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Several recent papers have predicted parity effects, based on even-odd ground state energy differences, in
ultrasmall ~nm scale! superconductors having a discrete electronic eigenspectrum with mean level spacing d

.D̃ ~bulk gap!. The motivation for the present paper is to analyze the measurability of these and related parity
effects in the present generation of experiments @e.g., those of Ralph, Black, and Tinkham ~RBT!#. To this end
we develop a general theory of superconductivity in ultrasmall metallic grains, based on calculating the
eigenspectrum using a generalized BCS variational approach. We discuss how conventional mean field theory
breaks down with decreasing sample size, how the so-called blocking effect weakens pairing correlations in
states with nonzero total spin, and how this affects the discrete eigenspectrum’s behavior in a magnetic field,
which favors nonzero total spin. Our calculations qualitatively reproduce the magnetic-field-dependent tunnel-
ing spectra for individual aluminum grains measured by RBT. Our main results regarding parity effects are ~i!
the conclusion that those based on even-odd ground state energy differences are currently not measurable and
~ii! the proposal of a parity effect for the pair-breaking energy, which should be measurable provided that the
grain size can be controlled sufficiently well. @S0163-1829~99!07613-4#

I. INTRODUCTION

What happens to superconductivity when the sample is
made very very small? Anderson1 addressed this question
already in 1959: he argued that if the sample is so small that
its electronic eigenspectrum becomes discrete, with a mean
level spacing d51/N(«F);1/Vol, ‘‘superconductivity
would no longer be possible’’ when d becomes larger than
the bulk gap D̃ . Heuristically, this is obvious ~see Fig. 1
below!: D̃/d is the number of free-electron states that pair
correlate ~those with energies within D̃ of «F), i.e., the
‘‘number of Cooper pairs’’ in the system; when this becomes
&1, it clearly no longer makes sense to call the system ‘‘su-
perconducting.’’

Giaever and Zeller2,3 were among the first to probe
Anderson’s criterion experimentally: studying tunneling
through granular thin films containing electrically insulated
Sn grains, they demonstrated the existence of an energy gap
for grain sizes right down to the critical size estimated by
Anderson ~radii of 25 Å in this case!, but were unable to
prove that smaller particles are always normal. Their con-
cluding comments are remarkably perspicuous:3 ‘‘There can
be no doubt, however, that in this size region the bulk theory
of superconductivity loses its meaning. As a matter of fact,
perhaps we should not even regard the particles as metallic
because the energy-level spacing is large compared to kT

and because there are very few electrons at the Fermi sur-
face. The question of the lower size limit for superconduc-
tivity is, therefore, strongly correlated with the definition of
superconductivity itself.’’

These remarks indicate succinctly why the study of super-
conductivity near its lower size limit is of fundamental inter-
est: the conventional bulk BCS approach is not directly ap-
plicable, and some basic elements of the theory need to be
rethought, with the role of level discreteness demanding spe-
cial attention.

First steps in this direction were taken by Strongin et al.4

and by Mühlschlegel et al.,5 who calculated the thermody-

namic properties of small superconducting grains. However,
since experiments at the time were limited to studying en-
sembles of small grains ~e.g., granular films!, there was no
experimental incentive to develop a more detailed theory for
an individual ultrasmall superconducting grain, whose
eigenspectrum, for example, would be expected to reveal
very directly the interplay between level discreteness and
pairing correlations.

This changed dramatically in 1995, when Ralph, Black,
and Tinkham ~RBT! ~Ref. 6! succeeded in constructing a
single-electron transistor ~SET! whose island was an ultra-
small metallic grain: by studying the tunneling current
through the device, they achieved the first measurement of
the discrete eigenspectrum of a single grain. This enabled
them to probe the effects of spin-orbit scattering,7,8 nonequi-
librium excitations,9 and superconductivity,7,9 which mani-
fests itself through the presence ~absence! of a substantial
spectral gap in grains with an even ~odd! number of elec-
trons.

RBT’s work stimulated several theoretical investigations.
Besides discussing nonequilibrium effects,10,11 these focused
mainly on superconductivity,12–16 and revealed that the
breakdown of pairing correlations with decreasing grain size
predicted by Anderson harbors some surprises when scruti-
nized in more detail: von Delft et al.12 showed that this
breakdown is affected by the parity ~p! of the number of
electrons on the grain: using parity-projected mean-field
theory17,18 and variational methods and assuming uniformly
spaced electron levels, they solved the parity-dependent gap
equation for the even or odd ground state pairing parameters
De or Do as function of d ~using methods adapted from
Strongin et al.4!, and found that Do(d),De(d), i.e., ground
state pairing correlations break down sooner with increasing
d in an odd grain than in an even grain ~the difference be-

coming significant for d.D̃). This is due to the so-called
blocking effect:19 the odd grain always has one unpaired
electron, which blocks pair scattering of other pairs and
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thereby weakens pairing correlations. Smith and
Ambegaokar13 showed that this parity effect holds also for a
random distribution of level spacings ~as also anticipated by
Blanter20!, and Matveev and Larkin14 investigated a ground
state parity effect occurring in the limit d@D̃ . Though
stimulated by experiments neither of the theoretical works on
parity effects did analyze their measurability in detail.

The Do,De parity effect has an obvious generalization,
studied by Braun et al.15 using a generalized BCS variational
approach due to Soloviev:19 any state with nonzero spin s

~not just the odd ground state! experiences a significant re-
duction in pairing correlations, since at least 2s electrons are
unpaired, leading to an enhanced blocking effect (Ds,Ds8

if
s.s8). The latter’s consequences can be observed in the
magnetic-field dependence of SET tunneling spectra, since a
magnetic field favors states with nonzero spin and conse-
quent enhanced blocking effect. In ultrasmall grains, spin
magnetism dominates orbital magnetism, just as in thin films
in a parallel field;21 but whereas in the latter the magnetic-
field induced transition to a normal state is known to be first
order, Braun et al. showed that in ultrasmall grains the tran-
sition is softened due to finite size effects. Moreover, they
argued that some of RBT’s grains fall in a region of ‘‘mini-
mal superconductivity,’’ in which pairing correlations mea-
surably exist at H50, but are so weak that they may be
destroyed by the breaking of a single pair ~since the number
of electron pairs that take part in the formation of a corre-
lated state becomes of order one for d.D̃).

In the present paper we elaborate the methods used and
results found by Braun et al. in Ref. 15 and present a detailed
theory of superconductivity in ultrasmall grains. Our discus-
sion can be divided into two parts: in the first ~Secs. II and
III!, we consider an isolated ultrasmall grain and ~a! define
when and in what sense it can be called ‘‘superconducting,’’
~b! use a generalized BCS variational approach to calculate
the eigenenergies of various variational eigenstates of gen-
eral spin us& , which illustrates the breakdown of mean-field
theory, and ~c! discuss how an increasing magnetic field in-
duces a transition to a normal paramagnetic state. In the sec-
ond part ~Sec. IV!, we consider the grain coupled to leads as
in RBT’s SET experiments and discuss observable quanti-
ties: ~a! We calculate theoretical tunneling spectra of the
RBT type, finding qualitative agreement with RBT’s mea-
surements, ~b! show that the above-mentioned ground state

energy parity effects can presently not be observed, and pro-

pose an analogous pair-breaking energy parity effect that

should be observable in experiments of the present kind. In
three appendixes we discuss various analytical limits of our
theory, the general I-V characteristics expected for an ul-
trasmall NSN SET, and explain how RBT’s experiments
give direct evidence for the dominance of time-reversed pair-
ing, at least for small fields ~implying that the sufficiency of
using only a reduced BCS Hamiltonian, well established for
bulk systems and dirty superconductors, holds for ultrasmall
grains, too!.

II. PAIRING CORRELATIONS AT FIXED

PARTICLE NUMBER

The discrete energies measured in RBT’s experiments es-
sentially correspond to the eigenspectrum of a grain with

fixed electron number N ~for reasons explained in detail in
Sec. IV A!. In this and the next section, we therefore con-
sider an ultrasmall grain completely isolated from the rest of
the world, e.g., by infinitely thick oxide barriers.

When considering a truly isolated superconductor ~an-
other example would be a superconductor levitating in a
magnetic field due to the Meissner effect! one needs to ad-
dress the question: How is one to incorporate the fixed-N
condition into BCS theory, and how important is it to do so?
Although this issue is well understood and was discussed at
length in the early days of BCS theory, in particular in its
application to pairing correlations in nuclei ~see Ref. 22, p.
439!, for pedagogical reasons the arguments are worth reca-
pitulating in the present context. We shall first recall that the
notion of pair mixing12 that lies at the heart of BCS theory is
by no means inherently grand canonical and can easily be
formulated in canonical language, then summarize what has
been learned in nuclear physics about fixed-N projection
techniques, and finally conclude that for present purposes,
standard grand-canonical BCS theory should be sufficient.
Readers familiar with the relevant arguments may prefer to
skip this section.

A. Canonical description of pair mixing

Conventional BCS theory gives a grand-canonical de-
scription of the pairing correlations induced by the presence
of an attractive pairing interaction such as the reduced BCS
interaction

H red52(
j j8

Vc j1
† c j2

† c j82c j81 ~with V.0 !. ~1!

~The c j6 are electron destruction operators for the single-
particle states u j ,6& , taken to be time-reversed copies of
each other, with energies « j6 .) The theory employs a grand-
canonical ensemble, formulated on a Fock space of states in
which the total particle number N is not fixed, as illustrated
by BCS’s variational ground state Ansatz

uBCS&5)
j

~u j1v jc j1
† c j2

† !uVac& ~u j
2
1v j

2
51 !. ~2!

This is not an eigenstate of the number operator N̂

5( jsc js
† c js and its particle number is fixed only on the

average by the condition ^BCSuN̂uBCS&5N , which deter-
mines the grand-canonical chemical potential m . Likewise,
the commonly used definition

DBCS5V(
j

^c j1c j2& ~3!

for the superconducting order parameter only makes sense in
a grand-canonical ensemble, since it would trivially give
zero when evaluated in a canonical ensemble, formulated on
a strictly fixed-N Hilbert space of states.

A theory of strictly fixed-N superconductivity must there-
fore entail modifications of conventional BCS theory. In par-
ticular, a construction different from DBCS is needed for the
order parameter, which we shall henceforth call ‘‘pairing pa-
rameter,’’ since ‘‘order parameter’’ carries the connotation
of a phase transition, which would require the thermody-
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namic limit N→` . The pairing parameter should capture in
a canonical framework BCS’s essential insight about the na-
ture of the superconducting ground state: an attractive pair-
ing interaction such as H red will induce pairing correlations
in the ground state that involve pair mixing across «F ~see
also Ref. 12!, i.e., a nonzero amplitude to find a pair of
time-reversed states occupied above «F or empty below «F .
BCS chose to express this insight through the Ansatz ~2!,
which allows v jÞ0 for « j.«F and u jÞ0 for « j,«F . It
should be appreciated, however ~and is made clear on p.
1180 of their original paper23!, that they chose a grand-

canonical construction purely for calculational convenience
~the trick of using commuting products in Eq. ~2! makes it
brilliantly easy to determine the variational parameters
u j ,v j), and proposed themselves to use its projection to
fixed N, uBCS&N , as the actual ground state.

