ + τk2a2, implying an effective mass of
m = �2/(2τa2).]

The bare dimensionless conductance at B̃ = T̃ = Ṽsd =
0, viewed as function of Ṽc, is then given by

g0nl = g0nl(0, 0, 0) = T (0) =
1

e−2πṼc/Ωx + 1
. (S31)

Let us now focus on the regime of negative Ṽc = −|Ṽc|,
where for the quadratic potential top considered here the
bare magnetoconductance is strictly negative. Evaluat-

ing Eq. (S28) for B̃0
∗ using Eq. (S30), one finds:

B̃0
∗ =

Ωx

π

√
2 coth(π|Ṽc|/Ωx) eπ|Ṽc|/Ωx (S32a)

=
Ωx

π

1√
g0 − 1/2

√
g0

1− g0
. (S32b)

(The second line follows from the first by inverting
Eq. (S31).) Expression (S32a) for the low-energy scale

in the absence of interactions, B̃0
∗ , agrees to within a

few percent with our numerical calculations for U = 0,
shown by the black dashed line in Fig. S13a. It states

that B̃0
∗ diverges both when |Ṽc| → 0+ (i. e. g0 → 1/2

from above) and when |Ṽc|/Ωx � 1 (i. e. g0 → 1 from

below). Between these two limiting cases B̃0
∗ has a mini-

mum, which turns out to occur at a bare conductance of
g0∗ = 1/

√
2 � 0.707.

The message of the above analysis is that the experi-
mentally observed exponential Vc-dependence of the low-
energy scales B∗ and T∗ reported in the main article (and
for T∗ also in Ref. 26) has a purely geometric origin, which
can already be understood within a noninteracting model.
It arises simply because for a quadratic barrier the trans-
mission amplitude above the barrier depends exponen-
tially on its height (as can be made explicit in a semiclas-
sical WKB treatment of the transmission problem27,28).

Moreover, the scale for the Ṽc-dependence is set solely by
Ωx, the curvature at the top of the barrier [Eq. (S15)].

The fact that for a QPC the exponential Ṽc-depen-

dence of B̃∗ can be found without considering interac-
tions at all stands in striking contrast to the case of a

KQD: there B̃∗ is proportional to the Kondo tempera-

ture, which likewise depends exponentially on Ṽc, but

the exponent is quadratic in Ṽc, and the scale of its Ṽc-
dependence is set by the interaction strength U and effec-
tive level width Γ. To be explicit, for the single-impurity
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Anderson model, with level position εd = Ṽc, the Kondo

temperature corresponding to T̃∗ is given by29

T̃K =
√

UΓ/2 exp

[
πṼc(Ṽc + U)

2ΓU

]
. (S33)

It arises as the low-energy scale T̃K ∝ e−1/jeff character-
izing the onset of a logarithmic infrared divergence that
occurs when doing perturbation theory in the effective
exchange interaction between the spins of a local moment
and a conduction band. The form of the corresponding
effective dimensionless exchange coupling jeff , given by

jeff =
2Γ

π

[
1

Ṽc + U
− 1

Ṽc

]
, (S34)

is found by a Schrieffer-Wolff transformation. Evidently,
such KQD results can not be obtained without consider-
ing the role of interactions from the outset. In contrast,

for a QPC the origin of the exponential Ṽc-dependence

of B̃∗ is decidedly different and can be understood al-
ready for a noninteracting theory, as described above.
In particular, at high energies a QPC does not display
local-moment behavior, so that the corresponding loga-
rithmic infrared divergence characteristic of the Kondo
effect does not occur.
Having made this point, we hasten to add that B̃∗ is

of course affected by interactions for a QPC too, albeit
less severely than for a KQD. The role of interactions is
discussed in the next subsection.

B. Effects of interactions on B̃∗ and T̃∗

While the fact that the low-energy scales B̃∗, T̃∗ and

Ṽsd∗ for a QPC depend exponentially on gate voltage,

as eπ|Ṽc|/Ωx , has an elementary geometric origin, the be-
havior of the pre-exponential factor is more subtle: quite
generally this pre-exponential factor will depend on the

interaction strength U and gate voltage Ṽc. A detailed
theoretical analysis of this issue is beyond the scope of
the present paper. Here we just want to make two points,

the first regarding the ratio B̃∗/T̃∗, the second regarding

the U -dependence of B̃∗.
The ratio B̃∗/T̃∗: When interactions are turned on, the

effects of finite B̃ or finite T̃ are, in general, not equiva-

lent: Finite B̃ shifts the effective barrier height seen by
spin-up and spin-down electrons in opposite directions, in
a way that is enhanced by interactions (which amplifies
the imbalance between spin up and spin down), however
without opening up the possibility of inelastic scattering.

Finite T̃ causes an effective increase in barrier height, too,
due to an increase in density near the barrier center (be-
cause the LDOS is ω-asymmetric there), but it does not
involve any imbalance between spin-up and -down. More-

over, finite T̃ also leads to inelastic scattering. In lowest-
order perturbation theory for the self-energy (Sec. S-7),

shifts in barrier height (both B̃-induced, spin-asymmetric

and T̃ -induced, spin-symmetric shifts) are described by

the Hartree contribution, and T̃ -induced inelastic scat-
tering by the Fock contribution [see Eq. (S53)]. In gen-
eral, the relative strength of these two effects will depend
not only on U but also on gate voltage. Since the strength

of the (negative) conductance response to increasing B̃

or T̃ is characterized by 1/B̃∗ or 1/T̃∗, respectively, the
ratio B̃∗/T̃∗, too, will in general likewise depend not only

on U , but also directly on Ṽc.
In the light of the above comments, it is all the more

remarkable that the experimentally observed ratio B∗/T̃∗
does, in fact, become essentially independent of Vc in the
Vc-regime well below Vc0, where g → 1 (compare thin
grey and black lines in Fig. A2f). In the main article
we have already pointed out that this Vc-independence
of B∗/T∗ for g � 1 is characteristic of the Fermi-liquid
behavior expected from Nozières’ treatment of the Kondo
problem in the limit B, T � TK.
Once the condition g � 1 is relaxed, the experimentally

determined B∗/T∗ does acquire a dependence on Vc, in
accord with the expectations stated above. Indeed, in
Fig. A2f the measured ratio B∗/T∗ increases with in-

creasing Ṽc as B∗ and T∗ approach their minimal values.
Remarkably, our model qualitatively reproduces this be-
havior when we treat interactions using SOPT (compare

the lines for B̃∗ and T̃∗ in Fig. A2d). An increase in

B̃∗/T̃∗ means that the conductance reduction induced by

increasing T̃ grows relative to that induced by increas-

ing B̃, implying that inelastic scattering [Fock term, di-
agram c in Eq. (S53)] gains importance relative to the

B̃-induced enhancement of the barrier height [Hartree
terms, diagrams a and b in Eq. (S53)]. Moreover, Fig. S4

above shows that B̃∗/T̃∗ decreases with increasing U , im-
plying that in general interactions have a stronger effect

on the low-B̃ dependence of the conductance than on its

low-T̃ dependence.

