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Ford, Lewis, and O’Connell [Phys. Rev. A 64, 032101 (2001)] have recently discussed a thought experiment

in which a Brownian particle is subjected to a double-slit measurement . Analyzing the decay of the emerging

interference pattern, they derive a decoherence rate that is much faster than previous results and even persists

in the limit of vanishing dissipation. This result is based on the definition of a certain attenuation factor, which

they analyze for short times. In this note, we point out that this attenuation factor captures the physics of

decoherence only for times larger than a certain time tmix, which is the time it takes until the two emerging

wave packets begin to overlap. Therefore, the strategy of Ford et al. of extracting the decoherence time from

the regime t, tmix is in our opinion not meaningful. If one analyzes the attenuation factor for t. tmix, one

recovers familiar behavior for the decoherence time; in particular, no decoherence is seen in the absence of

dissipation. We confirm the latter conclusion by calculating the off-diagonal elements of the reduced density

matrix.
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It is widely accepted that a rapid loss of coherence caused
by the coupling to environmental degrees of freedom is at
the root of the nonobservation of superpositions of macro-
scopically distinct quantum states. There is a now well-
established theoretical scheme—“dissipative quantum
mechanics”—for studying the details of this phenomenon,
and for analyzing its time scale [2]. It has also become pos-
sible to observe decoherence in a variety of experiments in
mesoscopic physics [3,4] and quantum optics [5–7].

In a recent publication [1], Ford, Lewis, and O’Connell
(henceforth abbreviated as FLO) discuss a thought experi-
ment in which a Brownian particle initially in thermal equi-
librium with its environment is subjected to a double-slit
position measurement, giving rise to an interference pattern.
Analyzing the decay of this pattern, they derive a decoher-
ence time that is much shorter than suggested by previous
calculation [8]. They suggest the tentative explanation that
inital particle-bath correlations, which drastically alter the
short-time behavior of the Brownian particle, were not prop-
erly taken into account in previous work. Because the deco-
herence time calculated by FLO remains finite even in the
absence of any coupling to the environment, they describe
their result as “decoherence without dissipation” [9,10].

This is very puzzling. The usual physical picture of deco-
herence [2,11] is that averaging over unobserved degrees of
freedom (the “environment”) leads to nonunitary time evo-
lution, with a consequent loss of information. If there is no
coupling to the environment, there will be no such loss. This
picture agrees with another commonly accepted definition of
decoherence, namely, the decay of the off-diagonal elements
of the reduced density matrix. Without environmental cou-
pling, the time evolution of the system–and thus of rint–is

unitary, the norm of rint is constant and does not decay.
In light of these obvious remarks, it is interesting to ask

what FLO mean by decoherence. In this type of double-slit
experiment it is essential that the two initially separated parts
of the wave function eventually overlap if an interference
pattern in the probability density of the particle is to be ob-
served [12]. In the thought experiment considered by FLO,
this overlap becomes sizeable only after the broadening of
the two wave packets emerging from either slit becomes
equal to their initial separation, which happens after a certain
timescale tmix to be defined in Eq. (3) below. On much
shorter times, the interference pattern is influenced not only
by the presence (or absence) of coherence, but also by the
overlap of the wave functions, which makes it difficult, if not
impossible, to extract from the probability density alone a
measure of decoherence that is meaningful for t, tmix. As
will be shown, the decoherence time obtained by FLO is
much shorter than tmix and hence merely reflects an arbitrari-
ness in the definition of decoherence at these short times.
Instead, the suppression of the interference pattern that FLO
interpret as decoherence is due to the initial state being a
mixed state at finite temperature.

