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We analytically and numerically compute three equilibrium Fermi-liquid coefficients of the fully-
screened N -channel Kondo model, namely cB , cT and cε, characterizing the magnetic field- and
temperature-dependence of the resisitivity, and the curvature of the equilibrium Kondo resonance,
respectively. We present a compact, unified derivation of the N -dependence of these coefficients,
combining elements from various previous treatments of this model. We numerically compute these
coefficients using the numerical renormalization group, with non-Abelian symmetries implemented
explicitly, finding agreement with Fermi-liquid predictions on the order of 5% or better.
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I. INTRODUCTION

The Kondo effect was first observed, in the 1930s, for
iron impurities in gold and silver1,2, as an anomalous rise
in the resistivity with decreasing temperature. Kondo3

showed that this effect is caused by an antiferromagnetic
exchange coupling between the localized magnetic im-
purity spins and the spins of the delocalized conduction
electrons3, and based his arguments on a spin- 1

2 , one-
band model. While this model undoubtedly captures the
essential physics correctly in a qualitative way, it has
recently been shown4,5 that a quantitatively correct de-
scription of the Kondo physics of dilute Fe impurities in
Au or Ag requires a fully screened Kondo model involv-
ing three channels and a spin- 3

2 impurity. This conclusion
was based on a comparison of temperature- and magnetic
field-dependent transport measurements4–6 to theoretical
predictions for fully screened Kondo models with chan-
nel number N and local spin S related by N = 2S, with
N = 3 yielding much better agreement than N = 1 or 2.

The theoretical results in Ref. 5 were obtained us-
ing the numerical renormalization group (NRG),7–10 and
for N = 3 various non-Abelian symmetries5,11, such as
SU(2)×U(1)×SU(N) and Sp(2N), had to be exploited to
achieve reliable results at finite magnetic field. The tech-
nology for implementing non-Abelian symmetries with
N > 2 in NRG calculations has been developed only
recently.11,12 Given the complexity of such calculations,
it is desirable to benchmark their quality by comparing
their predictions to exact results. The motivation for the
present paper was to perform such a comparison for the
low-energy Fermi-liquid behavior of fully-screened Kondo
models, as elaborated below.

All fully-screened Kondo models feature a ground state
in which the impurity spin is screened by the conduc-
tion electrons into a spin singlet. The low-energy behav-
ior of these models can be described by a phenomeno-
logical Fermi-liquid theory (FLT) formulated in terms
of the phase shift experienced by conduction electrons
that scatter elastically off the screened singlet. Such
a description was first devised for the simplest case

of N = 1 by Nozières13,14 in 1974, and generalized
to the case of arbitrary N by Nozières and Blandin
(NB)15 in 1980. Their results were confirmed and
elaborated by various authors and methods, including
NRG,7,8,16–20 field-theoretic calculations,21,22 the Bethe
Ansatz,23,24 conformal field theory (CFT),25,26 renormal-
ized perturbation theory,27 and reformulations28–30 and
generalizations31,32 of Nozières’ approach in the context
of Kondo quantum dots.

In the present paper, we focus on three particular
Fermi-liquid coefficients, cB , cT and cε, characterizing
the leading dependence of the resistivity on magnetic field
(B) and temperature (T ), and the curvature of the equi-
librium Kondo resonance as function of excitation energy
(ε), respectively. Explicit formulas for all three these co-
efficients are available in the literature for N = 1, but for
general N only for the case of cT . Given the wealth of
previous studies of fully-screened Kondo models, the lack
of corresponding formulas for cB and cε was somewhat
unexpected. Thus, we offer here a unified derivation of all
three Fermi-liquid coefficients, cT , cB and cε. We follow
the strategy which Affleck and Ludwig (AL)26 have used
to reproduce Nozières’ results13 for N = 1, namely doing
perturbation theory in the leading irrelevant operator,
and generalize it to the case of arbitrary N . Our formu-
lation of this strategy follows that used by Pustilnik and
Glazman (PG)29 for their discussion of Kondo quantum
dots. While all pertinent ideas used here can be found in
the literature, we hope that our rather compact way of
combining them will be found useful.

For our numerical work, we faced two challenges: First,
the complexity of the numerical calculations increases
rapidly with increasing N ; this was dealt with by exploit-
ing non-Abelian symmetries. Second, numerical calcula-
tions do not achieve the scaling limit that is implicitely
presumed in analytical calculations; its absence was com-
pensated by using suitable definitions of the Kondo tem-
perature, following Ref. 33.

The paper is organized as follows. In Sec. II we define
the model and summarize our key results for the Fermi-
liquid coefficients cB , cT and cε. Section III compactly
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summarizes relevant elements of FLT and uses them to
calculate these coefficients. Sec IV describes our numeri-
cal work and results. Sec.V summarizes our conclusions.

II. MODEL AND MAIN RESULTS

The fully-screened Kondo model for N conduction
bands coupled to a single magnetic impurity at the origin
is defined by the Hamiltonian H = H0 +Hloc, with

H0 =
∑
kmσ

ξkc
†
kmσckmσ , (1a)

Hloc = JK

∑
mσσ′

Ψ†mσ(0)
~τσσ′

2
Ψmσ′(0)~S −BSz. (1b)

Here H0 describes m channels of free conduction elec-
trons, with spin index σ = (+,−) = (↑, ↓) and channel
index m = 1, . . . , N . We take the dispersion ξk = εk−εF

to be linear and symmetric around the Fermi energy,
ξk = k~vF. Each channel has exchange coupling JK to a

local SU(2) spin of size S = N/2 with spin operators ~S,
Ψmσ(0) =

∑
k ckmσ destroys an electron with spin σ in

channel m at the impurity site, and B describes a local
Zeeman field in the z-direction (we use units gµB = 1).
The overall symmetry of the model19 is SU(2)× Sp(2N)
for B = 0, and U(1)×Sp(2N) for B 6= 0 (see Sec. IV A
for details). The model is characterized by a low-energy

scale, the Kondo temperature, TK ∼ D̃ exp [−1/(νJK)],
where ν is the density of states per channel and spin
species and D̃ is of the order of the conduction electron
bandwidth.

