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We investigate quantum dots in clean single-wall carbon nanotubes with ferromagnetic PdNi-leads
in the Kondo regime. In most odd Coulomb valleys the Kondo resonance exhibits a pronounced
splitting, which depends on the tunnel coupling to the leads and an external magnetic field B, and
only weakly on gate voltage. Using numerical renormalization group calculations, we demonstrate
that all salient features of the data can be understood using a simple model for the magnetic
properties of the leads. The magnetoconductance at zero bias and low temperature depends in a
universal way on gµB(B−Bc)/kBTK, where TK is the Kondo temperature and Bc the external field
compensating the splitting.

PACS numbers: 73.23.Hk, 73.63.Fg, 72.15.Qm, 72.25.-b

The Kondo effect resulting from the exchange interac-
tion of a single spin with a bath of conduction electrons
[1], is one of the archetypical phenomena of many-body
physics. Its competition with ferromagnetism and possi-
ble applications in spintronics [2] have raised wide inter-
est in the past few years. The Kondo effect in quantum
dots [3, 4] has, in recent experiments, been investigated
in the presence of ferromagnetic (FM) leads [5–7]. It
was found that the Kondo resonance, usually observed
at zero bias in the odd Coulomb blockade (CB) valleys,
is split into two peaks at finite bias [5]. The splitting con-
sists of a term depending logarithmically on gate voltage
[6, 7], and, as demonstrated here, a second term nearly
independent of gate voltage. These phenomena were pre-
dicted theoretically [8–11], attributing the splitting of
the Kondo resonance to a tunneling induced exchange
field, which results from the magnetic polarization of the
leads. So far no detailed and quantitative comparison of
the measured conductance with the theory has been un-
dertaken to verify whether the simplistic description of
FM leads used in Refs. 8–11 has quantitative predictive
power. The latter would be needed for future spintron-
ics applications that exploit the lead-induced local spin
splitting, e.g., spin filtering.

In this Letter we present low-temperature transport
measurements of a single wall carbon nanotube quantum
dot with PdNi leads. We concentrate on the less studied
gate-independent contribution of the exchange splitting
of the Kondo resonance and attribute it to the saturation
magnetization of the contact material. We show that
the evolution of the conductance with magnetic field and
gate voltage can be understood within a simple model for
the magnetization and polarization in the FM leads, by
presenting numerical renormalization group (NRG) cal-
culations for this model, using parameters extracted from
experiment. Moreover, by comparing resonances of dif-
ferent transparency, we demonstrate a universal scaling
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FIG. 1. (Color online) Differential conductance dI/dVsd ver-
sus bias voltage Vsd and gate voltage Vgate at T = 25 mK and
B = 0 T. The CB regions are numbered for future reference.

of the magnetic field dependence of the Kondo conduc-
tance, proving that the magnetization of the leads can
indeed be viewed as an exchange field, which acts analo-
gously to an external magnetic field.

Experimental setup.— The nanotubes are grown by
chemical vapor deposition on a highly doped silicon sub-
strate with a 200 nm thermally grown oxide layer at its
surface [12]. The contact electrodes with a thickness
of roughly 45 nm are subsequently structured by elec-
tron beam lithography and consist of Pd0.3Ni0.7, known
to generate highly transparent contacts [13]. Transport
measurements were done in a dilution refrigerator with a
base temperature of 25 mK. The current I is measured
in a two point geometry with a voltage bias Vsd applied
to the source contact.

The differential conductance G = dI/dVsd is plotted in
Fig. 1 in color scale, providing the typical charging dia-
gram of a quantum dot [14]. Our device exhibits regular
CB oscillations and a clear fourfold symmetry character-
istic for carbon nanotubes [15]. Coupling to the contacts
is strong, leading to broad resonance lines and a variety
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of higher-order processes. Fig. 1 implies the following pa-
rameters for the nanotube quantum dot [15, 16]: a charg-
ing energy U ' 5 meV, a level separation ∆ ' 9.5 meV,
and a subband mismatch of about δ ' 1 meV. The tun-
nel coupling Γ between leads and quantum dot can be
inferred from the line width of the conductance peak.
Between valleys 1 and 2 in Fig. 1 we obtain a full width
at half maximum (FWHM) of Γ = 1.1 meV� kBT .