Since @H red ,N̂#50, one would expect that the essence of
BCS theory, namely, the presence of pair mixing and the
reason why it occurs, can also be formulated in a canonically
meaningful way. Indeed, this is easy: pair mixing is present
if the amplitude v̄ j[^c j1

† c j2
† c j2c j1&1/2 to find a pair of

states occupied is nonzero also for « j.«F , and the ampli-
tude ū j[^c j2c j1c j1

† c j2
† &1/2 to find a pair of states empty is

nonzero also for « j,«F ~the bars indicate that the ū j and v̄ j

defined here differ in general from the u j and v j used by
BCS; note, though, that the former reduce to the latter if
evaluated using uBCS&!. The intuitive reason why H red in-
duces pair mixing in the exact ground states uG& despite the
kinetic energy cost incurred by shifting pairing amplitude
from below to above «F , is that this frees up phase space for
pair-scattering, thus lowering the ground state expectation
value of H red : in ^GuH reduG&, the j j8 term can be nonzero
only if both c j1

† c j2
† c j82c j81uG&Þ0, implying ( v̄ j8

)GÞ0 and

( ū j)GÞ0, and also ^Guc j1
† c j2

† c j82c j81Þ0, implying ( v̄ j)G

Þ0 and ( ū j8
)GÞ0. By pair mixing, the system can arrange

for a significant number of states to simultaneously have
both ( v̄ j)GÞ0 and ( ū j)GÞ0; this turns out to lower the
ground state energy sufficiently through ^GuH reduG& that the
kinetic energy cost of pair mixing is more than compensated.
Furthermore, an excitation that disrupts pairing correlations
in the ground state by ‘‘breaking up a pair’’ will cost a finite
amount of energy by blocking pair scattering involving that
pair. For example, the energy cost of having u j1& definitely
occupied ( ū j50) and u j2& definitely empty ( v̄ j50) is

« jS 12^Gu(
s

c js
† c jsuG& D 1V^Guc j1

† c j2
† (

j8Þ j

c j82c j81uG& ,

in which the restricted sum reflects the blocking of scattering
involving the jth pair. When evaluated using uBCS&, this
quantity reduces to « j(122v j

2)1u jv jDBCS5@« j
2
1DBCS

2 #1/2,
which is the well-known quasiparticle energy of the state
g j1

† uBCS&.
The above simple arguments illustrate that there is noth-

ing inherently grand canonical about pair mixing. Indeed, at
least two natural ways suggest themselves to measure its
strength in a canonically meaningful way, using, for in-
stance, the pairing parameter D̄[V( jū jv̄ j proposed in Ref.
12, or one proposed by Ralph24:

D̄8[V(
j

@^c j1
† c j1c j2

† c j2&2^c j1
† c j1&^c j2

† c j2&#1/2.

~4!

Both D̄ and D̄8 were constructed such that they reduce, as is
desirable, to the same result as DBCS when each is evaluated
using uBCS& ~with real coefficients u j ,v j), namely, to
V( ju jv j . An appealing feature of D̄8 is that by subtracting
out ^c j1

† c j1&^c j2
† c j2& , it transparently emphasizes the pair-

ing nature of superconducting correlations, i.e., the fact that
if u j1& is empty ~or filled!, so is u j2&:D̄8 will be very small
if the occupation of u j1& is uncorrelated with that of u j2&,
as it is in a normal Fermi liquid. The overall behavior ~as
function of energy « j) of the summands in both D̄ and D̄8

will be similar to that of u jv j ~though not identical to u jv j or
to each other; a quantitative evaluation of the differences,
which increase with increasing d/D̃ , requires an honest ca-
nonical calculation25!. The quantity u jv j is shown in Fig.
1~a!, which illustrates that pair-mixing correlations are stron-
gest within a region of width DBCS .

B. On the breaking of gauge symmetry

In some discussions of conventional BCS theory the de-
fining feature of superconductivity is taken to be the break-
ing of gauge symmetry by the order parameter. This concept
is illustrated by the BCS order parameter DBCS of Eq. ~3!: if
nonzero, it has a definite phase and is not gauge invariant
~under c js→e ifc js , it changes to e i2fDBCS). Note, though,
that this point of view cannot be carried over to fixed-N
systems. First, these trivially have DBCS50, and secondly

FIG. 1. An illustration of why ‘‘superconductivity breaks
down’’ when the sample becomes sufficiently small. Each vertical
line represents a pair of single-particle state u j6& with energy « j ,
for three different mean level spacings d, corresponding to ~a! a
‘‘large’’ grain (d!D̃), ~b! a ‘‘small’’ grain (d.0.25D̃), ~c! an
‘‘ultrasmall’’ grain (d.D̃). In all three plots, the height of each
vertical line equals the function u j

2
v j

2
5

1
4 @D̃2/(« j

2
1D̃2)# of standard

bulk BCS theory, illustrating the energy regime ~of range D̃ around
«F) within which electrons are affected by pairing correlations.
Loosely speaking, the number of single-electron states D̃/d in this
regime corresponds to ‘‘the number of Cooper pairs’’ of the system.
Evidently, when d/D̃*1 as in ~c!, ‘‘the number of Cooper pairs’’
becomes less than one and it no longer makes sense to call the
system ‘‘superconducting.’’
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and more fundamentally, the breaking of gauge symmetry
necessarily presupposes a grand-canonical ensemble: since
phase and particle number are quantum-mechanically conju-
gate variables, formal considerations dictate that the order
parameter can acquire a definite phase only if the particle
number is allowed to fluctuate, i.e., in a grand-canonical en-
semble.

Of course, in certain experimental situations where N

manifestly does fluctuate, such as the celebrated Josephson
effect of two superconductors connected by a tunnel junc-
tion, their order parameters do acquire definite phases, and
their phase difference is a measurable quantity. However, for
a truly isolated superconductor with fixed N the ‘‘phase of
the order parameter’’ is not observable, and the concept of
gauge symmetry breaking through an order parameter with a
definite phase ceases to be useful. Indeed, the canonically
meaningful pairing parameters D̄ and D̄8 defined above are
manifestly gauge invariant.

C. Fixed-N projections

It is easy to construct a variational ground state exhibiting
pair-mixing and having definite particle number, by simply
projecting uBCS & to fixed N, as suggested by BCS.23 This
can be achieved by the projection integral

uBCS&N[E
0

2p

df e2ifN)
j

~u j1e2if
v jc j1

† c j2
† !uVac& ,

~5!

whose randomization of the phases of the v j’s illustrates,
incidentally, why gauge invariance is not broken at fixed N.

This and related fixed-N projections were studied in great
detail in nuclear physics, with the aim of variationally calcu-
lating nuclear excitation spectra for finite nuclei (N<240)
exhibiting pairing correlations ~Ring and Schuck provide an
excellent review of the extensive literature, see chapter 11 of
Ref. 22; Ref. 26 is a recent reference!. The simplest approach
is called ‘‘projection after variation’’: the unprojected expec-
tation value ^BCSuHuBCS & is minimized with respect to the
variational parameters $v j%, which thus have their standard
BCS values v j

2
5

1
2 @12« j /(« j

2
1DBCS

2 )1/2# , but then these are
inserted into uBCS&N and expectation values evaluated with
the latter instead of uBCS&. This elimination of ‘‘wrong-N’’
states after variation turns out to lower the ground state en-
ergy relative to the unprojected case ~by a few percent in
nuclei! and thus improves the trial wave function. Further
improvements are possible using the more sophisticated
‘‘projection before variation’’ strategy, where the projected
expectation value N^BCSuHuBCS&N is minimized with re-
spect to the $v j%. However, these then no longer have the
simple BCS form, but instead are determined through a set of
coupled relations, each involving all the other v j8s, that have
to be solved numerically.25 The corrections dv j to the BCS
pair-occupation amplitudes so produced further lower the
ground state energy relative to projection after variation.

Extensive applications of such and related approaches in
nuclear physics have led to the following conclusions: For
reasonably small N, as in nuclei, the explicit implementation
of projection techniques is tractable, though cumbersome.
For very large N they become intractable, but also unneces-

sary, since their corrections can be shown to vanish as N21/2.
However, even in nuclei the corrections to unprojected BCS
theory are small ~a few percent! in most cases, the only ex-
ception being very large couplings V>d . Thus, in most
cases fixed-N systems can perfectly adequately be described
by BCS’s grand-canonical wave function. Its N indefinite-
ness ~and the associated breaking of gauge symmetry! then
simply has the status of a clever calculational trick: it allows
the use of a wave function so simple that the pair-occupation
amplitudes v j can be found with a minimum of effort. The
trick’s justification is that the corrections dv j’s produced by
more careful approaches usually are small. ~The device of
using symmetry-breaking wave functions purely for the
sake of calculational convenience is widespread in nuclear
physics, and lucidly discussed in Ring and Schuck’s book22

in a chapter entitled ‘‘Restoration of Broken Symmetries.’’!
The above conclusions imply that the following strategy

should suffice for a qualitative description ~more is not at-
tempted here! of pairing correlations in isolated ultrasmall
grains: although strictly speaking a fixed-N technique would
be appropriate, we shall adopt BCS’s grand-canonical ap-
proach throughout, using u j ,v j as grand-canonical approxi-
mations to ū j , v̄ j . Quantitatively, this strategy is expected to
become unreliable in the limit of large level spacing d/D̃
.1 ~corresponding to ‘‘strong coupling’’ in nuclear applica-
tions!. However, the corrections due to a fixed-N calculation
~currently under investigation applying projection25 and ex-
act diagonalization27 methods!, which should become sig-
nificant in this regime, are not expected to be more severe
than, for example, corrections arising from a nonequidistant
level spectrum, which qualitatively are insignificant.13

III. GENERALIZED VARIATIONAL BCS APPROACH

Since in RBT’s experiments T550 mK!d ,D̃ , we set T

50. Our goal in this section is to calculate the discrete
eigenenergies of an isolated, nm-scale metallic grain with
pairing correlations, and understand their evolution in a mag-
netic field. To this end, we study the simplest conceivable
pairing model within a generalized variational BCS ap-
proach. The results will be used in the next section as input
into the calculation of the SET tunneling spectrum of such a
grain ~see Fig. 6 below!.

A. The model

The only symmetry expected to hold in realistic, irregu-
larly shaped ultrasmall grains at zero magnetic field is time-
reversal symmetry. We therefore adopt a single-particle basis
of pairs of time-reversed states u j6& , whose discrete ener-
gies « j are assumed to already incorporate the effects of
impurity scattering and the average of electron-electron in-
teractions, etc. As simplest conceivable model describing a
pairing interaction and a Zeeman coupling to a magnetic
field, we adopt the following ~reduced! BCS
Hamiltonian:12,15

Ĥ5 (
j ,s56

~« j2m1sh !c js
† c js2ld(

j , j8

c j1
† c j2

† c j82c j81 .

~6!
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Due to level repulsion the « j’s will be approximately uni-
formly spaced. For simplicity, we take a completely uniform
spectrum with level spacing d, « j5 jd1«0 . Fluctuations in
the level spacings have been studied with methods of random
matrix theory,13 with qualitatively similar results. For a sys-
tem with a total of N52m1p electrons, where the electron

number parity p is 0 for even N and 1 for odd N, we use the
label j50 for the first level whose occupation in the T50
Fermi sea is not 2 but p.

The pairing interaction is taken to include only states with
ud j u,vc . Experimental evidence for the sufficiency of ne-
glecting couplings between non-time-reversed pairs of states,
i.e., of using only a reduced BCS Hamiltonian, are given in
Appendix C. For convenience we wrote the pair-coupling
constant in Eq. ~1! as V5ld , where l is a dimensionless
parameter. The d→0 ‘‘bulk gap’’ of the model thus is D̃
5vc /sinh(1/l).