For an alloy containing a dilute concentration of mag-
netic impurities, the impurity contribution to the resis-
tivity has the form

ρ(T,B) ∝
∫
dε
(
−∂εf(ε, T )

)∑
mσ

Amσ(ε, T,B) . (2)

f(ε, T ) is the Fermi function, and the spectral function
Amσ(ε) = − 1

π ImTmσ(ε) is the imaginary part of the T-

matrix Tmσ(ε), defined through34,35

Gcmσ,k,k′(ε) = G0
mσ,k(ε)δ(k− k′)

+ G0
mσ,k(ε)Tmσ(ε)G0

mσ,k′(ε) , (3)

with Gcmσ,k,k′ and G0
mσ,k the full and bare conduction

electron Green’s functions, respectively. (For a Kondo
quantum dot tuned such that the low-energy physics is
described by Eq. (1), the conductance G through the dot
has a form similar to Eq. (2), with ρ replaced by G.29)

As mentioned in the introduction, the ground state
of the fully-screened Kondo model is a spin singlet, and
the regime of low-energy excitations below TK shows
Fermi-liquid behavior.13,15 One characteristic Fermi-
liquid property is that the leading dependence of the T-
matrix on its arguments, when they are small relative to

TK, is quadratic,

Amσ(ε, T,B)

Amσ(0, 0, 0)
= 1− cεε

2 + c′TT
2 + cBB

2

T 2
K

, (4)

(Particle-hole and spin symmetries forbid terms linear in
ε or B.) This implies the same for the resistivity,

ρ(T,B)

ρ(0, 0)
= 1− cTT

2 + cBB
2

T 2
K

, (5)

with cT = (π2/3)cε + c′T . The so-called Fermi-liquid
coefficients cε, cT and cB are universal, N -dependent
numbers, characteristic of the fully-screened Fermi-liquid
fixed point. For N = 1, the coefficients cT and cB
have recently been measured experimentally in transport
studies through quantum dots and compared to theoret-
ical predictions.36 The coefficient cε is, in principle, also
measurable via the non-linear conductance of a Kondo
dot coupled strongly to one lead and very weakly to
another.29

The goal of this paper is twofold: first, to analytically
establish the N -dependence of cε, cT and cB using Fermi-
liquid theory à la NB; and second, to numerically calcu-
late them using an NRG code that exploits non-Abelian
symmetries, in order to establish a benchmark for the
quality of the latter. Our main results are as follows:
First, if the Kondo temperature is defined by

TK =
N(N + 2)

3πχimp
=

4S(S + 1)

3πχimp
, (6)

where χimp is the static impurity susceptibility at zero
temperature, the Fermi-liquid coefficients are given by

cB =
(N + 2)2

9
, cT = π2 4N + 5

9
, cε =

2N + 7

6
. (7)

For general N , the formula for cT has first been found by
Yoshimori,21 while those for cB and cε are new (though
not difficult to obtain). Second, our numerical results for
N = 1, 2 and 3 are found to agree with the predictions
of Eq. (7) to within 5%.

III. FERMI-LIQUID THEORY

In this section, we analytically calculate the Fermi-
liquid coefficients cB , cT and cε for general N . With
the benefit of hindsight, we selectively combine various
elements of the work on FLT of Nozières,13 NB,15 AL26

and PG29. Detailed justifications for the underlying as-
sumptions are given by these authors in their original
publications and hence will not be repeated here. In-
stead, our goal is to assemble their ideas in such a way
that the route to the desired results is short and sweet.

We begin by summarizing Nozières’ ideas for express-
ing the T-matrix in terms of scattering phase shifts and
expanding the latter in terms of phenomenological Fermi-
liquid parameters. Next, we recount AL’s insight that
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this expansion can be reproduced systematically by do-
ing perturbation theory in the leading irrelevant opera-
tor of the model’s zero-temperature fixed point. Then
we adopt PG’s strategy of performing the expansion in a
quasiparticle basis in which the contant part of the phase
shift has already been taken into account, which consid-
erably simplifies the calculation. Our own calculation is
presented using notation analogous to that of PG, while
taking care to highlight the extra terms that arise for
N > 1. It turns out that their extra contributions can
be found with very little extra effort.

A. Phase shift and T-matrix

Since the ground state of the fully-screened Kondo
model is a spin singlet, a low-energy quasiparticle scat-
tering off the impurity experiences strong elastic scatter-
ing as if the impurity were non-magnetic. Moreover, it
also experiences a weak local interaction if some energy
(� TK) is available to weakly excite the singlet, caus-
ing some inelastic scattering. Since the singlet binding
energy is TK, the strength of this local interaction is pro-
portional to 1/TK.

Nozières13 realized that this combination of strong
elastic scattering and a weak local interaction can natu-
rally be treated in terms of scattering phase shifts. The
phase shift of a quasiparticle with quantum numbers mσ
and excitation energy ε relative to the Fermi energy can
be written as

δmσ(ε) = δ0
mσ + δ̃mσ(ε) , δ0

mσ = π/2 . (8)

Here δ0
mσ is the phase shift for ε = B = T = 0; it has the

maximum possible value for scattering off a non-magnetic
impurity, namely π/2. Finite-energy corrections arising
from weak excitations of the singlet are described by
δ̃mσ(ε), which is proportional to 1/TK.

If inelastic scattering is weak, unitarity of the S-matrix
can be exploited13 to write the T-matrix in the following
form (we use the notation PG29; for a detailed analy-
sis, see AL’s discussion26 of the terms arising from their
figures 6 and 7):

1− 2πνiTmσ(ε) = e2iδmσ(ε)
[
1− 2πνiT̃ in

mσ(ε)
]
. (9)

Here T̃ in accounts for weak inelastic two-body scatter-
ing processes, and is proportional to 1/T 2

K. It is to be
calculated in a basis of quasiparticle states in which the
phase shift δ0

mσ has already been accounted for. (Here
and below, tildes will be used on quantities defined w.r.t.
the new basis if they differ from corresponding ones in
the original basis.)

Expanding Eq. (9) in the small (real) number δ̃mσ(ε)

and recalling that e2iδ0mσ = −1, one finds that the imagi-
nary part of the T-matrix, which determines the spectral
function, can be expressed as

− πνImTmσ(ε) = 1−
[
δ̃2
mσ(ε)− πνImT̃ in

mσ(ε)
]
, (10)

to order 1/T 2
K. Comparing this to Eq. (4), we conclude

that knowing δ̃ to order 1/TK and T̃ in to order 1/T 2
K

suffices to fully determine the Fermi-liquid coefficients
cB , cT and cε.