A striking feature visible in Fig. 1 are lines of enhanced
conductance at small, approximately constant bias values
in every second CB diamond. We attribute these lines to
a spin-1/2 Kondo conductance anomaly, split into two
peaks at small opposite bias values due to the presence
of FM contacts. The peak distance 2∆ε at the center of
the diamond can be related to a magnetic field scale B =
∆ε/gµB via the Zeeman effect. For valley 1 in Fig. 1 this
gives approximately 2 T for g = 2. Some resonances with
very low conductance exhibit no measurable splitting.

Main features of B-dependence:— Figure 2(a) displays
detailed measurements of valley 1 from Fig. 1 for differ-
ent values of external magnetic fields almost parallel to
the nanotube axis. The main observations are: (i) The
dominant contribution to the splitting is independent of
Vgate. (ii) As the field strength increases, the splitting is
reduced (observed in all investigated cases) until only a
single apparent peak remains. This field value is referred
to as compensation field (here Bc ' 2 T), since the dom-
inant gate-independent part of the splitting is compen-
sated. At higher fields the peak splits again. (iii) Despite
(i), we observe nevertheless a slight gate dependence, in
particular near Bc. This is most clearly reflected by the
fact that the touching point of the two resonances moves
from the left side of the CB diamond for B < Bc (cf.
B = 1.5 T) to the right side for B > Bc (cf. B = 2.5 T).
(iv) The gate dependence increases in strength very close
to the edges of the CB diamond.

Tunneling-induced level shifts.— The presence of the
splitting, its dependence on magnetic field, and a poten-
tial gate dependence can be consistently explained by the
renormalization of the quantum dot level energy due to
charge fluctuations between the dot and the leads. Since
the density of states (DOS) in the FM contacts is spin
dependent, the same is true for the charge fluctuations
and the corresponding energy renormalization. Hence,
the renormalization results in a spin splitting of the dot
level ∆ε ≡ δε↑ − δε↓ − gµBB. For a single impurity An-
derson model, the correction δεσ (σ = ↑, ↓) from second
order perturbation theory is (see, e.g., Ref. [10]):

δεσ ' −
1

π

∫
dω

(
Γσ(ω)[1− f(ω)]

ω − εd,σ
+

Γ−σ(ω)f(ω)

εd,−σ + U − ω

)
.

(1)
Here, εd,σ = εd ∓ gµBB/2 is the quantum level energy
for spin σ, U the charging energy, and Γσ(ω) the spin-
dependent tunneling rate. f(ω) is the Fermi function.

From Eq. (1) one sees that the splitting is not only
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FIG. 2. (Color online) Differential conductance versus
source-drain and gate voltage, in CB region 1 of Fig. 1, for six
magnetic field values. We compare here (a) experimental data
with (b) NRG results for the normalized zero-temperature
spectral function G =

∑
σ πΓσ(0)Aσ(ω), obtained using the

model and parameters described in the text. ng = 1/2−εd/U
is the dimensionless gate potential. The dashed line in the
panel for B = 2 T in (a) indicates the gate-dependent contri-
bution from the polarization for P = 10% (see text).

a consequence of properties at the Fermi surface, but of
the full DOS. The first and second terms in Eq. (1) de-
scribe electron- or hole-like processes, meaning fluctua-
tions between the states |1, σ〉 and |2〉 or |0〉, respectively
(the numeral denotes the charge occupation of the quan-
tum dot). The spin dependent energy corrections δεσ are
negative, as always in second order perturbation theory.
Consequently, the spin direction that favors fluctuations
more strongly will have lower renormalized energy.