U -dependence of B̃∗: We have used fRG to explore

in some more detail how interactions affect the Ṽc-
dependence of B̃∗ for a QPC. (Similar studies of T̃∗ are
not possible using static fRG, but would be worth pur-
suing by Keldysh fRG). As in Sec. S-5A above, we focus

on the regime g � 1 (say |Ṽc| � 0.75Ωx). Our results
for this regime can be summarized by stating that for

U small enough to be treatable by fRG, B̃∗ shows the
following behavior:

B̃∗(Ṽc, U) �
√
2Ωx

π
e−F (U)eπ|Ṽc|/Ωx , (S35a)

F (U) � (0.8± 0.05)U/
√

τΩx . (S35b)

The behavior of Eq. (S35a) is illustrated in Fig. S13a,

which shows ln(B̃∗) as function of |Ṽc|/Ωx for several

values of U : for |Ṽc|/Ωx � 0.75 the resulting lines all
have roughly the same slope, but are shifted downward
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Figure S13: Effect of interaction strength U on the low-

energy scale B̃∗, in the regime of negative Ṽc = −|Ṽc| (calcu-
lated for model I using static fRG). a, B̃∗/Ωx as function of

|Ṽc|/Ωx. Grey dashed lines indicate linear fits of ln(B̃∗) vs.

|Ṽc|/Ωx in the range 0.8 ≤ |Ṽc|/Ωx < 1, the offsets of which
yield F (U). b, The function F (U) vs. U for several choices
of Ωx, plotted in scaled fashion to illustrate the behavior of
Eq. (S35b).

in uniformly-spaced steps when U is increased in uni-

form steps. This implies that B̃∗ is exponentially sup-
pressed with increasing U (which also shifts the mini-

mum in B̃∗ towards more positive |Ṽc|-values). The func-
tion F (U) that characterizes the exponential suppression

can be obtained from the offsets of linear fits to ln(B̃∗)
vs. π|Ṽc|/Ωx, repeated for various U -value. The result-
ing function F (U), shown in Fig. S13b for several values
of the curvature Ωx, exhibits the behavior described by
Eq. (S35b) quite well: it increases linear with U , on a
scale set by

√
τΩx. This reflects the fact that in static

fRG, the dimensionless quantity that governs the effec-
tive interaction strength is UAj(0) (cf. Sec. S-6), and at
the barrier top we have [cf. Eq. (S19c) and Fig. S11]

UAj=0(0) ∝ U/
√

τΩx . (S36)

Paraphrasing Eq. (S35a), we can formulate the follow-

ing conclusions for how the Ṽc-dependence of B̃∗ in the

regime g � 1 is affected by turning on U : (i) The fac-

tor eπ|Ṽc|/Ωx from Eq. (S32) persists, essentially without

a change in the numerical prefactor π/Ωx of |Ṽc| in the
exponent. (ii) The pre-exponential factor decreases expo-
nentially with U , in a fashion that corresponds to shift-

ing Ṽc → Ṽc + ΩxF (U)/π. The physical interpretation
is that local interactions increase the Hartree potential
and hence the effective barrier height [causing (ii)], but
do not significantly change its effective curvature [result-
ing in (i)]. Of course, the latter statements are true only
approximately, in that Fig. S13 does exhibit slight devi-
ations between the actual data and the behavior stated
by Eqs. (S35).

Together, points (i) and (ii) suggest that for a QPC,

the qualitative effect of interactions on B̃∗ can already be
found by perturbatively calculating the Hartree potential.
We have done so, obtaining results (not shown here) in
qualitative agreement with those just discussed. A sim-
pler treatment of the same effects might be possible using
semiclassical WKB wave functions, as done in Ref. 6 in

a calculation of the Fock contribution to T̃∗, but this is
left as a topic for future study. (We remark that when

the calculation of T̃∗ in Ref. 6, extractable from their
Eq. (33), is specialized to a point-like interaction with

range zero, the result yields precisely the same eπ|Ṽc|/Ωx

dependence for T̃∗ as found by us in Eq. (S32) above.)

Note from Eq. (S35) that decreasing the curvature Ωx

at the top of the QPC barrier or increasing the interac-
tion strength U (e. g. using a top gate) have qualitatively

similar effects, in that both tend to decrease B̃∗ and

hence to strengthen the low-B̃ response of the conduc-
tance. Likewise, decreasing Ωx or increasing U also cause

similar changes in the conductance step at B̃ = T̃ = 0, in
that both tend to make the 0.7-shoulder more prominent.
This is illustrated in Fig. S14, whose panels b and c offer
a succinct summary of how the 0.7-anomaly depends on
geometry and interactions, respectively.

Since Ωx sets both the width of the conductance step

[Eq. (S31)] and the slope of ln(B̃∗) vs. |Ṽc| [Eq. (S35a)],
an experimental consistency check is possible: We have
determined the said step width and slope from Fig. A2e
and extracted Ωx-values from each, finding Ωstep

x � a ×
0.026 V from the step width and Ωslope

x � a × 0.048 V
from the slope (a � 37 meV/V is a geometric conversion
factor between applied gate voltage (in V) and the re-
sulting electrostatic potential energy (in meV), such that

Ṽc = −a Vc). The fact that Ω
step
x and Ωslope

x agree within
a factor of two is quite satisfactory, given the fact that we
made no attempt to realistically model the shape of the
QPC potential. Possible reasons for why the agreement
is not perfect are that the experimental QPC potential
was not perfectly parabolic, and that our use of a purely
on-site (instead of longer-range) interaction is an over-
simplification. (See also Sec. S-5C below.)