An applied magnetic field will completely penetrate an
ultrasmall grain, since its radius ~typically r.5 nm! is much
smaller than the penetration length of 50 nm for bulk Al. The
Zeeman term in Eq. ~6!, with 6h[6

1
2 mBgH , models the

fact that the measured tunnel spectra of RBT ~Refs. 7,9!
~shown in Fig. 6 in Sec. IV B! evolve approximately linearly
as a function of magnetic field, with g factors between 1.95
and 2 ~determined from the differences between measured
slopes of up- and down-moving lines!. Deviations from g

52 probably result from spin-orbit scattering, known to be
small but nonzero in thin Al films,21 but neglected below
~where g52 is used!. Furthermore, orbital diamagnetism is
also negligible, just as for thin films in a parallel magnetic
field21 but in marked contrast to bulk samples where it causes
the Meissner effect: the grains are so small that even a 7 T
field produces a flux through the grain of only about 5% of a
flux quantum f0 , which is too small to significantly affect
the orbital motion of the electrons between subsequent re-
flections off the grain boundary. Some larger grains do show
slight deviations from H-linearity,7 which probably reflect
the onset of orbital magnetism @which gives corrections16 to
the eigenenergies of the order of \vFr3(H/f0)2]; however,
these effects are much smaller than Zeeman energies in the
grains of present interest, and will be neglected here. Thus,
our model assumes that Pauli paramagnetism due to the Zee-
man energy completely dominates orbital diamagnetism,
similarly to the case of thin films in parallel magnetic
fields.21

B. The variational ansatz

The Zeeman term favors states with a nonzero total z

component of the total spin s5( js j
z ~henceforth simply

called ‘‘spin’’!, so that increasing h will eventually lead to a
series of ground state changes to states with successively
larger spins. Therefore, we are interested in general in cor-
related states with nonzero spin, and in particular in their
eigenenergies. We calculate these variationally, using the
following general Ansatz for a state us ,a& with a definite
total spin s ~introduced by Soloviev for application in
nuclei19!:

us ,a&5)
j51

2s

ca~ j !1

† )
i

8 ~u i
~s ,a!

1v i
~s ,a!c i1

† c i2
† !uVac& . ~7!

The nonzero spin is achieved by placing 2s unpaired spin-up
electrons in a set of 2s single particle states, say with labels
j5a(1),a(2), . . . ,a(2s) ~see Fig. 2!, while the remaining
single-particle pairs of states have BCS-like amplitudes to be
either filled (v i

(s ,a)) or empty (u i
(s ,a)), with (u i

(s ,a))2

1(v i
(s ,a))2

51. The prime over products ~and over sums be-
low! indicates exclusion of the singly occupied states
a(1),a(2), . . . ,a(2s) ~for which u (s ,a),v (s ,a) are not de-
fined!.

A short standard calculation reveals that the constructed
wave functions are orthogonal: ^s ,aus8,a8&5dss8

daa8
.

Therefore, the variational parameters v j
(s ,a) and u j

(s ,a) must
be found independently for each (s ,a) ~hence the super-
script!. This is done by minimizing the variational ‘‘eigenen-
ergies’’

Es ,a~h ,d ![^s ,auHus ,a&522sh1(
j51

2s

«a~ j !

12(
j

8 « j~v j
~s ,a!!2

2ldS (
j

8 u j
~s ,a!

v j
~s ,a!D 2

1ld(
j

8 ~v j
~s ,a!!4, ~8!

which we use to approximate the model’s exact eigenener-
gies Es ,a(h ,d). Note that singly occupied states are excluded
from all primed sums involving u j’s and v j’s. The last term,
proportional to v

4, is not extensive and hence neglected in
the bulk case where only effects proportional to the system
volume are of interest. Here we retain it, since in ultrasmall
systems it is non-negligible ~but not dominant either!.

Solving the energy-minimization conditions

]Es ,a /]v j
~s ,a!

50 ~9!

in standard BCS fashion yields

~v j
~s ,a!!2

5~12j j /@j j
2
1Ds ,a

2 #1/2!/2, ~10!

where the ‘‘pairing parameter’’ Ds ,a is determined by the
generalized ‘‘gap equation’’

Ds ,a5ld(
j

8 u j
~s ,a!

v j
~s ,a! or ~11!

FIG. 2. Two examples of states in the spin- 3
2 sector of Hilbert

space: ~a! the ground state u 3
2 & and ~b! the excited state u 3

2 ,2&. The
single-particle levels are drawn at h50, and we indicated schemati-
cally how states are paired according to (u i1v ic i1

† c i2
† ) in the BCS-

like Ansätze ~15! and ~17! for u 3
2 & and u 3

2 ,2&, with solid or dashed
ellipses connecting states that would be completely filled or empty
in the absence of pairing correlations.
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1

l
5d(

j

8
1

2Aj j
2
1Ds ,a

2
, ~12!

and j j[« j2m2ld(v j
(s ,a))2. Note that we retain the

ld(v j
(s ,a))2 shift in j j , usually neglected because it simply

renormalizes the bare energies, since for large d it somewhat
increases the effective level spacing near «F @and its neglect
turns out to produce a significant upward shift in the
Es ,a(h ,d)’s, which one is trying to minimize#. The chemical
potential m is fixed by requiring that

2m1p5^s ,auN̂us ,a&52s12(
j

8~v j
~s ,a!!2. ~13!

Generally Eqs. ~10!, ~12!, and ~13! have to be solved simul-
taneously numerically. In the limit d/D̃→0 ~investigated
analytically in Appendix A 1!, Eq. ~12! reduces to the stan-
dard bulk T50 gap equation.

In contrast to conventional BCS theory, the pairing pa-
rameter Ds ,a can in general not be interpreted as an energy
gap and is not an observable. It should be viewed simply as
a mathematical auxiliary quantity which was introduced to
conveniently solve Eq. ~9!. However, by parametrizing the
variational quantities v j

(s ,a) and u j
(s ,a) , Ds ,a does serve as a

measure of the pairing correlations present in a state us ,a& ,
since for vanishing Ds ,a the latter reduces to an uncorrelated
paramagnetic state with spin s, namely,

us ,a&0[)
j51

2s

ca~ j !1

† )
i,0

8c i1
† c i2

† u0&. ~14!

We shall denote the energy of this uncorrelated state by
E s ,a

0
50^s ,auHus ,a&0 , and define the ‘‘correlation energy’’

of us ,a& as the energy difference E s ,a
corr[Es ,a2E s ,a

0 .

C. Qualitative discussion

Before launching into numerical results, let us anticipate
by qualitative arguments what is to be expected.

First, the gap equation for Ds ,a(d) is h independent. The
reason is that only those j levels contribute in the gap equa-
tion that involve correlated pairs of states, each of which
have spin 0 and hence no Zeeman energy. Consequently, the
22sh-dependence of Es ,a in Eq. ~8! is simply that of the 2s

unpaired electrons.
Secondly, the discreteness of the sum in the gap equation

~12! will cause Ds ,a to decrease with increasing d. To see
this, inspect Fig. 1, in which the height of each vertical line
represents the value of u jv j for a time-reversed pair u j6&.
Figures 1~a!–1~c! illustrate that an increase in level spacing
implies a decrease in the number of pairs with significant
pair-mixing, i.e., those within D̃ of «F which have nonzero
u jv j . This number can roughly speaking be called the
‘‘number of Cooper pairs’’ of the system. Since for d@D̃ no

pairs lie in the correlated regime u« j2«Fu,D̃ where pair
mixing occurs, Ds ,a will be zero in this limit, so that in
general Ds ,a(d) will be a decreasing function of d, dropping
to zero at about d.D̃ .

Thirdly, the (s ,a)-dependent restriction on the primed
sum in the gap equation implies that Ds ,a(d) at fixed d will

decrease with increasing s: larger s means more unpaired
electrons, more terms missing from the primed sum, less
correlated pairs and hence smaller Ds ,a . The physics behind
this has been called the blocking effect19 in nuclear physics:
Singly occupied states cannot take part in the pair scattering
caused by the BCS-like interaction ~6! and hence decrease
the phase space for pair scattering, as explained in Sec. II A.
~Their absence in the primed sum simply reflects this fact.!
The blocking effect becomes stronger with increasing d,
since then the relative weight of each term missing in the
primed sum increases. It also is stronger the closer the
blocked state lies to «F , since the excluded u j

(s ,a)
v j

(s ,a) con-
tribution to the primed sum is largest near «F , as is evident
from Fig. 1. On the other hand, an unpaired electron will
have almost no blocking effect if u« j2«Fu@D̃ , since
u j

(s ,a)
v j

(s ,a) vanishes there anyway.
Finally, note that the (s ,a) dependence of Ds ,a for d

.D̃ illustrates why in this regime a conventional mean-field
treatment is no longer sufficient: the system cannot be char-
acterized by a single pairing parameter, since the amount of
pairing correlations vary from state to state, each of which is
characterized by its own pairing parameter.

D. General numerical solution

It is possible to solve the modified gap equation analyti-
cally in two limits, d!D̃ and d@Ds ~see Appendix A!, but
generally the gap equation and Eq. ~13! have to be solved
numerically. In doing so, some assumptions are necessary
about parameter values ~though using slightly different val-
ues would not change the results qualitatively!. We measure
all energies in units of the bulk gap D̃5vc sinh(1/l) of the
model. However, its experimental value differs from that of a
truly bulk system, since it is known from work with Al thin
films4,28 that the effective dimensionless pairing-interaction
strength l is larger in Al samples of reduced dimensionality
than in truly bulk three-dimensional systems. ~Though true
for Al, this is not a universal property of small samples,
though, for Nb, D̃ is larger in the bulk than in thin films.24!
Since thin films in a parallel magnetic field are analogous in
many ways to ultrasmall grains, we shall assume that the
effective coupling constant l is the same in both. Adopting,
therefore, the value D̃50.38 meV found for thin Al films in
Ref. 29, and taking the cutoff to be the Debye frequency
vc534 meV of Al, we use l5@sinh21(vc /D̃)#21

50.194 for
the dimensionless pairing-interaction strength. Furthermore,
we smeared the cutoff of the BCS interaction over two
single-electron levels, to ensure that discontinuities do not
occur in d-dependent quantities each time the energy
u« j5d j1«0u of some large-u j u level moves beyond the cut-
off vc as d is increased.

Solving Eqs. ~10!, ~12!, and ~13! is a straightforward nu-
merical exercise which we performed, for the sake of ‘‘nu-
merical consistency,’’ without further approximations.
~Since some minor approximations were made in Ref. 15,
e.g., dropping the ldv j

2 term in j j , and slightly different
parameter values were used, the numerical results there
sometimes differ slightly from the present ones; see, e.g.,
Fig. 3.! It should be understood, though, that only qualitative
significance can be attached to our numerical results, since
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our model is very crude: it neglects, for instance, fluctuations
in level spacing and in pair-coupling constants, and we do
not carry out a fixed-N projection, all of which presumably
would somewhat influence the results quantitatively.

1. Spin-s ground states

In a given spin-s sector of Hilbert space ~with p

52s mod 2), let s& be the variational state with the lowest
energy, i.e., the ‘‘variational spin-s ground state.’’ It is ob-
tained by placing the 2s unpaired electrons as close as pos-
sible to «F @Fig. 2~a!#, because this minimizes the kinetic
energy cost of having more spin ups than downs:

us&5 )
j52s1p/2

s211p/2

c j1
† )

i

8 ~u i
s
1v i

sc i1
† c i2

† !uVac&. ~15!

@The particular choice of a in the general Ansatz ~7! to which
us& corresponds is a(n)5n2@s#21 for n51•••2s , where
@s# is the largest integer <s .] The numerical results for the
corresponding pairing parameters Ds(d), shown in Fig. 3~a!
for some several small s, confirm the properties anticipated
in the previous subsection’s qualitative discussion.

First, each Ds decreases with d, vanishing at a critical
level spacing dc ,s beyond which no pair-mixing correlations
exist in this level of approximation. In Appendix A 2 it is
shown that near dc ,s , Ds(d) has the standard mean-field
form A12d/dc ,s; this was to be expected, since the varia-
tional approach to finding us& is equivalent to doing standard

mean-field theory within the spin-s sector of Hilbert space.
~Note that one should not attach too much significance to the
precise numerical values of the dc ,s reported in Fig. 3, since
they depend sensitively on model assumptions: for example,
the values for dc ,0 and dc ,1/2 differ somewhat from those
reported in Refs. 12 and 15, due to their use of a slightly
different l and minor numerical approximations not used
here, as mentioned above. Moreover, Smith and
Ambegaokar13 showed that the precise distribution of levels
used influences dc ,s significantly.!