Effect of Magnetization.— First we assume a shift be-
tween bands of equal and constant DOS for different spin
directions, ρ↑ = ρ↓ = ρ0, described by a constant Stoner
splitting ∆St, see Fig. 3. The tunneling induced splitting
∆ε(M) due to ∆St is directly related to the saturation
magnetization M ≡ (n↑ − n↓)/Na = ∆St/(2D0). Here
nσ = ρ0(D0 + εF ±∆St/2) is the number of spin-σ elec-
trons, εF the Fermi energy, and Na the number of states
per atom and spin. Starting from Eq. (1) we can de-
duce the spin orientation of the dot ground state as fol-
lows: Figs. 3(b) and (c) show the phase space available
(hatched) for quantum charge fluctuations for a spin up
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FIG. 3. (Color online) Schematic of the level renormalization
process. (a) We assume flat bands ρσ(ω) = ρ0 with bandwidth
D0, shifted with respect to each other by a constant Stoner
splitting ∆St. The filling fraction F determines the Fermi
energy εF. (b) Charge fluctuations for a spin up electron on
the dot, involving the empty states of the spin up band and
the occupied states of the spin down band (hatched areas).
(c) Analogous situation for a spin down electron on the dot;
the available phase space (hatched) is larger than in (b).

or a spin down electron residing on the quantum dot, re-
spectively. Comparing the total sizes of hatched areas for
(b) and (c), the phase space is larger for the latter, thus
favoring spin down. Therefore, ∆ε(M) is always negative,
meaning that the energy correction due to a finite Stoner
splitting is larger for the minority spin, i.e. the ground
state spin is oriented opposite to the magnetization of the
leads. This explains why the splitting is always initially
reduced (never increased) when an external field is ap-
plied (cf. observation (ii) listed above; the magnetization
direction follows that of the field in our setup). The size
of this effect depends on the Stoner splitting, i.e., onM.
For |εd|, εd +U � D0,∆St, which is compatible with the
experiment, we obtain, in extension of [11],

∆ε(M) ' Γ

2π
ln

[
(1−M)2 − (2F − 1)2

(1 +M)2 − (2F − 1)2

]
, (2)

where F = (1 + εF/D0)/2 is the filling fraction of the
band. This shift is independent of the gate voltage (ex-
plaining observation (i)) because the position εd of the
level is very close to εF, while the integration in Eq. (1)
ranges over a large fraction of the d-band.

SQUID measurements allow us to determine a mag-
netic moment of µ = 0.58µB/atom for our PdNi alloy
[17], implying an effective magnetization of M = 0.116.
Ab-initio calculations of the band structure provide a
filling fraction of F = 0.853 [18]. Thus, we estimate
∆ε(M) ' −175µeV. In transport spectroscopy this
would lead to conductance peaks split at zero exter-
nal field by 2∆εtheo/e = 2|∆ε(M)/e| ' 350µV. Given
the simplicity of our model, this agrees reasonably well
with the experimentally determined peak distance of
2∆εexp/e ' 550µV. For a more weakly coupled reso-
nance the predicted peak distance of 60µV agrees simi-
larly with the experimentally found value of 105µV.

Effect of polarization.— The case of ρ↑ 6= ρ↓, implying
nonzero polarization P = (ρ↑ − ρ↓)/(ρ↑ + ρ↓) at εF, has
already been discussed in Refs. [6, 11] and earlier publica-

tions referenced there. Assuming a flat band with a spin-
dependent DOS, e.g. ρ↑ > ρ↓ but zero M for simplicity,
quantum charge fluctuations renormalize the quantum
dot level depending on its position relative to εF. This
contribution shows a logarithmic divergence for εd → 0
and εd+U → 0 [6, 11], resulting in the up- and downward
bending of the compensated conductance peak towards
the corners of the diamond (cf. observation (iv)).

Numerical results.— The quality of our model is re-
flected by the close correspondence of Figs. 2(a) and (b).
Fig. 2(b) presents high-quality NRG results for the spec-
tral function A(ω) [19] versus the normalized gate voltage
ng, calculated for a single-lead Anderson model with the
DOS shown in Fig. 3 but with ρ↑ 6= ρ↓, using full density-
matrix NRG [20, 21]. Using the measured parameters
of the quantum dot and modeling the ferromagnetism
in the leads by taking P = 10% and M = 0.116, very
good agreement with experiment is found, except for the
background current at high Vsd, which results probably
from cotunneling processes involving higher levels not in-
cluded into the model. In the experiment as well as in
the numerical data, at B = 2 T the gate-independent
contribution, cf. Eq. (2), is fully compensated and the
crossing point of the resonances lies in the center of the
CB diamond. Here, only the (weak) gate-dependent con-
tribution from P remains (cf. observation (iii)), indicated
in Fig. 2 (B = 2 T) by a dashed line. By varying P and
comparing the shape of the conductance peak at Bc be-
tween experiment and theory, we estimate P ' 10%.