To conclude this subsection, let us emphasize once
more its most important qualitative conclusion: inter-
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Figure S14: Effect of barrier curvature Ωx (panels a,b) and interaction strength U (panel c) on the conductance through a
QPC (model I), calculated by static fRG. The inset to a shows the top of a parabolic QPC barrier for several values of the

curvature Ωx. a, In the absence of interactions (U = 0) the conductance curves g(Ṽc), calculated for different Ωx, all collapse

onto a single curve when plotted as function of Ṽc/Ωx, as expected from Eq. (S30). b, Similar plot as a, but for U �= 0, which

prevents a scaling collapse. c, Conductance curves g(Ṽc) calculated for fixed Ωx but several different values of U , and scaled as
in a and b. As explained in the main article, the combination of enhanced spectral weight at the Fermi energy Aj=0(0) and

interaction U lowers the conductance in the vicinity of Ṽc � 0, resulting in an asymmetric and broadened conductance step.
The strength of this effect is governed by the product UAj=0(0) ∝ U/

√
τΩx [cf. Eq. (S36)]. This increases with decreasing Ωx

at fixed U (panel b) or likewise with increasing U at fixed Ωx (panel c), causing an enhancement of the 0.7-shoulder in both
cases.

actions cause an exponential reduction in B̃∗, which can
thus be significantly smaller than the QPC’s natural en-
ergy scale Ωx. (In Fig. A2f, the smallest values reported
for µBB∗ and kBT∗ are 0.3 meV and 0.08 meV, respec-
tively, significantly smaller than the above estimates of
Ωstep

x � 1 meV.) While the detailed form of the func-
tion F (U) describing this suppression may be model-

dependent, we believe the strong suppression of B̃∗ with
increasing U to be generic. This is a crucial ingredient
for understanding the 0.7-anomaly, since it becomes more
pronounced the smaller this crossover scale.

C. Geometry-dependence of interaction U

It would be interesting to experimentally study the
interaction- and geometry dependence of B∗ more sys-
tematically, by using the side- and top-gate voltages Vs

and Vt to vary the effective barrier shape and interac-
tion strength. Of course numerous studies of the 0.7-
anomaly in varying geometries do exist4,8–10,12,30,31, but
to systematically check the predictions of Eq. (S35) for

B̃∗(Ṽc,Ωx, U), it would be necessary to simultaneously
monitor the Vt- and Vs-dependence of B∗(Vc), Ωx and
U . Indeed, whereas our model treats U as a fixed, given
constant, in reality the effective interaction strength is
geometry-dependent. We have already pointed out in
Sec. S-2A that it depends on the lateral confinement in
the QPC region; more specifically, the effective interac-
tion constant for a 1D model will depend on the spatial

extent, say ly, of the transverse wave-function, which,
in turn, can depend quite delicately on the amount of
screening, etc.
If no realistic modelling of the latter is available (we

have not attempted any), the evolution of interaction
strength with geometry is best gauged by tracking the
evolution of experimentally accessible quantities such as
gss and ∆hfo. To be specific, the conductance g(Vc, B, T )
could be measured for various settings of Vt and Vs. A
measure for the resulting changes in the effective interac-
tion strength U could be obtained from the transconduc-
tance dG/dVc at low T by monitoring the corresponding
changes in gss or ∆hfo (as in Fig. S5b, c). Simultaneously,
estimates for Ωx and ly could be extracted, respectively,
from the widths of the first step and first plateau of the
conductance curve at low T ; and B∗ and T∗ from the
low-energy B- and T -dependence of the conductance (as
in Figs. A2e, f). This would yield enough information
to check Eq. (S35) in detail. We leave such a study for
future work.

S-6. FUNCTIONAL RENORMALIZATION
GROUP

In this section and the next, we describe the de-
tails of the two theoretical approaches used here: The
present section is devoted to the functional renormal-

ization group (fRG) which we used to study the B̃-

dependent quantities at T̃ = Ṽsd = 0. Section S-7 out-
lines the second-order perturbation theory (SOPT) ap-
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proach which we used to explore the properties of our

model for fixed U at T̃ �= 0 or Ṽsd �= 0.
Both fRG and SOPT are set up as perturbation ex-

pansions with respect to a noninteracting ground state
that has zero magnetization in the absence of a magnetic
field, hence both yield perturbed ground states that also
have this property. The possibility of spontaneous break-
ing of spin symmetry is thus ruled out a priori within
both approaches. In choosing to set them up in this way,
we therefore make the physical assumption that sponta-
neous symmetry breaking need not be invoked to explain
the 0.7-anomaly. This assumption is justified a posteri-
ori by the agreement between our fRG results and our
experiments for the magnetic-field dependence of the 0.7-
anomaly (as discussed in detail in Sec. S-2C).
The present section summarizes the central ingredi-

ents of the fRG approach in the one-particle irreducible
version32 used here. The details of our approach, using
the Matsubara formalism, are very similar to those of
Refs. 33,34,40 and 41; technical aspects going beyond the
latter works will be presented in detail elsewhere36. The
main purpose here is to explicitly formulate the approx-
imations that we have employed for the translationally
nonuniform system with on-site interactions defined by
Eq. (A1) of the main text [or Eq. (S11)]. (For complete-
ness, we remark that the fRG approach described below
is also capable of dealing with the Kondo effect in a 1D-
model of a quantum dot, described by a double-barrier
potential. Corresponding results will be presented else-
where, in a comparative study of the Kondo effect and
the 0.7-anomaly.1)

A. Observables

Our goal is to calculate the conductance g through the
CCR and the average number njσ of spin-σ electrons at
site j, at zero temperature. Following Ref. 33,34, we
proceed in three steps. (i) We integrate out the two
semi-infinite, noninteracting leads to the left and right
of the CCR, using a standard projection technique; this
results in a bare Matsubara Green’s function for the
CCR, (G0)

σ
ji(iω), with a matrix structure in real space,

j, i ∈ [−N ′, N ′] being site indices. (ii) We incorporate in-
teractions in the CCR by using fRG to calculate the full
Matsubara Green’s function of the CCR, Gσ

ji(iω); this
step will be described in more detail in the next subsec-
tion. (iii) We calculate g and njσ at T = 0 using

g =
1

2

∑
σ

Tσ(0) , (S37)