Now, a systematic calculation of δ̃ and T̃ in requires a
detailed theory for the strong-coupling fixed point, which
became available only with the work of AL in the early
1990s. Nevertheless, Nozières succeeded in treating the
case N = 1 already in 1974,13 using a phenomenological
expansion of δ̃mσ(ε) in powers of (ε− εZ

σ)/TK (εZ
σ repre-

sents the Zeeman energy of quasiparticles in a magnetic
field, see Eq. (14) below) and δn̄m′σ′ = nm′σ′−n0

m′σ′ , the
deviation of the total quasiparticle number nm′σ′ from its
ground state value. The prefactors in this expansion have
the status of phenomenological Fermi-liquid parameters.
Using various ingenious heuristic arguments, he was able
to show that all these parameters, and also T̃ in, are re-
lated to each other and can be expressed in terms of
a single energy scale, namely the Kondo temperature.
Moreover, by choosing the prefactor of ε in this expan-
sion to be 1/TK, he suggested a definition of the Kondo
temperature that also fixes its numerical prefactor. (Our
paper adopts this definition, too.) In 1980, NB general-
ized this strategy15 to general N , finding an expansion
of the form

δ̃mσ(ε) = α(ε− εZ
σ)− 3ψδn̄m,−σ

+ ψ
∑
m′ 6=m

(δn̄m′σ − δn̄m′,−σ) , (11)

where α and ψ are phenomenological Fermi-liquid param-
eters related by α = 3ψν = 1/TK. (NB’s initial version of
Eq. (11) [their Eq. (34)] does not contain the Zeeman con-
tribution εZ

σ, but the latter is implicit in their subsequent
treatment of the Zeeman field before their Eq. (37).)

In the following subsections, we show how NB’s expan-
sion for δ̃ can be derived systematically. AL26 and PG29

have shown how to do this for N = 1; we will generalize
their discussion to arbirtrary N .

B. Leading irrelevant operator

AL showed26 that NB’s heuristic results can be de-
rived in a systematic fashion by doing perturbation the-
ory in the leading irrelevant operator of the model’s zero-
temperature fixed point. As perturbation, they took the
operator with the lowest scaling dimension satisfying the
requirements of being (i) local, (ii) independent of the im-

purity spin operator ~S, since the latter is fully screened,
(iii) SU(2)-spin-invariant, (iv) and independent of the lo-
cal charge density, just as the Kondo interaction. The
operator sastifying these criteria has the form25

Hλ = −λ : ~J(0) · ~J(0) : , (12)

where ~J(0) is the quasiparticle spin density at the im-
purity site, and : . . . : denotes the point-splitting regu-
larization procedure (see App. A). In App. D of Ref. 26,
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AL showed in great detail how NB’s phase shifts can be
computed using Eq. (12), for the single-channel case of
N = 1. They did not devote as much attention to the
case of general N , though the needed generalizations are
clearly implied in their work. We here present the corre-
sponding calculation in some detail, following the nota-
tional conventions of PG, which differ from those of AL
in some regards (see App. A). The main difference is that
PG formulate the perturbation expansion in a new basis
of quasiparticle states, in which the phase shift δ0

mσ has
already been accounted for, which somewhat simplifies
the discussion. (We remark that PG chose δ0

mσ = σπ/2
rather than π/2 as used by NB and us, but the extra σ
has no consequences for the ensuing arguments.)

The quasiparticle Hamiltonian describing the vicinity
of the strong-coupling fixed point (fp) has the form

Hfp = Hfp,0 +Hλ , (13)

where

Hfp,0 =
∑
mσk

(ξk + εZ
σ) :ψ†kmσψkmσ : , εZ

σ = −σB
2
, (14)

describes free quasiparticles in a magnetic field B, with
Zeeman energy εZ

σ. Note that although the Zeeman
term in the bare Hamiltonian (1) is local, it is global
in Eq. (14), because the effective quasiparticle Hamilto-
nian Hfp contains no local spin. Using standard point-
splitting techniques, which we review in pedagogical de-
tail in App. A, the leading irrelevant operator (12) can
be written as Hλ = H1 +H2 +H3, with

H1 = − 1

2πνTK

∑
mσkk′

(ξk + ξk′) :ψ†kmσψk′mσ : , (15a)

H2 =
1

πν2TK

∑
m

:ρm↑ρm↓ : , (15b)

H3 = − 2

3πν2TK

∑
m6=m′

:~jm ·~jm′ : , (15c)

where

ρmσ =
∑
kk′σ

ψ†kmσψk′mσ , (16a)

~jm =
1

2

∑
kk′σσ′

ψ†kmσ~τσσ′ψk′mσ′ . (16b)

Here we have expressed the coupling constant λ in terms
of the inverse Kondo temperature using [cf. Eq. (A11)]

λ =
8π(~vF)2

3TK
, (17)

with the numerical proportionality factor chosen such
that TK agrees with definition of the Kondo temperature
used by NB and PG, as discussed below. Importantly,
the point-splitting procedure fixes the relative prefactors
arising in H1, H2 and H3 (whereas NB’s approach re-
quires heuristic arguments to fix them). Our notation for
H1 and H2 coincides with that used by PG. H3 represents
new terms that enter additionally for N > 1. Figure 1
gives a diagrammtic depiction of all three terms.

C. First order terms

Our first goal is to recover NB’s expansion of the phase
shift δ̃ to leading order in ε− εZ

σ and δn̄. Following PG,

this can be done by calculating δ̃ perturbatively to first
order order in 1/TK, in the new basis of quasiparticle
states that already incorporate the phase shift δ0. To
order 1/TK, no inelastic scattering occurs, and δ̃ is related
to the elastic T-matrix by

e2iδ̃mσ(ε) = 1− 2πνiT̃ el
mσ(ε) . (18)

The elastic T-matrix, in turn, equals the real part of the
quasiparticle self-energy, T̃ el

mσ(ε) = ReΣ̃Rmσ(ε). (Actually,
to order 1/TK, the self-energy is purely real.) By expand-

ing Eq. (18) for small δ̃, the phase shift is thus seen to be
given by the real part of the self-energy:

δ̃mσ(ε) ' −πνReΣ̃Rmσ(ε) . (19)

Now, as pointed out already by Nozières in 1974,13 a
first-order perturbation calculation of the self-energy is
equivalent to treating interaction terms in the mean-field
(MF) approximation. They then take the form

HMF
2 =

1

πν2TK

∑
mσ

:ρmσ: δn̄m,−σ (20a)

HMF
3 = − 1

3πν2TK

∑
σ

∑
m 6=m′

:ρmσ : (δn̄m′σ − δn̄m′,−σ), (20b)

where δn̄mσ = 〈:ρmσ :〉, the quasiparticle number relative
to the B = 0 ground state, is given by