Let us now give a brief summary of FLO’s thought ex-
periment [1] and thereby introduce some notation. A one-
dimensional free Brownian particle, in thermal equilibrium
with its environment, is suddenly (at time t1=0, say) sub-
jected to a double-slit position measurement, after which the
state is described as

rinisx,x8,hQaj,hQa8jd = a*sxdasx8drthsx,x8,hQaj,hQa8jd ,

s1d

where rthsx ,x8 , hQaj , hQa8jd denotes the density matrix of a

particle (described by the coordinate x) in thermal equilib-
rium with its environment (described by a set of coordinates*Electronic address: gobert@lmu.de

PHYSICAL REVIEW A 70, 026101 (2004)

1050-2947/2004/70(2)/026101(4)/$22.50 ©2004 The American Physical Society70 026101-1



Qa). The measurement function asxd describes the transmit-

tance of the double slit, is taken as a sum of two Gaussian
functions with width 2s1, separated by a distance d@s1, and
is given by Eq. 15 of [1].

Above and hereafter, we chose units with "=kB=1. After
the mass, length, and energy scales are set by the particle
mass m, the distance of the slits d, and by E;m−1d−2, there
are three remaining parameters: the slit width s1, the tem-
perature T, and the friction coefficient of the Ohmic heat bath
g. In all quantities FLO consider, no divergencies are en-
countered as the bath cutoff is taken to infinity. In all plots
below, we set the slit width as s1=d /20.

FLO calculate the particle dynamics in the framework of
a quantum Langevin equation [13,14], which describes a par-
ticle coupled to a dissipative environment with Ohmic char-
acteristics. Within this framework, FLO calculate the prob-
ability density Psx , td= r̃sx ,x , td for finding the particle at

time t at coordinate x, r̃ being the reduced density matrix of
the Brownian particle. The result of this calculation, which
we agree with and which we have reproduced using standard
path integral techniques[15], is given by Eq. 16 of Ref. [1]. It
can be written in the form

Psx,td = Pclsx,td + Pintsx,tdcosffsx,tdg , s2d

where Pcl is the sum of the probabilities from each individual
slit, and given by the second and third term in Eq. 16 of Ref.
[1] (which we refer to as Pcl

− and Pcl
+ , respectively). Because

the state is a superposition of the particle emanating from
either slit, Psx , td also displays a spatial interference pattern

Pint cos f around Pcl (with a phase f that will be of no
further interest), given by the first term of Eq. 16 of Ref. [1].
We use in Eq. 16 of Ref. [1] s2= t1=0, and use the simplified
expressions for fxs0d ,xstdg and sstd given after Eq. 19 of Ref.

[1], valid for g!T, which we assume from now on.
Before we comment on the further analysis of FLO, we

shall briefly discuss some properties of the probability den-
sity Psx , td. In Fig. 1(a), Psx , td is plotted for the parameters

g=0.3E, T=E. The individual wave packets are seen to
spread, and an interference pattern is seen to emerge only
after the two wave packets, initially separated by the distance
d, have developed a significant overlap, i.e., after their width
has become equal to their separation d. For T!Ed2 /s 1

2,
which we assume from now on, the associated time scale tmix

is given by [15]

tmix ; 2ms1d . s3d

For t, tmix, the interference pattern is influenced not only by
the loss of phase coherence, but mainly by the spreading of
the wave packets, as is shown below. For t. tmix, the inter-
ference pattern is seen to broaden and to become flatter, as
the wave function continues to spread.

In Fig. 1(b), the interference pattern for the parameters
from Fig. 1(a) at time t= tmix is compared to the case T=g
=0. In Fig. 2, Psx , td is shown at three different times, to-

gether with the noninterfering part of the amplitude Pclsx , td
and with the envelope of the interference pattern, given by

Pclsx , td± Pintsx , td. As can be seen in Fig. 2, Pclsx=0, td is

vanishingly small at t! tmix, and is rapidly growing as the
wave packets start to overlap.

The interference fringes for both curves in Fig. 1(b) look
quite similar. This is in drastic contrast to what one might
expect from FLO’s analysis, which leads to a decoherence
time given by

FIG. 2. Psx , td is shown at the times t=0.13 tmix; t=0.33 tmix;

and t= tmix (from top to bottom), for the parameters T=E, g=0.3E

(thick line). Also shown: The noninterfering contribution Pclsx , td
(thin line) and the envelope Pclsx , td± Pintsx , td of the interference

pattern (dashed line) around Pclsx , td.