Tσ(ω) =
∣∣2πτ2ρσ0 (ω)Gσ

−N ′,N ′(ω + i0+)
∣∣2 , (S38)

njσ = 〈n̂jσ〉T =

∫ ∞

−∞
dω f(ω)Ajσ(ω)

= T
∑
n

G(iωn) +
1

2
, (S39)

Ajσ(ω) = − 1

π
ImGσ

jj(ω + i0+) . (S40)

Here Tσ(ω) is the spin-dependent transmission probabil-
ity for a spin-σ electron incident with energy ω relative to
the chemical potential µ, and ρσ0 (ω) is the local density
of states at the first site of a semi-infinite noninteract-
ing tight-binding chain, representing a lead. For our fRG
calculations we have chosen µ = 0, implying half-filled
leads.

B. fRG strategy and approximations

fRG may be viewed as RG-enhanced perturbation the-
ory in the interaction. It is based on solving a hierarchy
of coupled ordinary differential equations, the flow equa-
tions, for the system’s n-particle vertex functions, γΛ

n .
The flow parameter Λ controls the RG flow from an ini-
tial cutoff Λi, at which all vertex functions are known and
simple, to a final cutoff Λf , at which the full theory is
recovered. Solving the full hierarchy of flow equations,
however, is impossible in practice and simplifying ap-
proximations are needed to render them tractable. When
setting up our flow equations, we make two technical ap-
proximations, which are both exact to second order in
the interaction U . We briefly summarize them here, and
provide more details in the subsequent technical discus-
sions.
(i) We truncate the fRG hierarchy by setting γΛ

n≥3 = 0.

This standard approximation32 offers a systematic way
of summing up parquet-type diagrams (i. e. diagrams
that result from coupled RPA-equations)32 for the two-
particle vertex. However, due to the neglect of higher
order terms, it fails if the interaction becomes too large
(on a scale set by the local density of states at the chem-
ical potential).
(ii) We apply the coupled-ladder approximation40,41 to

treat the frequency dependence of the vertex, and extend
this scheme to also treat the real space structure of the
vertex. The coupled-ladder approximation sets to zero all
components of the vertex except those that are generated
already to second order in the bare (onsite) interaction,
but retains the latter components throughout the flow.

C. fRG Flow equations

We introduce Λ as an infrared cut-off in the bare Mat-
subara propagator,

GΛ
0 (iω) = ΘT (|ω| − Λ)G0(iω) , Λi = ∞, Λf = 0 , (S41)

where ΘT is a step function that is broadened on the
scale of the temperature T (we discuss the limit T =
0 in Sec. S-6E below). The fRG approach in the one-
particle irreducible version then leads to the following
set of equations. (For a derivation, see e. g. Refs. 32,37;
very detailed discussions are given e. g. in Refs. 33,38, for



SUPPLEMENTARY INFORMATION

2 2  |  W W W. N A T U R E . C O M / N A T U R E

RESEARCH
22

a diagrammatic derivation see Ref. 39.) The flow of the
self-energy ΣΛ = −γΛ

1 is given by

d

dΛ
γΛ
1 (q

′
1, q1) = T

∑
q′2,q2

SΛ
q2,q

′
2
γΛ
2 (q

′
2, q

′
1; q2, q1) ,

(S42a)

=11

11

d
dΛ

. (S42b)

Here SΛ is defined in terms of the scale-dependent full
propagator GΛ,

SΛ = GΛ∂Λ

[
GΛ
0

]−1 GΛ = , (S43a)

GΛ =
[ [

GΛ
0

]−1 − ΣΛ
]−1

= , (S43b)

and γΛ
2 is the two-particle irreducible vertex.

The flow of the latter can be arranged into three contributions (or parquet channels),

d

dΛ
γΛ
2 =

d

dΛ
(γΛ

p + γΛ
x + γΛ

d ) , (S44)

1

2

1

2

1 1

22

1 1

22

1 1

2 2

= + −d
dΛ

(S45)

called the particle-particle channel (P), and the exchange (X) and direct (D) contributions to the particle-hole channel,
respectively, with the following explicit forms:

d

dΛ
γΛ
p (q

′
1, q

′
2; q1, q2) = T

∑
q′3,q3,q

′
4,q4

γΛ
2 (q

′
1, q

′
2; q3, q4)SΛ

q3,q
′
3
GΛ
q4,q

′
4
γΛ
2 (q

′
3, q

′
4; q1, q2), (S46a)

d

dΛ
γΛ
x (q

′
1, q

′
2; q1, q2) = T

∑
q′3,q3,q

′
4,q4

γΛ
2 (q

′
1, q

′
4; q3, q2)

[
SΛ
q3,q

′
3
GΛ
q4,q

′
4
+ GΛ

q3,q
′
3
SΛ
q4,q

′
4

]
γΛ
2 (q

′
3, q

′
2; q1, q4) , (S46b)

d

dΛ
γΛ
d (q

′
1, q

′
2; q1, q2) = −T

∑
q′3,q3,q

′
4,q4

γΛ
2 (q

′
1, q

′
3; q1, q4)

[
SΛ
q4,q

′
4
GΛ
q3,q

′
3
+ GΛ

q4,q
′
4
SΛ
q3,q

′
3

]
γΛ
2 (q

′
4, q

′
2; q3, q2) . (S46c)

All higher order vertices γn≥3 have been set to zero.
For the purpose of treating the inhomogeneous chain
model of Eq. (S11), the quantum numbers qi denote a
composite index of site, spin and Matsubara-frequency,
q1 = (j1, σ1, iω

1
n), etc.