δn̄mσ = −νεZ
σ = σνB/2 . (21)

mσmσ

(a)   (b)  (c) 

(d)   (e)  (f) 

↑m

↓m

mσ

σmm

↑m

↓m σ

mσ

FIG. 1. (Color online) (a-c) Vertices associated with H1,
H2 and H3, respectively. (d-f) Nonzero second-order contri-

butions to the quasiparticle self-energy, Σ̃Rmσ, involving H2
1 ,

H2
2 and H2

3 , respectively. The contributions involving H1H2,
H1H3 and H2H3 all vanish, the former two due to the odd
power of energy in the two-leg vertex.
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The mean-field version of the leading irrelevant operator
thus has the form:

HMF
λ =

∑
mσkk′

hmσ(ξk, ξk′) :ψ†kmσψk′mσ : , (22)

hmσ(ξk, ξk′) =
1

πνTK

[
−1

2
(ξk + ξk′) +

δn̄m,−σ
ν

(23)

−
∑
m′ 6=m

δn̄m′σ − δn̄m′,−σ
3ν

]
.

For such a single-particle perturbation, the self-energy
can be directly read off from hmσ using

Σ̃Rmσ(ε) = hmσ(ε− εZ
σ, ε− εZ

σ) , (24)

because k-sums of the type
∑
k 1/(ε−ξk−εZ

σ+i0+) yield
residues involving ξk = ε− εZ

σ. Using Eq. (24) in Eq. (19)
for the phase shift, we find

δ̃mσ(ε) =
1

TK

[
ε− εZ

σ −
δn̄m,−σ

ν
(25)

+
∑
m′ 6=m

δn̄m′σ − δn̄m′,−σ
3ν

]
.

This fully agrees with the expansion (11) of NB if we
make the identification 1/TK = α = 3ψν, thus confirm-
ing the validity of NB’s heuristic arguments. Note that
the coefficient of ε − εZ

σ in Eq. (25) comes out as 1/TK,
in agreement with the conventions of NB and PG, as in-
tended by our choice of numerical prefactor in Eq. (17).

As consistency check, let us review how NB used
Eq. (25) to calculate the Wilson ratio. First, Eq. (25) im-
plies an impurity-induced change in the density of states
per spin and channel of νimp

mσ (ε) = 1
π∂εδmσ(ε). This yields

a corresponding impurity-induced change in the specific
heat, C imp. At zero field (where εZ

σ and δn̄mσ vanish),
the change relative to the bulk is given by

C imp

C
=

2Nνimp
mσ (0)

2Nν
=

1

πνTK
. (26)

Second, the Friedel sum rule for the impurity-induced
change in local charge in channel mσ at T = 0 gives

N imp
mσ =

1

π
δmσ(0) =

1

2
+

1

π
δ̃mσ(0) , (27)

and Eq. (25), together with Eq. (21) for δn̄mσ, leads to

δ̃mσ(0) =
σB

TK

[
1

2
+

1

2
+
N − 1

3

]
=
σB(N + 2)

3TK
. (28)

The linear response of the impurity-induced magnetiza-
tion, M imp = 1

2

∑
m(N imp

m↑ −N
imp
m↓ ), then gives the impu-

rity contribution to the spin susceptibility as

χimp =
M imp

B
=
N(N + 2)

3πTK
=

4S(S + 1)

3πTK
. (29)

The corresponding bulk contribution is χ = νN/2. Thus,
the Wilson ratio is found to be

R =
χimp/χ

C imp/C
=

2(N + 2)

3
=

4(S + 1)

3
, (30)

in agreement with more elaborate calculations by
Yoshimori21 and by Mihály and Zawadowski.22

Note that Eq. (29) relates Nozières’ definition of the
Kondo temperature to an observable quantity, χimp, that
can be calculated numerically. We used this as a precise
way of defining TK in our numerical work. (Subtleties
involved in calculating χimp are discussed in Sec. IV B.)
Note that up to a prefactor, Eq. (29) for χimp has the
form χfree(TK), where χfree(T ) = S(S + 1)/(3T ) is the
static susceptibility of a free spin S at temperature T .

We are now in a position to extract our first Fermi-
liquid coefficient, cB . For this, it suffices to know the
spectral function A in Eq. (4) to quadratic order in B, at

ε = T = 0, where T̃ in = 0. Inserting the corresponding
expression (28) for δ̃mσ(0) into Eq. (10) for ImT , we find

Amσ(0, 0, B) =
1

νπ2

[
1− (N + 2)2

9

B2

T 2
K

]
. (31)

Comparing this to Eq. (4), we read off cB = (N + 2)2/9.
Note that if the definition (29) of TK in terms of χimp

is taken as given, cB can actually be derived on the back
of an envelope: for a fully-screened Kondo model, the
impurity-induced spin susceptibility gets equal contribu-
tions from all N channels, χimp = Nχimp

m , and the Friedel
sum rule relates the contribution from each channel to
phase shifts, χimp

m = M imp
m /B = [δ̃m↑(0)−δ̃m↓(0)]/(2πB),

implying δ̃m(0) = σ(πχimp/N)B. Using this in Eq. (10)
yields

Amσ(0, 0, B) =
1

νπ2

[
1− (πχimp/N)2B2

]
, (32)

which is equivalent to Eq. (31) if Eq. (29) holds.

D. Second order terms

We next discuss inelastic scattering for B = 0, but at
finite temperature. To order 1/T 2

K, inelastic scattering is
described by the imaginary part of the quasiparticle self-
energy arising from the second-order contributions of H1,
H2 and H3, shown in diagrams (d), (e) and (f) of Fig. 1,
respectively. These diagrams give:

ImΣ̃R,1mσ (ε) = − ε2

πνT 2
K

, (33a)

ImΣ̃R,2mσ (ε) = −ε
2 + π2T 2

2πνT 2
K

, (33b)

ImΣ̃R,3mσ (ε) =
2

3
(N − 1) ImΣ̃R,2mσ (ε) . (33c)

The first two can also be found in the discussion of PG,
whose strategy we follow here. (They also appear, in
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slightly different guise, in the discussion of AL26.) The
third is proportional to the second, and the factor 2/3
originates from (2/3)22s(s + 1) with s = 1/2, since the
relative prefactor between H3 and H2 brings in two pow-
ers of 2/3, and the algebra of Pauli matrices yields a
factor 2s(s+ 1).