FIG. 1. (a) The probability density Psx , td for finding the particle

at time t at coordinate x is plotted for T=E ,g=0.3E. An interfer-

ence fringe is seen to appear at time tmix. (b) Psx , t= tmixd is plotted

for the same parameters as in (a) (dashed line), and for T=g=0

(solid line). The interference fringe in the former curve is seen to be

somewhat suppressed with respect to the latter, but to be qualita-

tively very similar.
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t FLO
D =

s 1
2m1/2

dT1/2 . s4d

The parameters for Fig. 1(a) imply, for example, t FLO
D

=0.025tmix [extracted from the very function Psx , td]. We be-

lieve this value implies that by the time tmix, the entire inter-
ference pattern, clearly visible in Fig. 1, should have already
disappeared. How can this be?

The decoherence analysis of FLO is based on an attenua-
tion factor aFLOstd, which is defined as [1,15]

aFLOstd =
Pintsx,td

ÎPcl
+ sx,tdPcl

− sx,td
=

Pintsx = 0,td

Pclsx = 0,td
. s5d

In other words, aFLO measures the interference amplitude Pint

in units of the classical amplitude Pcl at x=0; hence it does
not merely measure the time dependence of the interference
pattern, but, via the denominator, also reflects the drastic
increase of the reference unit Pcls0, td for t, tmix.

An example of aFLOstd is shown in Fig. 3, along with Pcl

and Pint. For low temperatures sT&Ed, Pcl and Pint are ini-

tially seen to be only slowly departing from their initial val-
ues Pintst=0d , Pclst=0d,exps−d2 /8s 1

2d (,10−22 for the

given parameters), and grow rapidly only after a time tspread

; tmix s1 /d. As is shown in Ref. [15], this is because for
t, tspread the wave packet spreading is not effective yet. The

rapid growth of Pclstd and Pintstd by ,22 orders of magni-

tude seen in Fig. 3 takes place almost entirely between tspread

and tmix, when the overlap of the wave packets increases
rapidly due to quantum spreading. On the other hand, the
decrease of aFLO takes place before tspread, when Pint and Pcl

are still tiny. Indeed, t, tspread is precisely the condition that
aFLO can be fitted by a Gaussian, aFLO<expf−t 2 /8st FLO

D d2g,
from which t FLO

D was extracted by FLO.
In the lower part of Fig. 3, the time evolution of aFLO at

finite temperature sT=Ed is shown for vanishing dissipation

g=0, and compared to the case of finite g=0.3E. For g=0,
aFLO is seen to decay from the initial value aFLOst=0d=1,

and to saturate before tmix at the value

a` = expS−
d2

8s 1
2 + 2lth

2 D , s6d

where lth
2 =1/ smTd is the squared thermal wavelength.

During the preparation of our Comment and the subse-
quent Reply by Ford and O’Connell, they worked out some
consequences of their theory for high temperatures (T@E, or
lth!d). We have likewise generalized our results, to make
possible a meaningful comparison between the conclusions
drawn by each group. As is pointed out after Eq. (20) of Ref.
[1], a` is highly suppressed at high temperatures. FLO inter-
pret this as decoherence. As we show below, however, the
suppression of aFLO is merely due to the initial state being a
mixed one, and has no time scale associated with it, contrary
to what the time evolution of aFLO might suggest. For ex-
ample, the interference amplitude Pint in Fig. 3 vanishes for
all times if T@E.

A time scale is only introduced if g.0: In this case, aFLO

is further reduced in a time-dependent way and assumes for
t@maxs1/g , tmixd the simple limiting form

aFLOstd → expS−
t

tdecs1 + t/tsd
D , s7d

where tdec=lth
2 / sd2gd, and ts= tdecd

2 / s8s 1
2d@ tdec. For

tmix, t! ts, aFLO decays exponentially on the decoherence
time scale tdec (this was also found by FLO in the long time
limit).