D. fRG for non-uniform systems

A standard strategy for getting an initial impression of
the system’s behavior is to neglect the flow of the two-
particle vertex completely. For the present model, the
results so obtained36 turn out to be similar to those ob-
tained from SOPT – they capture the effects of interac-
tions quite well qualitatively, but not quantitatively. To
allow quantitative comparisons to experiment, we have
therefore included the flow of the two-particle vertex for

all fRG results shown in this work. We now describe how
this was done.
Since the bare propagators are not site-diagonal, the

number of independent variables needed to describe
the vertex γΛ

2 (q
′
1, q

′
2; q1, q2) generated by Eq. (S46) is

very large, O(N4N3
f ) (Nf is the number of Matsubara-

frequencies used in the numerics). To deal with this com-
plication we use the coupled-ladder approximation40,41

for the frequency dependence of γΛ
2 and treat its site-

dependence in a similar manner. Given the structure of
the flow equation (S46) for γΛ

2 , it is natural to divide the
flowing vertex into four parts41:

γΛ
2 = v+γΛ

p +γΛ
x +γΛ

d , γΛi
p = γΛi

x = γΛi

d = 0 . (S47)

Here v is the bare vertex, and γp
2 , γx

2 and γd
2 , whose flows

by definition are given by Eqs. (S46a), (S46b) and (S46c),
sum up the P-, X- and D-channels, respectively (see Sec.
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S-6C).
Now, since the bare vertex is site-diagonal, only

O(N2Nf) of the O(N4N3
f ) different components in each

channel are generated already to order v2 [i. e. if, at the
beginning of the flow, γΛ

2 is replaced by v on the r. h. s.
of Eq. (S46)]. We exploit this fact by making the follow-
ing simplifying approximation in the spatial structure of
γ2: in each channel we set to zero all components except
those that are generated already to order v2, but retain
the latter components throughout the flow. The dropped
components are all of order v3 or higher, which justifies
their neglect as long as Uj is not too large. Further-
more we only keep the intrinsic frequency dependence of

each channel (i. e. the frequency-dependence generated
to 2nd order). Each channel thus depends only on a sin-
gle bosonic frequency, denoted by Π, X and ∆ for the P-,
X- and D-channels, respectively. The feed-back into the
other channels is performed using only the static part of
each channel, i. e. its value evaluated at zero frequency41.
By exploiting various symmetry relations, the retained
components of γΛ

2 can be parametrized in terms of four

frequency-dependent matrices, PΛ
ij (Π), XΛ

ij(X), D↑Λ
ij (∆)

and D↓Λ
ij (∆), defined as follows (and shown together with

the diagrams that generate them to lowest order):

PΛ
ji(Π) : = γΛ

p (jσΠ−ω′
n, jσ̄ ω′

n; iσΠ−ωn, iσ̄ ωn) = −γΛ
p (jσΠ−ω′

n, jσ̄ ω′
n; iσ̄Π−ωn, iσ ωn) , (S48a)

O(v2)�
jσ

jσ̄

iσ

iσ̄

σ

σ̄

Π−ωn

ωn

Π−ωn

ωn

Π−ωn

ωn

= −
jσ

jσ̄

iσ

iσ

σ

σ̄

Π−ωn

ωn

Π−ωn

ωn

Π−ωn

ωn

¯
,

XΛ
ji(X) : = γΛ

x (jσX+ω′
n, iσ̄ ωn; iσX+ωn, jσ̄ ω′

n) = −γΛ
d (jσX+ω′

n, iσ̄ ωn; jσ̄ ω′
n, iσX+ωn) , (S48b)

O(v2)�
jσ

jσ̄

iσ

iσ̄

σ

σ̄

X+ ωn

ωn

X+ ωn

ωn

X+ ωn

ωn

= −

jσ

iσ̄

jσ̄

iσ

σ̄ σ

X+ ωn ωn

X+ ωnωn

X+ ωnωn ,

DσΛ
ji (∆) : = γΛ

d (jσ∆+ω′
n, iσ ωn; jσ ω′

n, iσ∆+ ωn) = −γΛ
x (jσ∆+ω′

n, iσ ωn; iσ∆+ ωn, jσω′
n) , (S48c)

O(v2)�

jσ

iσ

σ̄ σ̄

jσ

iσ

∆+ ωn

ωn

ωn

∆+ ωn

∆+ ωnωn = −
jσ

iσ
σ̄

σ̄

jσ

iσ

∆+ ωn

ωn

∆+ ωn

ωn

∆+ ωn

ωn

.

Note that these diagrams do not depend on ωn and
ω′
n; this is the reason why the coupled-ladder approxi-

mation allows each channel to be parametrized by just
a single frequency. A detailed analysis of the flow of
PΛ
ij , XΛ

ij and DσΛ
ij , to be published elsewhere36, shows

that the exchange channel XΛ
ij , which grows significantly

during the flow, is the dominant one. This lends a
posteriori support to an assertion made in numerous
works4,7–9,12,14,20–22,30,31,42, namely that exchange inter-
actions in the low-density inner region of the QPC play
a dominant role for the 0.7-anomaly.

The parameter controlling the convergence of the fRG
equations is U · maxṼc,j

[Aj(0)]; if it is too large, these

equations do not converge. For a QPC, the maximum
value of the bare LDOS A0

j (0) scales as 1/
√

τΩx (see
Sec. S-4C).

E. Zero-temperature limit

The fRG flow equations discussed above apply to an
arbitrary temperature T . However, the conductance at
T �= 0 depends on the retarded correlator GR(ω) =
G(iωn → ω + i0+) as well as the retarded parts of the
vertex channels (e.g. P (iΠn → Π + i0+)), which have
to be obtained by analytic continuation from the imag-
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inary to the real frequency axis. In numerical practice,
this analytical continuation turned out to be unfeasible
for the present problem. Therefore, we have here studied
only the T = 0 limit, in which the Matsubara frequencies
form a continuum and the conductance [Eq. (S37)] is ex-
pressed in terms of the zero-energy transmission Tσ(0).
For numerical computations, we represented the contin-
uum of Matsubara frequencies by a discrete set, and
used its smallest positive member to evaluate the Mat-
subara Green’s function Gσ

−N ′,N ′(i0+) needed for Tσ(0)
[Eq. (S38)].
In the limit T → 0, the cut-off function ΘT in Eq. (S41)

becomes a sharp step function, with Θ0(0) = 1
2 and

∂ωΘ0(ω) = δ(ω). Since a combination of δ- and Θ-
functions occurs in the fRG flow equations, the limit
T → 0 has to be taken with care, with the result40:

SΛ(iω)
T=0
= δ(|ω| − Λ)G̃Λ(iω), (S49a)

G̃Λ(iω) =
[
[G0(iω)]

−1 − ΣΛ(iω)
]−1

, (S49b)

SΛ
i,j(iω)GΛ

k,l(iω
′)

T=0
= δ(|ω| − Λ)G̃Λ

i,j(iω) (S49c)

×Θ(|ω′| − Λ)G̃Λ
k,l(iω

′).