Secondly, Ds decreases rapidly with increasing s at fixed
d ~and dc ,s,dc ,s8 if s.s8), illustrating the blocking effect.
This result, which is expected to be independent of model
details, is a generalization of the parity effect discussed by
von Delft et al.12 @They studied only ground state pairing
correlations and found that these are weaker in odd (s

51/2) grains than in even (s50) grains, Dodd5D1/2,Deven
5D0 .] The blocking effect is most dramatic in the regime
d/D̃P@0.77,2.36# in which D0Þ0 but DsÞ050. This is a
regime of ‘‘minimal superconductivity,’’15 in the sense that
all pairing correlations that still exist in the even ground state
~since D0Þ0) are completely destroyed by the addition of a
single electron or the flipping of a single spin ~since DsÞ0
50).

Figure 3~b! shows the eigenenergies Es ~solid lines! of us&
and the energies E s

0 ~dotted lines! of the corresponding un-
correlated paramagnetic states

us&05 )
j52s1p/2

s211p/2

c j1
† )

i,2s1p/2
c i1

† c i2
† uVac&. ~16!

The solid and dashed spin-s lines meet at the critical level
spacing dc ,s , above which no pairing correlations survive.

2. Spin-s excited states

Among all possible excited states with definite s, we con-
sider here only those created from us& by exiting one electron
from the topmost occupied level s211p/2 of s& to some
higher level j1s211p/2:

us , j&5c ~ j1s211p/2!1

† )
j̄52s1p/2

s221p/2

c
j̄1

†
~17!

3)
i

8 ~u i
s
1v i

sc i1
† c i2

† !uVac& . ~18!

@This reduces to us& if j50; the particular choice of a in
Ansatz ~7! to which us , j& corresponds is a(n)5n2@s#21
for n51 . . . 2s21 and a(2s)5@s#211 j .]

Interestingly, one finds that the larger j, the longer the
pairing correlations survive with increasing d. This is illus-
trated by the simple example s51/2: Fig. 4~a! shows that the
critical spacings dc ,1/2,j @at which the pairing parameters
D1/2,j(d) vanish# increase with j, approaching the value dc ,0
of the spin-0 case as j→` . This result is reflected in the
excitation energies of Fig. 4~b!: the excited states of the
spin-1/2 sector have nonzero correlation energies ~difference
between solid and dashed lines! at d values for which the
spin-1/2 ground state correlation energy of Fig. 3~b! is al-
ready zero. The intuitive reason why more highly excited

FIG. 3. Properties of spin-s ground states us& @compare Eq.
~15!#: ~a! The pairing parameters Ds(d)/D̃ for some spin-s ground
states us&, as a function of d/D̃ . The critical level spacings dc ,s at
which Ds(dc ,s)50 are found to be 2.36,0.77,0.44,0.31, . . . , for s

50,1/2,1,3/2, . . . , respectively. ~b! The energy densities (Es

2E p/2
0 )d/D̃2 ~solid lines!, plotted as functions of d/D̃ for h50, of

some pair-correlated spin-s ground states us& relative to the uncor-
related spin-p/2 Fermi sea up/2&0 , and for comparision the relative
energy densities (E s

0
2E p/2

0 )d/D̃2 ~dashed lines! of the correspond-
ing uncorrelated paramagnetic states us&0 ~obtained from us& by
setting Ds50). We call the plotted quantities energy densities since
the normalization factor d/D̃2 contains d;Vol21. The solid and
dashed spin-s lines meet at the critical level spacing dc ,s , above
which no pairing correlations survive „so that the relative energy
densities equal @s2

2p/41(s2p/2)l#d2/D̃2 there….
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states have more pairing correlations than the corresponding
spin-1/2 ground state u1/2& is of course quite simple: The
larger j, i.e., the further the unpaired electron sits from the
Fermi surface where pairing correlations are strongest, the
less it disrupts pair mixing ~since u jv j becomes very small

for large j , see Fig. 1!. In fact, for very large j, the state u 1
2 , j&

will have just about the same amount of pairing correlations
as the even ground state u0& (D1/2,j.D0), since the unpaired
electron sits so far from «F that the pairing correlations are
effectively identical to those of u0& .

Similar effects are seen for excited states in other spin
sectors sÞ 1

2 . The higher the excitation, the larger the pairing
parameter Ds ,a . Nevertheless the energy of the excited states
is always higher than that of the corresponding spin-s ground
state, since the kinetic-energy cost of having an unpaired
electron far from «F can be shown to always outweigh the
interaction-energy gain due to having less blocking and
hence a larger Ds ,a .

E. Magnetic field behavior

In a magnetic field, the Zeeman energy favors states with
nonzero spin. However, since such states have smaller cor-
relation energy due to the blocking effect a competition
arises between Zeeman energy and correlation energy. The
manifestations of the blocking effect can thus be probed by
turning on a magnetic field; if it becomes large enough to
enforce a large spin, excessive blocking will destroy all pair-
ing correlations.

The situation is analogous to ultrathin films in a parallel
magnetic field,21 where orbital diamagnetism is negligible
for geometrical reasons and superconductivity is destroyed at

sufficiently large h by Pauli paramagnetism. This occurs via
a first order transition to a paramagnetic state, as predicted
by Clogston and Chandrasekhar ~CC! ~Refs. 30,31! by the
following argument ~for bulk systems!: A pure Pauli para-
magnet has ground state energy 2h2N(«F) and spin s

5hN(«F) @since it chooses its spin such that the sum of the
kinetic and Zeeman energies at spin s, s2N(«F)22hs , is
minimized#. When this energy drops below the bulk correla-
tion energy 2

1
2 D̃2N(«F) of the superconducting ground

state, which happens at the critical field hCC5D̃/A2, a tran-
sition will occur from the superconducting to the paramag-
netic ground state. The transition is first order, since the
change in spin, from 0 to sCC5hCCN(«F)5D̃/(dA2), is
macroscopically large @N(«F)51/d.Vol# . In tunneling ex-
periments into ultrathin ~5 nm! Al films (D̃50.38 meV and
HCC54.7 T! this transition has been observed29 as a jump in
the tunneling threshold ~from D̃2hCC to zero! at hCC .

In isolated ultrasmall grains, the above picture of the tran-
sition needs to be rethought in two respects due to the dis-
creteness of the electronic spectrum: First, the spin must be
treated as a discrete ~instead of continuous! variable, whose
changes with increasing h can only take on ~parity conserv-
ing! integer values. Secondly, one needs to consider more
carefully the possibility of h-induced transitions to nonzero
spin states that are still pair correlated ~instead of being
purely paramagnetic!, such as the variational states us ,a& dis-
cussed above. ~In the bulk case, it is obvious that such states
play no role: the lowest pair-correlated state with nonzero
spin obtainable from the ground state by spin flips is a two-
quasiparticle state, costing energy 2D̃22h; when h is in-
creased from 0, the paramagnetic transition at hCC5D̃/A2
thus occurs before a transition to this state, which would
require h5D̃ , can occur.!

Within our variational approach, the effect of increasing h

from 0 can be analyzed as follows: At given d and h, the
grain’s ground state is the lowest-energy state among all pos-
sible spin-s ground states us& having the correct parity
2smod 25p . Since Es(h ,d)5Es(0,d)22hs , level crossings
occur with increasing h, with Es8

dropping below Es at the
level crossing field

hs ,s8~d !5

Es8
~0,d !2Es~0,d !

2~s82s !
. ~19!

Therefore, as h is slowly turned on from zero with initial
ground state us05p/2& , a cascade of successive ground-state
changes ~GSC’s! to new ground states us1& ,us2&, . . . , will
occur at the fields hs0 ,s1

,hs1 ,s2
, . . . . We denote this cascade

by (s0 ,s1);(s1 ,s2); . . . , and for each of its ground state
changes the corresponding level-crossing fields hs ,s8(d) is
shown in Fig. 5. Generalizing CC’s critical field to nonzero
d, we denote the ~parity-dependent! field at which the first

transition (s0 ,s1) occurs by hCC(d ,p)[hs0 ,s1
(d), which

simply is the lower envelope of the level-crossing fields
hs0 ,s1

in Fig. 5. In the limit d→0 we find numerically that it
correctly reduces to the Clogston-Chandrasekhar value
hCC(0,p)5D̃/A2.

FIG. 4. Properties of excited spin- 1
2 states u 1

2 , j& @compare Eq.
~17!#: ~a! The pairing parameter D1/2,j for some spin- 1

2 states

u 1
2 , j& ( j50, . . . ,4), together with D0 of the spin-0 ground state

u0& ~the outermost curve!. The larger j, the closer D1/2,j approaches
the spin-0 value D0 . ~b! The relative energy densities (E1/2,j

2E 1/2,0
0 )d/D̃2 ~solid lines! of u 1

2 , j& relative to u 1
2 ,0&05u 1

2 &0 , and for
comparison the relative energy densities (E 1/2,j

0
2E 1/2,0

0 )d/D̃2

~dashed lines! of the corresponding uncorrelated state u 1
2 , j&0 . For

excited states the solid and dashed lines meet at a larger d than for
the ground state, i.e., in excited states pairing correlations survive
down to smaller grain sizes than in the corresponding ground state.
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In general, the order in which the GSC’s occur with in-
creasing h depends sensitively on d and an infinite number of
distinct regimes ~cascades! I,II,III, . . . , can be distinguished:
Starting at large d we find the typical normal behavior
(0,1);(1,2);(2,3); . . . , for even grains and

( 1
2 , 3

2 );( 3
2 , 5

2 ); . . . , for odd grains, with h0,1, ~or .) h1/2,3/2

in regimes I ~or II!. In regimes III and IV of somewhat
smaller d, the order of GSC’s is (0,2);(2,3); . . . , and

( 1
2 , 3

2 );( 3
2 , 5

2 ); . . . , etc., i.e., the spin s1 attained after the first
GSC (s0 ,s1) has increased to 2 in the even case. This illus-
trates a general trend: the spin s1(d) after the first transition
increases with decreasing d and becomes macroscopically
large in the d→0 limit, where s15hCC /d5D̃/(d&), as ex-
plained in recounting CC’s argument above.

Furthermore, it turns out that Ds1
(d)50 for all d, imply-

ing that after the first GSC the new ground state us1& is
always ~not only in CC’s bulk limit! an uncorrelated, purely
paramagnetic state. In this regard, CC’s picture of the tran-
sition remains valid throughout as d is increased: at
hCC(d ,p), a transition occurs from the superconducting
ground state to a paramagnetic, uncorrelated state us1&0 , the
transition being first-order in the sense that Ds1

(d)50; how-
ever, the first-order transition is ‘‘softened’’ with increasing
d, in the sense that the size of the spin change s12s0 de-
creases from being macroscopically large in the bulk to be-
ing equal 1 at d@D̃ ~regimes I and II!.

F. Deficiencies of the variational ansatz

Though the variational method we used to calculate the
systems ‘‘eigenenergies’’ is expected to yield qualitatively
correct results, it does have some deficiencies. First, a varia-
tional approach by construction only gives an upper bound

on the exact eigenenergies Es ,a . The variational energies
Es ,a could be lowered further by choosing better trial wave
functions that sample larger parts of a given spin-s Hilbert
space, i.e., by including ‘‘fluctuations’’ about the chosen
states.