Now, the term called T̃ in in Eq. (9) by definition de-
scribes the contribution of the two-body terms H2 and
H3 to inelastic scattering:

ImT̃ in
mσ(ε) = Im

[
Σ̃R,2mσ (ε) + Σ̃R,3mσ (ε)

]
. (34)

The contribution ImΣ̃R,1 from H1 is not included in
ImT̃ in here, since it actually equals −δ̃2/πν, and hence

is already contained in the factor e2iδ̃ in Eq. (9). Indeed,
in Eq. (10) for the imaginary part of the T-matrix in the

original basis, the δ̃2 term equals −πνImΣ̃R,1. Collecting
all ingredients, Eq. (10) gives

Amσ(ε, T, 0)

=
1

νπ2

[
1− ε2

T 2
K

− ε2 + π2T 2

2T 2
K

(
1 +

2

3
(N − 1)

)]
=

1

νπ2

[
1− (2N + 7)ε2 + (2N + 1)π2T 2

6T 2
K

]
. (35)

For N = 1, the second term reduces to the familiar form
−(3ε2 + π2T 2)/(2T 2

K) found by AL26 and GP29. Com-
paring Eqs. (35) and (4,5) we read off cε = (2N + 7)/6
and c′T = π2(2N + 1)/6, implying cT = π2(4N + 5)/9.

IV. NRG RESULTS

In this section, we describe our NRG work. We had set
ourselves the goal of achieving an accuracy of better than
5% for the Fermi-liquid coefficients. To achieve this, two
ingredients were essential. First, exploiting non-Abelian
symmetries; and second, defining the Kondo temperature
with due care. The latter is a matter of some subtlety,33

because the wide-band limit assumed in analytical work
does not apply in numerical calculations.

We begin below by giving the Lehmann representation
for the desired spectral function. We then discuss the
non-Abelian symmetries used in our NRG calculations
and explain how the Kondo temperature was extracted
numerically. Finally, we present our numerical results.

A. NRG details

To numerically calculate the T -matrix of Eq. (3), we
use equations of motion34,35 to express it as

Tmσ(ε) = JK〈Sz〉+ 〈〈Omσ;O†mσ〉〉, (36a)

Omσ ≡ [Ψmσ(0), Hloc] = JK

∑
σ′

~S · ~τσσ′Ψmσ′(0), (36b)

where 〈〈 · ; · 〉〉 denotes a retarded correlation function,
and calculate its Lehmann-representation,

Amσ(ε, T,B) =∑
a,b

e−βEa+e−βEb
Z |〈a|Omσ|b〉|2δ(ε− Eab), (37)

using the full density matrix (FDM) approach of
NRG.37–40

For our numerical work, we take the conduction band
energies to lie within the interval ξk ∈ [−D,D], with
Fermi energy at 0 and half-bandwidth D = 1, and take
the density of states per spin, channel and unit length to
be constant, as 1/2D. (It is related to the extensive den-
sity of states used in Sec. III by ν = Ndiscrete/2D, where
Ndiscrete, the number of discrete levels within the band,
is proportional to the system size.) For the calculations
used to determine the Fermi-liquid parameters, we use
exchange coupling νJK = 0.1, so that the Kondo tem-
perature TK/D ∝ exp[−1/(νJK)] has the same order of
magnitude for N = 1, 2 and 3, namely . 10−4. Follow-
ing standard NRG protocol,7,8,10 the conduction band is
discretized logarithmically with discretization parameter
Λ (we use Λ = 3 or 4), mapped onto a Wilson chain, and
diagonalized iteratively. NRG truncation at each itera-
tion step is controlled by either specifying the number
of kept states per shell, NK, or the truncation energy,
Etr (in rescaled units, as defined in Ref. 41), correspond-
ing to the highest kept energy per shell. Spectral data
are averaged over Nz different, interleaving logarithmic
discretization meshes.42 The values for NRG-specific pa-
rameters used here are given in legends in the figures
below.

For the fully-screened N -channel Kondo model, the di-
mension of the local Hilbert space of each supersite of the
Wilson chain is 4N . Since this increases exponentially
with the number of channels, it is essential, specifically
so for N = 3, to reduce computational costs by exploiting
non-Abelian symmetries11 to combine degenerate states
into multiplets. Several large symmetries are available19:
For B = 0, the model has SU(2)×U(1)×SU(N) spin-
charge-channel symmetry. If the bands desribed by H0

are particle-hole symmetric, as assumed here, the model
also has a SU(2)×[SU(2)]N spin-(charge)N symmetry, in-
volving SU(2) mixing of particles and holes in each of
the N channels. The U(1)×SU(N) and [SU(2)]N sym-
metries are not mutually compatible (their generators
do not all commute), however, implying that both are
subgroups of a larger symmetry group, the symplectic
Sp(2N). Thus the full symmetry of the model for B = 0
is SU(2)×Sp(2N). For B 6= 0 it is U(1)×Sp(2N), since
a finite magnetic field breaks the SU(2) spin symmetry
to the Abelian U(1) Sz symmetry. When the model’s
full symmetry is exploited, the multiplet spaces encoun-
tered in NRG calculations exhibit no more degeneracies
in energy at all.

To achieve the desired accuracy for our Fermi-liquid
parameters, it turned out to be sufficient to use
SU(2)×U(1)×SU(N) symmetry for B = 0, while the full
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U(1)×Sp(2N) symmetry was needed for B 6= 0. Do-
ing so led to an enormous reduction in memory require-
ments, the more so the larger the rank of the symme-
try group (Sp(2N) has rank N , and SU(N) has rank
N − 1). For N = 3, for example, we kept . 8, 400
multiplets for U(1)×Sp(6) or . 13, 500 multiplets for
SU(2)×U(1)×SU(3) during NRG trunctation, which, in
effect, amounts to keeping . 530, 000 individual states.11

B. Definition of TK

The Fermi liquid theory of Sec. III implicitly assumes
that the model is considered in the so-called scaling limit,
in which the ratio of Kondo temperature to bandwidth
vanishes, TK/D → 0. In this limit, physical quantities
such as ρ(B, T )/ρ(0, 0) are universal scaling functions,
which depend on their arguments only in the combina-
tions B/TK and T/TK. Since the shape of such a scaling
function, say ρ(0, B)/ρ(0, 0) plotted versus B/TK, is uni-
versal, i.e. independent of the bare parameters (coupling
JK and bandwidth D) used to calculate it, curves gener-
ated by different combinations of bare parameters can all
be made to collapse onto each other by suitably adjusting
the parameter TK for each. In the same sense the Fermi-
liquid parameters cB , cT and cε, being Taylor-coefficient
of universal curves, are universal, too.