F. Static fRG

Most of our exploratory work on the zero-temperature
properties of the 0.7-anomaly was done using “static”
fRG (here denoted by fRG0). It entails a further ap-
proximation relative to the “dynamic” fRG approach de-
scribed above (here denoted by fRGω), in that fRG0 ne-
glects the frequency dependence of the self-energy and
all vertices. This is done by setting all three bosonic fre-
quencies Π, X and ∆ to zero. As a result the self-energy
is frequency-independent, too. fRG0 leads to reliable
results only for the zero-frequency Green’s function at
zero temperature. If knowing the latter suffices (such as

when studying the magnetic field-dependence at T̃ = 0),
fRG0 is a very flexible and efficient tool, computationally
cheaper than our full coupled-ladder scheme fRGω by a
factor of 103. Moreover, for the model studied here its
results turn out to be qualitatively very similar to those
of fRGω. This is illustrated in Fig. S15, from which we
note the following salient features.
The main difference in the conductance curves cal-

culated by the two methods is an overall interaction-
induced, U -dependent shift of the position of the fRG0

conductance step w. r. t. to that of fRGω, towards some-

what smaller values of Ṽc (compare Figs. S15a,b); how-
ever the shapes of the corresponding curves (modulo the
shift) are essentially identical (Fig. S15c). The shift itself
merely amounts to a small change in overall chemical po-
tential and can be regarded as an insignificant detail, in
particular in the context of the 0.7-anomaly, where both
in theoretical and experimental studies, the focus is on
the shape of the step, not its position.
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Figure S15: Comparison of results from static fRG (fRG0, top
panels) and dynamic fRG (fRGω, middle panels, reproduced
from Figs. A1k and A2a, respectively). The bottom panels
show that after compensating for a U -dependent shift (here
applied to the fRGω curves to get best overlap with the fRG0

curves) both sets of curves have almost identical shapes. Left

panels: The interaction dependence of the conductance g(Ṽc)

at B̃ = T̃ = 0. Right panels: The magnetic-field dependence

of the T̃ = 0 conductance g(Ṽc) at fixed U = 0.5τ .

Closer inspection reveals that the magnetic field de-
pendence (at fixed U) of the fRG0 conductance curves is
slightly stronger for small fields and slightly weaker for
large fields, compared to that of fRGω (see Figs. S15d-
f). This implies small quantitative differences in the low-

energy scale B̃∗ and the effective g-factor gss.

All in all, for the purposes of exploring the field-
dependence of the 0.7-anomaly at fixed U , the differ-
ences in results between fRGω and fRG0 are evidently
very small. Hence we have opted to use the computa-
tionally much cheaper fRG0 for the results presented in
Secs. S-3 and S-5.
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S-7. SECOND-ORDER PERTURBATION
THEORY

The main limitation of our calculations using static
fRG is their restriction to ω = 0 and hence to zero tem-
perature and zero source-drain voltage. As a first step to-

ward exploring the properties of our model at T̃ �= 0 and

Ṽsd �= 0, we have calculated the conductance of a QPC
using second-order perturbation theory (SOPT), applied
to model II (see Supplementary Sec. S-4D). Sec. S-7A
presents the diagrams used for this purpose, and Sec. S-
7B discusses how we treat non-equilibrium transport us-
ing Keldysh-SOPT. Sec. S-7C elaborates the main arti-

cle’s discussion of the SOPT results for the B̃-, T̃ - and

Ṽsd-dependence of the conductance, which are in fairly
good qualitative agreement with experiment. Sec. S-7D
concludes with some comments regarding an SOPT arte-
fact that arises with increasing U .

A. Equilibrium SOPT

We follow the strategy of Oguri43, who has carried out
a similar calculation for a particle-hole symmetric version
of our model (with N ≤ 4) at zero field. It is straight-
forward to generalize his equations to the case of present
interest, with broken particle-hole symmetry and nonzero
field. The conductance is calculated from

g =
1

2

∑
σ

∫ ∞

−∞
dω

[
−∂f(ω)

∂ω

]
Tσ(ω) . (S50)

where Tσ(ω) is calculated using Oguri’s43 equations
(2.36-38) and (4.10). They can be graphically depicted
as

ω

ω
ω ω

ω

(S51)

σ̄,ε2

σ̄,ε2

σ̄,ε1

iσ,

jσ,

σ
ε2−ε1+±N

Γσ̄
R/L

+

P
σ,R/L
ji ( ) =

iσ,

jσ,

±N

= σ̄,ε2

σ̄,ε1

σ̄,ε1

iσ,

jσ,

σ
ε2−ε1+±N

Γσ̄
R/L

σ̄,ε2

σ,ε1

σ,ε1

iσ,

jσ,

σ̄
ε2−ε1+±N

Γσ
R/L

+

ω

ω

ω

ω

ω ω

ω

ω

ω

ω ω

ω

(S52)
where large black dots depict the bare interaction vertex,
small black dots the coupling Γσ

R/L(ε) to the reservoirs,

and the double lines represent the retarded interacting

Green’s function GR = [(G0R)−1 −ΣR]−1. Its self-energy
ΣR is calculated to second order using the following dia-
grams:

jσ iσ
jσ

iσjσ
iσ

Σσ
j i( ) = δij + δij +

σ̄ε1

σ̄ε1σ̄ε1

σε2

σ̄ε1

σ̄ε2

σ(ε2 − ε1 + )

ω

ωω ωω
ω ω

ω

a b c

(S53)
Diagram c corresponds to Oguri’s43 Fig. 6, which repre-
sent the Fock contribution. Our treatment differs from
Oguri’s only regarding the Hartree diagrams a and b.
Whereas he incorporates their effects in an implicit man-
ner by exploiting particle-hole symmetry, this symme-
try is not present in our problem, hence we include the
Hartree diagrams explicitly in the self-energy.
The diagrams in Eqs. (S52) and (S53) involve Matsub-

ara frequencies; they have to be analytically continued to
real frequencies before being used in Eq. (S51) for Tσ(ω),
as discussed in detail by Oguri. The resulting formulas,
obtained by generalizing Oguri’s43 equations [his (4.2),
(4.3) for the Fock diagram, and (4.10) for the current
vertex] to the spin-dependent case of non-zero field, will
be presented elsewhere36.