Secondly, the abrupt vanishing of the pairing parameters
Ds ,a(d).A12d/dc ,s at a critical level spacing ds ,a @see Ap-
pendix and Fig. 3~a!# is unphysical: in a finite system, any
nonzero pair-interaction constant will always induce a non-
zero amount of pairing correlations, i.e., the canonical D̄s8(d)
of Eq. ~4! will always be nonzero, though it could become
arbitrarily small for sufficiently large d. ~This statement is
analogous to stating that ‘‘in a finite system no abrupt phase
transition between a zero and nonzero order parameter oc-
curs.’’!. The abrupt, mean-field-like vanishing of Ds ,a(d) is
of course an artifact, that occurs since the grand-canonical
variational Ansatz is equivalent ~at least for the spin-s ground
states us&) to doing mean-field theory in a fixed-s Hilbert
space.

Thirdly, the variational states of course are not N̂ eigen-
states ~though they do have definite parity!, and Eq. ~13!
only fixes the mean electron number. Our reasons for never-
theless adopting them to describe an isolated grain were
given in Sec. II C: a large body of experience in nuclear
physics showed that fixed-N projections generally produce
only minor corrections to the grand-canonical BCS results.
Nonetheless, note that we expect a fixed-N projection ~cur-
rently under investigation25! to somewhat ameliorate the first
two of the abovementioned deficiencies of the variational
approach: projection after variation of us& to fixed N will
lower the energy Es a bit, and presumably projection before
variation will in addition result in a canonical pairing param-
eter D̄s(d) that decays smoothly with increasing d from finite
to arbitrarily small but nonzero values. Note, though, that
this is not expected to change the eigenenergies very much,
since the correlation energies rapidly approach zero anyway
when the correlations become weak. In other words, we ex-
pect the variational scheme for calculating eigenenergies to
break down only when Ds becomes so small that it has no
experimental relevance any more ~to check this in detail,
strictly canonical calculations are needed25,27!.

IV. OBSERVABLE QUANTITIES

In this section, we consider the grain coupled to leads as
in RBT’s SET experiments. After explaining what kind of
information can and can not be extracted from their data, we
turn to the calculation of observable quantities. ~a! We cal-
culate theoretical tunneling spectra and compare these to
RBT’s measurements and ~b! address the question of the

observability of various parity effects, proposing to search

for one involving the pair-breaking energy.

A. Experimental details

In RBT’s experiments,6,7,9 an ultrasmall grain was used as
central island in a SET: it was connected via tunnel barriers
to external leads and capacitively coupled to a gate, and its
electronic spectrum determined by measuring the tunnel cur-
rent through the grain as a function of transport voltage (V),

FIG. 5. The level-crossing fields hs ,s8(d)/D̃ @see Eq. ~19!# for
the cascade of ground state changes ~GSCs! (s0 ,s1);(s1 ,s2); . . . ,
that occurs as h increases from 0 at given d. Some lines are labeled
by the associated GSC (s ,s8) ~where Es8

drops below Es as h in-
creases past h s ,s8). ~Level crossing fields not associated with a GSC
are not shown.! The order in which GSCs can occur within a cas-
cade ~i.e., the order of hs ,s8 lines encountered when moving verti-
cally upward in the figure! depends sensitively on d, and an infinite
number of distinct regimes ~cascades! I,II,III, . . . , can be distin-
guished. The lower curves show the first jump in the lowest line of
a tunneling spectrum that occurs at the level-crossing field
hCC(p ,d)5hs0 ,s1

. The size of this jump uDEs1 , f 8
2DEs0 , f u differs

for e→o ~solid line! and o→e ~dashed line! tunneling spectra but
in both cases approaches the CC value 121/A250.29 as d→0.
The nonmonotonic behavior is due to the discreteness of the level
spacing.
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gate voltage (Vg) and magnetic field (H5h/mB , with mB

50.0571 meV/T! at a fixed temperature of 50 mK.
The particular grain @Ref. 9, Figs. 1~b!,2,3# with which we

shall compare our theory had the following parameters: Its
radius was estimated as r.4.5 nm by assuming the grain to
be hemispherical, implying a volume .(5.7 nm)3 and a to-
tal number of conduction electrons N of about 33104. The
crude order-of-magnitude free-electron estimate d

52p2\2/(mkFVol) for the mean level spacing near «F

yields d.0.45 meV. The SET had lead-to-grain capacitances
C153.5 aF, C259.4 aF, gate-to-grain capacitance Cg

50.09 aF, and charging energy EC5e2/2C total546 meV.
The tunnel current is on the order of 10210 A, implying an
average time of 231029 sec between subsequent tunneling
processes.

Since the charging energy EC was very much larger than
all other energy scales, such as the bulk gap (D̃.0.38 meV!,
typical values of the transport voltage (V&1 mV! and the
temperature, fluctuations in electron number on the grain are
strongly suppressed, so that coherent superpositions between
states with different N need not be considered. The energy-
balance condition that determines through which eigenstates
of the grain electrons can tunnel for given values of transport
and gate voltage thus involve differences between the
eigenenergies of a grain with fixed particle number N or N

61,

DE i f[~E f
N

1EC
N!2~E i

N61
1EC

N61!, ~20!

corresponding to the energy cost needed for some rate-
limiting electron tunneling process ui&N61→u f &N off or onto
the grain. Here u f &N denotes a discrete eigenstate of the
N-electron grain with eigenenergy E f

N
1EC

N . Following the
‘‘orthodox model’’ of SET charging, we take EC

N , the grain’s
electrostatic energy ~relative to a neutral grain with N0 elec-
trons! as EC

N
5EC(N2N02Qg /e)2, where Qg5CgVg

1const is the gate charge, and assume the Coulomb-
interaction to be screened sufficiently well that its sole effect
is to shift all fixed-N eigenstates by the same constant
amount EC

N . ~The latter assumption is somewhat precarious:
it becomes worse with decreasing grain size, and was shown
to break down in grains half the present size.10!

RBT were able to extract the energy differences DE i f

from their data: the differential conductance dI/dV as func-
tion of V at fixed Vg has a peak whenever eV times a known
capacitance ratio is equal to one of the DE i f’s, at which point
another channel for carrying tunneling current through the
grain opens up ~the inclusion of the capacitance ratio takes
into account that the voltage drop across each of the two
tunnel junctions can be different if their capacitances are not
identical9!. Plotting the position of each conductance peak as
function of h gives the so-called experimental tunneling
spectrum shown in Fig. 6, in which each line reflects the H

dependence of one of the energy differences DE(h).
It is important to note that the experimental threshold en-

ergy at h50 for the lowest-energy tunneling process (y in-
tercept of the lowest line, the so-called ‘‘tunneling thresh-
old’’! yields no significant information, since it depends on
the grain’s change in overall charging energy due to tunnel-
ing,

dEC5EC
N

2EC
N61

5ECFQg /e2S N2N06

1

2 D G , ~21!

which depends ~via Qg) in an imprecisely known way on the
adjustable gate voltage Vg . This Vg dependence can usually
~e.g., in SET’s with much smaller charging energies than
here! be quantified precisely by studying the Coulomb oscil-
lations that occur as function of Vg at fixed V. Unfortunately,
in the present case a complication arises24 due to the small-
ness of the gate capacitance: to sweep Qg through one period
of 2e , the gate voltage Vg must be swept through a range so
large (2e/Cg.3.5 V! that during the sweep, RBT routinely
observed small ‘‘rigid’’ shifts of the entire tunneling spec-
trum at random values of Vg . They presumably are due to
single-electron changes in the charge contained in other
metal grains in the neighborhood of the grain of interest;
these changes produce sudden shifts in the electrostatic po-
tential of the grain, and thus spoil the exact 2e periodicity
that would otherwise have been expected for the spectra.

In contrast to the threshold energy, however, the separa-
tions between lines,

DE i f 8
2DE i f5E

f 8

N
2E f

N , ~22!

are independent of gate voltage and hence known absolutely;
they simply correspond to the differences between eigenen-

FIG. 6. Experimental tunneling spectra measured by RBT ~Fig.
3 of Ref. 9!. The distances between lines give the fixed-N excitation
spectra of ~a! an even and ~b! an odd grain, as explained in Sec.
IV A. The vertical dashed lines indicate the first four level-crossing
fields Hs ,s8 ~assigned by comparison with Fig. 7, see Sec. IV B!,
namely H0,154T , H1/2,3/254.25T , H1,255.25T , and H3/2,5/2

56.5T with uncertainty 60.13T ~half the H resolution of 0.25T!.
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ergies of a fixed-N grain, i.e., give its fixed-N excitation
spectrum, and these are the quantities that we shall focus on
calculating below.

The most notable feature of RBT’s measured tunneling
spectra is the presence ~absence! of a clear spectroscopic gap
2Ve.d between the lowest two lines of the odd-to-even
~even-to-odd! measured spectra in Figs. 6~a! and 6~b!. This
reveals the presence of pairing correlations: in even grains,
all excited states involve at least two BCS quasiparticles and
hence lie significantly above the ground state, whereas odd
grains always have at least one quasiparticle and excitations
need not overcome an extra gap.

Since the DE i f’s in Eq. ~20! are constructed from fixed-N
and fixed-N61 eigenenergies, we shall approximate these
using the variational energies Esa discussed in previous sec-
tions for a completely isolated grain. ~We thereby make the
implicit assumption that the grain’s coupling to the leads is
sufficiently weak that this does not affect its eigenenergies,
i.e., that the leads act as ‘‘ideal’’ probes of the grain.! The
Esa will be used as a starting point to discuss various observ-
able quantities; in particular, we shall make contact with
RBT’s experimental results by constructing the theoretical
tunnel spectrum ~as function of h and d) predicted by our
model.

B. The tunneling spectrum in a magnetic field

The kind of tunneling spectrum that results depends in a
distinct way on the specific choice of level spacing d and
final-state parity p ~i.e., the parity of the grain after the rate-
limiting tunneling process has occurred!. To calculate the
spectrum for given d and p, we proceed as follows below: we
first analyze at each magnetic field h which tunneling pro-
cesses ui&N61→u f &N are possible, then calculate the corre-
sponding energy costs DE i f(h) of Eq. ~20! and plot
DE i f(h)2DEmin(0) as functions of h for various combina-
tions of i , f , each of which gives a line in the spectrum. We
subtract DEmin(0), the h50 threshold energy cost for the
lowest-lying transition, since in experiment it depends on Vg

and hence yields no significant information, as explained
above. Figure 7 shows four typical examples of such theo-
retical tunneling spectra, with some lines labeled by the cor-
responding ui&→u f & transition.

When taking the data for Fig. 6, RBT took care to adjust
the gate voltage Vg such as to minimize nonequilibrium ef-
fects, which we shall therefore neglect. For given h, we thus
consider only those tunneling processes for which the initial
state ui& corresponds to the grain’s ground state us i& at that h

~and d ,p), whose spin s i can be inferred from Fig. 5. Since
the grain’s large charging energy ensures that only one elec-
tron can tunnel at a time, the set $u f &% of possible final states
satisfies the ‘‘spin selection rule’’ us f2s iu5

1
2 and includes,

besides the spin-s f ground state us f&, also excited spin-s f

states.
Whenever h passes through one of the level-crossing

fields hs i ,s i8
of Eq. ~19!, the grain experiences a ground state

change (s i ,s i8
). After this GSC, us i8& is the new initial state

for a new set of allowed tunneling transitions us i8&→$us f 8&%
~satisfying us f 8

2s i8
u51/2). Since this new set in general dif-

fers from the previous set of transitions us i&→$u f &% allowed
before the GSC, at hs i ,s i8

one set of lines in the tunneling

spectrum ends and another begins. A line from the former
connects continuously to one from the latter only if its final
state u f & can be reached from both us i& and us i8& @i.e., if s f

2s i52(s f2s i8
)]; in this case, the two lines us i&→u f & and

us i8&→u f & join at hs i ,s
i8

via a kink, since DE i f(h) and

DE i f 8
(h) have slopes of opposite sign. However, for most

lines this is not the case ~since usually us f2s i8
uÞ1/2), so

that at hs i ,s
i8

the line us i&→u f & simply ends while new lines

us i8&→u f 8& begin. This results in discontinuities
~or ‘‘jumps’’! in the spectrum at hs i ,s

i8
of size (DE i8 f 8

2DE i f)(hs i ,s
i8
), unless by chance some other final state u f 8&

happens to exist for which this difference equals zero.
Since the order in which the GSC’s (s i ,s i8

) occur as
functions of increasing h depend on d and p, as indicated by
the distinct regimes I,II,III, . . . , in Fig. 5, one finds a distinct
kind of tunneling spectrum for each regime, differing from
the others in the positions of its jumps and kinks. In regime
I, where the order of occurrence of GSC’s with increasing h

is (0,1);( 1
2 , 3

2 );(1,2);( 3
2 , 5

2 ); . . . , there are no discontinuities
in the evolution of the lowest line @see Fig. 7~a!#. For ex-
ample, for the e→o spectrum, the lowest u0&→u1/2& line
changes continuously to u1&→u1/2& at h0,1 , since us f2s i8u
51/2. However, in all other regimes the first change in
ground state spin ~at h0,s1

from 0 to s1) is .1, implying a
jump ~though possibly small! in all e→o lines, as illustrated
by Fig. 7~b!.