One common way to achieve a scaling collapse, popular
particularly in experimental studies, is to identify the
Kondo temperature with the temperature B1/2 or field
T1/2 at which the impurity contribution to the resisitivity
has decreased to half its unitary value,

ρ(0, B1/2) = ρ(0, 0)/2 , ρ(T1/2, 0) = ρ(0, 0)/2 . (38)

However, this is approach is not suitable for the purpose
of extracting Fermi-liquid coefficients, for which TK has
to be defined in terms of (analytically accessible) low-
energy properties characteristic of the strong-coupling
fixed point. In Sec. III we have therefore adopted
Nozières’ definition of TK in terms of the leading energy
dependence of the phase shift δ̃0

mσ [Eq. (25)], implying
that it can be expressed in terms of χimp, of the local
static spin susceptibility at zero temperature [Eq. (29)].
In the scaling limit, this definition of TK matches B1/2

or T1/2 up to prefactors, i.e. B1/2/TK and T1/2/TK are uni-
versal, N -dependent numerical constants, independent of
the model’s bare parameters.

In numerical work, however, the scaling limit is never
fully realized, since the bandwidth is always finite. It
may thus happen that a scaling collapse expected ana-
lytically is not found when the corresponding curves are
calculated numerically. For example, if the Kondo tem-
perature is defined, as seems natural, in terms of a purely
local susceptibility, χloc, involving only the response of
the local spin to a local field,

4S(S + 1)

3πT loc
K

≡ χloc ≡ d

dB
〈Sz〉|B=0 , (39)

then curves expected to show a scaling collapse actually
do not collapse onto each other, as pointed out recently in
Ref. 33 (see Figs. 2(d-f) there). That paper also showed
how to remedy this problem: the static spin susceptibil-
ity used to calculate TK has to be defined more carefully,
and two slightly different definitions have to be used, de-
pending on the context. The first option is needed when
studying zero-temperature (i.e. ground state) properties
as a function of some external parameter, such as the
field-dependence of the resisitivity (needed for cB). In
this case, a corresponding susceptibility defined in terms
of the response of the system’s total spin to a local field
should be used:

4S(S + 1)

3πTFS
K

≡ χFS ≡ d

dB
〈Stot
z 〉|B=0 . (40)

The superscript FS stands for “Friedel sum rule”, to high-
light the fact that using this rule to calculate the linear
response of 〈Stot

z 〉 to a local field directly leads to rela-
tion (29) between χimp and TK. The second option is
needed when studying dynamical or thermal quantities
that depend on the system’s many-body excitations for
given fixed external parameters (e.g. fixed B = 0), such
as the temperature-dependence of the resistivity (needed
for cT ), or the curvature of the Kondo resonance (needed
for cε). In this case, one should use

4S(S + 1)

3πT sc
K

≡ χsc ≡ 2χFS − χloc . (41)

The superscript sc stands for “scaling”, to indicate that
this definition of the Kondo temperature ensures33 a scal-
ing collapse of dynamical or thermal properties. Figure 2
demonstrates that a scaling collapse is indeed found when
the field- or temperature-dependent resistivity, plotted
versus B/TFS

K or T/T sc
K , respectively, is calculated for

two different values of JK (solid and dashed lines, respec-
tively). Note that this works equally well for N = 1, 2
and 3. (For N = 1, such scaling collapses had already
been shown in Ref. 33.)

We remark that the three Kondo temperatures defined
in Eqs. (39) to (41) differ quite significantly from each
other for the Kondo Hamiltonian of Eq. (1), with differ-
ences as large as 12%, 31% and 55% for N = 1, 2 and
3, respectively, for the parameters used in Fig. 2. This
indicates that although we have chosen bare paramters
for which TK/D is smaller than 10−4, we have still not
reached the scaling limit. We have checked that the
differences between T loc

K , TFS
K and T sc

K decrease when
νJK is reduced in an attempt to get closer to the scal-
ing limit, but estimate that truly reaching that limit
would require νJK < 0.01 for the Kondo model, imply-
ing TK/D < 10−45. Thus, reaching the scaling limit by
brute force is numerically unfeasible. Therefore, using
TFS

K and T sc
K rather than T loc

K is absolutely essential for
obtaining scaling collapses. It is similarly essential for an
accurate determination of the Fermi-liquid parameters.
Correspondingly, for the results discussed below, we have
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FIG. 2. (Color online) Scaling collapse of (a) the resistivity
at zero temperature as function of field, and (b) at zero field
as function of temperature, calculated for two different values
of the bare coupling, νJK (dashed or solid), and for N =
1, 2 and 3. For each N , the dashed and solid curves overlap
so well that they are almost indistinguishable. The insets
compare the energy scales B1/2 and T1/2 at which the resistivity
has decreased to half its unitary value [cf. Eq. (38)], to the
scales TFS

K and T sc
K [cf. Eqs. (40) and (41)], respectively. The

shown ratios are of universal numbers of order unity, but not
necessarily very close to 1, with a significant dependence on
N : B1/2/T

FS
K = 1.22, 1.31, 1.60 and T1/2/T

sc
K = 0.82, 1.02, 1.36

for N = 1, 2 and 3, respectively. The legend in the lower
left of panel (b) specifies the NRG parameters used for both
panels.

used TFS
K as definition of the Kondo temperature when

extracting cB , and T sc
K when extracting cT and cε.

C. Using unbroadened discrete data only

When one is interested in spectral properties, one typ-
ically has to broaden the discrete data. For the deter-
mination of the Fermi liquid coefficients, however, where
high numerical accuracy is required, it is desirable to
avoid standard broadening. For the calculation of cT
and cB this can be achieved9 by directly inserting the
Lehmann sum over delta-functions for the spectral func-
tion Amσ(ε, T,B) [Eq. (37)] into the energy integral for
ρ(T,B) [Eq. (2)], resulting in a sum over discrete data
points that produces a smooth curve. The curve is
smooth because Eq. (2) in effect thermally broadens the
delta-peaks in the Lehmann representation. This is true
even in the limit T → 0, because in NRG calculations it
is realized by taking T nonzero, but much smaller than
all other energy scales.