In the main article, the transmission probability is
written as

Tσ(ω) = T el
σ (ω) + T in

σ (ω), (S54)

where T el
σ (ω) and T in

σ (ω), given by the first and second
terms of Eq. (S51), describe the elastic and inelastic con-
tributions to the transmission probability, respectively.
They are related by a generalized Ward identity that
is respected within the approximation scheme described
above (Eq. (3.120) in Ref. 43):

− ImΣσ,R
ji (ω) =

∑
α=L/R

Pσ,α
ji (ω) . (S55)

This relation links the current vertex to the inelastic de-
cay rate, governed by the imaginary part of the self-
energy. An increase in the contribution of the current
vertex, therefore, goes hand in hand with an increase in
inelastic scattering.
SOPT calculations turn out to be computationally sig-

nificantly more costly than fRG calculations. Therefore,
all our SOPT calculations were done using model II,
which has some computational advantages over model
I, as explained in Supplementary Sec. S-4D.

B. Nonequilibrium SOPT

In order to calculate the differential conductance

gnl =
dI

dṼsd

(S56)
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at finite bias voltage (Ṽsd �= 0) we use the Meir-Wingren
formula for the current through a region of interacting
electrons44:

I =
ie

2h

∫
dε
(
Tr{[fLΓL − fRΓ

R](GR − GA)}

+Tr{[ΓL − ΓR]G<}
)
, (S57)

with G< = 1
2

(
GK − GR + GA

)
. The finite bias Ṽsd enters

via the occupation functions of the left and right lead:

fR/L(ω) = f(ω ∓ Ṽsd/2). (S58)

The retarded, advanced and Keldysh Green’s functions
GR/A/K are given by Dyson equations:

GR/A =
1

(GR/A)−1 − ΣR/A
.

GK = GR[(GR)−1GK(GA)−1 +ΣK ]GA, (S59)

The non-equilibrium retarded, advanced and Keldysh
self-energies occurring herein, ΣR/A/K , are calculated to
second order in the interaction, using standard Keldysh
techniques. The corresponding diagrams are again given
by Eq. (S53), but now feature an additional Keldysh in-
dex.

C. B̃-, T̃ - , and Ṽsd-dependence of g(Ṽc)

In this section, we give a detailed discussion of the

SOPT results presented in the main text for the B̃-, T̃ -

and Ṽsd-dependence of the conductance g(Ṽc). In partic-
ular, we analyse their similarities and differences w. r. t.
our fRG results and experimental measurements.
Dependence on magnetic field at zero temperature:

To gauge the reliability of SOPT, we begin by com-
paring its results for the magnetic field dependence
of the conductance (Fig. A2c) to those obtained from
fRG (Fig. A2a) and from experimental measurements
(Fig. A2e). Though some details differ, the qualitative
agreement is very good. It includes, in particular, the
following two important features: (i) The conductance

g(Ṽc) is strongly suppressed with increasing B̃ for Ṽc < 0,
leading to the evolution of a kink around 0.5 (thick red

line in Fig. A2c). (ii) ln(B̃∗) increases nearly linearly

with decreasing Ṽc in the regime where g → 1 (thin grey
line in Fig. A2c); in fact, even the slope of the linear
increase is nearly the same as that found by fRG (grey
line in Fig. A2a). This remarkable agreement between

SOPT and fRG for the Ṽc-dependence of B̃∗ implies that
the latter is determined mainly by geometry (corrobo-
rating a similar conclusion from Sec. S-5), i. e. interac-
tions, which are underestimated in SOPT, influence the

Ṽc-dependence only weakly.
As an aside, we note that both of the above-mentioned

features (i) and (ii) survive45 (data not shown) even if

0.50
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Figure S16: Differential conductance for model II at B̃ =

T̃ = 0, plotted as a function of bias voltage for several Ṽc-
values, calculated a without and b with interactions, the lat-
ter treated using second order perturbation theory (SOPT)
(see Sec. S-7B).

SOPT is simplified by neglecting the Fock contribution
to the self-energy [diagram c of Eq. (S53)], retaining only
the first- and second-order Hartree terms [diagrams a and

b of Eq. (S53)]. Thus, the B̃-dependence is dominated
by Hartree terms (describing shifts in the barrier heights
for spin-up vs. spin-down electrons), rather than Fock
terms (describing inelastic scattering, which is relevant
only at finite temperatures and finite bias voltage). This
conclusion is consistent with the fact that the approach
of Lunde et al., Ref. 6, which properly incorporated the
(model) system’s geometry-dependence by using WKB
wave functions, is nevertheless unable to reproduce the

energy scale B̃∗ from the magnetic field dependence as
long as only Fock-like diagrams are considered46.

Next, we mention an important instance in which
SOPT fails to agree with experimental and fRG results
for the conductance (compare Fig. A2c to Fig. A2e and
Fig. A2a): SOPT does not yield the 0.7-shoulder in the

conductance at T̃ = B̃ = 0. (A shoulder does develop
for larger U (� 0.5τ), for which, however, SOPT can no
longer be trusted.)
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To summarize: SOPT correctly captures several im-
portant features of the field dependence of the conduc-
tance at zero temperature, but not all details. The same
turns out to be true for the temperature dependence at
zero field, as we discuss next:

Dependence on temperature at zero magnetic field:
Fig. A2d presents SOPT results for the temperature-
dependence of the conductance at zero field. Compar-
ing these to the corresponding experimental results of
Fig. A2f, we note that SOPT correctly reproduces the
main effect of increasing temperature, namely to reduce
the conductance. However, SOPT does not fully succeed
in reproducing the detailed shape of the experimental
pinch-off curves: the SOPT curves lack the tendency of
the experimental curves to show a well-defined shoulder
that is amplified by increasing temperature.