Universality.— For a quantum dot coupled to normal
leads, the normalized zero-bias conductance is a univer-
sal function (1) of T̃ = T/TK at zero field, and (2) of
B̃ = gµBB/kBTK at zero temperature. (We define the
Kondo temperature TK via G(T = TK)/G(0) = 1/2 at
zero field). We find, quite remarkably, that both these
universal features are recovered also for ferromagnetic
leads, if B is replaced by the effective field δB = B−Bc.
Regarding (1), Fig. 4(d) shows that at the compensation
field, B = Bc, the temperature dependence of the nor-
malized conductance, G(T )/G(0), agrees with the often-
used semi-empirical formula g̃(T̃ ) = [1 + (21/s− 1)T̃ 2]−s,
with s ' 0.22 [3]. Although the latter behavior is well-
established for dots coupled to normal leads, its emer-
gence here is nontrivial: it demonstrates that despite the
ferromagnetic environment, local spin symmetry can in-
deed be fully restored by fine-tuning the field to Bc.

The magnetic field dependence (2) has so far attracted
much less attention [22]. To explore it, Fig. 4(a)-(c)
shows G(B) at fixed T � TK for several charge states
differing in TK, Bc, and ∆ε(B = 0). The position of the
conductance peak roughly follows the Zeeman law, with
slight deviations in the vicinity of the compensation field
Bc [22]. We find that Bc and TK vary independently for
different charge states, implying different couplings Γ.

According to (2), G(B)/G(Bc) should be a univer-
sal function of δB̃ = gµB(B − Bc)/kBTK. The lines
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FIG. 4. (Color online) (a)-(c) Magnetic field dependence of
the splitting for different charge states. Vertical arrows denote
the compensation field Bc. (d) Scaling plot of G(T ) vs. T/TK

(symbols), at B = Bc, for the charge state shown in Fig. 4(c);
the solid line gives G(0) times the universal function g̃(T/TK)
discussed in the main text. (e) Scaled zero bias conductance

G(B)/G(Bc) plotted against the effective normalized field δB̃,
at fixed T = 50 mK � TK (100 mK for �). Lines represent
NRG calculations for several parameter sets. Inset: G(B) vs.
(B −Bc) before scaling.

in Fig. 4(e) show this curve, calculated by NRG for
four different sets of model parameters, yielding a good
scaling collapse. Symbols show experimental data for
G(B)/G(Bc) vs. δB̃, for several different gate voltages,
with TK extracted by numerical fitting to the NRG re-
sults. For three data sets taken on the same charge
state (circles and triangles), scaling works very well and
agreement with theory is excellent; for the other two
sets (squares, diamonds), the quality of scaling is re-
duced at higher δB̃ by an asymmetric background con-
tribution to the magnetoconductance. Nevertheless, the
overall agreement between theory and experiment shows
that the model correctly captures the universal, sample-
independent features of G(B) as function of δB̃.

Conclusions.— We have performed a quantitative
comparison of the conductance of quantum dots with FM
contacts, in the Kondo regime, with model NRG calcula-
tions. The quantitative agreement between experimental
and numerical data lends strong support to the scenario
proposed in Refs. 8 and 11: the exchange field induced
by magnetic contacts causes the local level to be split

by an amount ∆ε, which adds a constant offset to the
Zeeman splitting induced by an external magnetic field.
When this offset is compensated by a suitably fine-tuned
field Bc, universal scaling features of the Kondo effect are
recovered. The control of ∆ε(B) through the selection of
materials with proper M and P (high or small M opti-
mize peak splitting or gate tunability, respectively) may
prove useful for future applications in spintronics.
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