Because the overlap of the two wave packets is more or
less constant for t. tmix, the amplitude of the interference
pattern Pintsx , td, and thus tdec, is a meaningful measure of

their phase coherence. Indeed, interference patterns have
been analyzed in this way, most explicitly in Refs. [5] and
[7]. The decoherence time tdec agrees with what one expects
on general grounds [16], and what was observed experimen-
tally in a somewhat similar context [5]. Note that tdec di-
verges as g or T vanish, such that no decoherence without
dissipation is seen.

For t@ ts, aFLO is found to saturate at the (tiny) value
aFLOst→`d=expf−d2 / s8s 1

2dg. This is probably related to the

small initial overlap of the wave packets, and is further dis-
cussed in Ref. [15].

So far, we have argued that aFLO is not suitable to reveal
meaningful information about decoherence at t, tmix. How,
then, would one obtain such information? Since this question
cannot be answered using the diagonal elements of the re-

FIG. 3. Upper part: Pintsx=0, td is shown for g=0 and T=0

(solid; this line also coincides with that for Pclsx=0, td for all T

shown), T=E (dashed), and T=10E (dotted). For small T, both Pcl

and Pint grow rapidly after time tspread (indicated by the arrow), after

which broadening of the wave packets begins. The reduction of the

interference pattern Pint with increasing T is due to the increasingly

mixed-state nature of the initial state, not to decoherence, and has

no time scale associated. In particular, at high temperatures sT
=10Ed Pint practically vanishes for all times. Lower part: the attenu-

ation factor aFLO= Pint / Pcl is plotted. Its decay from 1 down to a`

takes place only for t, tspread. Also, for T=E the case of no dissi-

pation sg=0d is compared to weak dissipation (g=0.3E, thin solid

line); a decoherence-induced decay of aFLO for long times is seen in

the latter case only.
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duced density matrix r̃ alone, let us consider the entire re-
duced density matrix, including its off-diagonal elements. A
definition of decoherence valid for all times including t, tmix

has been proposed in Ref. [17]. It relies on the observation
that r̃ splits naturally into a classical part r̃cl and an interfer-
ence part r̃int sr̃= r̃cl+ r̃intd, which produce the corresponding

terms in the probability density in Eq. (2). As is seen explic-
itly in Eq. (A10) of Ref. [15], the former consists of peaks
around the diagonal r̃s±d /2 , ±d /2d, the latter around the off-

diagonal of r̃s±d /2 , 7d /2d of the reduced density matrix.

Therefore, the norm aODstd, defined in Ref. [17] by

uaODstdu2 = Tr r̃intstdr̃intstd
†, s8d

describes the temporal fate of the interference term even for
t, tmix, i.e., before it appears in the diagonal of r̃. Very im-
portantly, the dissipationless case g=0 describes a closed
system with unitary time evolution, r̃std=Ur̃U† with U−1

=U†; hence Eq. (8) is in this case automatically independent
of time. This is the back-of-the-envelope “proof” (already
given, e.g., in Ref. [17]) that there can be no decoherence
without dissipation.

Further insight is gained by analyzing aOD for g=0. A
simple calculation [15], using results from Ref. [18]; gives

aODstd =
1

Î2
expS−

d2

2lth
2 D =

1

Î2
a`. s9d

(Only the temperature dependence of aOD is important; the
trivial factor 1 /Î2 would disappear if aOD was normalized
differently.) As was seen on general grounds, this is indeed
independent of time. Consequently, in the absence of dissi-
pation, no time scale is associated with the reduction of the
attenuation factor a` below 1 as the temperature is increased.
Instead, this reduction is already present in the initial state,

which is not a pure state for TÞ0, but a mixed state with a
momentum uncertainty of the order of lth

−1. This reduces
ur̃intu

2 and thereby the interference pattern precisely by the
factor a` [15]. Incidentally, a` is exponentially small in
d /lth, which FLO chose to be @1. Therefore, for their
choice of parameters, the interference pattern for g=0 is ex-
ponentially small for all times. Of course, the fact that the
initial state is a mixed state should not be confused with
decoherence: The latter is a dynamical process with an asso-
ciated time scale, the former is not.