For the determination of cε, in contrast, one faces the
problem that Amσ(ε, 0, 0) is represented not as an inte-

N cNRG
T /cFLT

T cNRG
B /cFLT

B cNRG
ε /cFLT

ε

1 1.00 ± 0.01 1.00 ± 0.01 1.01 ± 0.03

2 0.98 ± 0.03 1.02 ± 0.03 0.99 ± 0.07

3 1.01 ± 0.03 1.05 ± 0.05 1.02 ± 0.10

TABLE I. Numerically extracted values of cT , cB and cε,
given here relative to the corresponding predictions from FLT
of Eq. (7). The deviations between NRG and FLT values are
≤ 5% in all cases. To numerically determine these coefficients,
we used the quadratic coefficient of a 4th-order polynomial fit
to the corresponding NRG data. Error bars were estimated
by comparing the quartic fits to polynomial fits of different
higher orders.

gral of a sum over discrete delta functions, but directly in
terms of the latter. To avoid having to broaden these by
hand, it is desirable to find a way to extract cε from an
expression involving an integral over the discrete spec-
tral data, as for cB and cT . This can be achieved as fol-
lows. First, note that cε is, by definition, a coefficient in
the general Taylor expansion of the normalized spectral
function Anorm(ε) ≡ Amσ(ε, 0, 0)/Amσ(0, 0, 0) for small
frequencies,

Anorm(ε) =

∞∑
n=0

an(ε/TK)n, cε = a2 . (42)

Due to particle-hole symmetry, an = 0 for all n odd,
and by definition a0 = 1. To determine a2 from an in-
tegral over discrete data, we consider a weighted average
of Anorm(ε) over ε,

Ā(τ) ≡
∫
dεAnorm(ε)Pτ (ε), (43)

where Pτ (ε) is a symmetric weighting function of width
τ and weight 1, and moments defined by∫

dε(ε/τ)nPτ (ε) ≡ pn (44)

for integer n ≥ 0 (with p0 = 1). Here we use

Pτ (ε) =
1

4τ

1

cosh2 (ε/2τ)
= −∂f(ε, τ)

∂ε
, (45)

but other choices are possible, too (e.g. a Gaussian peak).
Clearly, the leading τ -dependence of Ā(τ) for small τ
reflects the leading ε-dependence of Anorm(ε) and al-
lows for an accurate determination of a2. Indeed, using
Eqs. (42) to (45), we obtain a power-series expansion for
Ā(τ) of the form Ā(τ) =

∑
n anpn(τ/TK)

n
. Thus, by

fitting Āfit(τ) =
∑
n fnτ

n to the NRG data for Ā(τ),
one can determine the desired coefficients in (42) using
an = TnKfn/pn. In particular, the Fermi-liquid coefficient
of present interest is given by cε = a2 = T 2

Kf2/p2.
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FIG. 3. (Color online) (a) Resistivity as function of magnetic field at T = 0, (b) resistivity as function of temperature at
B = 0, and (c) the weighted spectral function Ā(τ) [cf. Eq. (43)] at T = B = 0, all shown for N = 1, 2, 3. Each panel contains
NRG data (heavy solid lines), the quadratic term from a 4th order polynomial fit (heavy dashed lines) and the corresponding
predictions from FLT of Eq. (7) for the quadratic term (light solid lines). Left and right vertical dotted lines in matching colors
indicate the lower and upper borders of the fitting range used for each N . The legend in the lower left of panel (a) specifies
the NRG parameters used here.

D. Extraction of Fermi-liquid coefficients

Figs. 4(a) to 4(c) show our NRG data (heavy solid
lines) for the resistivity plotted versus B/TFS

K at zero
temperature or plotted versus T/T sc

K at zero field, and
for the weighted spectral function plotted versus τ/T sc

K ,
respectively. We determined the Fermi-liquid coefficients
cT , cB and cε from the quadratic terms of 4th-order poly-
nomial fits to these curves. Including the 4th-order term
allows the fitting range to be extended towards somewhat
larger values of the argument, thus increasing the accu-
racy of the fit. For each solid curve, the quadratic term
from the fit is shown by heavy dashed lines; these are
found to agree well with the corresponding predictions
from FLT, shown by light lines of matching colors. The
level of agreement is quite remarkable, given the rather
limited range in which the behavior is purely quadratic:
with increasing argument, quartic contributions become
increasingly important, as reflected by the growing devi-
ations between dashed and solid lines; and at very small
values of the argument (. 0.02), the NRG data become
unreliable due to known NRG artefacts.

Numerical values for the extracted Fermi-liquid coef-
ficients are given in Table I; they agree with those pre-
dicted analytically to within ≤ 5%. This can be con-
sidered excellent agreement, especially for the numeri-
cally very challenging case of N = 3. For cε, the er-
ror bars for N = 2 and N = 3 lie beyond 5%, because
the fitting range is limited quite significantly from below
due to NRG artefacts, visible as clear upward or down-
ward “bumps” in the Ā(τ) curves below τ/TK ' 0.02 [see
Fig. IV B(c)]. The artefacts can be reduced by decreas-
ing Λ, but that would require a corresponding increase
in the number of kept states NK or the truncation en-
ergy Etr, severely increasing the numerical costs of the

calculations.

V. CONCLUSIONS

Our two main results can be summarized as follows.
First, we have presented a compact derivation of three
Fermi-liquid coefficients for the fully-screened N -channel
Kondo model, by generalizing well-established calcula-
tions for N = 1 to general N . The corresponding calcula-
tions, building on ideas of Nozières, Affleck and Ludwig,
and Pustilnik and Glazman, are elementary. We hope
that our way of presenting them emphasizes this fact,
and perhaps paves the way for similar calculations in less
trivial quantum impurity problems that also show Fermi-
liquid behavior, such as the asymmetric single-impurity
Anderson Hamiltonian, or the 0.7-anomaly in quantum
point contacts.43

Second, we have established a benchmark for the
quality of NRG results for the fully-screened N -channel
Kondo model, by showing that it is possible to numeri-
cally calculate equilibrium Fermi-liquid coefficients with
an accuracy of better than 5% for N = 1, 2 and 3. To
achieve numerical results of this quality, two technical in-
gredients were essential, both of which became available
only recently: first, exploiting larger-rank non-Abelian
symmetries in the numerics;11,12 and second, carefully
defining the Kondo temperature33 in such a way that
numerically-calculated universal scaling curves are in-
deed universal, in the sense of showing a proper scaling
collapse, despite the fact that the scaling limit TK/D → 0
is typically not achieved in numerical work.
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Appendix A

This appendix offers a pedagogical derivation of the
Hamiltonian Hλ given in Eq. (15) of the main text using
the point-splitting regularization strategy, following AL
(App. D of 26). Its main purpose is to show how the
relation α = 3ψν = 1/TK between Fermi-liquid parame-
ters that NB had found by intuitive arguments15 follows
simply and naturally from point-splitting. For a detailed
discussion of the point-splitting strategy, see Refs. 45–47.