The jump’s magnitude for the tunneling thresholds, i.e.,
the lowest e→o and o→e lines, is shown as function of d in
the lower part of Fig. 5. It starts at d50 from the CC value
D̃(121/A2) measured for thin Al films,21 and with increas-
ing d decreases to 0 ~nonmonotonically, due to the discrete
spectrum!. This decrease of the size of the jump in the tun-

FIG. 7. The theoretical odd-to-even and even-to-odd tunneling
spectra @DE i f2DEmin(0)#/D̃ predicted for an ultrasmall supercon-
ducting grain as a function of magnetic field h, for two different
level spacings: ~a! d50.67D̃ and ~b! d50.34D̃ ~corresponding to
regimes I and III of Fig. 5, respectively!. Some lines are labeled by
the corresponding s i→s i8 tunneling transition. Not all possible
higher lines ~corresponding to excited final states us , j&) are shown.
Vertical dashed lines indicate those level-crossing fields hs ,s8 @see
Eq. ~19!# at which kinks or jumps occur, with h0,1,h1/2,3/2,h1,2

,h3/2,5/2 in ~a! and h1/2,3/2,h0,2,h2,3 in ~b!.
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neling threshold reflects the fact, discussed in Sec. III E, that
the change in spin at the first ground state change (s0 ,s1)
decreases with increasing d ~as s12s0;hCC /d), and signals
the softening of the first-order superconducting-to-
paramagnetic transition.

The fact that the measured tunneling thresholds in Fig. 6
show no jumps at all ~which might at first seem surprising
when contrasted to the threshold jumps seen at hCC in thin
films in a parallel field29!, can therefore naturally be
explained15 by assuming the grain to lie in the ‘‘minimal
superconductivity’’ regime I of Fig. 5 ~where the jump size
predicted in Fig. 5 is zero!. Indeed, the overall evolution
~i.e., order and position of kinks, etc.! of the lowest lines of
Fig. 6 qualitatively agrees with those of a regime I tunneling
spectrum, Fig. 7~a!. This allows us to deduce the following
values for the level-crossing fields Hs i ,s

i8
~indicated by ver-

tical dashed lines in Figs. 6 and 7!: H0,154T , H1/2,3/2

54.25T , H1,255.25T , and H3/2,5/256.5T . As correspond-
ing uncertainties we take DHs i ,s

i8
50.13T , which is half the

H resolution of 0.25T used in experiment.
By combining the above Hs i ,s

i8
values with Fig. 5, some

of the grain’s less-well-known parameters can be determined
somewhat more precisely: First, the grain’s ‘‘bulk HCC’’
field can be estimated by noting from Fig. 5 that h0,1 /hCC

.0.95, so that HCC5H0,1 /0.95.4.2T . This is in rough
agreement with the value HCC.4.7T found experimentally21

in thin films in a parallel field, confirming our expectation
that these correspond to the ‘‘bulk limit’’ of ultrasmall grains
as far as paramagnetism is concerned. ~Recall that our nu-
merical choice of l50.194 in Sec. III D was based on this
correspondence.! Secondly, the grain’s corresponding bulk
gap is D̃5A2mBHCC.0.34 meV. Thirdly, to estimate the
level spacing d, note that since H1/2,3/2 /H0,1.1.06, this grain
lies just to the right of the boundary between regions II and
I in Fig. 5 where d/D̃.0.63, i.e., d.0.21 meV. ~The crude
volume-based value d.0.45 meV of Sec. IV A thus seems
to have been an overestimate.! It would be useful if the
above determination of d could be checked via an indepen-
dent accurate experimental determination of d directly from
the spacing of lines in the tunnel spectrum; unfortunately,
this is not possible: the measured levels are shifted together
by interactions, implying that their spacing does not reflect
the mean independent-electron level spacing d.

The higher lines plotted in Fig. 7 correspond to states
where the electron tunnels into an excited spin-s f state. For
simplicity we considered only excited states us f , j& involving
a single electron-hole excitation relative to us f& , such as the
example discussed in Sec. III D 2 or as sketched in Fig. 2~b!,
though in general others are expected to occur too. The
jumps in these lines @e.g., in Fig. 7~a! at h1,2] occur when-
ever the two final excited states us f , j f& and us f 8

, j f 8& before
and after the GSC at hs i ,s

i8
have different correlation ener-

gies. ~Recall that the correlation energy of an excited state
us f ,af& can be nonzero even if that of the corresponding
ground state us f& is zero, since the former’s unpaired elec-
trons are further away from «F , so that Ds f ,af

.Ds f
, see Sec.

III D 2.! Experimentally, these jumps have not been ob-
served. This may be because up-moving resonances lose am-

plitude and are difficult to follow9 with increasing h, or be-
cause the widths of the excited resonances (.0.13D̃) limit
energy resolution.10

For somewhat larger grains, the present theory predicts
jumps even in the lowest line. It remains to be investigated,
though, whether orbital effects, which rapidly increase with
the grain size, would not smooth out such jumps.

Finally, note that more than qualitative agreement be-
tween theory and experiment can not be expected: in addi-
tion to the caveats mentioned in the second paragraph of Sec.
III D, we furthermore neglected nonequilibrium effects in the
tunneling process and assumed equal tunneling matrix ele-
ments for all processes. In reality, though, random variations
of tunneling matrix elements could suppress some tunneling
processes which would otherwise be expected theoretically.

C. Parity effects

As mentioned in the Introduction, several authors12–15

have discussed the occurrence of a parity effect in ultrasmall
grains: ‘‘superconductivity’’ ~more precisely, ground state
pairing correlations! disappears sooner with decreasing grain
size in an odd than an even grain (D1/2,D0 , and dc ,1/2
,dc ,0). This is a consequence of the blocking effect, which
is always stronger in the presence of an odd, unpaired elec-
tron than without it. This section is devoted to discussing to
what extent this and related parity effects are measurable.
Since pairing parameters such as D1/2 ,D0 are not observable
quantities, measurable consequences of parity effects must
be sought in differences between eigenenergies, which in
principle are measurable.

1. In ultrasmall grains, E1/22E0 is currently not measurable

One might expect that the odd-even ground state energy
difference EG

o/e[(E1/22E0) should reveal traces of the par-
ity effect. Regrettably, in ultrasmall grains this quantity not

directly measurable in the current generation of experiments

by RBT, for the following reasons.
If the transport voltage V is varied at fixed gate voltage

Vg , the energy cost of changing the grain’s electron number
by 1 ~the h50 threshold tunneling energy! depends @see Eq.
~20!# not only on EG

o/e but also on the change dEC in the
grain’s charging energy due to tunneling. However, as ex-
plained in Sec. IV A, dEC depends ~in an imprecisely known
way! on the actual value of Vg . Therefore only the grain’s
fixed-N excitation spectrum ~distance between lines of tun-
neling spectrum! can be measured accurately in this way, but
not EG

o/e .
If the gate voltage Vg is varied at a fixed transport voltage

in the linear response regime V.0, i.e., Coulomb oscilla-
tions are studied, one expects to find a 2e periodicity in the
so-called gate charge Qg5CgVg1const, with EG

o/e determin-
ing the amount of deviation from the e periodicity ~see Ap-
pendix B for details!. Analyzing these deviations thus in
principle allows one to experimentally determine EG

o/e , as
has been demonstrated convincingly in mm-scale
devices.32,33

However, the parity effects discussed in the present paper
are only expected to occur in devices very much smaller than
those of Refs. 32 and 33, namely, in nm-scale devices such
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as those of RBT. Regrettably, for these it is at present not
possible to study ~as suggested in Ref. 14! e- or
2e-dependent features with sufficient accuracy to carry
through the procedure described above: due to the extremely
small size of nm-scale grains, their charging energy is so
large that the predicted pairing-induced deviation from e pe-
riodicity is a very small effect ~a fractional change of order
EG

o/e/EC,0.01). Moreover, even if observable in principle,
in present experiments this small effect would be obscured
by deviations from periodicity of a different origin: as ex-
plained in Sec. IV A, RBT routinely observed sudden
Vg-dependent shifts in background charge24 near the transis-
tor when they sweep Vg through the large range necessary to
cover more than one period, and according to RBT,24 the
resulting random deviations from periodicity make it impos-
sible to analyze e vs 2e effects with the accuracy required to
extract EG

o/e-induced effects. Thus we conclude that at
present EG

o/e is not directly measurable.

2. Parity effect in pair-breaking energies

Since the quantities that RBT can measure accurately are
fixed-N excitation spectra, let us investigate what parity ef-
fects can be extracted from these. Since any parity effect is a
consequence of the blocking effect, we begin by discussing
the latter’s most obvious manifestation: it is simply the fact
that breaking a pair costs correlation energy, since the result-
ing two unpaired electrons disrupt pairing correlations. This,
of course, is already incorporated in mean-field BCS theory
via the excitation energy of at least 2D̃ involved in creating
two quasiparticles. It directly manifests itself in the qualita-
tive difference between RBT’s even and an odd excitation
spectra ~explained in Sec. IV A!, namely, that the former
shows a large spectral gap 2Ve.d between its lowest two
lines that is absent for the latter ~Fig. 6!.

The parity effect discussed by von Delft et al.12 and Smith
and Ambegaokar13 referred to a more subtle consequence of
the blocking effect that goes beyond conventional BCS
theory, namely, that the pairing parameters Ds have a signifi-
cant s dependence once d/D̃ becomes sufficiently large. Al-
though these authors only considered the ground state parity
effect D1/2,D0 , the same blocking physics will of course
also be manifest in generalizations to s.

1
2 . In fact, the prob-

lems with measuring the odd-even ground state energy dif-
ference EG

o/e discussed above leave us no choice but to turn
to s.

1
2 cases when looking for a measurable parity effect.

Specifically, we shall now show that a parity effect resulting
from D3/2,D1 should in principle be observable in present
experiments.

To this end, let us compare the h50 pair-breaking ener-

gies in an even and an odd grain, defined as the energy per
electron needed to break a single pair at h50 by flipping a
single spin: for an even grain, it is Ve[

1
2 (E12E0)h50 , i.e.,

simply half the spectral gap discussed above; for an odd
grain, it is Vo[ 1

2 (E3/22E1/2)h50 .
Within mean-field BCS theory, one would evaluate these

using the same pairing parameter D̃ for all states and @(« j

2mp)2
1D̃2#1/2 for the quasiparticle excitation energies as-

sociated with having the single-particle state u j ,6& definitely
occupied or empty, with parity-dependent chemical

potential12 mp5«02pd/2. This would give Ve
BCS

5@(d/2)2

1D̃2#1/2 and Vo
BCS

5@d2
1D̃2#1/2, implying that the differ-

ence Vo
BCS

2Ve
BCS is strictly .0 ~Fig. 8, dotted lines!. For

d/D̃→` this difference reduces to d, which is simply the
difference in the kinetic energy cost required to flip a single

spin when turning u 1
2 &0 into u 3

2 &0 ~namely, 2d), relative to
that when turning u0&0 into u1&0 ~namely, d).