In conclusion, we have shown in this work, using FLO’s
own formulas, that for short times t, tmix, the measure of
decoherence suggested by FLO does not permit the change
in overlap of the wave packets to be distinguished from the
decay of the interference pattern, and therefore has nothing
to say about decoherence. Moreover, a simple calculation of
the attenuation factor based on the off-diagonal elements of
the reduced density matrix at g=0 clearly shows that it does
not depend on time at all. These problems with FLO’s inter-
pretation of their result exist for all choices of parameters, in
particular for all temperatures.

Note added. From a private communication with
O’Connell, we learned that Murakami, Ford, and O’Connell
[19] have themselves recently concluded that in the absence
of dissipation, “there is no decoherence in (Wigner) phase
space.” We fully agree with this conclusion, but (contrary to
Ref. [19]) believe it to be inconsistent with FLO’s earlier
claims of decoherence without dissipation (in coordinate
space). The resolution of this inconsistency is that FLO’s
measure of decoherence in coordinate space is meaningless
in the short-time limit, as argued above.

The work of D.G. and V.A. has been supported in part by
NSF Grant No. DMR-0242120. D.G. acknowledges partial
travel funding from CeNS at LMU München.

[1] G. Ford, J. Lewis, and R. O’Connell, Phys. Rev. A 64, 032101

(2001).

[2] See, e.g., U. Weiss, Quantum Dissipative Systems (World Sci-

entific, Singapore, 1993).

[3] I. Chiorescu, Y. Nakamura, C. Marmans, and J. Mooij, Science

299, 1869 (2003).

[4] Y. Nakamura, Y. Pashkin, and J. Tsai, Nature (London) 398,

786 (1999).

[5] D. Kokorowski, A. Cronin, T. Roberts, and D. Pritchard, Phys.

Rev. Lett. 86, 2191 (2001).

[6] M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. van der

Zouw, and A. Zeilinger, Nature (London) 401, 680 (1999).

[7] K. Hornberger, S. Uttenthaler, B. Brezger, L. Hackermöller,

M. Arndt, and A. Zeilinger, Phys. Rev. Lett. 90, 160401

(2003).

[8] See, e.g., A. Venugopalan, Phys. Rev. A 61, 012102 (1999).

[9] G. Ford and R. O’Connell, Phys. Lett. A 286, 87 (2001).

[10] It is worth stating that we are using the word dissipation in

exactly the sense of Ref. [9] . We are not commenting on

adiabatic, or energy conserving decoherence; see, e.g., D.

Mozyrsky and V. Privman, J. Stat. Phys. 91, 787 (1998),

which is due to loss of information via coupling to an environ-

ment, and has no conceptual problems.

[11] V. Ambegaokar, Phys. Today 46(4), 82 (1993).

[12] A. Caldeira and A. Leggett, Phys. Rev. A 31, 1059 (1985).

[13] G. Ford and M. Kac, J. Stat. Phys. 46, 803 (1987).

[14] G. Ford and J. Lewis, in Probability, Stochastics, and Number

Theory, Advances in Mathematics Supplemental Studies, Vol.

9 (Academic, New York, 1986), p. 169.

[15] D. Gobert, J. von Delft, and V. Ambegaokar, e-print quant-ph/

0306019 (2003).

[16] W. Zurek, Phys. Today 44(10), 36 (1991); see also Ref. [11].

[17] W. Strunz and F. Haake, Phys. Rev. A 67, 022102 (2003).

[18] G. Ford and R. O’Connell, Am. J. Phys. 70, 319 (2001).

[19] M. Murakami, G. Ford, and R. O’Connell, Laser Phys. 13, 180

(2003).

COMMENTS PHYSICAL REVIEW A 70, 026101 (2004)

026101-4