Dependence on bias voltage: Fig. S16a shows the bare
(U = 0) differential conductance g0nl as a function of

bias voltage Ṽsd for several Ṽc-values ranging from the
open channel (g � 1) to the pinched-off regime (g � 0).
The bare conductance can easily be calculated from the
Landauer-Büttiker formula (S25), using Büttiker’s for-

mula (S30) for the transmission. The resulting g0nl(Ṽsd)
exhibits a zero bias peak (ZBP) for linear conductance

g > 0.5 (Ṽc < 0), and a zero bias minimum in the tun-

neling regime, where Ṽc > 0 and g < 0.5.

Turning on interaction (see Fig. A3i, as well as
Fig. S16b) causes the following effects on gnl: First, a
ZBP forms even when the linear conductance is g < 0.5,
and second, the width of the ZBP is reduced across the

whole Ṽc-range. These two interaction-induced charac-
teristics can be understood in terms of two main mech-
anisms: (i) Applying finite bias generates a net charge
flow into the barrier region (since there the LDOS is ω-
asymmetric around ω = 0), thereby enhancing the effec-
tive barrier height for electrons entering the CCR. For
sufficiently large interaction this leads to a reduction of

conductance (Hartree effect). (ii) Turning on Ṽsd opens
phase space for inelastic scattering. Consequently the
combination of a large LDOS in the vicinity of the clas-
sical turning points (where ωmin

j � 0), interactions, and

Ṽsd > 0, leads to a high probability for backscattering,
hence a reduction of conductance. We note that both
mechanisms (i) and (ii) also apply when the temperature
is increased; in this sense, the temperature- and bias-
dependencies of the 0.7-anomaly are manifestations of
the similar physical processes.

We take the SOPT results shown in Fig. A2d and
Figs. A3b,d-f as encouraging indications that our model
has the potential to properly describe properties of the
0.7-anomaly at finite temperature and bias. To summa-
rize: the anomalous conductance decrease with increas-
ing T̃ or Ṽsd in the sub-open regime originates from the
enhancement, by the van Hove ridge apex near µ, of the

T̃ - or Ṽsd-induced increase of (i) the net charge and (ii)
the amount of inelastic scattering in the CCR.
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Figure S17: SOPT results (solid lines) for the conductance

g(Ṽc) as function of Ṽc, illustrating the qualitative changes
incurred when interactions are increased from being weak
(left panels) to rather strong (right panels, reproduced from

Figs. A2c,d). Panels (a,b) show the B̃-dependence of the

conductance at T̃ = 0, panels (c,d) show its T̃ -dependence at

B̃ = 0. Dashed lines show corresponding curves for the bare

U = 0 conductance, g0(Ṽc).
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Figure S18: The zero-temperature linear conductance g(Ṽc)

as function of Ṽc, for several values of U , calculated a, using
pure SOPT, and b, using a self-consistent Hartree approach
(without Fock contributions). The non-monotonic behavior

of g(Ṽc) as function of increasing U seen in a is an SOPT
artefact, caused by the neglect of terms beyond 2nd order; this
artefact is avoided by the self-consistent Hartree approach, as
seen in b.

D. SOPT artefact arising for increasing U

We conclude with some comments on the choice of
interaction strength used for our SOPT calculations.

Fig. S17 compares the SOPT results for the B̃- and T̃ -

dependence of g(Ṽc) calculated at U = 0 (left panels,
dashed lines), U = 0.1τ (left panels, solid lines) and
U = 0.35τ (right panels, solid lines). The left pan-



SUPPLEMENTARY INFORMATION

2 8  |  W W W. N A T U R E . C O M / N A T U R E

RESEARCH
28

els show that upon turning on a weak interaction (solid

lines), the conductance g at fixed values of Ṽc, B̃ and

T̃ is shifted slightly downward due to the increase of the
Hartree barrier, leading to a slight skewing of the shape of
the conductance step relative to the corresponding non-

interacting value g0(Ṽc) (dashed lines). However, signif-
icantly larger values of U are needed (right panels) to
yield the strong type of skewing characteristic for mea-
sured conductance curves that exhibit the 0.7-anomaly.
Note that due to this large choice of U in the right pan-

els, the SOPT conductance curve g(Ṽc) at B̃ = T̃ = 0
(solid black) has been shifted upwards to actually lie
above its non-interacting value (dashed black). This

non-monotonic behavior of g(Ṽc) for increasing U (the
shift being initially downwards, then upwards, illustrated
clearly in Fig. S18a) is an artefact of SOPT’s neglect of
terms beyond 2nd order: the signs (+ or −) of Hartree
contributions are known to alternate with the order of
expansion, hence truncating the latter beyond 2nd order
generates non-monotonic behavior for the shift with in-
creasing U once the 2nd-order term becomes larger than
the 1st-order term. (fRG avoids this problem by sum-
ming up, in effect, a series of diagrams to all orders, re-

sulting in a monotonic dependence of g(Ṽc) on U , see
Fig. A1k.)
We emphasize that this SOPT artefact is problematic

only if one is interested in following the evolution of phys-
ical properties with increasing U (examples of such evo-

lution, calculated by fRG, are shown in Figs. A1e,j,k).
However, for the purpose of studying physical properties
at fixed U , SOPT does quite well: it succeeds in quali-
tatively illustrating the generic, experimentally observed

trends of how interactions affect the B̃-, T̃ -, and Ṽsd-
dependence of the conductance even if the (fixed) value
of U is rather large, because the physical origin of these
trends is robust. A detailed discussion of this point will
be published elsewhere.

Finally, we note that the above-mentioned artefact can
be avoided by adopting an approach similar in spirit to
SOPT, but using a self-consistently-determined Hartree
potential (thus treating Hartree and Fock terms on un-

equal footing): For T̃ = Ṽsd = 0, calculate the self-energy
from just the first-order Hartree diagram Eq. (S53)a to
obtain a Hartree-shifted local potential Ejσ +Ujnjσ, de-
termine the local charge njσ self-consistently, and calcu-
late the QPC transmission using Hartree-dressed Green’s
functions (see Fig. S18b).

For nonzero T̃ or Ṽsd, use Hartree-dressed (instead of
bare) Green’s functions for all thin lines in the SOPT
Eqs. (S51) to Eq. (S53), but include only the Fock di-
agram in the latter, to avoid double-counting Hartree
contributions. The Ward identity [Eq. (S55)] relating
the current vertex to the self-energy would remain intact
in this approach. Pursuing it in detail is left as a topic
for future study.
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