In contrast, using the present theory to go beyond mean-
field BCS theory, one finds numerically that Vo.Ve only
for sufficiently large level spacings (d/D̃.0.6, see Fig. 8,
dotted lines!; for smaller d one has Vo,Ve , implying that it
costs less energy to break a pair in an odd grain than an even
grain, even though the kinetic-energy cost is larger (2d vs
d). This happens since D3/2,D1 , which reflects a parity
effect caused by pair blocking by the extra unpaired electron
in u3/2& relative to u1& . The theoretical result that Vo /Ve

,1 for sufficiently small d/D̃ can be viewed as a ‘‘pair-

breaking energy parity effect’’ which is analogous to the

‘‘ground state parity effect’’ D1/2,D0 , but which, in con-

trast to the latter, should be observable in the experimentally

available fixed-N eigenspectra.

What are Ve and Vo in RBT’s experiments? Unfortu-
nately, the present data do not give an unambiguous answer:
on the one hand, the h50 data allow the determination of
Ve50.25 meV @half the h50 energy difference between the
two lowest lines of Fig. 6~a!#, but not of Vo , since breaking
a pair is not the lowest-lying excitation of an odd system at
h50 @which is why Fig. 6~b! has no spectral gap#. On the
other hand, both Ve and Vo can be found from hÞ0 data,
since by Eq. ~19! they are equal to the level-crossing fields
h0,15Ve and h1/2,3/25Vo , whose values were deduced from
the experimental tunneling spectra in Sec. IV B. This yields
Ve50.2360.01 meV and Vo50.2460.01 meV, i.e., a Ve

value somewhat smaller than the above-mentioned 0.25 meV
determined at h50. The reasons for this difference are pre-
sumably ~i! that the actual g factors are not precisely 2 ~as
assumed!, and ~ii! that the experimental spectral lines are not
perfectly linear in h ~having a small h2 contribution due to
orbital diamagnetism, neglected in our model!.

Nevertheless, if we assume that these two complications
will not significantly affect the ratio h1/2,3/2 /h0,1 ~since h1/2,3/2
and h0,1 presumably are influenced by similar amounts!, we

FIG. 8. Parity effect for the pair-breaking energies Ve[
1
2 (E1

2E0)h50 and Vo[
1
2 (E3/22E1/2)h50 ~see Sec. IV C 2!: when cal-

culated naively using conventional mean-field theory ~dashed lines!,
the pair-breaking energies obey Vo.Ve for all d/D̃; in contrast,
when calculated within generalized variational BCS theory ~solid
lines!, Vo,Ve for d/D̃,0.6; this reflects a parity effect, namely
that D3/2,D1 , which is caused by the extra unpaired electron in
u3/2& relative to u1&.

PRB 59 9539SUPERCONDUCTIVITY IN ULTRASMALL METALLIC GRAINS



may use it to estimate the ratio Vo /Ve54.25/451.06
60.1. This ratio is slightly smaller than that expected from
the mean-field BCS ratio Vo

BCS/Ve
BCS.1.1 at d/D̃.0.63,

i.e., consistent with the pair-breaking energy parity effect.
However, the difference between 1.06 and 1.1 is probably
too small to regard this effect as having been conclusively
observed.

We suggest that it should be possible to conclusively ob-

serve the pair-breaking energy parity effect in a somewhat

larger grain with h1/2,3/2,h0,1 ~implying Vo /Ve,1), i.e., in
regime II of Fig. 5. ~This suggestion assumes that in regime
II the complicating effect of orbital diamagnetism is still
nondominant, despite its increase with grain size.! To look

for this effect experimentally would thus require good con-

trol of the ratio d/D̃ , i.e., grain size. We suggest that this
might be achievable if a recently reported new fabrication
method, which allows systematic control of grain sizes by
using colloidal chemistry techniques,34 could be applied to
Al grains.

3. Parity effect in the limit d/D̃@1

Since the parity effects discussed above are based on the
observation that the amount of pairing correlations, as mea-
sured by Ds , have a significant s dependence, they by defi-
nition vanish for d.dc ,0 , because then Ds50 for all s.
Matveev and Larkin ~ML! ~Ref. 14! have pointed out, how-
ever, that there is a kind of parity effect that persists even in
the limit d/D̃@1, which in the present theory we would call
the ‘‘uncorrelated regime’’ @since there the D̄8 defined in Eq.
~4! would be !D̃]: when one extra electron is added to an
even grain, it does not participate at all in the pairing inter-
action, simply because this acts only between pairs; but when
another electron is added so that now an extra pair is present
relative to the initial even state, it does feel the pairing inter-
action and makes a self-interaction contribution 2ld to the
ground state energy. To characterize this effect, they intro-
duced the pairing parameter

DP
ML

5E1/2
N11

2

1

2
~E0

N
1E0

N12!, ~23!

with N5even. In first order perturbation theory in l , i.e.,
using Ep/2

N1p[0^puHup&0 ~where up&0 is the uncorrelated
Fermi ground state with N1p electrons!, one obtains
DP

ML,pert
5

1
2 ld . This illustrates that this parity effect exists

even in the complete absence of correlations, and increases
with d.

Since our variational ground states up& reduce to the un-
correlated Fermi states up&0 when DP50, the above pertur-
bative result for d/D̃ can of course also be retrieved from our
variational approach: we approximate E0

N and E1/2
N11 by

E0(d) and E1/2(d), respectively, both of which were calcu-
lated above, and E0

N12 by E0(d)2ld , since it differs from
E0(d) only by an extra electron pair at the band’s bottom,
whose interaction contribution in Eq. ~8! is 2ld(v j

(s))4.
Thus the variational result for ML’s parity parameter is

DP
ML,var

5E1/2~d !2E0~d !1ld/2, ~24!

~see Fig. 9!, which reduces to the perturbative result DP
ML,pert

for d.dc ,0 . The reason why this parity effect did not surface
in the discussions of previous sections in spite of its linear
increase with d is simply that there we were interested in
correlation energies of the form E2E 0 in which effects as-
sociated with ‘‘uncorrelated’’ states were subtracted out @see,
e.g., Figs. 3~b! and 4~b!#.

The perturbative result DP
ML,pert

5
1
2 ld is in a sense trivial.

However, ML showed that a more careful calculation in the
regime d/D̃@1 leads to a nontrivial upward renormalization
l̃ of the bare interaction constant l , given with logarithmic
accuracy by

l̃;
l

12lln~vC /d !
. ~25!

To obtain DP
ML , l in DP

ML,pert is replaced by this renormal-

ized l̃ , with the result

DP
ML;d/~2 ln d/D̃ !. ~26!

This logarithmic renormalization, which is beyond the reach
of our variational method ~but was confirmed using exact
diagonalization in Ref. 27!, can be regarded as the ‘‘first
signs of pairing correlations’’ in what we in this paper have
called the ‘‘uncorrelated regime’’ @in particular since uDP

MLu
increases upon renormalization only if the interaction is at-
tractive, whereas it decreases for a repulsive interaction, see
Eq. ~25!#. Unfortunately, DP

ML is at present not measurable,

for the same experimental reasons as apply to EG
e/o , see Sec.

IV C 1.

V. CONCLUSIONS

Citing the extensive literature in nuclear physics on fixed-
N projections of BCS theory, we argued that a reasonable
description of ultrasmall grains is possible using grand-
canonical BCS theory, despite the fact that such grains
would strictly speaking require a canonical description. Us-
ing a generalized variational approach to calculate various
eigenenergies of the grain, we demonstrated the importance
of the blocking effect ~the reduction of pair-mixing correla-
tions by unpaired electrons! and showed that it becomes
stronger with decreasing grain size. The blocking effect is
revealed in the magnetic-field dependence of the tunneling
spectra of ultrasmall grains, in which pairing correlations can

FIG. 9. The parity parameter DP
ML discussed by Matveev and

Larkin ~Ref. 14!, calculated perturbatively for the uncorrelated
Fermi sea (DP

ML,pert
5

1
2 ld , dashed line!, and using our generalized

variational BCS approach @DP
ML,var of Eq. ~24!, solid line#. The

renormalized result DP
ML;d/@2 ln(ad/D̃)# given by ML is shown

~dashed-dotted line! in its range of validity d/D̃@1. The parameter
a51.35 is chosen to ensure quantitative agreement with exact di-
agonalization results for extremely small grains ~Ref. 27!.
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be sufficiently weak that they are destroyed by flipping a
single spin ~implying ‘‘minimal superconductivity’’!. Our
theory qualitatively reproduces the behavior of the tunneling
thresholds of the spectra measured by Ralph, Black, and
Tinkham as a function of magnetic field. In particular, it
explains why the first order transition from a superconduct-
ing to a paramagnetic ground state seen in thin films in a
parallel field is softened by decreasing grain size. Finally, we
argued that a pair-breaking energy parity effect ~that is
analogous to the presently unobservable ground state energy
parity effect discussed previously! should be observable in
experiments of the present kind, provided the grain size can
be better controlled than in RBT’s experiments.
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APPENDIX A: ANALYTICAL LIMITS

1. d˜0 and Euler-MacLaurin expansion

When the level spacing d tends to zero the theory reduces
to the conventional BCS variational and mean field ap-
proach. We can calculate the properties of a superconducting
system to first order in d by expanding the BCS solution
around d50. In doing so, we focus on the ground states us&
of each spin-s sector of Hilbert space.

While in the bulk limit (d50) the shift 2ld(v j
(s))2 in the

single-electron energies j j just after Eq. ~12! is unimportant,
it influences the behavior of an ultrasmall grain by effec-
tively increasing the level-spacing near the Fermi surface. Its
effect is largest for s50, since for sÞ0 the states at the
Fermi surface, where the deviation of v j

(s ,a) from 0 or 1 is
largest, are blocked. For simplicity we neglect the v j

(s ,a) de-
pendence in j j in the following calculation, using j j5« j

2m2ldu@2(« j2m)# , and therefore good agreement with
numerics can only be expected for d!D̃ and sÞ0. Within
this approximation for j j , m lies halfway between the top-
most double occupied and lowest completely empty level in
us&0 : m5«02d(dp ,01l)/2. Note that m does not lie ex-
actly on one of the levels in the odd case (p51) as one
might have expected at first sight, but halfway between the
topmost doubly occupied and lowest completely empty level.

We shall calculate the pairing parameter Ds(d) in the
small-d limit by calculating the first terms of its Taylor se-
ries:

Ds~d !.S 11d]d1

d2

2
]d

2DDs~0 !. ~A1!

To this end, it suffices to solve the gap equation ~12!, as well
its first and second derivatives with respect to d, for d50.

This can be done by rewriting Eq. ~12! using the Euler-
MacLaurin summation formula

1/l5d (
j5 j0

j1

f ~ jd !.E
j0d

j1d

dj f ~j !1

d

2
@ f ~ j0d !1 f ~ j1d !#

1

d2

12
@ f 8~ j0d !1 f 8~ j1d !# , ~A2!

with f ( jd)5@( jd)2
1Ds

2#21/2, j05s1(11l)/2, and j1

5vc /d . The s dependence has now been absorbed in the
lower bound j0 of the sum. The negative branch of the sum
is identical to the positive since m lies halfway between the
topmost doubly occupied and lowest completely empty level.
It therefore suffices to calculate the positive branch times
two. Setting d50 in Eq. ~A2! yields the well-known BCS
bulk gap equation, whose solution is, by definition, Ds(0)
5D̃ . The first and second total derivatives with respect to d

of Eq. ~A2! yield ]dDs(d50)52s and ]d
2Ds(d50)5

2s2/D̃ , so that the desired result from Eq. ~A1! is

Ds~d !.D̃2~s1l/2!d2

~s1l/2!2d2

2D̃
. ~A3!