According to AL, the leading irrelevant operator for
the fully-screened N -channel Kondo model has the form

Hλ = −λ : ~J(0) · ~J(0) : . (A1)

Here ~J(x) =
∑N
m=1 : ~Jm(x) : is the total (point-split) spin

density from all channels at position x (the impurity or
dot sits at x = 0), and

~Jm(x) =
1

2

∑
σσ′

Ψ†mσ(x)~τσσ′Ψmσ′(x) (A2)

is the corresponding (non-point-split) spin density for

channel m. Here : ... : denotes point splitting,

:A(x)B(x) :≡ lim
η→0

[
A(x+ η)B(x)−A(x+ η)B(x)

]
, (A3)

a field-theoretic scheme for regularizing products of oper-
ators at the same point by subtracting their ground state
expecation value, AB = 〈AB〉. (In most cases, point-

splitting is equivalent to normal ordering.) For present
purposes, we follow AL26 and take

Ψmσ(x) =
1√
L

∑
k

e−ikxψkmσ (A4)

to be free fermion fields with linear dispersion (ξk =
k~vF) in a box of length L → ∞ (with k ∈ 2πn/L, n ∈
Z), with normalization {ψkmσ, ψ†k′m′σ′} = δkk′δmm′δσσ′
and free ground state correlators

〈Ψ†mσ(x)Ψm′σ′(0)〉 = 〈Ψmσ(x)Ψ†m′σ′(0)〉 =
δmm′δσσ′

2πix
.

(A5)
Note that follow PG in our choice of field normaliza-
tion, which differs from that used by AL26 by Ψhere =
ψAL/

√
2π. Consequently, our coupling constant is re-

lated to their’s by λhere = (2π)2λAL.

In the definition of Hλ, point-splitting is needed be-

cause the product of two spin densities, ~J(x + η) · ~J(x),
diverges with decreasing seperation η between their ar-
guments. To make this explicit, we use Wick’s theorem,

:AB ::CD : = :ABCD :+:ABCD :+:ABCD :+:ABCD :,

to rewrite the product of spin densities as follows:

~J(x+ η) · ~J(x) =
1

4

∑
mσσ′

∑
m′σ̄σ̄′

:Ψ†mσ(x+ η)~τσσ′Ψmσ′(x+ η) : :Ψ†m′σ̄(x)~τσ̄σ̄′Ψm′σ̄′(x) : (A6a)

=
1

4

∑
mσσ′

∑
m′σ̄σ̄′

~τσσ′ · ~τσ̄σ̄′
[

:Ψ†mσ(x+ η)Ψmσ′(x+ η)Ψ†m′σ̄(x)Ψm′σ̄′(x) :

+
δmm′

2πiη

(
δσ′σ̄ :Ψ†mσ(x+ η)Ψmσ̄′(x) : + δσσ̄′ :Ψmσ′(x+ η)Ψ†mσ̄(x) :

)
+
δσσ̄′δσ′σ̄δmm′

(2πiη)2

]
. (A6b)

The point-splitting prescription in Eq. (A1) subtracts off the 1/η2 divergence of the last term of Eq. (A6b). The
contributions of the second and first terms to Hλ can be organized as Hλ = H1 + Hint, describing single-particle
elastic scattering and two-particle interactions, respectively. Taking x = 0 and η → 0, we find:

H1 = − λ

8πi
lim
η→0

∑
mσσ′

:
1

η

[
Ψ†mσ(η)~τ2

σσ′Ψmσ′(0)−Ψ†mσ′(0)~τ2
σ′σΨmσ(η)

]
: (A7a)

= − 3λ

8πi
lim
η→0

∑
mσ

:

[
1

η

(
Ψ†mσ(η)−Ψ†mσ(0)

)
Ψmσ(0)−Ψ†mσ(0)

1

η

(
Ψmσ(η)−Ψmσ(0)

)]
: (A7b)

= − 3λ

8πi

∑
mσ

:
[(
∂xΨ†mσ

)
(0)Ψmσ(0)−Ψ†mσ(0)

(
∂xΨmσ)(0)

]
:, (A7c)
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Hint = −λ
∑
mm′

: ~Jm(0) · ~Jm′(0) : . (A8)

To obtain Eq. (A7b), we used ~τ2
σσ′ = 3δσσ′ and sub-

tracted and added :Ψ†mσ(0)Ψmσ(0): inside the square
brackets. Now pass to the momentum representation,
using Eq. (A4) and the shorthand notations (following
PG29)

ρmσ(0) =
1

L
ρmσ, ρmσ =

∑
kk′

ψ†kmσψk′mσ , (A9a)

~Jm(0) =
1

L
~jm, ~jm =

1

2

∑
kk′σσ′

ψ†kmσ~τσσ′ψk′mσ′ ,

(A9b)

for the conduction electron channel-m charge and spin
densities at the impurity. This gives

H1 = − α1

2πν

∑
mσkk′

(ξk + ξk′) :ψ†kmσψk′mσ : , (A10a)

Hint = − 2φ1

3πν2

∑
mm′

:~jm ·~jm′ : . (A10b)

Here ν = L/(2π~vF) is the extensive 1D density of states
per spin and channel, and the prefactors were expressed
in terms of the constants

α1 = φ1 =
3λ

8π(~vF)2
=

1

TK
. (A11)

(This notation is consistent with that of Ref. 44, where
Hλ served starting point for calculating Fermi-liquid cor-
rections, too.) Checking dimensions, with [Hλ]=E and

[Ψmσ]=1/
√
L (E stands for energy, L for length), we

see that [λ]=EL2. Since [ν]=1/E , [~vF]=EL, we have
[α1] = [φ1] = 1/E , thus, α1 and φ1 have dimensions
of inverse energy. In the main text, they are identified
with 1/TK; in fact, the numerical prefactor in Eq. (A11)
is purposefully chosen such that the leading term in the
expansion (25) of the phase shift δ̃mσ(ε) turns out to take
the form ε/TK.

To elucidate how the case N > 1 differs from N = 1,
we write Hint = H2 +H3 in the main text, with H2 and
H3 given in Eqs. (15b) and (15c), respectively, where H3

occurs only for N > 1.
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