We next calculate the eigenenergies Es by evaluating Eq.
~8! up to first order in d, where the sums again are evaluated
with the help of the Euler-MacLaurin formula. Since we are
interested in the effects of pairing correlations we subtract
the energy E p

0 of the uncorrelated Fermi sea up&0 :

~even! Es2E 0
0.2

D̃2

2d
1S 11

p

4 DlD̃12sD̃

2S s2
2

1

12
1

p16

4
ls D d , ~A4a!

~odd! Es2E 1
2

0
.2

D̃2

2d
1

p

4
lD̃12sD̃

2S s2
1

1

6
1

p16

4
ls1

l

2 D d . ~A4b!

The d21 term is the bulk correlation energy, which is slightly
renormalized by the intensive (11p/4)lD̃ term, which in
turn stems from the v

4 terms of Eq. ~8!. 2sD̃ is the bulk
excitation energy for 2s quasiparticles. The d1 term is the
first-order correction for discrete level-spacing.

2. d near dc and the small delta expansion

The other analytically tractable limit is d@Ds , which
holds for d near the critical spacing dc ,s where Ds vanishes.
First, we derive an expression for the critical dc ,s by solving
the gap equation with vanishing pairing parameter Ds for d:

1

l
5 (

j5 j0

vc /dc ,s 1

j
5C~vc /dc ,s11 !2C~ j0!. ~A5!
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C(x) denotes the digamma function and j0 equals s1(1
1l)/2 again. Remembering that l51/ln(2vc /D̃) and
exp@C(x)#;x2

1
2 for large x this equation reduces to

lnS 2dc ,s

D̃
D 52CS s1

11l

2 D ~A6!

dc ,s5
D̃

2
expF2CS s1

11l

2 D G . ~A7!

For s>1 this can be simplified to

dc ,s.
D̃

2s1l
. ~A8!

Numerical values of dc ,s /D̃(l50.194) are 2.36,0.77,0.44,

0.31, . . . , for s50, 1
2 ,1, 3

2 , . . . , respectively. Near dc ,s the
pairing parameter vanishes as

Ds.D̃A12

d

dc ,s
for d@Ds and s.0, ~A9!

which we shall now show.
Since for the spin-s ground states with vanishing pairing

parameter electron and hole pairs are symmetrically distrib-
uted around the Fermi surface, Eq. ~13! again yields m5«0
2d(dp ,01l/2). We turn to the gap equation ~12!. The spin
dependence has been absorbed in j0 . The positive and nega-
tive branches of the restricted sum are identical ~because of
the special symmetric value of m), with uju ranging from
d@s1(11l)/2#5d j0 to vc . It therefore suffices to calculate
the positive branch times 2:

1

l
5 (

j5 j0

vc /d

~ j2
1Ds

2/d2!21/2. (
j5s1~11l !/2

vc /d S 1

j
2

Ds
2

2d2 j3D ,

~A10!

(
j5s1~11l !/2

vc /dc ,s 1

j
. (

j5s1~11l !/2

vc /d S 1

j
2

Ds
2

2d2 j3D .

To obtain Eq. ~A10!, the square root was expanded using
Ds!d . The remaining sums can be expressed by the poly-
gamma functions C (n) using the identity

(
k51

n
1

km
5z~m !2~21 !m

C ~m21 !~n11 !

~m21 !!
. ~A11!

Replacing the sums by the polygamma functions and collect-
ing terms leads to

CS vc

dc ,s
11 D2CS vc

d
11 D

52

Ds
2

4d2FC9S vc

d
11 D2C9S s1

11l

2 D G .

~A12!

Now assume that d is close to dc ,s : d5dc ,s2dd and dd

!dc ,s . Expand the left hand side in dd and use the asymp-
totics for C8 ~on the left hand side! and C9 ~on the right

hand side! for the large vc /d argument. Also the C9(s

1
1
2 ) term is approximated by its asymptotic form 2s22:

dd

dc ,s
52

Ds
2

4d2
C9~s1

1
2 !, ~A13!

Ds
2
54d2s2

dc ,s2d

dc ,s
, ~A14!

Ds5D̃A12

d

dc ,s
. ~A15!

The last step was performed by remembering that 4d2s2

54dc ,s
2 s2.D̃2 for sÞ0.

Although Eq. ~A9! was derived for d near dc ,s , it turns
out to have a surprisingly large range of validity: its small-d
expansion in powers of d/D̃ agrees ~at least! up to second
order with Eq. ~A3!, and for s>1 it in fact excellently re-
produces the numerical results for Ds(d) for all d. For s

50 the asymptotic expansion of C9 breaks down. Therefore
directly from Eq. ~A13! we deduce

D0.A4d2

12.1

dc ,s2d

dc ,s
, ~A16!

where we used C9@(11l)/2#.212.1. This result gives
good agreement with numerics near dc ,s50 , but obviously
has the wrong d→0 limit.

APPENDIX B: I-V CHARACTERISTICS

OF AN ULTRASMALL NSN SET

In this appendix we discuss how the I-V characteristics of
a SET in principle allow one to deduce even-odd ground
state energy differences as mentioned in Sec. IV C 1. Tichy
and von Delft35 examined the I-V characteristics of a SET
with an ultrasmall superconducting grain as island, i.e., an
ultrasmall NSN SET. They described the discrete pair-
correlated eigenstates of the grain using the parity-projected
mean-field BCS theory of Ref. 12. Although this approach is
too crude to correctly treat pairing correlations of excited
states @since for all even ~or odd! ones the same D0 ~or D1/2)
is used#, it does treat the even and odd ground states cor-
rectly. It therefore enables one to understand how the odd-
even ground state energy difference EG

o/e[(E1/22E0) should
influence the SET’s I-V characteristics.

Using tunneling rates given by Fermi’s golden rule and
solving an appropriate master equation, Tichy calculated the
tunnel current through the SET as a function of transport
voltage V and gate voltage Vg at zero magnetic field. In an
ideal sample, the I-V characteristics are 2e periodic in the
gate charge Qg5VgCg1const; one such period is shown in
Fig. 10. The usual Coulomb-blockade ‘‘humps’’ centered
roughly around the degeneracy points Qg /e52m6

1
2 are

decorated by discrete steps, due to the grain’s discrete
eigenspectrum. In RBT’s experiments Vg was fixed near a
degeneracy point and the current measured as function of V
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~for a set of different H values!. When following a line par-
allel to the V axis in Fig. 10, the positions of the steps in the
current thus correspond to the H50 eigenenergies of RBT’s
tunneling spectra in Fig. 6.

The reason for 2e instead of e periodicity are pairing
correlations: First, the grain’s odd-even ground state energy
difference EG

o/e causes a shift in the degeneracy-point values

for Qg /e from 2m6
1
2 to 2m6( 1

2 1EG
o/e/EC). Secondly, tun-

neling spectra measured in the V direction in Fig. 10 show a
plateau after the first step if the final state after tunneling is
even ~i.e., for 1

2 1EG
o/e/EC<Qg /e< 3

2 2EG
o/e/EC), but not if

it is odd, corresponding to the presence or absence of a large
spectral gap in the tunneling spectra of Figs. 6~a! or 6~b!; this
is due to the energy cost to break a pair, and the plateau’s
width is simply twice the even pair-breaking energy 2Ve

~see Sec. IV C 2!.
By analyzing the derivation from e periodicity along the

Qg axis at eV50, one can in principle experimentally deter-
mine EG

o/e . Unfortunately in present devices this is not pos-
sible in practice for reasons explained in Sec. IV C 1.

APPENDIX C: TIME REVERSAL SYMMETRY

When defining our model in Eq. ~6!, we adopted a re-

duced BCS Hamiltonian, in analogy to that conventionally
used for macroscopic systems. In doing so, we neglected
interaction terms of the form

2d (
i j i8 j8

l~ i , j ,i8, j8!c i1
† c j2

† c i82c j81 ~C1!

between non-time-reversed pairs c i1
† c j2

† , following Ander-
son’s argument1 that for a short-ranged interaction, the ma-
trix elements involving time-reversed states c j1

† c j2
† are

much larger than all others, since their orbital wave functions
interfere constructively.36 Interestingly, the experimental re-

sults of RBT provide strikingly direct support for the correct-
ness of neglecting interactions between non-time-reversed
pairs of the form ~C1! at h50: Suppose the opposite,
namely, that the matrix elements l( j1k , j , j81k , j8) were
all roughly equal to l for a finite range of k values ~instead
of being negligible for kÞ0, as assumed in H red). Then for
2s,k , one could construct a spin-s state us&8 with mani-
festly lower energy (E8) than that (E) of the state us& of Eq.
~15!:

us&85 )
j52m

2m12s21

c j1
† )

i52m

`

~u i
~s !

1v i
~s !c ~ i12s !1

†
c i2

† !uVac& .

~C2!

Whereas in us& pair mixing occurs only between time-
reversed partners, in us&8 we have allowed pair mixing be-
tween non-time-reversed partners, while choosing the 2s un-
paired spin-up electrons that occupy their levels with unit
amplitude to sit at the band’s bottom ~see Fig. 11!. To see
that us&8 has lower energy than us&,

Es85E8s
corr

1E8s
0
,E s

corr
1E s

0
5Es , ~C3!

we argue as follows: First, E8s
0
5E s

0 , since the corresponding
uncorrelated states us&08 and us&0 are identical @and given by
Eq. ~16!#. Secondly, Ds85D0(.Ds), and hence E8s

corr

5E 0
corr(,E s

corr<0), because the 2s unpaired electrons in
us&8 sit at the band’s bottom, i.e., so far away from «F that
their blocking effect is negligible ~whereas the 2s unpaired
electrons in us& sit around «F and cause significant blocking!.
Thus Eq. ~C3! holds, implying that us8& would be a better
variational ground state for the interaction ~C1! than us&.

Now, the fact that E8s
corr

5E 0
corr is independent of s means

that flipping spins in us&8 does not cost correlation energy.
Thus, the energy cost for turning u0&8 into u1&8 by flipping
one spin is simply the kinetic energy cost d, implying a
threshold field h0,18 5d/2 @see Eq. ~19!#; in contrast, the cost
for turning u0& into u1& , namely, 2Ve , implies a threshold
field h0,15Ve , which ~in the regime d&D̃) is rather larger

FIG. 10. I-V characteristics for a SET with an ultrasmall super-
conducting grain as island ~from Ref. 35!. The current is plotted as
a function of gate charge (Qg /e) and transport voltage (eV/EC).
Pairing correlations shift the degeneracy-point values of Qg /e away
from their e-periodic values of 2m6

1
2 by 6EG

o/e/EC ~see text!. To
better reveal the figure’s characteristic features, it was plotted using
a ratio EG

o/e/EC.0.1, very much larger than the typical values of
,0.01.

FIG. 11. Schematic representations of the non-time-reversed-
pairing state u3/2&8 defined in Eq. ~C2!. The energies « j7h of the
single-particle states u j ,6& are drawn ~a! for h50 and ~b! for 2h

53d . We indicated schematically how non-time-reversed states are
paired according to (u i1v ic (i13)1

†
c i2

† ) in the BCS-like Ansatz

~C2!, with solid or dashed ellipses encircling states that would be
completely filled or empty in the absence of pairing correlations.
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than d/2. The fact that RBT’s experiments @Fig. 7~b!# clearly
show a threshold field h0,1 significantly larger than d/2
shows that the actual spin-1 ground state chosen by nature is
better approximated by u1& than by u1&8, in spite of the fact

that E18,E1 . Thus the premise of the argument was wrong,
and we can conclude that those terms in Eq. ~C1! not con-
tained in H red can indeed be neglected, as done in the bulk of
this paper.
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